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1 Introduction

In the tradition of spatial modeling in positive political theory, majority-rule
elections are often conceptualized as competition between two candidates
who stake out positions in a space of policies, followed by the votes of vot-
ers who observe those policy platforms. If the candidates are purely office-
motivated, if the policy space is one-dimensional, and if the preferences of
voters are single-peaked, then the median voter theorem applies: there is a
unique equilibrium, and in it both candidates adopt the median ideal point
of the voting population as their platforms (cf. Downs (1957), Black (1958)).
"The property of the median ideal point behind this result is that it is defeated
by no other platforms in majority voting. In higher dimensional spaces, such
an undominated policy position is referred to as a “core point.” In fact,
regardless of dimensionality, office-motivated candidates must locate at core
points in equilibrium: if one candidate were to locate at a beatable position,
the other would move to exploit that opportunity. We refer to this phe-
nomenon as “core equivalence.” An implication us that, in the absence of a
core point, there will be no (pure strategy) equilibrium of the game between
the candidates.

As is well-known, the existence of a core point when the number of voters
is odd entails a symmetry condition on voter preferences that is extremely
restrictive in two or more dimensions: Plott (1967) shows that a core point
must be the ideal point of some voter, and the gradients of the other vot-
ers’ utility functions must be paired so that, for every voter with a gradient
pointing in one direction, there is exactly one voter whose gradient points
in the opposite direction (see also McKelvey and Schofield (1987)). This
necessary condition suggests that, for “most” specifications of voter prefer-
ences, core points — and therefore electoral equilibria — will fail to exist.
When existence does obtain, it will be vulnerable to even slight variations in
preferences (cf. Rubinstein (1979), Schofield (1983), Cox (1984), Le Breton
(1987)). When the number of voters is even, the results are not so negative:
a core point need not be the ideal point of a voter, the symmetry condition
is no longer necessary, and the existence of core points may be robust to
variations in preferences.

Clearly, aside from the assumption of an odd number of voters in the
negative results on equilibrium existence, the assumption that candidates
are office-motivated plays an important role: since candidates care only
about winning the election, if one’s position can be beaten by any other



preferences near the equilibrium point. We give an example in which three
voters have non-Euclidean preferences, there is a unique core point, and
there is an equilibrium in which the candidates do not locate at the core
point. Thus, the core equivalence result of Calvert does not generalize to
arbitrary differentiable, strictly quasi-concave voter utility functions. In that
example, however, the candidates locate at one voter’s ideal point and a type
of symmetry on the voters’ gradients holds: for every voter whose gradient
lies between the candidates’ gradients, there must be exactly one voter whose
gradient points in exactly the opposite direction. We prove that those prop-
erties are in fact necessary conditions for equilibrium when the number of
voters is odd. Though potentially restrictive, the symmetry condition does
not imply the existence of a core point nor, generally, the kind of fragility of
equilibria seen in models with office-motivated candidates. Indeed, we give a
three-voter, two-dimensional example in which the core is empty; there exists
an electoral equilibrium with policy-motivated candidates; and the equilib-
rium is robust to small changes in the preferences of voters and candidates.
Thus, the negative conclusions drawn for office-motivated candidates do not
carry over with full force.

In three or more dimensions, the existence of equilibria is considerably
more precarious. Given any equilibrium with an odd number of voters, we
show that, for every voter whose gradient does not lie on the plane spanned
by the candidates’ gradients, there must be exactly one voter whose gradient
points in the opposite direction. In other words, if we remove the voters
whose gradients lie on that plane, the equilibrium platform must be a core
point of the modified majority voting game. Because the plane is a lower-
dimensional subspace, we would not expect it to contain the gradients of
all voters. Typically, therefore, we must have some pairs of voters with
diametrically opposed gradients, a result suggesting that electoral equilibria
will be rare and that, when existence does obtain, it will be vulnerable to even
slight variations of voter or candidate preferences. Thus, with three or more
dimensions and a finite, odd number of voters, the equilibria conjectured by
Calvert (1985) can exist only in knife-edge situations.

