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Abstract

We prove uniqueness of stationary equilibria in a one-dimensional
model of bargaining with quadratic utilities, for an arbitrary common
discount factor. For general concave utilities, we prove existence and
uniqueness of a “minimal” stationary equilibrium and of a “maximal”
stationary equilibrium. We provide an example of multiple stationary
equilibria with concave (non-quadratic) utilities.

1 Introduction

Collective decisionmaking, whether in firms, unions, or households in eco-
nomics, or whether in committees and legislatures in political science, often
takes the form of bargaining. Building on Rubinstein’s (1982) model of two-
player, alternating-offer bargaining, Baron and Ferejohn (1989) allow for an
arbitrary number of individuals who must decide how to allocate a “dollar”
among themselves using majority rule. In their model, in any period, one in-
dividual is randomly drawn to make a proposal, which is followed by a vote.
If the proposal receives a majority of the vote, then the dollar is divided
as proposed, and bargaining ends. Otherwise, the individuals consume zero
for the current period, and the bargaining process continues in the follow-
ing period. Jackson and Moselle (2001) consider the problem of dividing






a dollar and simultaneously choosing a point in a one-dimensional policy
space. Banks and Duggan (2000) allow for an arbitrary compact, convex
set of alternatives, for arbitrary continuous, concave utility functions, and
for arbitrary “simple” voting rules, capturing as a special case the tradi-
tional one-dimensional spatial model, common in applications. Thus, rather
than allocations of a transferable resource, alternatives may represent pub-
lic policies, such as public good levels, tax rates, or interest rates, or they
may index the ideological content of legislation in the liberal-conservative
spectrum. Banks and Duggan (2001a) reconsider this model when the sta-
tus quo is an arbitrary element of the policy space, rather than assuming a
status quo payoff of zero, as in earlier models.

Analyses of bargaining typically focus on stationary subgame perfect
equilibria, because of their simplicity (which may create a focal effect) and
tractability. Of theoretical and practical interest, then, is whether station-
ary subgame perfect equilibria are unique in these models. In Rubinstein’s
model with two individuals, there is a unique subgame perfect equilibrium,
and it is stationary, a strong result. Merlo and Wilson (1995) have shown
that, when an arbitrary number of agents bargain under unanimity rule,
there is a unique stationary subgame perfect equilibrium, even when the
amount of the resource may vary stochastically over time. While Baron
and Ferejohn (1989) prove uniqueness within the class of symmetric equilib-
ria, Fraslan (2001) drops this restriction and establishes uniqueness in the
Baron-Ferejohn model. However, Eraslan and Merlo (2001) show that, if
the amount to be divided varies stochastically in the Baron-Ferejohn model,
where majority rule is used, then multiple stationary subgame perfect equi-
libria may obtain. Banks and Duggan (2000, 2001a) show that, in the
one-dimensional spatial model with majority rule and an odd number of
perfectly patient individuals, there is a unique stationary subgame perfect
equilibrium. In it, every individual proposes the median of the individu-
als’ ideal points. And as individuals become arbitrarily patient, equilibrium
outcomes converge to the median. They show that, in the two-dimensional
spatial model, there can exist multiple equilibria.

In this paper, we consider the issue of uniqueness in the one-dimensional
spatial model, allowing for an arbitrary common discount factor. Our anal-
ysis allows for both models of the status quo used in the literature, either
assuming the status quo is an arbitrary element of the set of alternatives, or
essentially giving all individuals a zero status quo payoff. For our first result,
we allow for any simple voting rule that is “proper” (no two disjoint decisive
coalitions) and “strong” (if a coalition is not decisive, then its complement
is), capturing majority rule with an odd number of individuals. We prove



that there is a unique stationary subgame perfect equilibrium under the
standard, but restrictive, assumption of quadratic utilities. The proof uses
the observation, apparently not noted before, that, with quadratic utilities,
individual preferences over lotteries on the real line are order restricted.

