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Abstract

The paper analyses recurring group decision making problems under uncer-
tainty regarding future preferences of the actors involved, problems faced by
many real world committees. The need for continuity in policy making implies
that past decisions play an important role in determining subsequent ones, cre-
ating dynamic procedural linkages. In this context we compare two bargaining
protocols: i) the implicit status-quo protocol under which present period policy
serves as the status-quo for the next period and ii) the explicit status-quo proto-
col under which the decision in the current period involves both current policy
and a (possibly different) status-quo for the ensuing period. We show that the
two bargaining protocols lead to notably different policy outcomes. In Station-
ary Markov Perfect equilibrium, unique under slight refinement, the difference is
most marked in the periods of common interest. These are still characterized by
disagreement under implicit status-quo bargaining, while under explicit status-
quo bargaining they lead to the policy decisions that fully reflect the congruent
preferences of the committee members. Furthermore, the former bargaining pro-
tocol leads quickly to gridlock with constant policy unresponsive to the varying
preferences in the committee, something the latter bargaining protocol does not
deliver. However, the implicit status-quo protocol prevents abuse of proposal
power, which is possible under the explicit status-quo. With this insight, we
re-interpret explanations for the existence of ‘asymmetry’ in the Federal Open
Market Committee (FOMC) directive.
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Several other members indicated that they would have preferred

to tighten at that meeting. . . . The asymmetric directive, which

held prospect of near-term tightening, once again allowed FOMC

to reach a consensus.

Meyer (2004), page 83

And we know from firsthand accounts that Greenspan was holding

back an FOMC that was eager to raise rates.

Blinder and Reis (2005), page 58

1 Introduction

We study recurring group decision making problems with the preferences

of the actors involved varying over time. As a leading example, consider

periodic meetings of a monetary policy committee. In every period, the

preferences of each committee member will be affected by host of factors,

such as the state of the economy, his view of future economic development,

his opinion about the strength of monetary policy transmission channels,

or judgment about the suitable inflation monetary policy should aim for.

Inevitably, most of those factors will change stochastically over time, opening

the possibility for renegotiation of decisions reached at an earlier stage. Of

course, there are many other examples of recurring decision making with

varying preference, both in the economic and the political spheres.

With changing preferences of the involved parties, bargaining over a

decision at any given point in time will proceed under varying degrees of

disagreement. In the monetary policy committee case, ambiguity of infor-

mation the committee holds can provoke disagreement over the most appro-

priate policy in some periods, but can lead to agreement in other periods

when the information becomes more definite. Uncertainty over the future

then implies uncertainty about the extent of future disagreement as well.

Recurring decisions naturally create dynamic linkages that need to be

considered. First, strategic linkages arise due to the repeated nature of the

interaction. The current action of any given decision maker will take into

account its possible impact on the future behaviour of the remaining deci-

sion makers, with the repeated interaction allowing for cooperative outcomes
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unattainable in static settings. This is analysed in the folk theorems liter-

ature in general and in the political arena context in particular by Dixit,

Grossman, and Gul (2000) and Maggi and Morelli (2006). We abstract away

from these strategic linkages in recurring decisions by focusing on Stationary

Markov Perfect equilibria.

Instead, we concentrate on the second type of linkages, procedural ones.

These involve the role past decisions play during the determination of sub-

sequent ones. These linkages stem from the need to ensure continuity in

policy making. Protocols in place ensure that some policy is chosen even in

the case of a decision not being reached.

The simplest of such protocols is the one under which a policy, once

established, becomes the status-quo for the ensuing round of bargaining.

Inaction, no change in a given policy or contract, leaves the previous decision

in place. For example, in most countries personal income tax rates apply

until changed. Labour unions negotiate agreements with firms regarding

wage and employment levels which are effective until renegotiated. In effect,

current policy implicitly determines status-quo.

However, there are several prominent examples of decision processes that

enlarge the space of current decisions to include provisions for the future.

These yield not only current policy but also explicitly determine a (poten-

tially different) status-quo for the next round of negotiations. Legislative

sunset provisions specify a time horizon for the statute or regulation in ques-

tion, after which it automatically terminates. These are often found in tax

laws or in laws impinging civil liberties, most prominently in the US Eco-

nomic Growth and Tax Relief Reconciliation Act of 2001 and US Patriot

Act of 2001. Regulatory escape clauses are another example of the present

policy and the status-quo being distinct.1

In this paper, we investigate decisions reached in recurring negotiations

with stochastically changing preferences of the actors involved. The status-

1 Regulatory escape clauses can be viewed as temporary modifications of the regulatory
rules in light of changed conditions with no change implied for the future. For example,
the European Commission in the context of the Stability and Growth Pact initiates an
excessive deficit procedure with a given country if its annual budget deficit exceeds 3%
of its GDP, but can refrain from doing so if the breach of the limit is associated with,
for example, a prolonged period of slow economic growth. This can be interpreted as the
European Commission temporarily increasing the 3% limit during recessions but keeping
it intact for the future, or in other words having different current and status-quo deficit
limits.
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quo for a given round of bargaining is determined endogenously during the

previous negotiations. We call the distinction between the new status-quo

being implicitly or explicitly decided upon bargaining protocol and ask how

the bargaining protocol influences decisions reached.

We are motivated by normative, positive and theoretical questions. On

the normative side we analyse how the different bargaining protocols influ-

ence the ability of the committee to respond to the changing preferences of

the involved parties. The procedural linkages mentioned above imply that

the behaviour of each decision maker will reflect both current and future

incentives. This might imply that even in ‘agreement’ periods, character-

ized by similar current preferences of the decision makers, their behaviour

might be driven by efforts to affect future decisions. We will show below

that enlarging the space of current decisions to include provisions for the

future via the explicit status-quo bargaining protocol delivers policies bet-

ter tailored to changing circumstances. A potential downside of allowing for

such provisions comes from the resulting increase in proposal power. Con-

sequently, from the utilitarian perspective none of the bargaining protocols

clearly dominates the other and we lay out conditions under which one or

the other of them should be endorsed.

Our positive motivation builds on one of our motivating examples, mon-

etary policy committees. Monetary policy in most central banks is decided

upon by a committee composed of several members convening with regular

frequency. The policy usually consists of the bank’s operating target, its

interest rate. In most central banks the interest rate decided in a given

committee meeting serves also as a status-quo for the next meeting. Inac-

tion leads to no change in monetary policy stance, hence the status-quo is

implicitly determined by a given decision.

In contrast, the Federal Open Market Committee (FOMC), the decision

body of the US Federal Reserve System, issues at the close of each meeting

operating instructions for the Federal Reserve Bank of New York known as

the domestic policy directive. The directive contains not only the decision

about current policy but also a statement concerning the FOMC’s expecta-

tion of future policy stance. Viewing the ‘asymmetry’, ‘bias’ or ‘tilt’ in the

policy directive as explicitly specifying a status-quo policy possibly different

from the current one allows us to gain deeper understanding of the FOMC
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decision making process.2 Our model then suggests a novel rationale for the

existence of the asymmetry.

The theoretical motivation is to advance growing dynamic bargaining

literature. While acknowledging endogeneity of the status-quo in recurring

decision making situations, this literature has invariably assumed that the

status-quo is equal to the policy decision of the previous bargaining round.

While this is a natural assumption in many environments, some environ-

ments might be more appropriately modelled as having an explicit status-

quo bargaining protocol. Our analysis of explicit status-quo bargaining is

not only, to our knowledge, novel in the literature, but also highlights differ-

ences the two bargaining protocols bring by analysing them in an otherwise

identical model setup.

In the model, a committee composed of two members, one of whom

possesses fixed proposal power, takes repeated decisions on a policy from

a one-dimensional policy space over which each of the committee members

has single peaked preferences represented by a bliss point. Every period is

randomly selected to be either an agreement or disagreement one, with only

the present period type being common knowledge. In agreement periods,

the two members share a common bliss point whereas in the disagreement

periods the bliss points of the two members differ. While certainly a crude

simplification of the continuum on which conflict of preferences can take

place, the agreement/disagreement dichotomy allows us to clearly illustrate

the effect of the bargaining protocol on policy outcomes.

Besides the period type, every committee meeting is characterized by a

one-dimensional status-quo. Under the implicit status-quo bargaining pro-

tocol, the status-quo is pitched against a proposed policy with the win-

ning alternative being both the current policy outcome and the next period

status-quo. Under the explicit status-quo bargaining protocol, the status-

quo is pitched against a joint proposal for a policy and a new status-quo. If

the committee selects the proposed pair, this proposal determines the cur-

rent policy outcome and a possibly different future status-quo, otherwise,

the status-quo becomes both the policy implemented today and the future

status-quo.

We first show existence and uniqueness in a certain well defined sense

2 See the opening part of section 5 for a discussion of why the asymmetry might
constitute a status-quo.
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of Stationary Markov Perfect equilibrium (S-MPE) under both bargaining

protocols (propositions 1 and 4). The lack of general S-MPE existence re-

sults and typically ill behaved induced preferences over the ‘state’ variable in

dynamic bargaining models (Baron, 1996; Baron and Herron, 2003; Kalan-

drakis, 2004; Duggan and Kalandrakis, 2010) make this a nontrivial exercise

and we are forced to work with induced preferences that typically lack mono-

tonicity, concavity and continuity. Adding further stochastic elements would

allow us to use existing results on existence of S-MPE in dynamic bargain-

ing context.3 We refrain from doing so, limiting generality of our results

to cases of sufficiently but not excessively strong conflict between the two

players. On the other hand, this allows us to characterize equilibria of the

model to a greater extent.

For the implicit status-quo bargaining protocol, we show that in equilib-

rium negotiations display inefficiency in agreement periods; the committee

members are unable to agree on a policy corresponding to their common

bliss point (proposition 2). The intuition for this result is the dual role

of policy under the implicit status-quo bargaining protocol. Policy serves

not only as policy but also determines the future status-quo. Moreover,

we show that bargaining quickly reaches a point of gridlock, with the pol-

icy outcomes unresponsive to changing preferences (proposition 2). Once

in gridlock, the two players have antithetic preference over policy even in

agreement periods, as it determines the future status-quo and affects their

future bargaining positions. Explicit status-quo bargaining reverses both of

these results. In equilibrium, it leads to the policy outcomes corresponding

to the common committee members’ bliss point in the agreement periods

(proposition 3) and does not lead to the gridlock as the policy outcomes

remain responsive to the changing preferences of the committee members

(proposition 5).

One possible side effect of explicit status-quo bargaining comes from

the increase of proposal power relative to implicit status-quo bargaining.

Allowing for proposals with different policy and status-quo creates room

for the proposer to push through policies fully reflecting her preferences.

Those are too extreme for the rest of the committee and the committee as a

3 Duggan and Kalandrakis (2010) overcome the ill behaved induced preferences problem
by adding noise elements to players’ preferences and to the policy status-quo transition
mechanism. This ‘smooths out’ the induced preferences and allows them to prove existence
of S-MPE in a very general dynamic bargaining model.
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whole might prefer different bargaining protocols in different environments

(proposition 6).

Finally, we show that these results carry over to a committee composed

of an odd number of members with preferences similar to those in the bench-

mark model (proposition 7). This allows us to shift attention to the FOMC

decision making process and examine the role of the asymmetry in its direc-

tive. We focus mainly on its role as a predictor of future policy changes and

as an instrument to achieve more consensual FOMC decisions. Our model

delivers these two predictions and also suggests a novel explanation for the

existence of the asymmetry as a tool which allows the FOMC chairman to

maintain his dominant position in the committee.

The model we build belongs to the dynamic bargaining literature that

assumes that the status-quo during a given round of bargaining is endoge-

nously determined during previous bargaining rounds. Differently from most

of the existing literature (Baron, 1996; Baron and Herron, 2003; Kalandrakis,

2004; Bernheim, Rangel, and Rayo, 2006; Battaglini and Coate, 2007; Baron,

Diermeier, and Fong, 2011; Battaglini and Palfrey, 2011) we focus on an en-

vironment with stochastic preferences and abstract from distributional issues

analysed in many of the mentioned papers.

Despite its obvious appeal, the dynamic bargaining literature with time-

varying preferences is rather scarce. Battaglini and Coate (2008) build a

dynamic model of legislative bargaining with general and targeted public

spending. In their model, the status-quo is fixed but the intertemporal link

is created by accumulated public debt while the time-varying preferences

stem from a stochastic value of general public spending. Diermeier and

Fong (2009) build a similar model. Riboni and Ruge-Murcia (2008) analyse

a model similar to ours with the implicit status-quo bargaining protocol.

They analytically solve the two period version of their model and resort

to numerical simulation of the infinite period version. Dziuda and Loeper

(2010) also analyse a model closely related to ours with the implicit status-

quo bargaining protocol. In their model, a two member committee takes

repeated decisions over a binary agenda with the preference parameter of

each of the committee members being a continuous random variable dis-

tributed on the real line. In our model, it is the preference parameter that

takes on two values with the policy being a continuous variable. However,

none of the papers mentioned above analyses how expanding the space of
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current decisions to include provisions for the future changes policy out-

comes and ability of the committee members to renegotiate in the changing

environment, something our explicit status-quo bargaining protocol does. It

is the comparison between the two bargaining protocols or institutions we

are interested in.

Another strand of literature related to this paper is the literature in-

vestigating the effect of linking decisions. In Jackson and Sonnenschein

(2007) agents are constrained to represent their preferences across decision

problems such that the representation corresponds to the underlying distri-

bution of their preferences. The main result of their paper is that linking

large numbers of decisions leads to approximate ex ante Pareto efficiency. In

Casella (2005) agents can store their votes and use them in future meetings

when their preferences are more intense. This typically leads to ex ante

welfare improvement over non-storable votes. Hortala-Vallve (2010) proves

similar result in a setting where agents can distribute a given number of

votes freely across a predetermined number of issues. The first mentioned

paper improves efficiency by putting constraints on the misrepresentation

of preferences allowed for, while the two latter papers improve efficiency

by relaxing the one-person-one-vote constraint. In the context of this lit-

erature, our explicit status-quo bargaining protocol, by relaxing the ‘policy

equal to status-quo’ constraint, can be viewed as relaxing constraint on the

committee decision making but also as removing constraint on the proposal

power.

We proceed as follows. The next section lays out the theoretical model.

Section 3 solves for the equilibrium in a two period version. It is meant

to build intuition for the infinite horizon version and to show that the key

results are not sensitive to changes in the foresight horizon. Section 4 con-

tains all the theoretical results. These describe equilibria for both of the

bargaining protocols, discuss conditions under which one of them should be

preferred and show that the model applies equally well to larger committees.

Section 5 applies these results to the FOMC decision making, demonstrates

that the model can replicate stylized facts about its decision patterns and

suggests a novel interpretation of the asymmetric FOMC directive.
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2 Model

We analyse the effect of bargaining protocol on dynamic policy making in

a simple model. Policies in the model are set by a committee composed of

two members. The first member is the chairman, who has policy proposal

power and whom we denote by C (she). The second committee member is

denoted by P (he) and has policy approval power. The voting rule used by

the committee is simple majority with ties decided against C’s proposal so

that in order for C’s proposal to pass, consent of both committee members

is required.4

The committee sets policy pt in each period t of an infinite horizon. The

utility player i ∈ {C,P} receives from the path of policies p = {p0, p1, p2, . . .}
is given by

Ui(p) =
∞∑
t=0

δtui,t(pt)

where δ ∈ [0, 1) is common discount factor. Instantaneous utility ui,t(pt) of

each player is

ui,t(pt) = −(pt − π∗ − εi,t)2

where π∗ is a common component in the committee members’ preferences

and εi,t is a stochastic time-varying i−specific preference shock.

The timing of actions in period t is as follows. First, nature determines

εi,t according to the process specified below and the committee convenes

with xt being the default option. Both εi,t and xt are common knowledge.

Second, the chairman C proposes a pair γt = {pt, qt} against default option

γ̄t = {xt, xt}. Third, voting takes place between γt and γ̄t. If P prefers γt

it is implemented (C always votes for her proposal), players receive their

payoffs from the offered policy pt and the offered status-quo qt becomes

default option for the next period, i.e. xt+1 = qt. If P prefers γ̄t, players

receive their payoffs from the default policy xt and the default status-quo

xt becomes default option for the next period, i.e. xt+1 = xt. Finally, the

committee adjourns and the game moves into period t+ 1.

In the text we refer to the pair γt = {pt, qt} C proposes as to (C’s)

proposal or offer, call its first element pt proposed (offered) policy and its

4 An alternative assumption that would not change any of the results is C making a
take it or leave it offer to P . We opt for the voting rules specification as it naturally
adapts once we expand the committee below.
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second element qt proposed (offered) status-quo. The pair γ̄t = {xt, xt}
is then default option or simply default and we abuse notation slightly in

calling xt by the same term.

Without loss of generality we assume that C whose utility maximizing

offer γt coincides with the default option γ̄t proposes γ̄t instead of proposing

a policy she knows would be rejected. It is also easy to see that in any

equilibrium of the game it has to be the case that if P is indifferent between

default γ̄t and C’s proposal γt he votes for γt. As a result C’s offer γt is

always accepted and we do not need to distinguish between proposed and

accepted policies.

Up to this point the model generates dynamic policy making in that

the proposed (and hence accepted) status-quo qt from period t becomes

the default option xt+1 for the t + 1 period. To study how this feature

interacts with the bargaining protocol used by the committee, we contrast

two versions of the model. The first model version and bargaining protocol

is with implicit status-quo. Under this bargaining protocol C’s proposals

are constrained to those that satisfy pt = qt so that the t period status-quo

qt, and hence t+ 1 period default option xt+1, is implicitly defined by the t

period policy pt. The second model version and bargaining protocol is with

explicit status-quo. Under this bargaining protocol t period status-quo qt,

and hence t + 1 period default option xt+1, is explicitly determined during

the committee bargaining.

To close the model we need to specify the distribution of the preference

shocks εi,t. We assume those are generated according to

εi,t =

{
−φ for i = C and φ for i = P with probability rd

0 for i ∈ {C,P} with probability 1− rd

where φ > 0 and rd ∈ [0, 1]. In words, there are two types of periods. With

probability rd bliss points in the instantaneous utility functions of C and

P are π∗ − φ and π∗ + φ respectively. We call those disagreement periods

or D periods for short. The second type of period occurs with probability

1 − rd and are called agreement periods or A periods for short. In these,

bliss points in the instantaneous utility functions of both players are π∗.

Several comments regarding our modelling choices are in order. First,

completely breaking the link between policy and status-quo and giving all
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the proposal power to C is motivated by our interest in the trade-off the

explicit status-quo bargaining protocol creates. On the one hand, it should

lead to more efficient policy outcomes, but it also opens the door to an abuse

of proposal power. We want to see the full effect on both sides and thus opt

for arguably strong assumptions.

Second, having A and D periods in the model reflects our belief that

in recurrent decision making this is a natural assumption. We could have

chosen either purely ideological or purely common preferences, which our

model indeed includes as special cases with rd = 1 or rd = 0. However, it

is easy to show that under both specifications the bargaining protocol plays

no role. It is the interaction with the time varying preferences that creates

an interesting problem to study.

3 Two period model

To build intuition for the results below, we first solve a two period version

of the model. All the results are easily derived using backward induction

and we state them without formal proofs.

Lemma 1 (Last period). For the last period default option x1 and both

bargaining protocols, equilibrium policy proposals pA,1(x1) and pD,1(x1), in

A and D periods respectively, satisfy

pA,1(x1) = π∗

pD,1(x1) = f(x1, φ)

where f(x, φ) = max{min{2(π∗ + φ)− x, x}, π∗ − φ}.

In the last period there is no procedural link with the future via the

status-quo and hence the bargaining protocol plays no role. It is thus easy

to see why the two policy makers decide on π∗ in A periods as it is a bliss

point in their common utility function.

D period policy then reflects conflict in the committee. P ’s acceptance

set consists of a symmetric interval around his bliss point π∗ + φ with one

boundary given by default option x1, [2(π∗ + φ)− x1, x1]. C maximizes her

utility with bliss point at π∗ − φ by proposing minimum of P ’s acceptance

(the min term) but only if she cannot propose her bliss point (the max

term). The parameter φ captures the interval of disagreement, for x1 ∈
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[π∗−φ, π∗+φ], there is no other policy except for x1 the two policy makers

are willing to agree on. P would reject any policy below x1 and C does not

want to offer any policy above x1 and thus f(x1, φ) = x1.5

C’s and P ’s expected utilities before nature determines the type of last

period, as a function of x1 (and hence as a function of the first period

status-quo),

E [UC,0(x1)] = −rd(pD,1(x1)− π∗ + φ)2 + (1− rd) · 0

E [UP,0(x1)] = −rd(pD,1(x1)− π∗ − φ)2 + (1− rd) · 0,

reflect intertemporal preferences of the two policy makers and are inter-

esting for several reasons. First, both are non-concave and non-monotone.

E[UC,0(x1)] and E[UP,0(x1)] are non-increasing and non-decreasing respec-

tively for x1 ≤ π∗ + φ and vice-versa for x1 ≥ π∗ + φ. This is the reason

why we cannot work with equilibria associated with well-behaved (concave,

monotone) value functions as in, for example, Battaglini and Coate (2007,

2008), as the ill-behaved intertemporal preferences are an inherent feature

of the model.

Second, potential future conflict spills over to the current period through

the conflict in the intertemporal preferences. P prefers default option x1 as

close to π∗ + φ as possible while C prefers it as far away from π∗ + φ as

possible. Thus the committee members have an incentive to manipulate x1

in the first period as it determines their bargaining positions. Under implicit

status-quo bargaining this is done via the enacted policy and under explicit

status-quo bargaining this is done via the enacted status-quo.

Third, E[UC,0(x1)] and E[UP,0(x1)] are constant for x1 /∈ (π∗−φ, π∗+3φ).

For the first period under explicit status-quo bargaining this means that

whenever z /∈ (π∗ − φ, π∗ + 3φ) is an equilibrium status-quo proposal for

some default option, so is z′ /∈ (π∗ − φ, π∗ + 3φ). However, this multiplicity

has no effect on the last period policy. No matter whether z or z′ is pro-

posed, last period P ’s acceptance set includes, on a policy dimension unique,

unconstrained maximizer of C’s overall utility.

5 Notice also that the interval where f(·, ·) is not constant, the interval of default options
for which C’s proposal makes P indifferent between accepting and rejecting and interval
of default options for which C cannot implement her bliss point, all coincide. This is a
more general feature of the model, and it will hold for the first period irrespective of the
type of period or bargaining protocol, and motivates our choice of equilibrium refinement
(definition 3) for the infinite horizon model.
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Lemma 2 (First period, D). For the first period default option x0, implicit

status-quo protocol policy proposal pID,0(x0) and explicit status-quo protocol

policy and status-quo proposals pED,0(x0) and qED,0(x0) in D periods satisfy

pID,0(x0) = pED,0(x0) = qED,0(x0) = f(x0, φ).

For the implicit status-quo protocol this reflects conflict in terms of

both current and intertemporal preferences. The same holds for the ex-

plicit status-quo, but C can, in principle, offer a policy different from the

status-quo. To see the nature of her trade-off, C can either concede on the

policy dimension in order to gain a better bargaining position on the status-

quo dimension, or vice versa. The strength of those two forces, to satisfy

instantaneous or intertemporal utility, then determines her equilibrium pro-

posal. As we will see below, the two forces exactly cancelling each other,

which leads to pED,0(x0) = qED,0(x0), is a result specific to the two period

model.

