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Abstract

We propose an approach to two-candidate competition with electoral un-
certainty in which elections are both competitive (in the sense that each
candidate wins with positive probability) and meaningful (in the sense
that the candidates adopt distinct platforms). Candidates may place pos-
itive weight on policy and office; these weights may differ across parties;
and one party may have an electoral advantage. Existence of equilibria in
pure strategies holds in any number of dimensions, even if the extent of
electoral uncertainty is arbitrarily small. We characterize equilibria and
demonstrate their tractability in applications to distributive politics, to
income taxation, and to cultural and economic policy.

*We are grateful to Dan Bernhardt, Peter Buisseret, Steve Callander, Bard Harstad,
Francesco Squintani, Stefan Krasa, Adam Meirowitz, and seminar and conference participants
at Stanford, SITE, Toulouse, and Warwick for their feedback.
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1 Introduction

Many of the paramount political challenges facing democratic societies are mul-
tidimensional, yet the literature on formal political economy does not provide
a modeling framework to analyze competitive, meaningful elections in multiple
dimensions. Sometimes the multiple dimensions can be collapsed (or “scaled”)
into a single dimension, but this is not possible if preferences over issues are not
highly correlated, and thus one-dimensional models are of limited use for study-
ing inherently multidimensional problems. If we want to improve our theoretical
understanding of the distribution of resources across groups, or the conditions
under which progressive tax systems arise, or how polities aggregate preferences
over economic and cultural policies, to list a several examples, then there are
few analytical options available.

This is not without good reason. The classical results of Plott (1967) and
Schofield (1983) establish that for general voter preferences, given any initial
vector of policies, there is a majority of voters who could replace the status quo
with a preferred policy vector. This instability of majority rule translates into
equilibrium non-existence in the multidimensional Downsian model in which
two office-motivated candidates compete for an elected office. The negative
conclusion of Plott and Schofield extends to the model in which candidates
place positive weight on policy, as well as office: robust equilibria may exist in
two dimensions, but in the model with three or more policy issues, equilibria
fail to exist for general voter preferences.!

Early work in formal political economy added electoral uncertainty to the
multidimensional model. Hinich, Ledyard, and Ordeshook (1972,1973), Hinich
(1977), Coughlin and Nitzan (1981), and Lindbeck and Weibull (1987) recovered
equilibria in stochastic bias models, where voter policy preferences are known
to parties, while each voter’s choice is subject to an idiosyncratic bias shock.
However, equilibria in this model feature vote-maximizing parties that both
locate (they “converge”) at the unique policy vector that maximizes social wel-
fare. To the extent we think that parties’ characteristics (e.g., their electoral
motivations or standing vis-a-vis voters) differ, and that these differences are
reflected in their holding distinct policy platforms, this approach is not a solu-
tion. Wittman (1983, 1990) and Calvert (1985) allow for parties that care about
policy as well as office, i.e., they have mixed motives. This leads to equilibria
in which the parties choose distinct platforms (they “diverge”), but Wittman
assumes each candidate’s probability of winning is concave in her own platform.
Although he does not provide microfoundations for the concavity assumption,
it requires, intuitively, the presence of a substantial amount of uncertainty.?

In this paper, we provide a solution to the classical problem of majority rule

ISee Figure 1 and Theorem 3 of Duggan and Fey (2005).

2See pages 154-155 of Wittman (1983) for the existence argument. Note that, in addition,
he assumes that the probability of winning is always strictly positive for each candidate; see
page 150, below equation (1). Calvert does not address the existence question.



instability by proving equilibrium existence in a general framework of elections
in which candidates have mixed motivations, and we provide microfoundations
in terms of an aggregate “partisan shock” that is added to candidates’ election
returns. We then characterize equilibria as we impose increasing structure on
the model: we give conditions under which election outcomes are as if there is a
single, aggregate voter whose choices are subject to noise; we add the assumption
of quadratic utility to obtain a dimensional reduction result; and we then add
symmetry to explicitly solve for equilibrium and perform comparative statics.
Finally, we demonstrate the tractability of the model in simple applications to
distributive politics, income taxation, and cultural and economic policy.

1.1 Discussion of Results

To begin, we consider an abstract model in which the candidates’ probability of
winning is initially “blackboxed,” i.e., it is formalized as an exogenously given
function of the candidates’ platforms. We prove that a Nash equilibrium in pure
strategies exists if three conditions hold: (i) each candidate wins with positive
probability whenever both are located at the same platform, (ii) the probability
of winning is continuous, and (iii) each candidate’s probability of winning is log
concave in her own platform. At a technical level, this is an improvement on
Wittman’s assumption that each candidate’s probability of winning is concave in
her own platform, and it improves Theorem 1 of Duggan (2025a) by extending it
to multiple dimensions.? However, because the existence theorem is established
in an abstract framework, it is important to provide microfoundations for the
assumptions used, log concavity being the key challenge. And to gauge the
improvement over the literature, we must understand the purchase gained in
fully specified models, in which the probability of winning function is derived
from primitives.

We provide such foundations in a model featuring a continuum of policy ori-
ented voters who are partitioned into sets of types, which correspond to voter
policy preferences. The model departs from the social choice framework of Plott
(1967) and Schofield (1983) by assuming that within each type, an idiosyncratic
bias term is distributed across a continuum of voters. This smooths out each
candidate’s vote share among policy-oriented voters as a function of her plat-
form, but importantly, these bias terms do not introduce aggregate uncertainty:
the candidates’ platforms generate vote shares in a deterministic way, and thus
either one candidate’s vote share exceeds one half, or there is a tie. In fact,
this is a common reinterpretation of the early model of Hinich, Ledyard, and
Ordeshook: because candidates maximize expected vote, a single voter’s prob-
ability of voting for one candidate can be viewed as the fraction of supportive
voters of that type, effectively interpreting integrals as averages rather than
expectations. The “continuum interpretation” is adopted, e.g., by Cox and Mc-

3See Duggan (2025a) for a discussion of the restrictiveness of concavity (which is assumed
by Wittman) relative to log concavity (which is all we need).



Cubbins (1986), Dixit and Londregan (1996), and Roemer (1997,2001), and it
is discussed by Banks and Duggan (2005). In the latter articles, candidates are
assumed to maximize vote share, and thus in equilibrium, they locate at the
same policy platform.

Peress (2010) considers the continuum model in which candidates care about
both policy and office, and in contrast to the early literature, payoffs depend
on the candidates’ probabilities of winning; in particular, the outcome in case
of a tie must be specified. The standard approach is to assume that victory
is decided by an exogenous randomization device, but it is also possible to al-
low the tie-breaking rule to be endogenous; then the candidates’ probability of
winning in case of a tie provides an additional degree of freedom that can be
used to support the existence of equilibrium. Peress shows that in case one
candidate has an electoral advantage, she must win with probability one, and
moreover, if the advantage is not too large, then the candidates have equal vote
shares in equilibrium, with the tie being broken in favor of the advantaged can-
didate.* Endogenous tie breaking is required in this case, for if the probability
of a victory is exogenously fixed to be strictly between zero and one, then an
equilibrium cannot exist. In the remaining case, where neither candidate has an
advantage, the candidates must adopt identical platforms. In sum, it is possi-
ble to support equilibria in which the candidates adopt distinct platforms, but
only if one has an advantage, and then that candidate must win with proba-
bility one. Competitive, meaningful elections are impossible in the model with
no aggregate uncertainty: there do not exist equilibria in which the candidates
adopt distinct platforms (giving voters a meaningful choice) and each wins with
positive probability (so both candidates have a stake in the competition).

We propose a framework that introduces electoral uncertainty to the above
setting by adding a mass of partisan voters, who vote for one candidate or the
other independently of policy, formalized as a random shock that is realized
after candidates’ platform choices. This stochastic partisans model is formally
equivalent to Roemer’s (2001) “error-distribution model” of elections, and we
view it as a natural and convenient form of uncertainty.’

Our general existence result applies as long as the distribution of the parti-
san shock satisfies a weak log concavity condition, allowing candidates to have
general mixed motivations, placing arbitrary (and possibly different) weight on
policy relative to winning. Importantly, pure strategy equilibria exist even if
the amount of aggregate uncertainty assumed is arbitrarily small. If the partisan
shock is distributed uniformly, for example, then the support of the distribu-
tion may be an arbitrarily small interval; or if it is normally distributed, no
assumption on the variance (other than being positive) is needed. In contrast,

4In fact, in some parameterizations of the model, a continuum of equilibria can be sup-
ported with these features.

5This type of uncertainty is also used by Bernhardt, Krasa, and Squintani (2024) and
Bernhardt, Bouton, Krasa, and Squintani (2025) in their analysis of strategic voting with
multiple candidates.



to apply the result of Wittman (1983,1990), a substantial amount of uncertainty
is required to satisfy his concavity condition. In our model, as long as both can-
didates place positive weight on office, each wins with positive probability; and
when both place positive weight on policy, we apply a result of Duggan (2025b)
to show that for almost all pairs of policy weights, the candidates’ equilibrium
platforms are distinct. Therefore, equilibria exist generally, and elections are
almost always competitive and meaningful.

Our sharpest characterization result provides foundations for an aggregate
voter, whose utility function acts as a potential function for the candidates’
margin among policy-oriented voters: for example, candidate A’s margin among
policy-oriented voters is

R+ V(@) = V),

where V is an aggregate utility function, and k is a constant measuring A’s
electoral advantage, which may be positive, negative, or zero. The key assump-
tion here is that idiosyncratic bias is distributed uniformly within each voter
type—a strong assumption, but one that is common in applications and that
purchases considerable analytic leverage. It is straightforward to show that in
equilibrium, a candidate’s platform must be Pareto optimal for the aggregate
voter and herself, and if a candidate is purely office motivated, then she simply
chooses the ideal policy of the aggregate voter. This Pareto optimality result
implies that each candidate’s platform can be restricted to the contract curve
between her ideal point and the aggregate ideal point, essentially reducing her
strategy space to a one-dimensional manifold. Assuming politicians and voters
have quadratic policy utility, the aggregate utility function is also quadratic, so
a candidate simply chooses a platform on the one-dimensional line segment be-
tween her ideal point and the aggregate ideal point. That is, candidate strategy
sets essentially reduce to one-dimensional intervals—a dimensional reduction
that greatly simplifies comparative statics and numerical examples.

