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Abstract

In a common-values election with continuously distributed information quality, the

incentive to pool private information con�icts with the swing voter�s curse. In equi-

librium, therefore, some citizens abstain despite clear private opinions, and others vote

despite having arbitrarily many peers with superior information. The dichotomy be-

tween one�s own and others� information quality can explain the otherwise puzzling

empirical relationship between education and turnout, and suggests the importance

of relative information variables in explaining turnout, which I verify for U.S. primary

elections. Though voluntary elections fail to utilize nonvoters�information, mandatory

elections actually do worse; e¤orts to motivate turnout may actually reduce welfare.
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1 Introduction

In every democracy, a large fraction of eligible citizens abstain from voting in public

elections. Many of those who do vote participate in some but not all races on the ballot�a

phenomenon known as roll-o¤ . Low and declining turnout are commonly viewed as threats

to democracy. One important reason that is frequently given for not voting is that citi-

zens lack con�dence in their understanding of political issues, or their knowledge of political

candidates. Consistent with this, Matsusaka (1995) �nds that, empirically, participation in

U.S. elections is highest among demographic groups that are likely to be well-informed, such

as those who are well-educated, older, married, publicly employed, or recently contacted by

campaign workers; and low among people who have recently moved. Wol�nger and Rosen-

stone (1980) �nd education, in particular, to be the single best predictor of voter participa-

tion, and subsequent research (Dee, 2004; Milligan, Moretti, and Oreopoulos, 2004) �nds this

relationship to be causal. Bartels (1996), Degan and Merlo (2007a), and Larcinese (2006)

link voting more directly with information quality per se, and Lassen (2005) concludes that,

controlling appropriately for information, education does not otherwise in�uence turnout.

Similarly, Strate et al. (1989) argue that age in�uences turnout predominantly because

life experience develops "civic competence". Wattenberg, McAllister, and Salvanto (2000,

p. 245) also �nd information to be "the most signi�cant factor in explaining the roll-o¤

phenomenon".

To explain the connection between information and voting, Matsusaka (1995) points out

that a citizen who is uncertain which of two candidates she1 prefers expects a lower bene�t

from voting. As Feddersen and Pesendorfer (1996; hereafter FP) point out, however, this

logic leads to abstention only when voting is costly (since the expected bene�t of voting

is always positive, even for a poorly informed voter), which is not always the case. As

an alternative, they identify a strategic incentive for abstention which they call the "swing

voter�s curse." In their model, voters share common underlying values, so that disagreements

arise only because of informational di¤erences; if information were perfect, voting would

be unanimous. Informed citizens observe which candidate is superior, and vote for that

candidate. An uninformed citizen, uncertain which candidate is better, instead abstains�

even when voting is costless, and even if prior beliefs favor one candidate over the other�

reasoning that her own vote will in�uence her payo¤ only if it is pivotal (i.e. either making

or breaking a tie), which can only happen when she is voting against the informed voters

and therefore for the wrong candidate. Thus abstention is actually the best way for an

uninformed citizen to achieve her desired election outcome. In fact, abstention is socially

1Throughout this paper I use feminine pronouns to describe voters, and masculine pronouns to describe

candidates.
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desirable: the best social outcomes are achieved when informed citizens vote and uninformed

citizens abstain.

While attractively simple, the information structure in the FP model is unrealistic: voter

heterogeneity is limited to two types, informed voters have perfect information, and unin-

formed voters are perfectly ignorant. The importance of the latter two restrictions can

be seen by comparing the FP model to a related framework, analyzed two centuries ear-

lier by Condorcet (1785). In that model, citizens each observe independent private signals

indicating the superior candidate, but these signals are only correct with some (common)

probability q 2
�
1
2
; 1
�
. Even if citizens are only barely informed (e.g. q = 0:51), the well-

known Condorcet jury theorem states that, as the number of voters grows large, the superior

candidate receives a majority of votes with probability approaching one (by the law of large

numbers). Thus everyone should vote, and the majority opinion of a su¢ ciently large

number of voters will be better-informed than that of any imperfectly-informed individual.

This ability to so e¤ectively aggregate private information has long been regarded as one

of the most compelling justi�cations for the extensive use of majority voting in collective

decision-making.

Like FP and Condorcet, I analyze voting behavior in a two-candidate election in which

voting is costless, and citizens have common values but imperfect information. As in the

Condorcet model, every agent receives a private indication of the superior candidate. Here,

however, the quality Qi 2
�
1
2
; 1
�
of a citizen�s signal is individual-speci�c, drawn randomly

from some common (and commonly-known) distribution F . In this framework, the Con-

dorcet model corresponds to a degenerate F , and the FP model a discrete F , with positive

mass only on the "informed" and "uninformed" extreme types Qi = 1 and Qi = 1
2
. Of

particular interest are continuous F , for which these extreme types are realized with zero

probability.2

In this framework, the best response to any strategy is characterized by cutpoints on

posterior beliefs. Accordingly, equilibrium can be characterized by an information quality

threshold T �, above which agents vote sincerely and below which they abstain. The location

of T � highlights the inherent con�ict between the quantity and quality of information: if T �

is high, voters are few but well-informed, as in the FP model; if T � is low, voters are many

but on average less well-informed, as in the Condorcet model. With informative voting,

the superior candidate is more likely to be ahead by a single vote than behind by a single

vote, so a vote for the correct candidate is strictly less likely to be pivotal than a mistake.

2The importance of a generalized information structure is demonstrated by Duggan and Martinelli (2001)

and Meirowitz (2002), who overturn a surprising result in FP (1998) that unanimity rule gives jurors poor

incentives for truth-telling.
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Thus, voters su¤er from the swing voter�s curse, and in equilibrium some agents abstain (i.e.

T � > 1
2
) even when they view one candidate as better than the other.

As a population grows, T � rises, because the addition of voters strengthens the swing

voter�s curse. If F is continuous, then even an agent who might reasonably believe herself to

be the best informed member of a small electorate expects to eventually have an arbitrarily

large number of better-informed peers, as the population grows. In light of this, intuition

suggests that even an extremely well-informed citizen will at some point decide to abstain,

deferring to her better-informed peers; if so, the fraction of citizens who votes must fall to 0%

(i.e. T � ! 1) as a population grows large. This intuition, however, turns out to be incorrect:

a one-vote loss indeed grows less likely, even relative to a one-vote win, but decreasingly so,

and T � asymptotes at some level strictly below one. The precise limit of T � is determined

by the underlying distribution of F , and (for most F ) is unique; one bene�t of this model is

a straightforward formula by which, for any F , turnout can be computed numerically.

As in both the Condorcet and FP models, this model predicts that the superior candidate

will be elected with probability approaching one as the electorate grows large. To maximize

this probability, however, the Condorcet model suggests that everyone should vote, while

the FP model suggests that uninformed citizens should abstain. In this model, a voluntary

election is ine¢ cient because, by allowing abstention, it fails to utilize nonvoters�independent

private information. Surprisingly, however, mandatory actually only pools less information,

not more, because it loses information conveyed by the decision to vote. A �rst-best election

mechanism would weight votes by voters�underlying con�dence levels.

In addition to behavior and welfare predictions, this generalized information structure

provides useful comparative static results that are unavailable in simpler models. If every-

one�s information improves, for example, improves welfare but has two opposing e¤ects on

turnout: it lowers abstention by lifting nonvoters above the participation threshold, but

also raises abstention by intensifying the swing voter�s curse; the net e¤ect depends on

which where within the information distribution improvements are concentrated. A mean-

preserving decrease in the variance of information lowers abstention in most cases, by shrink-

ing the di¤erence between informed and uninformed voters and thereby weakening the swing

voter�s curse. An increase in the cost of voting lowers turnout from its social optimum.

Like the original FP model, this model explains the empirical correlations enumerated

above between education and turnout, as well as the phenomenon of roll-o¤, and absten-

tion in other costless voting environments. It further explains what Aldrich (1993) calls

"the most important substantive problem in the turnout literature," which is a paradox ob-

served by Brody (1978), that turnout has persistently fallen over recent decades even while

education levels have risen, so that education and turnout are positively associated in any
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cross-sectional study but negatively correlated over time. In the context of this model, one

explanation for this paradox is that an individual�s tendency to vote is increasing in her

own education level but decreasing in the education levels of others. A second possibility is

that, as the number and scope of laws and policies has proliferated over time, the decisions

required of politicians (and therefore voters) have grown more complicated, in e¤ect shifting

the entire distribution of information quality downward, thereby swamping the in�uence

within the distribution caused by educational increases. Although information quality can-

not be readily observed, voting is sincere and turnout predictions for simple F are similar

to actual participation levels in the U.S. The opposite impact of one�s own and others�

information quality implies that the importance of education, age, and other proxies of in-

formation quality should be relative rather than absolute, a subtle prediction that I con�rm

empirically, using American National Election Studies (ANES) data on voter participation

in political party state primary elections.

The remainder of this paper is organized as follows. I present my model formally in

section 2.1, and in sections 2.2 through 2.6 I analyze equilibrium behavior in small and large

electorates, welfare, and comparative statics associated both with information and with

voting costs. I then present empirical evidence and applications in section 3, and conclude

in section 4. In most cases, proofs of analytical results are relogated to the Appendix A.

2 Analysis

2.1 The Model

In an election between two candidates or alternatives, A and B, there is an unknown

number N of potential voters, where N has Poisson distribution with mean �. For a par-

ticular realization of N , each citizen is endowed with a privately-known information quality

level Qi 2
�
1
2
; 1
�
(with realization qi), drawn independently from a common and commonly-

known distribution F , which has a di¤erentiable density f that is strictly positive between 1
2

and 1. Before the election, Nature designates one candidate Z 2 fA;Bg as superior to the
other. Citizens do not observe nature�s choice directly, but know that the candidates will be

chosen with equal probability. In addition, each agent receives a private signal Si 2 fa; bg
(with realization si) that corresponds to Z with probability Qi. That is,

Pr (Si = ajZ = A) = Pr (Si = bjZ = B) = Qi

Pr (Si = bjZ = A) = Pr (Si = ajZ = B) = 1�Qi

To a perfectly informed agent (i.e. Qi = 1), Si reveals Z perfectly, and to a perfectly

uninformed (i.e. Qi = 1
2
) agent, the signal provides no information whatsoever; for most
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agents, of course, Si is somewhat informative but not perfectly so. Agents� signals are

mutually independent (conditional on Z), and signal values are independent of information

levels.