Lemma 3 (First period, A). For the first period default option x0, equi-

librium policy proposal under the implicit and explicit status-quo protocol,

pIA,0(x0) and pEA,0(x0) respectively, in A periods satisfy

pIA,0(x0) = f(x0, φκ
′)

pEA,0(x0) = π∗

where κ′ = δrd
1+δrd

≤ 1
2 .

First A periods reveal the key difference between the two bargaining

protocols. Under the implicit status-quo bargaining, policy serves two roles.

It is a policy in the standard sense but also determines future bargaining

positions. Agreeing on π∗ in A period would entail, at least for one of the

players, giving up bargaining position relative to x0. Combining current

preferences favouring π∗ and intertemporal preferences favouring π∗ − φ

(π∗ + φ) for C (P ) makes A periods ‘lesser disagreement’ periods with the

degree of conflict given by φκ′. The more probable the true D periods are

and the more players care about future, the more of the conflict spills over

to A periods.

Explicit status-quo bargaining on the other hand implies π∗ is imple-

mented in A periods. With the policy makers’ preferences aligned on the
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policy dimension and, crucially, with the policy and status-quo possibly

different, C does not compromise her bargaining position by proposing π∗

policy. To the contrary, this allows C to propose status-quo that improves

her bargaining position. She has a room to do so since proposing π∗ on the

policy dimension has made P better off compared to the default option x0.

A key advantage of the two period model just discussed is that it delivers

key predictions about the difference in policy outcomes under the two bar-

gaining protocols in a relatively simple framework. On the other hand, with

a fixed time horizon we are unable to discuss the evolution of policies in the

long-run, and the fixed horizon also raises concerns about robustness of the

results presented. For this reason we turn to the infinite horizon version of

the model next.

4 Infinite horizon model

This section solves the infinite horizon dynamic bargaining model for the two

bargaining protocols. For technical reasons we restrict the proposal space

along any dimension to lie in a convex compact subset X of R. Hence for

both C’s proposals and default options, we have γt, γ̄t ∈ X2 ⊆ R2. However,

it will become apparent from the model equilibria below that with X taken

to be ‘sufficiently large’, this assumption is without loss of generality.

We focus on Stationary Markov Perfect Equilibria (S-MPE) where strate-

gies in a given period depend only on the type of that period and on the

default option for that period, i.e. only on payoff relevant variables. Focus-

ing on the S-MPE we can drop all time subscripts. We denote by x ∈ X the

default option for a given period with the understanding that it is composed

of a default policy status-quo pair γ̄(x) = {x, x} ∈ X2. Any policy is always

denoted by (appropriately subscripted) p ∈ X and any status-quo is always

denoted by q ∈ X.

For this model, S-MPE will be a combination of several components. For

C, we are looking for four functions, two of them mapping the space of de-

fault options X into proposed policies for each type of period, pD(x), pA(x) :

X2 → X, and the remaining two mapping X into the proposed status-quo,

qD(x), qA(x) : X2 → X. Formally, ρC = {pD(x), pA(x), qD(x), qA(x)} :

X4 → X4 denotes C’s strategy and her proposal in period i ∈ {A,D} given

default option x is γi(x) = {pi(x), qi(x)}. For P , his strategy given period
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i ∈ {A,D} and default option x maps the combination of γ̄(x) and γi(x)

into his vote, hence it is a mapping ρP : X8 → {yes,no}2.

It has to be acknowledged that our definition of ρC and ρP does not allow

for mixed strategies. For P this is driven by the already mentioned fact that

in any equilibrium P ’s voting strategy has to be to vote for C’s proposal

γi(x) whenever indifferent between γi(x) and γ̄(x) for i ∈ {A,D}. For C the

reason behind focusing on pure strategies is twofold. First, we have assumed

above that C whose utility maximizing proposal coincides with the default

option γ̄(x) indeed proposes γ̄(x) instead of coming up with a proposal

she knows would be rejected. Second, below we focus on a certain class of

equilibria (see definition 3) for which it will be true that C’s indifference

among K proposals {γ1
i (x), . . . , γKi (x)} for some default option x ∈ X and

i ∈ {A,D} will imply indifference by P among the same proposals. As a

result, in case of C’s indifference between two or more proposals we can pick

one γki (x) out of {γ1
i (x), . . . , γKi (x)} without changing the equilibrium (via

changing the equilibrium value functions defined below) and hence we can

think of ρC as a function instead of thinking of ρC as a distribution on X4.

With this qualification in mind, our definition of S-MPE is as follows.

Definition 1 (Stationary Markov Perfect Equilibrium). A pair of strategies

ρ∗ = {ρ∗C , ρ∗P } constitutes S-MPE if it constitutes subgame perfect equilib-

rium.

Notice that any given pair of strategies ρ = {ρC , ρP } for given x and

given path of A and D periods generates a unique path of implemented

policies {p0, p1, . . .}. Taking expectations over all possible paths gives a

continuation value function for each policy maker who knows x but does

not know whether the next period will be an A or D one,

V ρ
C(x) = E

[ ∞∑
t=0

−δt(pt − π∗ + φID(t))2

]

V ρ
P (x) = E

[ ∞∑
t=0

−δt(pt − π∗ − φID(t))2

]

where ID(t) is D-period indicator function and the superscript ρ captures

dependence on given ρ. Having the continuation value functions, we observe
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these can be equivalently derived as

V ρ
C(x) = rd

[
−(pD(x)− π∗ + φ)2 + δV ρ

C(qD(x))
]

+ (1− rd)
[
−(pA(x)− π∗)2 + δV ρ

C(qA(x))
]

V ρ
P (x) = rd

[
−(pD(x)− π∗ − φ)2 + δV ρ

P (qD(x))
]

+ (1− rd)
[
−(pA(x)− π∗)2 + δV ρ

P (qA(x))
]
.

Finally, we denote by Aρi (x) P ’s acceptance set in period i ∈ {A,D}
given default option x and strategies ρ. The acceptance sets are given by

AρD(x) = {{p, q} ∈ X2| − (p− π∗ − φ)2 + δV ρ
P (q) ≥ −(x− π∗ − φ)2 + δV ρ

P (x)}

AρA(x) = {{p, q} ∈ X2| − (p− π∗)2 + δV ρ
P (q) ≥ −(x− π∗)2 + δV ρ

P (x)}

and both are nonempty as γ̄(x) ∈ Ai(x) for i ∈ {A,D}.
With this notation, C’s problem can be restated in terms of a pair of

the usual Bellman functional equations

UρD(x) = max
{p,q}∈AρD(x)

{−(p− π∗ + φ)2 + δrdU
ρ
D(q) + δ(1− rd)UρA(q)}

UρA(x) = max
{p,q}∈AρA(x)

{−(p− π∗)2 + δrdU
ρ
D(q) + δ(1− rd)UρA(q)}

(1)

where C’s continuation value function V ρ
C will be the probability-weighted

sum of the value functions of the two optimization problems, i.e. V ρ
C =

rdU
ρ
D + (1 − rd)UρA. An alternative definition of S-MPE that exploits the

recursive structure of the model and that we use is the following.

Definition 2 (Stationary Markov Perfect Equilibrium). A pair of strategies

ρ∗ = {ρ∗C , ρ∗P } constitutes a S-MPE if for all x ∈ X and any period i ∈
{A,D}

1. C’s proposal strategy ρ∗C solves (1)

2. P votes for C’s proposal γi(x) if and only if γi(x) ∈ Aρ
∗

i (x).

An equivalent way to express the requirement of the S-MPE is to say we

are looking for ρ giving rise to V ρ
C and V ρ

P such that when C and P max-

imize their utility in the current period, their optimal behaviour is indeed

expressed as ρ. If we can find such a ρ then by the one deviation principle

we have an equilibrium.

Below, when we discuss S-MPE for the two bargaining protocols, it will

become apparent that many of them satisfy an additional restriction in P

being, for a given default option, indifferent between accepting and rejecting
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C’s offer, provided C’s proposal differs from the unconstrained maximizer

of her overall utility. Another way to view this is that as long as the default

option x provides P with any real bargaining power, C’s proposal will pro-

vide him with the minimum utility sufficient for her proposal to pass. We

call S-MPE satisfying this feature Conflict S-MPE (CS-MPE). Denoting by

γρCD and γρCA solutions to the two optimization problems in (1) when the

restrictions on {p, q} to lie in P ’s acceptance sets are removed, CS-MPE is

defined as follows.

Definition 3 (Conflict Stationary Markov Perfect Equilibrium). A pair of

strategies ρ∗ = {ρ∗C , ρ∗P } constitutes a CS-MPE if for all x ∈ X and any

period i ∈ {A,D}

1. ρ∗ constitute a S-MPE

2. P is indifferent between γi(x) and γ̄(x) provided γCi /∈ Aρi (x).

Our focus on CS-MPE has another rationale as it can be viewed as a fo-

cus on equilibria with the minimum winning coalition property. Whenever

C is constrained by the other committee member her proposal will make

P indifferent between accepting and rejecting. Assuming P is a median

member of some larger committee with C’s proposal accepted if and only

if P accepts, something we show in the context of larger committee in the

proposition 7 below, CS-MPE will imply C establishes minimum winning

coalitions supporting her proposals. This is reminiscent of the result by Dug-

gan and Kalandrakis (2010) (see part 4 of their theorem 1) who show that

minimum winning proposals are a natural feature of equilibria in dynamic

bargaining models.6

From here on we focus on the equilibrium strategies and we drop the

superscript ρ whenever the chance of confusion is minimal. Finally, for

the bargaining protocol with implicit status-quo all results of this section

additionally require any policy status-quo pair to have both of its elements

equal.

6 Formally the game just described can be viewed as a mapping from a pair of value
functions, one for each player, into a new pair of value functions. The CS-MPE assumption
makes sure this mapping is ‘well behaved’. Without it, the way in which C reconciles
indifference between two proposals has real consequences for P , inducing jumps in his
value function.
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Equilibrium with implicit status-quo

In this section we prove equilibrium existence and uniqueness result for the

bargaining protocol with implicit status-quo. We then discuss predictions

of the equilibrium about the evolution of policies under implicit status-quo

bargaining.

Proposition 1 (S-MPE with implicit status-quo). Assume δ2rd(3− 2rd) ≤
1 − δ(1 − rd). Then there exists unique CS-MPE. Equilibrium proposals

satisfy

pD(x) = qD(x) = max {min{z ∈ X|z ∈ AD(x)}, γCD}

pA(x) = qA(x) = max {min{z ∈ X|z ∈ AA(x)}, γCA}

for ∀x ∈ X, where γCD = π∗ − φ and γCA = π∗ − φδrd.

Proof. See appendix A1.

In words, for a given type of period i ∈ {A,D} and default option x,

C proposes the lowest policy out of P ’s acceptance set Ai(x), provided the

policy that is an unconstrained maximizer of her overall utility would be

rejected, that is provided γCi /∈ Ai(x).

The strategy of the proof follows. Existence follows by construction. We

conjecture that the construction will give us a CS-MPE which allows us to

derive P ’s continuation value function VP and hence his acceptance sets AA

and AD. Given the acceptance sets we conjecture that C’s proposal strategy

will be the one given in the proposition allowing us to derive her continuation

value function VC . Having the proposal strategy we note it indeed generates

VP and we confirm strategies generated by VP and VC satisfy definition 3

showing that the construction is CS-MPE.

To prove uniqueness of the CS-MPE, we note that it has to generate a

unique VP . What we then need to show is uniqueness of the solution to C’s

dynamic optimization program (1) given acceptance sets generated by VP .

We show this using an extended version, which we prove, of the theorem

guaranteeing existence and uniqueness of solutions to Bellman functional

equations from Stokey and Lucas (1989).

The assumption on {δ, rd} in proposition 1 ensures existence of the CS-

MPE equilibrium. The assumption can be alternatively expressed as δ ≤
ϕ(rd) where ϕ(0) = ϕ(1) = 1 and minrd∈(0,1) ϕ(rd) = 7/9 so that in effect
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Figure 1: Equilibrium policy with implicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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we are ruling out cases where the ‘future looms large’ as δ approaches unity.

When this happens the requirement on C’s proposals under CS-MPE, to

bring P to indifference between accepting and rejecting when unable to

propose the unconstrained maximum of her overall utility, might fail in D

periods. Intuitively, with δ large C focuses primarily on her bargaining

position captured by the VC function when determining which policy to

propose. With the VC function non-monotone, C might propose a policy

strictly inside AD, in effect disregarding her instantaneous utility. When

this happen the equilibria become cumbersome to characterize due to non-

continuity of VP so that we rule those cases out by assumption.

To see how the equilibrium from proposition 1 looks in graphical form,

figure 1 shows a particular parametrization for π∗ = 2, φ = 1, δ = 0.5, rd =

0.5. While proving proposition 1 we show that depending on the values of δ

and rd, the equilibrium falls into one of four (mutually exclusive) cases. For

all four of those cases the A period proposed policy pA(x) has exactly the

same shape as the one given in the figure, with the constant part given by

γCA evaluated at particular values of {δ, rd}.
However, there are case dependent differences regarding the shape of the

D period proposed policy pD(x). What is common to all of them is the
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constant and then linear increasing part for low values of x. Nevertheless,

the default option x for which pD(x) reaches a maximum in general differs

depending on the values of δ and rd and the ‘right’ part of pD(x) (decreas-

ing part in figure 1) is not necessarily monotone or even continuous. One

common feature is that it eventually decreases to γCD where it becomes a

constant function again.

Figure 1 (and proposition 1) shows that the equilibrium shares several

features with the equilibrium in the two period version of the model. It is a

CS-MPE, P is indifferent between accepting and rejecting unless C proposes

the unconstrained maximizer of her utility. Furthermore, A periods are in

effect lesser disagreement periods with degree of conflict captured by φδrd

and the committee members are failing to agree on π∗, common bliss point in

their instantaneous utility functions. Basic intuition for this result is again

the dual role of policy under the implicit status-quo bargaining, it enters

policy makers’ instantaneous utility while at the same time determining their

bargaining position. On the other hand it is the A periods during which C

forgoes her bargaining position. By proposing pA(x) closer to π∗ relative

to the default option x, she compromises her intertemporal preferences in

exchange for the current ones. D periods are then truly disagreement periods

and C is fully using her proposal power to steer policy towards her most

preferred one.

In order to discuss the long-term policy outcomes generated in equilib-

rium, we find it helpful to define a set of default options x which, when

reached, implies a constant path of default options irrespective of the type

of period. Constant default options then imply policies alternating between

two (not necessarily) different values, one for A periods and the other for D

periods. We call such a set a set of stable default options and define it along

with two notions of efficiency in the following definition.

Definition 4 (Stable default options and efficiency). Set S ⊆ X defined by

S = {x ∈ X|qA(x) = qD(x) = x}

is called set of stable default options (stable set).

We say bargaining displays A-efficiency whenever

pA(x) = π∗.
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We say bargaining displays D-efficiency if

pD(x) = p∗

for some p∗ ∈ [π∗ − φ, π∗ + φ] across D periods.

The rationale behind the definition of stable set is that once the bar-

gaining reaches x ∈ S, resulting status-quo outcomes are constant forever

for any path of A and D periods. If additionally we have pA(x) = pD(x) for

all x ∈ S we can say that the bargaining outcomes are unresponsive to the

changing preferences of the committee members.

Our notion of efficiency then comes from a static Pareto efficient mech-

anism implementing an infinite sequence of policies in the current environ-

ment. As we show in appendix A2, such a mechanism implements π∗ in A

periods and p∗ ∈ [π∗ − φ, π∗ + φ] in D periods. The notion of A-inefficiency

whenever pA(x) 6= π∗ comes from the fact that the policy makers fail to

agree on their current-period most preferred policy π∗ due to their concerns

about their bargaining position in the future. Given A period and default x

such that pA(x) 6= π∗, if they could sign a binding contract specifying that

the next period default option will be x irrespective of today’s policy (which

they would set to π∗), both of them would be made better off. The notion

of D-inefficiency on the other hand stresses the fact that both policy makers

have a preference for policy smoothing. Finally, note that our notion of

A-efficiency looks at each A period individually while D-efficiency compares

policy decisions reached in different D periods.

Discussing equilibrium policy outcomes is further complicated by the fact

that those will in general depend on the default x with which bargaining

starts and on the path of A and D periods which is stochastic. Nevertheless,

denoting by xt(x) ∈ X the default option after t periods of equilibrium play

starting with default option x and some path of A and D periods, the

following proposition captures the key features.

Proposition 2 (Policy outcomes with implicit status-quo). CS-MPE from

proposition 1 generates policy and status-quo decisions satisfying following.

1. If x ∈ S then the policy outcomes display D-efficiency in all subsequent

periods

2. If x ∈ S then pA(x) = pD(x) ∈ [π∗ − φδrd, π∗ + φδrd]
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For initial default option x0 being continuous random variable with pdf

f(x0) defined on X, for any t = 1, 2, . . .

3.
∫
x0∈X P(xt(x0) /∈ S)f(x0)dx0 ≤ rtd

4.
∫
x0∈X P(pA(xt(x0)) = π∗)f(x0)dx0 = 0 unless rd = 0.

Proof. See appendix A1.

Recalling the equilibrium in figure 1 the intuition behind the result is

straightforward. For any default option x ∈ S we have policies constant

not only in D periods (part one) but also in A periods (part two). For the

third part, for any default option x in A period, policy and hence status-quo

reaches S immediately and can stay out of S only for the path of D periods

with the probability of t consecutive D periods being rtd. The last part then

comes from the fact that the set of default options in X that can bring π∗

as a policy outcome in the future for some combination of A and D periods

has zero measure.

What proposition 2 says is that in CS-MPE from proposition 1 under the

bargaining protocol with implicit status-quo, bargaining outcomes eventu-

ally become stable for any distribution of initial default option (part three).

When this happens the policy outcomes display D-efficiency (part one) on

the one hand but become unresponsive to the changing preferences of the

two policy makers on the other (part two) with the policy constant hence-

forth. At the same time, unless rd = 0 for any distribution of initial default

option the chance that the bargaining satisfies A-efficiency is zero both on

the path to S and once it is reached (part four). In other words, in the

CS-MPE under the implicit status-quo bargaining there is no equilibrium

force that would bring the bargaining outcome eventually to A-efficiency.

Equilibrium with explicit status-quo

We now show how policy outcomes change when C’s proposals are not re-

stricted to those with policy and status-quo equal. The first result we prove

is that policy in A periods is equal to π∗ for any default option. The logic

behind the result is that since in the A periods the preferences of the two

policy makers are aligned along the policy dimension, there is no reason

they should not be able to reach an agreement on π∗, as doing so needs not
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compromise their bargaining position embodied in status-quo. The intuition

is confirmed by the proposition.

Proposition 3 (pA(x) with explicit status-quo). In any S-MPE for any

default option x ∈ X
pA(x) = π∗.

Proof. See appendix A1.

A key strength of proposition 3 is that it applies to any S-MPE under

the explicit status-quo bargaining protocol and shows that this bargaining

protocol allows the committee members to reach consensus in A periods.

What the proposition does not ensure is existence of such S-MPE, which is

what the next proposition does.

Proposition 4 (S-MPE with explicit status-quo). Assume δ ≥ 1
5rd

, δ ≥
1− r2

d and δ ≤ 1− (1−rd)2

2 . Then there exists a unique CS-MPE in terms of

associated value functions VC and VP . Equilibrium proposals satisfy

1. pA(x) = π∗ for ∀x ∈ X

2. VC(x) ≤ VC(qA(x)) for ∀x ∈ X

3. VC(qD(x)) ≤ VC(qD(x′)) for x, x′ ∈ X satisfying AD(x) ⊆ AD(x′)

4. C proposes γCD (γCA) for ∀x ∈ X such that γCD ∈ AD(x) (γCA ∈
AA(x))

where γCD = {π∗ − φ, z} and γCA = {π∗, z′} for some z, z′ ∈ X \ (π∗ −
φ, π∗ + 3φ).

Proof. See appendix A1.

In words, equilibrium under explicit status-quo bargaining involves pol-

icy equal to π∗ in A periods (part one) with C using A periods to improve

her bargaining position (part two). Because C can improve her bargaining

position in A periods, she is willing to surrender more of it in D periods in

which P has more bargaining power (part three). Finally, C’s unconstrained

proposals are γCA and γCD in A and D periods respectively, implementing

C’s instantaneous utility bliss point and status-quo that maintains her bar-

gaining position (part four).
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The idea of the proof is similar to the proof of proposition 1. For the

existence part we partially characterize the equilibrium, conjecturing first

that we are characterizing CS-MPE. This gives us the VP function and

associated acceptance sets AA and AD. We prove these are well behaved,

which allows us to prove existence of C’s continuation value function VC as

a solution to C’s dynamic optimization program (1). We then confirm that

the proposal strategies generated by VC indeed satisfy definition 3 of CS-

MPE. Uniqueness in terms of associated value functions then follows from

the uniqueness of VP in any CS-MPE and resulting uniqueness of VC .

The key difficulty in the proof of proposition 4 and the source of the

assumptions on {δ, rd} is confirming that proposal strategies associated with

VC indeed satisfy the definition of CS-MPE. What we need to ensure is that

intertemporal incentives are strong enough (first two conditions) so that C

is willing to use the status-quo dimension of her proposal space in A periods

to bring P to indifference between accepting and rejecting as the definition

of CS-MPE demands. On the other hand we need to make sure that the

intertemporal incentives are not too strong (third condition). When this

happens, in D periods P is willing to accept a wide range of policies when

offered an even slightly more favourable status-quo compared to the default

option. One of those policies is C’s D period most preferred policy π∗ − φ.

With proposals involving π∗ − φ policy possibly violating requirements of

CS-MPE, we need to make sure that C foregoes only little of her bargaining

position exactly for those values of {δ, rd}, somewhat paradoxically, when

the bargaining position is most valuable.

Figures 2 and 3 show equilibrium proposals from proposition 4 on the

policy and status-quo dimension respectively for the same values of parame-

ters used in figure 1. Even though we do not have an explicit expression for

VC we use computer simulation to estimate VC and associated equilibrium

proposal policies (see appendix A3 for details of the numerical simulation).

From proposition 4 we know that proposals on the status-quo dimension

need not be unique and involve z, z′ ∈ X \ (π∗−φ, π∗+3φ) for defaults such

that γCD ∈ AD(x) and γCA ∈ AA(x). When this happens figures 2 and 3

always use z = z′ = π∗ − φ. Notice also that δ = 0.5 and rd = 0.5 used

in the figures do not satisfy the assumption on {δ, rd} from proposition 4.

Nevertheless, given the simulated VC and associated proposal strategies it is

easy to confirm those satisfy the definition of CS-MPE and hence that the
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Figure 2: Equilibrium policy with explicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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assumptions on {δ, rd} in proposition 4 are sufficient but not necessary for

existence of CS-MPE.