When the number of voters is even, the optimistic case in models of
office-motivated candidates, we show that equilibria in which the candidates’
gradients point in different directions never exist, even in the one-dimensional
case. Though the generality of this result may be unexpected, it is due to a
feature of policy-motivation that is quite intuitive: a policy-motivated candi-
date may have an incentive to move from one platform to another, even if the
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2 The Model

We consider two candidates, A and B, competing for the votes of an elec-
torate, IV, containing a number n of voters. We use the notation C for an
arbitrary candidate and i, 7, k, etc., for an arbitrary voter. Let X be a convex
subset of d-dimensional Euclidean space, R%. The candidates simultaneously
choose policy platforms from X, with candidate C’s platform denoted z..
We use the notation z, y, z, etc., for arbitrary policies. Each voter i has
a preference relation on X represented by a strictly quasi-concave, differen-
tiable utility function u;: X — R. Thus, if voter 7 has a utility-maximizing
platform, it is unique. We call such a policy ¢’s ideal point and denote it
;. For simplicity, we assume that Vu;(z) = 0 if and only if z is voter
i’s ideal point. We assume that no two voters have the same ideal point:
Vui(z) = Vu;(x) = 0 for no z, 4, and j # i. We say voter i’s preferences are
Fuclidean if i has an ideal point #; and, for some strictly decreasing function
[+ Ry = R u(z) = f(llz—3)]), i.e., voter i has circular indifference curves,

We use the notation R for weak majority preference, P for strict prefer-
ence, and [ for indifference: xRy if and only if ui(z) > u;(y) for at least half
of the voters; z Py if and only if u;(z) > w;(y) for more than half of the voters
(i.e., not yRz); and zIy if and only if zRy and yRz. In the appendix, we
state a lemma on the “star-shapedness” of majority preferences: if xRy, then
any point between x and y will be weakly majority-preferred to vy, strictly
so if the number of voters is odd. We define the core as the set of platforms
x weakly majority-preferred to all other platforms: for all y € X, zRy. If
the number of voters is odd, then a standard result under our assumptions is
that the core, when non-empty, consists of a single point, say z*, and that,
for all y # z*, z* Py. Moreover, z* is the ideal point of some voter, say 3*.
In case all voters have Euclidean preferences, it is known that the majority
preference relation coincides with the preferences of the “core voter” ¥, ie.,
zRy if and only if u;(x) > w;(y) (cf. Davis, DeGroot, and Hinich (1972)).
Thus, in that case, the majority weak preference relation is complete and
transitive, with circular indifference curves. None of these conclusions holds
generally when n is even.

We assume each candidate C has a preference relation on X represented
by a strictly quasi-concave, differentiable utility function ue: X — R. If
candidate C has an ideal point, we denote it by Z¢. Again for simplicity, we
assume Vue(x) = 0 if and only if z is candidate C’s ideal point. We assume
that the candidates are policy-motivated, which means that a candidate may



The preceding conditions characterize situations in which a candidate
has an incentive to change his/her position. At times, we will want to use
three additional conditions that are sufficient for the candidates to not have
profitable deviations.

(C5) IfyPzor ua(z) < ua(y), then not (2,9) =4 (y,v) (and likewise for B).

(C6) If candidate A has ideal point Z4 and if 4Py, then not (2,9) =4
(Ta,y) (and likewise for B).

(C7) If yPz, and if yPz or ua(z) < ua(y), then not (z,4) =4 (z,y) (and
likewise for B).

Suppose that both candidates adopt platform y, which is then the out-
come with probability one. If candidate A adopts a platform that loses to Y,
and therefore does not affect the policy outcome, or if A moves to some plat-
form no more desirable than v, then that move should not be profitable, as
stipulated in condition (C5). For condition (C6), if Z 4Py, so that candidate
A wins by locating at his/her ideal point, then it is clear that no move can
be profitable for A, as in condition (C6). Finally, if candidate A’s platform
z loses to y, and if A moves to a platform z that also loses to y (and so does
not change the policy outcome) or that is less desirable than Y, then that
move should not be profitable, as stated in condition (C7).

