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Abstract

We consider a general plurality voting game with multiple candidates, where

voter preferences over candidates are exogenously given. In particular, we allow

for arbitrary voter indifferences, as may arise in voting subgames of citizen-

candidate or locational models of elections. We prove that the voting game

admits pure strategy equilibria in undominated strategies. The proof is con-

structive: we exhibit an algorithm, the “best winning deviation” algorithm,

that produces such an equilibrium in finite time. A byproduct of the algo-

rithm is a simple story for how voters might learn to coordinate on such an

equilibrium.





1 Introduction

The analysis of voting in elections arises not only in the pure theory of voting, but
also in the study of candidate positioning, candidate entry, party formation, etc. In
the latter studies, voting games appear as subgames of a larger game in which politi-
cal platforms are determined before voting takes place. Since the outcomes of voting
can theoretically affect prior political decisions, the analysis of voting has significance
beyond the narrow focus on the ballots cast by voters. Of the issues arising in the
theory of voting, the existence of minimally plausible equilibria in voting subgames,
such as Nash equilibria in undominated strategies, is arguably of paramount impor-
tance. We consider a general plurality rule voting game with multiple candidates in
which voter preferences over candidates are exogenously given, as in voting subgames
of candidate competition or entry. In particular, we allow each voter to have arbi-
trary indifferences between candidates. We prove that the voting game admits pure
strategy equilibria in undominated strategies. The proof is constructive: we exhibit
an algorithm, the “best winning deviation” algorithm, that produces such an equi-
librium in finite time. A byproduct of the algorithm is a simple story for how voters
might learn to coordinate on such an equilibrium.

Existence of equilibria in undominated strategies is trivial when there are only
two candidates or when there are multiple candidates but no voter is be indifferent
between any two distinct candidates. In the latter case, we can reduce the multi-
candidate election to a two-candidate one by choosing two candidates arbitrarily and
specifying that each voter vote for his or her preferred of the two. If there are at
least three voters, then this generates a Nash equilibrium in which no voter votes
for his or her worst candidate, and so the equilibrium strategies are undominated.
When indifferences are possible, however, this solution no longer works. Suppose, for
example, that six voters rank four candidates, a, b, c, and d, as follows.

1 2 3 4 5 6
c d c a a b
d b b d c a
ab ac ad bc bd cd

Then no mater which pair of candidates is pre-specified, there is some voter who
ranks both of those candidates last, and for that voter, it is a dominated strategy to
vote for either of those candidates. Thus, there are situations where at least three
candidates must receive votes in a Nash equilibrium with undominated strategies.
The same example shows that it need not be an equilibrium for each voter to simply
vote for his or her favorite candidate: in the above example, that leads to tie between
a and c, but voter 2 could profitably deviate by switching to candidate b.

The difficulty identified above clearly arises because of the possibility of voter
indifferences. When voter preferences over candidates are modeled as exogenous, it
is tempting to solve this problem by assumption, and in fact some work on voting
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games does explicitly this. (See, e.g., De Sinopoli and Turrini (2002) and Dhillon
and Lockwood (2002).) But when voting games are viewed as subgames in a larger
game in which candidate positions are determined endogenously, this is an undesirable
limitation. If candidates compete by choosing policy platforms from a sufficiently rich
policy space, for example, then the possibility of voter indifferences in some subgames
cannot be avoided. The exclusion of indifferences is likewise a limitation if the goal
is a general model of candidate entry, as in Besly and Coate (1997). In fact, the
equilibrium existence claim of those authors, in their Proposition 1, relies on the
existence of pure strategy equilibria in undominated strategies. Since Besley and
Coate actually leave voter preferences over candidates unrestricted, their existence
claim is compromised by the potential absence of equilibria in undominated strategies
in some voting subgames. Our existence result fills that gap. A similar issue arises in
Feddersen, Sened, and Wright (1990), who assume pure voting strategies and impose
the restriction of undominated strategies. Those authors do not verify the existence
of such equilibria in all subgames, but in contrast to Besley and Coate (1997), they
examine Nash, rather than subgame perfect, equilibria, so the potential absence of
such equilibria in “out of equilibrium” subgames does not affect their analysis.

Another simple solution to the problem of existence of voting equilibria in un-
dominated strategies is to allow for mixing, or randomization, in voting behavior.
We could simply eliminate the dominated votes for each voter, leaving a (smaller)
finite voting game, which will then admit mixed strategy equilibria. Returning to the
(larger) original voting game, the equilibrium mixed strategy of a voter will not put
positive probability on a dominated vote. It is true that the strategic structure of
some games leads players to behave in a manner that is not precisely predictable by
their opponents, and so this approach is viable on a priori grounds. It leaves open
the question, however, of whether the structure of voting games actually necessitates
mixing by voters. (And since some voting games certainly have equilibria in pure
strategies, it is not clear why the introduction of indifferences would fundamentally
alter the competitiveness of voting games.) Furthermore, because the exact form of
a voter’s mixing probabilities will depend, in equilibrium, on indifference conditions
involving other voters, the behavioral foundations for such equilibria may be less
convincing than for equilibria in pure strategies.