A strength of our analysis is that we allow for arbitrarily small electoral
uncertainty, in the sense that the distribution of the partisan voter shock may
be as close to degenerate as one wants. We then perform the asymptotic analysis
of characterizing the limit of equilibrium platforms as noise in the model goes
to zero. For one example, if one candidate has a large electoral advantage,
then her platform simply converges to her ideal point. For another, if the
candidates have opposed preferences, in the sense that each prefers the aggregate
ideal point to any platform on the contract curve between her opponent and
the aggregate voter, and if one candidate has an electoral advantage that is
not too great, then the limit of equilibrium platforms has a straightforward
characterization: the disadvantaged candidate converges to the aggregate ideal
point, while the advantaged candidate converges to the platform that makes
the aggregate voter indifferent between electing one or the other; in addition,
the advantaged candidate’s probability of winning converges to one. Intuitively,
the advantaged candidate leverages her relative popularity with voters, and
the disadvantaged candidate effectively acts as an anchor that prevents further



movement by the advantaged candidate.

As the advantage decreases, the gap between the candidates decreases to
zero, with the limiting platform of the advantaged candidate converging to the
aggregate ideal point. At the extreme, when neither candidate has an electoral
advantage, the equilibrium platforms of the candidates both converge to the
aggregate ideal point as uncertainty becomes small. This limit is independent
of the weights the candidates place on policy and office.

An interesting case arises when the advantage of one candidate is at an inter-
mediate level. Assuming that candidates and voters have generalized quadratic
utility, the characterization depends on the location of the candidates’ ideal
points vis-a-vis the aggregate voter. If the candidates are polarized, i.e., the
lines from the aggregate ideal point to the candidates’ ideal points form an ob-
tuse angle, then the disadvantaged candidate again converges to the aggregate
voter’s ideal point, while the advantaged candidate converges to the platform
on her contract curve that makes the aggregate voter indifferent.

However, if the candidates are less polarized, i.e., the lines from the can-
didates’ ideal points form an acute angle, then the latter characterization may
break down: letting A be the advantaged candidate, it may be that when un-
certainty is small enough, the disadvantaged candidate B would prefer for A to
win, rather than win herself at the aggregate ideal point. In this exceptional
scenario, the limit of equilibrium platforms is characterized as the solution to
a system of two equations in two unknowns: candidate A’s platform converges
to a policy such that the aggregate voter is indifferent between the candidates,
while candidate B’s platform converges to a policy such that B is indifferent
between winning or losing to A. Interestingly, as noise is removed from the
model, there is a unique limit equilibrium that belongs to the class of “irregu-
lar” equilibria identified by Peress (2010). Thus, although they are not the focus
of his analysis, our results indicate that irregular (and not “regular”) equilibria
may sometimes be of greater interest, as they are robust to the introduction of
electoral uncertainty.

Our last set of results focuses on the symmetric model, where we assume
that the candidates and aggregate voter have quadratic utility, with candidate
ideal points equidistant from the aggregate ideal point, and that the candidates
place identical weight on office. Thus, policy preferences are summarized by
the angle formed by the candidate ideal points relative to the voter, with larger
angles closer to 180 degrees meaning that the candidate preferences are in oppo-
sition to each other, and smaller angles corresponding to alignment of candidate
preferences. We show that there is a unique equilibrium that is symmetric, in
the sense that the candidates choose platforms on their contract curves that
are equidistant from the aggregate voter. In fact, we solve explicitly for the
symmetric equilibrium, and we demonstrate expected comparative statics: the
candidates moderate, by moving their platforms closer to the aggregate ideal
point, when the weight on office increases; when the variance of the partisan



shock increases; and when the angle between the candidate increases. The latter
result relies critically on multidimensionality, and it arises because as the angle
becomes larger, her opponent’s platform becomes worse for a candidate, which
magnifies the threat of losing and incentives greater moderation.

Comparative statics that introduce asymmetry are more complicated, but
important. We show that, beginning from the symmetric equilibrium in the
symmetric model, if we increase candidate A’s weight on policy slightly, while
holding B’s objectives fixed, then, as intuition would suggest, A’s platform
becomes more extreme by shifting toward her ideal point. Interestingly, B’s
equilibrium response is more nuanced and depends on the angle between the
candidates. When the angle is larger, candidate B becomes more moderate;
effectively, A’s movement increases the threat of losing for B, causing her to
trade policy for probability of winning by moving toward the aggregate voter.
When the angle is smaller, however, B also shifts toward her ideal point: if
candidate preferences are aligned, A’s shift can improve her platform from B’s
perspective, which decreases the threat of losing, and incentivizes B to become
more extreme.

Beginning from the symmetric model, if we introduce a small electoral ad-
vantage for candidate A, then A’s equilibrium platform moves in the direction of
her ideal point, becoming more extreme as she leverages her higher popularity.
In response, candidate B’s equilibrium platform moderates, moving in the direc-
tion of the aggregate voter, independently of the angle between the candidates.
In contrast to the comparative static with respect to the weight on policy, now
there is a direct effect of A’s move on B’s optimal policy: the marginal policy
returns from her platform decrease as A’s becomes more likely to win, offsetting
the change in the payoff from losing to A, and inducing B to pursue the higher
marginal returns to the probability of winning by moderating her platform. In-
terestingly, this comparative static runs counter to a counterintuitive result of
Groseclose (2001), proved in the one-dimensional model with fixed valence and
stochastic median, where the effect of giving one candidate a small valence ad-
vantage is that she becomes more moderate, while the disadvantaged candidate
moves toward her own ideal point.

To demonstrate the usefulness of our approach, we provide three applica-
tions. First, we consider a version of the distributive politics model of Lindbeck
and Weibull (1987) with aggregate uncertainty and candidates having mixed mo-
tivations. Equilibria exist and feature candidates adopting distinct platforms.
After adding functional form assumptions and assuming candidates are symmet-
ric relative to the aggregate voter, we solve explicitly for the unique symmetric
equilibrium, and we show that as the candidates become more policy moti-
vated, or as the amount of uncertainty about the election outcome increases,
the candidates shift resources to their own groups from the mass electorate.

Second, we apply the framework to income taxation and public good pro-
vision, initially assuming two types of voters, those with low income and those



with high income, with each candidate representing one of the groups. We show
that the equilibrium platform of the left-wing party is always more progressive
than that of the right-wing party. Moreover, if the distribution of bias among
low-income voters has lower variance than the bias among high income voters,
then the aggregate voter’s ideal point is a progressive tax system. Then the left-
wing party’s platform is always a progressive tax policy, and if the right-wing
party is sufficiently office motivated, then it too adopts a progressive tax policy.
Alternatively, if the variance of bias is the same among the two groups, then
the right-wing party adopts a regressive tax policy. We show that if the income
disparity between rich and poor exceeds a particular level, then the left-wing
party’s platform also finances a higher level of public good.

Third, we apply our results for symmetric equilibria to a model of elections
in which cultural and economic policy are the salient issues. We assume that
one party’s ideal is liberal policy on both dimensions, and that the other’s is
conservative policy on both dimensions. Voters have heterogeneous preferences,
and to fix ideas, we assume that there are more voters with liberal economic
preferences (preferring unmodeled redistribution or government programs) and
conservative cultural preferences (perhaps preferring immigration restrictions
or lax gun laws). Assuming the parties place positive weight on policy, they
will each choose platforms in the direction of their ideal points, relative to
the aggregate voter, but the liberal party is more misaligned on culture than on
economics, with the reverse for the conservative party, which is more misaligned
on economics than on culture.

1.2 Other Models of Electoral Uncertainty

Previous work on one-dimensional models has used electoral uncertainty to gen-
erate existence of equilibria that are competitive, in the sense that the candidates
each win with positive probability, and meaningful, in the sense that they adopt
distinct platforms. Hansson and Stuart (1984) use an abstract framework that
captures aspects of the stochastic median model, in which the location of the
median voter is realized after candidates’ platform choices. They assume that
each candidate’s probability of winning is concave in her own platform, and
thus, like Wittman (1983), their analysis is predicated on a substantial amount
of uncertainty. Roemer (1997) weakens concavity to log concavity, and so he
proves existence of equilibrium in the stochastic median model for arbitrarily
small uncertainty, but assuming that the candidates are purely policy motivated;
the latter assumption removes problematic discontinuities, thereby simplifying
the analysis.® Bernhardt, Duggan, and Squintani (2009) analyze the symmet-
ric model and prove existence of symmetric equilibrium, while allowing candi-
dates to place arbitrary (common) weight on office relative to policy. However,
when the candidates are asymmetric, equilibrium existence is problematic: Ball

6Roemer (2001) replicates the analysis using his error-distribution model, i.e., the stochas-
tic partisans model, to generate uncertainty.



(1999), using asymmetric candidate motivations, and Groseclose (2001), using
a fixed valence advantage, provide examples in which pure strategy equilibria
fail to exist in the stochastic median model.

In the one-dimensional stochastic valence model of elections, Londregan and
Romer (1993) assume that the policy preferences of voters are known to the
candidates, but following platform choices, an aggregate valence shock is real-
ized and added to the utility from one candidate’s platform. Londregan and
Romer argue that an equilibrium exists, but they assume candidates are purely
policy motivated, and that each candidate’s probability of winning is concave in
her own platform; thus, like Wittman (1983) and Hansson and Stuart (1984),
the analysis of Londregan and Romer is predicated on a substantial amount
of uncertainty. Duggan (2025a) considers the general stochastic valence model
in one dimension, allowing for mixed motivations and arbitrarily small uncer-
tainty, and he establishes equilibrium existence as a special case of our analysis;
in particular, when the density of the valence shock is log concave, the proba-
bility of winning functions satisfy our assumptions, and thus equilibria exist. In
addition, he provides comparative statics, an asymptotic analysis as uncertainty
is removed from the model, and uniqueness for the special case in which utility
functions are defined by absolute value loss functions.

The literatures on the stochastic median model and the stochastic valence
model take as their starting point the classical social choice framework of Downs
(1957) and Plott (1967), in which voter policy preferences are known to the can-
didates, and each voter casts their ballot for the candidate offering the preferred
policy platform (perhaps randomizing when indifferent). Much of the existing
literature on probabilistic elections augments the classical model by adding un-
certainty in the form of noise—either on the location of the median voter or the
net valence of the candidates—and the work of Roemer (1997), Bernhardt et al.
(2009), and Duggan (2025a) delivers existence of equilibrium even if the amount
of noise is arbitrarily small. As a consequence, the social choice model can be
“perturbed,” by adding a small amount of noise, in a way that leads to exis-
tence of equilibria corresponding to competitive, meaningful elections in which
the candidates adopt distinct platforms and each wins with positive probability.
However, the latter analyses are predicated on narrow assumptions: all assume
a one-dimensional policy space, and in addition, Roemer assumes pure policy
motivation while Bernhardt et al. assume the election is symmetric.