For our second result, we drop the assumptions that the voting rule
is proper and strong, and allow for any continuous, concave, strictly quasi-
concave utility functions. We prove that any two stationary subgame perfect
equilibria will be nested, in the sense that the set of proposals that can be
passed (the “social acceptance set”) in one equilibrium will form a subset of
the social acceptance set of the other equilibrium. This allows us to prove
existence and uniqueness of a “minimal” and of a “maximal” stationary sub-
game perfect equilibrium. We provide an example of multiple (non-nested)
stationary subgame perfect equilibria when individuals, odd in number, have
concave (non-quadratic) utility functions and majority rule is used.

Thus, uniqueness holds in an important specification of the model, demon
strating its tractability and its potential usefulness in applications in eco-
nomics and political science. A partial uniqueness result holds more gener-
ally, but we have not investigated bounds on the extent of multiplicity, i.e.,
the gap between the minimal and maximal stationary equilibria. We leave
that as an open question.

2 The Model

Let X C R denote a nonempty, compact, convex set of alternatives, i.e., X
is a closed, bounded interval. Let N = {1,...,n} denote a set of individuals
with n > 2, who play an infinite-horizon bargaining game over the set of
alternatives. The bargaining in every period is described as follows. If no
alternative has been accepted prior to period ¢, then (1) individual s € N is
recognized with probability p;, where p = (p1,...,pn) € A, the unit simplex
in R"™. These recognition probabilities are exogenously fixed throughout the
game. (2) If recognized, 1 makes a proposal p; € X. (3) After observing p;,
all j € N simultaneously vote to either accept or reject the proposal. Let
D C 2M\{0} denote an exogenously fixed collection of decisive coalitions.
(4) If {j € N | j accepts } € D, then proposal p; is chosen and bargaining
ends with outcome p; in period ¢ and in every subsequent period. Otherwise,
each 1 € N gets utility 4; from the status quo in period ¢, and steps 1-4 are
repeated for period ¢ + 1.

Each individual 7’s preferences over sequences of outcomes, and lotteries
over them, are described by a von Neumann-Morgenstern utility represen-



tation u; : X — R and a common discount factor 6 € [0,1) as follows. If
x € X is accepted in period ¢, then i’s payoff is

(1 — 0"V + 6 Ly (),

which represents ’s discounted utility from the status quo for the first ¢ —
1 periods and from z every subsequent period. If no alternative is ever
accepted, then each individual simply receives @;. We assume throughout
that each u; is continuous, concave, and strictly quasi-concave. Banks and
Duggan (2000, 2001a) assume the condition of limited shared weak preference
(LSWP), which is generally weaker than strict quasi-concavity. However, in
one dimension, the conditions are equivalent.

Throughout the paper, we assume that D is nonempty and monotonic:
C € Dand C C ' imply C' € D. For some of our results, we impose
additional restrictions on the voting rule. Say that D is proper if C € D
implies N\C' ¢ D; and strong if C ¢ D implies N\C € D. The core, denoted
K, consists of the alternatives x € X that are weakly preferred to all others
according to the voting rule: for all y € X and all C € D, there exists 1 € C
such that u;(z) > u;{y). If D is proper, then, because X is one-dimensional
and individual preferences are “single-peaked,” K is nonempty. If D is also
strong, then K is actually a singleton and consists of the ideal point % of
some individual k, the “core voter.”

So far we have let the payoff from status quo be arbitrary. Now we define
two alternative assumptions on status quo payoffs.