A final alternative approach is to simply assume sincere voting on the part of
voters, i.e., that each voter votes for his or her highest ranked candidate, neglecting
strategic incentives to deviate (e.g., to avoid “wasting votes”). This approach is quite
common in models with a continuum of voters (see, e.g., Osborne and Slivinski (1996)
and Palfrey (1984)), because such voting games induce uninteresting incentives for
individual voters. The assumption of sincere voting may or may not have empirical
support in large elections, but it is of course less tenable in other settings that we
would like to cover, such as small committees, and it does not address the status of
the literature on strategic voting, where existence of equilibria in voting subgames is
an issue.
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The main result of this paper shows that it is not necessary to resort to the
exclusion of voter indifferences or the possibility of mixed voting strategies. For
completely arbitrary voter preferences over candidates, we establish the existence of
pure strategy voting equilibria in which voters use undominated strategies. The proof
is constructive: we give an algorithm, the “best winning deviation” algorithm, that
will always generate an equilibrium of the sort desired. The algorithm is simple. We
arbitrarily number voters and candidates, and we begin with a profile of votes in
which each voter votes for his or her favorite candidate. Since voters may have more
than one favorite candidate, we simply specify that a voter vote for the lowest indexed
of his or her favorite candidates. If this is an equilibrium, then the algorithm stops.
Otherwise, some voter has a profitable deviation, and we consider the lowest indexed
such voter. We show, in fact, that this voter has a profitable deviation in which the
voter switches to vote for a candidate who, as a result of the deviation, either wins
outright or is tied for first place. We specify that the voter vote for the best candidate
subject to this constraint, i.e., that the voter’s new choice maximize his or her utility
subject to the new candidate choice winning or tying after the switch. In case there
is more than one such candidate, the voter switches to the lowest indexed of them.
If this is an equilibrium, then the algorithm stops. Otherwise, we repeat the above
procedure. The bulk of our analysis consists of demonstrating that this algorithm
must terminate in finite time, whereupon it yields an equilibrium in undominated
strategies.

Though we avoid the use of mixed strategies, there is still the question of how
voters might conceivably learn to coordinate on one among possibly many equilibria.
One possible answer is provided by the best winning deviation algorithm described
above. Taking the algorithm literally, it suggests a story about myopic learning, where
individual voters adjust their votes over time by best responding to the current profile
of voting strategies. This is termed an “introspective” learning dynamic by Bergin
and Bernhardt (2004), who study learning in environments with economic structure
not present in the voting games we consider. Nevertheless, the central problem ad-
dressed by those authors, namely, the termination of the learning algorithm, is similar
in spirit to ours. Taking our algorithm less literally, it suggests that myopic adjust-
ment of voters to public polls, as in McKelvey and Ordeshook (1985), may facilitate
coordination in voting games.

2 The Model

We consider an election among a set M = {1, 2, . . . , m} of candidates to be decided
by plurality voting by a set N = {1, 2, . . . , n} of voters. That is, each voter votes for a
single candidate, and the candidate with the most votes wins, with ties being decided
by a fair lottery. We take the positions of the candidates as fixed, and we assume that
each voter i’s preferences over candidates are given by a von Neumann-Morgenstern
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utility function ui : M → R. Note that we impose no restrictions on voter utilities,
and in particular we allow for arbitrary indifferences between the candidates.

We model voting as a strategic form game in which the pure strategy set of voter
i is Ci = M , so that a pure strategy ci for voter i is a vote for a single candidate. Let
C = Mn be the set of strategy profiles in the voting game, and let c = (c1, c2, . . . , cn)
be a profile of voting strategies.1 Let v(k|c) = #{i ∈ N | ci = k} be the number of
votes that candidate k receives given strategy profile c. Let w(c) = maxk∈M v(k|c)
be the maximum number of votes received by any candidate for profile c, and let
W (c) = {k ∈ M | v(k|c) = w(c)} be the set of candidates tied for first place. Each
k ∈ W (c) wins the election with the equal probability, 1/#W (c). This determines a
payoff function Ui : C → R for voter i, defined as follows:

Ui(c) =
∑

k∈W (c)

ui(k)

#W (c)
.

A pure strategy equilibrium is a strategy profile c such that no voter can deviate to
obtain a higher payoff, i.e., for all voters i and strategies c′i, Ui(c) ≥ Ui(c

′
i, c−i).

Given a voter i, we say that strategy c′i dominates strategy ci if (i) Ui(c
′
i, c−i) ≥

Ui(ci, c−i) for all c−i ∈ C−i, and (ii) Ui(c
′
i, c−i) > Ui(ci, c−i) for some c−i ∈ C−i. Ac-

cordingly, ci is undominated if there is no strategy c′i that dominates ci. The following
proposition extends a well-known characterization of the undominated strategies to
voting games with arbitrary indifferences: voting for a candidate is undominated if
either the voter is completely indifferent or the candidate is not bottom-ranked. The
proof is found in the appendix.

Proposition 1. Strategy ci is undominated for voter i if and only if either (i) for all
c′i, c

′′
i ∈ Ci, ui(c

′
i) = ui(c

′′
i ), or (ii) there exists c′′′i ∈ Ci such that ui(ci) > ui(c

′′′
i ).

As a consequence of Proposition 1, a strategy is undominated if it specifies that
a voter vote for a utility maximizing candidate. Defining c0

i = min{k ∈ M | ∀ℓ ∈
M : ui(k) ≥ ui(ℓ)} as the lowest indexed candidate who maximizes voter i’s utility,
the profile c0 = (c0

1, . . . , c
0
n) therefore consists of undominated strategies. It is not,

however, necessarily a pure strategy equilibrium, as is easily checked.

Example 1. A strategy profile in which every voter votes for his or her most preferred
alternative is not a pure strategy Nash equilibrium in undominated strategies:

Recall the example from the Introduction, where n = 6 and M = 4. Let each voter
assign utility 1 to his or her favorite candidate, utility .8 to his or her second-favorite,
and utility 0 to the last-ranked candidates. Then voter 2’s expected payoff from
the strategy profile, c0, in which each voter votes for his or her favorite candidate is

1We use the notation c
−i to denote a profile of votes for voters other than i.
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U2(c, d, c, a, a, b) = 0. Though voting for c is a best response for voter 1, voter 2’s
expected payoff increases if the voter switches to b: U2(c, b, c, a, a, b) = .6 > 0. �

Note that in the previous example, voter 2 profitably deviates to candidate b, who
then ties for first in the election. The next proposition establishes that, in general, if
a voter has a profitable deviation, then the voter can deviate to vote for a candidate
who, as a result of the deviation, either uniquely wins or at least ties for first in the
election. The proof is found in the appendix.