Our model adds uncertainty—an amount that may be arbitrarily small—to
the continuum model of elections, which departs significantly from the classi-
cal framework of Downs and Plott: in this alternative benchmark, voter policy
preferences are known, but in addition, within each voter type, an idiosyncratic
bias term is distributed across a continuum of voters. We establish a continuity
result showing that some such departure from the classical spatial model is nec-
essary: if a pure strategy equilibrium fails to exist in the benchmark model with
no uncertainty, then adding a small amount of uncertainty to the model cannot
deliver pure strategy equilibria. This result is proved using a flexible notion of



“adding a small amount of uncertainty,” and it complements a similar result
of Duggan and Fey (2005) by considering the case in which candidates place
positive (possibly different) weights on office. Since equilibria typically fail to
exist in the Downsian model with mixed motivations,” it is therefore impossible
to prove a general existence result if we start with the multidimensional spatial
model and, e.g., add a valence shock with arbitrarily small variance.

Our continuity result demarcates the limits of existence in multidimensional
settings and shows that the majority rule instability problem raised by Plott
is a fundamental feature of the classical spatial model, one that is robust to
perturbations of the model. In light of this negative conclusion, we propose
to take the continuum model of Peress (2010) as the chasis on which electoral
uncertainty is layered. In the context of large elections, we view the assumption
of a continuum of voters as a technical device, and we posit that the bias term,
which is distributed across voters within each type and is orthogonal to policy,
is a plausible factor in determining real-world elections—in other words, it is a
feature, not a bug.

Further from our approach, Roemer (2001) proposes the party unanimity
equilibrium model, which uses a relaxed notion of equilibrium in which a devi-
ation by a party is profitable only if it raises the party’s probability of winning
(satisfying the opportunist faction) and the new platform is itself an improve-
ment for the party (satisfying the militant faction). He studies properties of
party unanimity equilibria, but existence becomes moot (it is trivially an equi-
librium for the parties to locate at their ideal points), and they are generally
indeterminant (a continuum of equilibria exist). In a series of articles and books,
Schofield (e.g., Schofield 2003, 2004, 2006, 2009) analyzes a multidimensional
model with multiple vote-maximizing parties and a stochastic valence shock that
is extreme value distributed and added to the policy utility from each party. He
argues for existence by adding a “party activist” term to each party’s vote total,
and assuming that activist turnout depends only on the party’s platform (it is
independent of the platforms of other parties) and that the term is sufficient
concave.

2 General Model

2.1 Setting

Two candidates, A and B, compete in a Downsian election: the candidates
simultaneously commit to platforms, = and y, respectively, belonging to a com-
pact, convex policy space Z C R%. Policy preferences of the candidates are
given by utility functions ua,up: Z — R, which we assume are concave and
continuous. We also assume that u4 has unique ideal point 2, that up has

7See Theorem 3 and Proposition 6 of Duggan and Fey (2005).



unique ideal point g, and that these ideal points are distinct: & # 3.

In this abstract general model, we “black box” the electorate: given z,y € Z,
let Pa(z,y) and Pp(z,y) = 1 — Pa(z,y) denote the probability of winning for
candidates A and B, respectively. Assume candidates have mixed motives,
where A places weight A4 € [0, 1] on policy and weight 1 — A4 on office, while
B places weight A € [0, 1] on policy and 1 — A on office. Then A’s expected
payoff from platform pair (z,y) is

AalPa(z,y)ua(z) + (1 — Pa(z,y))ua(y)] + (1 — Aa)Pa(z, y)
o AaPa(z,y)ua(z) —ua(y)] + (1 —Aa)Pa(z,y)
= Pa(z,y)[Aa(ua(z) —ualy)) + (1 —Aa)l,

and similarly, candidate B’s expected payoff is an affine transformation of

(1= Pa(z,y))[Ap(us(y) —up(z)) + (1 - Ap)].

Note that we allow the candidates to trade off policy and office differently. Pure
policy motivation for A is captured by A4 = 1, while pure office motivation is
captured by A4 = 0, and similarly for B.

Henceforth, we examine pure-strategy Nash equilibria of the strategic game
between candidates A and B with strategy space Z for each candidate and
payoff functions

Ua(z,y) = Pa(z,y)[Aa(ua(®) —ua(y)) + (1= Aa)] (1)

and

Up(z,y) = (1—=Pa(z,y))As(us(y) —up(z))+ (1 - Ap)]. (2)

In the central analysis of the paper, we will assume that P4 (and thus Pg) is
continuous, so that the electoral game features compact, convex strategy spaces
and continuous payoffs. By the Debreu-Fan-Glicksberg theorem, existence of
equilibrium then hinges on convexity properties of payoff functions: the critical
question is whether Ua(z,y)and Ug(z,y) are quasi-concave in, respectively, x
and y.8

In an interior equilibrium (z*,y*) such that P4 is differentiable in z at
(*,y*) and such that u 4 is differentiable at *, the general first order condition
for candidate A is

Dy Pa(x™,y")[Aa(ua(z) —ua(y)) + (1 = Aa)]
= —AaPa(z*,y*)Dua(a®). (3)

8Peress (2010) works with more general policy utility that depends on both policies being
proposed and a binary parameter w € {0, 1} that indicates the winner of the election, writing
the utilities as w4 (w, z,y) and ug(w, z,y). Our existence result below extends to this setting.
‘We maintain the simpler formulation to stay closer to the previous literature.
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Thus, an optimal platform for A balances two forces: the left-hand side of
the first order condition reflects the marginal changes in A’s expected payoff
through her probability of winning as she varies the coordinates of x*, and the
right-hand side reflects the marginal change in her expected payoff through her
policy utility. At an optimum, these marginal forces must be exactly balanced.
Likewise, the first order condition for B is

Dy Pp(x*,y*)[Ap(up(y) —up(x)) + (1 = Ap)]
= —ApPp(z",y")Dup(y”),

with a similar interpretation. Although the first order condition is generally
only necessary, we show in Lemma 8 of Section 6 that it is essentially sufficient
when the probability of winning functions satisfy a log concavity condition.

A special case of the abstract model is the Downsian model of elections,
where we assume a finite, odd number n > 3 of voters with policy preferences
represented by utility functions u;: Z — R that are continuous and strictly
quasi-concave. Denote the ideal point of voter i by 4%, and define the dominance
relations > and = as follows: we write z = 2’ if a majority of voters strictly
prefer z to 2/,

n
2=2 e #itui(z) >u ()} > 3

and we write z = 2’ if a majority of voters weakly prefer z to 2/,
2= = #{iru(z) > ()} > g

The magority core consists of every policy z € Z such that: for all 2/ € Z, we
have z = 2’; or equivalently, there does not exist z’ € Z such that z’ = z. In
other words, a majority core point is weakly majority preferred to every policy.
Since voter utilities are strictly quasi-concave and the number of voters is odd, it
follows that if there is a majority core point z, then it is a Condorcet winner, in
the sense that for all 2’ # z, we have z > 2/, i.e., 2 is strictly majority preferred
to every other policy.

In the Downsian model, candidate A’s probability of winning satisfies

1 ifx >

and in case the candidates take the same platform, we assume there exist 7,7 €
(0,1) such that for all z € Z, we have

T < Pylz,2z) < 7T (5)

In the remaining case that platforms are distinct and the outcome is decided
by indifferent voters, i.e., x # y and both z = y and y > z, we specify the
probability of winning P4(z,y) € (0,1) as any strictly positive number less
than one. Of course, candidate B’s probability of winning is Pg =1 — Pj4.
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2.2 Existence of Equilibrium

In this section, we establish existence of a Nash equilibrium in the abstract
model under general conditions: in addition to our maintained assumptions of
continuity and concavity of policy utilities, we only need to require that win
probabilities are positive when the candidates locate at the same platform, that
they are continuous, and that each candidate’s probability of winning is log
concave in her own platform. In contrast to Hinich, Ledyard, and Ordeshook’s
(1972,1973) existence result for the stochastic bias model, we allow for candi-
dates to have policy preferences, as voters do, and we do not rely on a substantial
amount of uncertainty. Wittman (1983,1990) allows candidates to have mixed
motivations (placing positive weight on policy and office), but he assumes con-
cavity of Pa(z,y) in 2 and convexity in y. This implicitly relies on the presence
of a substantial amount of uncertainty about electoral outcomes, whereas our
weak log concavity condition has no such implications. In Section 3, we provide
microfoundations for our assumptions in terms of an explicit model of voter
preferences and electoral uncertainty.

We first assume that each candidate’s probability of winning is strictly pos-
itive (but not necessarily equal to one half) when they locate at the same plat-
form:

Condition 1. For all z € Z, we have 0 < Pa(z,z) < 1.

Next, we assume that each candidate’s probability of winning is continuous:

Condition 2. The probability of winning Pa(x,y), and thus Pg(x,y), is jointly
continuous in x and y.

Condition 1 is much weaker than the common assumption that win proba-
bilities are always strictly positive, and Condition 2 is self-evident. It precludes
models in which electoral uncertainty is generated by imperfect information
about the location of a pivotal voter (the median voter, in one dimension),
where counterexamples to equilibrium existence are known (Ball 1999, Grose-
close 2001); however, it is satisfied in many environments, including the stochas-
tic partisans model of Section 3. Together, the conditions permit a characteri-
zation of optimal policies in the following lemma, which is useful in establishing
existence of equilibrium.

Lemma 1. For all y, if * solves

Joax n(Pa(x,y)) +n(Aa(ua(®) —ua@) +1-a), (6)

where Za(y) ={x € Z : Ua(z,y) > 0}, then it solves

max Uy (z,y). (7)

rEZ

12



Under Condition 1, assuming that Aa < 1, or that both Condition 2 and y # &
hold, then the converse also holds: if x* solves (7), then it solves (6). Analogous
statements hold for candidate B, with Zp(xz) = {y € Z : Ug(z,y) > 0}.

Proofs not contained in the main text appear in the appendix.

Our final assumption for equilibrium existence is that each candidate’s prob-
ability of winning is log concave in her own platform. For all z,y € Z, we let

Saly) = {z€Z:Pa(x,y)>0}
denote the support set of A at y, and we let
Sp(z) = {yeZ:Paz,y) >0}

denote the support set of B at x. Note that by Condition 1, these sets are
nonempty.

Condition 3. For all z,y € Z, Pa(-,y) is log concave on the convex set Sa(y),
and Pg(z,-) is log concave on the convex set Sp(x).

The next theorem establishes that the above conditions are sufficient for
existence of a Nash equilibrium.

Theorem 1. Under Conditions 1-3, there is a Nash equilibrium in the general
model.

