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Abstract

We prove existence of stationary Markov perfect equilibria in an infinite-horizon model of
legislative policy making in which the policy outcome in one period determines the status quo
in the next. We allow for a multidimensional policy space and arbitrary smooth stage utilities.
We prove that all such equilibria are essentially in pure strategies and that proposal strategies
are differentiable almost everywhere. We establish upper hemicontinuity of the equilibrium cor-
respondence, and we derive conditions under which each equilibrium of our model determines a
unique invariant distribution characterizing long run policy outcomes. We illustrate the equilib-
ria of the model in a numerical example of policy making in a single dimension, and we discuss
extensions of our approach to accommodate much of the institutional structure observed in
real-world politics.

1 Introduction

Political interaction in modern democracies counts among the most complex phenomena subjected
to scientific inquiry, and practical considerations dictate that we attempt to accommodate this
complexity in formal political modeling. Doing so would appear essential, for example, for the
detailed analysis of the effects of public policy and the design of constitutions. In this spirit, we
study policy making within a legislative body or, more generally, a government in which policy
initiatives are systematically subjected to review by political actors with authority to enact policy.
Our goal is to develop a model of policy making that (i) accounts for the multidimensional aspect
of public policy and idiosyncratic details of policy preferences, (ii) captures the ongoing nature
of policy making, and (iii) allows for the kinds of random shocks (e.g., on preferences and the
environment) to which political interaction is subjected over time. We provide a benchmark model
that satisfies these desiderata and allows us to confront the central theoretical difficulties arising in
applications. The model is intentionally austere, in that we do not incorporate the rich spectrum
of political institutions observed in the real world, but our approach is very general: we conclude
with a discussion of how our results extend to an institutionally detailed version of the model. And
although we are motivated by the application to legislatures and democratic politics, the issues we
address are fundamental and would arise in a host of dynamic bargaining contexts, such as wage
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We also acknowledge Vikram Manjunath’s invaluable research assistance.
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negotiation in labor markets, or collusion among members of a cartel, or deliberations among a
board of directors, or treaty talks among states.

We lay the theoretical groundwork for future applications by establishing the existence of equi-
libria satisfying a number of desirable regularity properties in a class of models satisfying the
objectives (i)–(iii) identified above. We consider a fully dynamic model of legislative policy making
in which each period begins with a status quo policy and the random draw of a legislator, who
proposes any feasible policy, which is then subject to an up or down vote. The policy outcome in
that period is the proposed policy if it receives the support of a “decisive” coalition of legislators,
the status quo otherwise, and the status quo in the next period is determined by the outcome
that prevails in the current period. This process continues ad infinitum. Thus, the path of play in
our model generates an infinite sequence of policies over time, and in equilibrium legislators must
anticipate future policy consequences of their decisions. In particular, when voting on a proposal,
a legislator must compare the stream of policies that would be generated by the proposed policy
with the stream that would be generated by the status quo. And legislators must select their pro-
posed policies optimally in light of the future policies they entail, while factoring in the prospect
that a proposed policy will garner the support of a decisive coalition. We deduce the existence of
stationary equilibria in pure strategies, and moreover, we show that all stationary equilibria are
essentially pure. In fact, equilibria are strict in the sense that proposers almost always have unique
optimal proposals, a critical property for the computation of equilibria. Continuation values of
the legislators are differentiable, and equilibrium proposal strategies are differentiable almost ev-
erywhere, making possible the use of calculus techniques in characterizing optimal proposals. We
prove a general result on upper hemicontinuity of the equilibrium correspondence with respect to
the parameters of the model, including the policy space itself. Finally, we give conditions under
which each equilibrium admits a unique invariant distribution with desirable ergodic properties,
providing an unambiguous prediction of long run policy outcomes in the model.

We do not impose specific assumptions about the policy space or functional forms for legislators’
utility functions. Instead, we allow the set of alternatives to be a very general subset of any finite-
dimensional Euclidean space defined by arbitrary smooth feasibility constraints, and we assume
smooth stage utility functions but do not impose any further restrictions on preferences. Thus, we
capture standard models with resource and consumption constraints, such as the classical spatial
model of politics, economic environments, and distributive models in which a fixed surplus is
allocated across legislators, and we obtain even a finite policy space as a special case. We incorporate
uncertainty about future policy preferences and future effects of policy with the assumption that
at the end of each period: next period’s status quo is realized as the sum of the current period’s
policy outcome and an arbitrarily small stochastic shock, and legislators’ preferences next period are
subject to arbitrarily small publicly observed stochastic shocks. The first of these two assumptions
captures the fact that policy instruments are often pegged to the realization of random variables.
For example, legislators may care about the real minimum wage, which is determined through
a nominal minimum wage (the policy instrument) and the realization of the current price level
(a random variable for our purposes). In fact, we would argue that because no legal document
can account for all possible contingencies, all policy is implicitly subject to unforeseeable shocks:
the implementation of any policy codified in law will ultimately be subject to review by courts,
interpretation by administrators, and the vagaries of the policy environment. Thus, a particular
policy decision in the current period is likely to effectively result in a different, albeit correlated,
policy implemented in future periods. The second assumption captures the possibility of mild
idiosyncratic deviations from the underlying systematic preferences of legislators from period to
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period. These shocks can be viewed as a reduced form representation of uncertainty about the
preferences of constituent voters or about other aspects of the legislators’ electoral environments.

The equilibrium behavior of legislators in our model is potentially highly complex, owing to
the vast multiplicity of histories in the game. At a minimum, proposal strategies must depend on
the current status quo and preference parameters, and voting strategies must depend additionally
on the policy proposed. It is therefore natural to focus on stationary Markov perfect equilibria,
a refinement that precludes more complicated forms of history-dependence. Due to their relative
simplicity, such strategies minimize the difficulty of strategic calculations and may therefore possess
a focal quality. From a practical econometric point of view, moreover, stationarity is critical
for the identification of empirical models (cf. Ericson and Pakes (1995) and Aguirregabiria and
Mira (2007)).1 Existence of stationary equilibria in general dynamic games is a difficult issue,
however, for discontinuities can arise due to expectations of future play of the game: if players
use discontinuous strategies, then a small change in one player’s action in the current period may
lead to a large response by other players, creating a jump in the discounted sum of payoffs even if
stage payoffs are continuous. It is customary in the literature on stochastic games to gain traction
on existence by adding noise to the transition from the current state to next period’s state and
imposing continuity assumptions on transition probabilities. In our model, uncertainty about next
period’s status quo and future preferences of legislators plays a similar, though diminished, role.
These two types of noise, the common shock to current policy and the idiosyncratic shock to each
legislator’s preferences, confer rather distinct analytical benefits: the idiosyncratic component is
critical for uniqueness of best responses, while the common component is used to obtain needed
continuity and compactness conditions. A similar decomposition of noise can be found in the
dynamic industrial organization literature, as in Aguirregabiria and Mira (2007) and Doraszelski
and Satterthwaite (2007).2 As we discuss in the next section, however, our formulation of noise is
not sufficient for the model to fulfill the standard continuity assumptions on transition probabilities
in the stochastic games literature, and we cannot obtain existence “off the shelf.”

Given the complexity of our model, analytical solutions are likely to be out of reach in many
interesting applications, and we therefore add a fourth item to the desiderata (i)–(iii) stated above:
in addition, we seek a model that (iv) permits analysis of equilibrium by numerical methods.
Though we prove existence of equilibrium, a necessary condition for the meaningful application of
numerical methods, existence alone is not sufficient for numerical analysis, for dynamic games with
a continuum of actions can present formidable challenges to computation of equilibrium if players
use mixed strategies. In this respect, our characterization results take on added significance. We
know that all equilibria of our model are essentially pure, and in fact we show that proposers
almost always have unique best responses, removing an important obstacle to the application of
numerical techniques.3 From there, we take an additional step toward a practical algorithm for
numerical analysis of our model by means of an increasing sequence of finite grids on the policy
space. Because upper hemicontinuity holds even when the policy space varies, an implication of
our results is that if we compute stationary equilibria for each finite grid in the sequence, then
the ensuing sequence of equilibrium continuation values will have an accumulation point, and this

1See Maskin and Tirole (2001) for an elaboration of these points and further grounds for interest in stationary
equilibria.

2The addition of noise to dynamic models has also been fruitful in such applications as the study of intergenera-
tional transfers in growth economies. See, e.g., Bernheim and Ray (1989) and Nowak (2006).

3The significance of pure strategy equilibria for the computational tractability of dynamic games is highlighted
by Herings and Peeters (2004) and Nowak (2007) and is emphasized by Doraszelski and Satterthwaite (2007) in the
context of a dynamic oligopoly model.
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will correspond to an equilibrium of the continuum model. We demonstrate this approach in a
simple example in which five legislators must choose policies in an interval of the real line. We
compute a stationary equilibrium that illustrates how slight asymmetries in stage utilities can lead
to qualitative differences in equilibrium behavior, and we verify that the unique ergodic distribution
piles probability mass close to the ideal point of the median voter.

Specializing to the case of distributive bargaining, our model is related to the work of Baron
and Ferejohn (1989) and the political science literature spawned from it, but with an important
difference: their model ends with the proposed allocation of surplus if a majority of legislators accept
the proposal, which occurs, in equilibrium, in the first period of the game. Thus, while the model
can be used to examine policy choices across legislative sessions by simply repeating the bargaining
game each session, this is appropriate only if policies remain in place for a single session with an
exogenously fixed default outcome at the beginning of the next. This is often the case in budgetary
negotiations, but the model is inadequate for the analysis of continuing legislation, where policy
remains in place for the indefinite future and endogenously determines the status quo in subsequent
negotiations. In seminal work on the endogenous status quo model, Baron (1996) considers a model
in which legislators have single-peaked stage utilities over a one-dimensional policy space and must
choose a sequence of policies over time, each period’s policy outcome becoming the status quo in
the next. He proves that stationary equilibrium policy outcomes converge to the ideal point of the
median voter over time, consistent with our numerical example of one-dimensional policy-making,
though our model generates richer dynamics due to the presence of noise. The model has been
extended to special multidimensional settings by Kalandrakis (2004c, 2005a), Fong (2005), Cho
(2005), and Battaglini and Coate (2007a,b), who give constructive proofs of equilibrium existence
relying on the particular structure of their models.

In Section 2, we give a more thorough review of the bargaining literature in political economy
and the literature on stochastic games, as well as the related literature in dynamic industrial
organization. In Section 3, we present the model formally and describe our solution concept. In
Section 4, we state our existence and characterization results. In Section 5, we present a numerical
example. We conclude with a discussion of extensions of the model in Section 6, and we collect all
proofs in Appendix A.

2 Literature Review

Before turning to the analysis, we first give a more in-depth review of the literature on bargaining, as
it relates to legislative modeling, the literature on existence of stationary Markov perfect equilibrium
in stochastic games, and the related literature in dynamic industrial organization.4

Bargaining Most of the existing work on bargaining considers an infinite-horizon game where
in each period one agent makes a proposal and that proposal is either accepted, in which case
the game ends with the proposed outcome, or rejected, in which case bargaining continues for at
least one more round. This literature begins with the work of Rubinstein (1982) on two-person,
alternating-offer bargaining, which is modified by Binmore (1987) to allow for a randomly de-
termined proposer. The model was extended to cover legislative politics by Baron and Ferejohn
(1989), who allow for an arbitrary number of legislators and assume a simple majority is required

4Our model also has connections, though not as tight, to the macroeconomic literature on quasi-geometric dis-
counting, where dynamic decision making is modeled as a game between present and future selves (cf. Krusell and
Smith (2003)). Here, the extra discounting on future utility acts somewhat like the probability of a “self” being
recognized to make a proposal. We thank Tony Smith for this observation.
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for a proposal to pass. As with Rubinstein’s and Binmore’s work, the subject of bargaining is the
allocation of a fixed surplus, often interpreted as pork barrel spending in the legislative context.

A substantial literature cutting across economics and political science has grown from these
papers. For example, Baron (1991) examines the case of a two-dimensional set of alternatives, three
or four voters with quadratic preferences, and voting by majority rule. Merlo and Wilson (1995)
prove uniqueness of stationary equilibrium, assuming unanimity rule and allowing the amount
of the surplus to vary stochastically over time. Eraslan (2002) proves uniqueness of stationary
equilibrium in the original Baron-Ferejohn model. Banks and Duggan (2000) prove existence and
examine connections to the core of the associated cooperative voting game in a version of the
model with general set of alternatives, preferences, and voting rule. Kalandrakis (2004b) gives
a simplified proof of existence using a characterization of equilibrium in terms of the solutions
to a finite number of equalities and inequalities. Kalandrakis (2006a) examines regularity of the
general bargaining model for generic discount factors. While all of the previous work implicitly
assumes that delay is bad for the agents, Banks and Duggan (2006) allow for an arbitrary status
quo, re-establish results from the earlier framework, and provide a new analysis of the possibility of
delay. Cho and Duggan (2003) prove uniqueness of stationary equilibrium in the one-dimensional
model with quadratic utilities, and Cho and Duggan (2005) prove an asymptotic median voter
theorem in the one-dimensional bargaining model without stationarity. This class of models has
found numerous applications to legislative policy making,5 but while these applications capture
some dynamic aspects of politics, they uniformly assume that the game ends once a proposal is
accepted.

A small literature considers the effects of endogenizing the status quo: each period begins with
a status quo, then one agent makes a proposal and that proposal is either accepted, in which case
it becomes the current policy and the status quo for the next period, or rejected, in which case the
current status quo remains in place until the beginning of next period. Whether the current period’s
proposal is accepted or rejected, the process is repeated next period, and so on. There are currently
no general results for this model, though there are constructions of stationary equilibria in special
cases. Baron (1996) analyzes the one-dimensional version of the model with single-peaked stage
utilities. Kalandrakis (2004a, 2005a) establishes existence and continuity properties of equilibrium
strategies in the distributive model, obtains a fully strategic version of McKelvey’s (1976; 1979)
dictatorial agenda setting in that setting, and studies the composition of equilibrium coalitions and
the effect of risk-aversion on equilibrium.6 Baron and Herron (2003) give a numerical calculation
of equilibrium in a three-legislator, finite-horizon model. Fong (2005) considers a three-legislator
model in which policies consist of locations in a two-dimensional space and allocations of surplus.
Cho (2005) analyzes policy outcomes in a similar environment but with a stage game emulating
aspects of parliamentary government. Similar in spirit to the above, Battaglini and Coate (2007b)
characterize stationary equilibria in a model of public good provision and taxation with identical
legislators and a stock of public goods that evolves over time. Battaglini and Coate (2007a) consider
a dynamic model of public spending and taxation in which the state variable is the amount of public
debt. All of the above analyses of stationary equilibria consist of explicitly constructing equilibrium
strategies, which, given the dependence of proposals on the status quo, can be extremely complex.

A number of related papers diverge in various ways from the above literature and our model.

5See, for example, Diermeier et al. (2003), Jackson and Moselle (2002), Kalandrakis (2004a, 2005b, 2006b), Mc-
Carty (2000), and Merlo (1997).

6In contrast, Epple and Riordan (1987) allow for history dependent strategies and derive folk theorem results in
the distributive model.
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Bernheim et al. (2006) analyze a model of a single policy choice in which the proposal on the
floor is subject to change over time, and after a fixed number of rounds, the implemented policy
is determined by a final up or down vote between the proposal offered in the last round and the
previous proposal on the floor. The authors assume a finite policy space and strict preferences over
policies for all legislators, so that backward induction yields a unique equilibrium outcome. They
then extend the model to a finite number of policy choices over time, with the finite horizon again
permitting backward induction.7 Penn (2005) considers a dynamic voting game with randomly
generated policy proposals and probabilistic voting on these proposals. Lagunoff (2005a,b) inves-
tigates a class of stochastic games that incorporate a social choice solution concept and analyzes
endogenous political institutions. Finally, Gomez and Jehiel (2005) consider a class of stochastic
games and characterize efficiency properties of equilibrium when players are patient. Unlike our
model, they assume a finite number of states and transferable utility.

Stochastic Games Existence of stationary Markov perfect equilibrium is a central issue
in the literature on stochastic games beginning with Shapley (1953), who proved existence for
finite, two-player, zero-sum games. Existence in general finite stochastic games follows from the
straightforward application of Kakutani’s fixed point theorem in finite dimensions (cf. Rogers (1969)
and Sobel (1971)). Haller and Lagunoff (2000) prove that the set of stationary Markov perfect
equilibria in finite games is generically finite, and Herings and Peeters (2004) develop an algorithm
for computation of equilibrium and use homotopy arguments to show that the number of equilibria
is odd. General results on existence have been elusive and have relied on the imposition of relatively
special structure or departures from the concept of stationary equilibrium.8 All of the known results
rely on fairly strong assumptions on transition probabilities. Letting s denote a state and a denote a
profile of actions, a transition probability is a measurable mapping µt(·|s, a) from state-action pairs
to a probability measure on the set of states. We next list, in increasing strength, some assumptions
used in the literature, where we refer to the total variation norm on probability measures.

(A1) µt is set-wise continuous in a,9

(A2) µt is norm-continuous in a,

(A3) µt is norm-continuous in a and absolutely continuous with respect to some fixed probability
measure νt,

(A4) µt is norm-continuous in a and absolutely continuous with respect to a fixed, non-atomic
probability measure νt,

(A5) µt has a density f(s′|s, a) with respect to Lebesgue measure that is continuous with respect
to a.

It is well-known that even the weakest of the above assumptions, (A1), is inconsistent with deter-
ministic transitions when action sets are uncountably infinite.