Proposition 2. For all strategy profiles c, if there is a deviation c′i ∈ Ci such that
Ui(c

′
i, c−i) > Ui(c) for some i ∈ N , then there is a deviation c′′i such that Ui(c

′′
i , c−i) >

Ui(c) and c′′i ∈ W (c′′i , c−i).

Note that in Example 1, the strategy profile (c, b, c, a, a, b) obtained after voter 2’s
deviation also is not an equilibrium. Nevertheless, the next example shows that it is
a simple matter to generate an equilibrium in undominated strategies.

Example 2. A pure strategy equilibrium in undominated strategies:

Returning to Example 1, note that voters 1 and 2 are best responding in the pro-
file (c, b, c, a, a, b), but now voter 3 can profitably deviate by switching to candi-
date b: U3(c, b, b, a, a, b) = .8 > .6 = U3(c, b, c, a, a, b). Finally, the strategy profile
(c, b, b, a, a, b) is indeed a pure strategy equilibrium in undominated strategies. �

In the above examples, only two deviations were needed to achieve an equilibrium.
In the next section, we extend the approach in Examples 1 and 2 to look for successive
deviations of a certain form. The algorithm does not always terminate after two
iterations, as it does above, but it always terminates in finite time and yields a pure
strategy equilibrium in undominated strategies.

3 Best Winning Deviation Algorithm

We generalize the approach used in Examples 1 and 2 by defining an algorithm that
proceeds as follows. We begin with the strategy profile c0 in which every voter votes
for his or her favorite candidate. Because we allow the possibility of indifferences, we
arbitrarily specify that a voter with multiple utility-maximizing candidates initially
vote for the lowest indexed of those candidates. We then consider whether any voter
has a profitable deviation from c0. If not, then using Proposition 1, the profile c0

is a pure strategy equilibrium in undominated strategies. If there is a voter with a
profitable deviation, then c0 is not an equilibrium. Because there may be multiple
voters with profitable deviations, we arbitrarily specify that the lowest indexed such
voter deviate. Moreover, we require that the voter deviate to a candidate who, as a
result of the deviation, either wins or ties for first in the election. By Proposition 2,
there is always such a candidate. Since there may be multiple such candidates, we
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arbitrarily specify that the voter deviate to the lowest indexed of these candidates.
We denote the resulting profile c1. If there is no voter with a profitable deviation,
then we have a pure strategy equilibrium in undominated strategies. If there is a
voter with a profitable deviation, then we construct a new profile c2 as above, and so
on.

Formally, we define the best winning deviation algorithm by recursion. Initially,
we define c0

i = min{k ∈ M | ∀ℓ ∈ M : ui(k) ≥ ui(ℓ)} for all i ∈ N , and let
c0 = (c0

1, c
0
2, . . . , c

0
n) ∈ C. Now taking the profile ct as given, we define profile ct+1 as

follows. For all i ∈ N , let

Dt
i = {k ∈ Ci | k ∈ W (k, ct

−i), Ui(k, ct
−i) > Ui(c

t)}

denote the set of possible profitable winning deviations from ct for voter i. As Propo-
sition 2 shows, if ct is not an equilibrium, then Dt

i 6= ∅ for some voter i. Let
N t = {i ∈ N | Dt

i 6= ∅} denote the set of voters with a profitable deviation from
ct. If N t = ∅, then the algorithm ends at ct. Otherwise, the algorithm continues. Let
i(t) = min N t denote the lowest indexed voter with a profitable deviation, and define

ct+1
i(t) = min{k ∈ Dt

i(t) | ∀ℓ ∈ Dt
i(t) : Ui(t)(k, ct

−i(t)) ≥ Ui(t)(ℓ, c
t
−i(t))}

to be the lowest indexed of the profitable winning deviations of the lowest indexed
voter with such a deviation. We specify that the strategies of the other voters remain
unchanged: ct+1

−i(t) = ct
−i(t). Thus, ct+1 = (ct+1

i(t) , c
t
−i(t)). We write ct

i(t) → ct+1
i(t) to denote

a best winning deviation from ct
i(t) to ct+1

i(t) , and we say i(t) ∈ N is the best winning
deviator in round t.

4 Existence of Voting Equilibria in Undominated

Strategies

As the goal of constructing the best winning deviation algorithm is to compute,
and thereby establish the existence of, a pure strategy equilibrium in undominated
strategies, it is of paramount importance that the algorithm terminate in finite time.
Of course, it does so in Example 2. The next result establishes that the algorithm
does indeed always terminates in finite time, despite the possibility of arbitrary voter
indifferences.

Theorem 1. The best winning deviation algorithm must stop at some round T < ∞.
Thus, there exists a pure strategy equilibrium in undominated strategies.

The remainder of this section consists in proving Theorem 1. Since the profile ct in
any round t is uniquely defined by the best winning deviation algorithm, we conserve
notation by abbreviating v(k|ct) to vt(k), w(ct) to wt, and W (ct) to W t. Also, let
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W t
q = {k ∈ M | vt(k) = wt − q}, denote the set of candidates who are q votes out of

first place in the election, and let Ŵ t = W t
0 ∪ W t

1 denote the set of candidates who
tie for first or lose by one vote. Note that ct+1

i(t) is an element of W t+1, by construction
of the algorithm.