An agent may choose to vote for either candidate or to abstain. Her mixed strategy

�i =
�
�Ai ; �

B
i ; �

0
i

�
speci�es the distribution of the outcome Xi 2 fA;B; 0g of her vote, where

a vote for candidate 0 represents abstention. Agents act simultaneously, and the election

winnerX 2 fA;Bg is determined by simple majority rule, �ipping a coin in the event of a tie.
Citizens each receive utility 1 if the superior candidate wins the election and 0 otherwise,

so that expected utility�and therefore social welfare�are given merely by the probability

Pr (X = Z).

I restrict attention to symmetric strategies and seek a symmetric Bayesian equilibrium.3

A symmetric strategy pro�le � must specify a mixture for every possible voter type (q; s) 2�
1
2
; 1
�
� fa; bg; an individual citizen of type (qi; si) reinterprets � as a list of her opponents�

strategies, and chooses �i =
�
�Ai ; �

B
i ; �

0
i

�
to maximize

EU (�i;�; qi; si) = Pr (X = Zj�; �i; qi; si) (1)

The strategy ��i that maximizes (1) is a best response to �, and �� is a symmetric

Bayesian equilibrium if �� (q; s) is a best response to �� for every (q; s).

Before proceeding to characterize best responses, it is worth noting that the assumption

here that voters share a common objective is less restrictive than it might seem. In the

real world, of course, political opinions vary dramatically, both between and within political

parties; here, too, posterior beliefs (given below by �i) regarding the probability of A being

superior to B vary continuously between 0 and 1. When individuals in the real world argue

over which of two policies to adopt, their disagreement frequently stems from their di¤ering

predictions of what e¤ects the competing policies will have; if the e¤ects of two policies could

somehow be indisputably predicted, the superiority of one of the two alternatives may well

become obvious, so that voters no longer disagree.

2.2 Best Responses

In state A, an agent with information quality q receives an a signal with probability q and

a b signal with probability 1� q; in state B, the probabilities are reversed. Given a pro�le

�, therefore, the probability pxz with which a randomly chosen agent votes for candidate

3This restriction is merely for simplicity of exposition: even allowing asymmetric strategies, Theorem 1

guarantees that the best response to any pro�le is symmetric. Any Bayesian equilibrium, therefore, must

be symmetric as well.
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x 2 fA;B; 0g in state z 2 fA;Bg is given by the following.

pxA =

Z 1

1=2

[q�x (q; a) + (1� q)�x (q; b)] dF (q) (2)

pxB =

Z 1

1=2

[q�x (q; b) + (1� q)�x (q; a)] dF (q) (3)

The expected number of votes for candidate x in state z is then given simply by �pxz.

By the decomposition property of Poisson random variables (see Myerson, 1998), the

numbers of A, B, and 0 votes in state z are independent Poisson random variables. For

any integer w, the probability �wz that the superior candidate wins the election by w votes

is simply the in�nite sum of probabilities that k + w agents vote for the superior candidate

and only k vote for his opponent. Since an agent�s vote is pivotal when it creates or breaks

a tie, of particular interest are the probability �0z of a tie, and the probabilities �1z and ��1z
with which the superior candidate wins and loses, respectively, by a single vote. In state A,

these probabilities are given by the following, and similar expressions apply to state B.

�0A =
1X
k=0

e�(�pAA) (�pAA)
k

k!

e�(�pBA) (�pBA)
k

k!
�

1X
k=0

 kA (4)

�1A =
1X
k=0

e�(�pAA) (�pAA)
k+1

(k + 1)!

e�(�pBA) (�pBA)
k

k!
�

1X
k=0

�

k + 1
pAA kA (5)

��1A =
1X
k=0

e�(�pAA) (�pAA)
k

k!

e�(�pBA) (�pBA)
k+1

(k + 1)!
�

1X
k=0

�

k + 1
pBA kA (6)

where the simplifying notation  kA is de�ned as follows:

 kA =
e�(�pAA) (�pAA)

k

k!

e�(�pBA) (�pBA)
k

k!
(7)

It is easy to see that �1A =
pAA
pBA

��1A, and also that with positive probability no agents vote,

resulting in a tie (i.e.  0A > 0, which implies �0A > 0).

By the environmental equivalence property of Poisson games (see Myerson, 1998) an

individual perceives from within the game that the number of her opponents, like the total

number of players from an outside perspective, has Poisson distribution with mean �, and

therefore that the numbers of her fellow citizens who vote for A, B, and 0, respectively, in

state z are independent Poisson random variables with means �pAz, �pBz, and �p0z. She

also reinterprets �wz as the probability that Z will win the election by w votes, should she

abstain.
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Using her private information, an agent can formulate posterior beliefs �i about the

distribution of Z:

�i � Pr (Z = AjQi; Si) =
(

Qi if Si = a

1�Qi if Si = b
(8)

Playing �i =
�
�Ai ; �

B
i ; �

0
i

�
in response to an opponent pro�le � will then yield the following

expected utility:

EU (�ij�; �i) (9)

= �i

" 1X
w=2

�wA + �1A

�
�Ai + �0i +

1

2
�Bi

�
+ �0A

�
�Ai +

1

2
�0i

�
+ ��1A

�
1

2
�Ai

�#

+(1� �i)

" 1X
w=2

�wB + �1B

�
�Bi + �0i +

1

2
�Ai

�
+ �0B

�
�Bi +

1

2
�0i

�
+ ��1B

�
1

2
�Bi

�#

The fraction 1
2
in equation (9) re�ects the probability, in the event of a tied election, that

a tie-breaking coin toss will favor the superior candidate Z. From (9) it can be seen that

a vote for the superior candidate is only pivotal (i.e. in�uences the election outcome) when

either the candidates tie but Z loses the coin toss, or Z loses the election by a single vote,

when he would have won the coin toss. Let Pz denote the probability, in state z, that one

of these occurs:

Pz =
1

2
�0z +

1

2
��1z (10)

Similarly, let ~Pz denote the probability with which a vote for the inferior candidate is pivotal:

~Pz =
1

2
�0z +

1

2
�1z (11)

Using (10) and (11), de�ne the ratios �A, �B, and �̂ as follows.

�A =
~PB

PA + ~PB
; �B =

~PA
~PA + PB

(12)

�̂ =
PB + ~PB

~PA + PB + PA + ~PB
(13)

As Theorem 1 now shows, these thresholds characterize the best response ��i to any strategy

pro�le. Mathematically, �̂ must lie between �A and 1��B: when �A � �̂ � 1��B, a best
response is to vote A if �i 2 (�̂; 1] and vote B if �i 2 [0; �̂); when 1 � �B � �̂ � �A, it is

to vote A if �i 2 (�A; 1], vote B if �i 2 [0; 1� �B), and abstain if �i 2 (1� �B; �A). Best

responses are in pure strategies except precisely at these cutpoints, which occur with zero

probability.
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Theorem 1 De�ne �A, �̂, and �B as in (12) and (13) for a symmetric pro�le �, and let
��i denote the best response to � for a citizen with posterior beliefs given by �i, as de�ned in

(8). Then the following must be true.

(i) If �A � �̂ � 1� �B then ��i =

(
(1; 0; 0) if �i > �̂

(0; 1; 0) if �i < �̂

)

(ii) If 1� �B � �̂ � �A then ��i =

8><>:
(1; 0; 0) if �i > �A

(0; 0; 1) if 1� �B < �i < �A

(0; 1; 0) if �i < 1� �B

9>=>;
Proof. From (9) it is straightforward to verify the following.

EU ((1; 0; 0))� EU ((0; 0; 1)) = �iPA � (1� �i) ~PB (14)

EU ((0; 1; 0))� EU ((0; 0; 1)) = ��i ~PA + (1� �i)PB (15)

EU ((1; 0; 0))� EU ((0; 1; 0)) = �i

�
PA + ~PA

�
� (1� �i)

�
~PB + PB

�
(16)

(14) is positive if and only if �iPA > (1� �i) ~PB or, equivalently, �i >
~PB

PA+ ~PB
= �A.

Similarly, (15) and (16) are positive if and only if �i < 1 � �B and �i > �̂, respectively.

Part (i) then follows since �i > �̂ � �A implies that both (14) and (16) are positive and

�i < �̂ � 1 � �B implies that (15) is positive and (16) is negative. Part (ii) follows since

�i > �A � �̂ implies that both (15) and (16) are positive, 1 � �B < �i < �A implies that

both (15) and (16) are negative, and �i < 1� �B � �̂ implies that (15) is positive and (16)

is negative.

One interpretation of the best response thresholds �A, �̂, and �B is as conditional prob-

abilities. For example, �A denotes the probability that an A vote is pivotal in the wrong

direction (i.e. in state B) conditional on its being pivotal at all. If this probability is high,

it discourages voters from casting A votes; thus the corresponding A threshold is high, and

only those voters with the strongest posterior beliefs vote for candidate A.

2.3 Equilibrium

An equilibrium strategy pro�le must be its own best response. As Theorem 2 now states,

this is only possible when �A > 1
2
and �B > 1

2
. By condition (ii) of Theorem 1, this implies

that citizens vote informatively (i.e. vote A or B in response to a or b signals, respectively)

if su¢ ciently well-informed (i.e. if Qi � �A or Qi � �B, respectively) and otherwise abstain.

In this model, informative and sincere voting (i.e. voting as if directly choosing the election

outcome) are equivalent.

Theorem 2 Let �� be a symmetric Bayesian equilibrium and let �A and �B be the posterior
thresholds de�ned in (12). Then �A � 1

2
and �B � 1

2
.
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Proof. See Appendix A.
Given this characterization of equilibrium voting, it is useful to de�ne an informative-

voting participation cutpoint (IPC) strategy �TA;TB for arbitrary participation thresholds

TA; TB 2
�
1
2
; 1
�
, as follows:

�TA;TB (q; s) =

8><>:
(1; 0; 0) if s = a and q � TA

(0; 1; 0) if s = b and q � TB

(0; 0; 1) otherwise

(17)

Taken together, Theorems 1 and 2 imply that an equilibrium pro�le �� must be IPC, with

participation thresholds TA = �A and TB = �B. Theorem 4 will further show �� to be

signal-symmetric (SIPC), so that the thresholds coincide (i.e. TA = TB = T ).

Under an SIPC strategy, citizens vote informatively if Qi � T , and otherwise abstain.

