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Abstract

We analyze a non-cooperative game in which the set of feasible
strategy profiles is compact and convex but possibly non-rectangular.
Thus, a player’s feasible strategies may depend on the strategies used
by others, as in Debreu’s (1952, 1982) generalized games. In contrast
to the model of Debreu, we do not require preferences to be defined
over infeasible strategy profiles, and we do not require a player’s fea-
sible strategy correspondence to have non-empty values. We prove
existence of Nash equilibria under a lower hemicontinuity condition,
and we give examples of classes of games in which this condition is
satisfied.



1 Introduction

In this paper we prove the existence of Nash equilibria in games in which
the set of feasible strategy profiles is a compact and convex subset of finite-
dimensional Euclidean space. In particular, we allow the set of strategies
feasible for one player to depend on the strategies adopted by others. In
addition to compactness and convexity, we assume that the payoff functions
of the players are continuous and quasi-concave and that each player’s feasible
strategy correspondence, essentially “slices” from the set of feasible profiles,
is lower hemicontinuous. We verify that this condition is satisfied if the set
of feasible strategy profiles is strictly convex or is a simplex, as when profiles
correspond to allocations of a fixed resource across a finite number of uses.
Our interest in the issue of strategic dependence in games stems from two
observations. First, some situations are most parsimoniously modelled in a
way that involves such dependence. A group of oil producers, for example,
cannot decide independently how much oil to pump from a common well,
because the total amount pumped cannot exceed the amount of oil in the
ground. In the realm of politics, a committee may be able to influence
spending on a particular program but, if the total budget is constrained, not
independently of the decisions of other committees. More generally, each
committee may be able to influence some dimension of social policy, which is
subject to convex fiscal, technological, or legal constraints. Second, models
that allow for strategic dependence can be useful as analytic devices, as in the
proof of existence of competitive equilibrium (see Arrow and Debreu (1954))
or of an “issue-by-issue median” (see Kramer (1972) and Shepsle (1979)).
Of course, we are not original in taking up the question of existence in
this setting. Debreu (1952, 1982) allows for strategic dependence in devel-

oping the framework of generalized games. As well, Rosen (1965) permits



dependence in his study of “concave” games. An advantage of our approach
is that, unlike Debreu and Rosen, we only need preferences defined on the set
of feasible strategy profiles, and not on profiles that could never actually ob-
tain. Unlike Debreu, we take the set of feasible strategy profiles (rather than
feasible response correspondences) as primitive. Thus, our conditions for
equilibrium existence do not concern a player’s responses to infeasible com-
binations of strategies. Unlike Rosen, who assumes preferences have concave
numerical representations, we use only quasi-concavity.

After introducing our model and establishing conditions for equilibrium
existence, we end by relating our result to this earlier work in terms of the

assumptions on preferences and strategy sets.

2 The Environment

Let N = {1,...,n} denote the set of players, with a strategy for player 7 being
represented by an element s' of ™, i = 1,...,n, with s = (st,...,8") €
R™ denoting a strategy profile and m = S m? (Throughout the paper,
superscripts will index players, and subscripts will index dimensions in ®™.)
Feasible strategy profiles lie in the set S C R™, where S is assumed to be
non-empty, compact, and convex. The set S determines for each i € N a
correspondence F*: S —— S identifying the feasible changes in a profile s

that player 7 can induce:

Fi(s) = {teS |t =5},
where, for any s € S, s7' = (s!,...,s"71, s+, ..., s"). Alternatively, given

the Euclidean structure of the strategy spaces, we can write this as

Fi(S) = {tES{t:S-l— Z)\jﬁj,/\jE%},

jedt



where d' denotes the “dimensions” of S under #’s control, and, for all j € d',
e; is the usual basis vector for the jth dimension.