Our analysis of the best winning deviation algorithm will make use of the following
lemma, proved in the appendix. It shows that the candidate to whom the deviator
switches his or her vote must maximize that voter’s utility over the set of candidates
who tie for first or lose by one vote.

Lemma 1. For all candidates k ∈ Ŵ t+1, we have ui(t)(c
t+1
i(t) ) ≥ ui(t)(k).

In the remainder of the analysis, we classify best winning deviations into eight
possible cases, each defined by a condition on the status of the candidates voted for
by the best winning deviator. The table below displays these cases, along with their
defining conditions.

Case Condition
1 ct

i(t) ∈ W t, ct
i(t) ∈ W t+1, ct+1

i(t) ∈ W t

2 ct
i(t) ∈ W t, ct

i(t) ∈ W t+1, ct+1
i(t) /∈ W t

3 ct
i(t) ∈ W t, ct

i(t) /∈ W t+1, ct+1
i(t) ∈ W t

4 ct
i(t) ∈ W t, ct

i(t) /∈ W t+1, ct+1
i(t) /∈ W t

5 ct
i(t) /∈ W t, ct

i(t) ∈ W t+1, ct+1
i(t) ∈ W t

6 ct
i(t) /∈ W t, ct

i(t) ∈ W t+1, ct+1
i(t) /∈ W t

7 ct
i(t) /∈ W t, ct

i(t) /∈ W t+1, ct+1
i(t) ∈ W t

8 ct
i(t) /∈ W t, ct

i(t) /∈ W t+1, ct+1
i(t) /∈ W t

The next lemma, proved in the appendix, establishes restrictions derived from
the construction of the best winning deviation algorithm. For example, it turns
out that Cases 1, 2, 5, and 6 cannot occur in the operation of this algorithm. A
moment’s consideration, and inspection of the proof of the lemma, reveal that the
critical case is Case 2. Here, the deviator is currently voting for a winning candidate,
then switches to vote for a candidate who is not currently winning, with the result
that both candidates (and possibly others) are tied for the most votes after the switch.
Whereas Cases 1, 5, and 6 can be precluded on a priori grounds, deviations in Case
2 are conceivable: such a deviation could occur if the deviator, say i, were voting for
the uniquely winning candidate, say k, in round t; if candidate k were winning the
election by two votes in round t; and if the deviator switches his or her vote to a
candidate, say ℓ, who was losing by two votes. Such a deviation might fall into Case
2 if i prefers candidate ℓ to k, but we show that the construction of the best winning
deviation algorithm precludes this possibility.

Lemma 2. The construction of the best winning deviation algorithm generates the
following restrictions.
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Case 1 Not possible.

Case 2 Not possible.

Case 3 wt+1 = wt + 1.

Case 4 wt+1 = wt, #W t+1 = #W t, Ŵ t+1 = Ŵ t, and W t+1 \ {ct+1
i(t) } = W t \ {ct

i(t)}.

Case 5 Not possible.

Case 6 Not possible.

Case 7 wt+1 = wt + 1.

Case 8 wt+1 = wt, #W t+1 = #W t + 1.

In Cases 3, 4, 7, and 8, we see that after each iteration of the algorithm, the number
of votes garnered by the winning candidate weakly increases. Since the number of
voters is finite, this means that the number of votes accruing to the winner weakly
increases until it reaches a certain level and then remains constant. This places us
in Cases 4 and 8, where we see that the number of candidates tied for first place is
constant in Case 4 and strictly increasing in Case 8. Because the set of candidates
is finite, the number of candidates tied for first weakly increases until it reaches a
certain level and then remains constant. This places us in Case 4. The end of the
proof is to argue that we can only remain in Case 4 for a finite number of rounds,
after which we conclude that the algorithm must terminate.

In the sequel, we make use of the following observations without reference. First,
because the deviator i(t) in round t switches from ct

i(t) to ct+1
i(t) , we have

vt(ct
i(t)) = vt+1(ct

i(t)) + 1 and vt(ct+1
i(t) ) + 1 = vt+1(ct+1

i(t) ) = wt+1,

where the last equality above holds because ct+1
i(t) is a winning deviation. Since the

strategies of voters other than i(t) are held fixed in round t, we also have vt(k) =
vt+1(k) for all k ∈ M \ {ct

i(t), c
t+1
i(t) }. Finally, since the deviator can only subtract

or add one vote, at least one of the following holds: wt+1 = wt − 1, wt+1 = wt, or
wt+1 = wt + 1.

To prove Theorem 1, suppose that the best winning deviation algorithm does not
stop, generating an infinite sequence of sets {W t} and profiles {ct}. Recall that by
Lemma 2, deviations in Cases 1, 2, 5, and 6 cannot occur at any round t. Thus, only
deviations in Cases 3, 4, 7, and 8 are possible. As we have discussed, in these cases,
we have wt+1 ≥ wt for all t, and since N is finite, there exists T ′ such that wt+1 = wt

for all t ≥ T ′. Then deviations in Cases 3 and 7 are not possible for t ≥ T ′, i.e.,
only deviations in Cases 4 and 8 are possible in rounds t ≥ T ′. In Cases 4 and 8, we
have #W t+1 ≥ #W t for all t, and since M is finite, there exists T ′′ ≥ T ′ such that
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#W t+1 = #W t for all t ≥ T ′′. Then deviations in Case 8 are not possible for t ≥ T ′′,
i.e., only deviations in Case 4 are possible in rounds t ≥ T ′′.