Therefore, the vote probabilities from (2) and (3) no longer depend on the state of the world,

and simplify to p+ and p�, as de�ned here:

p+ �
Z 1

T

qdF (q) = pAA = pBB (18)

p� �
Z 1

T

(1� q) dF (q) = pAB = pBA (19)

Similarly, win and pivot probabilities can be written simply as �w, P , and ~P . Accordingly,

best response cutpoints coincide (i.e. �A = �B) and the best response to �T;T is itself SIPC,

with a participation threshold TBR that depends on the participation threshold T , as follows:

TBR (T ) �
~P

P + ~P
(20)

In general, TBR (T ) may be either greater or less than T ; for a �xed point T � = TBR (T
�),

the corresponding SIPC pro�le �T �;T � must be its own best response, and therefore an SIPC

Bayesian equilibrium. Theorem 3 now states that such a �xed point, and therefore an SIPC

Bayesian equilibrium, must always exist. In such an equilibrium 1
2
< T � < 1, meaning that

both voting and abstention must both be positive.

Theorem 3 There exists a threshold T � strictly between 1
2
and 1 such that the SIPC pro�le

�T �;T � is an SIPC Bayesian equilibrium.

Proof. TBR :
�
1
2
; 1
�
!
�
1
2
; 1
�
is continuous and

�
1
2
; 1
�
is compact, so Brouwer�s �xed point

theorem gives existence. Following � 1
2
; 1
2
, all citizens vote, in which case p+ > p�, �1 > ��1,

and therefore ~P > P . In other words, a mistake is strictly more likely to be pivotal than

a correct vote. This implies that an agent of type Qi = 1
2
should abstain (i.e. T

�
1
2

�
> 1

2
).
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Similarly, by �1;1 no one votes; in that case, any vote would be pivotal (i.e. P = ~P = 1
2
), so

anyone should vote in response (i.e. TBR (1) = 1
2
).

Having shown that an SIPC equilibrium exists, Theorem 4 next shows that, in fact, all

equilibria are SIPC. In principle there could be multiple SIPC equilibria, though the proof

of Theorem 4 suggests that this is impossible for su¢ ciently smooth F . Conditions for

uniqueness in large electorates are made more precise by Theorem 7 in section 2.4.

Theorem 4 If �� is a Bayesian equilibrium then it is SIPC.

Proof. See Appendix A.

2.4 Large Elections

In this section I analyze asymptotic equilibrium behavior as a population grows large. In

doing so, I denote the implicit dependence of the best response and equilibrium participation

thresholds T �BR and T
�
� on the population size parameter � by a superscript and subscript,

respectively. As the number of voters grows large, the superior candidate wins the election

with increasing probability. This strengthens the swing voter�s curse so that the marginal

voter, who had previously been indi¤erent between voting and abstaining, now strictly prefers

to abstain, leaving the election decision in the hands of those with superior information.

Accordingly, the best response threshold rises and the participation rate declines. More

formally, Theorem 5 states that T �BR (T ) is increasing in � for any cutpoint T < 1.4 The

highest and lowest �xed points of T �BR (or the only �xed point, if T
�
� is unique) must therefore

rise with �.

Theorem 5 For any T 2
�
1
2
; 1
�
, the best response threshold T �BR (T ) is increasing in �.

Proof. See Appendix A.
In the FP model, uninformed voters abstain with increasing probability until, in the

limit, they all abstain. Turnout is nevertheless positive, however, because informed citizens

always vote. Here, voters are in a way both informed and uninformed. When � is small, a

citizen might reasonably expect to be the best informed voter in the electorate. As �!1,
however, the expected number of better-informed citizens grows arbitrarily large. This may

seem to suggest that even extremely well-informed citizens will eventually defer to those

with better information (or, equivalently, that T �� ! 1), so that turnout approaches 0%. In

evaluating this possibility, Lemma 1 derives the function L (T ) to which T �BR converges:

4If T = 1, no one votes regardless of �.
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L (T ) =

p
M (T )p

M (T ) +
p
1�M (T )

(21)

where the mean quality function M (T ) � E (QjQ � T ) = 1
1�F (T )

R 1
T
qdF (q) = p+

p++p�
gives

the average information quality of citizens who vote. Equivalently, M is the expected vote

share of the superior candidate.

Lemma 1 For any T 2
�
1
2
; 1
�
, lim�!1 T

�
BR = L (T ), as de�ned as in (21).

Proof. See Appendix A.
Since T �BR (T ) ! L (T ), any limit point of a sequence of �xed points of T �BR must be a

point of L. Theorem 6 now shows that such a �xed point must be strictly less than one.

In other words, turnout remains bounded strictly above 0%, even as an electorate grows

arbitrarily large. The fallacy in the above intuition is that, while a citizen indeed expects

both the quantity and the quality of opponents�votes to be high, she bases her behavior not

on her expectations, but rather on her conditional expectations: when her vote is pivotal,

her opponents�votes must be of far lower quantity and quality than she originally expected;

the di¤erence in this case between a one-vote win and a one-vote continues to grow, but

decreasingly so. By voting rather than abstaining in a �nite election, the marginal voter

drags down the average quality of votes cast. Her impact on the average quality is reduced,

however, as the number of voters grows; in the limit, she contributes to the quantity of votes

without reducing the quality at all.

Theorem 6 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence �k of population parameters such that �k ! 1 as k ! 1, and let T �1 be a limit

point of
n
T ��k

o1
k=1
. Then T �1 < 1.

Proof. See Appendix A.
In general, it is possible for L to have multiple �xed points between 1

2
and 1. If the

density f is log-concave (i.e. log (f) is concave or, equivalently, f
0

f
is decreasing), however, as

it is for many of the most common distributions,5 then Theorem 7 rules out this possibility.6

Uniqueness in the limit, of course, implies a unique participation cutpoint T �� for any �

su¢ ciently large.
5Bagnoli and Bergstrom (2005) show the following distributions to have log-concave densities: uniform,

normal, logistic, extreme value, chi-squared, chi, exponential, Laplace, Weibull (for some parameter values),

power function, gamma, and beta. Also, any truncation, linear transformation, or mirror-image of a log-

concave density is log-concave.
6Log-concavity is a stronger condition than necessary. T �1 may easily be unique, for example, if F is

bimodal, though f is not log-concave in that case. As the proof of Theorem 7 makes clear, the important

things is just that f not have large "spikes" of probability.
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Figure 1: Participation thresholds and turnout rates for simple information distributions

Theorem 7 If f is log-concave then L has a unique �xed point T �1 strictly between 1
2
and 1.

Proof. See Appendix A.
With a unique equilibrium threshold T �1, the participation rate 1 � F (T �1) is likewise

unique. Since these values depend exclusively on the underlying information distribution,

both may be computed numerically for any closed-form F , using the formula from (21).

To illustrate, Figure 1 displays the equilibrium participation thresholds and turnout rates

associated with some simple distributions. If information quality is distributed uniformly

between 1
2
and 1, for example, the limiting cutpoint is T �1 = 0:71, and the best-informed

59% of citizens vote.

2.5 Welfare and Election Design

Since voters share common values, social welfare is equivalent to individual utility, and

can therefore be measured by the probability Pr (X = Z) of electing the superior candidate.

As �!1, the law of large numbers implies that candidate Z�s actual vote share approaches
the expected vote share, M (T �1). As in the original Condorcet jury theorem, therefore,

Pr (X = Z)! 1. On the other hand, one message of the original Condorcet model is that

election decisions are best made by utilizing the independent information of as many voters as

possible, even if that information is of low quality. While it is di¢ cult to attribute precise

meaning to informal arguments, this logic seems to underlie the commonly held concern

that low and declining voter turnout is a serious threat to democracy. To prevent voter

abstention, a number of democracies (e.g. Australia and several Latin American countries)

have made voting compulsory; Lijphart (1997), among others, recommends that the United

States do the same.

With common values, however, the socially optimal level of turnout must be achieved

in equilibrium; since T � > 1
2
in the unique equilibrium, it must be that mandatory voting

actually pools less, not more information, than voluntary voting. One intuition for this

rather surprising result is that a majority election must weights votes equally. A compulsory

election collects a larger number of signals, but collects no information regarding the quality

13



of those signals; in a voluntary election, voters�signals (i.e. signals for which Qi � T �) are

given more weight than nonvoters�signals (i.e. signals for which Qi < T �).7 The optimal

election mechanism would directly ask voters to report both Qi and Si,8 and would weight

individual votes by their underlying quality in a maximum likelihood approach, so that

candidate A wins if and only if the probability of observing fSigNi=1 is greater when A is

superior to B than when B is superior to A, so that the following inequality holds.9Y
i:si=A

qi
Y

j:sj=B

(1� qj) >
Y
i:si=A

(1� qi)
Y

j:sj=B

qj

According to Lijphart (1997), John Stuart Mill proposed in 1861 that educated voters be

allowed to vote two or more times in an election, and such a system was actually used in

Belgium from 1893 to 1919; clearly, the intent of such a policy is similar to the one I have

described. A similar method would be to allow voters to rate candidates on a point scale

(say 1 to 10), as is common in judging arts and athletic competitions. By awarding two

candidates the same number of points, a judge e¤ectively demonstrates that Qi = 1
2
, while

awarding 10 to one and 1 to the other demonstrates Qi close to one.

2.6 Comparative Statics

Information Quality

The distribution F of information quality that uniquely determines equilibrium voting

behavior is itself determined by factors that may vary both regionally and over time, such as

voters�education or experience levels, and access to information technology. In this section,

therefore, I analyze how turnout responds to changes in F , adding a superscript to denote

the reliance on F of the mean quality function MF , the limiting best response function LF ,

and the limiting participation threshold T F1. Participation is given by the survival function

7Analyzing a model similar to this, Krishna and Morgan (2008) likewise conclude that mandatory voting

pools less information than voluntary voting, but for an entirely di¤erent reason. In their model, signal

quality depends on the state (i.e. a signals are more reliable than b signals). To compensate for this,

citizens strategically abstain, if allowed; otherwise, they vote uninformatively, and information is aggregated

less e¤ectively.
8Since values are common, voters have an incentive to tell the truth: if Si = A and Qi = q then claiming

Qi > q just increases the probability of wrongly electing A, and claiming Qi < q just increases the chance of

wrongly electing B.
9See Shapley and Grofman (1984). This rule is equivalent to a standard voluntary election if some voters

are perfectly uninformed (i.e. Qi = 1
2 ) and others have identical information quality (i.e. Qi = q >

1
2 ), and

to a mandatory election if everyone belongs to the latter group. Note that this decision rule is distinct from

the Maximum Likelihood rule developed by Kemeny (1959) and discussed by Young (1995), which seeks

instead to identify an "average" preference ranking among voters, in an election with multiple candidates.
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�F � 1�F , evaluated at T F1. In what follows, I compare T F1 and �F
�
T F1
�
with corresponding

values TG1 and �G
�
TG1
�
associated with an alternative distribution G. In preparation for

this, Lemma 2 presents a useful condition that is equivalent to TG1 > T F1.