In finite-horizon stochastic games, Rieder (1979) (see also Chakrabarti (1999)) proves existence
of Markov perfect equilibrium under (A1). By incorporating time in the state variable of a finite-
horizon game, we may in fact view Rieder’s equilibrium as stationary. Assuming (A1), Whitt

7A further difference is that Bernheim et al. (2006) allow for persistent policy programs, which can determine
trajectories of policies in future periods.

8Dutta and Sundaram (1998) provide a lucid review of much of the literature on stochastic games and the problem
of existence of Markov Equilibrium.

9That is, for each measurable set Z of states, µ(Z|s, a) is continuous in a.
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(1980) and Escobar (2006) prove existence of stationary Markov perfect equilibria for the case
of a countable state space. Under strong continuity assumptions on the transition probability,
akin to (A5), Amir (1996, 2002)), Curtat (1996), and Nowak (2007) prove existence of stationary
Markov perfect equilibria in games possessing strategic complementarities.10 Other results have
been obtained by weakening stationarity or considering weaker notions of equilibrium. Chakrabarti
(1999) proves existence of (possibly non-stationary) Markov perfect equilibria in games satisfying
(A3), and Mertens and Parthasarathy (1987, 1991) drop the assumption of absolute continuity and
obtain existence of equilibria that are nearly Markovian.11 Increasing (A3) to (A4), Chakrabarti
(1999) proves existence of a stationary equilibrium, but now in semi-Markov perfect strategies.12

Dutta and Sundaram (1998) give a simple proof of the existence of (possibly non-stationary) Markov
perfect ǫ-equilibria under (A1), whereas Nowak (1985) increases (A1) to (A4) and obtains a Markov
perfect ǫ-equilibrium in stationary strategies. Himmelberg et al. (1976) prove existence of stationary
p-equilibria assuming finite action sets.13 Finally, Nowak and Raghavan (1992) prove existence of
stationary Markov perfect equilibria with public randomization under (A4), and Duffie et al. (1994)
add mutual absolute continuity of transition probabilities and show that the equilibrium induces
an ergodic process.

There at least three difficulties in applying known results on stochastic games to our legislative
model. The first is simply that there is no general existence result for stationary Markov perfect
equilibria in stochastic games with a continuum of actions and states: current work in that setting
weakens stationarity or relaxes the exactness of optimality conditions or allows for correlated strate-
gies. But we seek truly stationary strategies such that legislators optimize at all states, without
the availability of a public randomization device. The next challenge stems from the deterministic
element inherent in the structure of legislative procedure, which, when modelled naturally, violates
(A1) and the other stronger conditions used on transition probabilities. In describing our legislative
model as a stochastic game, the state variable must include all relevant details of the game when
legislators take actions, whether proposing policy or voting over proposals. Thus, the state must
specify when the legislature is in a proposal stage or a voting stage. In a proposal stage, the state
must also specify the proposer and status quo, and in a voting stage the state must specify the
proposed policy and the status quo. The transition from a voting stage to the subsequent proposal
stage is not problematic, for action sets in the voting stage are finite, and the transition is trivially
continuous following the votes of legislators. The problem is the fact that the proposer’s action (the
policy proposal) precisely determines the state in the subsequent voting stage, inevitably violating
(A1). Adding noise to the model in the form of uncertainty about the future status quo and policy
preferences of legislators does not eliminate this problem, which we take to be an inherent feature
of legislative policy-making. Our model violates the standard continuity assumptions, so that even
a general existence result using the weakest of these assumptions, if one were proved, would not
apply. We are nevertheless able to establish existence of stationary equilibria satisfying a number
of desirable technical properties.

The final difficulty arises from the desirability of pure strategy equilibria, discussed above. In the
extant literature, Whitt (1980) and Escobar (2006) give sufficient conditions for existence of pure

10Other work restricts the way in which players’ actions affect each others’ payoffs, e.g., Jovanovic and Rosenthal
(1988), Bergin and Bernhardt (1992), and Horst (2005).

11Players strategies in period t can depend not only on the current state st but the previous state st−1 as well.
12That is, players may condition on the current state and the state in the previous period, and the nature of that

conditioning is constant over time.
13Here, p is a probability measure on states, and a p-equilibrium is a strategy profile such that players optimize at

all but perhaps a set of states with p-measure zero.
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strategy equilibria by imposing restrictive conditions on payoffs that are satisfied, for example,
when players are sufficiently impatient. Amir (1996, 2002), Curtat (1996), and Nowak (2007)
derive pure strategy equilibria using lattice-theoretic methods, while the latter author also gives
conditions based on concavity of the stage game and a decomposition of the transition probability.
Horst (2005) gives a sufficient condition that limits the dependence of a player’s payoff on actions
of others. None of these results apply in the context of our model.

Industrial Organization A strand of literature in industrial organization, beginning with
Ericson and Pakes (1995), has studied the dynamics of entry, exit, and investment in a framework
with some similarities to our legislative policy making model. Ericson and Pakes (1995) consider an
industry with, essentially, a finite number of states characterizing the productivity of all firms. Each
period begins with a state, which determines gross profits for that period, and then active firms
must choose a level of investment and whether to remain in the industry, while inactive firms must
decide whether to enter the industry. The period ends with the draw of next period’s productivity
state from a distribution that depends on the current state and investment decisions. Doraszelski
and Satterthwaite (2007) observe, however, that equilibria in the Ericson-Pakes model may require
mixed strategies. The latter authors surmount this difficulty by assuming incomplete information
about scrap values and setup costs of firms, which are distributed iid, and by imposing restrictions
on the transition probability: the former yield pure entry/exit strategies, while the latter give
pure investment strategies. Thus, their model involves a decomposition of noise into a common
component (the shock to the productivity state) and an idiosyncratic component (scrap values and
setup costs), as does ours. The nature of their idiosyncratic noise is quite distinct, however. In
Doraszelski and Satterthwaite (2007), scrap values and setup costs are private information, and
their purification of entry/exit decisions is in the spirit of Harsanyi (1973). In contrast, our model
is characterized by symmetric information, as preference shocks are realized at the beginning of
the period and are publicly observed, and our generic uniqueness result relies on a different logic.
As we note later, the presence of incomplete information in our model would actually facilitate
our equilibrium analysis, but we prefer to maintain the assumption of symmetric information for
modeling reasons.

In recent applied work, Aguirregabiria and Mira (2007) consider an empirical model in which
there is a finite set of productivity states and firms make discrete choices that determine profits and
the distribution of states in the next period. In addition, the current period’s profits are subject
to idiosyncratic, iid shocks. Thus, the model involves a decomposition of noise into common and
idiosyncratic components, as does ours. As with Doraszelski and Satterthwaite (2007), however,
the idiosyncratic shocks are private information. Furthermore, the idiosyncratic shocks of Aguirre-
gabiria and Mira (2007) are shocks to the actions of firms, rather than to economic outcomes, and
thus generic uniqueness of best responses is immediate. In our model, preference shocks are applied
to the utility of the current policy outcome, and not to the actions (proposals and votes) leading
to that outcome. Finally, although idiosyncratic shocks are continuously distributed in Doraszelski
and Satterthwaite (2007) and Aguirregabiria and Mira (2007), the set of productivity states is fi-
nite. This greatly simplifies the problem of imbedding continuation values within a compact space,
an important step in obtaining existence of stationary Markov perfect equilibrium. An additional
role of the common component of noise in our model, not needed in the above work, is to facilitate
that imbedding.
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3 Legislative Model

Framework We posit a finite set N of legislators, i = 1, . . . , n, who determine policy over an
infinite horizon, with periods indexed t = 1, 2, . . .. Legislative interaction proceeds as follows in each
period. A status quo policy q ∈ ℜd and a vector θ = (θ1, . . . , θn) ∈ ℜnd of preference parameters are
realized and publicly observed. A legislator i ∈ N is drawn at random, with probabilities p1, . . . , pn,
to propose a policy y ∈ X∪{q}, where X ⊆ ℜd represents the set of feasible policies. The legislators
vote simultaneously to accept y or reject it in favor of the status quo q. The proposal passes if
a coalition C ∈ D of legislators vote to accept, and it fails otherwise, where D is a collection of
coalitions described later. The policy outcome for period t, denoted xt, is y if the proposal passes
and is q otherwise. Each legislator j receives utility ûj(xt, θj), where θj ∈ ℜd is the legislator’s
utility shock. Finally, the status quo q′ for period t + 1 is drawn from the density g(·|xt), a new
vector θ′ = (θ′1, . . . , θ

′
n) of preference shocks is drawn from the density f(·) and publicly observed,

and the above procedure is repeated in period t + 1. Payoffs in the dynamic game are given by
the expected discounted sum of stage utilities, as is standard, and we denote the discount factor of
legislator i by δi ∈ [0, 1).

We represent a general voting rule by a nonempty collection D ⊆ 2N \ {∅} of decisive coalitions
satisfying only the minimal monotonicity requirement that if one coalition is decisive, and we add
legislators to that coalition, then the larger coalition is also decisive. Formally, we assume that if
C ∈ D and C ⊆ C ′ ⊆ N , then C ′ ∈ D . This allows us to capture majority rule in the obvious
way, as the collection D = {C ⊆ N : |C| > n

2 }, and we obtain many other common voting rules
as special cases. To obtain unanimity rule, we set D = {N}, and in general we obtain any quota
rule by setting D = {C ⊆ N : |C| ≥ q}, where q ∈ [0, N ]. Dictatorship is the special case
D = {C ⊆ N : i ∈ C}, where i is the dictator, and we can give any legislator i a veto by specifying
i ∈ C for all C ∈ D . Our framework captures far more complex voting rules as well. See Banks
and Duggan (2000, 2006) for examples of how a bicameral system with executive veto, as in the
US system, is obtained, along with examples of more esoteric rules of the US Congress.

We impose a number of regularity conditions on the model. We assume that the set of feasible
policies, X, is cut out by a finite number k of functions hℓ : ℜd → ℜ indexed by K = {n+1, . . . , n+
k}. We partition K into inequality constraints, Kin, and equality constraints, Keq, and we assume
that

X = {x ∈ ℜd : hℓ(x) ≥ 0, ℓ ∈ Kin, hℓ(x) = 0, ℓ ∈ Keq}.

We further assume that X is compact, and that hℓ is r-times continuously differentiable for all
ℓ ∈ K, where r ≥ max{2, d}.14 For technical reasons, we impose the weak condition that for all
x ∈ X, {Dhℓ(x) : ℓ ∈ K} is linearly independent, where K is the subset of ℓ ∈ K, including
equality constraints, such that hℓ(x) = 0. With these assumptions, we capture standard models
with resource and consumption constraints, such as the classical spatial model of politics, public
good economic environments, and distributive models in which an amount of surplus is to be
allocated among the legislators’ districts. Moreover, equality constraints allow us to capture quite
general manifolds, and in particular we obtain an arbitrary finite set X ⊆ ℜd of policies as a special
case.15

14Of course, we allow r = ∞.
15We do so using suitably “oscillating” equality constraints. We can, for example, isolate a grid on [0, 1]d by using

trigonometric functions, as in {x ∈ ℜd : sin(2πxiα) = 0, i = 1, . . . , d}, for appropriate α. We exploit this possibility
in the numerical analysis of Section 6.
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The presence of preference shocks in the model captures uncertainty about the legislators’ future
policy preferences. We assume that stage utilities are given by ûi(x, θi) = ui(x) + θi · x, where
ui : ℜd → ℜ is r-times continuously differentiable. In the special case of negative quadratic utility,
i.e., ui(x) = −||x − x̂i||2, where x̂i ∈ ℜd is a fixed ideal point, the preference shock is equivalent
to adding a noise term to the ideal point of legislator i,16 while in the case of linear utility, the
shock is merely a perturbation of a legislator’s gradient. We choose the linear parameterization for
the shock because it respects the standard convexity and continuity assumptions in the literature
and is the simplest way of introducing well-behaved shifts of the indifference curves of legislators.
It is a trivial matter to extend our results to the model with a more complex parameterization,
as long as it contains a linear component.17 With regard to the distribution of preference shocks,
we assume that the vector θ = (θ1, . . . , θn) is distributed according to a density f with support
contained in an open set Θ ⊆ ℜnd, and we further assume a compact set X̃ ⊇ X and a bound c
such that |ui(x) + θi · x|f(θ) ≤ c for all i ∈ N , all θ ∈ Θ, and all x ∈ X̃. Since X̃ is compact, it has
finite Lebesgue measure, which we denote by a.

The noise on the status quo captures the idea that legislators are uncertain about the way policy
decisions today will be implemented in the future. We assume that the density g : ℜd × ℜd → ℜ,
with values g(q|x), is jointly measurable in (q, x), and that for all x, the support of the density
g(·|x) lies in the compact set X̃ . We do not assume that the support of g(·|x) lies in X, though of
course we allow it. Furthermore, we assume a bound b such that for all q, we have: g(q|x) is r-times
continuously differentiable in x; if r <∞, then all derivatives of order 1, . . . , r are bounded in norm
by b, and the r-th derivative of g(q|x) with respect to x is Lipschitz continuous with modulus b;
and if r = ∞, then derivatives of all orders 1, 2 . . . are bounded in norm by b. It is a trivial matter
to extend the model to allow the density g of next period’s status quo to depend on the current
status quo, in addition to the current policy outcome.

Our approach to existence involves the addition of noise to policy outcomes and legislator
utilities, but we emphasize that the status quo and the utility shocks at the beginning of a period
t are commonly known, so that a proposer knows whether any given policy will pass or fail if
proposed. Furthermore, once a vote is taken, the policy outcome is pinned down for period t: the
legislators know, conditional on the outcome of voting, what the policy outcome in the current
period will be, and a new status quo is drawn for period t + 1 only after legislators receive their
period t utilities from outcome xt. Thus, our formulation of noise in the model is consistent with
the view that while legislators are completely informed in the current period, there is at least some
uncertainty about future policy preferences and the policy environment. We view these as natural
modeling assumptions. In any case, the variance of the densities f and g(·|x) may be arbitrarily
low, with the sole caveat that the variance of g(·|x) must be bounded above zero uniformly across
x. Thus, we allow for the selection of preference shocks and the status quo to be arbitrarily close to
deterministic, so that the element of noise in the model can be made negligible from a substantive
standpoint.

An alternative would be to model uncertainty in the current period as well, so that a legislator
may not be able to precisely predict whether a proposal will pass, and legislators would not be
able precisely predict the effects of a policy implemented in the current period. An argument
can be made that such uncertainty exists in real-world legislative systems. We take it as evident,

16To see this, note that ui(x) + θi · x = −(x− (x̂i + 1
2
θi)) · (x− (x̂i + 1

2
θi)) + θi · x̂ + 1

4
θi · θi, which is just the sum

of a term, θi · x̂ + 1
4
θi · θi, constant in x and the quadratic utility with ideal point x̂i + 1

2
θi.

17We could, as well, elaborate the model by assuming an additional autocorrelated preference shock. What is
needed is that there be some component of the preference shock that is independently distributed across periods.
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however, that uncertainty about the future is of a higher order of magnitude, and we bring out that
contrast in the model by simply assuming complete information for the stage game in any given
period. In any case, the addition of noise in the current period to the model would facilitate the
equilibrium analysis. Put differently, we establish existence and various properties of equilibrium
without recourse to the assumption of noise in the current period.

Strategies and Payoffs A strategy in the game consists of two components, one giving
the proposals of legislators when recognized to propose and other giving the votes of legislators
after a proposal is made. While these choices can conceivably depend on histories arbitrarily, we
seek subgame perfect equilibria in which legislators use stationary Markov strategies, which we
denote σi = (πi, αi). Our main focus will be on pure strategies, which, as we will show in the
sequel, is without loss of generality. Thus, legislator i’s proposal strategy is a measurable mapping
πi : ℜd × Θ → ℜd, where πi(q, θ) is the policy proposed by i given status quo q and utility shocks
θ. And legislator i’s voting strategy is a measurable mapping αi : ℜd × ℜd × Θ → [0, 1], where
αi(y, q, θ) = 1 if i accepts proposal y given status quo q and utility shocks θ and αi(y, q, θ) = 0 if i
rejects. We let σ = (σ1, . . . , σn) denote a stationary strategy profile. We may equivalently represent
voting strategies by the set of feasible proposals a legislator would vote to accept. We define this
acceptance set for i as Ai(q, θ;σ) = {y ∈ X ∪{q} : αi(y, q, θi) = 1}. Letting C denote a coalition of
legislators, we then define

AC(q, θ;σ) =
⋂

i∈C

Ai(q, θ;σ) and A(q, θ;σ) =
⋃

C∈D

AC(q, θ;σ)

as the coalitional acceptance set for C and the legislative acceptance set, respectively. The latter
consists of all policies that would receive the votes of all members of at least one decisive coalition,
and would therefore pass if proposed.

Given strategy profile σ, we define legislator i’s induced preferences in the game by

Ui(y, θi;σ) = (1 − δi)(ui(y) + θi · y) + δivi(y;σ),

where vi(x;σ) is i’s continuation value at the beginning of period t + 1 from policy outcome x
in period t.18 We initially assume that legislators use “deferential” voting strategies, in the sense
that when indifferent between a proposed policy and the status quo, they vote to accept. This
assumption, which will turn out to be without loss of generality, then allows us to focus on no-
delay equilibria, in which no legislator ever proposes a policy that is rejected. (In lieu of that, the
legislator can just as well propose the status quo.) Our measurability assumptions on strategies
imply that continuation values are also measurable, and therefore they satisfy

vi(x;σ) =

∫

q

∫

θ

∑

j

pjUi(πj(q, θ), θi;σ)f(θ)g(q|x)dθdq (1)

for all policies x.