Conditions (C1)-(C7) hold, for example, in the following environment:
voters vote sincerely (eliminating weakly dominated strategies), flipping coins
when indifferent; the candidate with the majority of votes wins and imple-
ments his/her policy platform, with ties broken by a coin flip; and candidates
evaluate lotteries over policy outcomes according to expected utility. In fact,
we could allow voter ¢ to randomize between the candidates with any posi-
tive probabilities when u;(z4) = u;(z5). Conditions (C1)-(C3) hold — and
so, therefore, does the analysis for n odd — even if these probabilities vary
arbitrarily with the particular platforms over which i is indifferent. The
conditions are general enough that we could even allow indifferent voters to
abstain from voting with any probability (possibly one), as long as the win-
ner in case of a tie is determined randomly with each candidate receiving
positive probability.

We say (z4,2p) is an equilibrium if neither candidate C' can deviate to a
different platform to produce a preferred pair: there does not exist e X
such that (¢4, 2p) =4 (24,25) (and likewise for B). We say that (z 4, zp)isa
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Figure 1: A non-competitive equilibrium without policy coincidence

;g € R%, we use the notation cone®{p, ¢} = {ap+ Bq | o, > 0} to denote
the open cone generated by p and gq.

Theorem 2 Assume n is odd, and assume (C1)-(C3). If (x4,z5) is a po-

larized equilibrium, then T4 = x5 = &, where Vuy () = 0 for some voter k.
For p € RY,

Hi € N|3a>0:Vu(d) =ap}| = Hie N|3a <0: V() = ap}l,

if either Vua(Z) and Vup(Z) are linearly dependent or Vu,(z) and Vug()
are linearly independent and p € cone®{Vua(z), Vug(2)}.

Figure 2 depicts depicts a situation in which the necessary conditions
given in the theorem are satisfied. Here, the candidates locate at voter 5's
ideal point. The gradients of voters 1 and 3 point in opposite directions. The
gradients of voters 2 and 4 are not matched in this way, but, because neither
gradient (or its opposite) lies in the open cone generated by the candidates’
gradients, the symmetry condition of the theorem is preserved.

By the first part of the theorem, the candidates must locate at some ideal
point, say £, in a polarized equilibrium. The proof of the second part of the
theorem is largely concerned with the case in which the candidates’ gradients
are linearly independent. We show that the set of platforms weakly majority-
preferred to #, the region described by hash marks in Figure 3, lies below
the hyperplanes defined by the gradients of the candidates. This implies a
kind of “kink” in the boundary of that set, one that is not possible when the
core 1s non-empty and the preferences of the voters are Euclidean. Under
those conditions, the majority preference relation would coincide with the
preference relation of the core voter, so the majority indifference curves would
simply be circles and obviously could not have kinks. Thus, in Calvert’s
(1985) model, the only platform weakly preferred to  is & itself, i.e., the
candidates must locate at the core point, and then symmetry of the voters’
gradients follows from Plott’s (1967) theorem. In the proof of Theorem 2,
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Figure 3: A kink in the boundary of the majority-preferred-to set
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Figure 4: A competitive non-polarized equilibrium violating the conditions
of Theorem 3

The proof the corollary is simple. Theorem 3 tells us that, given a po-
larized equilibrium (z4,zp), the candidates must locate at the ideal point
of some voter, say i. Since span{Vu,(%;), Vup(Z;)} is a two-dimensional
space and the dimension of span{Vu;(%;) | j € N} is at least three, there is
some voter j such that Vu;(;) ¢ span{Vus(Z;), Vug(Z;)}. But, under the
assumptions of the corollary, there is no voter whose gradient points in the
direction opposite that of voter j's, a contradiction.

The implications of Theorem 2 when the number of voters is even are
more striking, as that result allows us to prove the following.

Theorem 4 Assume n is even, and assume (C1)-(C4). There does not exist
a polarized equilibrium.

In the proof of the theorem, we first verify that, as in Theorem 2, the
candidates would have to locate at the ideal point, say £, of some voter, say
i. Deleting that voter from NN, we are left with an electorate, N', with an odd
number of voters. Furthermore, there is no voter in N’ with ideal point Z,
violating a necessary condition in Theorem 2 for equilibrium in the reduced
model. Thus, one of the candidates can move to a better platform, say z’,
preferred by a majority of voters in N to . Adding 7 back to the electorate,
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Figure 5: A non-competitive equilibrium with n even, as in Proposition 1

must have a profitable deviation in this situation — that will depend on the
exact specification of the candidates’ strategic preferences in the model.