Lemma 2 Let F and G be continuous, log-concave distributions with strictly positive densi-
ties, and let T F1 and T

G
1 and M

F and MG denote the unique limiting participation thresholds

and mean quality functions for F and G, respectively. Then TG1 > T F1 if and only if

MG (T ) > MF (T ) or, equivalently,

�F (T )
�G (T )

>

R 1
T
�F (q) dqR 1

T
�G (q) dq

(22)

for T 2
�
T F1; T

G
1
	
.

To begin, consider a general improvement in information quality. G is said to �rst-order

stochastically dominate F (written G �1 F ) if, for any quality level q, the fraction of citizens
with information quality better than q is higher under G than under F (i.e. �G (q) � �F (q)

for all q). In general, moving from F to G has two opposite e¤ects: turnout increases

as nonvoters are lifted above the participation threshold, but decreases as improved voter

information strengthens the swing voter�s curse. Which of these two e¤ects dominates

depends primarily on whose information quality improves most, as Theorem 8 emphasizes:

(1) below T �1, small information improvements have no e¤ect because citizens do not vote;

(2) above T �1, information improvements lower turnout by strengthening the swing voter�s

curse; (3) moderate improvements in nonvoters�information increase turnout, both directly

(by pushing nonvoters above T �1) and indirectly (by lowering the average vote quality, thereby

weakening the swing voter�s curse and lowering T �1).
10 These e¤ects are illustrated with

numerical examples in Figure 2, starting from a uniform distribution. Regardless of its

e¤ect on turnout, the direct welfare e¤ect of improving information quality is to improve

election accuracy, and any strategic response to improved information can only increase

welfare further.

Theorem 8 Let F and G be continuous, log-concave distributions with strictly positive den-
sities, and suppose G �1 F . Then the following must be true:
1. If G (q) = F (q) for all q � T F1 then TG1 = T F1 and �G

�
TG1
�
= �F

�
T F1
�
.

2. If G (q) = F (q) for all q � T F1 then TG1 � T F1 and �G
�
TG1
�
� �F

�
T F1
�
.

3. If G (q) = F (q) for all q � MF
�
T F1
�
and �G

�
T F1
�
� �F

�
T F1
�
then TG1 � T F1 and

�G
�
TG1
�
� �F

�
T F1
�
.
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Figure 2: When information improves for di¤erent segments of the electorate, turnout may

remain the same, decrease, or increase
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Figure 3: A mean-preserving decrease/increase in the variance of information quality

raises/lowers turnout.

Proof. See Appendix A.
Of course, it may be that neither of two distributions �rst-order stochastically dominates

the other. A related but weaker condition is that
R T
1=2
�G (q) dq �

R T
1=2
�F (q) dq for every T , or

that G second-order stochastically dominates F (written G �2 F ). For distributions with a
common mean, G �2 F implies that G has a smaller variance than F . In this case, provided
that T F1 lies below the common mean (as numerical examples suggest is typical), Theorem

9 states that turnout is higher under G than under F . Intuitively, this is because the swing

voter�s curse is weak when the quality di¤erence between informed and uninformed votes

is small; in the extreme case, voters all have identical information quality and turnout is

100%, as in the Condorcet model. The welfare di¤erence between F and G is ambiguous;

though the number of votes is higher in G, the average quality of votes is higher in F . The

association between variance and turnout is illustrated for a uniform distribution in Figure

3.

Theorem 9 Let F and G be continuous, log-concave distributions with strictly positive den-
sities and a common mean m, such that G �2 F and T F1 � m. Then TG1 � T F1 and
�G
�
TG1
�
� �F

�
T F1
�
.

Proof. See Appendix A.
10Symmetrically, information reductions below T have no e¤ect, small reductions above T increase turnout,

and moderate reductions above T reduce turnout both directly and indirectly.
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Voting Costs and Bene�ts

While the swing voter�s curse is particularly notable for its explanation of abstention

in costless environments, the cost of voting in the majority of real-world election settings

is clearly positive.11 If voters pay a cost C > 0 and obtain a bene�t B for improving

the election outcome, the expected bene�t of voting will exceed the cost if and only if the

following (equivalent) inequalities hold:

QiPB + (1�Qi) ~P (�B) > C (23)h
Qi

�
P + ~P

�
� ~P

i
B > C

Qi >
~P + C

B

P + ~P
(24)

With the addition of this C
B
term, this new participation threshold is higher�and turnout is

lower�than before. Since the former level of turnout maximizes social welfare (as discussed

in section 2.5), the new level is ine¢ ciently low. The extent of this distortion depends on

the size of the bene�t term; fortunately, in an "important" election (i.e. when B is large)

the distortion term is small.12

The prediction that voting costs discourage turnout raises the question of why citizens

nevertheless participate in large elections? As Downs (1957) observes, pivot probabilities

shrink asymptotically to zero as the number of voters grows large, so the inequality in (23)

eventually fails as � ! 1, and voting appears irrational. In response to this "turnout

paradox", Riker and Ordeshook (1968) hypothesize that voters are motivated by a sense of

civic duty (or respond to social pressure), incurring a private cost for the bene�t of society.13

This explanation has limited justi�cation when preferences are not common (since, as Borgers

2004 shows, turnout is too high in that case, rather than too low14), but in this common-

values setting a sense of duty is completely natural.

To formalize the notion of civic duty, Riker and Ordeshook (1968) add a bene�t D to

the left hand side of (23), independent of the election outcome. Accordingly, even as pivot

11Knack (1994), for instance, con�rms the conventional wisdom that inclement weather slightly lowers

turnout.
12Interestingly, when voting is costless the importance of an election does not in�uence voters�participation

decisions: a high B renders a correct vote more valuable, but also makes an incorrect vote more painful.

Thus, important races on a ballot may attract voters to polls, but will not in�uence voters�roll-o¤ decisions

once they arrive (and voting costs are sunk).
13Dowding (2005) and Geys (2006) review numerous attempts to rationalize voting behavior, but none

has endured longer than Riker and Ordeshook�s (1968) duty hypothesis.
14If turnout is too high, civic duty should lead citizens to abstain, rather than to vote, and society should

recognize nonvoters, rather than voters, as being good citizens.
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probabilities tend to zero, (23) remains satis�ed as long as D > C. With this addition, (24)

becomes the following:

Qi >
~P + C�D

B

P + ~P
(25)

From (25) it is clear that D reduces the turnout distortion generated by voting costs, thereby

mitigating the externality. If D > C, however, then the externality actually reverses: since

welfare was uniquely maximized for the original threshold ~P
P+ ~P

, any threshold higher or

lower than that reduces welfare. Thus, while the notion of civic duty is compelling in this

common values setting, the D term formulation used by Riker and Ordeshook (1968) is

problematic: D > C actually reduces welfare, while D < C is too small to motivate turnout

when pivot probabilities tend to zero. One alternative formulation for civic duty that can

only be welfare-improving is an in�ated B term, though only an in�nite B would completely

eliminate the turnout distortion in (24).15

3 Evidence and Applications

3.1 Sincere Voting, Moderate Turnout, and Roll-o¤

Matsusaka (1993) questions whether voters are su¢ ciently sophisticated to be able to

calculate and respond to miniscule pivot probabilities. Recreating the incentives of the

original FP model in an experimental setting, Battaglini, Morton, and Palfrey (2006) con�rm

that players can and indeed do respond to the swing voter�s curse, but leave open the question

of whether citizens vote strategically in the real world. One prediction of many game-

theoretic voting models, beginning with Austen-Smith and Banks (1996), is that equilibrium

voting is insincere. Using panel data on voting behavior, however, Degan and Merlo (2007b)

fail to reject the hypothesis that voters merely vote sincerely. Sincere voting, however, is

perfectly consistent with this model: strategic considerations guide voters� participation

decisions, but citizens vote sincerely if they vote at all (Theorems 1 and 2).

It is di¢ cult to test this model�s validity formally, since information quality cannot be

directly observed. Informally, however, Figure 1 illustrates how predicted turnout rates can

be computed for simple distributions, using equation (21). Roughly speaking, turnout rates

predicted for these distributions are similar to actual participation rates in U.S. state and

national elections. No matter the distribution, the result from Theorem 6 that 1
2
< T �1 < 1

guarantees that both turnout and abstention will be positive, even in a large electorate.

15Edlin, Gelman, and Kaplan (2005) hypothesize that voters are motivated by altruism. If voters receive

a bene�t � for each fellow-citizen that a policy bene�ts in addition to the private bene�t B, then the total

bene�t B + �� indeed approaches in�nity as the population grows large.
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Avoiding some of the criticisms of strategic models, Matsusaka (1995) explains the con-

nection between education and voting in a model that is similar to this but decision-theoretic:

the expected bene�t of voting is increasing in Qi, so uninformed citizens are more easily dis-

suaded by voting costs. As FP rightly point out, however, this fails to explain the ubiquitous

phenomenon of roll-o¤ voting, since, for a citizen inside the voting booth, voting costs are

sunk. Other examples of costless voting environments include committee voting, which

requires only the raise of a hand, and mail-in ballots (available in most states and used

exclusively in the state of Oregon), which allow citizens to vote conveniently from home.

These examples of abstention even when voting is costless can be accommodated in this

model, since for Qi su¢ ciently low, the expected bene�t of voting is actually negative.

3.2 Turnout and Education

Another evidence of the validity of this model is the strong empirical connection be-

tween education and voting, as mentioned in the Introduction. To reiterate, Wol�nger and

Rosenstone (1980) �nd education to be the best available predictor of voting. The con-

nection between education and information quality is intuitive; as mentioned earlier, several

authors (e.g. Bartels, 1996; Degan and Merlo, 2007a; and Larcinese, 2006) also �nd direct

empirical connections between information quality and voting, and Lassen (2005) �nds that,

controlling appropriately for information, education does not otherwise in�uence turnout.

Even to the extent that alternative theories can and do explain the positive association

between education and voting, they inevitably fail to explain the paradoxical observation by

Brody (1978) that voter participation has persistently fallen over recent decades even while

education levels have risen, so that education and turnout are positively correlated in any

given election, but negatively correlated over time. Surveying the literature, Aldrich (1993)

discusses problems with existing explanations of this phenomenon, ultimately �nding it to

be "the most important substantive problem in the turnout literature."