For the case of candidates who place positive weight on office, the proof of
Theorem 1 consists of a straightforward application of Kakutani’s fixed point
theorem. The case in which at least one candidate, say A, is purely policy
motivated is potentially complicated by the fact that Lemma 1 does not directly
apply when B locates at . When y = &, it is true that a best response for A is
to also locate at &, but there may be other best responses—A could just as well
locate at any platform that loses with probability one—and these could form
a non-convex set. This can be finessed by considering a refinement of A’s best
response correspondence,”? but the problem is solved straightforwardly by using
the fact that the equilibrium correspondence of the game has closed graph.

Remark 1. Theorem 1 can be applied in the one-dimensional stochastic
valence model. Duggan (2025a) notes that when the valence density f is log
concave, the functions F and 1 — F inherit this property. Then the log of
candidate A’s probability of winning,

In(F (um () = um(y))),

is an increasing, concave transformation InoF of a concave function u,(z) —
um(y) of , and thus P4(z,y) is concave in z. Similarly, B’s probability of
winning

In(1 = F(um(x) — um(y))),

9See Roemer (1997,2001) for an example in the stochastic median model.
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is a de creasing, concave transformation In o(1—F') of a convex function u,, (z)—
um (y) of y, and thus Pp(z,y) is concave in y. It follows that under Conditions 1—
3, and Theorem 1 yields existence of equilibria in the stochastic valence model.
Of course, the Downsian and stochastic median models violate continuity, so
Theorem 1 does not apply. [

Remark 2. A special case of the stochastic valence model is that of normally
distributed valence, i.e., F' is the normal distribution with mean p and standard
deviation o. By the preceding remark, the one-dimensional model with normal
shock admits a Nash equilibrium—regardless of the mean and variance of the
shock distribution. In particular, fixing u, we can analyze equilibria as uncer-
tainty is removed from the model, i.e., 0 — 0. When the distribution of valence
is concentrated near u, the function F' approximates a step function, and the
probability of winning F(um,(z) — um(y)) will fail to be concave in 2. Whereas
existence results that assume substantial uncertainty (concavity of the probabil-
ity of winning function) cannot be applied, Theorem 1 ensures that the analysis
is not vacuous: equilibria exist for all o, even as the variance converges to zero,
and we can therefore examine the limiting properties of equilibria. Assuming
that > 0, and that the advantaged candidate B places positive weight on pol-
icy, Duggan (2025a) shows that candidate A’s equilibrium platform converges
to the median voter’s ideal point, and B’s platform converges to the platform
(on B’s side of the median) that makes the median voter indifferent between
the candidates. That is, candidate B leverages her valence advantage to obtain
preferred policy outcomes, and moreover, B’s probability of winning converges
to one along the sequence. [

2.3 Uniqueness with Office-Motivated Candidates

When candidates are purely office motivated, an equilibrium exists by Theorem
1. We show next that under a strict quasi-concavity condition on the probability
of winning functions, the equilibrium is, in fact, unique. Of course, because
the electoral game between office-motivated candidates is constant sum, each
candidate’s platform secures at least her equilibrium probability of winning,
regardless of the other’s policy position. The equilibrium platforms are what
Calvert (1985) refers to as the “estimated medians” of the candidates. When
the probability of winning is constant on the diagonal, where both candidates
choose the same platform, we furthermore show that the equilibrium features
“convergence,” i.e., the candidates locate at the same platform. That platform is
the unique position securing each candidate at least her equilibrium probability
of winning. Each candidate wins with positive probability, but because we do
not assume symmetry on the diagonal, it is possible that one wins with higher
probability than the other.

Theorem 2. Under Conditions 1-3, assume that for all z,y € Z, Pa(z,y) is a
strictly quasi-concave function of x on Sa(y), and it is strictly quasi-convex in
y on Sp(x). If the candidates are purely office motivated, i.e., Aa, A\g =0, then

14



there is a unique Nash equilibrium (z*,y*) in the general model, and it satisfies:
forall z € Z,

PA(Zay*) S PA(x*uy*) S PA(J;*,Z).

*

Moreover, if Pa(z,z) is constant in z, then x* = y*.

Under the assumptions of Theorem 2, we let z* denote the unique equilibrium
platform when both candidates are purely office motivated.

Remark 3. Note that to obtain platform convergence, Calvert (1985) imposes
the assumption that the game is symmetric, i.e., Pa(z,y) = Pp(y,x), which
implies that Py(z,z) = % for all z. We use the weaker assumption that the
probability of winning is constant along the diagonal. [

2.4 Competitiveness of Elections

Characterization of equilibrium at this abstract level is challenging, but very
generally, each candidate wins with positive probability in equilibrium; that is,
elections are typically competitive.

We say a platform pair (z, y) is non-standard if one candidate wins with prob-
ability one at the other’s ideal point: formally, either (i) y = & and P4(x,y) =0,
or (ii) x = § and P4(x,y) = 1. Otherwise, the pair (x,y) is standard. Obviously,
if Condition 1 is strengthened so that each candidate’s probability of winning
is always positive, then all platform pairs are standard. Moreover, by Lemma
1, there do not exist non-standard Nash equilibria when both candidates place
positive weight on office: if (x*,y*) is an equilibrium, then the lemma implies
that each candidate’s payoff is strictly positive, and thus each wins with posi-
tive probability. In the stochastic partisans model of Section 3, we give weak
conditions under which non-standard equilibria never exist in the interior of the
policy space, regardless of the supports of the probability of winning functions,
and (essentially) irrespective the candidates’ policy weights.

Nevertheless, the following example demonstrates that, in lieu of additional
background conditions, non-standard equilibria may exist in the model.

Example 1. Assume that Z C R, that A is purely policy motivated, and
that B is purely office motivated, so Aa = 1 and Ag = 0. Assume that for
some x € Z, we have Py(x,%) = 0; intuitively, z is sufficiently extreme that
when B locates at A’s ideal point, she wins with probability one. Then (z, &) is
an equilibrium, as each candidate receives her maximum payoff. As discussed
above, this example relies on the assumption that A’s probability of winning
is not always positive, and that it is not the case that both candidates place
positive weight on office. [

The following theorem establishes that in every standard equilibrium, each
candidate’s payoff is positive. Note that the result relies only on Conditions
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1 and 2, without the presence of Condition 3, which we would add to ensure
existence.

Theorem 3. Under Conditions 1 and 2, for every standard Nash equilibrium
(x*,y*) in the general model, we have Ux(xz*,y*) > 0 and Ug(z*,y*) > 0.
Therefore, if Aa,Ap < 1, then the candidates’ payoffs are strictly positive in
every Nash equilibrium.

In particular, each wins with positive probability, a fact that we use later in
our analysis, in Theorem 12, of competitiveness of elections.

Corollary 1. Under Conditions 1 and 2, for every standard Nash equilibrium
(x*,y*) in the general model, the candidates each win with positive probability:
Pa(z*,y*) > 0 and Pg(z*,y*) > 0.

2.5 Continuity of Equilibrium

This section complements our existence result with a general analysis of equilib-
rium continuity with respect to parameters of the general model. The conclu-
sion, when the Downsian model of electoral competition is taken as the limiting
model, is that the addition of a small amount of noise to the Downsian model—
either with purely policy-motivated candidates or with candidates who place
positive weight on office—cannot solve the problem of non-existence in the mul-
tidimensional setting. We imbed the general model in a space ©, where each
model 6§ € © corresponds to a full specification of parameters:

0 (4 0 0 6 (4
(uy,up, Na, Ag, Pa, Pg),

where u% and u% are continuous and concave, A%, A% € [0,1], and P§ = 1— P§.
We specify candidate payoffs as above, using the notation fo and Ug, to bring
out the model explicitly.

Fixing a sequence {(6™, 2™, y™)} of models and platform pairs and a “limit-
ing” triple (0, x,y), and given € > 0, we say z is an e-robust better reply to (x,y)
at 0 for A if (1) U4(z,y) > US(z,y), (2) P§(z,y) > 0, and (3) there exists a
natural number m such that for all m > m,

Py" (z™,y™) Pi(z,y)
Y IO 0. . T6 (8)

PA (Zvym) PA(Zvy)
where B.(z) denotes the open ball of radius epsilon containing z. In words, z is a
profitable deviation, and even if the candidates’ platforms are perturbed slightly,
then z increases A’s probability of winning (relative to ™) by an amount that
is not too much less than the increase from z (relative to z). Likewise, z is
an e-robust better reply to (x,y) at 0 for B if (1) U4(x,2) > U%(z,y), (2)
PY(z,z) > 0, and (3) there exists a natural number 7 such that for all m > m,

PE (™, y™) P (z,y)
PY" (zm, 2) P (z,2)

16



We use the concept of robust better reply to formally isolate sequences along
which the equilibrium correspondence has closed graph.

A sequence {(6™,z™,y™)} of models and platform pairs satisfies the closed
graph criterion at (6, x,y) if we have

(i) ui‘m — uf and u%m — u% uniformly, /\zm — A%, and )\%m =%,
(i) (@™, y™) = (2,9),

(iii) if (x,y) is not a Nash equilibrium at 6, then for all € > 0, some candidate
has an e-robust better reply to (x,y) at 6.

Condition (iii) is a lower semi-continuity condition. It says that if (z,y) is
not an equilibrium at 6, then one candidate, say A, has an e-robust better reply.
This implies that if z increases candidate A’s probability of winning relative to
x in the model 8, then even if the initial platforms x and y are allowed to vary
slightly, then z achieves close to (or high than) that relative increase in nearby
models. This condition is automatically satisfied if the probability of winning
is jointly continuous at (0, z,y) and (0, z,y). But the condition is much weaker
than that: it may be that one candidate and not the other has an e-robust
better supply; and it may be that not all better replies have this robustness
property. Furthermore, the condition allows for the possibility that candidate
A can obtain a higher (by a strictly positive increment) relative increase in her
probability of winning by moving to a nearby platform, and thus it does not
imply continuity of the probability of winning.

Remark 4. The closed graph criterion above is similar to Reny’s (1999) better
reply security condition, which he uses to establish existence of equilibria in
games with discontinuous payoffs. His condition implies that if a profile of
strategies is not an equilibrium, then some player has a better reply that can
secure a higher payoff, even if others’ strategies are allowed to vary slightly.
Unlike his condition, ours considers a sequence of models, rather than a fixed
model, and it is not stated in terms of payoffs directly, but only on the underlying
probability of winning. [

Next, we state a general continuity result for the general model. Although
our notion of approximation is not topological, the theorem is essentially a closed
graph result for the equilibrium correspondence. An implication of the result
(using compactness of Z) is that if there is no equilibrium in the limiting model
0, then for high enough m, there is no equilibrium in model ™.

Theorem 4. Assume that {(0™,2™,y™)} satisfies the closed graph criterion
at (0,z,y). If (™,y™) is a Nash equilibrium of 6™ for all m, then (z,y) is a
Nash equilibrium of 6.