To extend these ideas to allow for mixing and non-deferential voting, we let Πi : ℜd×Θ → P(ℜd)
denote a mixed proposal strategy, where P(ℜd) is the set of Borel probability measures on ℜd. We
equip this space with the weak* topology, and we assume Πi is Borel measurable. Here, Πi(q, θ)
represents the distribution of i’s policy proposal given status quo q and shocks θ. We continue

18Note that these continuation values are “ex ante,” in the sense that they are calculated at the beginning of the
period, before q and θ are realized.
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to define voting strategies as measurable mappings αi : ℜd × ℜd × Θ → [0, 1], but now αi(q, θ) is
the probability, ranging between zero and one, that i accepts proposal y given q and θ. A mixed
strategy for legislator i is then Σi = (Πi, αi), and we let Σ = (Σ1, . . . ,Σn) denote a mixed strategy
profile. Given a profile Σ of mixed strategies, we define induced preferences Ui(y, θi; Σ) as above,
but the legislators’ continuation values now have the following more complicated form:

vi(x; Σ) =

∫

q

∫

θ

∑

j

pj

∫

y

[

α(y, q, θ; Σ)Ui(y, θi; Σ) (2)

+(1 − α(y, q, θ; Σ))Ui(q, θi; Σ)
]

Πi(q, θ)(dy)f(θ)g(q|x)dθdq,

where

α(y, q, θ; Σ) =
∑

C∈D





∏

j∈C

αj(y, q, θ)









∏

j /∈C

(1 − αj(y, q, θ))





is the probability that a proposal y is accepted by a majority of legislators. Note that, in (2), we
now integrate over the policies proposed by each legislator i, and given a realization y from the
mixed proposal strategy we now account for the possibility that y may pass with a probability
intermediate between zero and one.

Legislative Equilibrium With this formalism established, we can now define classes of sta-
tionary Markov perfect equilibria of special interest. Intuitively, we require that legislators always
propose optimally and that they always vote in their best interest. It is well-known that the latter
requirement is unrestrictive in simultaneous voting games, however, as arbitrary outcomes can be
supported by Nash equilibria in which no voter is pivotal. To address this difficulty, we follow
the standard approach of refining the set of Nash equilibria in voting subgames by requiring that
legislators delete votes that are dominated in the stage game. Thus, we say a strategy profile σ is
a pure stationary legislative equilibrium if the following conditions hold:

• for all shocks θ, every status quo q, and every legislator i, πi(q, θ) solves

max
y
Ui(y, θ;σ)

s.t. y ∈ A(q, θ;σ),

• for all shocks θ, every status quo q, every proposal y, and every legislator i,

αi(y, q, θi) =

{

1 if Ui(y, θi;σ) ≥ Ui(q, θi;σ)
0 else.

This notion will be the main equilibrium concept of our analysis. Note that it not only imposes the
requirement that legislators use pure strategies and eliminate stage-dominated voting strategies,
but it also builds in the feature that voters defer to the proposer when indifferent. We then without
loss of generality restrict proposers to the legislative acceptance set. Thus, this notion of equilibrium
is relatively restrictive.

In contrast, we also define the following, conceptually less restrictive notion of equilibrium. We
say a profile Σ of mixed strategies is a mixed stationary legislative equilibrium if

12



• for all shocks θ, every status quo q, and every legislator i, Πi puts probability one on solutions
to

max
y∈X∪{q}

α(y, q, θ; Σ)Ui(y, θi; Σ) + (1 − α(y, q, θ; Σ))Ui(q, θi; Σ),

• for all shocks θ, every status quo q, every proposal y, and every legislator i,

αi(y, q, θi) =

{

1 if Ui(y, θi; Σ) > Ui(q, θi; Σ)
0 if Ui(y, θi; Σ) < Ui(q, θi; Σ).

One difference between this notion of equilibrium and that of pure stationary legislative equilibrium
is that we now allow a legislator, in case there are multiple optimal proposals, to mix over those
proposals. A second difference is that we allow a legislator to vote with arbitrary probabilities
when indifferent between a proposed policy and the status quo. Consistent with stage-game weak
dominance, however, we require that legislators with strict preferences vote deterministically. This
complicates the optimization problem of a proposer i, for the utility maximizing policies in the
legislative acceptance set may no longer pass with probability one. Note that we can still, without
loss of generality, restrict the proposer to the legislative acceptance set if we wish.

We say that a mixed strategy profile Σ is equivalent to a strategy profile σ if the policy outcome
determined by (q, θ) is πi(q, θ) with probability one. Formally, for all q, there exists a measure
zero set Θ(q) ⊆ Θ such that for all i and all θ /∈ Θ(q), we have: (i) if πi(q, θ) 6= q, then i
proposes πi(q, θ) and this passes with probability one, i.e., α(πi(q, θ), q, θ; Σ)Πi(q, θ)({πi(q, θ)}) = 1,
and (ii) if πi(q, θ) = q, then no proposal other than πi(q, θ) passes with positive probability, i.e.,
∫

X\{q} α(y, q, θ; Σ)Πi(q, θ)(dy) = 0. We consider two cases in the preceding definition because there
are two, payoff equivalent ways the status quo can prevail during a given period—it can be proposed
and pass or a proposal can be rejected—either of which suffices for the definition of equivalence.
We will see that every mixed stationary legislative equilibrium is essentially pure, so that the added
conceptual flexibility afforded by mixed strategies is not realized in equilibrium.

4 Main Results

In this section, we take up the existence and characterization of pure and mixed stationary legislative
equilibria, robustness of equilibria, and the long run distribution of equilibrium policies.

Pure Stationary Legislative Equilibria The main result of this section is that there is a
stationary legislative equilibrium satisfying a number of desirable technical properties.

Theorem 1 There exists a pure stationary legislative equilibrium, σ, possessing the following
properties.

1. Continuation values are differentiable: for every legislator i, vi(x;σ) is r-times continuously
differentiable as a function of x.

2. Proposals are almost always strictly best: for every status quo q, almost all shocks θ, every leg-
islator i, and every y ∈ A(q, θ;σ) distinct from the proposal πi(q, θ), we have Ui(πi(q, θ), θi;σ) >
Ui(y, θi;σ).

3. Proposal strategies are almost always continuously differentiable: for every status quo q, al-
most all shocks θ, and every legislator i, πi(q, θ) is continuously differentiable in an open set
around (q, θ).
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4. Constrained proposers almost always form minimal winning coalitions: for every status quo
q, almost all shocks θ, and every legislator i, if πi(q, θ) 6= q and there exists j such that
Uj(πi(q, θ), θj;σ) = Uj(q, θj ;σ), then

{l ∈ N : Ul(πi(q, θ), θl;σ) ≥ Ul(q, θl;σ)} \ {j} /∈ D .

Part 1 of Theorem 1 establishes that equilibrium continuation values inherit the differentiable
structure of the components of the model, ui, hℓ, and g. By part 2, the equilibrium exhibited in
Theorem 1 is, in a sense, strict: for almost all realizations of noise on preferences and the status
quo, a proposer has a unique optimal policy choice. Part 3 of the theorem establishes a potentially
useful technical property of equilibrium policy proposals: although equilibrium policy strategies
will generally be discontinuous, they are differentiable on an open set of full measure.19 In fact,
in Lemma 3 of the appendix, we prove more. We show that for all q and almost all θ, there is a
coalition C∗ such that the proposer’s optimization problem reduces to finding the best proposal
subject to the assent of the members of C∗. Thus, the proposer’s optimal proposal problem takes
the standard form of a maximization problem subject to a finite number of equality and inequality
constraints,

max
y

Ui(y, θi;σ)

s.t. Uj(y, θj ;σ) ≥ Uj(q, θj ;σ), j ∈ C∗

hℓ(y) ≥ 0, ℓ ∈ Kin

hℓ(y) = 0, ℓ ∈ Keq,

where we separate the “voting constraints,” C∗, from the “feasibility constraints,” K = Kin ∪Keq.

In Lemma 2 of the appendix we show that for all q and almost all θ, the well-known linear
independence constraint qualification, or LICQ, holds at every policy distinct from the status
quo that satisfies the voting and feasibility constraints.20 With the observation in the preceding
paragraph, this has the noteworthy implication that optimal proposals can be characterized by
means of the Kuhn-Tucker first order conditions. In particular, the optimal proposal πi(q, θ) is a
critical point of the Lagrangian and the complementary slackness conditions hold: there exist λℓ,
ℓ ∈ K, and λj , j ∈ C∗, such that

DyUi(πi(q, θ), θi;σ) +
∑

ℓ∈K

λℓDyhℓ(πi(q, θ)) +
∑

j∈C∗

λjDyUj(πi(q, θ), θj ;σ) = 0

λj ≥ 0 and λj(Uj(πi(q, θ), θj ;σ) − Uj(q, θj;σ)) = 0, j ∈ C∗

λℓ ≥ 0 and λℓhℓ(πi(q, θ)) = 0, ℓ ∈ Kin

hℓ(πi(q, θ)) = 0, ℓ ∈ Keq.

Furthermore, we show that the complementary slackness conditions almost always hold strictly,21

that the second order sufficient conditions for a constrained maximizer almost always hold, and
that optimal proposals are almost always strongly stable in the sense of Kojima (1980).22

19The exact form of the derivative is calculated by the implicit function theorem. See equations (5.1)–(5.3) in
Fiacco and Ishizuka (1990).

20A policy y satisfies LICQ if the gradients of the binding voting and feasibility constraints are linearly independent.
21That is, the multipliers corresponding to binding inequality constraints are strictly positive.
22See our appendix, preceding Lemma 2, for the definition of strong stability.
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Part 4 of Theorem 1 establishes conditions under which a proposer will form minimal winning
coalitions. We show that for all q and almost all θ, if the proposer is “constrained,” in the sense that
the optimal policy proposal renders at least one other legislator indifferent between the proposal
and the status quo, then all legislators who are indifferent between the proposal and the status
quo are necessary coalition partners: the proposal fails if we remove any such legislator’s assent.
An implication is that if the voting rule is a quota rule, then the assent of all legislators approving
the proposal in these situations is necessary for the proposal to pass, and the winning coalition
is of minimum size. This is reminiscent of Riker’s (1962) size principle, which maintains that
winning coalitions are of minimal size necessary in order for a proposal to pass, and no larger.
Part 4 can be viewed as a formalization of the size principle in a general, non-cooperative, dynamic
model of policy making. In fact, the theorem suggests a caveat to the size principle: if a decisive
coalition of legislators prefer the proposer’s ideal feasible point to the status quo, so the proposer
is “unconstrained,” then there is nothing in the logic of Theorem 1 necessitating that the proposal
receives only the support of a minimum winning coalition.

As expected, the proof of Theorem 1 proceeds by defining a suitable mapping, establishing
the existence of a fixed point, and then verifying that it corresponds to a stationary legislative
equilibrium with the claimed properties. Here, we give intuition for some key steps in the proof of
existence, focusing for simplicity on the case r = ∞. Let C∞(ℜd,ℜn) denote the space of smooth
mappings from ℜd to ℜn, endowed with the topology of C∞-uniform convergence on compacta.23

Given a vector v = (v1, . . . , vn) ∈ C∞(ℜd,ℜn) of continuation value functions, define Ui(y, θ; v)
and Ai(q, θ; v), in the obvious way, as the induced utilities and acceptance sets when continuation
values are given by v. We then consider a legislator i’s optimal proposal problem,

max
y

Ui(y, θi; v) (3)

s.t. y ∈ A(q, θ; v),

and we let πi(q, θ; v) denote a selection from the solutions to this program. This selection then
determines a new vector of continuation values, v̂ = (v̂1, . . . , v̂n), for the legislators, and we define
ψ as the mapping that takes the vector v to the new vector v̂, i.e., ψ(v) = v̂.

The existence proof consists in verifying that ψ satisfies the conditions of Glicksberg’s fixed
point theorem. The technical roles of the noise on the status quo is to smooth out continuation
values and to allow us to restrict the domain and range of ψ to a compact subset of C∞(ℜd,ℜn).
To see how, note that the new continuation value v̂i of legislator i is defined by

v̂i(x) =

∫

q

∫

θ

∑

j∈N

pjUi(πj(q, θ; v), θi; v)f(θ)g(q|x)dθdq, (4)

and note further that the current period’s policy choice x enters this continuation value only through
the density g(q|x). Thus, ψ is, in essence, the convolution of

∫

θ

∑

j∈N pjUi(πj(q, θ; v), θi; v)f(θ)dθ,
a generally discontinuous function of q, with the function g(q|x). The result is a smooth function of
the policy outcome x. Furthermore, if we define V as the compact space consisting of all functions
v ∈ C∞(ℜd,ℜn) such that each vi is bounded in absolute value by c and derivatives of v of all
orders are bounded in norm by

√
nabc, then it is straightforward to verify that ψ maps V into

itself.

23A sequence {φm} of functions converges to φ in this topology if and only if for every compact set Y ⊆ ℜd and
all derivatives of all orders 0, 1, 2, . . . of φm − φ converge uniformly in norm to zero on Y . See Mas-Colell (1985).
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Ui(·, θi; v)

Ui(·, θ′i; v)

A(q, θ−i; v)

z

Figure 1: Genericity of unique maximizer

The preference shock plays a critical role in establishing continuity of the mapping ψ. The
argument relies on the result, underlying part 2 of Theorem 1, that for any given v, for every
status quo q, and almost all shocks θ, the proposer’s maximization problem has a unique solution.
Thus, the selection πi(q, θ; v) is uniquely pinned down almost everywhere. The intuition behind
this uniqueness result is straightforward: if legislator i is indifferent between proposing two policies
for one realization of θi, then, generically, a perturbation θ′i of θi will break that indifference. This
is depicted in Figure 1, where policies x and y maximize Ui(·, θi; v) over A(q, θ; v), shaded in the
figure. Note that the constraint in i’s optimal proposal problem in (3) can be reformulated to
exclude the constraint requiring that i accept his own proposal, so we can write the constraint set
as A(q, θ−i; v), independent of θi. Then a small perturbation to θ′i leads to a unique maximizer
z. Key here is the fact that a perturbation of θi does not affect the payoffs of other legislators or,
therefore, the constraints of i’s maximization problem.

Having proved uniqueness of the selection πi(q, θ; v) almost everywhere, the preference shock
delivers continuity of the mapping ψ as follows. Using differentiability of the Ui(y, θi; v), we apply
the transversality theorem to deduce that for any given v ∈ C∞(ℜd,ℜn), for every status quo q,
almost all shocks θ, and every policy y ∈ A(q, θ; v) distinct from q, LICQ holds. This is depicted
in Figure 2. Here, for simplicity, we suppose the legislative acceptance set is the intersection of
legislators 1’s and 2’s acceptance sets, which are shaded. Although the gradients of legislators 1 and
2 are linearly dependent at y, i.e., LICQ is violated, a small shock to θ1 will lead to a perturbation of
the acceptance set of legislator 1, given by the dashed curve in the figure. We then have the generic
situation, in which LICQ is satisfied over the legislative acceptance set, save possibly the status
quo. This in turn implies lower hemicontinuity of the legislative acceptance set correspondence
A(q, θ; v) for almost all θ, and by the theorem of the maximum, a legislator’s optimal proposal
πi(q, θ; v) will be jointly continuous in (q, θ; v) for almost all θ.24 This implies that the integrand
in (4), namely,

∫

θ

∑

j∈N

pjUi(πj(q, θ; v), θi; v)f(θ)g(q|x)dθ,

is continuous as a function of (x, v). Then continuity of v̂i(x) = ψ(v)(x) in (x, v) follows by
an application of Lebesgue’s dominated convergence theorem. It is straightforward to apply this

24In the appendix, we give a more powerful, though more involved, argument that the optimal proposal is in fact
differentiable.
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Figure 2: Genericity of LICQ

argument to all higher derivatives, delivering continuity of the mapping ψ in the topology of C∞-
uniform convergence on compacta, thereby permitting the application of Glicksberg’s theorem.

Mixed Stationary Legislative Equilibria The next result justifies our focus on pure sta-
tionary legislative equilibria. It establishes that every mixed equilibrium is equivalent to a pure
one. Furthermore, because every pure equilibrium is a special case of mixed, it shows that every
pure stationary legislative equilibrium satisfies the properties of Theorem 1.

Theorem 2 Every mixed stationary legislative equilibrium is equivalent to a pure stationary
legislative equilibrium that satisfies the properties in parts 1–4 of Theorem 1.

Much of the intuition for this result has already been discussed. Given a mixed stationary
legislative equilibrium, with continuation value v, our earlier observation that the solution, πi(q, θ),
to a legislator’s optimal proposal problem in (3) is almost always unique carries over without
change. This does not immediately rule out the possibility of non-degenerate mixed strategies,
however, because one or more legislators may be indifferent between πi(q, θ) and the status quo,
and these legislators could conceivably vote to accept with probability less than one. But our
subsequent claim that LICQ holds at every policy y ∈ A(q, θ; v) distinct from q relied only on the
differentiability of the equilibrium continuation values v, and inspection of (2) reveals that even in
a mixed equilibrium, continuation values will inherit the differentiability assumed in the model: the
current period’s policy x enters the righthand side of (2) only through the function g(q|x), which
is appropriately smooth in x. An implication is that the proposer can find policies arbitrarily close
to πi(q, θ) that are strictly better than the status quo for a decisive coalition of legislators. Such
proposals will pass with probability one in equilibrium, and existence of an optimal proposal (a
necessary condition for equilibrium) demands that πi(q, θ) will also pass with probability one. Since
πi(q, θ) is the unique solution to (3), any optimal mixed proposal strategy must put probability one
on that policy.