) There exists ¢ € X such that, for every 1 € N, 4; = u;(q).

e (Al
e (A2) There exists & € R such that, for every 1 € N and z € X,

Al assumes that the status quo is a point in the policy space, as in Banks
and Duggan (2001a). A2 follows Rubinstein (1982) and Baron and Fere-
john (1989) in assuming a “bad” status quo and imposing the additional
normalization that the status quo payoff is the same for all individuals.
Since our focus is only on equilibria in stationary strategies, we provide a
formal definition only of such strategies. A (pure) stationary strategy for i €
N consists of a proposal p; € X to be offered anytime ¢ is recognized, and a
measurable voting rule r; : X — {accept, reject}. For the latter, we will use
the more convenient representation of an acceptance set, A; = r; !(accept),
i.e., the set of proposals that i would vote to accept. Thus, a stationary
strategy for 4 is a pair o; = (p;, 4;), and we let ¢ = (01,...,0,) denote



a profile of stationary strategies. Since Banks and Duggan (2000, 2001a)
prove that every no-delay stationary equilibrium is in pure strategies, there
is no loss of generality in focusing on such equilibria. Given a profile o and
given C C N, define the set

Ae = () 4
1eC

of proposals acceptable to all members of C, and define the social acceptance
set

A = | 4e,
ceD

consisting of proposals that could be passed in any and all periods. The
profile is a no-delay profile if p; > 0 implies p; € A.

Informally, a profile o constitutes a stationary equilibrium if, for all
1 € N, p; is optimal given the acceptance sets of the other individuals,
and A; is optimal given that o describes what would happen if a current
proposal is rejected. Any strategy profile o defines in an obvious manner a
probability distribution over sequences of outcomes and, with it, an expected
utility v;(o) for each 1 € N as evaluated at the beginning of the game. By
stationarity, this is also i’s continuation velue throughout the game, i.e.,
1’s expected utility evaluated at the beginning of next period if the current
period’s proposal is rejected. If o is a no-delay profile, then ¢’s continuation
value has the simple form v;(0) = 3,y pjui(p;)-

Formally, o is a stationary equilibrium if two conditions hold. First, we
require that the individuals’ acceptance sets satisfy weak dominance, l.e.,
individual ¢ votes for proposal z if and only if the utility from z is at least
as great as that of rejecting the proposal and continuing to the next period:
for all 4 € N, we require that

Ay = {ze X |u(z) > (1—0)u+ dvi(o)}.

This condition ensures that the individuals’ votes are best responses, and
that they are weakly undominated in the voting stage. Second, we require
that the individuals’ proposals satisfy sequential rationality, i.e., individual
1, when recognized as proposer, either chooses utility maximizing outcomes
from within A or chooses an outcome that will be rejected, depending on
which yields the higher payoff: for all 1 € NV, we require that

p; € argmax{u;(y) |y € A}



when sup{u;(y) | y € A} > (1 — 6)@; + dvi(0); that p; € X\ A when the
inequality is reversed; and that either of these two conditions is satisfied
when equality holds. In a no-delay stationary equilibrium, we have p; € A
and, consequently, u;(p;) > (1 — §)@; + dvi(o) for all i € N with p; > 0.
Allowing mixed proposal strategies, Banks and Duggan (2000, 2001a)
establish the existence of no-delay stationary equilibria under A1l and A2,
assuming X is a compact, convex subset of finite-dimensional Euclidean
space. Those papers also prove that all no-delay stationary equilibria are
in pure strategies when X is one-dimensional, establishing existence of no-
delay stationary equilibria as defined in this paper. We next turn to the

issue of uniqueness.

3 Results

Banks and Duggan (2000) prove that “core equivalence” holds when X C
R, =1, p; >0 for all i € N, and D is proper: the social acceptance
sets corresponding to no-delay stationary equilibria are singletons and each
consists of the same core point. If D is strong, so the core is a singleton,
then there is a unique no-delay stationary equilibrium. The question of
uniqueness when § < 1, which we take up here, is not addressed. Banks
and Duggan (2000) prove that, under the above conditions and 6 < 1, all
stationary equilibria are no-delay, whereas Banks and Duggan (2001a) prove
this holds unless ¢ € K. Thus, the results below, which are stated in terms
of no-delay equilibria, can be strengthened somewhat: under A2 we can
drop “no-delay,” while under Al we can drop it unless g € K.