Importantly, because it permits discontinuities in the probability of winning,
Theorem 4 can be applied to the Downsian model as the limiting case. Fix
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candidate utilities u4 and up, weights Mg, Ag € [0,1), and let 6 be the Downsian
model with continuous, strictly quasi-concave voter utilities u;, so that A’s
probability of winning P§ satisfies equations (4) and (5). Consider a sequence
of models {6} such that for all z,y € Z, we have:

(a) if = y, then there exist open neighborhoods G of x and H of y such that
P4 (-) — 1 uniformly on G x H,

(b) if y > x, then there exist open neighborhoods G of = and H of y such that
PY"(-) = 0 uniformly on G x H,

where > refers to the relation of majority dominance in model .19 Thus, if
one candidate’s platform dominates the other’s in majority voting, then along
the sequence of models, her probability of winning converges to one, even if the
platforms of the candidates are allowed to vary slightly. Our analysis uses the
following lemma, which is well-known and straightforward to prove using strict
quasi-concavity of voter utilities.

Lemma 2. For all distinct x,y € Z and all « € (0,1), if x > y, then ax+ (1 —
a)y - y.

In the next result, which assumes the candidates place strictly positive weight
on office, we consider a sequence of models satisfying conditions (a) and (b)
above, and any corresponding sequence of equilibria. We show that there is
a subsequece of equilibria that satisfies the closed graph criterion, and thus
Theorem 4 applies. Of course, conditions (i) and (ii) in the definition of the
closed graph criterion are satisfied by construction, so the key is the lower semi-
continuity condition (iii).

Theorem 5. Fix continuous, concave utilities ua and ug, and payoff param-
eters Aa,Ap < 1. Let 8 be a Downsian model of elections, and consider a
sequence {0™} of models such that for all z,y € Z, conditions (a) and (b) hold.
If (™, y™) is a Nash equilibrium of 0™ for all m with (z™,y™) — (z,y), then
(x,y) is a Nash equilibrium of 6.

Remark 5. Theorem 5 of Duggan and Fey (2005) proves the closed graph result
for the case of pure policy motivation in the limit model, i.e., /\1‘94 = )\% =0,
with the additional assumption that win probabilities in each model 8™ are
positive for both candidates. That paper imposes the background assumption
of differentiable policy utility, but the differentiability assumption is not used
in the proof of the theorem. Our Theorem 5 above covers the case of mixed
motivations with positive weight on office for both candidates. [

10Propositions 4 and 5 of Duggan and Fey (2005) provide two sets of conditions under
which (a) and (b) hold. The first is the stochastic bias model with shocks independently
distributed across voters such that the shock distribution converges weakly to the unit mass
on zero. The other is a multidimensional version of the stochastic median model, in which
preference shocks converge weakly to a degenerate distribution.
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We end this section with two interesting implications of Theorem 5. First,
in the one-dimensional model, if both candidates place positive weight on office,
then a median voter result holds: the unique equilibrium in the limiting model
is that both candidates locate at the median voter’s ideal point, and by our
continuity result, if we add a small amount of uncertainty to the model, in the
sense of (a) and (b), then equilibria (if they exist) in models close to  must be
close to the median.

Corollary 2. Assume Z C R, and fix continuous, concave utilities ua and up
and payoff parameters Aa, A\p < 1. Let 0 be a one-dimensional Downsian model
of elections, and consider a sequence {6™} of models such that for all x,y € Z,
conditions (a) and (b) hold. If (x™,y™) is a Nash equilibrium of 0™ for all
m with (2™, y™) — (z,y), then the candidates’ platforms converge to the ideal
point of the median voter: x =y = Z;.

The above implication is relevant when the policy space is one-dimensional,
but in the multidimensional Downsian model, it is generically the case that the
majority core is empty: for all y, there is some z such that z > y. In this case,
assuming the candidates place positive weight on office, equilibria fail to exist.
To see why, note that in any equilibrium (z,y), each candidate must win with
positive probability: if, say, candidate A’s probability of winning were zero, then
she could increase her payoff by locating at y.

Moreover, the candidates platforms must be located at the same policy: if
x # y, then using Lemma 2, candidate A could locate at z, = azx + (1 — a)y,
and for a € (0,1), she would win with probability one; since us(z) > ua(y),
this would increase her payoff. Finally, the policy at which the candidate locate
must belong to the majority core: if 2z = y and z > y, then z, = ax + (1 — @)z
would be a profitable deviation for « € (0, 1) close enough to one. This line of
argument establishes the second implication of Theorem 5.

Corollary 3. Fix continuous, concave utilities ua and up and payoff parame-
ters A, Ap < 1. Let 6 be a multidimensional Downsian model of elections such
that the magjority core is empty, and consider a sequence {0™} of models such
that for all x,y € Z, conditions (a) and (b) hold. Then for high enough m, there
are no Nash equilibria in the model 0™ .

Corollary 3 demonstrates that, assuming candidates place positive weight on
office, if there is no equilibrium in the multidimensional Downsian model, then
adding a small amount of uncertainty to the model cannot solve the existence
problem. If we want a theory of elections that can be applied in environments
with low uncertainty, which is permitted under the conditions of Theorem 1,
then we must look to alternatives to the Downsian model for microfoundations.
We turn to this in the following section.

Remark 6. Banks and Duggan (2005) prove similar results for the stochastic
bias model. Theorem 10 of that article is a closed graph result for the special
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case in which the limiting model is Downsian. It establishes that if a sequence of
models approaches 6, and if a corresponding sequence of pure strategy equilibria
converges to (z,y), then the limiting platform pair must be such that x and y
belong to the core of the Downsian model; therefore, if the core is empty in the
Downsian model, then adding a small amount of noise cannot create equilibria
in pure strategies. In contrast to our results, Banks and Duggan (2005) restrict
attention to vote-maximizing candidates, and their closed graph result allows for
sequences of mixed strategy equilibria, rather than focusing on pure strategies,
as we do here. O

3 Stochastic Partisans Model

3.1 Microfoundations

In this section, we open the black box of the probability of winning function
to provide a microfounded model satisfying Conditions 1-3 for equilibrium ex-
istence, while allowing for multiple policy dimensions and low uncertainty. By
Corollary 3, the Downsian model does not provide such a foundation: if equi-
libria do not exist in the Downsian model, the typical the case in multiple
dimensions, then adding a small amount of uncertainty does not create equilib-
ria. The critical condition here is log concavity in Condition 3. It is possible to
add a small amount of uncertainty to smooth out the probability of winning and
to satisfy the other two conditions, but non-convexities present in the Downsian
model are inherited by nearby probabilistic election models. We therefore pro-
pose an alternative foundation, in which a continuum of policy-oriented voters
is partitioned into a set of types, each corresponding to a policy utility function;
within each type, there is a distribution of bias; and aggregate uncertainty is
introduced via a stochastic mass of partisan voters who turnout to support the
candidates, regardless of their policy platforms.

Formally, a unit mass N of policy oriented voters is partitioned into a prob-
ability space (T, 7, 7) of voter types t, where the fraction of policy-oriented
voters with types belonging to a measurable set S € .7 is 7(S). We assume
that there is a continuum of voters of each type ¢, and that the policy utilities
of the type t voters are given by u;: Z — R, where u(z) is concave and con-
tinuous in z, with ideal point 2%, and it is also measurable in ¢ with the Borel
sigma-algebra on R.

In addition to policy, voters’ evaluations of the candidates incorporate id-
iosyncratic bias terms ;, which are distributed according to F; among the type
t voters. We maintain the assumption that F;(53;) is continuous in f;, and
although it is not important for equilibrium existence, we assume that the re-
striction of F} to its support set, denoted Sp, = {f; : 0 < Fy(8;) < 1}, is
differentiable, and that the restriction of the density f; to S, is continuous.
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Moreover, we assume that the support set Sp, contains all possible utility dif-
ferences for the type t voters, i.e., for all x,y € Z,

fe(ue(z) —ui(y)) > 0. 9)

Finally, we assume that F3(8;) is measurable in ¢, and that f:(8;) is uniformly
T-integrable as a function of ¢, which implies that f;(8;) is also measurable in ¢
(Aliprantis and Burkinshaw, 1990, Theorem 20.3).%!

Remark 7. This model of voter types is general, and it admits the case of
a finite set of voter types as a special case, where we index the type set as
T = {t1,...,t,} and give T the discrete sigma-algebra. Then we can define 7;
as the share of type t; voters among the policy-oriented electorate. Integrability
is then moot, and integrals are replaced by weighted sums. [J

We interpret 3; as a net bias for candidate B, so a voter ¢ who is type ¢
supports A if and only if u;(z) > u.(y) + ;. Then the fraction of type t voters
supporting A is F;(u:(z) — u(y)), and thus the mass of policy oriented voters
who vote for A is

/ Fy(uy(z) — uy(y))dr,

and the mass of policy oriented voters who vote for B is

1— /Ft(ut(x) —u(y))dr.

Thus, the net mass of votes in favor of candidate A among policy oriented voters
is

2 (/ Fi(uy(z) - ut(y))d7> 1,

and the net vote in favor of B is negative one times this. Since f;(u;(z)—u;(y)) >
0, it follows that regardless of the platform choices of the candidates, some type
t voters will support A, and some will support B.

Since we assume a continuum of voters of each type, the idiosyncratic biases
do not introduce aggregate uncertainty into the election. To do so, we assume a
set P of partisan voters who stochastically vote for one candidate or the other
independent of policy after the candidates adopt their platforms. The relevant
quantity is 7, the net mass of partisan voters who vote in favor of candidate B,
which we model as a random variable distributed according to the distribution
function G, where we assume that G is continuous, that the restriction of G to
its support set, denoted Sg = {7 : 0 < G(w) < 1}, is differentiable, and that
the restriction of the density g to Sg is differentiable. This allows us to capture
the family of uniform densities as particular cases.

HUWe say fi(8:) is uniformly T-integrable if there is a 7-integrable function h: T — R such
that for all 8; € R and all t € T, we have h(t) > |f+(8:)|. Note that uniform 7-integrability
is implied if f¢(B¢) is bounded, i.e., there exists b > 0 such that for all for all 5; € R and all
t € T, we have ft(8;) <b.
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Since G is nonatomic, we can ignore the possibility of a tied election, and
therefore candidate A wins if and only if

r o< 2(/Ft(ut(x)—ut(y))d7)—1,

which occurs with probability

Pa(zy) = G (2 (/ Fi(us(2) —ut(y))d7> - 1) . (10)

We assume that the support set Sg is convex, but it may be small; we assume

only that
0 < G<2(/Ft(0)d7'> —1> < 1, (11)

so that when the candidates locate at the same platform, each wins with positive
probability. By (11), Condition 1 is automatically satisfied, and continuity of
the distributions F; and G implies that the probability of winning is continuous
for each candidate, delivering Condition 2.