Continuity of the Equilibrium Correspondence A desirable property of equilibria is
robustness, which we formalize in terms of upper hemicontinuity of the equilibrium correspondence
with respect to the parameters of the model. In our framework, a model is specified by parameters
γ = ((pi, ui)i∈N , δi,X, f, g), where X is a compact set defined by a finite number of equality and
inequality constraints such that the gradients of binding constraints are linearly independent. Let
Γ denote a metric space of possible parameterizations, where we assume that each satisfies our
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maintained assumptions from Section 3. In particular, we assume that there exist a compact
set X̃ (with Lebesgue measure a) and bounds b and c such that for all γ ∈ Γ, (i) the function
|uγ

i (x) + θi · x|fγ(θ) is bounded by c over i ∈ N , θ ∈ Θ, and x ∈ X̃ , (ii) for all x, the support of
g(·|x) is contained in X̃ , and (iii) for almost all q, gγ(q|x) is r-times continuously differentiable in
x, (iv) if r <∞, then derivatives of order 1, . . . , r are bounded in norm by b and the r-th derivative
is Lipschitz continuous with modulus b, and if r = ∞, then derivatives of all orders 1, 2, . . . are
bounded in norm by b. In addition, we assume that the parameterization is continuous: (v) pγ

i

and δγ
i are continuous in γ, (vi) uγ

i (x) is jointly continuous in (x, γ), (vii) Xγ is continuous in γ
with the Hausdorff metric on closed subsets of ℜd, (viii) for all θ, fγ(θ) is continuous in γ, and (ix)
for all q, gγ(q|x) is continuous in (x, γ). Note that our parameterization is especially general with
respect to the set of feasible policies, for we do not assume that policy spaces are generated by a
common set of parameterized feasibility constraints.

We define the equilibrium correspondence E : Γ ⇉ Cr(ℜd,ℜn) so that E(γ) consists of the set
of pure stationary legislative equilibrium continuation values v ∈ Cr(ℜd,ℜn). Theorem 1 shows
that E is nonempty-valued. The next result establishes that the equilibrium correspondence E is
upper hemicontinuous. Thus, equilibria are robust in the sense that a small perturbation of the
parameters of our model cannot produce new equilibria far from the original equilibrium set.

Theorem 3 The equilibrium correspondence E : Γ ⇉ Cr(ℜd,ℜn) is upper hemicontinuous.

The proof of upper hemicontinuity shares much of the structure of the argument sketched
above for existence in Theorem 1. We note there that for all v, all q, and almost all θ, the
legislators’ optimal proposals, πi(q, θ; v), are continuous at (q, θ, v). The same observation holds
when we allow the parameters of the model to vary as described in (i)–(ix). That is, letting
πγ

i (q, θ; v) denote legislator i’s optimal proposal in model γ, our earlier argument establishes that
for all v, all q, all γ, and almost all θ, πγ

i (q, θ; v) is jointly continuous at (q, θ, v, γ). Once this
is proven, upper hemicontinuity of the equilibrium correspondence follows from the application of
Lebesgue’s dominated convergence theorem. The continuity result of Theorem 3 is stated in terms
of continuation value functions because our topology on this function space allows for a compact
statement in terms of upper hemicontinuity, but we could as well have stated a type of upper
hemicontinuity result in terms of proposal strategies: specifically, if γm → γ, if vm → v, and if
σm = (πm, αm) is a stationary legislative equilibrium in γm generating vm for each m, then there
is a stationary legislative equilibrium σ = (π, α) in γ such that for all i, all q, and almost all θ,
πm

i (q, θ) → πi(q, θ).

Ergodic Properties of Stationary Legislative Equilibria A stationary legislative equilib-
rium, say σ∗, determines a stochastic process on policies, and we may then consider the equilibrium
dynamics of policy outcomes in our model. Given Borel measurable Y ⊆ ℜd, let IY denote the
indicator function of Y . We define the transition probability on policy outcomes by

P (x, Y ) =

∫

q

∫

θ

∑

i∈N

piIY (π∗i (q, θ))f(θ)g(q|x)dθdq,

which is the probability, conditional on policy outcome x this period, of a policy outcome in the
set Y next period. We define the associated Markov operator T on the space of bounded, Borel
measurable functions φ : X → ℜ by Tφ(x) =

∫

φ(z)P (x, dz). The adjoint T ∗ operates on the
Borel measures on X, denoted µ, and is defined by T ∗µ(Y ) =

∫

P (x, Y )µ(dx). This describes the
distribution of outcomes in the next period, given a distribution µ of policy outcomes in the current
period. The iterates of T ∗, denoted T ∗m, give the distribution of policy outcomes m periods hence
and are therefore key in describing the long run policy outcomes of the model.
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It is straightforward to show that T maps continuous functions to continuous functions and,
therefore, satisfies the Feller property. It is also tight, and it therefore immediately admits at least
one invariant distribution µ∗, such that µ∗ = T ∗µ∗. Thus, each stationary legislative equilibrium
determines an “ergodic Markov equilibrium,” in the sense of Duffie et al. (1994). Furthermore,
we can show that under the weak assumption that the density g is bounded, P satisfies Doeblin’s
condition (see Futia (1982), Definition 4.8), so from any initial distribution µ on X, the sequence of
long run average distributions, 1

m

∑m
t=1 T

∗tµ, m = 1, 2, . . ., converges to an invariant distribution in
the total variation norm. This result is similar in spirit to that of Hellwig (1980), who uses Doeblin’s
condition to establish ergodic properties of temporary equilibria. While it provides a minimal
characterization of long run policy outcomes, however, the result is weak in several respects: it
concerns the long run average distributions, rather than the distribution of policy outcomes in each
period t; the limiting invariant distribution can depend on the initial distribution; and the rate of
convergence is only known to be arithmetic.

Under further restrictions on the transition probability, standard results on Markov processes
can be applied to address these shortcomings. While the transition probability in our model is
endogenous and a full characterization of equilibrium strategies is beyond the scope of this analysis,
we can guarantee the desired properties of the transition probability through restrictions on the
exogenous density g(q|x). Specifically, we assume there is a status quo q0 that belongs to the support
of g(·|x) for every choice of policy. Though this assumption is rather restrictive from a theoretical
perspective, we allow for the status quo densities to place arbitrarily low (but positive) probability
near q0, so it should not pose an impediment to applications of the model. With this assumption, we
obtain convergence of per period policy distributions instead of the long-term average distributions,
we deduce uniqueness of the invariant distribution, and we obtain geometric convergence in the
total variation norm. Thus, from any starting point, each stationary legislative equilibrium of our
model generates unambiguous predictions of long run equilibrium policy outcomes.

Theorem 4 Let σ∗ be a stationary legislative equilibrium and T the associated Markov operator.

1. The Markov operator T admits at least one invariant distribution.

2. If g is bounded on X̃ × X̃, then given any initial distribution µ, the sequence of long run
average distributions, 1

m

∑m
t=1 T

∗tµ, converges arithmetically to an invariant distribution µ∗

of T ∗ in the total variation norm: there is a constant M > 0 such that for all m,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

t=1

T ∗tµ− µ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ M

m
.

3. If, in addition, there exists q0 ∈ X̃ that is contained in the support of g(·|x) for all x ∈ X̃,
then T ∗ admits a unique invariant distribution, say µ∗. Given any initial distribution µ, the
sequence of iterates, T ∗mµ, converges geometrically to µ∗ in the total variation norm: there
are constants M, ǫ > 0 such that for all m,

||T ∗mµ− µ∗|| ≤ M

(1 + ǫ)m
.

While part 1 of this result falls out of the structure of our framework and part 2 holds very
generally, the important strengthening in part 3 relies on the regularity properties of stationary
legislative equilibria established in Theorem 2. In particular, it uses the fact that in every stationary
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legislative equilibrium, the proposal strategies of the legislators are differentiable for almost all q
and θ (in fact, we use only continuity). Nevertheless, Theorem 4 provides only rather gross sufficient
conditions that do not take advantage of the details of equilibrium strategies. We conjecture that
in more structured environments, uniqueness of the ergodic distribution may follow under even
weaker conditions on the status quo density.

5 Numerical Example

In this section, we supplement our theoretical analysis with an investigation of a simple example
featuring five legislators, an interval of feasible policies, and quadratic stage utilities. Despite its
simplicity, the example highlights the strategic incentives of legislators in our dynamic framework
and reveals perhaps unexpected complexities of equilibrium behavior. We do not solve for an
equilibrium of this example by analytical methods. Instead, we employ numerical methods to
compute an equilibrium, which we anticipate would be the approach used in applications, certainly
in more elaborate specifications of the model. In view of the importance of numerical techniques for
applications, we devote part of this section to a discussion of computational issues, taking an initial
step toward the development of general numerical methods for the approximation of stationary
legislative equilibria. In particular, in the rest of this section we first describe the example, we
then outline an algorithm for the numerical solution of an arbitrary specification of the model, and
finally we return to the example to present the results of our numerical investigation.

We consider a legislature with n = 5 members, each of whom has negative quadratic stage
utilities ui(x) = −(x− x̂i)

2, i = 1, . . . , 5 over a one-dimensional continuum, X = [0, 4]. A policy in
X may represent, e.g., a level of taxation in some appropriate tax scale. We set the ideal points
of the five legislators at x̂1 = 1, x̂2 = 1.5, x̂3 = 2, x̂4 = 2.8, and x̂5 = 3. Thus, in terms of
the underlying stage preferences, legislator 3 is the median with an ideal point at 2, with the two
legislators located to the right of the median having ideal points closer to each other and further
away from the median than the ideal points of legislators 1 and 2 located to the left of the median.
We will see that this apparently minor asymmetry has noticeable repercussions for equilibrium
behavior. Assume a common discount factor δi = 0.9, and assume equal recognition probabilities
pi = 1

5 , for all i = 1, . . . , 5. We assume that preference shocks θi are independently distributed,
so that each θi is uniform with support in [−0.1, 0.1], and we assume that given policy choice x
in period t, the status quo in period t + 1 is drawn from g(·|x), which is the density of the Beta
distribution with shape parameters α̂ = β̂ = 4 and support equal to [µ̂(x)− 0.1, µ̂(x) + 0.1], where
µ̂(x) = 0.1 + .95x. This specification satisfies the differentiability conditions of Section 3, and we
may set X̃ = X, as the status quo belongs to X in all periods.

In general, given a model with a continuum X of feasible policies, we consider an algorithm
for computing stationary legislative equilibria by means of an increasing sequence of finite grids on
the policy space. To be concrete, let {Xm} be a sequence of finite approximations to X. For each
m, define a corresponding “quasi-discrete” model that is otherwise identical to the original model
except for the fact that feasible proposals (but not the status quo) are now constrained to lie in
Xm. The quasi-discrete model is a special case of our legislative model, for as mentioned above,
we can obtain the finite set Xm of feasible policies by appropriately specifying equality constraints
hm

ℓ , ℓ ∈ Keq,m. Therefore, Theorem 1 yields at least one pure stationary legislative equilibrium,
with continuation value function vm, in each quasi-discrete model. Importantly, our next result
then establishes that the sequence {vm} admits a convergent subsequence, and that the limit of
any such subsequence is an equilibrium continuation of the continuum model.
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Theorem 5 Given γ = ((pi, ui, δi)i∈N ,X, f, g) ∈ Γ, let {γm} be a sequence of quasi-discrete
models such that γm → γ and γm = ((pi, ui, δi)i∈N ,X

m, f, g) ∈ Γ for all m.

1. For all m, there exists vm ∈ E(γm).

2. For every such sequence {vm} of equilibrium continuation values, there exists a convergent
subsequence with limit v ∈ E(γ).

Theorem 5 provides a starting point for our computational approach, as it suggests an iterative
algorithm for computing equilibria based on computing equilibria of quasi-discrete versions of the
model. The algorithm proceeds in a number of steps, indexed m = 1, 2, . . ., which we describe
with reference to an arbitrary step m. We specify a quasi-discrete version of the model with a
finite grid Xm ⊆ X of feasible policies. By Theorem 5 (or 1), this model admits at least one pure
stationary legislative equilibrium. In order to approximate equilibrium continuation value functions
of this quasi-discrete model, we begin with an initial guess v̂m,0 (in step m = 1, this guess may
be arbitrary). Given this initial guess, we can trivially compute best response proposal strategies,
which we denote by πm,0

i (q, θ), via a grid search over the |Xm| (or possibly |Xm| + 1, including
the status quo) candidates for optimal proposal. A new set of best response continuation value
functions, vm,1, are then determined by the integral

vm,1
i (x) =

∫

q

∫

θ

∑

j∈N

pj

[

(1 − δi)(ui(π
m,0
j (q, θ)) + θi · πm,0

j (q, θ)) + δiv̂
m,0
i (πm,0

j (q, θ))

]

f(θ)g(q|x)dθdq

for each x and i, resulting in a vector vm,1 = (vm,1
1 , . . . , vm,1

n ). We compute the value of vm,1
i (x)

using numerical integration at a finite number of points {x1, ..., xκ}, and we form interpolation
pairs (xι, v

m,1
i (xι)), ι = 1, . . . , κ, to obtain an approximation of vm,1, denoted v̂m,1, by Chebyshev

interpolation. Next, we perform another cycle of the above steps in order to calculate approxi-
mate best response continuation values to v̂m,1, and we continue iteratively, generating a sequence
v̂m,1, v̂m,2, v̂m,3, . . ., until this sequence converges to some v̂m.

A limit, v̂m, obtained by this process approximates an equilibrium continuation value of the
quasi-discrete model with feasible set Xm. We then proceed with the algorithm to a finer grid
Xm+1, using v̂m as the initial set of continuation values, i.e., v̂m+1,0 = v̂m. The algorithm generates
a sequence v̂m+1,1, v̂m+1,2, v̂m+1,3, . . . of continuation values and, upon convergence, yields v̂m+1.
This in turn approximates an equilibrium of the quasi-discrete model with feasible set Xm+1. We
then increase the grid size to Xm+2, now setting v̂m+2,0 = v̂m+1 as the initial value, and so on. This
algorithm produces a sequence v̂1, v̂2, . . . of (approximate) equilibria of the quasi-discrete models,
and by part 2 of Theorem 5 (assuming our approximations {v̂m} are sufficiently close) this sequence
has at least one accumulation point, say, v̂∗, which corresponds to an equilibrium of the continuum
model. A schematic representation of this algorithm is depicted in Figure 3.

Before we proceed to report on the results from the implementation of this algorithm in the
context of our example, we offer a number of remarks. While Theorem 5 ensures the (“vertical”)
convergence of a subsequence of equilibrium continuation values from the quasi-discrete models,
there is no guarantee of (“horizontal”) convergence to an equilibrium continuation value for any
fixed grid size. This underlines the importance of the initial guess for a given grid size, as we
expect the prospects for, and speed of, convergence will depend on the proximity of the initial
value vm,0 to true equilibrium continuation values. A virtue of our algorithm is that if we do get
convergence for one grid size, then this provides (at relatively low cost) a good initial guess for the
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Grids Eq. cont.
values

X1 v̂1,0 v̂1,1 v̂1,2 · · · → v̂1

X2 v̂1 = v̂2,0 v̂2,1 v̂2,2 · · · → v̂2

X3 v̂2 = v̂3,0 v̂3,1 v̂3,2 · · · → v̂3

↓ ...
...

... ↓
X v̂∗

Figure 3: A Schematic Representation of Computation Algorithm

computation of equilibrium continuation values at the next grid size. Furthermore, by construction,
the equilibrium generated by the algorithm is robust, in a sense, to discretizations of the set of
feasible policies, since the algorithm stops when additional changes in grid size no longer generate
appreciable improvements on computed equilibria. An additional advantage of using a sequence of
quasi-discrete models is that the set of possible proposals is a finite set, so that we are guaranteed
exact computation of optimal proposals at each iteration of the algorithm. This is important as
there is no guarantee, in general, that the optimization problem (3) of a proposer is well behaved:
even if the policy space is convex and stage utilities are concave, we have no theoretical grounds
to believe that the objective function of the proposer must be quasi-concave or that the legislative
acceptance set is convex. Furthermore, both the objective function as well as the acceptance set
change as computation iterates over a sequence of continuation values. Thus, while numerical
optimization over a grid is computationally costly, it is a safe alternative to a potentially very hard
optimization problem in the continuum model.

We implemented the numerical algorithm in our example with a convergence criterion of 10−5,
stopping the computation for a fixed grid size when the distance between the Chebyshev coefficients
of successive continuation values is smaller than 10−5. We started with an initial grid size of 4000,
increasing the grid size by 50% in each grid iteration. We used the same convergence criterion of a
distance smaller than 10−5 between the coefficients of successive iterates v̂m, v̂m+1 for different grid
sizes. We achieved overall convergence after six grid iterations, at a grid size of 30,375. Even though
these computations can become expensive in more demanding applications, we are optimistic about
the possibility of achieving gains in efficiency by using modified computation schemes. We report
computed proposal strategies π̂∗i , expected payoffs Û∗

i , and continuation values v̂∗i , for each of the
five legislators in Figure 4.