By Lemma 2, we have Ŵ t = Ŵ t+1 in Case 4, and we conclude that Ŵ t+1 = Ŵ t

for all t ≥ T ′′. For simplicity, let Ŵ = Ŵ t for all t ≥ T ′′. Since N is finite, there is
at least one voter who is a deviator more than once after T ′′. Let i be the first such
voter, and let s be the first round s ≥ T ′′ in which i is deviator, i.e., i = i(s), and
let t be the second round such that t ≥ T ′′ and i = i(t). Since ct

i → ct+1
i is a best

winning deviation, we have Ui(c
t+1) > Ui(c

t). Using #W t = #W t+1, from Lemma 2,
this is equivalent to

ui(c
t+1
i ) +

∑

k∈W t+1\{ct+1

i
}

ui(k) > ui(c
t
i) +

∑

k∈W t\{ct

i
}

ui(k),

and since W t+1 \ {ct+1
i } = W t \ {ct

i}, by Lemma 2, this implies ui(c
t+1
i ) > ui(c

t
i).

Note that i does not deviate between rounds s + 1 and t, so we have ct
i = cs+1

i , with

the implication that ui(c
t+1
i ) > ui(c

s+1
i ). Note also that ct+1

i ∈ W t+1 ⊆ Ŵ . But

Lemma 1 implies that ui(c
s+1
i ) ≥ ui(k) for all k ∈ Ŵ , and then ct+1

i ∈ Ŵ implies
ui(c

s+1
i ) ≥ ui(c

t+1
i ), a contradiction. Therefore, the best winning deviation algorithm

must stop at some T < ∞.

By Proposition 2, the resulting strategy profile cT is a pure strategy equilibrium.
That each voter’s strategy in cT is undominated follows by application of Proposition
1. In the initial profile c0, each voter begins by voting for a utility maximizing candi-
date. If voter i never deviates in the operation of the algorithm, then by Proposition
1, the strategy cT

i = c0
i is undominated. If voter i does deviate to strategy ct+1

i in
some round t, then because ct+1

i ∈ Dt
i, we have

1

#W t+1

∑

k∈W t+1

ui(k) >
1

#W t

∑

k∈W t

ui(k),

and so there exist k ∈ W t+1 and ℓ ∈ W t such that ui(k) > ui(ℓ). Since ct →
ct+1 is a best winning deviation, we have ct+1

i ∈ W t+1, and Lemma 1 then implies
ui(c

t+1
i ) ≥ ui(k) > ui(ℓ). By Proposition 1, ct+1

i is undominated, and since this
holds for arbitrary deviations, we conclude that cT is a pure strategy equilibrium in
undominated strategies.

A Proofs of Auxiliary Results

Proposition 1. Strategy ci is undominated for voter i if and only if either (i) for all
c′i, c

′′
i ∈ Ci, ui(c

′
i) = ui(c

′′
i ), or (ii) there exists c′′′i ∈ Ci such that ui(ci) > ui(c

′′′
i ).

First, assume ci is undominated. Suppose that ui is not constant on M , violating
(i). To show that (ii) holds, suppose that candidate ci minimizes voter i’s utility,
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i.e., ui(c̃i) ≥ ui(ci) for all c̃i ∈ Ci. Choose strategy ĉi to maximize i’s utility, which
implies ui(ĉi) > ui(ci). We claim that for all c−i, we have Ui(ĉi, c−i) ≥ Ui(ci, c−i). To
see this, note that either (a) w(ĉi, c−i) = w(ci, c−i) + 1, or (b) w(ĉi, c−i) = w(ci, c−i),
or (c) w(ĉi, c−i) = w(ci, c−i) − 1. In cases (a) and (c), we have W (ĉi, c−i) = {ĉi} and
W (ci, c−i) = {ci}, respectively, both of which imply Ui(ĉi, c−i) ≥ Ui(ci, c−i). In case
(b), we have either W (ĉi, c−i) = W (ci, c−i) \ {ci} or W (ĉi, c−i) = {ĉi} ∪ (W (ci, c−i) \
{ci}), and again Ui(ĉi, c−i) ≥ Ui(ci, c−i), fulfilling the claim. Now, if n is odd, then
choose c′−i such that ĉi and ci both receive n−1

2
votes. Then Ui(ĉi, c

′
−i) = ui(ĉi) >

ui(ci) = Ui(ci, c
′
−i). If n is even, then choose c′′−i such that ĉi receives n

2
− 1 votes

and ci receives n
2

votes. Then Ui(ĉi, c
′′
−i) = ui(ĉi)+ui(ci)

2
> ui(ci) = Ui(ci, c

′′
−i). By

Proposition 1, it follows that ĉi dominates ci, contradicting the assumption that ci is
undominated.

Second, assume that (i) or (ii) holds. If (i) holds, then it is clear that all strategies
are undominated for i. So suppose (ii) holds, i.e., there is a strategy c′′′i ∈ M such
that ui(ci) > ui(c

′′′
i ). If n is odd, then choose any c′−i such that ci and c′′′i both receive

n−1
2

votes. Then Ui(ci, c
′
−i) > Ui(ĉi, c

′
−i) for all ĉi ∈ Ci\{ci}, since Ui(ci, c

′
−i) = ui(ci),

Ui(c
′′′
i , c′−i) = ui(c

′′′
i ), and Ui(ĉi, c

′
−i) =

ui(ci)+ui(c′′′i
)

2
for all ĉi ∈ Ci\{ci, c

′′′
i }. If n is even,

then choose any c′′−i such that ci receives n
2
− 1 votes and c′′′i receives n

2
votes. Then

Ui(ci, c
′′
−i) > Ui(ĉi, c

′′
−i) for all ĉi ∈ Ci\{ci}, since Ui(ci, c

′′
−i) =

ui(ci)+ui(c
′′′

i
)

2
> ui(c

′′′
i ) =

Ui(ĉi, c
′′
−i) for all ĉi ∈ Ci\{ci}. Therefore, ci is dominated by no ĉi, as desired.