Figures 2 and 3 along with the proposition 4 show that under explicit

status-quo bargaining, equilibrium in the infinite horizon again resembles

equilibrium in the two period version of the model. It is a CS-MPE equilib-

rium, A period policy proposals are equal to π∗ and C uses A periods to gain

a better bargaining position. For any default option x, by offering π∗ on

the policy dimension P is made better off compared to γ̄(x) = {x, x}, which

allows C to gain a better bargaining position on the status-quo dimension

in terms of proposing qA(x) providing her with higher intertemporal utility

compared to x.

This in turn makes C willing to forego some of her bargaining position in

D periods, a feature not present in the two period model. Intuitively, with

C knowing she can gain bargaining position in future A periods without

sacrificing on the policy dimension, she is willing to forego some of that

bargaining position in D periods in exchange for a more favourable policy

outcome. In the two period model any future A period is necessarily the

last one with no bargaining position to be gained and hence with C not

willing to trade-off policy for status-quo or vice versa in the first period,
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Figure 3: Equilibrium status-quo with explicit status-quo
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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even though it might be a disagreement one.

The absence of an explicit expression for VC and subsequently for C’s

proposal strategies further complicates characterization of the policy out-

comes under explicit status-quo bargaining. Nevertheless, we are able to

prove following.

Proposition 5 (Policy outcomes with explicit status-quo). CS-MPE from

proposition 4 generates policy and status-quo decisions satisfying the follow-

ing.

1. If x ∈ S then the policy outcomes display D-efficiency in all subsequent

periods

2. If x ∈ S then pA(x) = π∗ and pD(x) = π∗ − φ for almost all x ∈ S

For an initial default option x0 being a continuous random variable with

pdf f(x0) defined on X, for any t = 1, 2, . . .

3.
∫
x0∈X P(xt(x0) /∈ S)f(x0)dx0 ≤ 1− rd

∫
x0∈X\(π∗−φ,π∗+3φ) f(x0)dx0

−(1− rd)
∫
x0∈X\(π∗+φδrd−κ,π∗+φδrd+κ) f(x0)dx0

4.
∫
x0∈X P(pA(xt(x0)) = π∗)f(x0)dx0 = 1
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where κ = φ
√
δrd(3 + δrd).

Proof. See appendix A1.

What the proposition 5 says is that in CS-MPE from proposition 4 un-

der the bargaining protocol with explicit status-quo, when the bargaining

outcomes become stable they display D-efficiency (part one). When this

happens policy outcomes will be π∗ in A periods and π∗ − φ in D periods

except for a finite set of discrete values of default options in S (part two).

Indeed, in the proof of proposition 5 we show that the only other candi-

date default option for inclusion in the S set is x = π∗. With π∗ ∈ S we

would have pA(π∗) = pD(π∗) = π∗. As a result under the explicit bargain-

ing protocol, even when the bargaining outcomes become stable they almost

always still reflect the changing preferences of the two policy makers unlike

in proposition 2 for implicit status-quo bargaining and are both A-efficient

and D-efficient, where the former holds no matter whether the bargaining

has reached the stable set or not (part four).

Another difference explicit status-quo bargaining brings is that we can-

not put an upper bound on the probability of the bargaining staying outside

the stable set that would converge to zero over time (part three). We know

from the proof of proposition 4 that for an initial period being an A (D) one

and initial default option x0 satisfying x0 ∈ X \(π∗+φδrd−κ, π∗+φδrd+κ)

(X \(π∗−φ, π∗+3φ)), we can set C’s equilibrium proposal on the status-quo

dimension equal to qA(x0) = qD(x0) = π∗−φ and qA(π∗−φ) = qD(π∗−φ) =

π∗− φ such that the bargaining becomes stable in the initial period and re-

mains so. When those conditions fail, convergence of the default option to

the stable set S remains an open question.

To shed light on the convergence question we generated 10.000 one hun-

dred period long random paths of A and D periods for the parameter values

used in figures 2 and 3. For each path, we derived status-quo proposed in

the last period x100(x0) as a function of the initial default option x0. Av-

eraging over all the 10.000 paths gives figure 4, also depicting (thin lines)

equilibrium status-quo offers qD(x) and qA(x).

Looking at figure 4, for default options x with qD(x) < π∗ and qA(x) <

π∗, C proposes qA(x) < x in A periods improving her bargaining position by

more than by how much it loses it in D periods by proposing qD(x) ≥ x. As

a result status-quo in the long term converges to π∗ − φ, or more precisely
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Figure 4: Long-run status-quo with explicit status-quo
average over 10.000 random 100 period long paths
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5
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to the X \ (π∗−φ, π∗+ 3φ) set out of which figure 4 selects π∗−φ. In terms

of policy outcomes this implies convergence to π∗ − φ in D periods and to

π∗ in A periods with C becoming effectively a dictator in the committee.

We call such a committee authoritarian or the game being in authoritarian

regime. However, C has to build up her dominant position gradually over

time using A periods to improve her bargaining position and until the status-

quo reaches π∗−φ, she still has to take into account preferences of the other

committee member when crafting her proposal.

For default options x with qD(x) > π∗ and qA(x) > π∗, status-quo in the

long term converges to π∗ with C never proposing status-quo that would

start the convergent process to π∗ − φ discussed above. Such a status-quo

is not in P ’s acceptance set in A periods and would involve considerable

loss on the policy dimension in D periods. With the status-quo converging

to π∗ policy outcomes converge to the same value in both types of periods

with the committee becoming consensual and the D period policy outcomes

midway in between the preferences of the committee members. We call such

a committee collegial or the game being in collegial regime.

Finally, for default options x with qD(x) > π∗ and qA(x) < π∗, the
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long term outcome of the bargaining depends crucially on the nature of

the first period. If the bargaining starts with an A period, C is able to

start the convergent process towards π∗ − φ and the committee eventually

becomes authoritarian. Should the bargaining start with D period, C’s

proposal starts the convergence to π∗ and the committee eventually becomes

collegial. The line in figure 4 between π∗ and π∗ − φ then reflects the fact

that a proportion rd of the paths converges to π∗−φ whereas the remaining

paths converge to π∗.

Notice the strong path dependency displayed by the model. For some

default options the committee eventually becomes authoritarian, for some

default options it eventually becomes collegial and for some default options

the first period plays a crucial role in determining whether the committee

becomes of the former or latter type.

Comparison of the bargaining protocols

First, we want to provide an answer to the question of comparison between

the bargaining protocols from the perspective of the two policy makers.

Assume C and P before starting the game just analysed and before the first

default option is known, have an option to choose between the bargaining

protocols. Would they prefer either of the protocols and does it depend on

their beliefs about the initial default option?

Figure 5 illustrates the answer to this question. It depicts the value

functions of both policy makers for the two bargaining protocols. All the

functions are based on the analytical results except for the VC function in the

model with explicit status-quo, which comes from the simulation exercise.

Note first that the intuition about C preferring the bargaining protocol

with explicit status-quo as it relaxes the constraint on her optimization prob-

lem is misleading as it does not take into account changes in P ’s strategic

behaviour. Nevertheless, figure 5 suggests C indeed prefers explicit status-

quo bargaining protocol for any beliefs about the initial default option.

For P figure 5 suggests he is indifferent between the two bargaining pro-

tocols for intermediate values of initial default and strictly prefers bargaining

under implicit status-quo otherwise. The intuition behind this result is that

for the default options x for which P is indifferent between C’s proposal

γi(x) and γ̄(x) for i ∈ {A,D} under both bargaining protocols, his contin-

uation value is equal under the two protocols. On the other hand for the
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Figure 5: Equilibrium value functions
π∗ = 2, φ = 1, δ = 0.5, rd = 0.5

0
π∗ − φ π∗ + φ π∗ + 3φ

VC
VC

VP

VPexplicit status-quo

implicit status-quo

default options for which C is able to extract all the bargaining power in the

long term under the bargaining with explicit status-quo, P prefers the other

bargaining protocol as he retains some influence over the enacted policies,

which then reflect, at least to some extent, his preferences.

Denoting by V j
i (x) the value function of player i ∈ {C,P} under bar-

gaining protocol j ∈ {E, I} for default option x, the next proposition then

shows that the situation depicted in figure 5 is a general feature of the model.

Proposition 6 (Policy makers’ choice over bargaining protocol).

1. V E
C (x)− V I

C(x) ≥ 0 for x ∈ X

2. V E
P (x)− V I

P (x) ≤ 0 for x ∈ X where the inequality is strict for

x ∈ X \ [π∗ − φδrd, π∗ + 3φδrd]
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3. V E
C (x)− V I

C(x) + V E
P (x)− V I

P (x) = k, where

k ≥ 0 for x ∈ [π∗ − φδrd, π∗ + 3φδrd]

k = −2φ2δrd(1− rd)
1− δ

for x ∈ X \ (π∗ − φ, π∗ + 3φ)

Proof. See appendix A1.

The third part of the proposition shows choice over the bargaining pro-

tocol by players who are also uncertain over the role they will play in the

game. Another interpretation is that it shows which bargaining protocol is

preferred from the utilitarian perspective. For non-extreme values of the

default option it is the explicit status-quo bargaining protocol. It allows

for the A-efficient policy outcomes and the initial bargaining position of the

P player prevents C from using her proposal power to determine D period

policy fully according to her preferences.

On the other hand, for extreme values of the default option the implicit

status-quo protocol dominates from the utilitarian perspective. Although

it does not deliver A-efficiency it prevents C from fully using her proposal

power. The explicit status-quo would allow C to hold on to her bargaining

power, becoming a dictator in the committee.

The proposition also shows by how much the implicit status-quo protocol

dominates for x ∈ X\(π∗−φ, π∗+3φ), i.e. for default options generating the

authoritarian regime under explicit status-quo bargaining. The difference

increases with δ, is maximized for rd = 1
2 and equal to zero for rd ∈ {0, 1}.

The intuition for the effect of rd comes from the benefits and costs of the

explicit status-quo protocol. It delivers A-efficiency but creates too much

proposal power, implying extreme policies viewed from the perspective of

the committee as a whole. With rd = 1 we need not be concerned either with

A-efficiency, as there are no A periods, or with the excessive proposal power,

as there are no A periods during which C gives up her bargaining position

under the implicit status-quo protocol. At the other extreme, with rd = 0

the model is a common preference one with no concerns over efficiency or

excessive proposal power present as well.
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Multi-member committee

Finally, to prepare for the next section, we want to show that the results

presented above apply to any N member committee with fixed chairman,

common preferences in A periods and D period preference shocks −φ and

φ of the chairman and (not necessarily fixed) median committee member

respectively. We call such a committee essentially two-member one and

define it as follows.

Definition 5 (Essentially two-member committee). We say a committee

composed of N (odd) members is an essentially two-member one if it pos-

sesses a fixed chairman with proposal power, has common preference for π∗

in A periods, i.e. εi,t = 0 for i ∈ {1, . . . , N}, and its D period preference

parameters satisfy either

1. εi,t = φi for i ∈ {1, . . . , N} and φC = −φ, φm = φ are chairman’s and

median member’s preference parameters respectively,

or

2. εi,t = −φ for i = C and (N − 1) × 1 vector of remaining preference

parameters εt = {εi,t}′i∈{1,...,N}\{C} satisfies εt = φ+νt where νt is (pos-

sibly each D period specific) vector of random variables with number

of negative, zero, positive elements equal to N−3
2 , 2, N−3

2 respectively

and E[νi,t] = 0 for i ∈ {1, . . . , N − 1} where νi,t is i-th element of νt.

In words, any committee is essentially a two-member one if there is a

fixed chairman with proposal power and D period preference shock equal to

−φ, the whole committee has common preferences in A periods and the D

period preference parameters of the remaining committee members satisfy

one of the conditions from the definition. The first condition requires the D

period preference parameters to be fixed across periods for a given commit-

tee member and existence of a median member (among N members) with a

preference shock equal to φ. The second condition allows for time varying

D period preferences but requires those to be equal to φ on average and re-

quires existence of two (each D period possibly different) median committee

members (among N − 1 members) with preference shock equal to φ. The

reason for requiring two median members is that for the second condition

we are now choosing among the N − 1 non-chairman members, which is an
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even number, and need an equal number of those members with higher and

lower preference shock φ+ νi,t.

Next we need to rule out equilibria that possibly arise due to the com-

mittee members voting against their preferences as they realize they are not

pivotal. Following Baron and Kalai (1993) we restrict attention to stage-

undominated voting strategies that for all members n ∈ {1, . . . , N}, all

periods i ∈ {A,D}, all default options x ∈ X and all proposals γ(x) ∈ X2

satisfy

n votes for γ(x) (against γ̄(x))⇔ γ(x) ∈ Ai,n(x).

where Ai,n(x) is acceptance set of player n in period i and default option x.

With the preliminaries established, we are able to prove the following

proposition asserting that the results presented above can be equally applied

to any larger committee.

Proposition 7 (Committee with more than two members). Bargaining

(policy, status-quo) outcomes under both bargaining protocols for any es-

sentially two-member committee with its members using state-undominated

strategies correspond to the bargaining outcomes of a game played between

the committee chairman and player with median preference shock and thus

to the results presented above.

Proof. See appendix A1.

5 Re-interpretation of asymmetric FOMC directive

In this section we interpret the asymmetry in FOMC directive in light of

our model. We first discuss several reasons that make us believe that the

FOMC decision making process is better viewed as proceeding under the

explicit status-quo bargaining protocol. Adopting this perspective, we show

that the model can replicate existing stylized facts about FOMC decision

making. Finally, we discuss a novel interpretation of the asymmetry our

model provides.

The structure of the model above is largely inspired by the decision

making process in most modern central banks (see Mahadeva and Sterne,

2000, for further details). Typically a committee of several members with

a well defined chairman is responsible for repeated decisions on a single
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monetary policy instrument with a goal to anchor inflation to some prede-

termined level. While having a single objective, the committee members

do not always agree on the most appropriate stance of monetary policy,

with differences driven both by personal preferences as well as by the ex-

ternal economic environment. Indeed, Chappell, McGregor, and Vermilyea

(2005) show significant statistical differences in both intercepts and effects

of economic variables in the ‘individual reaction functions’ of the FOMC

members (see Blinder, 2007, for a discussion of possible causes of the pref-

erence heterogeneity in monetary policy committees). This opens up the

possibility of time-varying disagreement which our model captures in the

agreement/disagreement dichotomy. Finally, in most central banks the mon-

etary policy instrument serves also as the status-quo for the next committee

meeting.

FOMC, the decision body of the US Federal Reserve System, makes

monetary policy decisions but also decides on the ‘asymmetry’, ‘bias’ or

‘tilt’ in its directive. What is formally known as the domestic policy direc-

tive is a set of operating instructions sent to the Open Market Trading Desk

at the Federal Reserve Bank of New York. Every directive, in addition to

current policy, specifies FOMC’s expectations regarding future policy, speci-

fying either asymmetry towards policy tightening or easing (asymmetric) or

no change (symmetric). In its original form, the asymmetry has been used

between 1983 and 1999 (see Thornton and Wheelock, 2000, for historal ac-

count), evolved endogenously, and FOMC has never clarified the meaning it

has in its decision making. Additionally, the meaning seems to have evolved

over time.7

We interpret asymmetry in the FOMC directive as a possible difference

between the current policy and a status-quo for several reasons. First, its

original intent has been to specify a contingency under which the Open Mar-

ket Trading Desk would change the FOMC operating target before the next

FOMC meeting. The transcript of the discussion during the first FOMC

meeting to specify asymmetry in the directive reveals this intention. Chair-

man Volcker summarized that the whole proposed directive ‘says we don’t

7 FOMC transcripts reveal a certain ambiguity regarding the meaning of the asymmet-
ric directive. Chairman Greenspan, when asked this question by one of the new FOMC
members, answers that FOMC does not have a ‘specific formulation. Asymmetry merely
means a general sense of the Committees’s disposition or the direction’ of its bias (Federal
Reserve System, 2011, July 5-6, 1994 transcript, p. 69).
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want to tighten right now but we do contemplate easing if the aggregates are

noticeably, or quite visibly, soft’ (Federal Reserve System, 2011, February

8-9, 1983 transcript, p. 83).

Second, it authorized the FOMC’s ‘chairman to notch up the Fed funds

rate if necessary before the next regular meeting’ (Greenspan, 2007, p. 102).

Intermeeting change in the FOMC operating target, whether upon contin-

gency or at the chairman’s discretion, then implies change in the status-quo

in between the committee meetings. At any given meeting the committee

might find itself facing a default option different from the policy agreed upon

at the previous meeting.

Third, the FOMC used the asymmetry to signal its future intentions

over the intermediate horizon.8 A difference between the policy and the

status-quo then comes from credibility concerns.9 Should the FOMC signal

its intention to, say, tighten monetary policy without eventually doing so,

its credibility would be compromised. Chairman Greenspan saying ‘And

I’m concerned about the credibility of the [FOMC] sitting with an asym-

metric directive time and time again when the purpose of that is essentially

to signal an intermediate trend’ (Federal Reserve System, 2011, August 17,

1993 transcript, p. 36) lends itself to this explanation. On another occa-

sion, after six consecutive meetings with no change in policy but asymmetry

towards tightening, chairman Greenspan in his opening statement of the

‘policy go-around’ part of the FOMC meeting says that ‘It is quite evident

that we have come to a point, as we suggested we might at the last meeting,

[. . . ] We have to ‘deliver” (Federal Reserve System, 2011, March 25, 1997

transcript, p. 44). The three reasons taken together make us believe it is

more appropriate to think of the FOMC as having the explicit status-quo

bargaining protocol.

Notwithstanding the ambiguity regarding the meaning of the asymmetric

directive, it generated several papers investigating its role in FOMC decision

making. Three hypotheses have been put forward. First, the authorizing

intermeeting policy adjustments hypothesis holds that the asymmetry gave

8 Until early 1999 the directive has been published only as a part of FOMC minutes
few days after its next meeting. Hence its immediate signalling role was rather limited. As
Blinder (2007) notes, the long lag between the meeting and the publication of the minutes
means that the ‘minutes draw little press or market attention when they are published’.

9 Recently, several central banks started publishing expected future policy paths along
with their current monetary policy decision (see Kahn, 2007, for details). Present argu-
ment would apply to those central banks as well.
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the FOMC chairman discretion to adjust policy stance in between regularly

scheduled FOMC meetings. Chappell, McGregor, and Vermilyea (2007)

confirm this hypothesis using data from the 1987 to 1992 period during which

the intermeeting policy adjustments were common and refute it for the 1993

to 1999 period during which the intermeeting policy adjustments were rare.

Thornton and Wheelock (2000) refute the hypothesis using data from the

1983 to 1999 period. However, with the intermeeting policy adjustments

rare in the second half of their sample, they are effectively refuting it for the

first half contradicting results of Chappell et al. (2007).

Second, the predicting future policy changes hypothesis holds that the

asymmetry predicts the direction of future policy changes and increases

their likelihood. Regarding the direction part of the hypothesis Thornton

and Wheelock (2000), Lapp and Pearce (2000) and Pakko (2005) all confirm

it using data from the 1983 to 1999, 1984 to 1998 and 1984 to 2003 periods

respectively. Evidence on the likelihood part of the hypothesis is mixed with

Thornton and Wheelock (2000) refuting it while Lapp and Pearce (2000) and

Pakko (2005) reach an opposite conclusion.

Third, the consensus building hypothesis holds that the asymmetry al-

lowed FOMC chairman to craft consensus among the FOMC members.

Thornton and Wheelock (2000), Meade (2005) and Chappell et al. (2007)

all confirm this hypothesis using data from the 1983 to 1999, 1989 to 1997

and 1987 to 1992 periods respectively, while the last paper refutes it for the

1993 to 1999 sample.

With our model silent on the intermeeting policy adjustment hypothe-

sis, we focus on the latter two hypotheses and ask if our model is consistent

with either of them.10 In order to see how the two hypotheses are reflected

in FOMC decision making, we use data about its decisions. For each of 48

meetings between February 4, 1994 and December 12, 1999 (inclusive) we

record the change in the federal funds rate target and the adopted asym-

metry in FOMC directive.11 The reason for focusing on the period starting

10 Intermeeting policy adjustments by FOMC chairman have become increasingly rare
during the 1990’s. For example, in the 1994 through 1999 period there have been only
two intermeeting changes (see Thornton and Wheelock, 2000, for further details).

11 While the federal funds rate target has not become FOMC’s operating target until
August 1997 with extent of restraint on commercial bank reserve positions being its oper-
ating target prior, there is considerable consensus that FOMC has been shifting its focus
from the restraint on reserve positions to the federal funds rate as its operating target well
before 1997 (see Thornton and Wheelock, 2000, for detailed discussion).
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with the February 4, 1994 meeting is that it marks beginning of FOMC’s

practice of announcing target changes immediately upon making them and

the beginning of the practice of making target changes almost exclusively at

the regular FOMC meetings. The December 12, 1999 meeting is then the

last meeting before the asymmetry in FOMC directive was replaced by a

‘balance of risk assessment’.12

Existing hypotheses vs. simulated data

One way to generate theoretical predictions of our model is to simulate

random path of equilibrium policy and status-quo proposals. To do so we

took C’s equilibrium proposal strategies depicted in figures 2 and 3 and

generated 100.000 random 100 period long paths of policy and status-quo

decisions, {p1, . . . , p100} and {q1, . . . , q100}, with initial default option x0

uniformly distributed on the [π∗ − φ, π∗ + φ] interval.13 We classify each

meeting in period t ∈ {2, . . . , 100} of a given path as resulting in policy

increase, no change or decrease depending on whether pt − pt−1 ≥ χ, |pt −
pt−1| < χ or pt − pt−1 ≤ −χ respectively. Each meeting also generates

asymmetry towards increase, no change or decrease depending on whether

qt − pt ≥ χ, |qt − pt| < χ or qt − pt ≤ −χ respectively. We set χ = 0.075 in

order to match approximately the empirical ratio of the number of meetings

resulting in no policy change to the number of meetings resulting in policy

change (2.20). Finally, we rescale all data in the simulated sample to mach

the number of meetings in the FOMC sample (48).

Table 1 shows data for the predicting future policy changes hypothesis,

recording policy change during the given meeting and asymmetry adopted

during the previous meeting. FOMC data clearly show support for the di-

rection part of the hypothesis with FOMC never decreasing (increasing) the

federal funds rate target with tightening (easing) asymmetry in its directive

adopted previously. Similar holds for the simulated data with asymmetry to-

wards policy increase (decrease) never followed by policy decrease (increase)

12 Alternatively we could have focused on the period up to March 30, 1999 meeting
after which FOMC began its practice of publishing statement immediately after each
meeting that also included asymmetry contained in its directive (Farka, 2010), but none
of the results would be substantially altered. Nor would the results change had we taken
our data to start with the February 8-9, 1983 meeting, the very first one to specify the
asymmetry in FOMC directive.

13 We also experimented with either 2 period long paths or x0 distributed uniformly on
[π∗ − φ, π∗ + 3φ] with little change in the results.
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Table 1: Predicting future policy changes hypothesis
t+ 1 period policy change and t period asymmetry

t+ 1 period policy change

t period
asymmetry

FOMC sample Simulated sample

+ 0 − + 0 −

+ 7 14 0 1 1 0*

0 3 18 4 7 25 0

− 0 1 1 0* 7 7

Note: Number of meetings in each cell. FOMC sample from Febru-
ary 4, 1994 to December 12, 1999. Simulated data rescaled and
rounded to 48 meetings. * zero before rounding.

during the subsequent meeting.