In contrast with other models, this model provides at least two plausible explanations for

the Brody (1978) paradox. First, note that while an increase in a citizen�s own information

quality makes her more likely to vote, an increase in her peers�information makes a citizen

less likely to vote, by strengthening the swing voter�s curse.16 To illustrate this, compare

the �rst two panels of Figure 1, and note that a citizen with information quality Qi = 0:7

will vote in the second electorate, but will abstain from voting in the �rst, because her peers�

information quality is higher. Thus, as education levels increase generally, it is entirely

possible that citizens who formerly voted should now abstain.

16FP (1999) demonstrate this possibility for certain parameter values, but the larger class of information

distributions here facilitates a much more detailed analysis.
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A second possibility is that, even though education levels have risen for certain demo-

graphics, information quality in general has declined, because of other factors. For example,

as the number and scope of laws and policies have proliferated over time, the decisions

required of politicians (and therefore voters) may have grown more complicated, in e¤ect

shifting the entire distribution of information quality downward. A citizen who, decades

ago, might have felt con�dent in her opinions on most political issues, may �nd now that

many issues extend beyond her training and expertise.

Admittedly, these two explanations are somewhat contradictory: the �rst asserts that im-

proved information lowers turnout by strengthening the swing voter�s curse, and the second

that reduced information quality lowers turnout by dragging voters below the participation

threshold; an alternative possibility is that improved information raises turnout by lift-

ing nonvoters above the participation threshold, or that reduced information quality raises

turnout by weakening the swing voter�s curse. It is conceivable that information quality has

improved for certain segments of society but decreased overall, but whether this will raise

or lower turnout depends on the distribution, as described by Theorem 8. Therefore, which

of the two explanations is at work�or which is dominant, if both are at work�are questions

better left for future research; the primary purpose of this discussion is to illustrate how eas-

ily this model accommodates an empirical phenomenon which has previously been di¢ cult

to explain.

3.3 Absolute vs. Relative Information

The result that an individual�s own information quality makes her more likely to vote

while others�information quality makes her less likely to vote implies that the importance

of information quality is somewhat relative, not absolute. Put di¤erently, a citizen is most

likely to vote when her own information quality is high, but when the information quality

of others in her electorate is low. This provides a subtle di¤erence between strategic and

decision-theoretic motivations for abstention, which can be tested empirically, using estab-

lished information proxies such as education and age. In this section I present statistical

evidence from the American National Election Studies (ANES). During presidential elec-

tion years between 1972 and 1992, the ANES asked respondents whether or not they had

participated in their state�s political primary elections, the previous spring. Though pref-

erences within a party may be quite heterogeneous, the common values assumption is likely

a good approximation here, since the over-arching goal within a political party is to select

candidates who will be most likely to triumph in the upcoming general election.

Table 1 displays results from a probit model, where the dependent variable is equal to

one if an individual voted in her party�s state primary election, and zero otherwise. The
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1a 1b 2a 2b 3a 3b
Education (level) 0.0252*** ­0.0001 0.0283*** 0.0048 0.0340*** 0.0101

(5.87) (­0.01) (6.35) (0.36) (6.03) (0.71)
Education (%) ­ 0.0017** ­ 0.0015* ­ 0.0015*

­ (2.45) ­ (1.89) ­ (1.80)
Age (level) 0.0057*** 0.0018 0.0016*** 0.0020 0.0073*** 0.002

(15.07) (1.47) (15.48) (1.27) (14.86) (1.29)
Age (%) ­ 0.0026*** ­ 0.0026*** ­ 0.0034***

­ (3.45) ­ (2.76) ­ (3.58)
Income (level) 0.0384*** 0.0082 0.0396 0.0024 0.0431*** ­0.0225

(6.16) (0.43) (6.13) (0.10) (5.23) (­0.89)
Income (%) ­ 0.0010 ­ 0.0012 ­ 0.0023**

­ (1.49) ­ (1.50) ­ (2.52)
Information (level) 0.0707*** 0.0207 0.0750*** 0.0322 0.0681*** 0.0065

(10.16) (1.1) (10.36) (1.35) (7.43) (0.25)
Information (%) ­ 0.0019*** ­ 0.0015* ­ 0.0023**

­ (2.87) ­ (1.85) ­ (2.45)
Year dummies yes yes ­ ­ yes yes

State­Party dummies yes yes ­ ­ yes yes
Year­State­Party dummies ­ ­ yes yes ­ ­

# of Observations 6614 6614 6507 6507 4125 4125
Years 1972­92 1972­92 1972­92 1972­92 1980­92 1980­92

Pseudo R­squared 0.123 0.132 0.151 0.153 0.142 0.148

Notes : Table entries are marginal effects, with z­statistics in parenthesis.  All specifications include controls (not shown) for gender
and race.  Data source is American National Election Studies (1972, 1976, 1980, 1988, 1992).  Percentile variables are computed
within year­state­party groups.  *, **, ***, indicate significance at the 10%, 5%, and 1% levels, respectively.

Probit:  1 = voted in primary election
Table 1­­­­­Information and Voting in Primary Elections

independent variables are standard proxies of information quality: education (in seven cate-

gories), age (in years), income17 (in �ve categories), and a subjective measure of information

quality (in �ve categories) made by the interviewer at the time of an interview.18 For each

absolute information proxy, I also compare an individual with the others from the same

state, year, and party,19 to generate a percentile variable that indicates an individual�s rel-

ative position within the distribution of her peers. Her education percentile, for example,

indicates the fraction of her peers with education levels lower than or equal to than her

own. Non-strategic models of abstention, such as Matsusaka (1995), may predict a positive

relationship between absolute information and voting, but provide no reason to expect rela-

tive information measures to have any coe¢ cient other than zero. This model, in contrast,

predicts that relative information quality should have a positive relationship with voting,

while making no predictions regarding the importance of absolute information.20

17Income can approximate information quality if both are in�uenced by, say, analytical thinking skills.
18Zaller (1985) �nds interviewers� impressions to be the most useful information variable for explaining

turnout in the ANES. Interviews were conducted both before and after the November general elections; I

use the pre-election information measure, but the post-election measure yields similar results.
19State-year-party groups with fewer than 15 observations are discarded. Other size cuto¤s yield similar

results.
20As discussed in section 2.6, comparative statics results regarding the absolute level of information quality

are ambiguous.
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Speci�cations I and II include controls for gender and race, as well as �xed year e¤ects

and �xed e¤ects for each of the sixty-two state-party pairs. Speci�cation I includes only the

absolute information proxies, each of which exhibits a strong and positive relationship with

turnout. The cell entries in Table 1 are marginal e¤ects and z-statistics; other things equal,

increasing one education, income, or information quality level, respectively, makes a citizen

2:5%, 3:8%, and 7:1%more likely to vote. To this, speci�cation II adds the percentile proxies

of relative information quality. With this addition, the marginal e¤ects of absolute variables

are each reduced by over two thirds. None remains signi�cant at conventional levels, and

the point estimate of the marginal e¤ect of education actually becomes slightly negative.

The relative information proxies, on the other hand, are all positive and strongly signi�cant

(with the exception of income, which is statistically insigni�cant, but more signi�cant than

the absolute measure of income, with a z-statistic of 1:49 versus 0:43).

The magnitudes of the marginal e¤ects of absolute and relative information proxies cannot

be compared directly, since the former is the marginal e¤ect of increasing one category of

education, income, or information quality, or one year of age; while the latter is the marginal

e¤ect of rising by one percentage point within a distribution. However, the two can be

compared by considering a transition from the bottom of the distribution to the top. For

example, other things equal, rising from the bottom to the top of the education distribution

makes a citizen 100 � 0:17% = 17% more likely to vote. Rising from the bottom to the

top of the age, income, and information distributions makes her 26%, 10%, and 19% more

likely to vote, respectively. In contrast, moving from age 17 to age 99 makes a citizen only

82 � 0:18% = 14:76% more likely to vote, and moving from income or information category

1 to category 5 makes her 4 � 0:82% = 3:28% and 4 � 2:07% = 8:28% more likely to vote,

respectively. The absolute level of education has no (or even negative) impact on turnout,

and the 17% increase in voting propensity because of moving from the bottom to the top of

the education distribution is even larger than the 6 � 2:52% = 15:12% increase associated

with moving from education category 1 to category 7, in speci�cation I.

The remaining columns of Table 1 are similar to columns I and II. Instead of �xed year

and separate state-party e¤ects, speci�cations III and IV include �xed e¤ects for each of

the 189 state-year-party groups with at least 15 observations. Speci�cations V and VI use

the original �xed e¤ects, but only use the most recent data, beginning in 1980. In both

cases, the qualitative results of speci�cations I and II are repeated: excluding the percentile

variables, regressions III and V exhibit large and signi�cant marginal absolute e¤ects. When

percentiles are included in IV and VI, these absolute variables lose signi�cance and the

marginal relative e¤ects are instead positive and signi�cant. The consistent importance

of relative information quality, together with the consistent loss of signi�cance of absolute
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information quality, suggest that voters indeed respond (either deliberately or instinctively)

to the information quality of those around them, by choosing not to vote.

4 Conclusion

In a common values election setting, the in�uential models of Condorcet (1785) and

Feddersen and Pesendorfer (1996) predict opposite reactions to imperfect information: in

the FP model, the swing voter�s curse leads poorly informed citizens to abstain from voting;

in the Condorcet model everyone votes, so that the election decision will be based on as

much (albeit low-quality) information as possible. By allowing an arbitrary distribution of

information quality, this model becomes a natural but insightful blend of its predecessors:

below the unique equilibrium participation threshold T �, citizens opt not to express their

own opinions, deferring instead to those with better information; above T �, citizens vote

even when the number of better-informed peers grows in�nitely large.

While turnout decisions are made strategically, voting is sincere (and in pure strategies).

Though information quality cannot be readily observed, simple distributions yield turnout

predictions similar to actual participation levels in U.S. state and national elections, and vot-

ing and abstention both remain positive, even in large electorates. Strategic considerations

can explain abstention in costless voting environments, such as roll-o¤, and comparative

statics can explain the empirical association between voting and education or information,

as well as the simultaneous rise and fall of education and turnout. Also, the empirical im-

portance of education, age, and other reasonable proxies of information quality in explaining

participation in party primary elections appears to be relative, rather than absolute.