Proposition 2. For all strategy profiles c, if there is a deviation c′i ∈ Ci such that
Ui(c

′
i, c−i) > Ui(c) for some i ∈ N , then there is a deviation c′′i such that c′′i ∈

W (c′′i , c−i) and Ui(c
′′
i , c−i) > Ui(c).

Suppose there exists c′i ∈ Ci such that Ui(c
′
i, c−i) > Ui(c). Then,

Ui(c
′
i, c−i) =

∑

k∈W (c′
i
,c−i)

ui(k)

#W (c′i, c−i)
.

Take any ℓ ∈ W (c′i, c−i) such that ui(ℓ) ≥ ui(k) for all k ∈ W (c′i, c−i). If ℓ = c′i, then
Ui(ℓ, c−i) = Ui(c

′
i, c−i) > Ui(c). If ℓ 6= c′i, then W (ℓ, c−i) = {ℓ}, so Ui(ℓ, c−i) = ui(ℓ) ≥

Ui(c
′
i, c−i) > Ui(c). Then, Ui(ℓ, c−i) > Ui(c). Setting c′′i = ℓ, we are done.

Lemma 1. For all candidates k ∈ Ŵ t+1, we have ui(t)(c
t+1
i(t) ) ≥ ui(t)(k).

Let k ∈ Ŵ t+1 maximize voter i’s utility over Ŵ t+1, and suppose that ui(t)(k) >
ui(c

t+1
i(t) ). If k ∈ W t+1

0 , then Ui(t)(k, ct+1
−i(t)) = ui(t)(k) > Ui(t)(c

t+1), where the strict

inequality follows since ct+1
i(t) ∈ W t+1. If k ∈ W t+1

1 , then W (k, ct+1
−i(t))\{k} = W (ct+1)\

{ct+1
i(t) }, and this implies Ui(t)(k, ct

−i(t)) > Ui(t)(c
t+1). In both cases, we contradict the

fact that ct
i(t) → ct+1

i(t) is a best winning deviation.
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Lemma 2. The construction of the best winning deviation algorithm generates the
following restrictions.

Case 1 Not possible.

Case 2 Not possible.

Case 3 wt+1 = wt + 1.

Case 4 wt+1 = wt, #W t+1 = #W t, Ŵ t+1 = Ŵ t, and W t+1 \ {ct+1
i(t) } = W t \ {ct

i(t)}.

Case 5 Not possible.

Case 6 Not possible.

Case 7 wt+1 = wt + 1.

Case 8 wt+1 = wt, #W t+1 = #W t + 1.

The proof proceeds by establishing a number of claims. The task of proving the
impossibility of Case 2 is reserved for the end of the proof.

Claim 1. Case 1 is not possible.

Suppose ct
i(t) ∈ W t, ct

i(t) ∈ W t+1, and ct+1
i(t) ∈ W t. Then vt+1(ct

i(t)) = vt(ct
i(t)) − 1 =

wt − 1 = vt(ct+1
i(t) ) − 1 = vt+1(ct+1

i(t) ) − 2, but then ct
i(t) /∈ W t+1, a contradiction.

Claim 2. In Case 2, wt+1 = wt − 1, ct+1
i(t) ∈ W t

2, and W t = {ct
i(t)}.

Suppose ct
i(t) ∈ W t, ct

i(t) ∈ W t+1, and ct+1
i(t) /∈ W t. Then wt = vt(ct

i(t)) = vt+1(ct
i(t))+

1 = wt+1 + 1. Thus, wt+1 = wt − 1. Then vt(ct+1
i(t) ) + 1 = vt+1(ct+1

i(t) )) = wt+1 = wt − 1,

which implies ct+1
i(t) ∈ W t

2 . Of course, ct
i(t) ∈ W t. To show that W t \ {ct

i(t)} = ∅,

suppose there exists k ∈ W t \ {ct
i(t)}. Note that k 6= ct

i(t), c
t+1
i(t) , so vt+1(k) = vt(k) =

wt = vt(ct+1
i(t) ) + 2 = vt+1(ct+1

i(t) ) + 1. Then vt+1(k) > vt+1(ct+1
i(t) ), so ct+1

i(t) /∈ W t+1, a

contradiction. Therefore, W t = {ct
i(t)}.

Claim 3. In Cases 3 and 7, wt+1 = wt + 1.

Suppose ct+1
i(t) ∈ W t. Then vt(ct+1

i(t) ) = wt, so wt+1 = vt+1(ct+1
i(t) ) = vt(ct+1

i(t) ) + 1 =

wt + 1, as required.

Claim 4. In Case 4, wt+1 = wt and W t+1\{ct+1
i(t) } = W t\{ct

i(t)}.

11



Suppose ct
i(t) ∈ W t, ct

i(t) /∈ W t+1, and ct+1
i(t) /∈ W t. To see that wt+1 = wt, first note

that vt(ct+1
i(t) ) ≥ wt−1, for otherwise we would have wt+1 = vt+1(ct+1

i(t) ) = vt(ct+1
i(t) )+1 ≤

wt − 1 = vt(ct
i(t)) − 1 = vt+1(ct

i(t)), which implies ct
i(t) ∈ W t+1, a contradiction. And

since ct+1
i(t) /∈ W t, this implies vt(ct+1

i(t) ) = wt − 1. Therefore, wt+1 = vt+1(ct+1
i(t) ) =

vt(ct+1
i(t) ) + 1 = wt. To see that W t+1 \ {ct+1

i(t) } = W t \ {ct
i(t)}, take any k ∈ W t \ {ct

i(t)}.