For the likelihood part of the hypothesis, which holds that the asym-

metric directive is associated with higher likelihood of policy change, results

are mixed. FOMC meetings data in table 1 show that FOMC changed the

federal funds rate target at 15 of its 48 meetings (31.3%) while conditional

on asymmetric directive adopted at a previous meeting, FOMC changed the

federal funds rate target at 8 of 23 meetings (34.8%). A simple proportions

test of the hypothesis that 34.8% equals 31.3% (as opposed to the alterna-

tive of the former percentage being higher) yields insignificant test statistics

(p-value 0.36).14 Simulated data then show policy change at 15 out of 48

meetings (31.3%) and conditional on asymmetric directive at 8 out of 16

meetings (50.0%) with test statistics for the test of 50.0% being equal to

31.3% (with the same alternative as above) marginally significant (p-value

0.05).

In order to test the consensus building hypothesis we replicate the argu-

ment from Thornton and Wheelock (2000). They argue that the asymmetry

in FOMC directive serves a consensus building role, with the asymmetric

directives adopted more often during the meetings with no policy change

as opposed to meetings with a policy change. Table 2 shows data for the

consensus building hypothesis, recording policy change during given meeting

and asymmetry adopted during the same meeting.

FOMC data in table 2 show that the asymmetric directive has been

14 This test is based on normal approximation of binomial with the test statistic equal
to (r′ − r)/

√
r(1 − r)/n standard normal distributed. In this case r′ = 0.348, r = 0.313

and n = 23. We use similar test as Thornton and Wheelock (2000) for comparability.
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Table 2: Consensus building hypothesis
t period policy change and t period asymmetry

t period policy change

t period
asymmetry

FOMC sample Simulated sample

+/− 0 +/− 0

+/− 3 20 8 8
0 12 13 7 25

Note: Number of meetings in each cell. FOMC sample from
February 4, 1994 to December 12, 1999. Simulated data
rescaled to 48 meetings.

adopted at 23 out of 48 meetings (47.9%) while conditional on no policy

change at the same meeting the asymmetric directive has been adopted at

20 out of 33 meetings (60.6%). Using the same test as above to test the

hypothesis that 60.6% equals 47.9% (as opposed to the alternative of the

former percentage being higher) produces marginally significant test statis-

tics (p-value 0.07). For the simulated data we obtain asymmetric directive

adopted at 16 out of 48 meetings (33.3%) and conditional on no policy

change asymmetric directive adopted at 8 out of 33 meetings (24.2%) with

test statistic for the test of 24.2% being equal to 33.3% (with the same

alternative as above) insignificant (p-value 0.87).

Existing hypotheses vs. authoritarian regime

Comparison of the simulated and FOMC decision data faces two possible

objections. First, it is dependent on the choice of values for the model

parameters. Second, empirical literature on FOMC decision making often

notes dominance of chairman Greenspan (see for example Chappell et al.,

2005). Hence comparison to the simulated data, which capture convergence

to the authoritarian or the collegial regimes explained in the context of

discussion of figure 4, might not be appropriate.

Table 3 shows the comparison the model generates assuming the bargain-

ing has already converged to the authoritarian regime. For the policy, AA

and DD paths generate no change while AD and DA paths generate policy

decrease and increase respectively, as pD(x) = π∗−φ and pA(x) = π∗ in the

authoritarian regime. For the asymmetry we have qD(x) = qA(x) = π∗ − φ
in the authoritarian regime and hence A periods produce asymmetry to-
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Table 3: Authoritarian regime
predicting future policy/consensus building hypothesis

path probability asymmetry policy change

t− 1 t t

AA (1− rd)2 − − 0
AD rd(1−rd) − 0 −
DD r2

d 0 0 0
DA rd(1−rd) 0 − +

wards policy decrease while D periods produce asymmetry towards no policy

change.

It is apparent from table 3 that even in the authoritarian regime the

asymmetry has an ability to predict the direction of future policy changes.

Asymmetry at the t−1 period meeting towards lower policy predicts decrease

or no change in the policy during the t period meeting while asymmetry

towards no policy change predicts subsequent increase or no change in the

policy.

For the increased likelihood of the policy change under the asymmetric

directive hypothesis, the probability of the policy change is 2rd(1− rd) and

conditional on asymmetric t − 1 period asymmetry it is rd, with the latter

larger for rd ≥ 1
2 . For the consensus building hypothesis, the authoritarian

regime predicts asymmetric directive adopted with probability 1 − rd and

conditional on no policy change with probability (1−rd)2

(1−rd)2+r2d
, with the latter

larger for rd ≤ 1
2 . Finally, in the authoritarian regime the ratio of the

number of meetings resulting in no policy change to the number of meetings

resulting in a policy change is equal to
(1−rd)2+r2d
2rd(1−rd) . This ratio is larger than

2, the approximate ratio in the FOMC data, either for rd ≤ 3−
√

3
6

.
= 0.21 or

for rd ≥ 3+
√

3
6

.
= 0.79.

As a result, for the high degree of conflict in the committee (rd ≥ 1
2) the

authoritarian regime predicts increased likelihood of policy changes given

asymmetric directive adopted during the previous meeting but no consensus

building role of the asymmetry. On the other hand for the low degree of

conflict in the committee (rd ≤ 1
2) the authoritarian regime predicts a con-

sensus building role of the asymmetry but not increased likelihood of policy

changes under the asymmetric directive.

Adopting the view that the FOMC can be approximated by the au-
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thoritarian regime with low degree of conflict, our model then predicts a

consensus building role of the asymmetry, its ability to predict direction of

future policy changes and the majority of meetings resulting in no change

in policy, but not that policy is changed more often under the asymmetric

directive.

Novel role of asymmetric directive

Besides capturing major stylized facts about the FOMC decision outcomes,

the model suggest a novel role of the asymmetry in its directive. One of

the predictions for the explicit status-quo protocol, relative to the implicit

status-quo one, is that it allows the chairman to gain or retain a dominant

position in the committee. When this happens, the chairman is able to press

for policy outcomes fully reflecting her preferences. We call this view of the

asymmetric directive the preservation of supremacy hypothesis.

Dominance of chairman Greenspan in FOMC is not new. Chappell et al.

(2005), Blinder (2007) and Meade (2005) all acknowledge it. Blinder (2007)

even goes as far as claiming that it is ‘quite possible for the Fed to adopt

one policy even though the (unweighted) majority favoured another’ and

ranks the Federal Reserve System very low in terms of democracy in mak-

ing monetary policy decisions.15 Interestingly, the original inclusion of the

asymmetry in the directive was made upon the suggestion of then chairman

Volcker.

While we cannot rigorously test the preservation of supremacy hypoth-

esis because we lack appropriate counterfactuals, the following anecdotal

evidence is at least suggestive of its validity. For six consecutive meetings

since the July 2-3, 1996 meeting, FOMC has kept the federal funds rate

unchanged, adopting asymmetric directive towards tightening in all those

meetings. The series was interrupted by the 25 basis point increase at the

March 25, 1997 meeting (with symmetric directive) and followed by another

5 meetings with no change in the federal funds rate and asymmetric directive

towards tightening, until the November 12, 1997 meeting.

During the whole period FOMC was receiving signals which would, un-

15 The ranking includes central banks of (from the least to the most democratic) New
Zealand, Canada, Australia, USA, Japan, Switzerland, Euro zone, Sweden and UK. In
the first three central banks it is the governor responsible for the policy (see Maier, 2010,
for details).
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der normal circumstances, call for tighter monetary policy. But, as chairman

Greenspan argued, the US economy was not operating under normal circum-

stances. His explanation for declining unemployment and non-increasing in-

flation was higher productivity growth, at that time not yet apparent from

the economic data. But ‘his insight played to an unresponsive audience’

(Meyer, 2004, p. 80) with ‘many committee members [. . . ] leaning [. . . ]

toward an increase’ (Greenspan, 2007, p. 171).

During the whole period chairman Greenspan tried to persuade the

FOMC members out of tightening monetary policy move. The pattern

started with the July 2-3, 1996 meeting with chairman Greenspan argu-

ing that his ‘judgment is that in all likelihood, if the Committee does not

move at [that] meeting or during the intermeeting period, [it] will do so at

the August meeting or later’ (Federal Reserve System, 2011, July 2-3, 1996

transcript, p. 89). He made similar argument professing to believe that

‘the probability of our having to move [. . . ] is still above 50 percent’, and

that FOMC confronts ‘far greater likelihood that the next move will be up

rather than down’ (Federal Reserve System, 2011, September 24, 1996 and

December 17, 1996 transcripts, p. 29 and 36 respectively).

Chairman Greenspan did not use only the probability of near future pol-

icy tightening as his argument. When proposing yet another no change in

the federal funds rate, he used asymmetry in the FOMC directive propos-

ing an ‘asymmetry that is unlike that at the previous couple of meetings.

[. . . ] a real asymmetry’ (Federal Reserve System, 2011, February 4-5, 1997

meeting stranscript, p. 104).16 Meyer (2004, p. 83) summarizes chair-

man Greenspan’s behaviour during the periods as ‘speaking like a hawk and

walking like a dove’.

Combining chairman Greenspan’s dominance in FOMC and his disagree-

ment with many of the FOMC members, we can interpret the episode in light

of our model as a series of D periods in the authoritative regime. The model

then predicts series of π∗ − φ policy choices with the status-quo set at the

same level, i.e. with symmetric directive. Discrepancy with the asymmet-

ric directives in FOMC decisions is nevertheless only apparent. Future no

change or increase in the policy is in the model associated with symmetric di-

16 FOMC transcripts reveal some of the committee members becoming increasingly un-
easy with the continuing discrepancy between the unchanging policy and the asymmetric
directive, such as when Ms. Rivlin remarks that she finds ‘meaning of these asymmetries
a little mysterious’ (Federal Reserve System, 2011, December 17, 1996 transcript, p. 36).
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rectives but with asymmetric (tightening) directives in the FOMC decisions.

Crucially, it is the explicit status-quo protocol that allows the chairman to

preserve his dominance in the committee.

Concluding remarks

We have shown that our model, with the explicit status-quo bargaining

protocol, can well represent data generated by the FOMC decision making

process. It can replicate existing stylized facts and, additionally, gives us

an alternative perspective from which the FOMC decision making can be

approached and discussed.

While hardly conclusive, we believe the asymmetry in FOMC directive

allowed its chairman to influence US monetary policy, at least to some ex-

tent. The two opening quotes of the paper then capture the basic trade-off

our model creates under the explicit status-quo, increased efficiency at the

potential cost of disproportionate proposal power. The former quote, taken

at face value, pertains to the efficiency part of the trade-off. But its mean-

ing pertains to the disproportionate proposal power part. The quote can be

taken to mean that the asymmetry allowed the FOMC chairman to carry

out policy more to his liking than he would be allowed otherwise. The latter

quote then shows that this is a real, not only hypothetical, possibility.17

Interestingly, the two quotes refer to the same episode, the 1996-1997

event described above. With hindsight, chairman Greenspan turned out to

be correct and among the first to identifying a change in the productivity

trend. Indeed, the second opening quote immediately goes on to say ‘We

give him enormous credit for doing so.’ The ‘we’ does not include everybody

(see The Economist, 2006, for an alternative view), but that is another story.
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A1 Proofs

A1.1 Proof of proposition 1

Preliminaries

To prove the existence part of proposition 1 we construct CS-MPE in a
model with implicit status-quo. We are forced to split the equilibria of
the model into four distinct cases depending on the parameters δ and rd.
However, the logic of the proof is always the same. For each case we first
state C’s equilibrium proposal strategies. These are generated conjecturing
a CS-MPE equilibrium giving the VP function with acceptance sets AA and
AD of which proposal strategies, we conjecture, are minima (unless C’s
unconstrained optima lie in the appropriate acceptance sets). Next, we
specify VC and VP generated by the proposal strategies and derive the shape
of associated acceptance sets AA and AD. In the next step we characterize
the shape of C’s overall utility in A andD periods deriving her unconstrained
maxima in the two periods to be γCA = π∗ − φδrd and γCD = π∗ − φ
respectively. With P ’s acceptance sets and C’s overall utility, we confirm
the proposal strategy originally given is indeed optimal for C and can be
written in the form given in the proposition.

Having established existence of CS-MPE by constructing it we next turn
to the uniqueness part of proposition 1 by showing that the CS-MPE con-
structed is the unique one. Here we note that in any CS-MPE, VP has to
be the one derived in the existence part and we establish uniqueness of the
solution to C’s dynamic optimization problem (1).

Throughout the whole proof we maintain the assumption on {δ, rd} ex-
pressed in the proposition, that is we maintain

Assumption 1. For any pair {δ, rd} with δ ∈ [0, 1) and rd ∈ [0, 1] assume
δ2rd(3− 2rd) ≤ 1− δ(1− rd).

Despite the logic of the proof being rather straightforward, the proof
itself is rather lengthy and algebra intensive. Striving to keep its length to a
minimum, we sometimes omit proofs of purely algebraic results but always
indicate how those can be shown.

Throughout the proof, we often refer to C in D periods as to CD and
similarly for P (PD) and by analogy in A periods to CA and PA respec-
tively. To save on notation we denote instantaneous utility of the policy
makers by

fCD(x) = −(x− π∗ + φ)2

fCA(x) = −(x− π∗)2

fPD(x) = −(x− π∗ − φ)2

fPA(x) = −(x− π∗)2
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and the overall utility by

UCD(x) = fCD(x) + δVC(x)

UCA(x) = fCA(x) + δVC(x)

UPD(x) = fPD(x) + δVP (x)

UPA(x) = fPA(x) + δVP (x).

Throughout the proof we are forced to work with a series of intervals in
the default option space X. Those are always denoted by Ii and are always
closed (except where explicitly indicated) and convex subsets of X. The
upper boundary of Ii is denoted by IUi and lower boundary by ILi .

Many of the functions in the proof are defined piecewise. If this is the
case then we use the notation f Ii(x) for function f(x) constrained to the
appropriate interval. Derivatives are often denoted by primes when no con-
fusion as to with respect to which variable the derivative is being taken is
imminent.

It will become apparent that many of the functions we work with are
differentiable only in the interior of the intervals but not at the point where
the two intervals meet. Taking general f(x), f ′(IUi ) will often fail to exist as
f(x) has a kink at IUi . If this is the case then f ′Ii(IUi ) will always denote left
derivative, i.e. derivative as x → IUi from below, and f ′Ii(ILi ) will denote
right derivative, i.e. derivative as x→ ILi from above.

It is helpful first to establish following lemmas.

Lemma 4.

U ′CD(x) ≥ 0⇒ U ′CA(x) ≥ 0

U ′CD(x) ≤ 0⇐ U ′CA(x) ≤ 0

U ′PD(x) ≥ 0⇐ U ′PA(x) ≥ 0

U ′PD(x) ≤ 0⇒ U ′PA(x) ≤ 0

Proof. The lemma follows from the readily verifiable facts that f ′CA(x) >
f ′CD(x) and f ′PA(x) < f ′PD(x) that naturally assumes differentiability of the
VC and VP functions. A similar result for VC and VP non-differentiable
at some specific x but possessing left and right derivatives at x follows by
analogy. �

Lemma 5. Let h(x) and k(x) be two real valued continuously differentiable
functions defined on [t − r, t] and [t, t + r] respectively, for some t, r ∈ R
and r > 0. Assume k(t) = h(t) and that the first derivative of the functions
satisfies k′(t+x) ≤ −h′(t−x) for all positive x ≤ r. Then k(t+r) ≤ h(t−r).

Proof. Integrating the derivative inequality in the lemma with respect to x
from 0 to r gives ∫ r

0
k′(t+ z)dz ≤ −

∫ r

0
h′(t− z)dz

k(t+ r)− k(t) ≤ h(t− r)− h(t)

k(t+ r) ≤ h(t− r)
�
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Lemma 6. Define

z(x) = π∗+φ(1−δ(1−rd))−

√
1− δ

1− δrd
(x− π∗ − φ)2 + φ2δ(1− rd)

(
4δ2r2

d

1− δrd
− (1− δ)

)
.

Then

sgn[z(x)′] = sgn[π∗ + φ− x]

sgn[z(x)′′] = sgn[−(4δ2r2
d − (1− δ)(1− δrd))].

Proof. Denote the term in the square root of z(x) by T (x). Then

z(x)′ = − 1√
T (x)

1− δ
1− δrd

(x− π∗ − φ)

z(x)′′ = − 1

T (x)3/2

1− δ
(1− δrd)2

φ2δ(1− rd)(4δ2r2
d − (1− δ)(1− δrd)).

�

Next we give explicit formulas for the continuation value functions of
the two policy makers used throughout the proof. As already mentioned,
both of the functions are defined piecewise on the different Ii intervals, but
we leave the specific definition of the intervals for later when we will show
that in the equilibrium the induced continuation value function of C can be
pasted together from the following.
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V I1
C (x) =V I12

C (x) = −1− rd
1− δ

φ2δrd

V I2
C (x) =V I5

C (x) = − rd
1− δrd

[
(x− π∗ + φ)2 + φ2 δ(1− rd)(1− δrd)

1− δ

]
V I3
C (x) =− 1

1− δ
[
(x− π∗ + φrd)

2 + φ2rd(1− rd)
]

V I4
C (x) =V I3

C (x) +
8(1− rd)δrd

(1− δ)(1− δrd)
[φ(x− π∗)− φ2δrd]

V I6
C (x) =V I11

C (x) = − rd
1− δrd

[
(π∗ + 3φ− x)2 + φ2 δ(1− rd)(1− δrd)

1− δ

]
V I7
C (x) =rd

[
(2(π∗ + φ(1− δ(1− rd)))− x− π∗ + φ)2 + δV I4

C (2(π∗ + φ(1− δ(1− rd)))− x)
]

(1− rd)
[
(2(π∗ + φδrd)− x− π∗)2 + δV I3

C (2(π∗ + φδrd)− x)
]

V I8
C (x) =rd

[
(2(π∗ + φ(1− δ(1− rd)))− x− π∗ + φ)2 + δV I3

C (2(π∗ + φ(1− δ(1− rd)))− x)
]

(1− rd)
[
(2(π∗ + φδrd)− x− π∗)2 + δV I3

C (2(π∗ + φδrd)− x)
]

V I9
C (x) =rd

[
−(z(x)− π∗ + φ)2 + δV I4

C (z(x))
]

+ (1− rd)
[
−(−φδrd)2 + δV I3

C (π∗ − φδrd)
]

V I10
C (x) =rd

[
−(z(x)− π∗ + φ)2 + δV I3

C (z(x))
]

+ (1− rd)
[
−(−φδrd)2 + δV I3

C (π∗ − φδrd)
]

Likewise, P ’s continuation value function in the equilibrium will be
pasted together from the following functions.

V I3
P (x) =− 1

1− δ
[
(x− π∗ − φrd)2 + φ2rd(1− rd)

]
= V I4

P (x) = V I7
P (x) = V I8

P (x)

V I2
P (x) =− rd

1− δrd

[
(x− π∗ − φ)2 + φ2 δ(1− rd)(1 + 3δrd)

1− δ

]
= V I5

P (x) = V I6
P (x) = V I9

P (x) = V I10
P (x) = V I11

P (x)

V I1
P (x) =V I12

P (x) = − φ
2rd

1− δ
(4− 3δ(1− rd))

At the time being, use of 12 different Ii’s might seem redundant, but
as will become apparent the fact that the value functions are identical on
some intervals is a coincidence. Indeed, they will be induced by parts of the
equilibrium that are different in nature.

Having the VP function we can explain the rationale behind the z(x)
function from lemma 6. Looking at VP it consists of two quadratic terms
that apply on different Ii intervals, a property the UPD function will in-
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herit. The z(x) function then allows us to compare UPD across inter-
vals where it is given by different quadratic terms, or formally, z(x) solves
UPD(x) = UPD(z(x)) for x ∈ I3 ∪ I4 and z(x) ∈ I9 ∪ I10. More specifically,
as the proposition claims that C implements the policy corresponding to
the minimal accepted one, z(x) gives us a lower boundary of AD for default
options in the I9 ∪ I10 interval. We do not need similar functions for other
intervals as those lower boundaries will be linear functions of the default
option x.

We sometimes need to use an inverse of z(x) as well. Formally speaking,
as z(x) is not monotone, z−1(x) is not well defined. However, it is apparent
there are exactly two solutions x to the equation k = z(x) for a given
constant k. Taking the larger of the two, we can define the inverse of the
function z(x) as z−1(x) = {max{y : x = z(y)}}.

Existence

Case 1: Equilibrium for δ ≤ 1
1+2rd

For δ ≤ 1
1+2rd

the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4

pD(x) =


π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5

2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9 ∪ I10

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]
I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + 3φδrd]

I5 = [π∗ + 3φδrd, π
∗ + φ]

I6 = [π∗ + φ, π∗ + φ(2− 3δrd)]

I9 = [π∗ + φ(2− 3δrd), τ
+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+]

where τ+ = π∗ + φ + φ

√
(1− δrd)2 − 4δ3r2d(1−rd)

1−δ (τ− to be used later is

defined analogously with the term in the square root subtracted) and x−

and x+ are respectively lower and upper boundaries of the policy space X.
To see the term in the square root of τ+ is always positive, substitute in

δ = 1/(1 + 2rd) which gives a positive expression. Then, differentiating the
term in the square root with respect to δ gives an expression that can be
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regarded as a cubic equation in δ. It has one real root and the derivative is
negative below the root. As the root is always higher than unity, it follows
that the original expression has to be positive.

It is straightforward to show that the equilibrium offers induce the con-
tinuation value functions given above on the appropriate Ii intervals and
that both VC and VP are continuous everywhere and differentiable every-
where except at the boundaries of the Ii intervals. Next we need to describe
the shape of the UPA and UPD functions.

claim 1 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1∪I2∪I3∪I4∪I5 and decreasing
otherwise. UPA has a global maximum at π∗ + φδrd, UPD has a global
maximum at π∗ + φ and both functions are quasi-concave.

Proof. It is straightforward to show that UPA is increasing (and hence UPD
as well by lemma 4) on I1 ∪ I2 ∪ I3. Similarly UPD is decreasing (and hence
UPA by the same lemma) on I6 ∪ I9 ∪ I10 ∪ I11 ∪ I12. The remaining two
intervals, I4 and I5, are easy to show as well. It follows UPA has to have a
global maximum at π∗+φδrd, which is the boundary of I3 with I4 and UPD
has to have a global maximum at π∗ + φ, which is the boundary of I5 with
I6. Quasi-concavity then follows. �

The next two claims outline the shape of P ’s acceptance sets.

claim 2 (Shape of AA(x)). Let x be the default option. Then

1. if x ∈ I3 then AA(x) = {p : x ≤ p∧p ≤ x′} with x′ = 2(π∗+φδrd)−x ∈
I4

2. if x ∈ I4 then AA(x) = {p : x′ ≤ p∧p ≤ x} with x′ = 2(π∗+φδrd)−x ∈
I3

3. if x /∈ I3 ∪ I4 then π∗ − φδrd ∈ AA(x).