The next proposition gives a condition, strengthening that of Proposi-
tion 1, under which all interior equilibria are polarized. Once again, the
condition extends the familiar one from one-dimensional models that the can-
didates’ ideal points are on opposite sides of the median. We will say that an
interior platform z “fails the polarization condition” if aVua(z) = Vug(z)
for some «, 3 > 0, at least one non-zero.

Proposition 2 Assume (C1)-(C4). Assume that, for each z € X failing
the polarization condition, there erists a platformy € X such that yPzx and,
for some candidate C, uc(y) > uc(zx). If (x4, Tg) 1S an interior competitive
equilibrium, then it is polarized.

The proof is trivial, owing to condition (C1), Theorem 1, and the strength
of the condition stated in the proposition. To see that this condition is
indeed stronger than that of Proposition 1, set ¢ = Z4; then the condition of
Proposition 2 yields C' and y such that uc(y) > uc(z); and then, of course,
we must have C' = B, fulfilling the condition of Proposition 1.

The condition of Proposition 2 is not completely transparent, and so it
is of interest to understand when it (and, therefore, the condition of Propo-
sition 1) might hold. Suppose that d > 2, that n is odd, and that voter
preferences are Euclidean. Let Y € X denote the yolk, the smallest closed

ball intersecting all median hyperplanes (cf. McKelvey (1986)). Thus, if the
hyperplane

Hey = {2€R%[2z-(z~y)=(z+y) (x-y)}

bisecting two platforms, z and y, does not intersect Y, majority indifference
between z and y cannot hold. Whether zPy or yPz depends on whether ¥
is on the z-side or y-side of H,,. Suppose further that there exists t € R¢
such that, for all y € Y,

t-T4 < t-y < t-Ip,
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fora>1lora<—1. Ifa>1, then

t-x = t'C%B+t'(.fA—IEB)—{'-(l—Oé)t'(i’B—CEA)
= t-Ta+(1—a)t (Zp—17I4)
< t-Zg.

Similarly, t-2z > t-Zg if o < —1. (See Figure 6 for & > 1.) Suppose, without
loss of generality, that @ > 1. Define z, = z +e¢t for € > 0, and pick ¢ smaller
than the lesser of

(mint-Y)—t-Z4 and ¢-3p— (maxt-Y),

as in Figure 6. Then we have

t-z+4+¢
t-:fA"l"E

mint .Y,

t-x,

<
<

which implies that the bisecting hyperplane Hg . does not intersect the yolk.

And since the yolk is on the z.-side of the hyperplane, we have z, Pz. Finally,
note that

f'(iB—I) == at-(iB—:EA)
which implies that up(z.) > up(z) for small enough e, as required.

5 Discussion

We have shown that policy coincidence and a type of Plott symmetry are
necessary conditions for equilibrium. In Figure 7, we verify that they are
not sufficient for equilibrium. In this example, the voters have Euclidean
preferences and the candidates are located at voter 3’s ideal point. With
candidate gradients as depicted, the conditions of Theorem 2 are satisfied,
but either candidate can move to a more desirable platform preferred by
voters 1 and 2, a profitable deviation by condition (C1). In this example,
voter 2’s ideal point is the core, a likely candidate for equilibrium. In fact,
if the number of voters is odd, if condition (C5) holds, and if there is a core
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Theorem 1: without it, we might have zIy and y the outcome of the election
with probability one; but then we would expect candidate A to be indifferent
between (z,y) and (y,y), creating the possibility of competitive equilibria
violating policy coincidence. Suppose, for example, that d = 1, that there
is one voter with Fuclidean preferences and ideal point at zero, and that
the candidates’ ideal points are both at —1. In this setting, it would be a
competitive equilibrium for candidate A to locate at —1/2 and B at 1/2, if
the voter votes for candidate B with zero probability: all of the platforms
preferred by the voter to candidate A’s are less desirable, from candidate B’s
perspective, than A’s platform.

