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Abstract

This paper extends the theory of the core, the uncovered set, and the related
undominated set to a general set of alternatives and an arbitrary measure space
of voters. We investigate the properties of social preferences generated by simple
games, we extend results on generic emptiness of the core, we prove the general
nonemptiness of the uncovered and undominated sets, and we prove the upper
hemicontinuity of these correspondences when the voters’ preferences are such
that the core is nonempty and externally stable. Finally, we give conditions
under which the undominated set is lower hemicontinuous.






1 Introduction

Since the seminal work of Downs (1957), followed by Davis and Hinich’s (1966)
introduction of the mathematics of Euclidean preferences, Plott’s (1967) treat-
ment of contract curves and symmetry, and Kramer’s (1972) adaptation of Far-
quharson’s (1969) analysis of strategic voting in committees with spatial prefer-
ences, the spatial theory of elections and committees has occupied a prominent
theoretical status within political science. As pointed out by Ordeshook (1993),
“The idea of spatial preferences, of representing the set of feasible alternatives
as a subset of an m-dimensional FEuclidean space, of labelling the dimensions
‘issues,” of assuming that people (legislators or voters) have an ideal policy on
each issue, and of supposing that each person’s preference (utility) decreases
as we move away from his or her m-dimensional ideal policy, is now common-
place and broadly accepted as a legitimate basis for modelling electorates and
parliaments.” However, following the results on the generic emptiness of the
majority core and McKelvey’s (1976,1979) “chaos” results on intransitive social
preferences in multiple dimensions, some scholars have concluded that political
decisions represent arbitrary outcomes highly dependent upon the specific de-
tails of the particular institutions under consideration (cf. Riker (1980)). This
point of view has been challenged by others searching for institution-free prop-
erties of social choice to provide bounds on equilibrium predictions and limit
the extent of instability.

In that vein of research, the notion of uncovered set occupies a central po-
sition. The uncovered set was defined originally by Fishburn (1977) and Miller
(1980) and axiomatized by Moulin (1986) in the context of tournaments, i.e.,
binary relations representing majority preferences of a society over a finite set
of policy alternatives. McKelvey (1986) was the first to consider the uncov-
ered set in the standard spatial model, where policy alternatives are modelled
as points in a convex subset of Fuclidean space and majority preferences over
social policies are determined by the continuous, strictly convex preferences
of a finite electorate. Under these assumptions, McKelvey demonstrates that
the uncovered set is always nonempty and, under the more specific assumption
that preferences are Kuclidean, he shows that this set is a centrally located re-
gion of the policy space. The precise calculation of the uncovered set, or more
modestely the search of bounds sharpening those discovered by McKelvey in
some specific situations, is the subject of Feld, Grofman, Hartley, Kilgour, and
Miller (1987) and Hartley and Kilgour (1987). A more general result on the
nonemptiness of the uncovered set is derived by Bordes, Le Breton, and Salles
(1992), with a yet more general result derived by Banks, Duggan, and Le Breton
(2000). An important conclusion of McKelvey’s (1986) is that the uncovered
set bounds equilibrium outcomes in several different institutional settings, in-
cluding sophisticated voting outcomes for an important class of binary trees
and mixed strategy equilibria of the two-party competition game. His claim for
the latter setting is formally proved and extended by Banks, Duggan, and Le



Breton (2000). Finally, Cox (1987) has shown that, when the number of voters
is odd, the uncovered set collapses to the core as voter preferences are aligned
to make the core nonempty.

The main objective of this paper is to contribute further to this research pro-
gram while discarding the standard assumptions on the set of alternatives and
nature of the electorate. We impose general topological conditions on the set of
alternatives, unifying the cases of a finite set and a convex subset of Euclidean
space, and we assume an arbitrary measure space of voters, capturing a finite
electorate and a continuous distribution of voters as special cases. For instance,
in the Euclidean setting, where preferences are parameterized by ideal points,
say in R™, we want to consider both the case where the electorate is defined by
a finite number of points in R™ and the case where the electorate is described by
a density with respect to the Lebesgue measure on R™. As observed by McK-
elvey, Ordeshook, and Ungar (1980), though empirical preference distributions
are discrete, a substantial literature models them as continuous. For example,
Downs (1957) and Tullock (1967) discussed, in very unformalized terms, the
question of equilibria for continuous voter distributions. In the Euclidean set-
ting, Davis, Degroot, and Hinich (1972) allowed for a continuum of voters and
found that the existence of majority equilibrium was equivalent to the existence
of a total median in the distribution of ideal points. McKelvey, Ordeshook, and
Ungar (1980) have extended Plott’s necessary and sufficient conditions for the
existence of majority rule equilibria to the case of a continuous distribution of
voters.

There are several reasons why this level of generality is desirable. First, reg-
ularity conditions across voter preferences may be more easily formalized and
analyzed. This type of concern is transparent in the work of Grandmont (1978)
on intermediate preferences and in the work of Caplin and Nalebuff (1988), who
have shown in the Euclidean setting that, if a continuous voter distribution is
described by a log-concave density and we increase the majority quota to 64%
or more, then there exists an undefeated policy. Second, the continuous setting
is an important step toward our understanding of finite but large electorates.
When we deal with a finite electorate, we do not usually explain how the diver-
sity of preferences among the electorate is generated, i.e., we simply consider
as given a finite list of points in the relevant space of preferences. But suppose
that the finite list of preferences in the electorate is a sample of independent
observations from an underlying continuous distribution on preferences. Then,
if the electorate is large, we can deduce from the Glivenko-Cantelli theorem
(Hildenbrand (1974)) that the continuous distribution is a good “approxima-
tion” of the finite one. Consequently, if continuity results can be established on
some sets, e.g., the uncovered set, the sets defined for the limit distribution will
“approximate” the sets for large, finite electorates. Third, as long as elections,
and not committees, are the main concern of our study, our results should not
be too sensitive to specific assumptions on the number of players, e.g., oddness.

In this paper, we offer a theory of the core, the uncovered set, and the



related undominated set for the general spatial model. In Section 2, we intro-
duce in abstract terms the above choice sets and derive sufficient conditions for
these choice sets to be nonempty, and we establish some additional properties
of these sets. Then, in Section 3, we formally define an electorate as a simple
game imposed on a measure space of voters, and we investigate the properties of
electorates. In Section 4, we show how social preferences can be obtained via a
simple game, and we derive sufficient conditions on the electorate to exploit the
results of Section 2 on the nonemptiness of the choice sets. Notably, we intro-
duce a dispersion condition on voter preferences that plays a role analogous to
the role played by oddness in the finite context. Finally, in Section 5, we present
our results on the core, the uncovered set, and the undominated set generated
by electoral preferences. We first prove the generic emptiness of the core, and we
prove the general nonemptiness of the uncovered set and, under slightly stronger
conditions, of the undominated set. These sets are upper hemicontinuous when
the voters’ preferences are such that the core is nonempty and externally stable.
As the supports of mixed strategy equilibria of the two-party competition game
are contained in the uncovered set, this gives us upper hemicontinuity of equi-
librium outcomes of electoral competition. Finally, we give conditions under
which the undominated set is lower hemicontinuous, allowing us, by Michael’s
selection theorem (Aliprantis and Border (1999), Theorem 16.61) to take a con-
tinuous selection from its closed, convex hull. An appendix contains a general
analysis of binary relations and proofs of propositions omitted from the text.

2 Choice Sets

We consider an abstract setting in this section, letting P be a strict preference
relation and R a weak preference relation over a set A4 of alternatives, assumed to
be a Hausdorff topological space. We assume here that P is irreflexive, that R is
reflexive, and that the relations are dual: aRb if and only if not bPa. Note that
P is asymmetric if and only if R is complete, in which case P is the asymmetric
part of R.! We say P is a tournament if it is also connected, in the sense that
a # b implies aPb or bPa. Given an arbitrary relation Q on A, we denote by
Q(a) the set {b € A: bQa} and by Q~1(a) the set {b € A : aQb}. An alternative
a is Q-mazimal if, for all b € A, bQa implies a@Qb. I @ is asymmetric, this is
equivalent to Q(a) = 0. If Q is complete, this is equivalent to Q~*(a) = X. For
now, we abstract from the details of P and A, though later A will be given the
interpretation of a policy space and P will represent strict social preferences,
derived from an explicit collection of “winning coalitions.”