We first examine the issue of uniqueness for the important special case
of quadratic utility, in which each individual 7 has an “ideal point” %; € R
such that u;(z) = —(z—&;)?. With the assumption of quadratic preferences,
our first proposition establishes uniqueness when the status quo is a point
in the policy space or when the status quo is bad.

Proposition 1. Assume either A1 or A2. Assume D is proper and strong.
If u; is quadratic for all 1 € N, then there is a unique no-delay stationary
equilibrium.

Proof. Let o and ¢’ be no-delay stationary equilibria, and suppose o # o’.
Since D is proper and strong, K = {Z} for some k € N. Let u = (1 —
8)ug + dvg (o), and v’ = (1 — §)ug + dvg(o’). By Lemma 1 and Lemma 2
in the Appendix, we have A = {z € X | ux(z) > u} and &' = {z € X |
ug(z) > u'}. If u =4/, then A = A’. But then, by no-delay and sequential



rationality, for all ¢ € N, p; = p}, which contradicts o # ¢’. Thus, u # u'.
Without loss of generality, assume u > v, implying A C A’. Then we have
u —u' = d(vk(o) —vg(o’)) > 0. Since § < 1,

u—u < wp(o) —vg(o). (1)

Let C = {1 € N | p; > 0 and p; # p.}. Note that u # v’ implies C # (.
We claim that, for all i € C, ug(p;) = u. Suppose not. Then there exists an
i € C such that p; € int(A), which implies p; = Z; by sequential rationality.
Then since A C A’, sequential rationality implies p; = p}, contradicting
i € C'. We can write

w(o) = Dopu+ Y, piug(i), (2)

ieC 1EN\C

and

w(o) = D () + D piur(p})- (3)

i€C iEN\C
Note that 3 i ¢ pivk(pi) = Yien\c pitk(p;) since, for all i € N\C, either

pi = p; or p; = 0. By no-delay, for all ¢+ € N, ui(p}) > «'. Note that
Y icc pi < 1. Subtracting (3) from (2), we then have

vk(o) —vg(o) = Z pi(u — ug(p;))

1€C
< Yo piu—u)
ieC
< u-—4,
which contradicts (1). O

We next consider the extent to which uniqueness carries over to the
general case of continuous, concave, and strictly quasi-concave preferences.
The next result establishes that every pair of no-delay stationary equilibria
are nested. As before, we use #; to denote the unique maximal alternative
of individual 3.

Proposition 2. Let o and o' be no-delay stationary equilibria, and let A

and A’ be the social acceptance sets corresponding to o and o' respectively.
Then AC A" or A' C A.



Proof. Suppose that A ¢ A" and A’ € A. Let A = [z,7] and A’ = [y,7].
Without loss of generality, assume that £ <y and T < 7. Let Cy = {i €N |
7 € Aj}. Since § € A', C5 € D. Note that there is some 7 € Cy such that
Z; <7 and

uz('f) < (1—(5)ﬂi+6vi(a). (4)

If not, then we can find € > 0 satisfying Z + € € A; for every j € Cy. But
then T + € € A, which contradicts A = [z,Z]. Now we will show that the
existence of such an ¢ implies ¥ — % < y — z. Since 1 € CF,

(1 —68)a; + dv;(0") < w(). (5)

From (4) and (5), we have u;(T) — u;(y) < 6(vi(0) —v;(c')). By strict quasi-
concavity, u;(Z) > u;(7y). Then, because § < 1, we have u;(T) — u;(7) <
v;(0)—vi(c’). Note that the righthand side of the latter inequality is equal to
> jen Pi(ui(pj) —ui(p})), which is less than or equal to max{u;(p;) — u:(p}) |
j € N}. Thus,

ui(®) —ui(@) < max{u(p;) —uilp;) | J € N} (6)