Remark 8. Although we assume that each F; has support containing all possi-
ble utility differences of the type t voters, we allow the support of G to be small,
subject to satisfying (11). Thus, for example, we allow G to be uniform with
arbitrarily small support, as long as each candidate’s probability of winning is
strictly positive when the candidates adopt the same platform. O

Finally, we impose the following condition on the curvature of F; and G to
fulfill Condition 3.12

Condition 4. The density g is log concave on its convex support, and for all t,
Fy(u(z) — ue(y)) 4s concave in x and convez in y.

By Theorems 1 and 3 of Bagnoli and Bergstrom (2005), Condition 4 implies
that G and 1 — G are log concave on the support of G. Then, as a function
of z, In(P4(z,y)) is the composition of an increasing, concave function In oG,
with a concave function, the integral of Fy(u;(x) — u(y)) across types, making
it concave. Similarly, as a function of y, In(Pg(x,y)) is the composition of
a decreasing, concave function Ino(1 — ), with a convex function, making it
again concave. We conclude that the functions P4 and Pp satisfy Conditions
1-3. It would obviously be sufficient for to assume G and 1 — G, rather than the
density g, are log concave; we maintain the stronger assumption in Condition
4, for simplicity.

Remark 9. Persson and Tabellini (2000, Section 3.4) consider a one-dimensional
model with a similar decomposition of shocks. They assume three voter types,

12Condition 4 implies that the closure of the support of each Fy contains all possible utility
differences, u¢(x) — ut(y), as « and y vary over Z. This is implied by inequality (9).
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a continuum of voters of each type, and two candidates who are purely office
motivated. Each voter has an idiosyncratic bias in favor of one candidate, and
following the choice of platforms, a net valence for that candidate is drawn.
Persson and Tabellini assume that the idiosyncratic bias and the stochastic va-
lence shock are both uniformly distributed over a sufficiently large interval. This
determines a probability of winning function similar to (10), but which is linear
in the voters’ utility differences. [

Remark 10. Desai (2025) analyzes a two-dimensional policy space, and a con-
tinuum of voters with four voter types. He also uses a similar decomposition
of shocks, assuming an idiosyncratic bias term and an aggregate shock, both
uniformly distributed with large support. In his model, parties are policy mo-
tivated and complete on two dimensions, a linear tax and an identity-based
social cleavage dimension on which they incur a cost of campaigning. He proves
existence and uniqueness of equilibrium in this model. [

3.2 Existence of Equilibrium

Having verified Conditions 1-3, Theorem 1 immediately delivers existence of
equilibrium in the general stochastic partisans model.

Theorem 6. Under Condition 4, there is a Nash equilibrium in the stochastic
partisans model.

Theorem 6 allows for any number of policy dimensions. Condition 4 does
assume the idiosyncratic bias is sufficiently dispersed, a condition familiar from
Hinich, Ledyard, and Ordeshook (1972,1973), Lindbeck and Weibull (1987,1993),
Peress (2010), and others. However, the log concavity of g is quite weak, and
it permits many familiar density functions from probability theory. In particu-
lar, equilibria exist even if the variance of the aggregate shock is low, and the
distribution of 7 is close to degenerate.

All of our results hold with a modification of the model in which each type
t voter also receives idiosyncratic, expressive cost of voting, say, v; > 0. A type
t voter ¢ with idiosyncratic bias €; supports candidate A if and only if

vi < u(T) —wi(y) — e,

Now, let A denote the distribution function for the sum ; + ¢;, so the fraction
of type t voters who support A is F/*(us(z) — us(y)). Voter i supports B if and
only if

vi < wuy) —w(z) + €,

and letting F/? denote the distribution for 7; — ¢;, the fraction who support
B is FP(u(y) — us(w)). We again assume stochastic partisans, and we extend
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Condition 4 so that F}P(u;(y) — us(x)) is convex in & and concave in y. Then
the net mass of policy oriented voters in favor of A is

[ @) = ww) - FP (o) - wla))dr

which is concave in x and convex in y, and our existence result goes through.

3.3 Pareto Optimality of Equilibrium

As a first step toward characterizing equilibria, we next make the simple ob-
servation that in equilibrium, each candidate’s platform is such that there is
no policy change that helps the candidate without hurting at least one voter.
Informally, the candidates do not “waste” policy or probability of winning.

Formally, we say z is Pareto optimal for T U {A} if there does not exist
x’ € Z such that (i) ua(a’) > ua(z) and for all ¢ € T, uy(x’) > w(x), and (ii)
either wa(a’) > wa(x) or there exists measurable S C T with 7(S) > 0 such
that for all ¢t € S, we have u(2’) > u.(z). We define y to be Pareto optimal for
T U {B} if an analogous condition holds, with B substituted for A. Note that
we restrict attention to standard equilibria; later, in Subsection 3.5, we provide
weak conditions under which all interior equilibria are standard.

Theorem 7. Under Condition 4, assume Aa, A\g > 0. For every standard Nash
equilibrium (x*,y*) in the stochastic partisans model, (i) x* is Pareto optimal
for TU{A}, and (i) y* is Pareto optimal for T U{B}.

We can sharpen the Pareto optimality result by adding differentiability of
policy utilities. Note that Condition 5, below, implies that the derivative Duy(z)
is measurable in ¢, and that for all z,y € Z, Fi(ui(x) —u(y)) is measurable as a
function of t.13 Moreover, since D,u;(x) is uniformly bounded, the derivative,

Dy Fy(u(z) —u(y)) = frlue(z) — ue(y)) Daue(z),

is uniformly 7-integrable. It follows that | Fy(u;(x) — ui(y))dr is also differen-
tiable, and that we can take the derivative with respect to x through the integral
sign,

D, / Fy(u(z) — uy(y))dr = / folus(z) — ur(y)) Dyug(z)dr,

13Note that ho(t, 3) = Ft(f) is measurable in ¢ and continuous in 3, so it is a Caratheodory
function, and it is therefore measurable with respect to the product sigma-algebra 7 ® %y
on T x R and the Borel sigma-algebra % on R (Aliprantis and Border, 2006, Lemma 4.51).
Similarly, the mapping ha(t, ) = ut(x) — ut(y) is measurable with 7 ® Bz on T x Z, where
Az is the Borel sigma-algebra on Z, and with %r on the real line. Of course, the projection
mapping hi(t,z) =t is (7 Q Bz, 7 )-measurable. Then the Cartesian product of mappings
(h1,h2)(t,z) = (t,ue(xz) — ut(y)) is measurable with J ® Bz on T X Z and T @ HBr on
T x R. Finally, we can view Fy(u¢(x) —u¢(y)) as the composition of hg and (h1, h2), which is
(T ® Bz, PBr)-measurable.

24



with analogous remarks for the derivative with respect to y (Aliprantis and
Burkinshaw, 1990, Theorem 20.3).

Condition 5. Candidate utility functions ua and up are differentiable, that
for each t, us is differentiable, and that Du:(z) is uniformly bounded, i.e., there
exists ¢ > 0 such that for all z € intZ and all t € T, || Du(2)]| < c.

In an interior equilibrium (z*,y*), candidate A’s platform satisfies the nec-
essary first order condition in (3), which becomes:

29 a(ua(z®) —ualy™)) +1 - AA]/ftDUt(I*)dTJr AaGDua(z") = 0,

where g and G are evaluated at 2 [ Fy(us(z*) —us (y*))dr —1, and f; is evaluated
at us(2z*) — us(y*). This is also the first order condition for a welfare maximiza-
tion problem with concave objective function, and thus, A’s equilibrium policy
maximizes a weighted sum of candidate and voter utility, as we establish in the
next theorem.

Theorem 8. Under Condition 5, for every interior, standard Nash equilibrium
(x*,y*) in the stochastic partisans model, x* solves

ﬂgawu»urﬂn/mmmw—m@wm,
where

Gz
GAa + 292 a(ua(z*) —ualy*)) +1— 4]’

with a corresponding result holding for candidate B.

In Figure 1, we depict candidate A’s optimal platform choice, given the
platform y* of candidate B. Here, we assume A has quadratic utility; we show
her indifference curve (a perfect circle) through z*; and we illustrate sample
contour sets of the function

/fmmm—m@ww, (12)

which is parameterized by y*. Consistent with Theorem 8, the optimal platform
for A is such that the gradients of us and (12) point in opposite directions.
Adding the assumption that F; is uniform, we will see in Section 4 that B’s
policy enters only through a constant term, and thus does not affect the level
sets of this function. This allows us to provide foundations for an aggregate voter
result, in which the electoral game is “as if” there is a single policy oriented
voter.
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Figure 1: Optimality of «*

3.4 Office-Motivated Candidates and Welfare Optimality

We now consider the classical case of purely office-motivated candidates, in
which the electoral game is constant sum. In the general model, Theorem 2 pro-
vides a strict quasi-concavity condition under which the equilibrium is unique,
with both candidates adopting the platform z*. Here, we use the structure of
the stochastic partisans model to sharpen that result, and to provide an approx-
imate welfare optimality result as the candidates place high weight on office. We
verify the strict quasi-concavity condition of Theorem 2 to obtain equilibrium
uniqueness, and since A’s probability of winning is constant and equal to

Pa(z,2) = G<2</Ft(0)dr>—1)

when the candidates choose the same platform, it follows that the equilibrium
is “convergent,” with x* = y* = z*.

Moreover, if it is interior, then the equilibrium platform maximizes a social
welfare function that is a weighted sum of voter utility, where the weight on the
measurable set S of voters is [ f;(0)d7, representing the marginal impact on
the support from voters in S from a small change in a candidate’s platform.

Theorem 9. Under Condition 4, assume that the candidates are purely office
motiwated, i.e., Aa = Ap = 0, and that candidate A’s share of policy-oriented
voters, in (12), is strictly quasi-concave in x and strictly quasi-concave in y.
There is a unique Nash equilibrium (z*,y*) in the stochastic partisans model,
and this satisfies x* = y* = z*. If the equilibrium s interior, and if each u; is
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differentiable, then z* is the unique solution to the welfare mazimization problem

max /ft(O)ut(z)dT. (13)

z€Z

This characterization is closely related to findings by Hinich (1977), Lind-
beck and Weibull (1987,1993), and Banks and Duggan (2005), who assume
that candidates are vote maximizing, rather than seeking to maximize proba-
bility of winning. The latter article establishes that, under the conditions of
Theorem 9, there is a unique pure strategy equilibrium in the game between
vote-maximizing candidates. Because we assume there is no abstention on the
part of voters, we can define the payoff of candidate A in that game as her
plurality among policy-oriented voters,

Va(ey) = 2 / Fy(uy(z) — w(y))dr — 1,

and we define candidate B’s payoffs by Vg = —V4. Let (w*,w*) denote the
unique equilibrium of this game.