A central concept in what follows is the core of P, defined as the set of

!The conditions of asymmetry and completeness are standard, but they are only used for
two results at the end of this section. We state our other results without those conditions, to
maximize their applicability to the analysis of social choice.



P-maximal alternatives:
K = {ac€A:P(a)=0}

We define the dominance relation of P, denoted D, as follows: aDb if and only
if P(a) C P(b) and R(a) C R(b), at least one inclusion strict. The undominated
set of P consists of the D-maximal alternatives:

UD = {a€A:D(a)=0}.

Define the covering relation of P, denoted C, as follows: aCb if and only if aPb,
P(a) C P(b), and R(a) C R(b). Equivalently, aCb if and only if aPb and aDb.
The uncovered set of P consists of the C-maximal alternatives:

UC = {a€A:Cla) =0}

It is clear from these definitions that K UUD C UC. The next proposition
gives a condition on preferences sufficient for external stability of the core and
for the nesting of these sets. Note that the condition holds if P is a tournament
and A is a finite set. Given a set X, X denotes the closure of X.

Proposition 1 Assume R(a) = P(a)U{a} foralla € A. For alla € K and all
be A\ {a}, aPb. In particular, K is empty or singleton, and K CUD C UC.

Proof: Take any a € A and any distinct b € A. If not aPb, then b € R(a) =
P(a) U {a}. Since b # a, P(a) # 0, contradicting @ € K. Thus, K cannot
contain more than one element. If a € K and bDa for some b € A, then
b € R(a) = P(a) U {a}. Since D is asymmetric, b # a, and we again arrive at a
contradiction. Thus, K CUD. |

Though K can be empty in the absence of acyclicity or semi-convexity of
P, UD and UC are nonempty under rather weak assumptions. Our results on
nonemptiness and external stability of the above sets follow from the general
analysis of maximal elements in the appendix.

Proposition 2 Assume R(a) is compact for some a € A, and R(b) is closed

for allbe A. Then UC # 0.

The nonemptiness of the undominated set is obtained under stronger as-
sumptions on P.

Proposition 3 Assume R(a) is compact for some a € A, R(b) is closed for all
b€ A, and R(") is lower hemicontinuous as a correspondence. Then UD # 0.

We now establish that, under the assumptions of Proposition 3, the undom-
inated set is externally stable.



Proposition 4 Assume R(a) is compact for all a € A and R(-) is lower hemi-
continuous as a correspondence. If a ¢ UD, then there exists b € UD such that
bDa.

Under the same assumptions, the external stability of the uncovered set is
also obtained.

Proposition 5 If R(a) is compact for alla € A, if R(-) is lower hemicontinuous
as a correspondence, and if a ¢ UC, then there exists b € UC such that bCa

Proof: Let ¢ € A be such that cCa. If ¢ is undominated, then it is uncovered
and the claim is proved. If ¢ is dominated, then, by Proposition 4, there is some
undominated, hence uncovered, b such that bDec. Then bDcCa implies bCa. 1

We next give conditions that can be used to simplify the definitions of the
domination and covering relations. A version of the following result for finite
electorates with convex preferences can be found in McKelvey’s (1986) Proposi-
tion 3.3. Note that the conditions of the proposition hold if P is a tournament
and A is finite. Given a set X, X° denotes the interior of X.

Proposition 6

1. If R(a) = P(a) U {a} and R(b) = P(b) U {b}, then P(a) C P(b) implies
R(a) C R(b).

2. If P(a)U{a} = R(a)°U{a} and P(b)U{b} = R(b)°U{b}, then R(a) C R(b)
implies P{a) C P(b).

Proof: 'To prove the first part of the proposition, suppose P(a) C P(b). Clearly,

P(a)U{a} C P(b)U{a}. Note that b ¢ P(a) by irreflexivity of P, so a € R(b).
Therefore,

R(a) = P(a)U{a} C P(b)U{a} C R(D),
as required. To prove the second part, suppose R(a) C R(b). Then
P(a)U {a} = R(a)°U{a} C R(b)°U{a,b} = P(b)U{a}.
Since a ¢ P(a) by irreflexivity of P, P(a) C P(b), as required. 1

Before continuing, we add some continuity to the condition used in the sec-
ond part of the previous proposition, and we note an alternative formulation of
the augmented condition. It is used in several results to follow.

Lemma 1 P(a)U{a} = R(a)° U {a} and R™'(a) is closed for all a € A if and
only if R~(a) = P~1(a) U {a} and P(a) is open for all a € A.



Proof: First assume P(a) U {a} = R(a)° U {a} and R~1(a) is closed for all
a € A. Since R7!(a) is closed, it follows that P(a), its complement, is open.
Note that b € P~!(a) only if a € R(b)°, which implies b € R~*(a). Thus,
P~'(a) C R7(a). Since R is reflexive and R~'(a) is closed, we then have
P~1(a) U {a} C R'(a). Now take any b € R~*(a) such that b # a. Suppose
that b ¢ P~1(a), ie., b € R(a)°. Since b # a, we then have b € P(a), a
contradiction. Therefore, b € P—1(a), as required.

Now assume R~!(a) = P~1(a) U {a} and P(a) is open for all a € A. Since
P(a) is open, it follows that R~!(a), its complement, is closed. Note that
b € P(a) implies a € P~1(b) C R71(b), so b € R(a). Thus, P(a) C R(a). Since
P(a) is open, we then have P(a) U {a} C R(a)° U {a}. Now take any b € R(a)°
such that b # a. Suppose b ¢ P(a), i.e., b € R™1(a). We then have b € P~1(a),
contradicting b € R(a)°. Therefore, b € P(a), as required. |

We now study the possibility of deriving a version of the “two-step” principle
(Miller (1980)) in our abstract setting. We first prove a simple lemma, a version
of which can be found in McKelvey’s (1986) Proposition 3.4. For a binary
relation @ on A, we denote by Q?(a) the set Q(a) U{b€ A :3c € A,bQcQal.

Lemma 2 Assume R is complete and P is asymmetric.
1. If a € P%(b), then P(b) € P(a) and R(b) Z R(a).
2. If P(b) € P(a) or R(b)  R(a), then a € R?(b).

8. If R"(a) = P~1(a) U{a} and P(a) is open for all a € A, then a € P%(b)
if and only if P(b) € P(a).

4. If R(a) = P(a)U {a} and P~1(a) is open for all a € A, then a € P?(b) if
and only if R(b) € R(a).

Proof: To prove the first part of the lemma, suppose a € P2(b), so either aPb
or there exists ¢ € A such that aPcPb. In the first case, b € R(b) \ R(a).
In the second case, by completeness, we have ¢ € R(b) \ R(a). In both cases,
R(b) € R(a) and, by asymmetry of P, P(b) € P(a). To prove the second part
of the lemma, note that P(b) € P(a) means aRcPb for some ¢ € A, and that
R(b) € R(a) means aPcRb. In both cases, by completeness, a € R?(b). To
prove the third part of the lemma, note that one direction follows from part 1.
For the other direction, suppose P(b) € P(a), so that there exists ¢ € A such
that aRcPb. If ¢ = b, the argument is finished. Otherwise, ¢ € P~1(a). Since
c € P(b), an open set, there exists d € P~1(a) N P(b), as required. To prove the
fourth part of the lemma, note that one direction follows from part 1. For the
other direction, suppose R(b) Z R(a), so there exists ¢ € A such that aPcRb.
If ¢ = b, the argument is finished. Otherwise, ¢ € P(b). Since ¢ € P~!(a), an
open set, there exists d € P~1(a) N P(b), as required. |




We now state a form of the two-step principle. The first part of Proposition
7 is as in McKelvey’s (1986) Proposition 4.1. There, however, McKelvey also
states that UC is contained in the closure of (¢ 4(P?(a) U {a}), but his proof
contains an error, and we have not been able to verify the result.

Proposition 7 Assume R is complete and P is asymmetric.
1. Naea(P*(a) U{a}) CUD CUC C N,y R¥(a).

2. Assume R7(a) = P~1(a) U {a} and R(a) = P(a) U {a} for all a € A,
and P is open. Ifa € UD and b ¢ UD, then a € P?2(b). Ifa € UC and
bg UC, then a € P2(b).