One prediction of this model that fails empirically is that elections should tend to result

in landslide victories. The expected margin of victory (as a fraction of the total number of

voters) is MV = 2
�
E (QjQ � T �)� 1

2

�
,21 which is extremely high for many distributions:

for the uniform distribution illustrated in Figure 1, for example, Z gets over 85% of the

votes! Related to this is the unrealistic assumption that citizens cannot communicate their

information to each other prior to an election. As Coughlan (2000) points out in response

to FP (1998), if citizens were allowed to communicate freely, asymmetric information would

be eliminated and voting would be unanimous. Without completely abandoning the basic

framework of this model, two possible approaches for avoiding these unrealistic results are to

relax the assumptions of common values or common prior beliefs; I discuss these possibilities

in McMurray (2008).

21This expression is given by the di¤erence between the expected numbers E (Qiji votes) and

E (1�Qiji votes) = 1� E (Qiji votes) of votes for and against Z.

23



Like both the FP and Condorcet models, this model predicts that, as the population grows

large, the best candidate will be elected with probability approaching one. To maximize

social welfare, however, the FP model implies that poorly informed citizens should abstain,

while the Condorcet model implies they should vote. Here, because poorly informed citizens

are not perfectly uninformed, abstention is ine¢ cient. Compulsory voting laws, however,

only exacerbate the problem, losing information conveyed by the turnout decision itself; a

better approach would be to weight voters�opinions with their accuracy levels. If voting is

costly, it generates a positive externality. A sense of civic duty could mitigate this externality,

but is an unsatisfactory resolution for the "paradox of turnout" in large elections, as a large

sense of duty actually reverses the voting externality.

While voter abstention has traditionally been viewed as a serious threat to democracy,

this model demonstrates that turnout can also be too high. Rather than targeting turnout

per se, therefore, government policy and social activism should focus on eliminating barriers

to voting (e.g. simplify registration requirements, provide rides to polls, institute internet

voting, etc.). Even if barriers were completely eliminated, 100% turnout is unlikely, but

the resulting equilibrium level of turnout would be socially optimal. Recent declines in

voter turnout may or may not be cause for alarm; as mentioned above, two somewhat

opposite possibilities are that falling turnout re�ects either a strategic response to educational

improvements, or a general rise in the complexity of government. Improving education

and voter information and simplifying, limiting, or otherwise reducing the complexity of

government will have ambiguous e¤ects on turnout, but can only improve social welfare.
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Appendices

A Proofs

Theorem 2 Let �� be a symmetric Bayesian equilibrium and let �A and �B be the posterior
thresholds de�ned in (12). Then �A > 1

2
and �B > 1

2
.

Proof. I �rst show that �A � 1 � �B by supposing to the contrary that �A < 1 � �B.

According to condition (i) of Theorem 1, then, the best response �BR to �� consists of

voting for A whenever �i > �̂ and voting B otherwise, never abstaining. I assume here that

�̂ � 1
2
; otherwise a symmetric argument applies. When �̂ � 1

2
, all agents of quality q < �̂

vote B; above �̂, agents vote informatively (i.e. �ABR (q; a) = �BBR (q; b) = 1). Therefore, the

vote probabilities from (2) and (3) simplify to the following,

pAA =
R 1
�̂
qdF (q) pBA = F (�̂) +

R 1
�̂
(1� q) dF (q)

pAB =
R 1
�̂
(1� q) dF (q) pBB = F (�̂) +

R 1
�̂
qdF (q)

implying the following inequalities:

pBB > pBA > pAB (26)

pBB > pAA > pAB (27)

pAApBA > pABpBB (28)

Given (26) through (28), I now argue that PAPB < ~PA ~PB or, equivalently, that �A >

1� �B, which is the desired contradiction:

PAPB � ~PA ~PB

=
1

4
(�0A + ��1A) (�0B + ��1B)�

1

4
(�0A + �1A) (�0B + �1B)

=
1

4

1X
j=0

1X
k=0

e��(pAA+pAB+pBA+pBB)

j!k!
(pAApBA)

j (pABpBB)
k � (29)��

1 +
�

j + 1
pBA

��
1 +

�

k + 1
pAB

�
�
�
1 +

�

j + 1
pAA

��
1 +

�

k + 1
pBB

��
(30)

Whenever j � k, the bracketed term in (30) is negative, since��
1 +

�

j + 1
pBA

��
1 +

�

k + 1
pAB

�
�
�
1 +

�

j + 1
pAA

��
1 +

�

k + 1
pBB

��
=

�
�

k + 1
(pAB � pBB) +

�

j + 1
(pBA � pAA) +

�

k + 1

�

j + 1
(pBApAB � pAApBB)

�
<

�
�

j + 1
(pAB � pAA + pBA � pBB)

�
< 0
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For any (j; k) term of the series in (29) that is positive, therefore, the corresponding (k; j)

term is negative. This only occurs when k < j , in which case (28) implies that the weight

(pAApBA)
k (pABpBB)

j on the negative term exceeds the weight (pAApBA)
j (pABpBB)

k on the

positive term. Thus the series must be negative.

Given that �A � 1� �B, suppose next that �B < 1
2
, so that agents who receive b signals

all vote B. Agents who receive a signals will vote A if they are su¢ ciently well-informed

(i.e. q � �A), vote for B if they are su¢ ciently uninformed (i.e. q � 1 � �B), and abstain

otherwise. The vote probabilities from (2) and (3) then simplify to the following:

pAA =

Z 1

�A

qdF (q) pBA = F (1� �B) +

Z 1

1��B
(1� q) dF (q)

pAB =

Z 1

�A

(1� q) dF (q) pBB = F (1� �B) +

Z 1

1��B
qdF (q)

These once again imply inequalities (26) through (28), which then imply the following.

~PA � PB =
1

2
(�0A + �1A � �0B � ��1B)

=
1

2

1X
k=0

e��(pAA+pBA)
�
�2pAApBA

�k �
1 +

�

k + 1
pAA

�
�1
2

1X
k=0

e��(pAB+pBB)
�
�2pABpBB

�k �
1 +

�

k + 1
pAB

�
� 1

2

1X
k=0

e��(pAA+pBA)
�
�2pAApBA

�k � �

k + 1
(pAA � pAB)

�
� 0

The result that ~PA � PB is equivalent to �B � 1
2
; thus in equilibrium it cannot be that

�B <
1
2
or, by a symmetric argument, that �A < 1

2
.

Lemmas A1 and A2 are useful in preparation for the proof of Theorem 4.

Lemma A1 If TBR (T ) � T then T 0BR (T ) � 0.

Proof. The computation of T 0BR is rather involved since TBR depends on P and ~P , and

therefore on �0, �1, ��1, p+, and p�, as well as the simplifying notation  k de�ned in (7).
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Di¤erentiate each of these component parts, as follows:

p0+ = �Tf (31)

p0� = � (1� T ) f (32)

 0k =
�2k

k!k!

n
�fe��(1�F ) (p+p�)

k + e��(1�F )k (p+p�)
k�1 �p0+p� + p+p

0
�
�o

=
�2k

k!k!
e��(1�F ) (p+p�)

k

�
�f + k

p0+p� + p+p
0
�

p+p�

�
=  k (�f + kG) (33)

�00 =

1X
k=0

 k (�f + kG) (34)

�01 =
1X
k=0

�

k + 1

�
 0kp+ +  kp

0
+

�
(35)

�0�1 =
1X
k=0

�

k + 1

�
 0kp� +  kp

0
�
�

(36)

P 0 =
1

2

�
�00 + �0�1

�
(37)

~P 0 =
1

2
(�00 + �01) (38)

where G =
p0+
p+
+

p0�
p�
in (33) and where, for notational convenience, I suppress the argument

T (e.g. writing f instead of f (T )). Note that p0+ � p0� � 0 and therefore that G � 0.
It is also useful, remembering that �1 =

p+
p�
�0, to de�ne the ratio 
 as follows, so that

�1 = �0
p+ and ��1 = �0
p�.


 � 1

p+

�1
�0
=
1

p�

��1
�0

(39)

The derivative of 
 with respect to T is


0 =
A1

(p+�0)
2 (40)
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where A1 is de�ned as follows.

A1 � �01 (p+�0)� �1
�
p0+�0 + p+�

0
0

�
= p+�0�

0
1 � p0+�0�1 � p+�

0
0�1

= p+

1X
j=0

 j

1X
k=0

�

k + 1

�
 0kp+ +  kp

0
+

�
� p0+

1X
j=0

 j

1X
k=0

 k
�p+
k + 1

� p+

1X
j=0

 0j

1X
k=0

 k
p+�

k + 1

=

1X
j=0

1X
k=0

 j k (�f + kG)
p2+�

k + 1
�

1X
j=0

1X
k=0

 j k (�f + jG)
p2+�

k + 1

= p2+�G
1X
j=0

1X
k=0

 j k (k � j)
1

k + 1
(41)

Without the fraction 1
k+1
, the double sum in (41) would equal zero: though  j k (k � j) is

positive whenever k > j, the term with reversed indexes is negative and of equal magnitude.

Dividing by k + 1 places greater weight on negative than positive terms, so the double sum

must be negative; since G is also negative, the sign of A1, and therefore of 
0, must be

positive.

Writing TBR (T ) �
~P

P+ ~P
in terms of 
 gives the following:

TBR (T ) =
1
2
(�0 + �0
p+)

1
2
(�0 + �0
p�) +

1
2
(�0 + �0
p+)

=
1 + 
p+

2 + 
p� + 
p+
(42)

Di¤erentiating (42) yields the following, by the quotient rule:

T 0BR (T ) =
A2

(2 + 
p� + 
p+)
2

where

A2 =
�

0p+ + 
p0+

�
(2 + 
p� + 
p+)� (1 + 
p+)

�

0p+ + 
p0+ + 
0p� + 
p0�

�
=

�

0p+ + 
p0+

�
(1 + 
p�)� (1 + 
p+)

�

0p� + 
p0�

�
= 
p0+ (1 + 
p�)� (1 + 
p+) 
p0� + 
0 (p+ � p�)

= �
Tf 2
�0
P + 
 (1� T ) f

2

�0
~P + 
0 (p+ � p�)

= 
f
2

�0

�
P + ~P

� ~P

P + ~P
� T

!
+ 
0 (p+ � p�) (43)

The second term of the sum in (43) is positive since 
0 is positive; when ~P
P+ ~P

� T , the �rst

term is positive as well, so T 0BR (T ) > 0.
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Lemma A2 Let �TA;TB , �TA;TA, and �TB ;TB be IPC strategy pro�les, with participation

thresholds TA; TB 2
�
1
2
; 1
�
. Then the following must be true:

1. If TA > TB then �B > TBR (TA) and �A < TBR (TB)

2. If TA < TB then �B < TBR (TA) and �A > TBR (TB)

Proof. Since �TA;TB is IPC, the probabilities (2) and (3) of voting correctly and incorrectly
in each state simplify to the following:

pAA =

Z 1

TA

qdF (q) (44)

pAB =

Z 1

TA

(1� q) dF (q) (45)

pBA =

Z 1

TB

(1� q) dF (q) (46)

pBB =

Z 1

TB

qdF (q) (47)

If TA > TB, it is straightforward to verify that inequalities (26) through (28) hold, as does

the following.22

pAB + pBB > pAA + pBA (48)

In contrast, consider the vote probabilities associated with the signal-symmetric pro�le

�TA;TA: pAA and pBB are both equivalent to (44), and pAB and pBA are both equivalent

to (45). Similarly, for �TB ;TB both pAA and pBB are equivalent to (47) and both pAB

and pBA are equivalent to (46). Using these, I now compare the best response cutpoint

�B =
~PA

~PA+PB
under �TA;TB and �TA;TA. An equivalent condition to �B > TBR (TA) is that

~PA (�TA;TB)PB (�TA;TA) >
~PA (�TA;TA)PB (�TA;TB), which I show here must be the case.