The next result highlights the close connection: the equilibrium in the
stochastic partisans model with purely office-motivated candidates is also the
unique equilibrium in the game between vote-maximizing candidates, in which
there is no partisan shock. Indeed, if z* # w*, then we can assume that can-
didate A has a profitable deviation from (z*,z*) in the game between vote-
maximizing candidates, so there exists 2’ € Z such that

2/Ft(ut(x’) —u(2))dr — 1 = Va(2!,2%) > Va(z*,2%) = 2/Ft(0)d7—1,

but by (11), it follows that Ua(z', 2*) > Ua(z*, z*), contradicting the fact that
(z*,2*) is an equilibrium in the stochastic partisans model with purely office-
motivated candidates. This yields the following theorem.

Theorem 10. Under Condition 4, assume that the candidates are purely office
motivated, i.e., A\a = Ap = 0, and that candidate A’s share of policy-oriented
voters, in (12), is strictly quasi-concave in x and strictly quasi-concave in y.
Then

max/Ft(ut(x) —u(2¥)dr = miE/Ft(ut(z*) — ug(y))dr,

TEZ ye

and thus z* = w*.

While Theorem 9 applies directly to environments in which candidates are
purely office motivated, it has implications for the model when the candidates
are close to purely office motivated: if we introduce a small amount of policy
motivation into the model, then the candidates will typically diverge slightly, but
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their equilibrium platforms will be close to welfare maximizing policies. Thus,
analysis of electoral politics simply as the solution of the welfare maximization
problem in (13) are robust to the objectives of the candidates. Given Theorem
9, the proof of our approximate welfare optimality theorem, stated next, follows
directly from continuity of candidate payoffs, compactness of the policy space,
and upper hemicontinuity of the equilibrium correspondence with respect to
policy weights.

Theorem 11. Under Condition 4, assume that candidate A’s share of policy-
oriented voters, in (12), is strictly quasi-concave in x and strictly quasi-concave
iny. Let {\},N5)} be a sequence of policy weights such that the candidates
become arbitrarily office motivated, i.e.,
Jm N = i g = 0

Then there is a corresponding sequence {(x™,y™)} of Nash equilibria in the
stochastic partisans model, and for every such sequence, the limit points of all
convergent subsequences of {x™} and of {y™} maximize voter welfare. More-
over, if each uy; is strictly concave, then equilibrium platforms approzimate the
social welfare optimum:

lim 2™ = lim ¢y™ = 2z*.
m—0o0 m—0o0

Note that our framework differs from that of Hinich, Lindbeck-Weibull, and
Banks-Duggan, in that candidate objectives are flexibly parameterized by the
policy weights A4 and Ap. Our robustness result cannot be stated in the vote
maximization approach, where it is challenging to introduce policy concerns
on behalf of candidates, and where equilibrium existence is problematic in the
absence of the vote-maximizing assumption.

3.5 Competitive and Meaningful Elections

The literature on multidimensional elections has lacked an approach that guar-
antees existence of equilibria in which elections are both competitive (in the
sense that each candidate wins with positive probability) and meaningful (in
the sense that the candidates adopt distinct platforms). Corollary 1 shows, in
the general model, that each candidate wins with positive probability in every
standard Nash equilibrium, i.e., every equilibrium for which it is not the case
that one candidate wins with probability one at the other’s ideal point. In con-
nection with that result, we noted that non-standard equilibria typically fail to
exist: for example, this is true when the probability of winning functions are
always positive, or when both candidates place positive weight on office.

Next, we assume that it is not the case that one candidate is purely policy
motivated and the other is purely office motivated, and we give a simple differen-
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tiability condition that precludes interior, non-standard equilibria: it is enough
that the distribution G of the partisan shock be differentiable everywhere.'

Lemma 3. Under Condition 5, assume that Aa(1—=Ag) < 1 and (1= a)Ap < 1,
and that G is differentiable on R. Then every interior Nash equilibrium in the
stochastic partisans model is standard.

Remark 11. The differentiability assumption of Lemma 3 is not satisfied by
distributions that are non-differentiable at the boundary points of their support,
such as the uniform distribution. However, such a distribution can be uniformly
approximated by a smooth distribution function to any desired degree. [

Lemma 3 omits the cases Aa = 1 — Ap € {0,1}, where the candidates’
objectives are diametrically opposed, i.e., one is purely office motivated, and
the other is purely policy motivated. Recall that, in the context of the general
model, Example 1 demonstrated a non-standard equilibrium when candidate A
is purely policy motivated, and B is purely office motivated, so that A4 (1—Ag) =
1. The only assumption there on the candidates’ probability of winning was
that Pa(z,2) = 0 for some z, and it is straightforward to specify the stochastic
partisans model to satisfy that condition.

Example 2. Assume that Z = [-2,2], that A’s ideal point is & = —1, that
there is a single type t = 1 of policy-oriented voter, with ideal point at zero and
quadratic utility, i.e., u1(z) = —22. Let Fy be uniform on [—4,4], and let G is
uniform on [—3, £]. Then for all z,y € Z with —2 < —2? + y? < 2, we have
1 —I2 + 2
Fi(w(@) —w(y) = 5+——s"

and A’s probability of winning satisfies

—.’II2 2
Pa(z,y) = GEFi(ur(z) —ui(y)) —1) = %Jr#,

We have Py (z,y) = 0 when —2?+y? < —2, and P4 (z,y) = 1 when —z2+y? > 2.
Setting x = 2, we then have P4 (z, &) = 0, satisfying the assumptions of Example
1. Thus, if A is purely policy motivated, and B is purely office motivated, then
there is a non-standard equilibrium. O

The preceding example shows that Lemma 3 is tight with respect to the
assumption Aa(1 — Ap) < 1, and by a symmetric example, the assumption
(1= Xa)Ap < 1 also cannot be dropped. To see the role of differentiability, we
elaborate on Examples 1 and 2.

Example 3. Assume that Z = [—2,2], that A is purely policy motivated with
quadratic utility, and that B places small but positive weight on policy, also

14We maintain the assumption that G is differentiable on its support Sg = {7 : 0 < G(7) <
1}, but this assumption allows for points of non-differentiability at the boundary.
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with quadratic utility. Assume the ideal points of the candidates are both to
the left of the voter, with £ = —1 and § = —2. Then A4 = 1, and A > 0,
and the candidates’ objective functions satisfy the assumptions of Lemma 3.
However, we drop the assumption that G is differentiable on the real line, and
as in Example 2, we let G be uniform on [—%, %] Set #=+3and j =& = —1.
Then —3? + % = —2, so Pa(%,7) = 0, and A loses to B at her own ideal
point. Since A obtains her maximum payoff, the candidate cannot deviate
profitably. It is clear that B cannot profitably deviate by moving rightward, as
her probability of winning is already one, so such a move could only generate
worse policy outcomes and/or lower probability of winning. To see that she
cannot profitably deviate by a leftward move, note that

Us(V3y) = (%+#)M—(—z—wu<—2—¢§>2>+1—AB].

When Ap = 0, this function is concave in y € [—2, —1] and maximized at y = —1.
Moreover, the derivative,

9 ¥
a_yUB(\/gay) - _55

is strictly positive on the interval [—2,—1]. By continuity, the derivative is
strictly positive on [—2, —1] with Ag > 0 is sufficiently small, and thus § = —1
is a best response for candidate B. We have shown that (Z,¢) is a non-standard
equilibrium, exploiting the non-differentiability of the uniform density. [

From Corollary 1 and Lemma 3, we have the obvious implication that if it
is not the case that candidate objectives are diametrically opposed, and if the
partisan shock distribution is differentiable, then in every interior equilibrium,
each candidate wins with positive probability.

Theorem 12. Under Condition 5, assume that Aa(1 — Ag) < 1 and (1 —
Aa)As < 1, and that G is differentiable on R. Then for every interior Nash
equilibrium (x*,y*) in the stochastic partisans model, we have Py(x*,y*) > 0
and Pg(z*,y*) > 0.

Meaningfulness of elections, in the minimal sense that voters have a choice
between distinct platforms, is clearly possible in the stochastic partisans frame-
work; in fact, we will show that it is a ubiquitous feature of elections in our
model. When candidates are purely policy motivated, Calvert’s (1985) Theorem
5 provides extremely weak conditions under which the equilibrium platforms of
the candidates are distinct, i.e., equilibria are “divergent.” However, when the
candidates place positive weight on policy, examples of convergent equilibria can
be constructed. This is true for the extreme case of pure office motivation, by
Theorem 9, but Duggan (2025b) provides an example, of a convergent equilib-
rium when candidates have mixed motivations, placing positive weight on both
policy and office. That example requires a precise specification of policy weights
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for the candidates, and in fact, equilibrium platform convergence is impossible
for typical parameter values.

Duggan (2025b) provides conditions for generic divergence of interior equi-
libria. In addition to differentiability, the assumptions needed to apply Theorem
5 of the latter paper to the stochastic partisans model are that: (i) Pa(z, z) is
constant in z, (ii) when both candidates locate at one’s ideal point, the par-
tial derivative of P4 with respect to the latter’s platform is non-zero, and (iii)
the derivatives of DyPa(z,2) and D, Pg(z,z) with respect to z are negative
semi-definite. In the stochastic partisans model, we have

Pa(z,2) = G<2(/Ft(0)dr> - 1>,

which is obviously constant in z. The partial derivative of P4 with respect to
x at (&,%) is non-zero if and only if

g(2</Ft(O)dT> - 1>2/ft(O)Dut(:i:)dT £ 0, (14)

which would only be violated for precise specifications of the model. Similarly,

DyPp(9,9) # 0, (15)

would only be violated in very special conditions. Finally, note that

D.[DuPa(2)] = D. {9(2( / mow) - 1)2 / ft(O)Dut(z)dT}

g(2(/Ft(O)dT) - 1)2/ft(O)D2ut(z)dT,

which inherits negative semi-definiteness from the Hessians of voter utility func-
tions, as does D,[D,Pg(z,z)]. Thus, we have the following result establishing
generic platform divergence for equilibria of the stochastic partisans model.

Theorem 13. Under Condition 5, assume:
(i) ua, up, that each u; are twice continuously differentiable,

(ii) D?uy(z) is uniformly bounded with respect to the max norm ||D?*uy(2)| =
max; j | D jui(2)],

(i11) inequalities (14) and (15) hold,

(iv) for all z € int Z, the Hessian matrices D*us(z) and D*up(z) are negative
definite, and for all t, D?*uy(2) is negative semi-definite.