From the assumptions on S, we know that, for all i € N and all s € S, the
set F'(s) is non-empty, compact, and convex; furthermore, F** is an upper
hemicontinuous correspondence: for all s € S and all open V C R™ such
that F*(s) C V, there exists an open U C R™such that s € U and t € UNS
implies F*(t) € V. This follows since S is compact and the graph of F*
is evidently closed (see Border (1985), Theorem 11.9). To this we add the
assumption that F* is lower hemicontinuous (LHC): for all s € S and all
open V C R™ such that F(s) NV # 0, there exists an open U C R™ such
that s € U and t € U N S implies F*(t) NV # 0. In Section 4, we show that
the latter assumption is non-trivial,

As for preferences, each 2 € N has a continuous utility function u;: S — R

that is quasi-concave on F'(s) for all s € S.

3 The Existence Result

We extend the definition of Nash equilibrium to our environment in the

obvious way.

Definition: A Nash Equilibrium is a strategy profile s* € S such that, for
all i € N and all s € F*(s*), u;(s*) > u;(s).

Theorem: There exists a Nash equilibrium.

Proof: For all i € N, let b*(s) = arg maxsepi(s) u*(t) denote ¢’s best feasible
responses at s. By the Maximum Theorem, the above assumptions on u* and
F* imply that the correspondence b*: S —— S is upper hemicontinuous and
non-empty-, compact-, and convex-valued. Following the steps of Kramer

(1972) (who showed the existence of a dimension-by-dimension median in a



spatial voting environment), define the correspondence B: S —— S by
B(s) = %}: b(s)
ieN
= {teS|t= —I—Zti and ' € b'(s) for all i € N}.
N ien

Thus, elements of B(s) are (equally-weighted) convex combinations of in-
dividual best responses to s. Since each b' is upper hemicontinuous and
non-empty-, compact-, and convex-valued, so is B (see Border (1985), Theo-
rem 11.27). Therefore, Kakutani’s Fixed Point Theorem yields the existence
of a strategy profile s* such that s* € B(s*).

To see that s* constitutes a Nash equilibrium, note that s* € B(s*) implies

that s* can be written

*__l_i
3~n2t

ieN
1
= -2 [+ > Aes]
ieEN jEdt

for some {Ax}7e,, where t' = s* + 3 en Aje; € b'(s*) for all i € N. Simpli-
fying, '

s° = 8*‘}‘%22)\3'63’

ieN jed

1
= §* 4+ —Z)\kek,
nlc::l

which implies > 5 Aker = 0. Since the basis vectors are linearly indepen-
dent, A, =0 for all k=1,...,m. Thus, s* € bi(s*) for all i € N, and s* is a

Nash equilibrium.

4 Lower Hemicontinuity

One of the advantages of the above formulation is that we can inspect S

directly to verify whether LHC holds, without reference to a player’s feasible
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responses to infeasible combinations of strategies. If S is “rectangular,” ie.,
S =5;%x--x%S,,, then F*is a constant correspondence and so satisfies LHC
(giviﬁg the usual Nash existence result).

Next, we give two conditions on S sufficient for LHC, both of which are
independent of how the dimensions of S are assigned to the players. Thus,
in the remainder of this section, let 4 and d* be an arbitrary player and
subset of {1,...,m}, respectively. Let N(s,¢) denote the open ball of radius
¢ centered at s, and let riS denote the relative interior of .S (the interior of
S when considered as a subset of affS, the affine hull of S).

Claim 1: Let S be strictly convex: s,t € S, s # t, and a € (0,1) imply

as + (1 — a)t € 1iS; then F* is lower hemicontinuous.

Proof: Let t € F'(s) NV, with V open.

(Nt=s LetU=V.Forall 8 eUNS, s € F'(s'), s0 s € Fi(s')NV.