22Inequality (48) results from the following:

pAB + pBB � pAA � pBA =

Z 1

qA

(1� q) dF (q) +
Z 1

qB

qdF (q)�
Z 1

qA

qdF (q)�
Z 1

qB

(1� q) dF (q)

=

Z qA

qB

qdF (q)�
Z qA

qB

(1� q) dF (q)

> 0
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Consider the sign of the following di¤erence.

~PA (�TA;TB)PB (�TA;TA)� ~PA (�TA;TA)PB (�TA;TB) (49)

=
1

4

1X
k=0

�2k

k!k!
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�
1 +

�

k + 1
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�
�

1X
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�2j

j!j!
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j

�
1 +
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j + 1
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�

�1
4
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�2k
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k

�
1 +

�

k + 1
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�
�
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�2j

j!j!
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j

�
1 +

�

j + 1
pAB

�

=
1

4

1X
k=0

1X
j=0

�2k
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�2j
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�
1 +

�

k + 1
pAA

��
1 +

�
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�"
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�
pAB
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>
1

4

1X
k=0

1X
j=0

�2k

k!k!

�2j
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�
1 +

�
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pAA

��
1 +

�
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�
pAB
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The inequality in (50) follows from (48). Whenever j � k, inequalities (27) and (28) imply

that the �nal product in (51) is strictly less than one, so that the bracketed di¤erence is

positive.23 For any negative term, therefore, it must be that j > k; in that case, the

corresponding (k; j) term has otherwise equal magnitude, but receives greater weight (i.e.

(pBApAA)
j (pAApAB)

k instead of (pBApAA)
k (pAApAB)

j). Thus the sign of (49) is positive.

A symmetric derivation reveals that ~PB (�TA;TB)PA (�TB ;TB) < ~PB (�TB ;TB)PA (�TA;TB)

or, equivalently, that �A < TBR (TB), establishing part (i). Part (ii) follows from identical

reasoning, for the case in which TA < TB.

Theorem 4 If �� is a Bayesian equilibrium then it is SIPC.

Proof. Together, Theorems 1 and 2 imply that �� must be IPC, with participation thresh-
olds TA = �A and TB = �B. To show further that it must be signal-symmetric, suppose
23This can be easily seen by rewriting the �nal term of the di¤erence as�

pAB
pBA

�k �
pBB
pAA

�j
=

�
pAB
pBA

�k�j �
pABpBB
pBApAA

�j
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by way of contradiction that TA > TB (a symmetric argument will apply to the case of

TA < TB). The logic of this proof is to compare the best response thresholds to �� = �TA;TB
with the best responses to the closely-related signal-symmetric strategies �TA;TA and �TB ;TB .

There are three relevant cases to consider:

Case 1: TBR (TB) � TB. By Lemma A2, �A < TBR (TB) � TB < TA, so �TA;TB is not an

equilibrium.

If TBR (TB) > TB then, since T (�1;1) = 1
2
, there exists (by the Intermediate Value

Theorem) some SIPC equilibrium with a participation threshold strictly above TB. If there

are more than one such equilibria, let T � denote the lowest equilibrium threshold (i.e. the

threshold closest to TB). This threshold distinguishes the remaining two cases. By Lemma

A1, TBR is increasing between TB and T �.

Case 2: TBR (TB) > TB and TA � T �. Since TBR is increasing between TB and T �,

clearly TBR (TB) < T �. By Lemma A2, this implies that �A < TBR (TB) < T � � TA, so

�TA;TB is not an equilibrium.

Case 3: TBR (TB) > TB and TA < T �. Since TA 2 [TB; T
�], an interval in which

TBR is increasing, TBR (TA) > TBR (TB). Lemma A2 then implies that �B > TBR (TA) >

TBR (TB) > TB, again ensuring that �TA;TB is not an equilibrium.

Theorem 5 For any T 2
�
1
2
; 1
�
, the best response threshold T �BR (T ) is increasing in �.

Proof. Vote probabilities p+ and p� do not depend on �. For a �xed threshold T , the

probability  k from (7) that each candidate receives k votes depends only on �. The same

is true, therefore, of win and pivot probabilities �w, P , and ~P . Di¤erentiate  k and �w with
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respect to �, as follows:

@ k
@�

=
(p+p�)

k

k!k!

�
2k�2k�1e��(1�F ) � (1� F )�2ke��(1�F )

�
=  k

�
2k

�
� (1� F )

�
(52)

@�0
@�

=

1X
k=0

 k

�
2k

�
� (1� F )

�
(53)

@�1
@�

=

1X
k=0

�
@ k
@�

�p+
k + 1

+  k
p+
k + 1

�
=

1X
k=0

 k

��
2k

�
� (1� F )

�
�p+
k + 1

+
p+
k + 1

�
(54)

@��1
@�

=
1X
k=0

�
@ k
@�

�p�
k + 1

+  k
p�
k + 1

�
=

1X
k=0

 k

��
2k

�
� (1� F )

�
�p�
k + 1

+
p�
k + 1

�
(55)

From these, di¤erentiate the ratio ~P
P
of pivot probabilities by the quotient rule:

@
�
~P=P

�
@�

=
1

P 2

 
P
@ ~P

@�
� ~P

@P

@�

!
(56)

where P @ ~P
@�
is given by

P
@ ~P

@�
=

1

4
(�0 + ��1)

�
@�0
@�

+
@�1
@�

�
=

1

4

1X
j=0

 j

�
1 +

�

j + 1
p�

� 1X
k=0

 k

��
2k

�
� (1� F )

��
1 +

�p+
k + 1

�
+

p+
k + 1

�

=
1

4

1X
j=0

1X
k=0

 j k ���
2k

�
� (p+ + p�)

��
1 +

�

j + 1
p�

��
1 +

�

k + 1
p+

�
+

p+
k + 1

+ �
p�
j + 1

p+
k + 1

�
and similarly ~P @P

@�
is given by

~P
@P

@�
=

1

4

1X
j=0

1X
k=0

 j k ���
2k

�
� (p� + p+)

��
1 +

�

j + 1
p+

��
1 +

�

k + 1
p_

�
+

p_

k + 1
+ �

p+
j + 1

p_

k + 1

�
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The parenthesis term P @ ~P
@�
� ~P @P

@�
from (56) then simpli�es to

P
@ ~P

@�
� ~P

@P

@�
=

1X
j=0

1X
k=0

 j k
(p+ � p�)

k + 1

=
1X
j=0

 j

" 1X
k=0

 k
p+
k + 1

�
1X
k=0

 k
p�
k + 1

#

= �0
1

�
(�1 � ��1)

which is positive since �1 > ��1 and �0 > 0. Thus @
@�

�
~P
P

�
> 0, and therefore @

@�

�
~P

P+ ~P

�
> 0,

which is equivalent to the desired result.

Lemma 1 For T 2
�
1
2
; 1
�
, lim�!1 T

�
BR = L (T ), as de�ned as in (21).

Proof. For any T 2
�
1
2
; 1
�
, Myerson (2000) derives the limiting ratio of pivot probabilities as

merely the ratio of the square roots of the expected numbers of agents taking either action:

lim
�!1

~P

P
=

p
p+p
p�

From this, it follows immediately that

lim
�!1

~P

P + ~P
=

p
p+p

p+ +
p
p�

=

p
M (T )p

M (T ) +
p
1�M (T )

where M (T ) � E (QjQ � T ) = p+
p++p�

.

Theorem 6 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence �k of population parameters such that �k ! 1 as k ! 1, and let T �1 be a limit

point of
n
T ��k

o1
k=1
. Then T �1 < 1.

Proof. For every �k, T ��k must be a �xed point of T
�k
BR. Since T

�k
BR converges pointwise to

L, a limit point of T ��k must therefore be a �xed point of L. Solving (21) for M (T ), it can

easily be shown that L (T ) is greater than, equal to, or less than T if and only if M (T ) is

(respectively) greater than, equal to, or less than � (T ) � T 2

T 2+(1�T )2 , which strictly increases

from �
�
1
2

�
= 1

2
to � (1) = 1, and is strictly concave, as illustrated in Figure 4. The slope of

� approaches zero as T ! 1:

lim
T!1

�0 (T ) = lim
T!1

2T
�
T 2 + (1� T )2

�
� T 2 [2T � 2 (1� T )]�

T 2 + (1� T )2
�2 (57)

=
2 (1 + 0)� 1 (2� 0)

(1 + 0)2
= 0
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1

Figure 4: T=L(T) is a �xed point of the limiting best response function if and only if

M(T)=Gamma(T)

Like �, M also increases to M (1) = 1. The slope of M , however, approaches 1
2
. This

can be seen as follows using the quotient rule, remembering that dp+
dT
= �Tf , as in equation

(31) in the proof of Proposition A1. Though I suppress the notation, p+, f , F , M , and the

hazard function, or failure rate h = f
1�F , are evaluated at T .

M 0 (T ) =
�Tf (1� F ) + p+f

(1� F )2

=
f

1� F

�
p+
1� F

� T

�
= h [M (T )� T ] (58)

Case 1: limT!1 f (T ) < 1. As T ! 1, the di¤erence M (T ) � T approaches zero.