8. In addition, assume that P(a) = P(b) implies a = b for all a,b € A. If
a € UD, then, for allb € A\ {a}, a € P%(b).

Proof: That (,c4(P?*(a) U {a}) C UD follows from the first part of Lemma
2. That UC C (),c4 R?*(a) follows from the second part of Lemma 2. To
prove the second part of the proposition, take a € UD and b ¢ UD. Let cDb.
Since not cDa, either P(c) € P(a), or R(¢) € R(a), or both P(c) = P(a) and
R(c) = R(a). In the first two cases, the third and fourth parts of Lemma 2
yvield @ € P?(c) and, therefore, a € P?(b). In the last case, aDb, and at least
one of P(a) C P(b) and R(a) C R(b) holds strictly, and Lemma 2 again implies
a € P%(b). Now take a € UC and b ¢ UC. Let cCb. Since not cCa, there
are four possible cases: the three above, which proceed as before, and aRe. If
a = ¢, then, since cPb, we are done. If a # ¢, there exists d € P~1(a) N P(b),
as in the proof of the third part of Lemma 2. To prove the third part of the
proposition, take a € UD and b # a. Then either P(b) € P(a) or R(b) € R(a),
both implying a € P2(b), or P(b) = P(b), which implies a = b, a contradiction.

|

3 Electorates

The purpose of this section is to introduce a general framework, describing an
electorate as a measurable mapping from an abstract set of voters into the set of
continuous weak orderings. The framework is general enough to accommodate
a finite number or a continuous distribution of voters. An electorate consists of
a probability space (2, X, ), where  is a set of voters (or voter “types”), ¥ a
o-algebra on (1, and A a probability measure, together with a preference profile
p, formalized as follows. Let R denote the set of continuous weak orders on
A (complete, transitive relations, closed in A x A) endowed with the topology
of closed convergence (Hildenbrand (1974)). Endowing R with the Borel o-
algebra, a profile p is a measurable mapping p: Q2 — R, where p(w) is the
weak preference relation of voter w. Let m(w) denote the asymmetric part of



p(w), the strict preference relation of voter w. Note that, given any a,b € A,
the set {R € R : aRb} is closed in the topology of closed convergence, and,
since p is measurable, the coalitions {w € Q : ap(w)b} and {w € Q : an(w)b}
are YX-measurable. If Q is a topological space and p is continuous, then these
sets are closed and open, respectively. Except for the regularity imposed by
measurability, the notion of electorate is simply the natural extension of the
notion of profile used when there is a finite number of voters.

We now turn to our formal representation of the distribution of power in
the electorate, a concept that underlies our analysis of social preferences in the
next section.

Definition 1 A simple game is a collection W C X of coalitions such that
D¢gW, QeW, and, forallS e W and all T € T, A(S\T) =0 implies T € W.

The coalitions in W are winning coalitions. Note that, by our definition,
winning coalitions can be thought of as equivalence classes: two sets that differ
only on a set of A-measure zero have the same status as winning or not winning.
An implication is that the collection of winning coalitions cannot be defined
without reference to the distribution of voter types. Furthermore, we incorpo-
rate a monotonicity condition into our definition: if S € W and T € ¥ satisfies
SCT,thenT eW.

The following properties of simple games will be used in the sequel. Given
a set X, we denote by X° its complement. We let B denote the set {S¢: S ¢
W}, the elements of which are blocking coalitions, and we let £ denote the set
B¢ = {S € ¥: 5° € W}, the elements of which are losing coalitions. Note that
B is a simple game, but £, because it violates monotonicity, will not be.

Definition 2 A simple game W is
1. proper if W C B.

2. open from below if, for all sequences {S,} in T and all S € W, S, 1 S
implies there exists m such that, for alln > m, S, € W.

3. closed from above if, for all sequences {Sp} in W and all S€ X, S, 1 S
implies S € W.

4. A-continuous if, for all S € W, there exists € > 0 such that, for all T ¢ T,
AMS\T) <eimpliesT e W.

5. anonymous if, for all S € W and all T € T, N(T') = A(S) implies T € W.

6. semi-strong if, for all S € Band alT € £, S CT and M(T\ S) > 0
implies T € W.

7. strong if BC W.



Note that W is proper if and only if S,T € W implies A(SNT) > 0. The
next proposition establishes connections between some pairs of concepts defined
above.

Proposition 8 W is open from below if and only if B is closed from above.

Proof: By definition, W is open from below if and only if, for all sequences
{Sn} in ¥ and all S € W, S, 1+ S implies there exists m such that, for all
n > m, S, € W. Equivalently: if S, 1S and there is some subsequence of {S,,}
(also indexed by n) such that, for all n, S, ¢ W, then S ¢ W. Equivalently:
if S5, | S¢ and there is some subsequence of {S%} such that, for all n, S$ € B,
then S¢ € B. And the latter means that B is closed from above. |

If Q is finite, then every simple game is clearly A-continuous, open from
below, and closed from above. The next proposition illustrates a general nesting
of some of the former concepts.

Proposition 9 If W is A-continuous, then it is open from below.

Proof: Suppose W is A-continuous, and take a sequence {S,} in ¥ and § € X
such that S, 1 S. By continuity of A as a probability measure, we have A(S,,) —
A(S), and then A-continuity of W implies that S,, € W for high enough n. K

The next proposition establishes an implication of openness from below when
voters are continuously distributed. Note that the proof of the proposition does
not rely on monotonicity of W and B, so we can use it to prove that, if B is
closed from above, then W is not.

Proposition 10 Assume A is non-atomic. If W is open from below, then B is
not open from below.

Proof: Assume W is open from below, and suppose B is also open from below.
Let 57 € W. Since W is open from below and ) is non-atomic,

E, = {6>0|3TEWT§Sl,)\(Sl\T)ZE}

is nonempty. Let e = sup Eqy > 0, and take S € W such that S C 5; and
A(S1\ S2) > €1/2. Since W is open from below and ) is non-atomic,

Ey = {e>0]|3TeW:TC S, AS2\T) > ¢}

is nonempty. Let €2 = sup Ey > 0, and take S3 € W such that Sz C Sy and
A(S2\S3) > €2/2, and so on. Note that €, — 0. Define S =7, S,,. If S ¢ W,
then S°¢ € B, and, because B is open from below, we have S5 € B for high enough
n, contradicting S, € W. Thus, S € W. Note that A(S) > 0, for otherwise
0 € W. But then there exists T € ¥ such that T C S and A(S \ T) > 0. Take
n high enough that €, < A(S\ T'), and note that A(S, \T) > A(S\T) > €, a
contradiction. Therefore, B is not open from below, as claimed. |



If W is open from below and anonymous, it is easy to see that it is simply
defined by a quota ¢ € [0, 1}, as follows:

S € W if and only if A(S) > g,

where ¢ > 1/2 if W is proper. In fact, quota rules of this form are actually
A-continuous. Of course, strong implies semi-strong. The two conditions are
distinguished from each other in one important case: if  is finite, then majority
rule is always semi-strong but not always strong, e.g., when X is the counting
measure and the number of voters is even. Note that W is strong if and only if
B is proper; and W is proper if and only if B is strong.

In models with a finite number of voters, majority rule (i.e., W= {S ¢ % :
A(S) > 1/2}) with n odd and dictatorship (i.e., W = {S € £ : ' € S} for
some w' € ) are examples of proper, strong simple games. If the electorate is
a continuum and voters are continuously distributed, however, majority rule is
not strong and dictatorship is not proper. In the case of majority rule, we can
always partition {2 into two sets of exactly equal A-measure, neither constituting
a majority. In the case of dictatorship, {w'} has A-measure zero, and so § €
W, contrary to the definition of a simple game. But there is an interesting
alternative to pure dictatorship: define W to consist of the coalitions containing
an open set around w’. As long as A has a positive density, so that every
open set has positive A-measure, this simple game is proper. Moreover, given
any continuous profile p, voter «' is, in fact, a dictator: if am(w')b, then, by
continuity, an open set around w' will share that strict preference, so aPb. The
collection of winning coalitions in the latter example is not strong, however.