An alternative specification of candidate preferences is the “mixed” model:
candidate C' receives a utility of uc(z) if the platform  is implemented, plus
a positive utility, say 3, if C is the winner of the election. In this model,
condition (C2) would not hold, but the arguments of Theorem 1 could be
modified to obtain the result that, in equilibrium, the candidates must adopt
the same platform, say Z. Then it is easy to see that, when the number of
voters is odd, for example, # must be a core point. If not, there is some
y majority-preferred to it. That platform may be a worse policy outcome
from a candidate’s point of view, but every platform between % and Y is
also majority-preferred to Z. By picking such a platform close enough to z,
the candidate can make the disutility of the policy change less than 3, the
utlity from winning, a contradiction. Then the symmetry of the voters’ gra-
dients follows from Plott’s (1967) theorem. Clearly, driving this argument is
a discontinuity in the candidates preferences, one introduced by the positive
reward for winning in the mixed model. This raises the question: Are the
strong necessary conditions for equilibrium existence merely an artifact of the
discontinuity introduced by office motivation? Our results yield the answer:
When the dimension of the policy space is at least three or the number of vot-
ers is even, those restrictive conditions are inherent in the strategic incentives
of electoral competition, even with purely policy motivated candidates.

Finally, we have assumed a finite number of voters, whereas Calvert
(1985) assumed a continuum of voters. This was mainly for convenience,
though it also allowed us to highlight a subtlety of the n even case and to
emphasize a distinction from models of office-motivated candidates. There
are results suggesting that key properties of finite, n odd, electorate mod-
els carry over to continuum models. For example, Banks, Duggan, and Le
Breton (1999) give a condition on the dispersion of voter ideal points, in a
model of a continuous electorate, under which the second part of Lemma 1
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Figure 8: A polarized equilibrium not at the core
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ua(za) = ua(zp), then, as above, let ' = (1/2)z 4+ (1/2)zp. If 2/ Pz, then
(C1) yields a contradiction. In the n even case, however, Lemma 1 implies
only that =’ Rxp, so suppose z'Jzp. Since the u;’s are strictly quasi-concave,
this means that u;(zp) > u;(z.4) for exactly half of the voters. Consequently,
ui(z4) > ui(zp) for half of the voters. Therefore, by continuity, there is an
open set Y C X containing z 4 such that, forallz € Y, xRzg. Since (za,7R)
is competitive, Vug(z4) # 0. Defining z. as above, we can choose € > 0 small
enough that ua(z.) > ua(z4) and z.Rzp. Then, by condition (C4), we have
(e, z8) =4 (z4,28), a contradiction. Therefore, uq(zs) > ua(zp) holds.
As above, x4 Pxp, for suppose otherwise. Defining z,, as above, Lemma 1
now implies z,, Rzp for all m. If this majority preference holds strictly, (C3)
again yields a contradiction. If z,,J/zp for any m, we repeat the preceding
argument, using (C4) to establish a contradiction. Therefore, z4Pzp, and,
as above, (C1) yields a final contradiction. |

Theorem 2 Assume n is odd, and assume (C1)-(C3). If (z4,25) is a po-

larized equilibrium, then x4 = xp = Z, where Vu(2) = 0 for some voter k.
For p ¢ R¢,

{ieN|3a>0:Vu(t)=ap} = [{ie N|Ja<0: Vu(z)= ap}l,

if erther Vuy () and Vug(2) are linearly dependent or Vus(z) and Vup (&)
are linearly independent and p € cone®{Vua(2), Vug(%)}.

Proof: Consider any polarized equilibrium (x4, z5). As every polarized equi-
librium is competitive, we know from Theorem 1 that z4 = 25 = # for some
z € X. To simplify notation, let p4 = Vu,(Z) and pp = Vug(i), and nor-
malize both vectors so that ||pa|| = ||pg|| = 1. We first claim that, for both
candidates C', we must have pc -y < pc - £ for all platforms y # % such that
yRz. Otherwise, we would have pc-y > pe -2 for some y # & such that yRZ.
It follows from Lemma 1 that 2o = aZ + (1 — a)y P for all o € (0,1). Also,
Dc Zo 2 po-Z. Using the assumption that  is interior to X, we take o close
enough to one that z, is also interior to X. Since the w;’s are continuous,
there is an open set ¥ C X containing z, such that, for all z € Y, 2P%.
Defining z3 = x4 + fpc, we take 8 small enough that 2g € Y, and therefore
2gP%. By construction,

po- (25— 2) = pc- (xo— &)+ Bpc - pe > 0.