Proof. Notice UPA is symmetric around π∗ + φδrd, which is its global max-
imum on I3 ∪ I4. Moreover, for any x ∈ I3, UPA is increasing up to x and
for any x ∈ I4, UPA is decreasing from x on. Hence the first part follows. A
similar argument proves the second part.

To see the third part, notice UPA(IL3 ) = UPA(IU4 ) and IL3 = π∗ − φδrd.
The third part then follows by the same argument as in the preceding para-
graph about the increasing and decreasing parts of UPA. �

claim 3 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11
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3. if x ∈ I3 ∪ I4 then AD(x) = {p : x ≤ p ∧ p ≤ x′} where x′ = z−1(x) ∈
I9 ∪ I10

4. if x ∈ I5 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I6

5. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I5

6. if x ∈ I9 ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = z(x) ∈
I3 ∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I2.

Proof. All the parts below use the fact that for x ≤ π∗+φ, UPD is increasing
up to x and for x ≥ π∗ + φ, UPD is decreasing from x on. Also convexity of
AD(x) for given x follows from quasi-concavity of UPD.

For part one, notice UPD(IU1 ) = UPD(IL12) and IU1 = π∗ − φ which along
with the argument in the preceding paragraph gives the result.

For part two, notice UPD is symmetric around π∗ + φ for x ∈ I2 ∪ I11.
This also proves part seven.

For part three, by quasi-concavity of UPD and the fact that UPD has
a global maximum at π∗ + φ there must exist an upper boundary of the
acceptance set that satisfies x′ ≥ π∗ + φ. It is easy to confirm x′ ∈ I9 ∪ I10

and that x′ has to solve x = z(x′), i.e. x′ = z−1(x).
For part four, notice UPD is symmetric around π∗ + φ for x ∈ I5 ∪ I6.

Hence the fourth part follows. This also proves part five.
For part six, we are looking for x′ that solves UPD(x) = UPD(x′) with

x ∈ I9 ∪ I10. It is easy to confirm x′ = z(x) ∈ I3 ∪ I4 is the solution to this
equation. �

The following claim gives the shape of the UCD and UCA functions.

claim 4 (Shape of UCA and UCD).

1. UCA is increasing on I1∪I2 and decreasing on I3∪I5∪I6∪I10∪I11∪I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ I10 ∪
I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδrd)− x ∈ I4

4. UCA(π∗ − φδrd) ≥ maxx∈I9 UCA(x)

5. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ [IL9 , x] given x ∈ I9

6. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.
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Proof. The first part is straightforward given the continuation value func-
tions above, except for I10. To establish U I10CA is decreasing, first note

V ′′I10C (x) = rdz(x)′′
[
U ′I3CD(z(x))

]
− rd

2

1− δ
[z(x)′]2.

The sign of z(x)′′ by lemma 6 depends on the sign of 4δ2r2
d−(1−δ)(1−δrd),

which is negative for δ ≤ 1/(1+2rd), and hence z(x)′′ is positive. The sign of
U ′I3CD(z(x)) is negative by part two of this claim and the last term is negative

so V ′′I10C (x) is negative. It follows U ′′I10CA is concave so if we can establish that

U ′I10CA (IL10) is negative the claim follows.

Evaluating U ′I10CA (x) at IL10 = τ+ gives

U ′I10CA (τ+) = −2φ

[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δrd(1− δ(1− rd))

(1− δ)(1− δrd)

)]
where the term in the brackets is positive. To see this, note that the last term
in the equation 1−δ−2δrd(1−δ(1−rd)) > 0. This can be seen regarding the
expression as a quadratic equation in δ. It is negative between the roots.
One of the roots is higher than unity and the second one is higher than
1/(1 + 2rd). This establishes the first part.

For the second part, it is again straightforward to establish most of the
results. For I10 the claim follows from part one of this claim and lemma 4
and for I4 the claim follows by assumption 1.

The third part follows readily from the derivatives of UCA on I3 and I4

using lemma 5 that can be used as I3 and I4 have the same width.
To establish the fourth part where we cannot use the derivative argument

as UCA may have local maximum on I9. First note

V ′I9C (x) = rdz(x)′
[
U ′I4CD(z(x))

]
,

which by lemma 6 and part two of this claim is positive. Furthermore
fCA is decreasing on I9. Using the inequality maxx f(x) + maxx g(x) ≥
maxx f(x) + g(x) we can derive the upper bound on U I9CA as we know the

maxima of the f I9CA and V I9
C functions.

The upper bound is given by

fCA(IL9 ) + δV I9
C (IU9 ) ≥ max

x∈I9
U I9CA(x)

and we need to show it is lower than UCA(π∗ − φδrd). Some algebra gives

1− 3δrd + 3δ2r2
d +

δ3r3
d

1− δ
≥ 0,

which holds. To see this, we can disregard the last term in the expression
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that is positive. Regarding the remaining as a quadratic equation in δ gives
a pair of roots both of which are complex and it is easy to confirm the
expression has to be positive.

The fifth part is complicated by the fact that UCD may have local max-
ima on I9. First note that if we prove UCD(z(x)) ≥ UCD(x) ∀x ∈ I9 then
we are done by the fact that UCD is decreasing on I4 and z(x) ∈ I4 ∀x ∈ I9.

To start, we note the relevant parts of the VC function can be alterna-
tively expressed as

V I9
C (x) =rd[fCD(z(x)) + δV I4

C (z(x))]

+ (1− rd)[fCA(π∗ − φδrd) + δV I3
C (π∗ − φδrd)]

V I4
C (x) =rd[fCD(x) + δV I4

C (x)]

+ (1− rd)[fCA(2(π∗ + φδrd)− x) + δV I3
C (2(π∗ + φδrd)− x)],

which upon substitution into UCD(z(x))− UCD(x) simplifies the algebra as
the first square brackets disappear. Nevertheless, some lengthy and unin-
structive algebra remains and gives

UCD(z(x))− UCD(x) =

4φ

[
(x− π∗)−

1− δ − δ2rd + δ2r2
d

1− δ
(z(x)− π∗)−

3φδ3r2
d(1− rd)

1− δ

]
.

with the derivation using

(z(x)− π∗)2 = φ2(1− δ(1− rd))2 + T (x) + 2φ(1− δ(1− rd))(z(x)− π∗).

It is easy to confirm this expression is positive for x = IL9 . Taking the
derivative with respect to x then gives

[UCD(z(x))− UCD(x)]′ = 4φ

[
1−

1− δ − δ2rd + δ2r2
d

1− δ
z(x)′

]
,

which is positive. To see this notice 1−δ−δ2rd+δ2r2
d > 0 for δ ≤ 1/(1+2rd)

and z(x)′ is negative by lemma 6. This proves the fifth part. The sixth part
is then a direct consequence of the above. �

It is now easy to confirm the specified offers are indeed an equilibrium
and can be written in the way used in proposition 1. By claim 4, CA either
implements her unconstrained maximum π∗ − φδrd or minimum of AA(x).
This follows from the shape of AA given in claim 2, which implies that if
π∗ − φδrd /∈ AA(x) for some x then AA(x) ∈ I3 ∪ I4.

For CD, the best option is when the unconstrained maximum π∗ − φ is
available. If she cannot implement π∗−φ, then the lowest possible policy is
implemented. This follows directly from claim 4 where the only problematic
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interval is I9. But in claim 3 we have shown that for x ∈ I4 the acceptance
set takes the form [x, z−1(x)] and for x ∈ I9 the acceptance set takes the
form [z(x), x]. But then by part five of claim 4, CD implements as low a
policy as possible. This concludes proof of case 1.

Case 2: Equilibrium for δ ≥ 1
1+2rd

and 4δ2r2
d − (1− δ)(1− δrd) ≤ 0

For δ ≥ 1
1+2rd

and 4δ2r2
d − (1− δ)(1− δrd) ≤ 0 the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I5 ∪ I6 ∪ I9− ∪ I9+ ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4 ∪ I5

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7

2(π∗ + φ)− x for x ∈ I6 ∪ I11

z(x) for x ∈ I9− ∪ I9+ ∪ I10

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]
I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 3φδrd]

I9− = [π∗ + 3φδrd, τ
−
1 ]

I5 = (τ−1 , π
∗ + φ]

I6 = [π∗ + φ, τ+
1 )

I9+ = [τ+
1 , τ

+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+]

where as before τ+ = π∗+φ+φ

√
(1− δrd)2 − 4δ3r2d(1−rd)

1−δ and τ±1 are defined

as τ−1 = π∗ + φ − φ
√

δ(1−rd)
1−δ ((1− δ)(1− δrd)− 4δ2r2

d) and τ+
1 analogously

with the term involving the square root being added.
By the condition on this case, the term under the square root in τ±1 is

positive. To see the term in the square root of τ+ is positive, follow the
same procedure as for case 1 but instead of substituting δ = 1/(1 + 2rd)
substitute condition δ = 1/(1 + rd) that is indeed a weaker condition than
the condition defining case 2, 4δ2r2

d − (1− δ)(1− δrd) ≤ 0.
It is a matter of simple algebra to confirm that the equilibrium offers

induce the continuation value functions specified above where I9+ and I9−
correspond to I9. For VP it is easy to show that the function is continuous
everywhere and differentiable everywhere except at the boundaries of the Ii
intervals. For VC it can be shown that it is differentiable everywhere except
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at the boundaries of the Ii intervals. Regarding continuity, VC is continuous
everywhere except at IL5 and IU6 where it jumps in a discrete manner. This
is a direct consequence of the equilibrium offers not being continuous at the
same points with respect to the default x. We first describe the shape of
UPA and UPD.

claim 5 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I9− and
decreasing otherwise. UPA has a global maximum at π∗+φδrd and is quasi-
concave. UPD has two local maxima at π∗+ φ(1− δ(1− rd)) and π∗+ φ the
latter of which is also a global maximum. UPD has one local minimum at
π∗ + 3φδrd.

Proof. It is easy to show UPA is increasing (and hence UPD as well by lemma
4) on I1 ∪ I2 ∪ I3. Similarly UPD is decreasing (and hence UPA by the same
lemma) on I7 ∪ I6 ∪ I9+ ∪ I10 ∪ I11 ∪ I12. The remaining three intervals,
I4, I9− and I5, are equally easy. It follows UPA has a global maximum at
π∗+φδrd, which is a boundary of I3 with I4 and its quasi-concavity follows.
Similarly, UPD has two local maxima. One at the boundary of I4 and I7

and the second at the boundary of I5 and I6. Also, it follows that a local
minimum has to be at the boundary of I7 and I9−. It is easy to show π∗+φ
is the global maximum. �

Next we wish to characterize the acceptance sets. As the shape of the
AA is exactly the same as in claim 2 we do not repeat it here. For the AD
we have the following.

claim 6 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ I3∪[IL4 , π
∗+2φ(1−δ(1+rd/2))] then AD(x) = {p : x ≤ p∧p ≤ x′}

where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ [π∗ + 2φ(1 − δ(1 + rd/2)), IU4 ] then AD(x) = A1
D(x) ∪ A2

D(x)
where A1

D = {p : x ≤ p ∧ p ≤ x′}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′},

x+x′ = 2(π∗+φ(1−δ(1−rd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′),
x′ ∈ I7, x′′ ∈ I9− and x′′′ ∈ I9+

5. if x ∈ I7 then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D = {p : x′ ≤ p ∧ p ≤

x}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, x + x′ = 2(π∗ + φ(1 − δ(1 − rd)),

x′′ + x′′′ = 2(π∗ + φ), x′ = z(x′′) = z(x′′′), x′ ∈ I4, x′′ ∈ I9− and
x′′′ ∈ I9+
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6. if x ∈ I9− then AD(x) = A1
D(x)∪A2

D(x) where A1
D = {p : x′′ ≤ p∧p ≤

x′′′}, A2
D = {p : x ≤ p ∧ p ≤ x′}, x′′ + x′′′ = 2(π∗ + φ(1 − δ(1 − rd)),

x+ x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I4, x′′′ ∈ I7 and x′ ∈ I9+

7. if x ∈ [IL9+, π
∗ + φ(2 − 3δrd)] then AD(x) = A1

D(x) ∪ A2
D(x) where

A1
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =
2(π∗+φ(1− δ(1− rd)), x+x′ = 2(π∗+φ), x′′ = z(x) = z(x′), x′′ ∈ I4,
x′′′ ∈ I7 and x′ ∈ I9−

8. if x ∈ I5 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I6

9. if x ∈ I6 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I5

10. if x ∈ [π∗ + φ(2− 3δrd), I
U
9+] ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x}

where x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. Parts one through three and eight through eleven are very similar to
the relevant parts in claim 3. What we cannot use is the quasi-concavity of
UPD. However, it is easy to confirm that the acceptance sets are convex.

Parts four through seven present the key difference compared to claim
3. To see these, first notice for the default options specified, UPD has two
peaks. One peak is symmetric around π∗+φ(1−δ(1−rd)) and the second one
around π∗+ φ. It then follows UPD(x) = UPD(x′) gives four solutions. One
pair symmetric around π∗+φ(1− δ(1− rd)) and the second pair symmetric
around π∗ + φ. It is then a matter of straightforward algebra to work out
the appropriate intervals. �

Following claim gives the shape of UCA and UCD functions.

claim 7 (Shape of UCA and UCD).

1. UCA is increasing on I1∪ I2 and decreasing on I3∪ I9−∪ I5∪ I6∪ I10∪
I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I7 ∪ I9− ∪ I5 ∪
I6 ∪ I10 ∪ I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗ + φδrd)− x ∈ I4 ∪ I7

4. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ [IL9+, x]
given x ∈ [IL9+, π

∗ + φ(2− 3δrd)] with x′′ = 2(π∗ + φ)− x ∈ I9−.

5. UCA(π∗ − φδrd) ≥ maxx∈[π∗+φ(2−3δrd),IU9+] UCA(x)

6. UCD(z(x)) ≥ UCD(x′) ∀x′ ∈ [π∗+φ(2−3δrd), x] given x ∈ [π∗ + φ(2− 3δrd), I
U
9+]
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7. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first part is straightforward given the continuation value func-
tions except for I10. As in claim 4 we have VC concave on this interval so
if we can establish that U ′I10CA (IL10) is negative the claim follows. In claim 4
this gave us equation

U ′I10CA (τ+) = −2φ

[
1 +

(
τ+ − π∗ − φ

φ

)(
1− δ − 2δrd(1− δ(1− rd))

(1− δ)(1− δrd)

)]
where we could establish negativity by the fact that 1− δ − 2δrd(1− δ(1−
rd)) > 0. For the current case we need to do more work as this inequality
might not be satisfied.

Note that τ+−π∗−φ
φ < 1+δrd, which can be seen consulting the definition

of the Ii intervals. Hence if we can prove the derivative is negative when
τ+−π∗−φ

φ is replaced by 1 + δrd the claim follows. Doing that gives

U ′I10CA (τ+) = −4φ

[
1− δ − δrd(1− δ(1− rd))(1 + δrd)

(1− δ)(1− δrd)

]
,

which is negative as the term in the square brackets is positive. To see that,

take the nominator and substitute δ = (1 + rd−
√

1− 2rd + 17r2
d)/(2rd(1−

4rd)), which is the solution to the condition defining case 2, and confirm
the expression is positive. Next, taking the derivative of the nominator
with respect to δ gives a quadratic equation in δ with the derivative being
negative between the roots. One of the roots is negative and the second one
is higher than unity. This shows the U ′I10CA (τ+) is negative and hence proves
the first part of the claim.

The second part of the claim is straightforward using the similar argu-
ment as part two of claim 4. Likewise, the third part can be established
using the same argument as part three of claim 4 noting that the width of
I3 is the same as the width of I4 ∪ I7.

To see the fourth part, notice that if we show UCA(x′) ≥ UCA(x) and
UCD(x′) ≥ UCD(x) where x′ = 2(π∗ + φ)− x ∈ I9− for every default option
x ∈ [IL9+, π

∗ + φ(2− 3δrd)] then we are done. However, it is easy to confirm
VC(x′) = VC(x) for x, x′ just defined. Hence the claim follows.

The fifth part can be established using a similar argument as in part 4
of claim 4 where the derivation of the upper bound on U9+

CA is done using
exactly the same values.

To prove the sixth part, again the same argument as in part five of claim
4 can be used. However, the conditions on δ defining case 2 alone are not
sufficient to ensure 1−δ−δ2rd+δ2r2

d > 0. However, the inequality still holds
by virtue of assumption 1. Finally, the last part is a direct consequence of
the above. �
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Again, putting claims 2, 6 and 7 together proves the specified offers
are indeed an equilibrium. CA can either implement her unconstrained
optimum π∗ − φδrd and when this policy is not available, she offers as low
a policy as possible.

The same logic applies for CD. Using claim 7, CD either offers her
unconstrained maximizer π∗−φ and if this is not available she offers as low
a policy as possible. This can be seen from the fact that UCD is decreasing
over the majority of Ii intervals for policies above π∗ − φ. When we cannot
establish decreasing UCD, claims 7 and 6 imply that whenever any policy
from such an interval is available, there is also available another policy that
gives CD higher utility, with this policy in turn rejected in favour of the
lowest policy available. This concludes the proof of case 2.

Case 3: Equilibrium for 4δ2r2
d − (1− δ)(1− δrd) ≥ 0 and δ ≤ 1

3rd

For 4δ2r2
d − (1− δ)(1− δrd) ≥ 0 and δ ≤ 1

3rd
the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I10− ∪ I9− ∪ I9+ ∪ I10+ ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7 ∪ I8

z(x) for x ∈ I10− ∪ I9− ∪ I9+ ∪ I10

2(π∗ + φ)− x for x ∈ I11

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]
I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 2φ(1− δ(1− rd/2))]

I8 = [π∗ + 2φ(1− δ(1− rd/2)), π∗ + 3φδrd]

I10− = [π∗ + 3φδrd, τ
−]

I9− = [τ−, π∗ + φ]

I9+ = [π∗ + φ, τ+]

I10+ = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+].

Case 3 indeed subsumes two important subcases depending on whether
δ ≤ 1/(1 + rd) holds and one of the subcases can even be split further.
However, to economize on space and avoid extensive repetition of similar
arguments we have decided to treat all the subcases at once.

We stress that some of the Ii intervals above might not be properly
defined. For δ ≥ 1/(1 + rd) the intervals are exactly as those just given
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with the qualification that I9− and I9+ might not exist if τ− and τ+ become
complex. If this happens, then I10− and I10+ naturally extend all the way to
π∗+φ. If below we need to distinguish those two cases, we refer to case 3.1 if
δ ≥ 1/(1+rd) with τ± real and to case 3.2 if δ ≥ 1/(1+rd) with τ± complex.
The remaining possibility, referred to as case 3.3, is when δ ≤ 1/(1 + rd) in
which case I8 ceases to exist and I7 extends all the way to π∗+3φδrd. If this
happens, I10− also ceases to exist and I9− starts immediately at π∗+ 3φδrd.

As before, the equilibrium offers induce the continuation value functions
given above where I9− and I9+ map into I9 and analogously for I10±. Both
VC and VP are continuous everywhere and differentiable everywhere except
at the boundaries of the Ii intervals. Proceeding similarly, we first describe
the shape of UPA and UPD.

claim 8 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 ∪ I10− ∪ I9−
and decreasing otherwise. UPA has a global maximum at π∗ + φδrd and is
quasi-concave. UPD has two local maxima at π∗+φ(1−δ(1−rd)) and π∗+φ
the former of which is also a global maximum. UPD has one local minimum
at π∗ + 3φδrd.

Proof. The argument is essentially as in claim 5 adjusting for different inter-
vals. The key difference is that the global maximum is at π∗+φ(1−δ(1−rd))
and not at π∗ + φ, something that can be readily verified. �

To characterize the shape of the acceptance sets, AA described in claim
2 applies for the current case as well and we do not repeat it here. Before we
describe AD let us define another pair of constants τ±2 given by the expres-

sion τ−2 = π∗ + φ(1− δ(1− rd))− φ
√

δ(1−rd)
1−δrd (4δ2r2

d − (1− δ)(1− δrd)) and

analogously for τ+
2 . Notice that by one of the conditions defining case 3,

the term in the square root is positive. With this definition we have the
following.

claim 9 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ [IL3 , π
∗+ 2φ(1− δ(1 + rd/2))] then AD(x) = {p : x ≤ p∧ p ≤ x′}

where x′ = z−1(x) ∈ I9+ ∪ I10+

4. if x ∈ [π∗ + 2φ(1 − δ(1 + rd/2)), τ−2 ] then AD(x) = A1
D(x) ∪ A2

D(x)
where A1

D = {p : x ≤ p ∧ p ≤ x′}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′},

x+x′ = 2(π∗+φ(1−δ(1−rd)), x′′+x′′′ = 2(π∗+φ), x = z(x′′) = z(x′′′),
x′ ∈ I7 ∪ I8, x′′ ∈ I10− ∪ I9− and x′′′ ∈ I9+ ∪ I10+
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5. if x ∈ [τ−2 , π
∗ + φ(1 − δ(1 − rd))] then AD(x) = {p : x ≤ p ∧ p ≤ x′}

where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I7 ∪ I8

6. if x ∈ [π∗ + φ(1 − δ(1 − rd)), τ+
2 ] then AD(x) = {p : x′ ≤ p ∧ p ≤ x}

where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I3 ∪ I4

7. if x ∈ [τ+
2 , π

∗ + 3φδrd] then AD(x) = A1
D(x) ∪ A2

D(x) where A1
D =

{p : x′ ≤ p ∧ p ≤ x}, A2
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, x + x′ =

2(π∗ + φ(1 − δ(1 − rd)), x′′ + x′′′ = 2(π∗ + φ), x′ = z(x′′) = z(x′′′),
x′ ∈ I3 ∪ I4, x′′ ∈ I10− ∪ I9− and x′′′ ∈ I9+ ∪ I10+

8. if x ∈ I10− ∪ I9− then AD(x) = A1
D(x)∪A2

D(x) where A1
D = {p : x′′ ≤

p∧p ≤ x′′′}, A2
D = {p : x ≤ p∧p ≤ x′}, x′′+x′′′ = 2(π∗+φ(1−δ(1−rd)),

x+ x′ = 2(π∗ + φ), x′′ = z(x) = z(x′), x′′ ∈ I3 ∪ I4, x′′′ ∈ I7 ∪ I8 and
x′ ∈ I9+ ∪ I10+

9. if x ∈ [IL9+, π
∗ + φ(2 − 3δrd)] then AD(x) = A1

D(x) ∪ A2
D(x) where

A1
D = {p : x′′ ≤ p ∧ p ≤ x′′′}, A2

D = {p : x′ ≤ p ∧ p ≤ x}, x′′ + x′′′ =
2(π∗ + φ(1 − δ(1 − rd)), x + x′ = 2(π∗ + φ), x′′ = z(x) = z(x′),
x′′ ∈ I3 ∪ I4, x′′′ ∈ I7 ∪ I8 and x′ ∈ I10− ∪ I9−

10. if x ∈ [π∗+φ(2− 3δrd), I
U
10+] then AD(x) = {p : x′ ≤ p∧ p ≤ x} where

x′ = z(x) ∈ I3 ∪ I4

11. if x ∈ I11 then AD(x) = {x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈ I2.