The first row of plots in Figure 4 represents proposal strategies π̂∗i . The solid lines represent
proposals for the case θ = 0, while the dotted lines reflect proposals for the maximum and minimum
possible θi, holding θ−i = 0. It is evident from these proposal strategies that proposers to the left
of the median compromise (relative to their stage utility ideal points) by proposing policies closer
to the ideal point of the median, located at 2. This is also clear by the second row of plots, which
represent expected payoffs Û∗

i . These are single-peaked but (with the exception of the median)
neither symmetric nor concave, in contrast to the quadratic stage preferences of the legislators.
Furthermore, legislators 1 and 2, with stage ideal points at 1 and 1.5, have equilibrium preferences
with induced ideal points significantly to the right of their stage ideal points, closer to the ideal
point of the median, at 2. An interesting feature of the equilibrium is the asymmetry in strategic
behavior between legislators located at the left and the right of the median. Unlike legislators 1
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Figure 4: Proposal Strategies, Expected Payoffs, and Continuation Value Functions for 5-legislator
Example
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Figure 5: Ergodic Distribution in Computed Equilibrium of the Example

and 2, legislators 4 and 5 have induced ideal points that are much closer to their stage ideal points,
2.8 and 3. This difference is also manifest in the continuation value plots for these legislators,
displayed in the third row of Figure 4. It is evident from these functions that these legislators
expect the highest future payoffs from policies that are at both extremes of the policy space. This
is because legislators 1 and 2 exhibit the compromising behavior we have already discussed. As
a result, legislators 4 and 5, who are more cohesive, having closer stage preferences, face good
future prospects with extreme policies. Such policies allow them to implement their ideal points
if they propose, while the other legislators propose moderate policies anyway. On the other hand,
legislators 1 and 2 have different incentives, since they expect extreme policies by legislators 4 and
5 when the status quo is extreme.

We conclude this section by reporting, in Figure 5, the ergodic distribution of the Markov
process over policies induced by the computed equilibrium, which we compute using Markov Chain
Monte Carlo simulation. Although the uniqueness condition of Theorem 5 does not hold in our
example, it is straightforward to infer from the nature of the legislators’ proposal strategies that
the equilibrium induces a unique invariant distribution. This distribution has most of its mass
concentrated at the median, with some asymmetry evident as a consequence of the location of the
equilibrium ideal points of the other four legislators. Thus, due to the noise in the status quo and
legislators’ preference shocks, our model implies a distribution over future policies in the dynamic
setting we consider, even in a one-dimensional policy space in which a median voter is well-defined.
This distribution seems plausible in real societies, exactly because we expect that participants’
preferences and status quo policies are subjected to such shocks over time. Of course, we expect
that this distribution becomes more concentrated around the median as the support around the
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noise elements in the model become smaller.

6 Discussion

We establish existence of stationary Markov perfect equilibria satisfying a number of desirable reg-
ularity properties in a general model of legislative policy making. We impose no constraints on the
dimensionality of the policy space, we do not assume convexity conditions on policy preferences,
and we allow for any voting rule that can be expressed in terms of a collection of decisive coalitions.
The main technical assumption we impose is differentiability, which, in combination with uncer-
tainty about future policy preferences and noise in the implementation of future policies, allows us
to bring methods of differentiable topology to bear on the existence problem. For reasons of space,
we have limited the scope of our analysis to a benchmark model that is austere, in the sense that
we abstract away from much of the detail of real-world political institutions. It encapsulates all of
the difficult technical issues we would encounter in more complex models, while offering advantages
of efficiency in presentation. But our approach to existence and related issues is very general and
extends to a much larger class of models that can capture a substantial amount of institutional
detail. Here, we discuss some of the structure we are able to incorporate.

We first observe that our analysis extends immediately to finite-horizon versions of the legislative
model. Our equilibrium construction centers on a best response continuation value mapping ψ, the
fixed points of which correspond to stationary legislative equilibria. In the finite-horizon model,
we may simply iterate this mapping to generate subgame perfect equilibrium continuation values:
letting v0 be the profile of zero functions, equilibrium continuation values following a policy choice
in the second-to-last period are just v1 = ψ(v0). Equilibrium continuation values following the
third-to-last period are v2 = ψ(v1), and so on. By induction, continuation values following a
policy choice in the first period of the T -period version of the model are given by vT−1 = ψ(vT−2).
What is more, the arguments of the appendix (specifically, part 3 of Lemma 1) establish that these
equilibrium continuation values are unique (up to sets of measure zero) among all mixed strategy
subgame perfect equilibria. Thus, the finite-horizon legislative model is relatively tractable, though
equilibria generated in this way will not be stationary in the strong sense of the equilibria obtained
in Theorem 1 for the infinite-horizon model.

To accommodate more complex structure, we can augment the model with a Euclidean space
of states s, and the parameters of the model—stage utilities, discount factors, the feasible policies,
the voting rule, the identity of the proposer, and the status quo—can depend on s quite arbitrarily.
Given current state s and policy outcome x, the next period’s state s′ and preference shock θ′ can be
drawn from a density φ(s′, θ′|x, s) with appropriate bounds on derivatives, permitting dependence
on the endogenous policy choice variable x. This flexibility accommodates the fine details of real-
world legislative and parliamentary processes, such as the committee system in the US House and
Senate. Because the feasible set, the voting rule, and the proposer are functions of the state,
we capture a committee system by varying the voting rule and the set of feasible policies with
the proposer in such a way that feasible policies are restricted to the policy jurisdiction of the
committee to which the proposer belongs, and so that the assent of the committee, along with the
that of the floor, is required for passage. Control over such details opens the opportunity for a
relatively fine-tuned analysis of constitutional design issues. This richer version of the model also
allows us to incorporate elections in an exogenous manner. To be more specific, we may posit a
set of conceivable legislator types, each one technically a player in the legislative game, and we can
use the state variable to encode which subset of these players are elected in the legislature each
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period: we can set the probability of offering proposals to zero for players or legislator types that
are not elected, and specify the voting rule so that these players are superfluous in any decisive
coalition in such periods. Since the realization of the state (hence the electoral outcome via proposal
probabilities and the voting rule) depends on the previous period’s policy, the electoral outcome and
the composition of the legislature can depend on incumbent legislators’ policy decisions, thereby
permitting the analysis of electoral incentives in policy-making.

Though further from the framework of the current paper, our approach also extends to models
in which an electorate is introduced explicitly and endogenous elections are held at regular intervals
over time. In this context, however, our approach does not deliver full stationarity, for in order
to address convexity issues we must allow voters to vote retrospectively, i.e., condition on the
policy outcome in the period prior to the election. We can also consider protocols more complex
than the standard take-it-or-leave-it offer framework common in the literature on non-cooperative
bargaining and legislative policy-making. We conjecture that our existence result carries over to a
version of the model in which an initial proposal by one legislator is pitted against an amendment
by another, with a final vote between the winner and the status quo. This “amendment agenda”
structure more closely resembles the procedure under an open rule in the US House and Senate.
Pursuing this line of reasoning further, we conjecture that we can augment our stage game with an
arbitrary finite extensive form game of perfect information, which would allow us to incorporate
moves by key players in the legislative game, such as the assignment of legislators to committees
by party leaders.

The success of these applications depends on the development of fruitful, probably numerical,
techniques for the analysis of the model. We have implemented one algorithm for computation
of equilibria in the context of a relatively simple model with five legislators determining policy
in a one-dimensional space. It is conceptually straightforward to extend the algorithm to more
legislators and more dimensions, but we leave for future research the issue of developing cost-efficient
algorithms for the computational analysis of these more realistic—and complex—environments.

A Proofs of Theorems

The appendix is organized as follows. We first derive a trio of lemmas that establish continuity
properties and necessary conditions for solutions to the optimization problem of the proposer. We
then state Lemma 4, which ensures that every feasible proposal under deferential voting can be
approximated by a sequence of feasible proposals that are strictly preferred by the members of some
decisive coalition. We proceed to define the mapping ψ, described in Section 4, and with Lemma
5 we establish that this mapping is continuous and that its domain and range can be restricted to
a compact set. We then prove existence of legislative equilibrium in Theorem 1 by an application
of Glicksberg’s theorem, and parts 1–4 of the theorem follow immediately from Lemmas 1–3. In
Lemma 6, we show that all legislative equilibrium continuation values are fixed points ψ. The proof
of Theorem 2, which reduces all mixed legislative equilibria to pure, relies mainly on Lemmas 1 and
4. Theorem 3, on upper hemicontinuity of the equilibrium correspondence, follows from Lemmas 5
and 6. Theorem 4 uses the continuity of optimal proposals, proved in Lemma 3, along with known
results on ergodicity of Markov chains. Finally, Theorem 5 follows from Theorems 1 and 5, with
the help of Lemma 5.

Let Cr(ℜd,ℜn) be the r-times continuously differentiable functions from ℜd into ℜn with the
topology of Cr-uniform convergence on compacta. To describe this topology, let r̂ be a non-negative
integer and Y ⊆ ℜd, and define the norm ||φ||r̂,Y on C r̂(ℜd,ℜn) as sup{||∂φ(x)|| : x ∈ Y }, where
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∂φ is the r̂-th derivative of φ. Then a sequence {φm} of functions converges to φ in Cr(ℜd,ℜn)
if and only if for every r̂ = 0, 1, . . . , r and every compact set Y ⊆ ℜd, we have ||φm − φ||r̂,Y → 0.
We say φm → φ in C∞(ℜd,ℜn) if and only if it converges in Cr(ℜd,ℜn) for all r = 0, 1, . . .. Given
v = (v1, . . . , vn) ∈ Cr(ℜd,ℜn), define the induced utility

Ui(y, θi; v) = (1 − δi)(ui(y) + θi · y) + δivi(y),

where future payoffs are assumed to be generated by v, and define the associated acceptance sets

Ai(q, θ; v) = {y ∈ X ∪ {q} : Ui(y, θi; v) ≥ Ui(q, θi; v)}.

Let C ⊆ N be any coalition and C ⊆ 2N any nonempty collection of coalitions, and, following the
conventions of Section 3, define

AC(q, θ; v) =
⋂

i∈C

Ai(q, θ; v) and AC (q, θ; v) =
⋃

C∈C

⋂

i∈C

Ai(q, θ; v).

When C = ∅, we adopt the convention that AC(q, θ; v) = X ∪ {q}. Lastly, let

max
y
Ui(y, θ; v) Pi(C , q, θ; v)

s.t. y ∈ AC (q, θ; v)

be the optimal proposal problem of legislator i, given status quo q and preference shocks θ, if the
collection of decisive coalitions were C and continuation values were v. When C consists of a single
coalition, C, we use the obvious shorthand Pi(C, q, θ; v), substituting C for C in the notation
defined above. Henceforth, the vector of functions v will be assumed to range over Cr(ℜd,ℜn),
unless otherwise restricted.

Our first lemma establishes, among other things, that the legislators’ optimal proposals are
essentially unique.

Lemma 1

1. For all C , the correspondence AC : ℜd ×Θ×Cr(ℜd,ℜn) ⇉ ℜd has nonempty, compact values
and closed graph in (q, θ, v),

2. Fix v ∈ C0(ℜd,ℜn). For all i and all C , there is a measurable function πC
i (·; v) : ℜd×Θ → ℜd

such that for all q and all θ, πC
i (q, θ; v) solves Pi(C , q, θ; v),

3. Fix v ∈ C0(ℜd,ℜn). For all q, there is a measure zero set Θ1(q; v) ⊆ Θ such that for all
θ /∈ Θ1(q; v), all i, and all C , πC

i (q, θ; v) is the unique solution to Pi(C , q, θ; v).

Proof We have AC (q, θ; v) 6= ∅ for all (q, θ, v), as the status quo q belongs to Ai(q, θ; v) for all
i ∈ N . By Mas-Colell’s (1985) Theorem K.1.2, the function Ui is jointly continuous in (y, θi, v), and
it follows that the correspondence Ai has closed graph in (q, θ, v). Compactness of AC (q, θ; v) follows
since it is a closed subset of X ∪ {q}, a compact set. This completes the proof of part 1. To prove
part 2, fix v ∈ C0(ℜd,ℜn), and consider any i and C . Then Ui(·; v) is a Caratheodory function, and
Aliprantis and Border’s (1999) Theorem 17.18 yields a measurable selection πC

i (·; v) : ℜd ×Θ → ℜd

from the correspondence of solutions to Pi(C , q, θ; v). To prove part 3, fix v ∈ C0(ℜd,ℜn), and
consider any q, any i, and any C . Given preference shocks θ−i, let

A−i
C

(q, θ−i; v) =
⋃

C∈C

AC\{i}(q, θ; v)
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denote the set of policies acceptable to all members, except possibly i, of some coalition in the
collection C . Note that if y solves Pi(C , q, θ; v), then it also solves

max
y

Ui(y, θi; v)

s.t., y ∈ A−i
C

(q, θ−i; v).

Note that if y 6= y′, then Dθi
[Ui(y, θi; v) − Ui(y

′, θi; v)] = y − y′ 6= 0. Thus, Mas-Colell’s (1985)

Theorem I.3.1 implies that there is a measure zero set Θ
i,C ,θ−i

1 (q; v) ⊆ ℜd such that for all θi /∈
Θ

i,C ,θ−i

1 (q; v), the program Pi(C , q, θ; v) admits a unique solution. Then

Θi,C
1 (q; v) =

⋃

θ−i∈ℜ(n−1)d

(

Θ
i,C ,θ−i

1 (q; v) × {θ−i}
)

is measure zero. Finally, since N is finite,

Θ1(q; v) =
⋃

i∈N

⋃

C⊆2N

Θi,C
1 (q; v)

is measure zero, as desired.

Before we state the next lemma, we develop necessary notation and recall some definitions. For
the moment, fix continuation values v and status quo q. For any subsets C ⊆ N and L ⊆ K,
define the functions UC : ℜd × Θ → ℜ|C| by UC(y, θ; q, v) = (Uj(y, θj; v) − Uj(q, θj ; v))j∈C and
hL : ℜd → ℜ|L| by hL(y) = (hℓ(y))ℓ∈L. Define the mapping FC,L : (ℜd \ {q}) × Θ → ℜ|C|+|L| by

FC,L(y, θ; q, v) =

[

UC(y, θ; q, v)
hL(y)

]

,

where here (and whenever relevant) we view vectors as column matrices, making FC,L(y, θ; q, v) a
(|C|+ |L|)× 1 matrix. Derivatives are expanded via rows, e.g., DyU

C(y, θ; q, v) is a |C| × d matrix.

Define the mapping L
C,L
i : ℜd ×ℜ|C|+|L| × Θ → ℜ by

L
C,L
i (y, λ, θ; q, v) = Ui(y, θi; v) +

∑

j∈C

λj(Uj(y, θj ; v) − Uj(q, θj ; v)) +
∑

ℓ∈L

λℓhℓ(y).

Let GC,L
i : (ℜd \ {q}) ×ℜ|C|+|L| × Θ → ℜd+|C|+|L| be given by

GC,L
i (y, λ, θ; q, v) =

[

DyL
C,L
i (y, λ, θ; q, v)T

−FC,L(y, θ; q, v)

]

.

Lastly, for any m ∈ C ∪L, define the mapping GC,L,m
i : (ℜd \{q})×ℜ|C|+|L|×Θ → ℜd+|C|+|L|+1 by

GC,L,m
i (y, λ, θ; q, v) =

[

GC,L
i (y, λ, θ; q, v)

λm

]

.

With regard to the program Pi(C, q, θ; v), consider y ∈ AC(q, θ; v) and let C ⊆ C and K ⊆ K,
with Keq ⊆ K, represent the voting and feasibility constraints, respectively, that hold with equality
at y. We suppress the dependence of these sets on the pair (q, θ). Taking the coalition C as fixed,
we say that y. . .
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• satisfies the linear independence constraint qualification (LICQ) at (q, θ) if DyF
C,K(y, θ; q, v)

has full row rank,

• is a stationary solution at (q, θ) if there exists λ ∈ ℜ|C|+|K| such thatDyL
C,K
i (y, λ, θ; q, v) = 0,

λm ≥ 0 for all m ∈ C ∪ (K ∩Kin), and λm = 0 for all m ∈ (C ∪K) \ (C ∪K),

• satisfies strict complementary slackness at (q, θ) if it is a stationary solution with multipliers
λ such that λm > 0 for all m ∈ C ∪ (K ∩Kin),

• satisfies the second order sufficient conditions with strict complementary slackness at (q, θ)

if it is a stationary point and for all z ∈ ℜd \ {0} such that DyF
C,K(y, θ; q, v)z = 0, we have

zTDyyL
C,K
i (y, λ, θ; q, v)z < 0.

In addition, we use the concept of strong stability from Kojima (1980). For this, we now explicitly
parameterize the optimal proposal problem of legislator i by the functions Uj, j ∈ N , and hℓ, ℓ ∈ K,
as in Pi(C, q, θ, (Uj)j∈N , (hℓ)ℓ∈K). Let y be a stationary solution of Pi(C, q, θ, (Uj)j∈N , (hℓ)ℓ∈K),
and let Bǫ(y) be the open ball around y of radius ǫ > 0. We say that y is strongly stable at
(q, θ) with respect to a class F ⊆ Cr(ℜd,ℜn+k) of perturbations if for some ǫ∗ > 0 and all
ǫ ∈ (0, ǫ∗], there exists η > 0 such that for all φ ∈ F with ||φ||2,Bǫ∗ (y) < η, the optimization
problem Pi(C, q, θ, (Uj + φj)j∈N , (hℓ + φℓ)ℓ∈K) has a stationary solution y′ ∈ Bǫ(y) that is unique
in Bǫ∗(y).

The main contribution of the next lemma is the continuity properties of the optimal proposal
mapping, πC

i , for an arbitrarily fixed coalition C. In fact, the lemma establishes that for all q and
almost all θ, πC

i (q, θ; v) is strongly stable, and πC
i (·; v) is continuously differentiable in an open set.

Lemma 2 Fix v. For all q, there exists a measure zero set Θ2(q; v) ⊆ Θ such that for all
θ /∈ Θ2(q; v), all i, and all C, the following hold.