We claim that Z; < y. If T < y, then the claim is true because Z; < 7,
so suppose T > y and Z; > y. Then, however, max{u;(p;) — wi(p}) | j €
N} < u;(g) — ui(T), contradicting (6) and proving the claim. Thus, we have
two cases. Case 1: & < z. Then (6) implies max{u;(p;) — wi(p}) | j €
N} < wi(z) —uily), so we have u;(T) — ui(7) < ui(z) — ui(y). Since z <y
and T < 7, conca_vity of u; implies, ¥ — T < y —z. Case 2%z < < g_
Then (6) implies max{u;(p;) — u;(p;) | 7 € N} < u;(%;) — wi(y). Then
ui(T) — wi(7) < u(%;) — ui(y). By concavity, 7 -7 < y — % < y — z.

Therefore, we’ve shown that

y—T < y—=z

Now, let C; = {i € N |z € A;} € D. Again, there is some i € C such that
Z; > y and u;(y) < (1 —90)us(q) + dvi(o’), and a symmetric argument shows
7 —7Z >y — z, a contradiction. |

Proposition 2 shows that when the policy space is one-dimensional, all
no-delay stationary equilibria are comparable with each other in terms of set
inclusion of the corresponding social acceptance sets. A no-delay stationary
equilibrium ¢ is minimal if A(c) C A(o’) for every no-delay stationary equi-
librium ¢, and it is mazimal if A(c’) C A(o) for every no-delay stationary



equilibrium o’. Under Al and A2, Banks and Duggan (2000, 2001a) prove
upper hemicontinuity as well as existence of no-delay stationary equilibria.
With these results, Proposition 2 yields the following corollary.

Corollary 1. Assume A1 or A2. A minimal and a mazimal no-delay sta-
tionary equilibrium ezist, and they are unique.

Proof. Let ¥ be the set of no-delay stationary equilibria, which is nonempty
by existence theorems in Banks and Duggan (2000, 2001a). Let A* =
Nyex A(o), where A(o) denotes the social acceptance set corresponding to
a given equilibrium o, and define £ = min A* and T = max A*. Construct a
sequence of equilibria {o™}%°_, satisfying A(¢™) C [z — 1/m, T + 1/m)] for
each m in the following way. Since z —1/m ¢ A* and T+ 1/m ¢ A*, we can
find o/, " € X such that z—1/m ¢ A(o’) and T+1/m ¢ A(c"). By Proposi-
tion 2, either A(c') C A(0”) or A(c”) C A(c’). If A(¢") C A(c"), then index
o’ as 0™; and if A(¢”) C A(c¢’), then index ¢ as such. Now consider a se-
quence of profiles of proposal strategies {p™}_;, where p™ = (p{*,...,p")
is the profile of proposal strategies corresponding to ¢™. Since the sequence
{p™}>_, lies in the compact set X™, there is a subsequence that has a limit
point, say p* = (p},...,p}). Let o* = (p*, A*). By upper hemicontinuity
of no-delay stationary equilibria, o* is a no-delay stationary equilibrium,
and by construction, it is minimal. Furthermore, by strict quasi-concavity,
the proposals satisfying sequential rationality, given A*, are unique, imply-
ing uniqueness of minimal no-delay stationary equilibrium. Existence and
uniqueness of maximal no-delay stationary equilibrium is proved similarly,
letting A* = |J,cx A(o) and defining z = inf A* and T = sup A*. O

The preceding proposition leaves open the question of uniqueness, achieved
in Proposition 1 by the decisiveness of the core voter, which is guaranteed by
quadratic preferences. The following example shows that multiple equilibria
are possible when such a decisive voter does not exist.