Note that k 6= ct
i(t), c

t+1
i(t) . Then vt(k) = vt+1(k) = wt = wt+1, so k ∈ W t+1\{ct+1

i(t) }.

Now take any k ∈ W t+1\{ct+1
i(t) }. Note that k 6= ct

i(t), c
t+1
i(t) . Then vt(k) = vt+1(k) =

wt = wt+1, so k ∈ W t\{ct
i(t)}, as required.

Claim 5. Cases 5 and 6 are not possible.

Suppose ct
i(t) /∈ W t and ct

i(t) ∈ W t+1. Then wt > vt(ct
i(t)) = vt+1(ct

i(t)) + 1 =

wt+1 + 1, a contradiction.

Claim 6. In Case 8, wt+1 = wt and W t+1\{ct+1
i(t) } = W t.

Suppose ct
i(t) /∈ W t, ct

i(t) /∈ W t+1, and ct+1
i(t) /∈ W t. The proof that wt+1 = wt is

exactly as in the proof of Claim 4, as it only uses the last two of these conditions.
Take any k ∈ W t+1\{ct+1

i(t) }, so that k 6= ct
i(t), c

t+1
i(t) . Then vt(k) = vt+1(k) = wt+1 = wt,

so k ∈ W t. Now take any k ∈ W t, and note that ct
i(t), c

t+1
i(t) /∈ W t. Then vt+1(k) =

vt(k) = wt = wt+1, so k ∈ W t+1, as required.

Claim 7. In Cases 3, 4, 7, and 8, Ŵ t+1 ⊆ Ŵ t.

Recall that ct
i(t) ∈ Ŵ t+1 in these cases by Claims 3, 4, and 6. Also, ct

i(t) ∈ W t.

Note that ct+1
i(t) ∈ W t+1. Also, ct+1

i(t) ∈ W t ⊆ Ŵ t in Cases 3 and 7. In Cases 4 and

8, we have wt = wt+1 = vt+1(ct+1
i(t) ) = vt(ct+1

i(t) ) + 1, so ct+1
i(t) ∈ W t

1 ⊆ Ŵ t. Recall that

wt+1 ≥ wt in these cases by Claims 3, 4, and 6. Now take any k ∈ Ŵ t+1\{ct
i(t), c

t+1
i(t) }.

Then vt(k) = vt+1(k) ≥ wt+1 − 1 ≥ wt − 1, so k ∈ Ŵ t. Thus, Ŵ t+1 ⊆ Ŵ t.

Claim 8. In Case 4, Ŵ t = Ŵ t+1.

Of course, ct
i(t) ∈ W t ⊆ Ŵ t. Note that ct+1

i(t) ∈ W t ⊆ Ŵ t in Cases 3 and 7. In

Cases 4 and 8, we have wt = wt+1 = vt+1(ct+1
i(t) ) = vt(ct+1

i(t) ) + 1, so ct+1
i(t) ∈ W t

1 ⊆ Ŵ t.

Now take any k ∈ Ŵ t+1\{ct
i(t), c

t+1
i(t) }. Then vt(k) = vt+1(k) ≥ wt+1 − 1 ≥ wt − 1, so

k ∈ Ŵ t. Thus, Ŵ t+1 ⊆ Ŵ t.

Claim 9. Case 2 is not possible.

We prove the claim in a number of steps. Suppose that ct
i(t) → ct+1

i(t) is in Case 2
for some round t, and without loss of generality let t be the first round belonging to
Case 2. Let i = i(t).
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Step 1. ct
i 6= c0

i .

Proof. By Claim 2, W t = {ct
i}, so that Ui(c

t) = ui(c
t
i). If ct

i = c0
i , then,

1

#W t+1

∑

k∈W t+1

ui(k) = Ui(c
t+1) > Ui(c

t) = ui(c
t
i) = ui(c

0
i(t)).

So there is a candidate ℓ such that ui(ℓ) > ui(c
0
i ), a contradiction.

That is, i must have deviated at least once before round t. Let round s be the
last round in which i deviated before t. That is, choose s so that i = i(s), s < t,
and there is no round r such that s < r < t and i = i(r). Then cs+1

i = ct
i ∈ W t

0 . By
Claims 1 and 5, Cases 1, 5, and 6 are not possible, so all deviations before ct

i → ct+1
i

belong to Cases 3, 4, 7, and 8.

Step 2. ui(c
t+1
i ) > ui(c

t
i).

Proof. Suppose ui(c
t+1
i ) ≤ ui(c

t
i). Note that cs+1

i = ct
i and, by Claim 7, Ŵ t ⊆ Ŵ s.

Therefore, Lemma 1 implies that ui(c
t
i) ≥ ui(k) for all k ∈ Ŵ t. By Claim 2, we

have wt+1 = wt − 1, and therefore W t+1 = Ŵ t ∪ {ct+1
i }. Then ui(c

t
i) ≥ ui(k) for all

k ∈ W t+1, which yields

Ui(c
t) = ui(c

t
i) ≥

1

#W t+1

∑

k∈W t+1

ui(k) = Ui(c
t+1),

where the first equality follows from W t = {ct
i} in Claim 2. Then ct

i → ct+1
i is not a

best winning deviation, a contradiction.

Step 3. vs+1(ct+1
i ) ≥ vs+2(ct+1

i ) ≥ · · · ≥ vt−1(ct+1
i ) = vt(ct+1

i ).