23



close enough to zero. But then, by condition (C1), we have (z.,2) =4 (&, &),
a contradiction. Therefore, Vuy(2) = 0 for some voter k.

Now take any p € cone®{p4,pp}, and suppose the symmetry condition
of the theorem is violated. We will show that one of the candidates has a
profitable deviation, a contradiction. Let o = 1 if

{i € N |3a>0:Vu(2) = ap}| > Hi € N |3 <0: Vu(2) = ap}|,

and let o = —1 if the opposite inequality holds. As above, pick ¢ € R such
that p- ¢ =0, psa-¢ >0, and pp- ¢ < 0. Let Q be an open set on which
these strict inequalities hold, and let @ = {s € Q | p-s = 0} be the elements
of that set orthogonal to p. Forr € @, let O(r) = {s € R? | s - + = 0}
denote the subspace orthogonal to r. We claim that (Nyeq O(r) = span{p}.
To see this, let {by,...,bs-1} be a basis for the (d — 1)-dimensional subspace
orthogonal to p, and take r € @’ and € > 0 such that {r +eby,... ,r+ b1}
is linearly independent and contained in @’. By linear independence, the
dimension of

d-1

ﬂ O(r + €by)

h=1

is one. Of course, p € O(r) for all r € @', establishing the claim.

Then, since NN is finite and k is the only voter with ideal point &, choose
r € (' so that r - Vu,(Z) = 0 if and only if ¢ = k or, for some o # 0,
Vu;(1) = ap. Partition N \ {k} into four sets,

{i e N|r Vu(z) > 0}
= {ieN|r Vu(z) <0}
{ie€N|3a>0: V(i) = cap}
{i € N|3Ja <0: Vu(2) = cap},

=R
|

and note that [K| > [L|. Without loss of generality, suppose |I| > |J].
Since N\ {k} contains n — 1 voters, we have |K| + |I| > (n —1)/2, and
this implies |K| + [I| > (n+ 1)/2 > n/2. We will use r to construct a
profitable deviation for candidate A. (If the inequality || < |J| held instead,
we would use —r to construct a profitable deviation for B.) Let 25 = & + ér
for 6 > 0. Then Vu;(Z) - (zs — ) = 6Vu(2) v > 0 for all i € I, and
pa-(xs—2) =8Vpy-r > 0. Choose § close enough to zero that z; is interior
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denote the two-dimensional subspace spanned by the projections of the can-
didates’ gradients onto the space orthogonal to p. Given p, g € RY, let

q(p) = projgq

denote the projection of ¢ onto that plane. Note that, since projompc € S(p)
and S(p) C O(p), we have

pe(p) = Projsp)Pc = PIOjo()Pc:

so pc(p) is just the gradient of candidate C' projected onto the subspace
orthogonal to p. That, in turn, implies S(pa(p), pa(p)) = S(p). Finally, note
the further implication that ¢(p) = q(pa(p), pa(p)).

Let gq,7 € R? be vectors such that the gradients of the candidates, pro-
jected onto the plane S(g,r), point in different directions, i.e., there do not
exist o, § > 0, at least one non-zero, such that apa(q, ) = Bpg(q, 7). Thus, if
we restrict the candidates’ platforms to the two-dimensional space £+ 9 (q,7),
then the pair (£, ) is a polarized equilibrium of the restricted game. Take
any p € cone®{pa(q,7),pp(g,7)} in the open cone generated by the candi-
dates’ projected gradients, so that the antecedent conditions of Theorem 2
hold in the restricted game. We claim that

{i€ N|3a>0:plg,r)=aplqr)}
= {i€ N|3a<0:plgr)=ap(qr)}.