Example 1. Multiple equilibria

Let X =[0,13], n = 5, ¢ = 0, and 6 = 5/6. Let D be majority rule,
and let p; = 1/5 for every 4. Assume utility functions of individuals are as
follows.

o u(e) = —Jo 1

. us(z) = —|z — 6 ifz >4
YA E 5 - 29 ifx <4



o usz(z) = —|z — §|

~|z — 10| if z € [3,12]
o us(z) = S5z — 22 ifz<3
—5z + 58 ifx >12

e us(z) = —|z — 13|

Consider a strategy profile o = ((p1,41), ..., (ps, As)) in which proposals
and acceptance sets are as follows.

e p1 =4, py =6, p3 =8ps =10, and p5 = 12.

Ar={z e X |ui(z) > -6} =][0,7],

Ay ={z € X |ug(z

)

) = —6} =[16/5,12],

z) > —10/3} = [14/3,34/3),
)

(
(
Az = {z € X | ug(
Ay ={z € X | us(z) > —6} = [4,64/5], and
(

o As={z € X |us(z) > —19/3} = [20/3,13].

Given the profile of acceptance sets, the social acceptance set is A = [4,12],
so o is a no-delay profile. Note that the social acceptance set is different from
the acceptance set of individual 3, who is the core voter in this setting. Here,
the continuation lottery corresponding to o places probability 1/6 on each
proposal, and it can be checked that every A; satisfies weak dominance. For
example, Az described above satisfies weak dominance, since the expected
utility of rejection for individual 3 is

5
(1= 6)us(q) + 6 pius(pi)
=1
= %(U3(0) + u3(6) + u3(8) + ug(10) + uz(12))
= %(—8—4—2—{-0—2—4)
10

3
Also, given that A = [4,12], each proposal is sequentially rational. Thus, o
is a no-delay stationary equilibrium.
Now consider another strategy profile o/ = ((p},4)),..., (v}, A4L)) in
which proposals and acceptance sets are as follows.

10



Py =3, ph =6, py =8, pj = 10, and pf = 13.

o Al ={z€X|ulz)>—6}=10,7],

o A ={z€X |ua)>-T7}=][3,13],

o AL ={z€X |us(z) > —11/3} = [13/3,35/3],
o A, ={zeX |uyz)>~T7}=][3,13], and

o Al ={z€ X |us(z) > ~19/3} = [20/3,13].

Given the profile of acceptance sets, the social acceptance set is A = [3,13],
so o also is a no-delay profile. It can be easily verified that o' is also a
no-delay stationary equilibrium.

A Appendix

In the following two lemmas, we assume that D is proper and strong, and we
show that, in any no-delay stationary equilibrium, the social acceptance set
equals the acceptance set of the core voter k, assuming quadratic preferences
and either Al or A2. The first result is proved by establishing that the
individuals’ preferences over lotteries on X are order restricted, in the sense
that they can be ordered, iy, 49, ..., in (where 4; is the jth individual in the
ordering), so that, for every pair of lotteries A and X,

G| Juid\ > fug,dN} < {5 fug,dh = fug,dN}
< {j | Jugdd < fugdX'}

or

{71 Juidh < JuydN} < {j | Jugydh = [ugyd\}
< {j | f’ulijcp\> fuijd)\'},

where I < J indicates that 7 < j for all 4 € I and all j € J (cf. Rothstein,
1990). As a consequence, the core voter k is “decisive,” i.e., k prefers a
lottery A to a lottery X if and only if all members of some decisive coalition
prefer A to A'. The lemma extends Lemma 1 of Banks and Duggan (2001b)
to all proper, strong voting rules, whereas their Lemma 1 considered only
majority rule (and allowed for a continuum of voters). The key property of
quadratic utilities used is mean-variance analysis: we can write #’s expected

11



utility from a lottery A as u;(m) — v, where m is the mean of A and v is the
variance.

In the proofs of both lemmas, let Cr, = {i € N | & < &} and Cg =
{1 € N | &; > Z}. Note that Cr, ¢ D and Cg ¢ D, and since D is strong,
Cr U{k} € D, and CRU{k‘} e D.