1. Every y ∈ AC(q, θ; v) \ {q} satisfies LICQ at (q, θ),

2. If πC
i (q, θ; v) 6= q, then it is a stationary solution satisfying the second order sufficient condi-

tion with strict complementary slackness at (q, θ),

3. If πC
i (q, θ; v) 6= q, then it is strongly stable at (q, θ) with respect to F = C2(ℜd,ℜn+k),

4. If πC
i (q, θ; v) 6= q, then there exists an open set Z ⊆ ℜd×Θ containing (q, θ) such that πC

i (·; v)
is continuously differentiable on Z and for all (q′, θ′) ∈ Z, πC

i (q′, θ′; v) is the unique solution
to Pi(C, q

′, θ′; v).

Proof Fix v, and consider any q. The proof is based on three applications of the transversality

theorem (see Mas-Colell’s (1985) Theorem I.2.2) to the mappings FC,K , GC,K,m
i , and GC,K

i . First,

consider any C ⊆ N and K ⊆ K such that C ∪K 6= ∅. The derivative of the mapping FC,K(·; q, v)
at (y, θ) ∈ ℜd \ {q} × Θ is the (|C| + |K|) × (d+ |C|d+ (n− |C|)d) matrix

DFC,K(y, θ; q, v) =

[

DyU
C(y, θ; q, v) (1 − δi)(y − q)T ⊗ I|C| 0

DhK(y) 0 0

]

,

where ⊗ denotes Kronecker product. Since y 6= q and δi < 1, the rows of (1 − δi)(y − q)T ⊗
I|C| are linearly independent. For all (y, θ) such that FC,K(y, θ; q, v) = 0, K is contained in the
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binding feasibility constraints at y, and therefore the rows of DhK(y) are linearly independent by

assumption. Thus,DFC,K(y, θ; q, v) has full row rank. We conclude that FC,K is transversal to {0}.
For each θ, define FC,K

θ : ℜd \ {q} → ℜ|C|+|K| by FC,K
θ (y; q, v) = FC,K(y, θ; q, v). Note that FC,K

is r-times continuously differentiable, where r ≥ d > max {0, d − (|C| + |K|)}. Thus, it follows by

the transversality theorem that for almost all θ, FC,K
θ is transversal to {0}. Let Θ̂C,K

2 (q; v) be the

measure zero set of θ’s where this does not hold, and let Θ̂2(q; v) be the finite union of these sets
over all C and K with C ∪K 6= ∅, which also has measure zero.

We proceed similarly for the mappings GC,K,m
i and GC,K

i . Consider any C ⊆ N \ {i}, any K,

and any m ∈ C ∪K. The derivative DGC,K,m
i (y, λ, θ; q, v) is the (d+ |C| + |K| + 1) × (d+ (|C| +

|K|) + d+ (n − 1)d) matrix









DyyL
C,K
i (y, λ, θ; q, v) DyF

C,K(y, θ; q, v)T (1 − δi)Id ((1 − δi)λjId)j∈C

−DyU
C(y, θ; q, v) 0 0 (1 − δi)(q − y)T ⊗ I|C|

−DhK(y) 0 0 0
0 0 · · · 1 · · · 0 0 0









.

(We omit zero-columns corresponding to derivatives with respect to θj, j /∈ C ∪ {i}.) It is evident

that for all (y, λ, θ) such thatGC,K,m
i (y, λ, θ; q, v) = 0, this derivative has full row rank. Indeed, since

δi < 1, the rows of (1−δi)Id are linearly independent; since y 6= q, the rows of (1−δi)(y−q)T⊗I|C| are

linearly independent; since hK(y) = 0, the rows of DhK(y) are linearly independent by assumption;

and of course {(0 · · · 1 · · · 0)} is linearly independent. Then, since GC,K,m
i is r-times continuously

differentiable and r ≥ d > max{0, d + |C| + |K| − (d+ |C| + |K| + 1)}, the transversality theorem

ensures that for almost all θ ∈ Θ, the mapping GC,K,m
i,θ : (ℜd \ {q})×ℜ|C|+|K| → ℜd ×ℜ|C|+|K| ×ℜ

defined by GC,K,m
i,θ (y, λ; q, v) = GC,K,m

i (y, λ, θ; q, v) is transversal to {0}. Since the dimension of

the domain of GC,K,m
i,θ is smaller than that of the range, the preimage theorem (see Mas-Colell’s

(1985) Theorem H.2.2) implies that (GC,K,m
i,θ )−1({0}) is empty for almost all θ ∈ Θ, i.e., outside

a set Θ̃C,K,m
i (q; v) of measure zero, GC,K,m

i (y, λ, θ; q, v) 6= 0 for all (y, λ). Furthermore, defining

GC,K
i,θ : (ℜd \ {q}) × ℜ|C|+|K| → ℜd × ℜ|C|+|K| by GC,K

i,θ (y, λ; q, v) = GC,K
i (y, λ, θ; q, v), a third

application of the transversality theorem to the mapping GC,K
i ensures that outside a set Θ̃C,K

i (q; v)

of measure zero, GC,K
i,θ (y, λ; q, v) is also transversal to {0}. Thus, we conclude that outside a

measure zero set Θ̃C,K,m
i (q; v) ∪ Θ̃C,K

i (q; v), every solution (y, λ) to GC,K
i (y, λ, θ; q, v) = 0 is such

that D(y,λ)G
C,K
i (y, λ, θ; q, v) is non-singular and λm 6= 0. Let Θ̃2(q; v) be the finite union of these

sets over all i, C ⊆ N \ {i}, K, and m ∈ C ∪K, which also has measure zero.

Now define Θ2(q; v) = Θ1(q; v) ∪ Θ̂2(q; v) ∪ Θ̃2(q; v), take any θ /∈ Θ2(q; v), and consider any
i ∈ N and any C ⊆ N . To prove part 1, consider any y ∈ AC(q, θ; v) \ {q}, and let C ⊆ C
and K ⊆ K represent the constraints that hold with equality at y. Trivially, y satisfies LICQ

at (q, θ) if C ∪ K = ∅. If C ∪ K 6= ∅, then since y 6= q, we have y ∈ (FC,K
θ )−1({0}), and since

θ /∈ Θ̂2(q; v), it follows that DFC,K
θ (y; q, v) has full rank. This completes the proof of part 1. To

simplify notation in the remainder of the proof, let y∗ = πC
i (q, θ; v) 6= q. By part 1, y∗ satisfies

LICQ, and hence, by Fiacco and McCormick’s (1990) Corollaries 1 and 3, it is a stationary solution
at (q, θ). Thus, let λ∗ ∈ ℜ|C|+|K| be the corresponding Lagrange multipliers (unique by LICQ), let
C and K be the constraints that hold with equality at y∗, and let λ represent the coordinates of

30



λ∗ that correspond to C ∪K. Since θ /∈ Θ1(q; v) and y∗ 6= q, we must have i /∈ C, for otherwise
q ∈ AC(q, θ; v) also solves Pi(C, q, θ; v), contradicting part 3 of Lemma 1. By definition of a
stationary solution, we have DyL

C,K
i (y∗, λ∗, θ; q, v) = 0 and λ∗m = 0 for all m ∈ (C ∪K) \ (C ∪K).

Thus, DyL
C,K
i (y∗, λ, θ; q, v) = DyL

C,K
i (y∗, λ∗, θ; q, v) = 0, which implies GC,K

i,θ (y∗, λ; q, v) = 0.

But since θ /∈ Θ̃2(q; v), we have GC,K,m
i,θ (y∗, λ; q, v) 6= 0 for all m ∈ C ∪K, and we conclude that

λ∗m > 0 for all m ∈ C ∪K. This establishes strict complementary slackness.

We have now deduced that y∗ is a stationary point satisfying LICQ and strict complementary

slackness at (q, θ). Note that D(y,λ)G
C,K
i (y∗, λ, θ; q, v) is given by the matrix

[

D(y,y)L
C,K
i (y∗, λ∗, θ; q, v) DyF

C,K(y∗, θ; q, v)T

−DyF
C,K(y∗, θ; q, v) 0

]

, (5)

which is non-singular since θ /∈ Θ̃2(q; v). Thus, by Corollary 4.3 and equation (3-7) in Kojima
(1980), y∗ is strongly stable, establishing part 3.25 By continuity, there exist open subsets Z1 ⊆
ℜd×Θ and W1 ⊆ ℜd with (q, θ, y∗) ∈ Z1×W1 such that for all (q′, θ′, y′) ∈ Z1×W1, y

′ satisfies LICQ
at (q′, θ′). Since y∗ is strongly stable and satisfies LICQ at (q, θ), Kojima’s (1980) Corollary 6.6
implies that y∗ satisfies the second order sufficient condition with strict complementary slackness.26

This completes the proof of part 2.

The remainder of the proof addresses part 4. Since y∗ is strongly stable and the data of the
optimization problem are at least twice differentiable in (q, θ), Kojima’s (1980) Theorem 8.2 yields
open sets Z2 ⊆ Z1 and W2 ⊆ W1 with (q, θ, y∗) ∈ Z2 ×W2 and a continuous function π̂ : Z2 →W2

such that for all (q′, θ′) ∈ Z2, π̂(q′, θ′) is the unique stationary solution of Pi(C, q
′, θ′; v) in W2.

With the second order sufficient condition, Fiacco’s (1976) Theorem 2.1 ensures that the function π̂
is continuously differentiable. Now, since y∗ is the unique maximizer of Pi(C, q, θ; v), we claim that
there exist open sets Z ⊆ Z2 and W ⊆W2 such that (q, θ, y∗) ∈ Z×W , and for all (q′, θ′) ∈ Z, every
solution of Pi(C, q

′, θ′; v) is contained in W . In fact, we may set W = W2. Indeed, if the claim
did not hold, then we could find a sequence {(qm, θm)} converging to (q, θ) and a corresponding
sequence of solutions {ym} to Pi(C, q

m, θm; v) such that ym /∈W for all m. Since qm → q, it follows
that X = X ∪ {qm : m = 1, 2, . . .} ∪ {q} is compact. Since ym ∈ X \W for all m, we may go to a
subsequence, still indexed by m, such that ym → y for some y ∈ X \W . By part 1 of Lemma 1, AC

has closed graph, which implies that y ∈ AC(q, θ; v), and therefore, by θ /∈ Θ1(q; v) and part 3 of
Lemma 1, we have Ui(y

∗, θi; v) > Ui(y, θi; v). But continuity of π̂ implies that π̂(qm, θm) → y∗, and
therefore Ui(π̂(qm, θm), θm

i ; v) > Ui(y
m, θm

i ; v) for high enough m. Since π̂(qm, θm) ∈ AC(qm, θm; v)
for all m, this contradicts optimality of ym. For all (q′, θ′) ∈ Z, every solution y′ to Pi(C, q

′, θ′; v)
is such that y′ ∈ W . By Corollaries 1 and 3 in Fiacco and McCormick (1990), since y′ satisfies
LICQ at (q′, θ′), it follows that y′ is a stationary solution of Pi(C, q

′, θ′; v). But π̂(q′, θ′) is the

25Kojima’s Condition 1.1 is fulfilled by part 1 of the lemma. By his Corollary 4.3, strong stability follows if his
mapping F is locally nonsingular at z∗, where z∗ is y∗ coupled with generalized multipliers λ̃. Kojima’s Theorem 3.3
gives complicated conditions for local nonsingularity that involve sets J of constraints satisfying J+(λ̃) ⊆ J ⊆ Jn(λ̃).
In our context, strict complementary slackness pins down J to the set of binding inequality constraints. We use
Kojima’s sufficient condition that, with the latter restriction, the determinant of DF (z∗; τ (J)) is nonzero. In equation
(3-7), he gives a simplified form of that determinant, where A is the matrix of gradients of binding equality and
inequality constraints. His condition is satisfied if our matrix in (5) is nonsingular.

26Kojima’s corollary shows that since y∗ is a solution to Pi(C, q, θ; v), then y∗ together with generalized multipliers
λ̃ satisfies his Condition 6.2. This condition states that DyyL

C,K
i (y∗, λ∗, θ; q, v) is negative definite on a subspace

given by constraints L ∪ J+(λ̃). In our context, strict complementary slackness implies that these constraints are
exactly C ∪ K, which yields the second order sufficient condition.
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only stationary solution of Pi(C, q
′, θ′; v) in W2 ⊇ W , so we conclude that for all (q′, θ′) ∈ Z, we

have πC
i (q′, θ′; v) = π̂(q′, θ′) ∈ W , and therefore πC

i (·; v) is continuously differentiable in an open
set around (q, θ), as desired.

The next lemma shows that for all q and almost all θ, there exists a coalition C∗ such that
in an open set around (q, θ), the solution of Pi(C , q, θ; v) reduces to the optimal proposal subject
to approval by the members of C∗. Thus, on an open set of (q, θ) pairs with full measure, the
maximizer πC

i (q, θ; v) inherits the differentiability properties of Lemma 3. The lemma also shows
that if any legislator is indifferent between the optimal proposal and the status quo, then all such
legislators are necessary in order for the proposal to be approved by a coalition in C : if one, say j,
is removed, then the resulting coalition, C∗ \ {j}, no longer belongs to C .

Lemma 3 Fix v. For all q, there is a measure zero set Θ3(q; v) ⊆ Θ such that for all θ /∈
Θ3(q; v), all i, and all C , if πC

i (q, θ; v) 6= q and we define

C∗ = {j ∈ N : Uj(π
C
i (q, θ; v), θj ; v) ≥ Uj(q, θj ; v)},

then there is an open set Z containing (q, θ) such that the following hold.

1. For all nonempty C satisfying Uj(π
C
i (q, θ; v), θj ; v) = Uj(q, θj; v) for all j ∈ C, we have

C∗ \ C /∈ C .

2. For all (q′, θ′) ∈ Z, the unique solution to Pi(C , q, θ; v) is πC
i (q′, θ′; v) = πC∗

i (q′, θ′; v),

3. The optimal proposal mapping πC
i (q′, θ′; v) is continuously differentiable on Z.

Proof Fix v, and consider any q. We claim that there is a measure zero set Θ̃3(q; v) such that
for all θ /∈ Θ̃3(q; v), all i, all C, and all j /∈ C ∪ {i}, if πC

i (q, θ; v) 6= q, then Uj(π
C
i (q, θ; v), θj ; v) 6=

Uj(q, θj ; v). Indeed, fix q and i arbitrarily, and consider any coalition C. Note that for all j /∈ C∪{i},
πC

i (q, θj, θ−j ; v) is independent of θj. Thus, if θ−j is such that πC
i (q, θ; v) 6= q, then the preference

shocks θ′j that solve the equality Uj(π
C
i (q, (θ−j , θ

′
j); v), θ

′
j ; v) = Uj(q, θ

′
j ; v) form a lower dimensional

hyperplane in ℜd. We infer that there is a measure zero set Θ̃
i,C,j,θ−j

3 (q; v) ⊆ ℜd such that for all

θj /∈ Θ̃
i,C,j,θ−j

3 (q; v), we have Uj(π
C
i (q, (θ−j , θj); v), θj ; v) 6= Uj(q, θj ; v). Then

Θ̃i,C,j
3 (q; v) =

⋃

{

θ ∈ Θ : θj ∈ Θ̃
i,C,j,θ−j

3 (q; v), πC
i (q, θ; v) 6= q

}

is measure zero. Since N is finite,

Θ̃3(q; v) =
⋃

{

Θ̃i,C,j
3 (q; v) : i ∈ N,C ⊆ N, j /∈ C ∪ {i}

}

is also measure zero, as desired.

We now define Θ3(q; v) = Θ1(q; v) ∪ Θ2(q; v) ∪ Θ̃3(q; v). Consider any θ /∈ Θ3(q; v), any i,
and any C , and suppose that πC

i (q, θ; v) 6= q. Define C∗ as in the statement of the lemma. To
prove part 1, consider any nonempty C satisfying Uj(π

C
i (q, θ; v), θj ; v) = Uj(q, θj ; v) for all j ∈ C.

Since θ /∈ Θ1(q; v), part 3 of Lemma 1 implies that Ui(π
C
i (q, θ; v), θi; v) > Ui(q, θi; v), so that

i /∈ C. Suppose, to obtain a contradiction, that C ′ = C∗ \ C ∈ C , and take any j ∈ C. Note
that πC

i (q, θ; v) solves Pi(C
∗, q, θ; v), and since Pi(C

′, q, θ; v) removes at least one constraint, we
have Ui(π

C′

i (q, θ; v), θi; v) ≥ Ui(π
C
i (q, θ; v), θi; v). Since C ′ ∈ C , we have πC′

i (q, θ; v) ∈ AC (q, θ; v).
Then, since θ /∈ Θ1(q; v), part 3 of Lemma 1 implies πC′

(q, θ; v) = πC
i (q, θ; v) 6= q. But then
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j /∈ C ′ ∪ {i} and Uj(π
C′

i (q, θ; v), θj ; v) = Uj(π
C
i (q, θ; v), θj ; v) = Uj(q, θj ; v) contradicts θ /∈ Θ̃3(q; v).

We conclude that C∗ \ C /∈ C .