If not, then, by Theorem 2, one of the candidates has a profitable deviation
in the restricted game, and therefore the candidate has a profitable deviation
in the original game, a contradiction. This establishes the claim.

To prove the theorem, take any p ¢ span{p4,ps}, normalize so llp|l =1,
let

I = {ie N|3a>0:Vu(z)
J = {te N|3a<0: Vu(z)

ap}
ap},

I

I

and suppose that |I] 5 |J|. Without loss of generality, suppose |I| > |J|. In
light of the above claim, a contradiction is proved if we find vectors g and r
satisfying three conditions:

(1) there do not exist , 8 > 0, at least one non-zero, such that apalg,r) =
ﬁpB(Qa T)»

27



Thus, p(sc) € cone®{pa(sc),pp(s.)}. Taking e close enough to zero that
pa(se) and pp(s.) are linearly independent, we set s = s, for the desired
perturbation.

We now wish to find perturbations, ¢ and r, of p4(s) and pg(s) that
satisfy condition (3) as well as (1) and (2). Let voter j satisfy p;(s) = ap(s)
for some o < 0 but p; # ap. That is, although the voter’s gradient appears
to point in the —p direction when projected, the voter is not a member of J.
Note the immediate implication that p; and p are linearly independent. We
will find arbitrarily close vectors v and w such that p;(v,w) = o/p(v, w) for
no o < 0. Note that

pi-pals) = (pj —p;i(s))  pals) +p;(s) pals)
p;i(s) - pa(s

ap(s) - pa(s)

a(p(s) —p)-pals) + ap-pa(s)
ap - PA(S),

where the second equality follows from (p; —p;(s))-pa(s) = 0 and the fourth
equality from (p(s) ~p)-pa(s) = 0. Similarly, p; - ps(s) = ap - ps(s). These
equalities imply

p; - pals) _ p-pals)
p; - pr(s) p-pa(s)

Since p; and p are linearly independent, there exists t € RY such that pit>0

and p-¢ < 0. Define v. = pa(s) + et and w, = pp(s) — et for € > 0, and note
that

Dj - Ve > p've.
pj'we D We

Thus, p;(ve, we) = o'p(ve, we) for no o/ < 0. That is, the gradient of voter 7,
projected onto the plane spanned by v, and w,, no longer appears to point,
in the —p direction. Since conditions (1) and (2) hold on open sets around
pa(s) and pp(s), we can choose € small enough that (1) and (2) hold for v,
and w,. Since N is finite, we can perturb v, and w, a finite number of times,
if needed, so that the only voters whose projected gradients point in the
—p(ve, we) direction are the members of J. By a similar argument, we can
perturb v, and w, so that the only voters whose projected gradients point in
the p(v,, w,) direction are the members of I, fulfilling condition (3). E
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also adopts his/her ideal point. We first assume n is odd. Suppose (Z4,zp)
is an interior equilibrium. There are three cases to check. First, Z4Pzg.
Letting 2PZ4 and up(x) > up(Z4), condition (C1) implies that (Z4,z) > 5
(Z4,zB), a contradiction. Second, Z4Jzp. As in the proof of Theorem 1,
up(zp) > up(Z4). Then, by condition (C3) and Lemma 1, B can gain by
moving toward I, a small amount, a contradiction. Third, z5PZ%4. By
continuity of the w;’s, there is an open set of platforms containing z5 that
are majority-preferred to 4. Then, by condition (C1) and our assumption
that (Z4,zp) is an equilibrium, we have Vug(zp) =0, i.e., zp = Zp. Then,
as B could in the first case, candidate A can gain by moving to a platform y
such that yPrp and ua(y) > ua(zp), a contradiction. If n is even, then we
need modify the above argument only in the second case. Then #4Izp, and
Lemma 1 implies that moving slightly toward 7 4 leads to a platform majority-
preferred or -indifferent to Z4. If the latter, then, as in the proof of Theorem
1, there is an open set of platforms containing x5 majority-indifferent to 7 4.
If Vug(zg) # 0, then (C4) yields a contradiction. Otherwise, z5 = 7, and
both candidates are at their ideal points. If the former, then the argument
in Theorem 1 yields a contradiction. |
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