Proof. The proof is very similar to the proof of claim 6 where the key differ-
ence arises due to the fact that the higher of the peaks is the one symmetric
around π∗ + φ(1− δ(1− rd)). �

To finish the proof of case 3, we need to show C indeed wants to imple-
ment as low a policy as possible. The next claim proves that.

claim 10 (Shape of UCA and UCD).

1. UCA is increasing on I1∪I2 and decreasing on I3∪I10−∪I9−∪I11∪I12

2. UCD is increasing on I1 and decreasing on I2 ∪ I3 ∪ I4 ∪ I10− ∪ I9− ∪
I11 ∪ I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗+φδrd)−x ∈ I4∪I7∪I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3 ∪ I4 and x′ = 2(π∗ + φ(1 − δ(1 −
rd)))− x ∈ I7 ∪ I8

5. UCA(x′′) ≥ UCA(x′) and UCD(x′′) ≥ UCD(x′) for every x′ ∈ [IL9+, x]
given x ∈ [IL9+, π

∗+φ(2− 3δrd)] with x′′ = 2(π∗+φ)− x ∈ I10− ∪ I9−.

6. UCA and UCD are decreasing on [π∗ + φ(2− 3δrd), I
U
10+]
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7. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.

Proof. The first and second parts of the claim can be readily verified using
expressions for the continuation value function VC .

Part three can be established using lemma 6 where we note that we are
allowed to use it given that the width of I3 is the same as width of I4∪I7∪I8.
The same argument gives part four as the width of I3 ∪ I4 is larger than the
width of I7 ∪ I8.

To see the fifth part, notice that if we show that UCA(x′) ≥ UCA(x) and
UCD(x′) ≥ UCD(x) with x′ = 2(π∗ + φ) − x ∈ I10− ∪ I9− for every default
policy x ∈ [IL9+, π

∗ + φ(2 − 3δrd) then we are done. However, it is easy to
confirm VC(x′) = VC(x) for x, x′ just defined and the claim follows.

Part six is the key difficulty. Note that by lemma 4 it suffices to show
UCA decreasing. However, we cannot rely on concavity of VC as in claims
4 and 7. Instead we will use the following strategy. Writing U ′CA(x) =
f ′CA(x) + δV ′C(x) we replace V ′C(x) by the upper bound on its maximum on
the appropriate interval and show the resulting expression is negative, which
also proves that UCA is decreasing.

Here we are forced to split the proof according to different cases. For
cases 3.1 and 3.2 the interval [π∗ + φ(2− 3δrd), I

U
10+] falls into I10+ and we

can write
V
′I10+
C (x) = rdz(x)′

[
U ′I3CD(z(x))

]
where we want to find an upper bound on the maximum of V

′I10+
C on the

interval [π∗+φ(2−3δrd), I
U
10+]. To do so notice both of the terms are negative

and hence if we can find minima of the two terms treated separately this
will give us something that has to be higher than the maximum of V

′I10+
C .

It is easy to establish z(x)′ is decreasing on I10+ while the term in the
square brackets is increasing on I10+. It follows that if we evaluate z(x)′ at
IU10+ and U ′I3CD(z(x)) at π∗ + φ(2 − 3δrd) the resulting expression will give
us an upper bound on the maximum of V ′C(x) on [π∗ + φ(2 − 3δrd), I

U
10+].

Doing so gives

min
x∈[π∗+φ(2−3δrd),IU10+]

z(x)′ ≥ −1

min
x∈[π∗+φ(2−3δrd),IU10+]

U ′CD(z(x)) = −6φ,

which gives us a maximum for V ′C . It is then a matter of straightforward
algebra to substitute the maximum into U ′CA(x) = f ′CA(x) + δV ′C(x) and
confirm the resulting expression is negative on [π∗ + φ(2− 3δrd), I

U
10+].

For case 3.3, π∗ + φ(2 − 3δrd) ∈ I9+ so that we need to use a similar
argument but separately on [π∗ + φ(2 − 3δrd), I

U
9+] and I10+. We can still
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use

V
′I9+
C (x) = rdz(x)′

[
U ′I4CD(z(x))

]
V
′I10+
C (x) = rdz(x)′

[
U ′I3CD(z(x))

]
and the fact that z(x)′ is decreasing on I9+ ∪ I10+ and U ′I4CD(z(x)) with

U ′I3CD(z(x)) are increasing on I9+ and I10+ respectively. It follows we need to

evaluate z(x)′ at IU9+ and IU10+, U ′I4CD(z(x)) at π∗+φ(2−3δrd) and U ′I3CD(z(x))
at IL10+.

The evaluation gives

min
x∈[π∗+φ(2−3δrd),IU9+]∪I10+

z(x)′ ≥ −1

min
x∈[π∗+φ(2−3δrd),IU9+]

U ′CD(z(x)) = − 2φ

(1− δ)(1− δrd)
(3(1− δ − δrd + δ2r2

d)− δ2rd(1− rd))

min
x∈I10+

U ′CD(z(x)) = − 2φ

1− δ
(1− δ + 2δrd).

Upon substitution of the maximum of V ′C into U ′CA(x) = f ′CA(x)+δV ′C(x)
the condition for UCA decreasing on I10+ becomes

δrd
1− δ

(1− δ + 2δrd)− 1−

√
(1− δrd)2 −

4δ3r2
d(1− rd)
1− δ

≤ 0,

which holds. To see this notice that for rd ≤ 1/2 we are done. Otherwise,
substituting δ = 1/(1 + rd) confirms the condition holds for maximum δ
allowed for case 3.3. The derivative of the condition with respect to δ is
positive and hence the condition must hold. Therefore UCA (and hence
UCD by lemma 4) is decreasing on I10+.

For [π∗+φ(2−3δrd), I
U
9+], upon substitution the corresponding condition

is (1− δ)(4δrd− 1)− 3δ2r2
d(1− δrd) + δ3r2

d(1− rd) ≤ 0, which holds for case
3.3. To see this regard it as a cubic equation in δ. Solving for the roots,
noticing that the condition holds for δ below the lowest root and showing
that the lowest root is higher than 1/3rd proves the claim. Finally the last
part of the claim follows from all the above. �

Combining the information provided by claims 2, 9 and 10 proves the
equilibrium for case 3. CA either offers her unconstrained maximizer π∗ −
φδrd and when this policy is not available, then she offers as low a policy as
possible. This follows from the information about the intervals over which
UCA is decreasing provided by claim 10 and where we cannot use this argu-
ment the same claim implies that the minimum policy available gives CA
the highest utility among the policies available. The same argument applies
for CD and concludes the proof for case 3.
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Case 4: Equilibrium for δ ≥ 1
3rd

For δ ≥ 1
3rd

the equilibrium offers are

pA(x) =


π∗ − φδrd for x ∈ I1 ∪ I2 ∪ I9 ∪ I10 ∪ I11 ∪ I12

x for x ∈ I3

2(π∗ + φδrd)− x for x ∈ I4 ∪ I7 ∪ I8

pD(x) =



π∗ − φ for x ∈ I1 ∪ I12

x for x ∈ I2 ∪ I3 ∪ I4

2(π∗ + φ(1− δ(1− rd)))− x for x ∈ I7 ∪ I8

z(x) for x ∈ I9 ∪ I10

2(π∗ + φ)− x for x ∈ I11

where

I1 = [x−, π∗ − φ]

I2 = [π∗ − φ, π∗ − φδrd]
I3 = [π∗ − φδrd, π∗ + φδrd]

I4 = [π∗ + φδrd, π
∗ + φ(1− δ(1− rd))]

I7 = [π∗ + φ(1− δ(1− rd)), π∗ + 2φ(1− δ(1− rd/2))]

I8 = [π∗ + 2φ(1− δ(1− rd/2)), π∗ + 3φδrd]

I9 = [π∗ + 3φδrd, τ
+]

I10 = [τ+, π∗ + φ(2 + δrd)]

I11 = [π∗ + φ(2 + δrd), π
∗ + 3φ]

I12 = [π∗ + 3φ, x+].

As in the previous case we have subsumed two subcases and prove the
equilibrium for those jointly. The first subcase, referred to as case 4.1, is
for δ ≥ 1/(1 + rd). If this condition holds all the intervals are as those
given except for I9 that does not exist and I10 starts at π∗ + 3φδrd. For
δ ≤ 1/(1 + rd), referred to as case 4.2, the interval I8 does not exist and I7

extends all the way to π∗ + 3φδrd.
Once again it is easy to confirm that the strategies given induce contin-

uation value functions on the corresponding intervals. For the current case
both VC and VP are continuous everywhere and differentiable everywhere
except for points where the different Ii intervals meet. Proceeding similarly,
we first give the properties of UPA and UPD.

claim 11 (Shape of UPA and UPD). UPA is increasing on I1 ∪ I2 ∪ I3 and
decreasing otherwise. UPD is increasing on I1 ∪ I2 ∪ I3 ∪ I4 and decreas-
ing otherwise. UPA has a global maximum at π∗ + φδrd, UPD has global
maximum at π∗ + φ(1− δ(1− rd)) and both functions are quasi-concave.

Proof. The argument is very similar to the one used to prove claim 1 with
minor adjustments for the fact that UPD has a global maximum at π∗ +
φ(1 − δ(1 − rd)), which is immediately apparent upon realizing that π∗ +
φ(1− δ(1− rd)) is a boundary of I4 and I7. �
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Proceeding to outline the shape of the acceptance sets, for AA the claim
2 applies for the current case as well and we do not repeat it here. For AD
we have following.

claim 12 (Shape of AD(x)). Let x be the default option. Then

1. if x ∈ I1 ∪ I12 then π∗ − φ ∈ AD(x)

2. if x ∈ I2 then AD(x) = {p : x ≤ p∧p ≤ x′} where x′ = 2(π∗+φ)−x ∈
I11

3. if x ∈ [IL3 , π
∗+ 2φ(1− δ(1 + rd/2))] then AD(x) = {p : x ≤ p∧ p ≤ x′}

where x′ = z−1(x) ∈ I9 ∪ I10

4. if x ∈ [π∗ + 2φ(1− δ(1 + rd/2)), π∗ + φ(1− δ(1− rd))] then AD(x) =
{p : x ≤ p ∧ p ≤ x′} where x′ = 2(π∗ + φ(1− δ(1− rd)))− x ∈ I7 ∪ I8

5. if x ∈ I7 ∪ I8 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = 2(π∗ +
φ(1− δ(1− rd)))− x ∈ I3 ∪ I4

6. if x ∈ I9 ∪ I10 then AD(x) = {p : x′ ≤ p ∧ p ≤ x} where x′ = z(x) ∈
I3 ∪ I4

7. if x ∈ I11 then AD(x) = {p : x′ ≤ p∧p ≤ x} where x′ = 2(π∗+φ)−x ∈
I2.

Proof. The proof is very similar to the proof of claim 3 where only minor
adjustments have to be made for the current case due to the fact that UPD
is symmetric around its global maximum at π∗+φ(1− δ(1− rd)) and hence
some of the acceptance sets have to be made symmetric around π∗ + φ(1−
δ(1− rd)). �

Having the acceptance sets the last thing we need to do is to describe
the shape of UCA and UCD. The next claim does that.

claim 13 (Shape of UCA and UCD).

1. UCA is increasing on I1 ∪ I2 and decreasing on I3 ∪ I9 ∪ I10 ∪ I11 ∪ I12

2. UCD is increasing on I1 and decreasing on I2∪I3∪I4∪I9∪I10∪I11∪I12

3. UCA(x) ≥ UCA(x′) where x ∈ I3 and x′ = 2(π∗+φδrd)−x ∈ I4∪I7∪I8

4. UCD(x) ≥ UCD(x′) where x ∈ I3 ∪ I4 and x′ = 2(π∗ + φ(1 − δ(1 −
rd)))− x ∈ I7 ∪ I8

5. UCA has a global maximum at π∗ − φδrd and UCD at π∗ − φ.
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Proof. The first and second parts of the claim follow readily using the con-
tinuation value function, except for intervals I9 and I10.

For case 4.1 we do not have to worry about I9 as it is empty. To show
UCA is decreasing on I10 we use the same argument as in claim 10. The only
difference arises from the fact that in case 3.1 the relevant part of the claim
10 U ′I3CD(z(x)) has been evaluated at π∗ + φ(2 − 3δrd) whereas for case 4.1

we need to evaluate U ′I3CD(z(x)) at π∗+3φδrd. However, it is easy to confirm

that U ′I3CD(z(π∗ + 3φδrd)) = U ′I3CD(z(π∗ + φ(2− 3δrd))) and the argument is
essentially the same.

For case 4.2 we need to show the claim for both I9 as well as I10. Never-
theless, the resulting expressions for the maximum of V ′C on the appropriate
intervals are the same as in case 3.3 of the relevant part of claim 10. This
is due to the fact that the only change is that I9 starts at π∗+ 3φδrd not at
π∗+φ(2−3δrd) but z(x) evaluated at those values is the same. Therefore for
the I10 interval the claim follows by a similar argument as in claim 10. For
I9 the condition for UCA to be decreasing becomes (note this change is due

to the fact that the IL9 now is different than in claim 10) − 4δ3r2d(1−rd)

(1−δ)(1−δrd) ≤ 0,
which holds.

Finally, parts three and four follow by the use of lemma 6 where we note
that we can use it as the width of I3 is the same as I4 ∪ I7 ∪ I8 (part three)
and the width of I3 ∪ I4 is larger than the width of I7 ∪ I8 (part four). Part
five then follows from the previous parts. �

By a now familiar argument we do not repeat here we have an equilibrium
for case 4.

Uniqueness

First notice any distinct CS-MPE has to give rise to P ’s continuation value
function VP constructed in the previous part of the proof. It then suffices
to show that given VP , C’s dynamic optimization program (1) has a unique
solution. In order to do so we first need to establish properties of P ’s
acceptance sets.

claim 14. For any x ∈ X the acceptance correspondences AD(x) and AA(x)
are nonempty, compact valued and upper hemicontinuous.

Proof. The nonempty part follows from the definition and the compact val-
ued part follows from continuity of VP along with compactness of X. To
prove upper hemicontinuity of the acceptance correspondence

AD(x) = {p ∈ X|UPD(p) ≥ UPD(x)}

pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α.
Note that by non-emptiness of AD this can be done. We need to show
p ∈ AD(x).
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Suppose p /∈ AD(x). Then

UPD(xα) ≤ UPD(pα) ∀α
UPD(x) > UPD(p).

Summing the two inequalities gives

UPD(xα)− UPD(x) < UPD(pα)− UPD(p) ∀α.

Taking the limit for α→∞ on both sides gives a contradiction to continuity
of UPD(·). For AA the proof is analogous and hence omitted. �

We note that although we have proven upper hemicontinuity of the ac-
ceptance correspondences, for some of the cases above a stronger result,
continuity, holds as well. More specifically, for all cases AA can be proven
continuous and for cases 1 and 4, AD is continuous as well. Failure of lower
hemicontinuity of AD in cases 2 and 3 is then a consequence of the double
peakedness of UPD shown in claims 5 and 8. We can always find a sequence
of policies approaching the higher peak as AD is nonempty. On the other
hand it is impossible to find a sequence of policies approaching the lower
peak ‘from above’. Given that we do not need this stronger result, we state
it without proving.

Returning to our main argument, to prove the uniqueness of the CS-MPE
we need to show uniqueness of the solution to C’s optimization problem (1).
The optimization problem can be rewritten as a Bellman type functional
equation

VC(x) = rd max
p∈AD(x)

{fCD(p) + δVC(p)}+ (1− rd) max
p∈AA(x)

{fCA(p) + δVC(p)}

and we already know the acceptance correspondences are upper hemicontin-
uous. If we could prove their continuity we would be able to use theorem 4.6
in Stokey and Lucas (1989) to prove uniqueness of VC solving the functional
equation above. It turns out a similar result holds for upper hemicontinuous
correspondences as well (with associated value functions upper semicontin-
uous, not continuous as in Stokey and Lucas, 1989). The following theorem
states the result formally.

Theorem 1. Let X be a convex subset of Rn, Γ : X � X nonempty,
compact valued and upper hemicontinuous correspondence, F : A → R on
A = {(x, y) ∈ X×X| y ∈ Γ(x)} bounded and upper semicontinuous function,
SC(X) space of bounded upper semicontinuous functions f : X → R with
the sup norm ‖f‖ = supx∈X |f(x)| and β < 1. Then, the T operator, defined
by

(Tf)(x) = max
y∈Γ(x)

[F (x, y) + βf(y)] (2)
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maps SC(X) into itself and has a unique fixed point v = Tv.

Proof. The strategy of the proof is in the following. First, we make sure that
a maximum in (2) exists, next we show that Tf is upper semicontinuous
(u.s.c.) and, hence, T maps SC(X) into itself. Next, we observe that T is
a contraction and, hence, has a unique fixed point, provided that SC(X) is
complete. As is customary, we view the normed vector space (X, ‖ · ‖) as a
metric space on X with the uniform metric d(f, g) = ‖f − g‖.

Since the notion of upper semicontinuity is not well known in the eco-
nomic literature, we provide its definition.

Definition 6 (upper semicontinuous function). A function f : X → R̄ on
a topological space X is upper semicontinuous at x ∈ X if, for each ε > 0,
there exists a neighbourhood U of x such that f(y) ≤ f(x) + ε for all y in
U . It is upper semicontinuous if it is upper semicontinuous ∀x ∈ X.

An alternative definition, sometimes used, takes a sequence {xn} and
defines u.s.c. as a function that satisfies xn → x ⇒ lim supn f(xn) ≤ f(x)
which is, indeed, the same requirement (Bourbaki, 2007, Chapter IV.6,
Proposition 4). Yet, another definition requires the set {x ∈ X|f(x) < c} to
be open for any c ∈ R, which is equal to the previous definition (Aliprantis
and Border, 2006, Lemma 2.42).

Intuitively, u.s.c. functions are allowed to jump but, when they do so, the
value of the function at the jump is ‘the higher of the two’. The advantage
of the u.s.c. functions is that they possess maxima on compact intervals.

Coming back to the proof, first observe that, for any x ∈ X, the function
F (x, ·)+βf(·) is u.s.c. and is maximized on a compact, non-empty set Γ(x),
hence, the maximum exists (Aliprantis and Border, 2006, Theorem 2.43).

Furthermore, as Γ is upper hemicontinuous, T is u.s.c. (Aliprantis and
Border, 2006, Lemma 17.30) and it is clearly bounded. Hence, T : SC(X)→
SC(X).

Next, we need to make sure that T satisfies conditions under which
Blackwell’s Theorem (Aliprantis and Border, 2006, Theorem 3.53) holds.
Denoting by B(X) the space of bounded functions defined on X, we need
T to map a closed linear subspace of B(X) that includes constant functions
into itself. Furthermore, we need T to satisfy monotonicity and discounting.

That SC(X) is a linear subspace of B(X) that includes constant func-
tions follows trivially. To establish that SC(X) is closed, we observe that
B(X) is complete and that any complete subset of a complete metric space
is closed (Berberian, 1999, Chapter III.4, Theorem 1). Hence, if we can
establish that SC(X) is complete, then closedness follows.

To establish that SC(X), with the uniform metric, is a complete met-
ric space, we adopt the approach of the proof of theorem 3.1 in Stokey
and Lucas (1989), with appropriate modifications. We find a function f to
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which a Cauchy sequence of functions {fn} converges, we show the sequence
converges in the uniform metric and, finally, that f ∈ SC(X).

First, fix x ∈ X and take a sequence {fn(x)}, which satisfies

|fn(x)− fm(x)| ≤ sup
y∈X
|fn(y)− fm(y)| = ‖fn − fm‖

and which satisfies the Cauchy criterion and, hence, converges to a limit
f(x).

Second, we need to show that {fn} converges in the uniform metric. Pick
ε > 0 and N := N(ε), such that n,m ≥ M ⇒ ‖fn − fm‖ ≤ ε/2 (which can
be done). For any x ∈ X and all n,m ≥ N

|fn(x)− f(x)| ≤ |fn(x)− fm(m)|+ |fm(x)− f(x)|
≤ ‖fn − fm‖+ |fm(x)− f(x)|
≤ ε/2 + |fm(x)− f(x)|.

As fm(x) → f(x), choose m(x) for each x ∈ X such that |fm(x) − f(x)| ≤
ε/2. As x was arbitrary, it follows that ‖fn − f‖ ≤ ε for ∀n ≥ N and, as ε
was arbitrary, we have convergence in the uniform metric.

Third, we need to show that f is bounded and u.s.c., the first of which
follows readily. To show the u.s.c. part, pick ε > 0 and k such that ‖fk−f‖ ≤
ε/3. As fn → f , this can be done. Then, choose δ such that ‖x − y‖E <
δ ⇒ fk(y) < fk(x) + ε/3 where ‖ · ‖E is a usual Euclidean distance and it
can be done by u.s.c. of fk. Finally,

f(y)− f(x) = f(y)− fk(y) + fk(y)− fk(x) + fk(x)− f(x)

≤ |f(y)− fk(y)|+ fk(y)− fk(x) + |fk(x)− f(x)|
≤ 2‖f − fk‖+ fk(y)− fk(x)

≤ ε.

Furthermore, it is easy to confirm that g ≤ f implies Tg ≤ Tf (mono-
tonicity) and that there exists β ∈ (0, 1), such that T (f + c) ≤ Tf + βc for
any constant function c (discounting). Hence, by Blackwell’s Theorem, T is
a contraction and it has a unique fixed point, which concludes the proof. �

With C’s optimization problem we can define operator T similarly as in
theorem 1 by

Tv(x) = rd max
p∈AD(x)

{fCD(p) + δv(p)}+ (1− rd) max
p∈AA(x)

{fCA(p) + δv(p)}.

It is easy to see T satisfies monotonicity and discounting, and existence of a
fixed point Tv = v can be proven in a similar way as in theorem 1. The fixed
point of T is then C’s continuation value function VC derived in the existence
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part of the proof, which defines a unique equilibrium proposal strategy for
C, proving uniqueness of the CS-MPE.

Notice that instead of using T , we could have used the original formu-
lation of C’s optimization problem given in (1) and worked with a pair of
mappings defined by

TDuD(x) = max
p∈AD(x)

{fCD(p) + δrduD(p) + δ(1− rd)uA(p)}

TAuA(x) = max
p∈AA(x)

{fCA(p ) + δrduD(p) + δ(1− rd)uA(p)}

using theorem 1 to prove existence of a unique fixed point of TD for each
ua and existence of a unique fixed point of TA for each ud. To complete the
proof we would then need to show existence of coincidence solution u∗D, u

∗
A

such that u∗D is a fixed point of TD for u∗A and u∗A is a fixed point of TA
for u∗D. Using an approach similar to Liu, Agarwal, and Kang (2004) this
is possible, but would not give us the uniqueness result that is the focus of
this part of the proof.

A1.2 Proof of proposition 2

Using definition 4 of S and the results from the proof of proposition 1 it is
easy to see S = [π∗−φδrd, π∗+φδrd] and hence parts one and two. For part
three notice pA(x) ∈ S for any x ∈ X and hence xt(x) /∈ S for some x ∈ X
implies that all the t periods generating xt(x) need to be D periods. As a
result we have P(xt(x) /∈ S) ≤ rtd for any x ∈ X. Part four follows from the
fact that P(pA(xt(x)) = π∗) = 0 for almost all x ∈ X except for a finite set
of discrete values of zero measure.