To prove part 2, note that πC
i (q, θ; v) = πC∗

i (q, θ; v) and C∗ ∈ C . Suppose there does not exist
an open set Z containing (q, θ) such that for all (q′, θ′) ∈ Z, the unique solution to Pi(C , q, θ; v) is
πC

i (q′, θ′; v) = πC∗

i (q′, θ′; v). Then there are sequences {(qm, θm)} and {ym} such that (qm, θm) →
(q, θ) and for all m, πC∗

i (qm, θm; v) is not the unique solution to Pi(C , q
m, θm; v). By part 2 of

Lemma 1, this program has at least one solution, so for all m, there exists ym ∈ AC (qm, θm; v) \
{πC∗

i (qm, θm; v)} such that Ui(y
m, θm

i ; v) ≥ Ui(π
C∗

i (qm, θm; v), θm
i ; v). Part 4 of Lemma 2 yields an

open set Z ′ around (q, θ) such that for all C, πC
i (·; v) is continuous (in fact differentiable) on Z ′,

and for all (q′, θ′) ∈ Z ′, πC
i (q′, θ′; v) is the unique solution to program Pi(C, q

′, θ′; v). Thus, for
high enough m, we have ym ∈ {πC

i (qm, θm; v) : C ∈ C }, i.e., there exists Cm ∈ C such that ym =
πCm

i (qm, θm; v). Since N is finite, we may assume a subsequence, still indexed by m, and a coalition
Ĉ ∈ C satisfying Cm = Ĉ for all m. Since qm → q, it follows that X = X∪{qm : m = 1, 2, . . .}∪{q}
is compact. Since ym ∈ X for all m, we may go to a further subsequence, still indexed by m, such
that ym → y ∈ X. In fact, since ym ∈ AĈ(qm, θm; v) for all m, part 1 of Lemma 1 implies that
y ∈ AĈ(q, θ; v) ⊆ AC (q, θ; v). Note that, as a consequence, y = πC∗

i (q, θ; v), for otherwise, since θ /∈
Θ1(q; v), part 3 of Lemma 1 implies that Ui(π

C∗

i (q, θ; v), θi; v) > Ui(y, θi; v). Since Ui is continuous
and πC∗

i (·; v) is continuous at (q, θ), we then have Ui(π
C∗

i (qm, θm; v), θm
i ; v) > Ui(y

m, θm
i ; v) for high

enough m. But C∗ ∈ C implies πC∗

i (qm, θm; v) ∈ AC (qm, θm; v), contradicting optimality of ym.
Therefore, ym → y = πC∗

i (q, θ; v). Note that for all j ∈ Ĉ and all m, we have Uj(y
m, θm

j ; v) ≥
Uj(q, θ

m
j ; v). By continuity, we then have Uj(π

C∗

i (q, θ; v), θj ; v) ≥ Uj(q, θj ; v) for all j ∈ Ĉ, which

implies Ĉ ⊆ C∗. This immediately implies Ui(y
m, θm

i ; v) ≥ Ui(π
C∗

i (qm, θm
i ); θm

i ; v). Recall that
πC

i (q, θ; v) = πC∗

i (q, θ; v). Thus, for all j with Uj(π
C∗

i (q, θ; v), θj ; v) = Uj(q, θj ; v), we must have
j ∈ Ĉ, for otherwise part 1 of the lemma implies Ĉ /∈ C , a contradiction. Now consider j with
Uj(π

C∗

i (q, θ; v), θj ; v) > Uj(q, θj ; v). Since ym → πC∗

i (q, θ; v) and qm → q, continuity of Uj implies
that for high enough m, we have Uj(y

m, θm
j ; v) > Uj(q

m, θm
j ; v). Thus, ym ∈ AC∗(qm, θm; v). But

since Pi(C
∗, q′, θ′; v) has a unique solution in an open set around (q, θ), we then have πC∗

i (qm, θm) =
ym for high enough m. This final contradiction yields an open set Z with the desired properties
and completes the proof of part 2. Part 3 then follows directly from part 4 of Lemma 2.

The next lemma shows that, generically, any feasible policy x that is weakly preferred to the
status quo by a decisive coalition of legislators can be approximated by feasible policies that are
strictly preferred to the status quo by a decisive coalition.

Lemma 4 Fix v. For all q, there is a measure zero set Θ4(q; v) ⊆ Θ such that for all
θ /∈ Θ4(q; v), all i, all C , and all y ∈ AC (q, θ; v) \ {q}, there exists a sequence {ym} in AC (q, θ; v)
such that ym → y and for all j and all m, Uj(y

m, θj ; v) 6= Uj(q, θj ; v).

Proof Fix v, consider any q, and define Θ4(q; v) = Θ2(q; v). Consider any θ /∈ Θ4(q; v), any
i, any C , and any y ∈ AC (q, θ; v) \ {q}. Let C∗ = {j ∈ N : Uj(y, θj ; v) ≥ Uj(q, θj ; v)}. Since
y ∈ AC (q, θ; v), we have C∗ ∈ C . Let C, and K denote the voting and feasibility constraints,
respectively, that bind at y in program Pi(C

∗, q, θ; v). Since y 6= q and θ /∈ Θ2(q; v), y satisfies

LICQ at (q, θ). Define the mapping F : ℜd+1 → ℜ|C|+|K| by

F (x, ǫ) =

[

(Uj(x, θj ; v) − ǫ− Uj(q, θj ; v))j∈C

(hℓ(x))ℓ∈K

]

,

and note that F (y, 0) = 0. By LICQ,DxF (y, 0) has full row rank, and the implicit function theorem
(see Loomis and Sternberg (1968)) yields open sets P ⊆ ℜ around zero and Y ⊆ ℜd around y and
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a continuous mapping φ : P → Y such that φ(0) = y and for all ǫ ∈ P , F (φ(ǫ), ǫ) = 0. Defining
the sequence {ym} by ym = φ(1/m), continuity of φ implies ym → y. For all ℓ ∈ Kin \K, we have
hℓ(y) > 0, and continuity of hℓ then implies that for sufficiently high m, we have hℓ(y

m) > 0. And
F (ym, 1/m) = 0 implies that for all ℓ ∈ K, we have hℓ(y

m) = 0. Thus, ym ∈ X for sufficiently high
m. For all j ∈ C∗ \C, so that Uj(y, θj; v) > Uj(q, θj ; v), continuity of Uj implies that for sufficiently
highm, we have Uj(y

m, θj ; v) > Uj(q, θj; v). And F (ym, 1/m) = 0 implies that for all j ∈ C, we have
Uj(y

m, θj; v) − Uj(q, θj ; v) = 1/m > 0. Therefore, ym ∈ AC∗(q, θ; v) ⊆ AC (q, θ; v). Furthermore,
for all j /∈ C∗ such that Uj(y, θj ; v) < Uj(q, θj ; v), continuity implies that for sufficiently high m,
we have Uj(y

m, θj; v) < Uj(q, θj ; v). Therefore, we have established the existence of a subsequence
{ym} in AC (q, θ; v), such that ym → y and Uj(y

m, θj ; v) 6= Uj(q, θj ; v) for all j, as required.

As in Section 4, we now index models by γ = ((pi, ui, δi)i∈N ,X, f, g), we let Γ denote the metric
space of parameterizations satisfying the assumptions of the legislative model, and we continue to
assume that the parameterization is continuous in the sense of that section. We define the induced
utility Uγ

i (y, θi; v) in model γ in the obvious way, and it is immediate that Ui is jointly continuous
in (y, θi, v, γ). Given model γ ∈ Γ and continuation value functions v, Lemma 1 allows us to
define measurable mappings πγ

i (·; v) : ℜd × Θ → ℜd such that for all q and almost all θ, πγ
i (q, θ; v)

solves P
γ
i (D , q, θ; v), i.e., it solves the proposer’s optimization problem at (q, θ) in model γ when

the voting rule is given by D and continuation values are given by v. We use these optimal
proposal mappings to define a best response continuation value mapping ψ as follows: define
ψ : C0(ℜd,ℜn) × Γ → C0(ℜd,ℜn) by

ψ(v, γ)(x) =

∫

q

∫

θ

∑

j

pγ
jU

γ
i (πγ

j (q, θ; v), θi; v)f
γ(θ)gγ(q|x)dθdq.

where ψ(v, γ) ∈ C0(ℜd,ℜn) follows from the fact that ψ(v, γ) depends on x only through the density
gγ(q|x), which is continuous.27 When a model γ is fixed, we may write ψγ(v) for the value ψ(v, γ).

The next lemma establishes that the domain and range of ψ can be restricted to a compact space
and that the mapping ψ is continuous on this space. Without loss of generality, assume a, b ≥ 1.
Define V to consist of functions v ∈ Cr(ℜd,ℜn) such that (i) for all x and all i, |vi(x)| ≤ c, (ii) if
r < ∞, then the derivatives of v of order 0, 1, . . . , r are bounded in norm by

√
nabc, and the r-th

derivative of v is Lipschitz continuous with modulus
√
nabc, and (iii) if r = ∞, then the derivatives

of v of all orders 0, 1, 2, . . . are bounded in norm by
√
nabc. Denote by M(ℜd,ℜn) the set of Borel

measurable mappings from ℜd to ℜn.

Lemma 5

1. The space V is nonempty, convex, and compact.

2. Fix γ ∈ Γ and φ ∈ M(ℜd,ℜn) such that for all i, φi is bounded in absolute value by c over
X̃. Define the mapping φ̂ ∈M(ℜd,ℜn) by φ̂(x) =

∫

q φ(q)gγ(q|x)dq for all x. Then φ̂ ∈ V .

3. The mapping ψ : V × Γ → V is continuous.

Proof Clearly, V is nonempty and convex. We claim that it is compact. Given r̂ <∞, let V r̂

be the subspace of C r̂(ℜd,ℜn) such that v ∈ V r̂ if and only if all derivatives of v of order 0, 1, . . . , r̂
are bounded in norm by

√
nabc. By Mas-Colell’s (1985) Theorem K.2.2, V r̂ is compact in the

topology of C r̂-uniform convergence on compacta. Let V ′ be the subset of C0(ℜd,ℜn) such that

27This follows from a stronger result established in part 2 of Lemma 5.
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v ∈ V ′ if and only if for all i, vi is bounded in absolute value by c. This set is closed in the topology
of C0-uniform convergence on compacta and all finer topologies. Therefore, since a, b ≥ 1, r < ∞
implies that V = V ′ ∩ V r is a closed subset of a compact space and, therefore, compact. And
r = ∞ implies that V = V ′ ∩ ⋂∞

r̂=1 V r̂ is compact in the topology of C r̂-uniform convergence on
compacta for all r̂ = 0, 1, . . .. Compactness of V then follows from Mas-Colell’s Theorem K.2.2.1.
This completes the proof of part 1.

For part 2, consider any γ ∈ Γ and φ ∈M(ℜd,ℜn) such that for all i, φi is bounded in absolute
value by c. Define φ̂ as in the statement of the lemma. By Aliprantis and Burkinshaw’s (1990)
Theorem 20.4, each function φ̂i is partially differentiable. Let ∂α denote a partial derivative operator
with respect to the coordinates of x of any order r̂ = 1, 2, . . . , r, with multi-index α. Aliprantis and
Burkinshaw’s result, with the expression in (1) implies that

∂αφ̂(x) =

∫

q
φ(q)∂αgγ(q|x)dq. (6)

Since this depends on x only through ∂αgγ(q|x), which is continuous, it follows that ∂αφ̂i is contin-
uous. Indeed, consider a sequence {xm} in ℜd converging to x. Then the integrand in ∂αφ̂i(x

m),
as a function of q, converges pointwise to the integrand in ∂αφ̂i(x). Furthermore, we assume
that the r̂-th derivative of gγ(q|x) with respect to x is bounded in norm by b, which implies
|∂αgγ(q|xm)| ≤ b for all m. Since the support of gγ(·|x) lies in X̃ for all x, it follows that ∂αgγ(·|x)
is identically zero outside X̃. Therefore, since φ is bounded in absolute value by c on X̃ , we have
|φ(q)∂αgγ(q|x)| ≤ cbIX̃(q) for all q, and the claimed continuity follows from Lebesgue’s dominated

convergence theorem. Therefore, φ̂ is r-times continuously differentiable. To prove that φ̂ ∈ V ,
we first note that, because it is the expectation of φi with respect to a density with support in X̃,
φ̂i is bounded in absolute value by c over X̃ for all i. Thus, (i) is fulfilled. To verify (ii), suppose
r <∞, and let ∂ be a derivative operator of order r̂ = 0, 1, . . . , r, where we view ∂φ̂(x) as a n× dr̂

matrix and ∂gγ(q|x) as a 1× dr̂ row vector. Then, viewing φ̂(x) and φ(q) as n× 1 column vectors,
we have from (6) that ∂φ̂(x) =

∫

q φ(q)∂gγ(q|x)dq, and consequently,

||∂φ̂(x)|| ≤
∫

q
||φ(q)∂gγ(q|x)||dq ≤

∫

q
||φ(q)|| ||∂gγ (q|x)||dq,

where the first inequality follows from Jensen’s inequality and the second follows from Aliprantis
and Border’s (1999) Lemma 6.6. Note that ||φ(q)|| ≤ √

nc. Again, ∂gγ(·|x) is identically zero
outside X̃, and we therefore have

||∂φ̂(x)|| ≤
∫

X̃

√
nc||∂gγ(q|x)||dq ≤

∫

X̃

√
nbcdq =

√
nabc.

Now let ∂ denote the r-th order derivative with respect to x, and note that for all x and y,

||∂φ̂(x) − ∂φ̂(y)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∫

q
φ(q)(∂gγ(q|x) − ∂gγ(q|y))dθdq

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫

q
||φ(q)|| ||∂gγ (q|x) − ∂gγ(q|y)||dq

≤
∫

X̃

√
nc||∂gγ(q|x) − ∂gγ(q|y)||dq

≤ √
nabc||x− y||,
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where the last inequality follows from our assumption that the r-th derivative of gγ(q|x) with
respect to x is Lipschitz continuous with modulus b. Therefore, ∂φ̂ is Lipschitz continuous with
modulus

√
nabc, fulfilling (ii). Now suppose r = ∞, and consider any r̂ ≥ 1. As argued above, we

have ||∂φ̂(x)|| ≤ √
nabc, fulfilling (iii) and implying φ̂ ∈ V .

For part 3, first consider any (v, γ) ∈ V × Γ, and define the measurable mapping w : ℜd → ℜn

by

wi(q) =

∫

θ

∑

j

pγ
jU

γ
i (πγ

j (q, θ; v), θi; v)f
γ(θ)dθ (7)

for all i and all q. Recall that |uγ
i (x) + θi · x|fγ(θ) ≤ c for all i, all θ ∈ Θ, and all x ∈ X̃. Since

πγ
i (q, θ; v) ∈ X ∪ {q}, we then have for all i and all q ∈ X̃ ,

|wi(q)| ≤
∫

θ

∑

j

pγ
j

[

(1 − δγ
i )|uγ

i (πγ
i (q, θ; v)) + θi · πγ

i (q, θ; v)| + δγ
i |vi(π

γ
i (q, θ; v))|

]

dθ ≤ c.

Noting that ψ(v, γ)(x) =
∫

q w(q)gγ(q|x)dq, it follows from part 2 of the lemma that ψ(v, γ) ∈ V .
We conclude that ψ : V × Γ → V , as desired.

To prove continuity, consider sequences {vm} in V and {γm} in Γ with vm → v∗ ∈ Cr(ℜd,ℜn)
and γm → γ∗ ∈ Γ. Write γm = ((pm

i , u
m
i , δ

m
i )i∈N ,X

m, fm, gm) and γ∗ = ((p∗i , u
∗
i , δ

∗
i )i∈N , X

∗, f∗, g∗).
We use superscript m for variables corresponding to model γm, and we use a superscript asterisk
for variables corresponding to γ∗. We first note that there exists a compact set X̂ ⊆ ℜd such that
for sufficiently high m, Xm ⊆ X̂. Indeed, X∗ is compact by assumption. Letting B be the closure
of an open ball of finite, positive radius, it follows that X∗ + B is compact. Since Xm → X∗

Hausdorff, we have Xm ⊆ X∗ +B for high enough m.

We claim that for all q, all i, and all θ /∈ Θ∗
1(q; v

∗)∪Θ∗
2(q; v

∗), πm
i (q, θ; vm) → π∗i (q, θ; v

∗). If not,
then because πm

i (q, θ; vm) lies in the compact set X̂ for high enough m, we may go to a subsequence,
still indexed by m, such that πm

i (q, θ; vm) → x 6= π∗i (q, θ; v
∗). Since πm

i (q, θ; vm) ∈ Am
D

(q, θ; vm)
for all m, part 1 of Lemma 1 implies that x ∈ A∗

D
(q, θ; v∗). And since θ /∈ Θ∗

1(q; v
∗), part 3

of Lemma 1 implies that U∗
i (π∗i (q, θ; v

∗), θi; v
∗) > U∗

i (x, θi; v
∗). We consider two cases. First,

suppose π∗i (q, θ; v
∗) 6= q, so by θ /∈ Θ∗

2(q; v
∗), Lemma 4 implies that there exists y ∈ A∗

D
(q, θ; v∗)

arbitrarily close to π∗i (q, θ; v
∗) such that U∗

j (y, θj ; v
∗) 6= U∗

j (q, θj ; v
∗) for all j. Thus, there exists

a decisive coalition C ∈ D such that U∗
j (y, θj ; v

∗) > U∗
j (q, θj ; v

∗) for all j ∈ C. Furthermore,
by U∗

i (π∗i (q, θ; v
∗), θi; v

∗) > U∗
i (x, θi; v

∗) and continuity of U∗
i , we may suppose U∗

i (y, θi; v
∗) >

U∗
i (x, θi; v

∗). Since y ∈ X∗, and since Xm → X∗ Hausdorff, there exists a sequence {ym} in ℜd

such that ym ∈ Xm for all m and ym → y. By joint continuity, we then have for all j ∈ C
and for high enough m, Um

j (ym, θj ; v
m) > Um

j (q, θj ; v
m), implying ym ∈ Am

D
(q, θ; vm). But by joint

continuity, we also have Um
i (ym, θ; vm) > Um

i (πm
i (q, θ; vm), θi; v

m) for high enough m, contradicting
the fact that πm

i (q, θ; vm) solves Pm
i (D , q, θ; vm). For the second case, suppose π∗i (q, θ; v

∗) = q.
Then π∗i (q, θ; v

∗) = q ∈ Am
D

(q, θ; vm) for all m. By joint continuity, we have Um
i (q, θ; vm) >

Um
i (πm

i (q, θ; vm), θi; v
m) for high enough m, again contradicting the fact that πm

i (q, θ; vm) solves
Pm

i (D , q, θ; vm). This establishes the claim.