Do proper, strong simple games exist when the electorate is a continuum
and voters are continuously distributed? As the next proposition shows, the
answer is affirmative. In fact, we prove the existence of a proper and strong
simple game such that, for every S,T € W, we have SNT € W.2

Proposition 11 There exists W that is proper and strong and such that, for
all S, TeW,SNnTeW.

Proof: We call F C ¥ a measurable filter if (i) X € F, (ii) § ¢ F, (iii) for all
Se€Fandall T € L, A\(S\T) = 0 implies T € F, and (iv) for all S,T € F,
SNT € F. Let F be the collection of all measurable filters. We claim there is
a maximal element F* in F. To see this, first note that

{SeST|AS) =1} €F,

so the collection is nonempty. Take any chain C of measurable filters, and note
that | J C is itself a measurable filter. Thus, existence of F* follows from Zorn’s

Z2Technically, the simple game we establish differs from an ultrafilter in that S € W or
S¢ € W applies only to measurable sets S. Our simple game is necessarily “free,” in the sense
that ﬂ W = 0, when X is non-atomic.
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lemma. Now we claim that 7* is strong, in the sense that, for all S € X, either
S € F* or §¢ € F*. Suppose not, and define

FS = {TeX|TeFo(VNS)\T) =0 for some V € F*}.
Note the following properties of this collection.

1. X e FS.
This is obvious.

2. For all 8’ € F5 and all T' € £, A(S' \ T") = 0 implies T" € F5.

Take any S’ € F5 and T' € ¥ such that A(S'\ T') = 0. If S’ € F*, then
T' € F* follows, so T' € FS. Otherwise, there exists V € F* such that
A(VNS)\S) =0. Then A(VNS)\T") =0,s0 T' € F5.

3. Forall S, T" € F5,8'NT' € FS.

Take any S',T' € FS. If both coalitions are in F*, then ' NT' € F*, so
S'NT' € F5. If ' € F* and T' ¢ F*, then there exists V € F* such that
MV NS)\T')=0. Then S'NV € F*, and A((S'NV NS\ (S'NT")) =0, so
S'NT' € FS. If §',T' ¢ F*, then there exist V, W € F* such that A(V N S) \
S = M(WNS)\T") = 0. Then VAW € F*, and N(VAWNS)\ (S'NT")) = 0,
so S'NT' € F3. Of course, conditions 1 — 3 hold for

F = {TeX|TeF or M((VNS)\T) =0 for some V € F*}

as well. Finally, suppose § € 75N F5°. Since § € F5\ F*, there exists V € F*
such that A(V N S)\ 0) = 0, ie,, A(V) = A(V N 5°). Similarly, there exists
W € F* such that A(W) = A(W N S). Then A(V N\W) =0, but VAW € F*,
so @ € F*, a contradiction. Therefore, assume without loss of generality that
§ ¢ F5, which implies F° € F, contradicting maximality of F*. Therefore, F*
is strong, and we may set W = F*. |

As we formalize at the end of the next section, proper and strong simple
games are “rare” when the preferences of voters are sufliciently heterogeneous:
such simple games are inconsistent with a fundamental continuity property of
social preferences.

4 Social Preferences

Given an electorate and a proper simple game, social preferences are determined
as follows. For S € ¥, let

Pg = ﬂ 7(w) and Rg = m pw),

wes weSsS

11



and define strict social preference, P, and weak social preferences, R, as

P=[J Psand R= | J Rs.
Sew SeB

Equivalently, aPb if the set of voters who strictly prefer a to b is a winning
coalition; and aRb if the set of voters who strictly prefer a to be is not a
winning coalition. Thus, § ¢ W implies that P is irreflexive, and Q € B implies
R is reflexive. Moreover, R is complete and P is the asymmetric part of R if
W is proper (i.e., B is strong). When we wish to emphasize the dependence of
P and R on the preference profile p, we write P[p] and R[p]. In this section,
we analyze the continuity properties of strict. and weak social preferences in
terms of primitive assumptions on electorates. We first prove our main result
on continuity of strict social preferences.

Proposition 12 Assume A is first countable. If W is open from below, then P
18 open and R is closed.

Proof: Suppose aPb, or equivalently, (a,b) € P. Thus, there exists S € W
such that (a,b) € ,cgm(w). Let {G,} be a countable neighborhood base of
(a,b) in A x A, and assume without loss of generality that it is decreasing.
Since p(w) is continuous for each w, (w) is open for each w. Therefore, letting
S*"={weS:G, Cm(w)}, we have S™ 1 S. Since Since W is open from below,
there exists m such that, for all n > m, S, € W. Therefore, G,, C P for high
enough n, so P is open. That R is closed follows by definition. |

From Proposition 8, it follows that P is open and R is closed if B is closed
from above. Adding compactness of A, it follows that R(-) is upper hemicon-
tinuous as a correspondence. Though Proposition 12 yields openness of P, it
cannot be simultaneously be applied to {J sep Ps, the social preference gener-
ated by blocking coalitions: Proposition 10 has shown that ¥V and B cannot
both be open from below. We can, however, derive continuity properties of strict
social preferences in simple games that are not open from below, if we impose
topological conditions on the electorate and a condition restricting shared weak
preferences across voters. Assuming (2 is a topological space, we denote by S*
the support of A, i.e., the smallest closed set with A-measure one.

Definition 3 Limited shared weak preference (LSWP) holds if, for alla,b € A
with a # b, and for all S € ¥, aRgb implies a € Pr(b) \ {a}, where T = SN S*.

Thus, if every member of S weakly prefers a to b # a, then we can approx-
imate a by alternatives strictly preferred to b by A-almost every member of S.
One condition sufficient for LSWP is evident. Assuming A is a vector space, we
say voter w’s preferences are strictly convez if the following condition is satisfied:
for alla € A, all b € p(w)(a), and all @ € (0,1), aa+ (1 —a)b € 7(w)(a). LSWP
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holds if A puts measure one on some closed subset of the voters with strictly con-
vex preferences. Banks and Duggan (1999,2000) give several examples of other
environments satisfying LSWP in the finite-voter framework. As discussed in
the earlier of these papers, an important class of environment captured by the
present analysis, but in which strict convexity does not hold, is private good
economies.® Note that LSWP implies that A is infinite.

The next result is stated for an arbitrary simple game S, and so it applies

when § = W, giving us lower hemicontinuity of strict social preferences, and
when § = B.

Lemma 3 Assume A is second countable and locally compact; Q is a compact
topological space and p is continuous; and LSWP holds. Let S be an arbitrary
simple game. Then Jgeg Ps(+) is lower hemicontinuous as a correspondence.

Proof: Take any a € A and any open set G C A such that GNJ g Ps(a) # 0,
ie, b€ GNUges Ps(a) for some b € A. Thus, {w € Q : br(w)a} € S, and
therefore S = {w € Q : bp(w)a} € S. Since {R € R : bRa} is closed in
the closed convergence topology, and since p is continuous, it follows that S is
closed. Since S* has A-measure one, T'= SN S* € S. Since Q is compact, and
since S and S* are closed, T is compact. By LSWP, there exists a sequence
{cn} in Pr(a) such that ¢, — b. Mas-Colell (1977) establishes the existence of
a jointly continuous function U: R x A — R such that, for all R € R, U(R, ")
is a utility representation of R. By construction, U(p(w),c,) — U(p(w),a) > 0
for all w € T. Since this function is continuous in w and T is compact, it
follows that ming,er U(p(w),cn) — U(p(w),a) > 0. By continuity, there is an
open set X, C A with a € X, such that ming,er U(p(w), ¢cn) — U(p(w),z) > 0
for all z € X,,. Picking n high enough, we have ¢, € G and, by the preceding
discussion, ¢, € Uges Ps() for all z € X, implying G N Uges Ps(z) # 0 over
an open set around a, as required. | |

Lower hemicontinuity of weak social preferences, critical for the nonempti-
ness of the undominated set, holds under the conditions of Lemma 3. Since
those conditions are satisfied if the set of voters is finite with strictly convex
preferences, the next result generalizes McKelvey’s (1986) Lemma 4.

Proposition 13 Assume A is second countable and locally compact; Q) is a
compact topological space and p is continuous; and LSWP holds. Then P(-) and
R(-) are lower hemicontinuous as correspondences.