Proof. By Step 2, we have ui(c
t+1
i ) > ui(c

t
i). Since ct

i = cs+1
i , this implies, with

Lemma 1, that ct+1
i /∈ Ŵ s. By Claim 7, this implies ct+1

i /∈ Ŵ s+1, i.e., vs+1(ct+1
i ) <

ws+1 − 1. Since all deviations before ct
i → ct+1

i belong to Cases 3, 4, 7, and 8, we
then have vs+1(ct+1

i ) + 1 < ws+1 ≤ ws+2 ≤ · · · ≤ wt−1 ≤ wt. Since vs+2(ct+1
i ) ≤

vs+1(ct+1
i ) + 1 < ws+2 and cs+2

i(s+1) ∈ W s+2, it follows that cs+2
i(s+1) 6= ct+1

i . Therefore,

vs+1(ct+1
i ) ≥ vs+2(ct+1

i ). Similarly, it must be that cs+3
i(s+2) 6= ct+1

i , and so on. An

induction argument based on these observations then yields vs+1(ct+1
i ) ≥ vs+2(ct+1

i ) ≥
· · · ≥ vt−1(ct+1

i ) = vt(ct+1
i ).

Step 4. ct+1
i ∈ W s+1

2 .

Proof. The first part of the proof of Step 3 shows that ct+1
i /∈ Ŵ s+1. Suppose ct+1

i /∈
W s+1

2 . Then vs+1(ct+1
i ) < ws+1 − 2. Since all deviations before ct

i → ct+1
i belong to

Cases 3, 4, 7, and 8, we have ws+1 ≤ ws+2 ≤ · · · ≤ wt−1 ≤ wt. By Claim 2, this implies
ws+1 ≤ wt+1 + 1. Using Step 3, we then have vt(ct+1

i ) ≤ vs+1(ct+1
i ) < ws+1 − 2 ≤

wt+1 − 1, and ct+1
i /∈ W t

2 , contradicting Claim 2. Therefore, ct+1
i ∈ W s+1

2 .
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Step 5. ws+1 = ws+2 = · · · = wt−1 = wt.

Proof. By Claim 2 and Step 4, we have ct+1
i ∈ W s+1

2 ∩ W t
2. Then, using Step 3, we

have ws+1 − 2 = vs+1(ct+1
i ) ≥ vs+2(ct+1

i ) ≥ · · · ≥ vt−1(ct+1
i ) = vt(ct+1

i ) = wt − 2,
which implies ws+1 ≥ wt. With ws+1 ≤ ws+2 ≤ · · · ≤ wt−1 ≤ wt, this yields
ws+1 = ws+2 = · · · = wt−1 = wt.

Step 6. For all rounds r with s ≤ r ≤ t, cr
i(r) → cr+1

i(r) belongs to Cases 4 or 8.

Proof. By Step 5, we have ws+1 = ws+2 = · · · = wt−1 = wt, and by Claim 3, no
deviation cr

i(r) → cr+1
i(r) can belong to Cases 3 or 7. This leaves only Cases 4 and 8.

Step 7. #W s+1 = #W s+2 = · · · = #W t−1 = #W t = 1.

Proof. Since the relevant cases are Cases 4 and 8, we have #W s+1 ≤ #W s+2 ≤ · · · ≤
#W t−1 ≤ #W t. By Claim 2, we have #W t = 1, which then implies #W s+1 =
#W s+2 = · · · = #W t−1 = #W t = 1.

Step 8. For all rounds r with s ≤ r ≤ t, cr
i(r) → cr+1

i(r) belongs to Case 4.

Proof. By Step 7, we have #W s+1 = #W s+2 = · · · = #W t−1 = #W t = 1, and by
Claim 6, no cr

i(r) → cr+1
i(r) can belong to Case 8. With Step 6, this leaves only Case

4.

Step 9. W s+1 = W t and W s+1
1 = W t

1.

Proof. Note that cs+1
i ∈ W s+1, ct

i ∈ W t, and by Step 7, #W s+1 = #W t = 1. Then
we have W s+1 = {cs+1

i } = {ct
i} = W t. Then W s+1

1 = W t
1 follows from Step 8 and

Claim 8.

Step 10. W (ct+1
i , cs+1

−i ) = W (ct+1
i , ct

−i).

Proof. By Claim 2 and Step 9, W (cs+1
i , cs+1

−i ) = W s+1 = {ct
i}, and by Step 4, ct+1

i ∈
W s+1

2 . Therefore, v(ct
i|c

t+1
i , cs+1

−i ) = ws+1−1 and v(ct+1
i |ct+1

i , cs+1
−i ) = ws+1−1, and we

deduce that

W (ct+1
i , cs+1

−i ) = {ct
i, c

t+1
i } ∪ W s+1

1 .

By Claim 2, we also have

W (ct+1
i , ct

−i) = {ct
i, c

t+1
i } ∪ W t

1 ,

and then Step 9 implies W (ct+1
i , cs+1

−i ) = W (ct+1
i , ct

−i).
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Finally, we use Step 10 to deduce that

W (ct+1
i , cs

−i) = W (ct+1
i , cs+1

−i ) = W (ct+1
i , ct

−i) = W (ct+1) = W t+1.

Then, using W s+1 = W t = {ct
i} from Step 9 and Claim 2, we have

Ui(c
t+1
i , cs

−i) = Ui(c
t+1) = Ui(c

t+1
i , ct

−i) > Ui(c
t)

= ui(c
t
i) = ui(c

s+1
i ) = Ui(c

s+1
i , cs

−i).

So Ui(c
t+1
i , cs

−i) > Ui(c
s+1
i , cs

−i), but this contradicts the assumption that cs
i → cs+1

i is
a best winning deviation, and we conclude that ct

i → ct+1
i belongs to Case 2 for no

round t.
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