We next claim that for all i and all θ, {Um
i (·, θ; vm)} converges uniformly to U∗

i (·, θ; v∗) on any
compact set Y ⊆ ℜd. If not, then there exists ǫ > 0 and a sequence {xm} in Y such that

|(1 − δm
i )(um

i (xm) + θi · xm) + δm
i v

m
i (xm) − (1 − δ∗i )(u

∗
i (x

m) + θi · xm) − δ∗i v
∗
i (x

m)| ≥ ǫ

36



for all m. By compactness of Y , we may go to a convergent subsequence, still indexed by m, with
xm → x ∈ Y . But vm → v uniformly, and with continuity of our parameterization, we have

lim
m→∞

(1 − δm
i )(um

i (xm) + θi · xm) + δm
i v

m
i (xm)

= (1 − δ∗i )(u
∗
i (x) + θi · x) + δ∗i v

∗
i (x)

= lim
m→∞

(1 − δ∗i )(u
∗
i (x

m) + θi · xm) + δ∗i v
∗
i (x

m),

a contradiction. This establishes the claim.

Finally, let v̂m = ψ(vm, γm) and v̂∗ = ψ(v∗, γ∗). Let ∂ denote a derivative operator with
respect to the coordinates of x of any order r̂ = 0, 1, . . . , r. Consider any compact set Y ⊆ ℜd.
We must show that ∂v̂m converges uniformly to ∂v̂∗ on Y . If not, then there exists ǫ > 0, a
subsequence {∂v̂m}, still indexed by m, and a corresponding sequence {xm} in Y such that for
all m, ||∂v̂m(xm) − ∂v̂∗(xm)|| ≥ ǫ. By compactness of Y , we may go to a further subsequence,
still indexed by m, such that xm → x for some x ∈ Y . Then Aliprantis and Burkinshaw’s (1990)
Theorem 20.4 implies that for all i and all m,

∂v̂m
i (xm) =

∫

q

∫

θ

∑

j

pm
j U

m
i (πm

j (q, θ; vm), θi; v
m)fm(θ)∂gm(q|xm)dθdq.

Consider the generic case of (q, θ) such that for all j, πm
j (q, θ; vm) → π∗j (q, θ; v

∗). By uniform
convergence, from our preceding claim, we have Um

i (πm
j (q, θ; vm), θi; v

m) → U∗
i (π∗i (q, θ; v

∗), θi; v
∗).

This gives us pointwise convergence of the integrand of ∂v̂m
i (xm) for almost all (q, θ):

∑

j

pm
j U

m
i (πm

j (q, θ; vm), θi; v
m)fm(θ)∂gm(q|xm) →

∑

j

p∗jU
∗
i (π∗j (q, θ; v

∗), θi; v
∗)f∗(θ)∂g∗(q|x).

Furthermore, since ∂gm(q|xm) is zero outside X̃ and since vm ∈ V , the terms in the above sequence
are bounded in norm by the Lebesgue integrable function abcIX̃ . By Lebesgue’s dominated con-
vergence theorem, and again using Aliprantis and Burkinshaw’s (1990) Theorem 20.4, we therefore
have

∂v̂m
i (xm) →

∫

q

∫

θ

∑

j

p∗jU
∗
i (π∗j (q, θ; v

∗), θi; v
∗)f∗(θ)∂g∗(q|x)dθdq = ∂v̂∗i (x).

By continuity of ∂v̂∗i , we also have ∂v̂∗i (x
m) → ∂v̂∗i (x), but then |∂v̂i(x

m) − ∂v̂∗i (x
m)| → 0. Since

i was arbitrary, we have ||∂v̂m(xm) − ∂v̂∗(x)|| → 0, a contradiction. We conclude that {∂v̂m}
converges to ∂v̂∗ uniformly on Y , and therefore v̂m → v̂∗, as required.

We can at last turn to the proof of Theorem 1.

Proof of Theorem 1 The statement of Theorem 1 implicitly fixes a model γ ∈ Γ. By part
1 of Lemma 5, V is nonempty, convex, and compact. By part 3 of Lemma 5, ψγ maps V to V

and the mapping ψγ : V → V is continuous. Therefore, Glicksberg’s theorem yields a fixed point
v∗ ∈ V such that ψγ(v∗) = v∗. We then construct equilibrium strategies as follows: for all i, we
specify πi(q, θ) = πD

i (q, θ; v∗), and we specify αi(y, q, θ) = 1 if y ∈ Ai(q, θ; v
∗) and αi(y, q, θ) = 0

otherwise. Evidently, the strategy profile σ = (πi, αi)i∈N so defined is a pure stationary legislative
equilibrium. Part 1 of Theorem 1 follows from v∗ ∈ V , and parts 2, 3, and 4 follow from part 3 of
Lemma 1, part 3 of Lemma 3, and part 1 of Lemma 3, respectively.

37



The proof of existence in Theorem 1 relied on the fact that every fixed point of ψγ corresponds to
a stationary legislative equilibrium in model γ. Our final lemma establishes the converse: every pure
strategy equilibrium continuation value v = ψ(v). Furthermore, every equilibrium continuation
values in γ lie in V .

Lemma 6 For all (v, γ) ∈M(ℜd,ℜn) × Γ, if v ∈ E(γ), then v ∈ V and v = ψγ(v).

Proof Let (v, γ) ∈M(ℜd,ℜn)×Γ be such that v ∈ E(γ), and let σ be the stationary legislative
equilibrium generating v, so that v = v(·;σ). As in the proof of part 3 of Lemma 5, define the
measurable mapping w : ℜd → ℜn by (7) for all i and all q, so that v(x) =

∫

q w(q)gγ(q|x)dq for all
x. As argued in the proof of part 3 of Lemma 5, part 2 of that lemma then implies that v ∈ V . Part
3 of Lemma 1 therefore implies that for all i and almost all (q, θ), we have πi(q, θ) = πγ

i (q, θ; v).
This in turn implies that v = ψ(v, γ).

We now complete the proofs of the remaining results of the paper.

Proof of Theorem 2 The statement of Theorem 2 implicitly fixes a model γ ∈ Γ, which
we suppress notationally. Consider an arbitrary mixed stationary legislative equilibrium Σ, and
let the measurable mapping v : ℜd → ℜn be defined by the equilibrium continuation values as
v(x) = (v1(x; Σ), . . . , vn(x; Σ)). To facilitate the proof, define

Wi(y, q, θ; Σ) = α(y, q, θ; Σ)Ui(y, θ; Σ) + (1 − α(y, q, θ; Σ))Ui(q, θ; Σ)

as the objective function of the proposer given strategy profile Σ.

Now consider any q, and set Θ(q) = Θ1(q; v) ∪ Θ4(q; v). Consider any θ /∈ Θ(q). Since θ /∈
Θ1(q; v), part 3 of Lemma 1 implies that πD

i (q, θ; v) is the unique solution to Pi(D , q, θ; v). We
consider two cases. First, suppose that πD

i (q, θ; v) = q. If we have
∫

X\{q} α(y, q, θ; Σ)Πi(q, θ)(dy) >

0, then there is a set Y ⊆ X \ {q} such that Πi(q, θ)(Y ) > 0 and for all y ∈ Y , α(y, q, θ; Σ) > 0. By
definition of equilibrium, the latter implies Y ⊆ AD(q, θ; v). Then Ui(q, θi; Σ) > Ui(y, θi; Σ) for all
y ∈ Y , which implies

Wi(y, q, θ; Σ) < Ui(q, θi; Σ) = Wi(q, q, θ; Σ)

for all y ∈ Y , contradicting the fact that Πi places probability one on maximizers of Wi(·, q, θ; Σ).
Therefore,

∫

X\{q} α(y, q, θ; Σ)Πi(q, θ)(dy) = 0. Second, suppose πD
i (q, θ; v) 6= q. We claim that

sup
y∈X

Wi(y, q, θ; Σ) ≥ Ui(π
D
i (q, θ; v), θi; v).

To see this, note that since θ /∈ Θ4(q; v), Lemma 4 yields a sequence {ym} in X such that
ym → πD

i (q, θ; v) and for all m, there is a decisive coalition Cm satisfying Uj(y
m, θj , v) > Uj(q, θj ; v)

for all j ∈ Cm. By definition of equilibrium, it then follows that αj(y
m, q, θj) = 1 for all j ∈ Cm,

which implies α(ym, q, θ; Σ) = 1. By continuity, we then have Wi(y
m, q, θ; Σ) = Ui(y

m, θi; v) →
Ui(π

D
i (q, θ; v), θi; v), as claimed. Thus, by definition of equilibrium, the mixed proposal strat-

egy Πi must achieve an expected payoff of at least Ui(π
D
i (q, θ; v), θi; v). Next, we claim that

Πi({πD
i (q, θ; v)}) = 1 and α(πD

i (q, θ; v), q, θ; Σ) = 1. Consider any y 6= πD
i (q, θ; v), and note that y /∈

AD(q, θ; v) implies α(y, q, θ; Σ) = 0, which impliesWi(y, q, θ; Σ) = Ui(q, θi; v) < Ui(π
D
i (q, θ; v), θi; v),

a contradiction. And if y ∈ AD(q, θ; v)\{q}, then Ui(π
D
i (q, θ; v), θi; v) > max{Ui(y, θi; v), Ui(q, θi; v)}

implies Wi(y, q, θ; Σ) < Ui(π
D
i (q, θ; v), θi; v), again a contradiction. Therefore, we conclude that Πi

indeed puts probability one on πD
i (q, θ; v). If α(πD

i (q, θ; v), q, θ; Σ) < 1, then Ui(π
D
i (q, θ; v), θi; v) >
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Ui(q, θi; v) implies Wi(π
D
i (q, θ; v), q, θ; Σ) < Ui(π

D
i (q, θ; v), θi; v), a contradiction. Thus, we have

α(πD
i (q, θ; v), q, θ; Σ) = 1, as claimed.

Finally, we specify pure proposal strategies by πi(q, θ) = πD
i (q, θ; v), and we specify pure voting

strategies by αi(y, q, θ) = 1 if y ∈ AD
i (q, θ; v) and αi(y, q, θ) = 0 otherwise. The pure stationary

strategy profile σ = (πi, αi)i∈N generates the same policy outcomes as Σ for almost all (q, θ) and,
therefore, the same continuation values. By construction, proposal and voting strategies satisfy
the equilibrium conditions of Section 3, and therefore σ is a pure stationary legislative equilibrium.
Evidently, Σ is equivalent to σ, and by Lemma 6, the equilibrium continuation value function v lies
in V and is a fixed point of ψγ . Then the property of part 1 of Theorem 1 follows immediately, and
the properties of parts 2, 3, and 4 follow from part 3 of Lemma 1, part 3 of Lemma 3, and part 1
of Lemma 3, respectively.

Proof of Theorem 3 Consider sequences {γm} in Γ and {vm} in Cr(ℜd,ℜn) such that γm →
γ ∈ Γ, vm → v ∈ Cr(ℜd,ℜn), and for all m, vm ∈ E(γm). By Lemma 6, we have vm = ψ(vm, γm)
for all m. Taking limits, we have vm → v and, by part 3 of Lemma 5, ψ(vm, γm) → ψ(v, γ). Thus,
v = ψ(v, γ), which implies v ∈ E(γ), establishing closed graph of E. By Lemma 6, the range of ψ
lies in V , a compact space, and therefore closed graph of E implies upper hemicontinuity.

Proof of Theorem 4 Let σ∗ be a stationary legislative equilibrium. To establish that the
operator T satisfies the Feller property, consider any Borel measurable set Y ⊆ ℜd, and let IY be
the indicator function of Y . Then by arguments in the proof of part 2 of Lemma 5, it follows that
the function TIY , defined by

TIY (x) = P (x, Y ) =

∫

q

∫

θ

∑

i

piIY (π∗i (q, θ))f(θ)g(q|x)dθdq,

is continuous. If φ : ℜd → ℜ is a simple function, i.e., φ(x) =
∑m

l=1 alIYl
(x) for a measurable

partition {Y1, . . . , Ym} of ℜd and coefficients {a1, . . . , am}, then Tφ is likewise continuous. Now
suppose φ : ℜd → ℜ is an arbitrary bounded, continuous function. Consider any sequence {xm} in
ℜd with limit x. By Aliprantis and Border’s (1999) Theorem 11.6, for all ǫ > 0, there exist simple
functions φ1, φ2 : ℜd → ℜ such that φ1 ≤ φ ≤ φ2 and

∫

(φ2(z) − φ1(z))P (x, dz) < ǫ, which implies
Tφ1 ≤ Tφ ≤ Tφ2 and Tφ2(x) − Tφ1(x) < ǫ. By continuity, we have |Tφ1(xm) − Tφ1(x)| < ǫ and
|Tφ2(xm) − Tφ2(x)| < ǫ for m high enough. Therefore, we have

Tφ(x) − Tφ(xm) ≤ Tφ2(x) − Tφ1(xm) = Tφ2(x) − Tφ1(x) + Tφ1(x) − Tφ1(xm) < 2ǫ,

with an analogous derivation establishing that |Tφ(x)−Tφ(xm)| < 2ǫ for high enough m. Since ǫ is
arbitrarily small, it follows that Tφ is continuous. Since P (x, X̃) = 1 for all x ∈ ℜd, it follows that
T is tight. By Futia’s (1982) Theorem 2.9, therefore, T admits an invariant distribution, delivering
part 1.

For all x ∈ X and all measurable Z ⊆ X × Θ, let Q(x,Z) =
∫

Z g(q|x)f(θ)d(q, θ) denote the
probability that next period’s (q, θ) lies in Z, conditional on policy choice x this period. To verify
Doeblin’s condition, define the finite Borel measure η on ℜd by

η(Y ) =

∫

π−1
i

(Y )∩(X̃×Θ)
f(θ)dθdq.

(That is, we integrate the status quo q with respect to Lebesgue measure.) Letting M denote a
bound for g, set ǫ = 1

1+M . Consider any x ∈ ℜd and any measurable Y ⊆ ℜd. Note that η(Y ) ≤ ǫ
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implies Mη(Y ) ≤ M
1+M , and furthermore, we have

P (x, Y ) =
∑

j∈N

pjQ(x, π−1
j (Y )) =

∑

j∈N

pjQ(x, π−1
j (Y ) ∩ (X̃ × Θ)) ≤ Mη(Y ),

where we use the assumption that the support of g(·|x) lies in X̃. Therefore, P (x, Y ) ≤ 1 − ǫ,
establishing Doeblin. By Futia’s (1982) Theorem 4.9, the Markov operator T is quasi-compact,
and it follows that the adjoint T ∗ is also quasi-compact. (See Futia (1982), proof of Theorem 3.3.)
For an arbitrary initial distribution µ, Futia’s (1982) Theorems 3.2 and 3.4 then yield convergence
to an invariant distribution µ∗ at the rate claimed in part 2.

Now let i be any legislator with positive recognition probability, pi > 0. By Theorem 2, σ∗

satisfies part 3 from Theorem 1, so for all q and almost all θ, π∗i is continuous at (q, θ). Thus,
we can choose θ0 ∈ Θ such that θ0 belongs to the support of f and π∗i is differentiable at (q0, θ0).
Set x0 = π∗i (q0, θ0). By continuity of π∗i at (q0, θ0), for every open set Y ⊆ ℜd containing x0,
there is an open set Z ⊆ X̃ × Θ around (q0, θ0) such that for all (q, θ) ∈ Z, we have π∗i (q, θ) ∈ Y .
Given any x ∈ ℜd, since q0 lies in the support of g(·|x) and θ0 lies in the support of f , we have
Q(x,Z) > 0. We conclude that P (x, Y ) ≥ piQ(x,Z) > 0 for all x ∈ X. In fact, if we set P 1 = P
and inductively define P k(x, Y ) =

∫

P (z, Y )P k−1(x, dz), k = 2, 3, ..., we also have P k(x, Y ) > 0
for all x ∈ X and all k ≥ 1. Thus, P satisfies the Generalized Uniqueness Criterion 3.5 of Futia
(1982). Uniqueness of the invariant distribution now follows by successive application of Futia’s
Futia (1982) Theorem 3.3 (Feller property and quasi-compactness imply equicontinuity) and 2.12
(equicontinuity and Generalized Uniqueness Criterion imply unique invariant distribution). Finally,
Futia’s (1982) Theorems 3.6 and 3.7 imply the claimed convergence ratein part 3.

Proof of Theorem 5 Consider a sequence {γm} of quasi-discrete models γm = ((pi, ui, δi)i∈N ,
Xm, f, g) ∈ Γ such that γm → γ = ((pi, ui, δi)i∈N ,X, f, g) ∈ Γ. Nonemptiness of E(γm) follows
directly from Theorem 1. Now consider a sequence {vm} of equilibrium continuation values such
that vm ∈ E(γm) for all m. By Lemma 6, we have vm = ψ(vm, γm) ∈ V for all m. By compactness
of V , from part 1 of Lemma 5, {vm} admits a convergent subsequence with limit, say, v. Then
Theorem 3 implies v ∈ E(γ).
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