Proof: Lower hemicontinuity of P(-) follows directly from Lemma 3 by setting
S = W. Now take any a € 4 and any b € R(a). If b # a, let S € B be such that
b € Rs(a). By LSWP, there exists a sequence {c,} in Pr(a) such that ¢, — b,

SA consumer’s preferences may be strictly convex in his own consumption but not in
others’. Since an alternative must specify bundles for all consumers, strict convexity is not
satisfied.

13



where T' = SN S* € B. Thus, b € {a} U Pr(a). Since b € R(a) was arbitrary,
we have

{a}u | Ps(a) € R(a) € {a}u | Ps(a) C {a}u | Ps(a).

SeB SeB SeB

The correspondence defined by a — {a} is clearly lower hemicontinuous, as
is Ugep Ps(-), by Lemma 3. The union of these two correspondences is lower
hemicontinuous, so R(:) differs from a lower hemicontinuous correspondence
only at points of closure, implying that it is lower hemicontinuous. |

The result gives conditions under which upper sections of R are compact.
The assumptions on the set of alternatives are satisfied if A is compact or if all
voters have compact weak upper sections and A is a subset of finite-dimensional
Fuclidean space. More general sufficient conditions follow the proposition.

Proposition 14 Assume that, for all a € A and all ¢ > 0, there exists a
compact set K, such that A({w € Q| p(w)(a) C K.}) > 1 —¢; and assume that
W is open from below. Then, for all a € A, R(a) is compact.

Proof: Take any a € A, and suppose R(a) is not compact, implying that, for
each n, there exists a,, € R(a)\ K1/,. Let S, satisfy S, € B and, for allw € S,
anp(w)a. Note that S, C Ty, = {w € Q| p(w)(a) € K1/n}, implying T}, € B, for
all n. We may assume, without loss of generality, that {K;/,} is an increasing
sequence, implying that {T},} is decreasing. Note that A(1},) < 1/n for each n.
Since W is open from below, it follows that B is closed from above, implying
that T =(,,_, Tn € B. But A\(T") = 0, implying @ € B, which implies Q@ ¢ W, a
contradiction. |

The next proposition shows that compactness of voters’ weak upper sections
is essentially sufficient for the condition of Proposition 14.

Proposition 15 Assume A is second countable and locally compact, and, for
all a € A, A\({w € Q| p(w)(a) is compact}) = 1. Then, for all a € A and all
€ > 0, there exists a compact set K. such that \({w € Q | p(w)(a) C K.}) > 1—e.

Proof: By Aliprantis and Border’s (1999) Lemma 2.69, A is o-compact. By
Aliprantis and Border’s (1999) Corollary 2.70, A is hemi-compact, i.e., there
exist compact subsets K, Ks, ..., such that A = Ule K, and for every
compact K C A, there exists n such that K C Ufnzl K,.. Let

Sn = {we|pw)a) < |J Kn},
m=1

and note that A(J,_, Sn) = 1. Therefore, for all € > 0, there exists n such
that A(Sp) > 1 —e. Setting K. = |J;,_; Km, the condition of the proposition is
fulfilled. |
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We next turn to conditions under which R{a) = {a}UP(a) for all a. An easily
verified sufficient condition is that W is strong and all but a A-measure zero set
of voters have anti-symmetric weak preferences. As these assumptions seem
quite restrictive, we seek a condition that is more intuitive, in combination with
the assumption of a continuum of voters. We use a lemma that gives conditions
under which Ps(a) is open for all compact coalitions S.

Lemma 4 Assume A is second countable and locally compact, Q 1s a topological
space, and p is continuous. Let S be compact. Then Pg is open.

Proof: Let U:R x A — R be a jointly continuous function such that, for all
R € R, U(R,-) is a utility representation of R. Take (a,b) € Ps, so U(p(w),a) >
U(p(w),b) for all w € S. By continuity and compactness, min,es U(p(w), a) —
U(p(w),b) > 0. By continuity, there exists an open set ¢ C A x A such that
min,es U(p(w), ) — U(p(w),d) > 0 for all (¢,d) € G. |

The next condition formalizes the notion that the preferences of voters are
widely distributed.

Definition 4 Dispersion holds if, for all distinct a,b € A, for all c € A\
{a,b}, and for every neighborhood G of c, there ezists d € G such that A\({w €
Q:dr(w)ar(w)b}) > 0.

Dispersion is satisfied, for example, if voter preferences are Euclidean with
ideal points distributed over Euclidean space by a strictly positive density. In
that case, take any distinct a,b € A, and take any other ¢. Given any neighbor-
hood @ of ¢, we can find d € G such that a,b,d are not collinear. Then there
exists e such that |le — d|| < ||le — a|| < |le — b||, and these strict inequalities
will hold for some open set around e. The set of voters with ideal points in
this set has positive measure, fulfilling the condition. If A is finite, dispersion is
satisfied if all linear orders of A are present in the preferences of the electorate.
Because we use LSWP in the next proposition, however, we preclude the finite
A case. In fact, if A is finite, if W is majority rule, and if the number of voters
is even, then R(a) = {a} U P(a) = {a} U P(a) will not hold generally, even if
voter preferences are dispersed.

Proposition 16 Assume that A is second countable and locally compact; Q) is
a compact topological space and p is continuous; LSWP holds; dispersion holds;

and W is proper, open from below, and semi-strong. Then R(a) = {a} U P(a)
for alla € A.

Proof: Because W is proper, P is the asymmetric part of R, so P(a) C R(a).
Then, by Proposition 12, we have {a} U P(a) C R(a). Now take any b € R(a)
with b # a, s0 § = {w € Q| bp(w)a} € B. Take any open set G around b.
By LSWP, there is a sequence {c,} converging to b such that ¢, # b for all n
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and cpm(w)a for all w € T', where T = SN S* € B. Take any ¢, € G. Since
p is continuous, T is closed, in fact compact, and therefore Lemma 4 implies
that Pr(a) is open. Thus, G’ = Pr(a) N G is an open set around c,, so, by
dispersion, there exists d € G’ such that AM({w € Q | dr(w)ar(w)b}) > 0. Let
T"=TU{w € Q| dr(w)ar(w)b}. Since {w € Q | dr(w)an(w)b}NT = 0, we
have A(T") > A(T), and our assumption that W is semi-strong implies 7" € W.
Therefore, d € P(a). Since G was arbitrary, we have b € P(a). | |

McKelvey (1986) proves that, if Q is finite, if voters have strictly convex
preferences over a subset of Euclidean space, and if W is strong, then R(a) =
{a}UP(a) for alla € A. The conclusion of Proposition 16 would hold under these
assumptions even if Q) and p were allowed to be completely general, and even
without imposing LSWP. Proposition 11 establishes the existence of a strong,
proper simple game, so this extension of McKelvey’s result is not vacuous. Its
applicability is limited, however, by the following result, which shows that, when
voters’ preferences over a continuous set of alternatives are sufficiently rich, all

proper, strong simple games fail to generate continuous social preferences.

Proposition 17 Assume A is path-connected; for all a,b € A, \M{w € Q :
p(w)(a) = p(w)(b)}) = 0; and there exists a € A with P(a) # 0 and P~1(a) # 0.
If R is closed, then W is not both proper and strong.

Proof: Let bPa and aPe. Let f:[0,2] — A be a continuous function satisfying
f(0) =a, f(1) = ¢, and f(2) = b. Let s = sup{z € [0,2] : aPf(z)}, and note
that 1 < s < 2. By construction, there exists an increasing sequence {r,} in
[0,2] such that r, — s and, for all n, aPf(r,). Thus, aRf(r,) for all n. By
continuity of f, f(rn) — f(s), and, since R is closed, aRf(s). Similarly, we may
take a decreasing sequence {t,} in [0, 2] such that ¢, — s and, for all n, f(t,)Ra.
Again, f(t,) = f(s), and, since R is closed, f(s)Ra. So there exist S,T € B
such that aRgsf(s) and f(s)Rra. By assumption, S’ = {w € S : an(w) f(s)} is
A-equivalent to S, so S’ € B, and similarly T = {w € T': f(s)r(w)a} € B. f W
is strong, then BC W, s0 §',T" e W. But S'nT' =, so W is not proper. 1§

5 Electoral Competition

Given a policy space A, and an electorate £ with winning coalitions W, con-
sider the competition between two office-motivated parties where the two par-
ties choose strategically their platform in the set A in order to maximize their
chances to win the election. Precisely, the two parties play a symmetric zero-
sum game where A is their common set of pure strategies and the payoff of, say
party 1, for the strategy profile (a,b) is 1 if aPb, —1 if bPa, and 0 otherwise. It
is easy to see that a* is an optimal play in this game if and only if a* is not de-
feated by a majority, i.e., if a* € K(P). This means that the existence of a Nash
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equilibrium in pure strategies is equivalent to the nonemptiness of the core. On
the other hand, the set of strategies obtained after deletion of the weakly dom-
inated strategies is precisely the undominated set. The uncovered set, which is
a superset (sometimes proper) of the undominated set, does not have a direct
game-theoretic interpretation. But as demonstrated by Banks, Duggan, and Le
Breton (2000) for a class of games including the two-party competition game
described above, the support of every Nash equilibrium in mixed strategies is
contained in the uncovered set.