The condition that limT!1 f (T ) < 1 implies that f (M � T ) also converges to zero, so by

L�Hospital�s rule

lim
T!1

M 0 (T ) = lim
T!1

f 0 [M (T )� T ] + f [M 0 (T )� 1]
�f

= lim
T!1

�
�f

0

f
[M (T )� T ]�M 0 (T ) + 1

�
This equation is satis�ed if and only if

lim
T!1

M 0 (T ) =
1

2
� lim

T!1

f 0

f
[M (T )� T ]

Since f is a density function (and must integrate to one) it must be that limT!1
f 0

f
< 1,

and so the second term of this di¤erence goes to zero, leaving limT!1M
0 (T ) = 1

2
.

Case 2: limT!1 f (T ) =1. By the quotient rule, the derivative h0 of the hazard function
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is as follows:

h0 =
f 0 (1� F ) + f 2

(1� F )2

=
f

1� F

�
f 0

f
+

f

1� F

�
= h

�
f 0

f
+ h

�
(59)

Since f is a density function limT!1
f 0

f
< 1, and the condition that limT!1 f (T ) = 1

implies that 1
h
! 0, so the following must be true:

lim
T!1

h0

h2
= lim

T!1

hf
0

f
+ h2

h2

= lim
T!1

f 0

f

1

h
+ 1

= 1

Therefore, applying L�Hospital�s rule to equation (58) yields

lim
T!1

M 0 (T ) = lim
T!1

M 0 (T )� 1
�h0=h2

= 1� lim
T!1

M 0 (T )

which implies limT!1M
0 (T ) = 1

2
.

Thus �0 (T )! 0 butM 0 (T )! 1
2
; for T su¢ ciently close to one, therefore,M (T ) < � (T )

or, equivalently, L (T ) < T . If it were the case that T ��k ! 1, there would be a k su¢ ciently

high that T ��k > L
�
T ��k

�
or, equivalently, that T �kBR

�
T ��k

�
> L

�
T ��k

�
. This cannot be,

however, since L is an upper bound on T �BR.

Theorem 7 If f is log-concave then L has a unique �xed point between 1
2
and 1.

Proof. Existence of a �xed point between 1
2
and 1 follows from the Intermediate Value

Theorem, since L is continuous and L
�
1
2

�
> 1

2
but, as shown in the proof of Theorem 6,

M 0 (T ) > 0 for T su¢ ciently close to 1, which implies that L (T ) < T . To see uniqueness,

it is useful �rst to review two useful implications of the log-concavity of f , demonstrated by

Bagnoli and Bergstrom (2005):

� (P1) f 0
f
is monotonically decreasing.

� (P2) The hazard function h = f
1�F is monotonically increasing.
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� (P3) The mean residual lifetime function
R 1
T
(q � T ) dF (q) =M (T )� T is monotoni-

cally decreasing or, equivalently, M 0 (T ) < 1.

P1 implies that limT!1
f 0

f
<1, and guarantees the existence of a maximizer T̂ , such that

f is increasing on
h
1
2
; T̂
i
and decreasing on

h
T̂ ; 1

i
. In what follows, Step 1 shows that if

M intersects � in the interval
h
T̂ ; 1

�
then there can be no other intersection point in

�
1
2
; 1
�
,

and Step 2 shows that if M does not intersect � in
h
T̂ ; 1

�
there will be a unique intersection

point in
h
1
2
; T̂
i
.

Step 1. For this step, I �rst show that M 0 (T ) � 1
2
when T > T̂ . To see this, �rst

di¤erentiate (58) to obtain the second derivative of M :

M 00 (T ) = h0 (M � T ) + h (M 0 � 1)

= h

�
f 0

f
+ h

�
(M � T ) + h (M 0 � 1)

= M 0
�
f 0

f
+ h

�
+ h (M 0 � 1)

=
f 0

f
M 0 + 2h

�
M 0 � 1

2

�
(60)

where the second equality follows from (59) and the third follows from (58). M is convex if

and only if (60) is positive or, equivalently, if the following inequality holds:

M 0 (T ) � 1

2 + 1
h
f 0

f

(61)

For T � T̂ , the right hand side of (61) is greater than 1
2
because f 0 is negative. If it were

the case for " > 0 at any T � T̂ that M 0 (T ) = 1
2
� ", therefore, then M must be concave,

implying that M 0 (T ) decreases further as T increases, so that limT!1M
0 (T ) is bounded

above by 1
2
� ". This contradicts the result from the proof of Theorem 6, however, that

limT!1M
0 (T ) = 1

2
; thus, for T � T̂ it must be that M 0 (T ) � 1

2
.

The importance of the result that M 0 (T ) � 1
2
is illustrated in Figure 4: M must lie

between the dotted lines of slopes 1 and 1
2
, and therefore cannot intersect � to the right of
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1p
2
(which is the point at which � intersects the dotted line with slope 1

2
).24 To the left of

1p
2
, however, the slope of � exceeds 1; since log-concavity (P3) implies M 0 (T ) < 1 for all T ,

M and � can intersect only once in this region. Thus, if M intersects � at a point T � > T̂

then T � < 1p
2
, and T � must be the unique intersection point of M and �, and therefore the

unique �xed point of L.

Step 2. In the interval
h
1
2
; T̂
i
, f 0 must be positive, which implies that the right hand

side of (61) is less than 1
2
. M must be convex in this interval, because if (61) fails then

M 0 (T ) = 1
2
� " for some " > 0. This cannot be, however, since then as T increases

concavity would imply that M 0 decreases, while (P1) and (P2) together imply that the right

hand side of (61) increases. Thus M would continue concave until T reaches 1, and M 0

would be bounded above by 1
2
� ", contradicting the result from the proof of Theorem 6,

that limT!1M
0 (T ) = 1

2
. Since M is convex on

h
1
2
; T̂
i
and � is strictly concave, there can

be only one intersection point in this interval.

Lemma 2 Let F and G be continuous, log-concave distributions with strictly positive densi-
ties, and let T F1 and T

G
1 and M

F and MG denote the unique limiting participation thresholds

and mean quality functions for F and G, respectively. Then TG1 > T F1 if and only if

MG (T ) > MF (T ) or, equivalently,

�F (T )
�G (T )

>

R 1
T
�F (q) dqR 1

T
�G (q) dq

(62)

for T 2
�
T F1; T

G
1
	
.

Proof. The �xed points T F1 and T
G
1 of L

F and LG are such that LF (T ) > T and LG (T ) > T

for any threshold T below T F1 and T
G
1, respectively, and similarly L

F (T ) < T and LG (T ) < T

for any T above T F1 and TG1. Clearly, then, TG1 > T F1 if and only if LG (T ) > LF (T ) for

both �xed points T 2
�
T F1; T

G
1
	
. As is made clear by equation (21), LG (T ) > LF (T ) if and

24This point is determined algebraically as follows:

T 2

T 2 + (1� T )2
=

1

2
(1 + T )

2T 2 = T 2 (1 + T ) + (1� T )2 (1 + T )
T 2 (1� T ) = (1� T )

�
1� T 2

�
T 2 = 1� T 2

T 2 =
1

2

40



only if MG (T ) > MF (T ). Rewriting this �nal expression and integrating by parts yields

(22). For example,

MF (T ) =
1
�F (T )

Z 1

T

qdF (q)

=
1
�F (T )

Z 1

T

�F (q) dq

Theorem 8 Let F and G be continuous, log-concave distributions with strictly positive den-
sities, and suppose G �1 F . Then the following must be true:
1. If G (q) = F (q) for all q � T F1 then TG1 = T F1 and �G

�
TG1
�
= �F

�
T F1
�
.

2. If G (q) = F (q) for all q � T F1 then TG1 � T F1 and �G
�
TG1
�
� �F

�
T F1
�
.

3. If G (q) = F (q) for all q � MF
�
T F1
�
and �G

�
T F1
�
� �F

�
T F1
�
then TG1 � T F1 and

�G
�
TG1
�
� �F

�
T F1
�
.

Proof. 1. If G (q) = F (q) for all q � T F1 then the left and right hand sides of (22) are both

equal to one, and it follows immediately that TG1 = T F1 and therefore �G
�
TG1
�
= �F

�
T F1
�
.

2. G �1 F implies that the right hand side of (22) is strictly less than one, but that the

left hand side is equal to one since �G
�
T F1
�
= �F

�
T F1
�
. This implies that TG1 � T F1, and

therefore G
�
TG1
�
� G

�
T F1
�
= F

�
T F1
�
or, equivalently, �G

�
TG1
�
� �F

�
T F1
�
.

3. The following derivation shows also that MG
�
T F1
�
< MF

�
T F1
�
.

�G
�
T F1
�
MG

�
T F1
�
=

Z 1

TF1

qg (q) dq

=

Z 1

TF1

qf (q) dq +

Z MF (TF1)

TF1

q [g (q)� f (q)] dq

<

Z 1

TF1

qf (q) dq

+MF
�
T F1
� Z MF (TF1)

TF1

[g (q)� f (q)] dq

= MF
�
T F1
� �
1� F

�
T F1
��
+MF

�
T F1
� �
G
�
MF

�
� F

�
MF

�
�G

�
T F1
�
+ F

�
T F1
��

= �G
�
T F1
�
MF

�
T F1
�

By Lemma 2, MG
�
T F1
�
< MF

�
T F1
�
implies TG1 < T F1, and so �F

�
TG1
�
� �F

�
T F1
�
. Since

G �1 F , �G
�
TG1
�
� �F

�
TG1
�
� �F

�
T F1
�
.

Theorem 9 Let F and G be continuous, log-concave distributions with strictly positive den-
sities and a common mean m, such that G �2 F and T F1 � m. Then TG1 � T F1 and
�G
�
TG1
�
� �F

�
T F1
�
.
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Proof. Since F and G have a common mean, G �2 F implies that the variance of Q is

smaller under G than under F . With T F1 � m, it must therefore be that �G
�
T F1
�
� �F

�
T F1
�
,

and so the left hand side of (22) is less than one for T = T F1. The right-hand side of (22)

can be rewritten as R 1
T
�F (q) dqR 1

T
�G (q) dq

=

R 1
1=2
�F (q) dq �

R T
1=2
�F (q) dqR 1

1=2
�G (q) dq �

R T
1=2
�G (q) dq

where the numerator and denominator contain equivalent expressions for the common meanR 1
1=2
�F (q) dq =

R 1
1=2
�G (q) dq = m. By de�nition, G �2 F implies

R T
1=2
�G (q) dq �

R T
1=2
�F (q) dq;

since the left-hand side is less than one and the right-hand side is greater than one, the

inequality in (22) does not hold, implying that TG1 � T F1. This implies that �G
�
TG1
�
�

�G
�
T F1
�
and, together with the fact that �G

�
T F1
�
� �F

�
T F1
�
, implies �G

�
TG1
�
� �F

�
T F1
�
.
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