Lemma 1. Assume A1. Assume D is proper and strong. If u; is quadratic
for all i € N, then in every no-delay stationary equilibrium o, A = Ay.

Proof. We claim that individual preferences over lotteries on X are order
restricted when individuals are ordered in the order of their ideal points.
For any distinct pair of lotteries A and X, let

o o= {i / wi(2)\(dz) > / wi(2)N (d2)}
Co = {il / wi(2)A(dz) = / wi(2)N (d2)}
Gy = {i / wi(2)A(dz) < / wi(2)N(d2)}.

Thus, we claim that if h € C1, i € Cy, and j € Cs, then either 2, > z; > 7,
or Zp, < T < Z;. Let m and v denote the mean and variance of A, and
let m' and v' denote the mean and variance of \. If m = m/, then every
individual prefers the lottery with smaller variance, so the claim is vacuously
satisfied. Suppose m # m'. Since h € Cy, we have up(m) —v > up(m') — o',
or equivalently

up(m) —up(m') > v—2.

Similarly,
and

Thus, we have
un(m) — un(m’) > ui(m) —ui(m’) > u;(m) — u;(m')
If m > m/, then this implies &5, > &; > Z;; if m < m/, then it implies

Zp, < I; < Zj. This establishes the claim. Consider any no-delay stationary
equilibrium o. Take any = € Ag, i.e., ug(z) > (1 — d)uk(q) + dvg(o). This

12



means that individual ¥ weakly prefers the point mass on z to the lottery
corresponding o, namely, the lottery that puts probability 1—6 on ¢ and, for
each ¢ € N, probability dp; on p;. By order-restriction, either z € Ag, ygr)
or z € Acgpuqr). This establishes Ay, C A. Now take any z € A, and
suppose = ¢ Ag. Since k weakly prefers the lottery corresponding to o to
the point mass on z, order-restriction implies either {7 | z € A;} C Cp or
{i |z € A;} C Cr. But since Cr, ¢ D and Cg ¢ D, we have z ¢ A. This
contradiction establishes A C Ag. O

Lemma 2. Assume A2. Assume D is proper and strong. If u,; is quadratic
for alli € N, then in every no-delay stationary equilibrium o, A = Ay.

Proof. Consider any no-delay stationary equilibrium o, and let m and v

denote the mean and variance of the lottery with probability p; on p; for

each © € N. Take any z € X. If £ = m, then every individual weakly

prefers z, so, trivially, z € A if and only if z € Ag. Suppose z < m, let

u,(z) = —(x—2)? be the quadratic utility function with ideal point z, define
f(z) = wu,(z) — duy(m),

and note that f(Z;) > (1 — §)@ — dv if and only if z € A;. We claim that

there exists T € R such that x € A; if and only if Z; < Z. Note that, because
o < ui(z), every individual with ideal point Z; < z weakly prefers = to any
lottery with mean m and variance v, i.e.,

ui(z) > (1 —=90)u+ 6(u;(m) —v).
Thus, f(z) > (1 — )% — dv for all z < z. Take any z > z, and note that
fl(z) = =2(1=8)z+2(z—dm)
= —2(1-98)z+2(1—-30)m+2(x—m)
= 2(1 —=90)(m—2)+2(z—m).

This is clearly negative if m < z. If x < 2z < m, then

f'(z) < 2(m—2)+2(z—m)
< 2(z %)
< 0.

Thus, f'(z) < 0 for all z > z, which establishes the claim. Now note that
z € Aifand only if {7 | z € A;} € D, which, by the above argument, holds
ifand only if C* = {i | #; < T} € D. If z € Ay, then Z} < T, which implies
that Cr, U {k} is a subset of C*, so C* is decisive, so z € A. If z ¢ Ay,
then Z; > 7, which implies that C* is a subset of Cr, so it is not decisive,
so z ¢ A. A symmetric argument can be made for the z > m case. g

13
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