In this section, we analyze properties of these sets as electoral preferences
vary. Fixing the winning coalitions W, we write P[p] and R[p] for the strict
and weak social preferences determined by profile p. We write K{p], UC|[p], and
UD|p] for the core, uncovered set, and undominated set of the social preference
relations P[p] and R[p]. We extend previous results on generic emptiness of the
core to the general spatial model, and we establish nonemptiness of the uncov-
ered and undominated sets in the general model. We then show that the three
above correspondences are upper hemicontinuous at profiles with a non-empty
and externally stable core. Thus, though small perturbations of preferences may
(and usually will) lead to a non-empty core, this result, with our above obser-
vations on electoral competition, suggests that electoral outcomes will change
continuously. Finally, we provide conditions under which the undominated set
correspondence is lower hemicontinuous. Thus, the uncovered set correspon-
dence contains a lower hemicontinuous correspondence. The next lemma on
continuity of social preferences is essential to the analysis.

Assume that Q is a Polish space, i.e., a complete and separable metric space,
and that o is the corresponding Borel o-algebra. Let d be the metric on Q, let
d be the metric of closed convergence on R, let P be the space of profiles, and
define the metric A on P as follows:

A(pp) = /Q d(p(w), o (@) A(dw),

for p,p’ € P. We say a sequence {p,} of profiles converges to profile p if
A(pp,p) — 0.

Lemma 5 Assume A is a complete, separable metric space. Let p, — p, let
an —+ a, and let by, = b. If W is A-continuous and a,R[p,)by, for all n, then
aR[p]b.

Proof: From the Polish version of Lusin’s theorem (Aliprantis and Border
(1999), Theorem 10.8), for all € > 0, there exists a compact subset K, of
such that A(K.) > 1 — € and the profile p, restricted to K, is continuous. Since
d(pn,p) — 0 in the Ly-norm, Aliprantis and Border’s (1999) Theorem 12.6
yields a subsequence {py, } such that d(pn,,p) = 0 A-almost surely. Now let
U:R x A — R be a jointly continuous mapping such that, for all R € R, U(R, )
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is a utility representation of R. For all w € ) and all k, define
<PZ(“)) = U(pnk (w)a a‘nk)
élbc(w) = U(pnk (w): bnk)
and
?*(w) = Ulp(w),a)
W) = Ulpw),b).

Since U is jointly continuous, we deduce that ®¢ — &% and ®% — ®° -almost
surely. From Egoroff’s theorem (Aliprantis and Border (1999), Theorem 9.37),
there are compact subsets K& and K? of Q such that

e MK >1—cand \(K?) >1~¢
e d% — @ uniformly on K¢
e 3% — ®° uniformly on K?.

Now let S = {w € Q | br(w)a}, and suppose that S € W. Since Q is Polish,
Aliprantis and Border’s (1999) Theorem 10.7 implies the existence of a compact
subset K/ C S such that A(K]) > A(S)—e. Let K = K.NK!NK*NK?. Since
AK!') > M(S) —4e and W is A-continuous, we have K!' € W for small enough .

Furthermore, since p is continuous on K, it follows that ®* — & is continuous

on K. And since K!' is compact and ®b(w) — $%(w) > 0 for all w € K/, there
exists § > 0 such that,

(W) — ®%(w) > 4 forallwe K.
But by uniform convergence on K¢ and K?, we deduce that, for k large enough,
)
[Df(w) — % (w)] < 3 for allw € K/
and

|8k (w) — 2°(w)]

IA

g for allw € K!'.

Therefore, for k large enough,
3% (w) — ®%(w) > 0 for all w € K.

Since K' € W, this implies that, for k large enough, by, P[pn, an,, a contradic-
tion. Therefore, S ¢ W, implying aR[p]b, as required. |
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When there is a finite number of voters, different formulations of the asser-
tion that the core is generically empty have been provided. Some authors, in the
vein of Plott’s (1967) seminal early contribution, assume that voter preferences
are differentiable and perhaps convex. Their results provide characterizations
of core points in terms of differentiability properties, which are evidently quite
difficult to satisfy when the dimensionality of the space of alternatives is suf-
ficiently high (at least two, for the case of majority rule with an odd number
of voters). Other authors do not assume differentiability or convexity of voter
preferences and directly prove the generic emptiness of the core, without any
preliminary characterization of core points (Rubinstein (1979), Schofield (1983),
Cox (1984), Le Breton (1987)). In the latter work, because the space of voter
preferences is richer, no dimensionality restrictions are needed. McKelvey, Or-
deshook, and Ungar (1980) have proved that Plott’s characterization in terms
of symmetry of voter gradients at core points holds true while allowing for a
measure space of voters. The following proposition plays the complementary
role for the above-cited papers by explicitly establishing the generic emptiness
of the core without differentiability or convexity assumptions.

When  is finite, we say W is non-collegial if YW = §. When there is
a continuum of massless voters, however, every simple game is non-collegial
according to this definition: for each w € @, 0\ {w} € W, so W has empty
intersection. We extend the usual definition as follows. We say W is non-
collegial if, for every S € X, there exists a finite partition, {S1,...,Sk}, of S
such that, for all k, S, ¢ B. Given a non-collegial simple game, note that, if
S € ¥ is an atom, then S ¢ B. On the other hand, if X is atomless, then,
by Aliprantis and Border’s (1999) Theorem 12.34, for all ¢ > 0, there exists a
finite partition, {Si,...,Sk}, of O such that A(Sg) < € for all k. Thus, if X is
atomless and there exists € > 0 such that A(S) > 1 — ¢ implies S € W, then W
is non-collegial.

Proposition 18 Assume A is a compact and convex subset of some Euclidean
space with |A| > 2 and W is non-collegial and \-continuous. Then the set

K = {peP|K[]#0}
is nowhere dense in P with the A metric.

Proof: We first prove X is closed. Let p, — p with p, € K for all n. Let
an € Klpy] for each n. Since A is compact, there is a subsequence {a,,}
converging to some limit a. Take any b € A and note that a,, R[pn,]b for all .
Then Lemma 5 implies aR[p]b. Since b is arbitrary here, we have a € K|[p] # 0.