(2) t # s. Let z(a) = as+ (1 — a)t, a € (0,1); then z(a) € F*(s) (since
s,t € F(s) and F*(s) is convex); z(a) € riS (by strict convexity); and, for
a close to zero, z(a) € V (since V is open). Choose one such o, and set
z = z(a). Take € > 0 such that N(z,¢) CV and N(z,¢) NaffS C 1riS. Let
U= N(s,e). For s eUNS, z+5 —s € N(z,¢) CV. Also, z4+5" — s € affS,
and so z + &' — s € 1iS; in particular, z + s —s € S. Since 27" = s~ (which
is implied by 2 € F'(s)), it follows that (z —s)™ =0, i.e., 2+ —s € F(s').
Thus, Fi(s') NV # 0.

Hence, any strictly convex set of feasible strategy profiles will possess a

Nash equilibrium.

Claim 2: Let S be a polytope, the convex hull of a finite set of vectors; then

I is lower hemicontinuous.



Proof: We can write S as the (bounded) polyhedron
S={zeR™|p z>d,j=1,...,1},

where the [ vectors p! € R™ and scalars ¢/ are fixed. Let t € F*(s)NV, with
V open. Partition {1,2,...,l} into two sets, J; and J, as follows:

J1= {jl¥-(s—1t)#0}
Jo = {50 (s—1)=0}.

Take any j € J; (since S is bounded, this set is non-empty), so that p’-s > ¢/
and p? -t > ¢/, at least one inequality strict. Then, for all a € (0,1),
P - (as + (1 —a)t) > . Since V is open, there exists o/ € (0,1) close
enough to zero so that o?s + (1 — o)t € V. Let @* = minje s, o, and define
™ = a*s+ (1 —a*)t. Thus, r* € V and, for all j € Ji,p? - r* > /. Let V* be
an open subset of V' containing r* such that, for all s € V* and all j € Jj,
P s > ¢, Define U =V*+ (s —7*), an open set containing s.

We claim that s € S N U implies F*(s') NV # 0. Specifically, we claim
that s’ + (r* —s) € SN V. (It follows that s’ + (r* —s) € F*(s').) To show
s+ (r* —s) € S, take any j. If j € J; then ' € U implies s' + 1" —s € V*
and, by construction, p’ - (s' +7* —s) > . If j € J; then

P +rr—s) = p-d+(1—a")p (t—s)
= p-g
> .

Thus, ' + (r* —s) € S. Finally, s’ + (r* —s) € V follows from s' € U =
V¥t (s—r*)and V* C V.

If S is a simplex, therefore, as when the issue at hand is the allocation of

a limited resource across a finite number of uses, a Nash equilibrium exists.
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On the other hand, it is not the case that all compact and convex S give
rise to lower hemicontinuous F*® correspondences. The following example
demonstrates that Claims 1 and 2 cannot be generalized to allow for curves

and flat spots simultaneously.

Example 1: Let n = 2, m! = 2, and m® = 1. We let player 1 control
the first two dimensions and player 2 the third dimension of ®*. The set S,
depicted below, is the convex hull of a half-circle in the s; = 0 plane, with
highest point (0, 1, 0), and the point (0, 1, 1).

[Figure 1 here.]

Let s = (0,1,0), so (0,1,1) € F?(s). Taking an open ball of radius 1/2
around (0,1,1), we claim that there is no open set U around s satisfying
F?(s'YyNN(s,1/2) # 0 for all 8 € UNS. To see this, consider the sequence
{s*} converging to s along the edge of the half-circle. For each k, F?(s*) =
{s*}, and therefore F*(s*) N N(s,1/2) = 0.

5 Related Literature

As mentioned in the Introduction, Debreu (1952, 1982) and Rosen (1965)
obtain Nash equilibriﬁm existence results under assumptions different than
ours. As here, Rosen starts with a compact and convex set S of feasible
strategy profiles, where now P? denotes the projection of S onto the dimen-
sions in ™ associated with player 4, and P = P* x -+~ x P™. Rather than
assuming lower hemicontinuity of the individual feasibility correspondences,
Rosen éssumes preferences are defined over all of P, a superset of S, and are
represented by a continuous and concave utility function. This strengthen-
ing of quasi-concavity to concavity is important in the proof, for there the

fact that the sum of concave functions is concave is used (whereas the sum
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of quasi-concave functions is not necessarily quasi-concave). Furthermore,
there exist quasi-concave functions without concave representations (see Ar-
row and Endoven (1961), Kannai (1977), or Sundaram (1996)). Finally, even
the quasi-concave extension of preferences from S to P is not without loss of

generality, as the following example shows.