A1.3 Proof of proposition 3

Assume there exists S-MPE with pA(x) = π∗ + ε for some x ∈ X and
(not necessarily positive) ε 6= 0. Let γ = {pA(x) = π∗ + ε, qD(x)} be C’s
equilibrium proposal and γ′ = {π∗+ε/2, qD(x)}. By the definition of S-MPE
it must be that γ solves C’s optimization problem, that is it is a solution to

max
{p,q}∈X2

{
−(p− π∗)2 + δVC(q)

}
s.t. − (p− π∗)2 + δVP (q) ≥ −(x− π∗)2 + δVP (x).

By continuity of the constraint in p proposal γ′ ∈ AA(x). C’s utility from
γ′ is −ε2/4+δVC(qD(x)) and from γ it is −ε2 +δVC(qD(x)). By assumption
γ is an equilibrium hence

−ε2 + δVC(qD(x)) ≥ −ε2/4 + δVC(qD(x)),

which implies ε2 ≤ ε2/4, a contradiction.
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A1.4 Proof of proposition 4

To prove existence of CS-MPE in the model with explicit status-quo bar-
gaining protocol, we proceed as follows. First we give formal meaning to
the term C’s unconstrained proposals by deriving a global maximum of the
VC function. Then we conjecture that any equilibrium offer γ(x) that C
makes to P for default option γ̄(x) has to make P indifferent between the
two options unless C can propose the unconstrained maximizer of her over-
all utility. This allows us to derive explicit expressions for the continuation
value function VP of the P player and hence the shape of his acceptance sets.
Given the acceptance sets we show that those are well behaved and hence
that the C’s dynamic optimization program has a solution. We then go
back and make sure that the equilibrium policies indeed satisfy the original
conjecture of making P indifferent between γ(x) and γ̄(x).

As before we refer to C in D period as to CD and analogously for P and
A periods. We keep the notation

fCD(x) = −(x− π∗ + φ)2

fCA(x) = −(x− π∗)2

fPD(x) = −(x− π∗ − φ)2

fPA(x) = −(x− π∗)2

and denote the overall utility by

UCD(p, q) = fCD(p) + δVC(q)

UCA(p, q) = fCA(p) + δVC(q)

UPD(p, q) = fPD(p) + δVP (q)

UPA(p, q) = fPA(p) + δVP (q).

To prove existence of CS-MPE we need to constrain values of δ and rd.
The following assumption lists all the constraints we need.

Assumption 2. For any pair {δ, rd} with δ ∈ [0, 1) and rd ∈ [0, 1] assume

1. δ ≥ 1
5rd

2. δ ≥ 1− r2
d

3. δ ≤ 1− (1−rd)2

2 .

Notice that the three requirements are mutually compatible and in gen-
eral allow for values of δ and rd with ‘enough discounting and conflict’. De-
noting the space of possible values for {δ, rd} by P = [0, 1)× [0, 1] (with the
convention that its graphical representation has rd on the horizontal axis)
assumption 2 isolates the north-eastern part of P . Notice also that we are
not selecting a measure-zero set out of the P and hence our existence result
will be generic in the sense that S-MPE will exist on some neighbourhood
of {δ, rd} strictly satisfying assumption 2.
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claim 15. Let X− = X \ (π∗−φ, π∗+ 3φ) and z, z′ ∈ X−. For any x ∈ X−
the equilibrium is given by

qA(x) = z

qD(x) = z′
pA(x) = π∗

pD(x) = π∗ − φ.

where the policy strategies are unique. Moreover, for any x ∈ X−, VC(x) = 0

and VP (x) = −4φ2rd
1−δ .

Proof. We first show ρ = {qD(x) = qA(x) = x, pD(x) = π∗ − φ, pA(x) = π∗}
is an equilibrium for any x ∈ X−. Fix x ∈ X−. Note that {pD(x) =
π∗ − φ, x} ∈ AD(x) and {pA(x) = π∗, x} ∈ AA(x) and both increase C’s
utility compared to {x, x}. It also follows ρ induces VC(x) = 0 hence C
clearly cannot do better. Therefore ρ is an equilibrium.

Having the equilibrium for given x, notice it induces the same path of
policy decisions for a fixed path of A and D periods as any x′ ∈ X−. It
follows VC(x) and VP (x) must be constant on X−. Therefore the first part
of the claim follows.

To show uniqueness of the policy offers notice C’s utility strictly de-
creases by offering anything other than policy specified in the claim.

The fact that VC(x) = 0 ∀x ∈ X− follows from the two previous remarks.

To show VP (x) = −4φ2rd
1−δ using the constancy of VP (x) we can write

VP (x) = rd[−4φ2 + δVP (x)] + (1− rd)[δVP (x)],

which after rearranging gives VP (x) in the claim. �

claim 16. Let X+ = (π∗ − φ, π∗ + 3φ). Then for all x ∈ X+, VC(x) < 0.

Proof. Assume there exists an equilibrium such that VC(x) = 0 for some

x ∈ X+. It follows VP (x) = −4φ2rd
1−δ . Take D period, if P rejects today and

follows the equilibrium strategy from then on his utility is fPD(x)− 4φ2δrd
1−δ

whereas if he accepts (as equilibrium demands) his utility is fPD(π∗ − φ)−
4φ2δrd

1−δ . For this to be an equilibrium it must be that

fPD(x)− 4φ2δrd
1− δ

≤ fPD(π∗ − φ)− 4φ2δrd
1− δ

,

which rewrites as (x− π − φ)2 ≥ 4φ2 and holds for x /∈ (π∗ − φ, π∗ + 3φ), a
contradiction to x ∈ X+. �

Claims 15 and 16 give precise meaning to the term C’s unconstrained
maximizer as they imply that {π∗ − φ, z} maximizes UCD(p, q) and {π∗, z}
maximizes UCA(p, q) for any z ∈ X−. Denote those by γCD = {π∗ − φ, z}
and γCA = {π∗, z}. Notice that if γCD ∈ AD(x) for some default x then γCD
has to be part of C’s equilibrium strategy. Similar holds for γCA ∈ AA(x).
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Next we wish to characterize P ’s continuation value function VP conjec-
turing that if for some default option x we have γCD /∈ AD(x), C’s offer γ(x)
will make P indifferent between γ(x) and default option γ̄(x) = {x, x} and
similarly for A periods. The next claim helps in translating the conjecture
into VP .

claim 17. For any x ∈ X+ if P is brought to indifference in A periods for
default option x, then he is brought to indifference in D periods for the same
default option.

Proof. We prove the converse, i.e. if P is not brought to indifference in D
periods, then he is not brought to indifference in A periods.

Note that if P is not made indifferent in D periods, then C’s proposal
has to be {π∗ − φ, z} for some z ∈ X. This implies

fPD(x) + δVP (x) ≤ fPD(π∗ − φ) + δVP (z),

which after rearranging gives

fPA(x) + δVP (x) ≤ δVP (z)− [3φ2 + 2φ(x− π∗)],

where the term in the square brackets is positive for any x ∈ X+. It then
follows that {π∗, z} ∈ AA(x). �

With the help of claim 17 we conjecture that for default options x close
to P ’s D period bliss point π∗ + φ he will be made indifferent for both A
and D periods and for x further away he will be made indifferent only in D
periods. This gives rise to VP of the following form.

VP (x) =



− 1

1− δ
[
(x− π∗ − φrd)2 + φ2rd(1− rd)

]
for x ∈ [π∗ + φδrd − κ, π∗ + φδrd + κ]

− rd
1− δrd

[
(x− π∗ − φ)2 + φ2 4δ(1− rd)

1− δ

]
for x ∈ [π∗ − φ, π∗ + φδrd − κ] ∪ [π∗ + φδrd + κ, π∗ + 3φ]

−4φ2rd
1− δ

otherwise

with κ = φ
√
δrd(3 + δrd) where the last constant part applies to x for

which γCD ∈ AD(x) and γCA ∈ AA(x). For future reference denote κ− =
π∗+φδrd−κ and κ+ = π∗+φδrd+κ. It is easy to confirm VP is continuous
and (strictly) piece-wise concave for x ∈ X (x ∈ X+). In the next claim we
establish upper hemicontinuity of the acceptance correspondences generated
by VP .
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claim 18. For any x ∈ X the acceptance correspondences AD(x) and AA(x)
are nonempty, compact valued and upper hemicontinuous.

Proof. The nonempty part follows by definition and the compact valued
part follows from continuity and the fact that X is compact. To prove
upper hemicontinuity of the acceptance correspondence

AD(x) = {(p, q) ∈ X2|fPD(p) + δVP (q) ≥ fPD(x) + δVP (x)}

denote x = (x, x), p = (p, q) and f(p) = fPD(p) + δVP (q).
Pick two sequences {xα} → x and {pα} → p such that pα ∈ AD(xα) ∀α.

Note that by non-emptiness of AD this can be done. We need to show
p ∈ AD(x).

Suppose p /∈ AD(x). Then

f(xα) ≤ f(pα) ∀α
f(x) > f(p).

Summing the two inequalities gives

f(xα)− f(x) < f(pα)− f(p) ∀α.

Taking the limit for α→∞ on both sides gives a contradiction to continuity
of f(·). For AA the proof is analogous and hence omitted. �

Next we want to show C’s dynamic optimization problem has a solution.
Precise statement of the dynamic program is

UD(x) = max
{p,q}∈AD(x)

{fCD(p) + δ(rdUD(q) + (1− rd)UA(q))}

UA(x) = max
{p,q}∈AA(x)

{fCA(p) + δ(rdUD(q) + (1− rd)UA(q))},

which can alternatively be written as

VP (x) = rd max
{p,q}∈AD(x)

{fCD(p)+δVC(q)}+(1−rd) max
{p,q}∈AA(x)

{fCA(p)+δVC(q)}.

With the acceptance correspondences possessing properties given in claim
18, existence and uniqueness of the solution to the dynamic program above
follow using a similar argument as in proposition 2 for the no directive
model. C’s equilibrium proposal strategy for default x is then given by
{pD(x), qD(x)} in D periods and by {pA(x), qA(x)} in A periods, where

{pD(x), qD(x)} ∈ arg max
{p,q}∈AD(x)

{fCD(p) + δVC(q)}

{pA(x), qA(x)} ∈ arg max
{p,q}∈AA(x)

{fCA(p) + δVC(q)}.
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Notice that even though pD(x), qD(x), pA(x) and qA(x) are correspondences
we can always take a unique selection out of each of them. For this reason
below we treat those as functions. In the next claim we establish properties
of the value functions that solve the dynamic optimization program above.

claim 19. Under assumption 2 (namely its part one)

1. UA(x), UD(x) and VC(x) are all u.s.c.

2. UA(x) = 0 for ∀x ∈ [x−, κ−] ∪ [κ+, x+], UA(x) is non-increasing for
∀x ∈ [κ−, π∗ + φδrd] and non-decreasing for ∀x ∈ [π∗ + φδrd, κ

+]

3. UA(x) = UA(x′) with x+x′

2 = π∗ + φδrd for ∀x ∈ [κ−, κ+]

4. UA(x) ≥ UA(x′) for ∀x′ ∈ [x, 2(π∗+φδrd)−x] with x ∈ [κ−, π∗+φδrd]

5. UD(x) = 0 for ∀x ∈ [x−, π∗−φ]∪[π∗+3φ, x+], UD(x) is non-increasing
for ∀x ∈ [π∗ − φ, π∗ + φ(1 − δ(1 − rd))] and non-decreasing for ∀x ∈
[π∗ + φ(1− δ(1− rd)), π∗ + 3φ]

6. UD(x) = UD(x′) with x+x′

2 = π∗ + φ for ∀x ∈ [x−, κ−] ∪ [2(π∗ + φ) −
κ−, x+], with x = z(x′) where z(x′) is a uniquely defined decreasing
function mapping the range [κ+, 2(π∗+φ)−κ−] into [κ−, 2(π∗+φ(1−
δ(1 − rd))) − κ+] and with x+x′

2 = π∗ + φ(1 − δ(1 − rd)) for ∀x ∈
[2(π∗ + φ(1− δ(1− rd)))− κ+, κ+]

7. UD(x) ≥ UD(x′) for ∀x′ ∈ [2(π∗+φ(1−δ(1−rd)))−x, x] with x ∈ [π∗+
φ(1−δ(1−rd)), κ+] and for ∀x′ ∈ [z(x), x] with x ∈ [κ+, 2(π∗+φ)−κ−]

8. VC(x) is non-increasing ∀x ∈ [x−, π∗+φδrd] and non-decreasing ∀x ∈
[π∗ + φ(1− δ(1− rd)), x+].

Proof. The first part follows immediately from the fact that the value func-
tions are solutions to C’s dynamic optimization program and theorem 1.

The second part follows from the fact that γCA ∈ AA(x) whenever
x ∈ [x−, κ−]∪ [κ+, x+]. The non-increasing and non-decreasing parts follow
from the fact that UPA(x, x), which defines AA(x), is under part one of as-
sumption 2 increasing on [κ−, π∗ + φδrd] and decreasing on [π∗ + φδrd, κ

+].
With the default option x entering C’s optimization only as a constraint
in the form of AA(x), it follows UA(x) has to be non-increasing and non-
decreasing on the two intervals respectively.

The third part follows from the fact that UPA(x, x) = UPA(x′, x′) for x
and x′ satisfying the condition given in the claim, which implies AA(x) =
AA(x′). Part four then follows from parts two and three.

Part five can be shown in a similar manner as part two, investigating
properties of the UPD(x, x) function defining acceptance set AD(x), using
again part one of assumption 2. The sixth part is analogous to part three us-
ing the fact that UPD(x, x) = UPD(x′, x′) for the x and x′ defined. Part seven
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is an implication of parts five and six. Part eight is a direct consequence of
parts two and five upon observing that VC(x) = rdUD(x)+(1−rd)UA(x). �

The next claim establishes a certain monotonicity property of the equi-
librium status-quo offers qD(x) (as evaluated under the VC function) that
will become useful later. We denote by A∂D(x) the boundary of AD(x) and
similarly by A∂A(x) the boundary of AA(x).

claim 20. Let x be the default option with its associated equilibrium status-
quo offer qD(x). Then for any x′ ∈ {q : AD(q) ⊆ AD(x)} with its associated
equilibrium status-quo offer qD(x′), VC(qD(x)) ≥ VC(qD(x′)).

Proof. Fix x and x′ with x′ ∈ {q : AD(q) ⊆ AD(x)} where the interpretation
of x′ is that it is a default option with strictly smaller associated P ’s D
period acceptance set. It is immediate that the claim holds for qD(x) and
its associated policy offer pD(x) with {pD(x), qD(x)} ∈ AD(x) \ A∂D(x) and
any x′ such that {pD(x), qD(x)} ∈ AD(x′) for then qD(x) = qD(x′). So
assume that {pD(x), qD(x)} ∈ A∂D(x).

Easy argument shows that for p to be C’s equilibrium policy offer for
some default option it has to be that p ∈ [π∗−φ, π∗+φ]. We need to construct
a set of offers C can be expected to choose from in equilibrium, i.e. those
where the policy offer falls into the [π∗−φ, π∗+φ] interval. This will be given
as a set A′D(x) = {{max{p, π∗−φ}, q}|{p, q} ∈ A∂D(x)∧p ≤ π∗+φ} ⊆ AD(x)
or in words as a subset of A∂D(x) for which the policy is smaller than π∗+φ
and for which, if the policy falls below π∗ − φ, it is replaced by π∗ − φ. It
is easy to see that for any default option x′′ ∈ X, C’s D period equilibrium
offer satisfies {pD(x′′), qD(x′′)} ∈ A′D(x′′).

Now with {pD(x), qD(x)} ∈ A∂D(x) and any {p, q} ∈ A′D(x) for which
p ≤ pD(x) it has to be the case that VC(qD(x)) ≥ VC(q). To see this note
that

fCD(pD(x)) + δVC(qD(x)) ≥ fCD(p) + δVC(q)

fCD(pD(x))− fCD(p) ≤ 0

where the first line follows from the fact that {pD(x), qD(x)} is C’s equilib-
rium offer and {p, q} ∈ AD(x) and the second line follows from the fact that
π∗ − φ ≤ p ≤ pD(x).

Next we want to show that for any {p, q} ∈ A′D(x) for which p > pD(x),
the associated q cannot be part of C’s equilibrium offer for x′. To see this
note that {p, q} ∈ A′D(x) with p > pD(x) and {pD(x), qD(x)} ∈ A∂D(x) has
to satisfy

fPD(x) + δVP (x) = fPD(p) + δVP (q)

= fPD(pD(x)) + δVP (qD(x)).
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Keeping q and qD(x) the same, changing x to x′ such that AD(x′) ⊆
AD(x), p and pD(x) will change to p′ and p′D(x) with {p′, q} ∈ A′D(x′)
and {p′D(x), qD(x)} ∈ A′D(x′) that satisfy

fPD(x′) + δVP (x′) = fPD(p′) + δVP (q)

= fPD(p′D(x)) + δVP (qD(x))

(if such a p′ does not exist we are done as q cannot be part of equilibrium
for x′, if such p′ does exist, p′D(x) has to exist as well). Taking the difference
of the two systems of equations gives fPD(p) − fPD(p′) = fPD(pD(x)) −
fPD(p′D(x)) which rewrites as

(p′ − p) = (p′D(x)− pD(x))

[
pD(x) + p′D(x)− 2(π∗ + φ)

p+ p′ − 2(π∗ + φ)

]
where the term in the square brackets is positive and strictly larger than
unity (all p, p′, pD(x) and p′D(x) are in the [π∗ − φ, π∗ + φ] interval and
pD(x) < p and pD(x)′ < p′). This in turn implies that p′−p > p′D(x)−pD(x)
and along with the fact that

fCD(p) + δVC(q) ≤ fCD(pD(x)) + δVC(qD(x))

gives
fCD(p′) + δVC(q) < fCD(p′D(x)) + δVC(qD(x))

so that q cannot be part of C’s equilibrium offer for default option x′.
Combining the two results, if {p, q} ∈ A′D(x) with p > pD(x) then q

cannot be part of C’s equilibrium proposal for x′. If {p, q} ∈ A′D(x) with
p ≤ pD(x) then VC(qD(x)) ≥ VC(q) so that if q = qD(x′) it has to be the
case that VC(qD(x)) ≥ VC(qD(x′)). �

Next we want to confirm our original conjecture that in equilibrium for
a given default option in a given type of period P is indifferent between
accepting and rejecting C’s offer given that the unconstrained maximizer of
C’s overall utility is not in P ’s acceptance set. Formally, we want to show
that for default option x if γCD /∈ AD(x) then {pD(x), qD(x)} ∈ A∂D(x) and
similarly if γCA /∈ AA(x) then {pA(x), qA(x)} ∈ A∂A(x). A key complication
is the fact that the VC function can possess local maxima in the [π∗ +
φδrd, π

∗ + φ(1 − δ(1 − rd))] interval and hence C’s utility maximizing offer
can lie in the interior of P ’s acceptance set, even though her unconstrained
optimizer is outside of it. Denoting the problematic interval by Z = [π∗ +
φδrd, π

∗ + φ(1 − δ(1 − rd))] we deal with A and D periods in the following
two claims respectively. The two claims then deliver the conditions on δ
specified in parts two and three of assumption 2.

claim 21. Let x be the default policy and assumption 2 (namely its part

77



one and two) holds. Then C’s equilibrium proposal in A periods, provided
γCA /∈ AA(x), satisfies {pA(x), qA(A)} ∈ A∂A(x).

Proof. We know by proposition 3 that for any x ∈ X, pA(x) = π∗. Denoting
by AA(x, y = z) a ‘slice’ through AA(x) when variable y (either p or q) is
equal to z, C’s optimization problem in A period for default option x can be
rewritten as maxq∈AA(x,p=π∗){δVC(q)} and we want to show that whenever
γCA /∈ AA(x) then qA(x) ∈ {min{AA(x, p = π∗)},max{AA(x, p = π∗)}}. It
is easy to confirm that under part one of assumption 2 for any x, AA(x, p =
π∗) is a non-empty, compact and convex subset of X.

Next note that by part eight of claim 19 if max{VC(x), VC(y)} ≥ maxz∈(x,y) VC(z)
for some x ≤ π∗+φδrd and some y ≥ π∗+φ(1−δ(1−rd)) then max{VC(x′), VC(y′)} ≥
maxz∈(x′,y′) VC(z) for any x′ ≤ x and any y′ ≥ y. Hence if we can show that
the claim is true for x = π∗ + φδrd, which maximizes UPA(x, x) and hence
delivers the smallest AA(x), we are done as Z ∈ AA(π∗ + φδrd, p = π∗).

Now minima and maxima of AA(π∗+φδrd, p = π∗) are given respectively
by q−A = π∗+φrd−φrd

√
1− δ and q+

A = π∗+φrd+φrd
√

1− δ for {δ, rd} ∈ P
for which q+

A ≤ κ+ (it is easy to confirm κ− ≤ q−A). Then we can use part four
(along with part five) of claim 19 to conclude that VC(q−A) ≥ VC(x) for any
x ∈ [q−A , 2(π∗+φδrd)−q−A ] and part seven (along with part two) of the same
claim to conclude that VC(q+

A) ≥ VC(x) for any x ∈ [2(π∗+φ(1−δ(1−rd)))−
q+
A , q

+
A ]. The condition for 2(π∗+φδrd)− q−A ≥ 2(π∗+φ(1− δ(1− rd)))− q+

A

that rewrites as δ ≥ 1− r2
d then delivers the claim. For values of {δ, rd} for

which q+
A ≥ κ+ the argument is similar if somewhat complicated by use of

the function z(x) mentioned in part six of claim 19. We do not repeat the
purely algebraic argument here as it delivers a condition on {δ, rd} that is
strictly weaker than the condition δ ≥ 1− r2

d just derived. �

claim 22. Let x be the default policy and assumption 2 (namely its part
one and three) holds. Then C’s equilibrium proposal in D periods, provided
γCD /∈ AD(x), satisfies {pD(x), qD(x)} ∈ A∂D(x).

Proof. First note that for default option x if γCD /∈ AD(x) then if {pD(x), qD(x)}
is strictly inside AD(x) then it has to be the case that pD(x) = π∗ − φ. If
not and pD(x) = p 6= π∗ − φ then there exists (not necessarily positive) ε
such that C can offer {p − ε, qD(x)} ∈ AD(x) with UCD(p − ε, qD(x)) >
UCD(p, qD(x)). Also it has to be the case that qD(x) = z for some z ∈ Z.
If not, then by part eight of claim 19, there has to exist q such that
{pD(x), q} ∈ A∂D(x) and satisfies UCD(pD(x), q) ≥ UCD(pD(x), qD(x)) and
we can specify {pD(x), q} to be C’s equilibrium offer satisfying the claim.