To prove that K has empty interior, take p € K and ¢ > 0. We will
show that there exists p. such that A{p.,p) < € and p. ¢ K. Let ¢ =
sup{d(R,R') | R,R' € R}, which is finite. From Lusin’s theorem (Alipran-
tis and Border (1999), Theorem 10.8), there exists a compact subset K. of
such that A(K.) > 1— (¢/2¢) and p, restricted to K., is continuous. Since K is
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compact, p is uniformly continuous on K,. Let 6 > 0 be such that d(w,w') < §
implies d(p(w), p(w')) < €/2. Letting Bs(w) denote the open d-ball with radius
d centered at w, {Bs(w) | w € K.} is an open cover of K.. By compactness, it
has a finite subcover, say {Bj,...,Bk}. Let S = By, let

k—1

Se = B\ |JB
j=1

for k = 2,...,K, and let Sx11 = @\ K.. The family {Sx} is a measurable
partition of {2. Since W is non-collegial, for each k there is a finite partition
{87 14 =1,...,Jx} such that, for all j, S] ¢ B. Now let 7 be the finite
partition

T = {Sj=1,....,Ji,k=1,...,K+1},

and index the elements of 7 as Ty, n = 1,...,N. For each n, let p, be an
arbitrary element of {p(w) | w € Ty}, and define the profile p. as p.(w) = p,, for
w € T,. Since

N
Apd) = /Q PECEOVIDICEEDY /T

d(p(w), pe(w)) A(dw),
WAO\Ko)

it follows that A(p, p.) < €/2.
Now define a finite simple game W¥ on the set {1,..., N} as follows: for
SCAL,....,N}, let

SewW" if and only if | J T € W.
nes

Thus, by choice of {T},}, WY is non-collegial. Given a finite profile (Ry, ..., Ry),
define the core of WY as K(PN), where PV = | Jgcyyn Npeg P It is straight-
forward to show that a € A is in the core of WY for (Ry,..., Ry) if and only if @
is in the core of W for the profile g, where p: Q) — R is defined by p(w) = R,, for
allw €T, and all n = 1,..., N. But since W is non-collegial, it follows from
Le Breton (1987) that there exists a finite profile (Rj, ..., R}y) such that the
core of WX for (Rj, ..., Ry) is empty and d(R,, R,,) < ¢/2foralln =1,...,N.
Define the profile p.: @ —+ R by

pe(w) = R;w

for all w € Tp, and for all n = 1,..., N. It follows from above that p, ¢ K and
Alp, pe) < €, as required. |

In contrast, the next results show that the uncovered set and undominated
sets are non-empty quite generally.
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Proposition 19 Assume that, for all a € A and all € > 0, there exists a
compact set K. such that \({w € Q| p(w)(a) C Kc}) > 1 —¢; and assume that
W is open from below. Then UC[p] # 0.

Proof: By Proposition 14, each R[p|(a) is compact, and R[p](b) is therefore
closed for all b € A. By Proposition 2, we have UC[p] = UC(R][p]) # 0. |

Nonemptiness of the undominated set follows if we impose topological condi-
tions on the electorate. We write D[p] and C|[p] for the dominance and covering
relations determined by R[p] and P[p].

Proposition 20 Assume A is second countable and locally compact; Q) is a
compact topological space and p is continuous; LSWP holds; for all a € A,
AM{w € Q : p(w)(a) is compact}) = 1; and W is open from below. Then (i)
UDIp] # 0, (i) if a ¢ UDI[p], then there exists b € UD|p] such that bD[pla, (iii)
if a ¢ UC|p], then there exists b € UC|p] such that bC|pla

Proof: By Proposition 15, for every € > 0, there exists a compact set K, such
that A({w € @ | p(w)(a) C K.}) > 1 — ¢, so Proposition 14 implies that each
R(a) is compact. Then UD[p] = UD(R|p]) # 0 follows from Proposition 13.
External stability of UD[p] and UC|[p] follow from Propositions 4 and 5. 1

We now examine the continuity properties of the uncovered set correspon-
dence. We demonstrate that, at profiles p such that K[p] is nonempty and is
strongly externally stable, the correspondence UC]] is upper hemicontinuous
at p. If UC[p] is a singleton, then, because the uncovered set is non-empty for
all profiles under the assumptions of the proposition, it follows that UC[] is
actually continuous at p. Note that conditions for external stability of the core
used here are given in Propositions 1 and 16.

Proposition 21 Assume A is compact, W is A-continuous, K|[p] # 0, and, for
all a € K(p] and all b ¢ K[p], aP[plb. Then UC[p] = UD|p] = K[p] and UC[]
is upper hemicontinuous at p.

Proof: That UC[p] = K|[p] is immediate. Suppose that UC[] is not upper
hemicontinuous at p, so that there exists an open set V' 2 UC[p] such that, for all
open neighborhoods U of p, there exists some py € U such that UC[py]\V # 0.
View {pu} as a net directed by set-inclusion converging to p. Since the space
of profiles is a metric space, there is a subsequence {p,} converging to p. For
each pn, let a, € UC[p,] \ V. Since A is compact, we may assume with loss of
generality that {a,} converges to some a € A\ V. Therefore, a ¢ UC[p] = K{p].
By assumption, for any b* € K[p|, we have b* P[p]a. We claim that there is some
m such that b*C[pm}am, a contradiction.

By Lemma 5, there exists m such that for all n > m, b* P[pn]an. Suppose
that, for all m, there exists n > m and b, € Plp,](b*) \ Plpn](an). Let {bn,}
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be a subsequence converging to some b. Since aR[pp,|bn, for all k, Lemma 5
implies aR[p]b. By our assumption of external stability, b ¢ K[p] and b* P[p]b.
By Lemma 5 again, b* P[p,, |bn, for k large enough, a contradiction. Therefore,
there exists m such that, for all n > m, P[p,](b*) C Plps](an)-

Suppose now that, for all m, there exists n > m and ¢, € R[p,)(d*) \
Rlpn)(an). Let {cn,} be a subsequence converging to some c. By Lemma 5,
cR[p]b* which implies ¢ € K[p] and cP[pla. By Lemma 5 again, cp, Plpn,]an,
for k large enough, a contradiction. Therefore, there exists m such that, for
all n > m, R[p,n](b*) C R[pn)(an). Therefore, b*C[pm]an, for high enough,
completing the proof. | |

Proposition 21 states that upper hemicontinuity of UC[-] holds at p when-
ever, among other things, the core at p is non-empty. The correspondence UC[/]
is not generally upper hemicontinuous, as demonstrated by the following exam-
ple. Let A be the convex hull of a1, as, and a3 in R2, let & = {1,2,3}, and
assume preferences (Ry, Ry, R3) are strictly convex with indifference contours
depicted in Figure 1. There, the point a; is the bliss point of preference R;. For
this electorate, bCc and ¢ ¢ UC.

[ Figure 1 here. ]

Now perturb preferences as depicted in Figure 2. One can check that, for
arbitrarily small perturbations, ¢ is uncovered, violating upper hemicontinuity.

[ Figure 2 here. ]

Finally, we turn to lower hemicontinuity of the undominated set. For the
next proposition, assume § is a topological space, and let P* be the subset of
profiles p such that

¢ p is continuous,

e LSWP holds,

o for all a € A, R[p)(a) = {a} U P[p](a),
o for all a € A, R7[p|(a) = {a} U P~1[p](a),
o for all a,b € A, if P[p](a) = P[p](b) and R[p](a) = R[p](b), then a = b.

Note that Proposition 16 gives sufficient conditions, involving dispersion of voter
preferences, for the third requirement above, Assuming W is open from below,
the fourth is equivalent, by Lemma 1, to the condition that P[p](a) U {a} =
R[p](a)° U {a} for all a € A. While we do not give sufficient conditions for the
fourth and fifth requirements, we conjecture that they are fairly unrestrictive.
Thus, P* should not be too “sparse.”
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Proposition 22 Assume A is a compact metric space, ! is compact, and W
is proper and A-continuous. Then UD['] is lower hemicontinuous on P*.

The proof of this result is contained in the appendix. An implication of
Michael’s selection theorem (Aliprantis and Border (1999), Theorem 16.61) is
that, when A is a compact subset of a Banach space, the correspondence con-
sisting of the closed, convex hull of UD|p] has a continuous selection. Thus, so
does the closed, convex hull of UC/[p].

A Maximal Elements

Given a set X, with elements z, y, z, etc., a relation @ is a preorder if it is
reflexive and transitive. An element z is @Q-mazimal in Y C X if z € Y and,
for all y € YV, yQux implies zQy. We say = is @Q-mazimal if it is @-maximal in
X. As above, define the upper and lower sections of  as

Q(z) {y € X | yQz}
Q) {y € X | 2Qy},

respectively. We say @ is upper semicontinuous if Q(z) is closed for all z. An
implication of the next proposition is that, under weak conditions, the set of
()-maximal elements is non-empty and externally stable.

i

Proposition A1 If @ is transitive and upper semicontinuous, and if Q(z) is
compact for some z, then Q(z) contains a (J-maximal element.

Proof: Take any Q-chain, E, in Q(z). By transitivity and upper semiconintu-
ity, {Q(y) | y € E} is a collection of compact sets with the finite intersection
property, so there exists 2z € (g Q(y). Thus, 2 is a Q-upper bound for E. By
Zorn’s lemma, @ has a maximal element, say z*, in Q(z). If z* is not maximal
in X, then there exists w € X such that wQz* and not z*Qw. By transitivity,
w@z*Qy implies w € Q(y), a contradiction. |

If we strengthen our compactness assumption in Proposition Al, we can
deduce the external stability of the (-maximal elements.