Example 2: As a first step, suppose n = 2, m* =1, m? = 1, and S is the
unit square in ®2. Give player 1 the utility function u;(sy,sy) = /81 + 82.
Thus, 1’s indifference curves are quasi-linear with infinite slope along the
vertical axis (when s; = 0). Now redefine S and u; by rotating the above set

(with indifference curves) by 45 degrees, as illustrated in Figure 2.
[Figure 2 here.]

We claim that, for this newly defined environment, player 1’s preferences
cannot be extended to a convex weak order on P. To see this, suppose
otherwise and consider strategies s, ', and t in Figure 2. By construction, s
is preferred to s/, and, by convexity, s is preferred to . Then, by continuity,
there exists a strategy t' between ¢ and s close enough to ¢ so that ¢’ is

'preferred to &'. But this violates convexity.

Debreu (1982) maintains the assumption that quasi-concave utility func-
tions are defined on P and takes feasible strategy correspondences defined
on P as primitives for all players.! While he allows the set of feasible strat-
egy profiles to be non-convex, he assumes these correspondences are lower
hemicontinuous with non-empty values. Formally, Debreu begins with non-
empty, compact, and convex sets, A* C R™, of “conceivable” strategies for
each i € N, and he posits feasibility correspondences, F: [peny A" —— At

assumed to be non-empty-, compact-, and convex-valued and continuous.

1Our result is compared more easily to Debreu’s (1982) simplified version of his earlier
existence result.



The set S of jointly feasible strategy profiles are then given by the fixed

points of the product correspondence F=Flx . x F”, or
S = {s€llueyAl| s € Fi(s) for all i € NY.

While S neéd not be convex, preferences need to be defined on all of TTpey A”,
and hence on infeasible strategy profiles. Furthermore, because £ has non-
empty values, feasible responses to infeasible combinations of others’ strate-
gies must be specified. Suppose, for example, that n = 3, that m! = m? =
m® = 1, and that S = {z € R} | L z; = 1}, where each player i makes a
demand s*: then Fy must specify at least one feasible strategy for player 1
when faced with the incompatible demands s? = s% = 1.

Denote by “g-extension” the requirement that quasi-concave utility func-
tions are defined on P, by “c-extension” the requirement that concave utility
functions are defined on P, and by “non-emptiness” the requirement that
non-empty-valued feasible strategy correspondences are defined on P. The
next table lists the various requirements of Debreu (1982), Rosen (1965), and

the current paper.

Debreu Rosen this paper

g-extension . °
non-emptiness .

c-extension .

LHC ° o
convex S ) .

Thus, we add convexity of S in place of Debreu’s g-extension and non-

emptiness conditions, and we add lower hemicontinuity in place of Rosen’s
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assumptions on utility functions. We have not found an example of equilib-
rium non-existence when just one of our conditions is deleted. It is evident,
however, that the demands on such an example would be exceptional: if
convexity of S were satisfied, LHC (by our theorem) and c-extension (by
Rosen’s) would be violated; if LHC were satisfied, convexity of S (by our
theorem) and g-extension (by Debreu’s) would be violated.

Finally, Gale and Mas-Colell (1975) and Schafer and Sonnenschein (1975)
have extended Debreu’s original existence result to environments with non-
ordered preferences. In particular, preferences over strategy profiles may
be incomplete and, therefore, may have no numerical representation. This
generality does not allow g-extension to be dropped completely, however,
because preferences over infeasible strategy profiles are still needed in some
situations. Because preferences are assumed to have open graph, if one profile
s on the boundary of S is strictly preferred to another profile s’ on the

boundary, some infeasible profiles must be preferred to others.
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