Next γCD /∈ AD(x) implies that x ∈ X+ = (π∗ − φ, π∗ + 3φ) and, under
assumption 2, for any x ∈ (π∗−φ, π∗+φ(1−δ(1−rd))] there exists a unique
x′ ∈ [π∗+φ(1−δ(1−rd)), π∗+3φ) such that UPD(x, x) = UPD(x′, x′), which
implies AD(x) = AD(x′). Denoting by Xc = (π∗ − φ, π∗ + φ(1− δ(1− rd))]
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we focus on x ∈ Xc since if the claim holds for any such x it has to hold for
any x′ ∈ [π∗ + φ(1− δ(1− rd)), π∗ + 3φ) = X+ \Xc.

Next assume that pD(x) = π∗−φ and qD(x) = z for some z ∈ Z are part
of the equilibrium for some x ∈ Xc such that {π∗ − φ, z} ∈ AD(x) \A∂D(x).
We show that this leads to contradiction.

Observe that if pD(x) = π∗ − φ and qD(x) = z for some z ∈ Z is C’s
equilibrium offer for x ∈ Xc with {π∗ − φ, z} ∈ AD(x) \A∂D(x), it has to be
the case that pD(xc) = π∗ − φ and qD(xc) = z is C’s equilibrium offer for
xc ∈ Xc such that {π∗ − φ, z} ∈ A∂D(xc). Such xc is implicitly defined by
UPD(xc, xc) = UPD(π∗ − φ, z). We denote xc as a function of z by xc(z) for
z ∈ Z. It is easy to show that xc(z) is increasing on Z− and decreasing on
Z+ where Z− = [π∗+φδrd, π

∗+φrd] and Z+ = [π∗+φrd, π
∗+φ(1−δ(1−rd))]

respectively with Z = Z− ∪ Z+ and that xc(z) ≤ z.
Now from the fact that pD(xc(z)) = π∗ − φ and qD(xc(z)) = z is C’s

equilibrium offer it follows

fCD(xc(z)) + δVC(xc(z)) ≤ fCD(π∗ − φ) + δVC(z),

which rewrites as

− (xc(z)− π∗ + φ)2 + δ2rdVC(qD(xc(z))) + δ2(1− rd)VC(qA(xc(z)))

≤− δrd(pD(z)− π∗ + φ)2 + δ2rdVC(qD(z)) + δ2(1− rd)VC(qA(z)).

We show that this inequality fails under assumption 2.
First we show that VC(qA(xc(z))) ≥ VC(qA(z)) using part four of claim

19. Evaluating xc(z) at its maximum, that is for z = π∗+φrd, gives xc(π∗+

φrd) = π∗+φ(1−δ(1−rd))−φ
√

(1− δ)(4− δ + 2δrd − δr2
d) and in order to

use claim 19 we need this to be smaller than π∗+φδrd−φ(1−δ) (as φ(1−δ) is
size of the Z interval). This condition rewrites as 0 ≤ δ(1−δ)(3−rd)(1+rd),
which clearly holds for any {δ, rd} ∈ P.

Next we show that VC(qD(xc(z))) ≥ VC(qD(z)) that follows from claim
20 along with the fact that xc(z) ≤ z, xc(z) ∈ Xc and z ∈ Xc, which implies
AD(z) ⊆ AD(xc(z)).

Finally we show that −(xc(z)−π∗+φ)2 ≥ −δrd(pD(z)−π∗+φ)2. As we
do not know the exact value of pD(z) we replace it by the minimum value
of policy in the AD(z) set. We denote this policy, as a function of z, by
pm(z) and note it solves fPD(z) + δVP (z) = fPD(pm(z)) + δVP (π∗ + φrd)
as π∗ + φrd maximizes the VP function under assumption 2. Similarly,
xc(z) defined above by {π∗ − φ, z} ∈ A∂D(xc(z)) for some z ∈ Z solves
fPD(xc(z)) + δVP (xc(z)) = fPD(π∗ − φ) + δVP (z).

In what follows we need to focus only on z = π∗ + φδrd. To see this
note that using the implicit function theorem (non-differentiability of VP
poses no problem here as even at the point where VP is not differentiable,
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it possesses left and right derivatives)

∂pm(z)

∂z
=

2(π∗ + φ− z) + δ ∂VP (z)
∂z

2(π∗ + φ− pm(z))

∂xc(z)

∂z
=

δ ∂VP (z)
∂z

2(π∗ + φ− xc(z)) + δ ∂VP (xc(z))
∂xc(z)

.

If we can prove that ∂xc(z)
∂z ≤

√
δrd

∂pm(z)
∂z for any z ∈ Z then if the inequality

−(xc(z)− π∗ + φ)2 ≥ −δrd(pm(z)− π∗ + φ)2 holds for z = π∗ + φδrd it has
to hold for any z ∈ Z.

For z ∈ Z+ we have ∂xc(z)
∂z ≤ 0 ≤

√
δrd

∂pm(z)
∂z (denominators in ∂xc(z)

∂z

and ∂pm(z)
∂z are positive as xc(z) ∈ Xc and pm(z) ∈ Xc while nominators

are positive and negative respectively). For z ∈ Z−, ∂xc(z)
∂z ≤

√
δrd

∂pm(z)
∂z

rewrites as (using only nominators as denominator in ∂xc(z)
∂z is larger than

denominator in ∂pm(z)
∂z and using the fact that under assumption 2, κ− ≤

z ≤ κ+ for any z ∈ Z)

δ −
√
δrd

1− δ
(π∗ + φ− z)− φδ(1− rd)(1−

√
δrd)

1− δ
≤ 0

which, as straightforward algebra shows, holds for z ∈ Z−.
We now focus on the inequality−(xc(z)−π∗+φ)2 ≥ −δrd(pm(z)−π∗+φ)2

evaluated at z = π∗ + φδrd. This gives us xcm = xc(π∗ + φδrd) and pcm =
pm(π∗ + φδrd) that read as

xcm = π∗ + φ(1− δ(1− rd))− φ
√

(1− δ)(4− δ + 2δrd − δ2r2
d)

pcm = π∗ + φ− φ
√

1− 2δrd + δr2
d

where the expression for xcm applies only as long as κ− ≤ xcm. We do not
need to focus on the case when κ− > xcm as then κ− > xcm > xc(π∗ + φδrd)
(which is a direct consequence of the VP function being the upper envelope
of two quadratic functions).

At this point it is helpful to replace δrd in expressions for xcm and pcm by
k which gives

xkm = π∗ + φ

(
1− k

rd
+ k

)
− φ

√(
1− k

rd

)(
4− k

rd
+ 2k − k2

)
pkm = π∗ + φ− φ

√
1− 2k + krd

where k ∈ [1
5 , 1] and rd ∈ [k, 1] under part one of assumption 2.

As a next step we prove that ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
for any k ∈ [1

5 , 1] and any
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rd ∈ [k, 1], which implies that if −(xkm− π∗+ φ)2 ≥ −k(pkm− π∗+ φ)2 holds
for some k ∈ [1

5 , 1] and rd ∈ [k, 1], then it has to hold for the same k and any

r′d ≥ rd. To confirm ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
for any k ∈ [1

5 , 1] and any rd ∈ [k, 1] we

rewrite the inequality ∂xkm
∂rd
≤ k ∂p

k
m

∂rd
into the form Pk(rd) ≤ 0 where Pk(rd)

is a complicated expression of k and rd that we view as a polynomial in rd
with coefficients given by k. We need to confirm Pk(rd) does not have a
root in [k, 1] for any k ∈ [1

5 , 1]. To do so we use the Descartes rule with a

substitution rd = α+βy
1+y with α = k and β = 1 (see Prasolov, 2004, corollary

to theorem 1.4.1). This gives us polynomial Pk(y) in y with coefficients given
by k. We use Sturm’s theorem (Prasolov, 2004, theorem 1.4.3) to check that
all the coefficients in Pk(y) are negative for k ∈ [1

5 , 1] which, by Descartes
rule, implies that Pk(y) does not have a positive root for any k ∈ [1

5 , 1], which
in turn implies that Pk(rd) does not have a root in [k, 1] for any k ∈ [1

5 , 1].
The last thing we need it to find is a line through the {δ, rd} space P,

expressed as δ = f(rd), for which −(xcm − π∗ + φ)2 ≥ −δrd(pcm − π∗ + φ)2

holds. This will imply that the inequality holds for any {δ′, r′d} such that
k = δrd = δ′r′d and r′d ≥ rd. Combined with part one of assumption 2
δ ≥ 1

5rd
, if we can show that the inequality holds for any {δ = f(rd), rd}

where δ ≥ 1
5rd

, it has to hold for any {δ′, rd} such that f(rd) ≥ δ′ ≥ 1
5rd

.

One such f(rd) is given by f(rd) = 1 − (1−rd)2

2 . To see this we substitute
the expressions for xcm and pcm into −(xcm − π∗ + φ)2 ≥ −δrd(pcm − π∗ + φ)2

along with δ = 1 − (1−rd)2

2 , getting polynomial P(rd) in rd and we confirm
that it has no root in the [1

5 , 1] interval using Sturm’s theorem again. This
delivers part three of assumption 2 and proves the claim. �

Claims 21 and 22 confirm our original conjecture that C’s offers bring
P to indifference between accepting and rejecting given the unconstrained
maximizer of C’s overall utility is not available. Hence C’s strategy as a
solution to her dynamic optimization program indeed generates P ’s accep-
tance sets conjectured in that optimization program. Therefore C’s proposal
strategies ρC = {pD(x), pA(x), qD(x), qA(x)} generated by C’s dynamic op-
timization problem under acceptance sets generated by VP and P ’s voting
strategies ρP generated by VP constitute CS-MPE.

The rest of the proposition follows easily. Uniqueness of the CS-MPE
in terms of associated value functions follows from the uniqueness of VP in
any CS-MPE and uniqueness of the solution to C’s optimization program.
Part one of the proposition follows from proposition 3, part two is trivial to
establish, part three follows from claim 20 and part four follows from claims
15 and 16.
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A1.5 Proof of proposition 5

Using definition 4 of S, x ∈ S implies qA(x) = qD(x) = x and hence stable
D period policy decisions pD(x) = p∗. D-efficiency and hence part one then
follows from the fact that p∗ ∈ [π∗−φ, π∗+φ], which is easy to see. For part
two denote as in the proof of proposition 4 by X− = X \ (π∗ − φ, π∗ + 3φ)
and by X+ = (π∗ − φ, π∗ + 3φ). We know by claim 15 from the proof of
proposition 4 that pD(x) = π∗ − φ and pA(x) = π∗ for any x ∈ X−. For
x ∈ X+ we know qA(x) ∈ {min{AA(x, p = π∗)},max{AA(x, p = π∗)}} by
claim 21 from the proof of proposition 4 and it is easy to show qA(x) = x
possibly only for x = π∗ as min{AA(π∗, p = π∗)} = π∗. This opens the
possibility that qA(π∗) = qD(π∗) = π∗ and hence possibly π∗ ∈ S. This in
turn would imply pA(π∗) = pD(π∗) = π∗, which is easy to show as well. In
any case, π∗ has zero measure.

For part three, from part four of proposition 4, C proposes unconstrained
maximizers of her overall utility γCD = {π∗ − φ, z} and γCA = {π∗, z′}
whenever γCD ∈ AD(x) and γCA ∈ AA(x) for some z, z′ ∈ X \ (π∗ − φ, π∗ +
3φ). As a result whenever x is such that C can propose γCA (γCD) in
A (D) period, we can specify proposal strategies such that the bargaining
reaches S immediately. Integration intervals in the proposition are then a
translation of the conditions γCA ∈ AA(x) and γCD ∈ AD(x) that can be
derived easily using VP from proof of proposition 4. The fourth part is then
a direct consequence of proposition 3.

A1.6 Proof of proposition 6

To prove the proposition we prove that the policy C proposes for a given de-
fault option x under the implicit status-quo bargaining is in P ’s acceptance
set for the same default option under the explicit status-quo bargaining.
This, along with the fact that the explicit status-quo bargaining relaxes the
constraint on C’s optimization problem, will imply the first part. We su-
perscript all variables from the implicit status-quo bargaining by I and all
variables from the explicit status-quo bargaining by E and use the notation
from the proofs of propositions 1 and 4.

For D periods notice that by feasibility of equilibrium proposals under
implicit status-quo bargaining

fPD(pID(x)) + δV I
P (pID(x)) ≥ fPD(x) + δV I

P (x)

for any x ∈ X. Adding ±δV E
P (pID(x)) and ±δV E

P (x) to the left and right
hand sides, the inequality after rearrangement becomes

fPD(pID(x)) + δV E
P (pID(x)) ≥fPD(x) + δV E

P (x)

+δ[(V I
P (x)− V E

P (x))− (V I
P (pID(x))− V E

P (pID(x)))]
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so that if we can prove that the term in the square brackets is positive for
any x ∈ X, {pID(x), pID(x)} ∈ AED(x) will follow.

The difference of P ’s value functions under the two bargaining protocols
from the proofs of propositions 1 and 4 is

V I
P (x)−V E

P (x) =



φ2 3δrd(1− rd)
1− δ

for x ∈ X \ (π∗ + φδrd − κ, π∗ + φδrd + κ)

1− rd
(1− δ)(1− δrd)

(x− π∗ + φδrd)(x− π∗ − 3φδrd)

for x ∈ [π∗ + φδrd − κ, π∗ − φδrd] ∪ [π∗ + 3φδrd, π
∗ + φδrd + κ]

0

for x ∈ [π∗ − φδrd, π∗ + 3φδrd]

where κ = φ
√
δrd(3 + δrd) as before. Also note that V I

P (x) − V E
P (x) is

non-negative for ∀x ∈ X, which proves the second part of the proposition.
To prove

V I
P (x)− V E

P (x)− (V I
P (pID(x))− V E

P (pID(x))) ≥ 0

for ∀x ∈ X, first take x ∈ X−. Then pID(x) = π∗ − φ and V I
P (x)− V E

P (x) =
V I
P (π∗ − φ) − V E

P (π∗ − φ) so that the inequality holds. For default options
x ∈ {z|pID(z) ≥ π∗−φδrd} it is easy to show x ∈ [π∗−φδrd, π∗+φ(2 + δrd)]
and pID(x) ≤ x so that π∗−φδrd ≤ pID(x) ≤ x and the inequality follows from
the fact that V I

P (x)−V E
P (x) is non-decreasing for x ≥ π∗−φδrd. For default

options x ∈ [π∗−φ, π∗−φδrd] the inequality holds as pID(x) = x. Finally, for
x ∈ [π∗+φ(2+δrd), π

∗+3φ], pID(x) = 2(π∗+φ)−x ∈ [π∗−φ, π∗−φδrd] and

as π∗ + φδrd + κ ≤ π∗ + φ(2 + δrd), we have V I
P (x)− V E

P (x) = φ2 3δrd(1−rd)
1−δ ,

whereas V I
P (pID(x))−V E

P (pID(x)) ≤ φ2 3δrd(1−rd)
1−δ , so that the inequality holds.

For A periods a similar argument shows that it suffices to show

V I
P (x)− V E

P (x)− (V I
P (pIA(x))− V E

P (pIA(x))) ≥ 0

for ∀x ∈ X in order to show {pIA(x), pIA(x)} ∈ AEA(x). The inequality then
follows from the fact that pIA(x) ∈ [π∗ − φδrd, π∗ + φδrd] so that the second
term in the inequality is always equal to zero, whereas the first term is always
positive. The third part of the proposition then follows using straightforward
algebra and results from the proofs of propositions 1 and 4.

A1.7 Proof of proposition 7

We prove two claims that together prove the proposition. The strategy of
the proof borrows heavily from Riboni and Ruge-Murcia (2008).
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claim 23. The difference in utilities associated with two sequences of policy
decisions is linear in φ (for the first condition in definition 5) and in νi,0
(for the second condition in definition 5).

Proof. For the first condition in definition 5 of an essentially two-member
committee, take two general sequences of policy decisions p = {p0, p1, . . .}
and p′ = {p′0, p′1, . . .}. The utility associated with these policy sequences for
a committee member with preference parameter φ is

U(p, φ) = −
∞∑
t=0

δt(pt − π∗ − φID(t))2

where ID(t) is D period indicator function. Taking the derivative of the
difference U(p, φ)− U(p′, φ) with respect to φ gives

∂[U(p, φ)− U(p′, φ)]

∂φ
=
∞∑
t=0

2δtID(t)(pt − p′t),

which does not depend on φ. It follows that the difference in utility between
p and p′ is linear in φ.

For the second condition in definition 5, the utility associated with the
sequence of policy decisions for a member with preference shock νi,0 in the
current period that is already realized and hence common knowledge is

U(p, νi,0) = −(p0 − π∗ − φ− νi,0)2 −
∞∑
t=1

δt
[
(pt − π∗ − φID(t))2 + rdE[ν2

i,t]
]

with derivative of the difference U(p, νi,0) − U(p′, νi,0) with respect to νi,0
equal to

∂[U(p, νi,0)− U(p′, νi,0)]

∂νi,0
= 2(p0 − p′0),

which again does not depend on νi,0. �

The next claim shows that the proposal is passed if and only if it is ac-
cepted by the median member. Formally, for the first condition in definition
5 for the committee of N (odd) members denote their preference parameters
{φ1, . . . , φN} such that φi < φj for every pair 1 ≤ i < j ≤ N . Then the
median member has the preference shock φm that satisfies |{i|φi > φm}| =
|{i|φi < φm}|. For the second condition in definition 5 for the N − 1 (even)
members denote their preference parameters {φ+ ν1,0, . . . , φ+ νN−1,0} such
that φ + νi,0 < φ + νj,0 for every pair 1 ≤ i < j ≤ N − 1. Then the
two median members have preference shocks φ + νm,0 where νm,0 = 0 and
|{i|νi,0 > νm,0}| = |{i|νi,0 < νm,0}|.
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claim 24. Assuming stage-undominated voting strategies, for a committee
with N members with N odd, C’s proposal γ is passed if and only if it is
accepted by the median committee member.

Proof. For sufficiency, assume the median member accepts, then by the pre-
ceding claim either all committee members with φi > φm (νi,0 > νm,0) accept
or all committee members with φi < φm (νi,0 < νm,0) accept. In either case,
γ passes.

For necessity, assume the median member does not vote for γ. Then
either all members with φi > φm (νi,0 > νm,0) do not vote for γ or all
members with φi < φm (νi,0 < νm,0) do not vote for γ. In either case γ is
not approved. �

Using claim 24 C’s proposal strategy when faced with an essentially
two-member committee will take into account only median member(s) of
the committee. In the A periods for the first condition in definition 5 this is
a player with D period preference shock φ and for the second condition of
the same definition those are all the remaining committee members who in
D periods have preference shocks equal to φ on average. In the D periods we
have either one or two players with preference shock equal to φ being median
ones, depending on the exact condition used in definition 5. As a result, C’s
proposal strategy in the dynamic bargaining game played by any essentially
two-member committee will be equal to the proposal strategy in the dynamic
bargaining game played by C with only one other player with the two players
having D period preference shocks −φ and φ respectively. The proposition
then follows from the fact that C’s proposal is always approved in equilib-
rium by the median player and hence by the whole essentially two-member
committee if its members use stage-undominated strategies.

A2 Static mechanism implementation

We restrict attention to static transfer-free direct mechanisms in which the
policy in period t is independent of history. In mechanism M : {mC ,mP } →
∆(X) player i ∈ {C,P} submits message mi ∈ {A,D} and M implements a
policy from X chosen according to some distribution, so that ∆(X) denotes
the set of all distributions on X.

Because player types are perfectly correlated we can restrict attention
to mechanisms that learn the type of period with certainty. Each such
mechanism will be characterized by a pair of distributions, one for A periods
with cdf FA and one for D periods with cdf FD.

It is immediate that FA implements π∗ with certainty in any Pareto
efficient mechanism. For D periods, C’s expected utility is equal to∫

X
−(x− π∗ + φ)2dFD(x) = − var(x)− (E(x)− π∗ + φ)2
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and P ’s expected utility is equal to∫
X
−(x− π∗ − φ)2dFD(x) = − var(x)− (E(x)− π∗ − φ)2

so that var(x) = 0 in any Pareto efficient mechanism.
As a result, any Pareto efficient static transfer-free direct mechanism has

to involve M(A,A) = π∗ and M(D,D) = p∗ where p∗ ∈ [π∗ − φ, π∗ + φ].
Moreover, p∗ = π∗ for utilitarian (maximizing sum of expected utilities)
mechanism.

A3 Numerical simulation of equilibrium under ex-
plicit status-quo bargaining

This section describes the procedure to obtain numerical estimates of the
equilibrium C’s value function VC and her proposals in the model with the
explicit status-quo bargaining protocol. We use the standard value function
iteration method along with several results proven earlier. First of all recall
that by proposition 3 we know pA(x) = π∗. Furthermore, from the proof
of proposition 4 we know the shape of P ’s acceptance sets AA and AD and
equilibrium proposals for x ∈ X−. Finally by the same proposition we know
C’s value function VC is unique.

To estimate the remaining part of the equilibrium, we restrict the pro-
posal space along each dimension to X ′ = [π∗ − 1.1φ, π∗ + 3.1φ] and specify
a grid of discrete nodes {d1, . . . , dN} ∈ X ′. Call this grid G. We use π∗ = 2,
φ = 1 which, with the distance of the neighbouring nodes equal to 0.001,
gives N = 4201. With the proposal space specified, we implement the fol-
lowing iterative procedure. At the iteration step t we solve C’s optimization
problem for A and D periods for each default option in G. Denote by V t

C(G)
the N × 1 vector of C’s continuation values, each of them associated with a
distinct node (default option) di ∈ G at the t-th step of the iteration.

For D periods we solve for each di ∈ G

max
{p,q}∈AD(di)⊆G2

−(p− π∗ + φ)2 + δV t
C(q)

by searching the discretized feasible proposal space AD(di) ⊆ G2. This gives
us two N × 1 vectors of proposals for the D period, one along the policy
dimension, ptD, and the second along the status-quo dimension, qtD, with
the i-th element of each being C’s proposed policy and status-quo for default
option di.

For A periods we already know pA(x) = π∗ hence for each di ∈ G we
solve

max
{π∗,q}∈AA(di)⊆G2

V t
C(q)
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again by searching the feasible proposal grid AA(di) ⊆ G2. This gives us
one N × 1 vector of status-quo proposals for the A period, qtA, with the i-th
element being the proposed status-quo for default option di.

Finally we compute N × 1 vector of C’s continuation values as

V t+1
C (G) = rd

[
−(ptD − π∗ + φ)2 + δV t

C(qtD)
]

+ (1− rd)
[
δV t

C(qtA)
]

and proceed to the iteration step t + 1. We stop the iteration procedure
when maxi∈{1,...,N} |V t+1

C (di)− V t
C(di)| ≤ 1.0× 10−6. As usual, for the first

step of the iteration we use V 1
C(G) = 0. We experience no problems with

convergence and for the simulations shown the procedure converges in about
70 iterations.

The reason why we use this rather rudimentary numerical procedure in-
stead of some more involved one (e.g. a better optimization algorithm and
functional approximation for VC) is twofold. First, we suspect the VC to be
ill-behaved with a number of local maxima and we do not want the optimiza-
tion algorithm to pick a wrong one especially as the acceptance sets are in
general not convex. Second, we suspect the resulting equilibrium to involve
several discontinuities and we do not want the functional approximation to
‘smooth out’ the problem.
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