Proposition A2 Assume @ is transitive and upper semicontinuous, and Q(z)
is compact for all z. If z is not @-maximal, then there exists Q-maximal z*
such that z*Qz and not zQz*.

Proof: Suppose z is not @-maximal. Since Q(z) is compact, it contains a
(Q-maximal element, say z*. Thus, z*Qz. Suppose zQz*. Since z is not Q-
maximal, there exists y such that y@Qz and not xQy. By transitivity, yQzQz*
implies y@Qz*. Since z* is Q-maximal, z*Qy. Then, by transitivity, zQz*Qy
implies zQy, a contradiction. Therefore, not zQz*. | |
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Define the relation @* as follows: zQ*y if and only if Q(z) C Q(y). Note
that Q* is reflexive and transitive.

Proposition A3 If Q~1(z) is open for all z, then Q* is upper semicontinuous.

Proof: Take any z and a net {z,} in Q*(z) with z, — y. We need to show
yQ*z, ie, Qy) C Q(z). Take any z € Q(y), ie., y € Q71(2). Since Q' (2)
is open, there exists o/ such that, for all @ > o, 3, € Q71(2), i.e., 2 € Q(z4).
Since z,Q*z, we have z € Q(z), as desired. n

To prove Proposition 2, assume R is upper semicontinuous and R(a) compact
for some a € A, and define Q = RN P*, i.e, bQc if and only if b € R(c) and
P(b) C P(c). Since Q(b) = R(b) N P*(b), Proposition A3 implies that Q is
upper semicontinuous, and, by irreflexivity of P, it is transitive. Finally, note
that Q(a) = R(a) N P*(a), so Q(a) is compact. Applying Proposition Al,
there exists a @-maximal element, which must belong to UC(R). Therefore,

UC(R) # 0.

Proposition A4 If Q) is upper semicontinuous, and if Q(-) is lower hemicon-
tinuous as a correspondence, then Q* is upper semicontinuous.

Proof: Take any x and any net {z,} in @*(z) converging to some y. Take
any z € Q(y), and suppose z ¢ Q(z). By upper semicontinuity, G = X \ Q(z)
is open. Of course, Q(y) NG # §. By lower hemicontinuity, there exists a
such that Q(zq) NG # 0, but then Q(z4) € Q(z), a contradiction. Therefore,
z € Q(z), and we conclude y € Q*(z), as desired. |

To prove Proposition 3, assume that R is upper semicontinuous, that R(a)
is compact for some a € A, and that, viewed as a correspondence, R(-) is
lower hemicontinuous. By Proposition A2, P* is upper semicontinuous, and, by
Proposition A3, R* is upper semicontinuous as well. Thus, P* N R* is upper
semicontinuous and is clearly transitive. Also note that R*(a) C R(a), so R*(a)
is compact. Applying Proposition Al yields a (R*NP*)-maximal element, which
must belong to UD(R). Therefore, UD(R) # 0.

To prove Proposition 4, that assume R is upper semicontinuous, that R(a)
compact for all @ € A, and that, viewed as a correspondence, R(:) is lower
hemicontinuous. Note that R*(a), and therefore (P* N R*)(a), is compact for
all a € A. Take a and b such that aDb, implying a(R* N P*)b. By Proposition
A2, there exists a (R* N P*)-maximal element ¢, therefore belonging to UD(R),
such that ¢(R*NP*)a. Therefore, P(c) C P(a) C P(b) and R(c) C R(a) C R(b).
Since aDb, we have ¢Db, and external stability of UD(R) follows.

Let Q denote the set of closed relations on X, endowed with the topology
of closed convergence. Let © be a topological space, and consider a mapping
with domain ©, range Q, and values Q[f]. We say the mapping Q[] is outer
continuous if, for all nets {6,} in © converging to some 6 and {(z,,94)} in
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X x X converging to some (z,y), oQ[0a]ye for all @ implies zQ[6]y. Let
UQ denote the Q-maximal elements, and let UQ[6] denote the Q[f]-maximal
elements. The next proposition provides conditions for lower hemi-continuity of
the maximal element correspondence.

Proposition A5 Assume X is compact; for all § € ©, Q[f] is anti-symmetric,
UQI6] # 0, and, for all z ¢ UQ[8], there exists y € UQ[H] such that yQz and
not Qy; and @[] is outer continuous. Then UQ[] is lower hemi-continuous.

Proof: Take any § € © and any open set G such that G NUQ[A] # 0. Let
z € GNUQIH]. Let {6,} be a net converging to 8, and suppose that, for each
a, UQ[B.] NG = 0. Thus, for each a, z ¢ UQ[f,]. By external stability, there
exists o, € UQ[f4] such that z,Q[f.])z and not zQ[f,]z. Moreover, z, ¢ G
for each a. By compactness, {z,} has a convergent subnet with limit, say, z.
By outer continuity, 2Q[6]z. Because z, ¢ G for all &, we have z # z, and then
anti-symmetry implies not zQ[6]z, which implies z ¢ UQ[6)], a contradiction. 1

Now consider a mapping from © to Q with values R[f]. Following the above
convention, write R[f](z) for the upper section of R[f] at z, and say zR*[f]y if
and only if R[f](z) C R[6](y). Write zP[f]y if and only if not zR[f]y.

Proposition A6 Assume for all @ € © and all z € X, R[6](z) = {z} U P[0](z),
and R[] is outer continuous. Then R*[] is outer continuous.

Proof: Take any nets {6} converging to 6 and {(z,,y.)} converging to (z,y)
such that, for each o, £, R*[0,]ys. Take any z € R[6](z). If not z € R[A)(y),
then, because R[f](y) is closed, G = P~![f](y) is an open set around z such that
G N R)(y) = 0. Pick w € P[f](z) NG, so yP[flw. It then follows from outer
continuity that, for some subnet, also indexed by @, yoP[04]w for all a. Then,
by o R*[0a]ya, we have x4 P[f,)w for all . This implies x4 R[f4]w for all o,
and outer continuity implies zR[flw, a contradiction. Therefore, z € R[](y),
and we conclude that zR*[6]y. |

To prove Proposition 22, let © = P*. Note that R[p](a) = {a} U P[p](a) for
all p € P*, and that, by Lemma 5, R[] is outer continuous on P*. Therefore, by
Proposition A6, R*[-] is outer continuous. To see that R*[p] is anti-symmetric
for all p € P*, suppose aR*[p]b, i.e.,, R(a) C R(b). By assumption, we have
R™1[pl(a) = {a} U P~1[p](a) and R~[p](b) = {b} U P-1[p](b). From Lemma 1,
this implies P[p](a) U {a} = Rp|(a)® U {a} and Plp](b) U {b} = R[p](b)° U {0},
so Proposition 6 yields P[p](a) C P[p](b). Then our assumptions on P* imply
a = b. By Proposition 13, R[p](:) is lower hemicontinuous, so Proposition A4
implies that R*[p] is upper semicontinuous. Because A is compact, Propositions
Al and A2 then imply non-emptiness and external stability of the R*[p]-maximal
elements, denoted UR*[p], and Proposition A5 implies that UR*[] is lower
hemicontinuous on P*. Finally, note that UR*[p] = UD|[p] for all p € P*.
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To prove the claimed equality, take a € UR*[p], and suppose there exists
b € A such that bD[pla, ie., R[p](b) C R[p](a) and P[p](b) C P[pl(a), at
least one inclusion strict. In fact, because p € P*, the first must be strict,
but then a ¢ UR*[p], a contradiction. Therefore, UR*[p] C UD[p]. For the
remaining inclusion, suppose a € A\ UR*[p], so there is some b € A such that
bR*[pla and not aR*[p]b. Note that, by reflexivity of R*[p], we have b # a. By
definition, R[p](b) C R[p](a). By Lemma 1 and Proposition 6, we also have
Plp](b) C P[p}(a). At least one inclusion must be strict, for otherwise p € P*
implies a = b. Therefore, bD[p]a, implying a € A\ UD[p]. We conclude that
UDI[p] € UR*[p], as required.
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