For almost all (Aa, Ag) € [0,1)%, if (z*,y*) is an interior Nash equilibrium of
the stochastic partisans model, then x* # y*.
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4 Aggregate Voter Results

4.1 Uniform Idiosyncratic Biases

In this section, we impose greater structure on the stochastic partisans model
to deduce a substantial simplification of the candidates’ probability of winning
functions, one that will facilitate later comparative statics analysis and will
have practical usefulness in applications. An implication of Theorem 8 is that
in any equilibrium, candidate A’s platform z* lies on the locus of tangencies
generated by A’s policy utility and the contour sets of the function (12). As
noted above, however, these contour sets are parameterized by B’s platform
y*, and thus the usefulness of the characterization is limited, at that level of
generality. We investigate conditions under which A’s probability of winning
has a representation in terms of an aggregate voter, who is pinned down by the
primitives of the model. This in turn implies that the contour sets of P4 (-, y) are
independent of B’s platform, and when utility functions are quadratic, it leads
to a dimensional reduction, in which the equilibrium platforms of each candidate
belong to a pre-specified “interval” of policies between her ideal point and that
of the aggregate voter. Even if the policy space is highly multidimensional, the
space spanned by the candidates’ possible platforms will be two-dimensional,
and as the preferences of the candidates become very aligned or very opposed,
their platforms are better explained by a simple one-dimensional model.

The key property underlying our aggregate voter theorem is that idiosyn-
cratic bias is uniformly distributed for each type. While this assumption is
strong, as is any parametric restriction on the distribution of a random shock,
it yields a substantial return in the form of tractability. The next condition also
strengthens the maintained assumption of concavity to strict concavity of voter
utility functions.

Condition 6. For all t, u; is strictly concave, and Fy is uniform on an interval
(e — 2%%, e+ ﬁ], where the mean py and precision p; are measurable functions
of voter types t, and the product p:pus is T-integrable.

The second part of Condition 6 means that F; has the linear functional form
Fi(e)) = ke+piei

over its support, where k; = % — pite- Note that by the maintained assumption
of (9), we require that for all z,y € Z and all ¢t € T, the inequalities
< w@) - wl) < et
Pt — 5 = W \T) —wl\y) =~ Mt T 5
2pt 2pt
hold, so the support is sufficiently large, and the precision is correspondingly
small, relative to the range of possible utility differences.'®

15This large support condition is common in probabilistic models of elections, although it
is sometimes not made explicit.
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We now define an artificial actor, denoted V', with the interpretation being
that of an aggregate voter whose utility determines the probability of winning
for each candidate. Abusing notation slightly, define the policy utility function
of the aggregate voter as

Viz) = 2/ptut(2)d7

which is a positive affine transformation of the social welfare function in (13).
Also, define the constant term

- <2/thf)—1,

which is A’s electoral advantage among policy-oriented voters. Then it is
straightforward to see that

V@ -V0) = (2 [tk o) ~ wlar ) -1

2(/Ft(ut(x) —ut(y))d7> 1,

Pa(z,y) = Gr+V(z)-V(y)). (16)

which implies

Observe that the contour sets of k + V(x) — V(y), as a function of x, do not
depend on y; and since P4(z,y) is a monotonic transformation of x + V(z) —
V(y), the same holds for A’s probability of winning. Of course,

Pp(z,y) = 1-G(+V(z)-V(y), (17)

and the same observations hold for candidate B. Note that V is continuous
and, by Condition 6, strictly concave, and we denote the unique maximizer of
V by 2, the ideal point of the aggregate voter. We maintain the assumption
that 2 ¢ {Z,¢}, so neither candidate can maximize her probability of winning
by simply choosing her ideal point.

4.2 Aggregate Voter Theorem

The main result of this section is the aggregate voter theorem, which sharpens
Theorems 7-9 in the presence of the uniform bias assumption. Clearly, if candi-
date A is purely office motivated, then she chooses = to maximize k+V (z)—V (y),
i.e., the candidate chooses x = 2. Otherwise, if she places positive weight on
policy, then in equilibrium, A’s platform will not typically coincide with Z, but
she maximizes a weighted sum of her own policy utility, u 4, and that of the ag-
gregate voter, V. In general, following the proof of Theorem 7, A’s equilibrium

33



platform will be Pareto optimal for the candidate and the aggregate voter. Par-
elleling Theorem 8, if utilities are differentiable and an equilibrium is interior,
then each candidate’s platform maximizes a weighted sum of her utility and
the aggregate voters. Finally, if both candidates are purely office motivated,
then the unique equilibrium is (2, 2), which implies that the unique equilibrium
platform z* from Theorem 9 is simply the aggregate ideal point, Z.

Theorem 14. Under Condition 6, let (x*,y*) be an equilibrium in the stochastic
partisan model with uniform bias. Then:

(i) Pa and Pp have the forms in (16) and (17), respectively,
(i) x* is Pareto optimal for {A,V'}, and y* is Pareto optimal for {B,V'},
(i11) under Condition 5, if (x*,y*) is interior, then x* solves

max aua(z) + (1 — )V (x),

where « is defined in Theorem 8, with a corresponding result for B,

(v) if candidate A is purely office motivated, i.e., Ag = 0, then x = 2 is a
dominant strategy, so x* = Z, and likewise for B.

(v) and thus if both candidates are purely office motivated, then the unique
equilibrium is (2, 2), which implies z* = 2.

Remark 12. Persson and Tabellini (2000, Section 3.4), assuming a one-
dimensional policy space, three voter types, and purely office-motivated can-
didates, deduce that in equilibrium, both candidates maximize a weighted sum
of utilities and choose the aggregate ideal point £, as implied by part (iii) of
Theorem 14. Our result generalizes their insight to multiple dimensions, to an
arbitrary set of voter types, and to candidates who have general mixed moti-
vations, with any weights (possibly different across candidates) on policy and
office. O

An immediate implication of the aggregate voter theorem, assuming the
differentiability condition of part (ii), is that if candidate A places positive
weight on policy, i.e., A4 > 0, then she does not locate at the aggregate voter’s
ideal point. Moreover, if A places some weight on office, then she does not locate
at her own ideal point.

Corollary 4. Under Conditions 5 and 6, assume that T,Z2 € intZ. In any
equilibrium (z*,y*) of the stochastic partisans model with uniform bias, if Ag €
(0,1], then x* # 2, and if g € [0,1), then x* # &. An analogous result holds
for candidate B.

Another simple implication is that if one candidate is purely office motivated,
then there is a unique equilibrium: the office-motivated candidate locates at the
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aggregate ideal point Z, and the other best responds. Note that Condition 4 is
only used in the following corollary to ensure that candidate B, who may place
positive weight on policy, has a unique best response to A.

Corollary 5. Under Conditions 4 and 6, if Aa = 0, then the stochastic parti-
sans model with uniform bias has a unique equilibrium (z*,y*), and * = 2. An
analogous statement holds for candidate B.

A final important implication of Theorem 14 is that the contract curve for
candidate A and the aggregate voter, denoted AV, is determined by the primi-
tives of the model, as is the contract curve for B and the aggregate voter, BV.
In terms of Figure 1, the contour sets of A’s probability of winning are now
independent of y, and similarly for B. This essentially reduces the strategy sets
of the players to one-dimensional manifolds, thereby simplifying the analysis of
the model. In Subsection 4.4, we impose further structure on voter utility and
trace its implications for the aggregate voter and candidate platforms. Before
that, we study the implications of the aggregate voter theorem in a model of
redistributive politics.

4.3 Application: Balanced-Budget Redistribution

We apply the above analysis to elections in an environment of balanced-budget
redistribution, in the spirit of Lindbeck and Weibull (1987), but allowing for
candidate with mixed motivations. We show below that policy preferences of
candidates introduce some divergence between the candidates; this converges to
zero as the candidates’ weight on office increases, and their equilibrium plat-
forms converge to the social optimum, consistent with the approximate welfare
optimality theorem, Theorem 11, and the result of Lindbeck and Weibull that
both parties locate at the platform that maximizes voter welfare in the case of
pure office motivation. For the general case of mixed motivations, we provide a
closed form solution that permits intuitive comparative statics with respect to
the candidates’ policy weight, the size of different voter types in the population
of policy-oriented voters, and the distribution of the partisan shock.

We specialize the stochastic partisans model by assuming there are three
types of policy-oriented voter, T' = {1, 2,3}, where type 1 represents the group
of liberal elites, type 2 represents the conservative elites, and type 3 represents
the remaining mass electorate. The policy space is the unit simplex in R3,

Z = {ZERi:Zl-FZQ-FZg:l},

where a policy z = (21, 29, 23) represents an allocation of resources to the groups,
with the share going to group ¢ being z;. Here, we interpret z; as being a group-
specific public good, which is enjoyed by all voters of type t. We assume that
voter utility from consumption is

u(z) = w(z),
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where v: Ry — R is a concave, differentiable function such that v'(r) > 0.
This makes u; continuous, concave, with idea point equal to ef, the tth unit
coordinate vector, i.e., the vertex of the unit simplex that allocates all resources
to the type t voters. In addition to the policy oriented voters, a mass of partisan
voters is distributed according to GG, which satisfies the log concavity property
of Condition 4.

Candidates A and B compete in an election, where A is associated with the
type 1 voters, and candidate B is associated with the type 2 voters, so both
candidates are elite, with each representing a different faction of elite voters.
We assume that candidate utility is linear,

ua(z) = z1 and wup(z) = 29,

and that A and B have mixed motivations. Theorem 6 immediately delivers
existence of an equilibrium (2*,y*), but we will focus on equilibria that are
symmetric, in the sense that =5 = y3, 27 = y3, and 25 = yj; that is, the
candidates allocate the same amount of resources to the masses, the same to
themselves, and the same to the competing elite group. To this end, we further
assume that Ay = Ap = A > 0, so candidates place the same positive weight on
policy, that Kk = 0, so neither candidate has an electoral advantage, and that g
is symmetric around zero.

We assume Condition 6, so that the aggregate voter theorem holds, and we
denote the shares of voter types among policy-oriented voters by 7y, 72, and 73.
Then aggregate voter utility is

V(z) = wiu(z)+waua(z) + wsus(2),
where the weights used in the sum are
wy = 2ptTt-

To impose symmetry on the candidates, we assume that the weights of type 1
and type 2 voters each equal w, which is less than one third of the policy-oriented
voters:

1 1
w1:w2=w<§ and o.)3:1—2w>§.

Then aggregate voter utility simplifies to
V(z) = wu(z1)+wu(ze) + (1 —2w)v(zs),
We consider two cases of interest for voter utility.

The first, and simplest case, is linear voter utility, i.e., v(r) = r. Then
aggregate utility is also linear, and the highest coefficient on utility is 1 — 2w,
which means that the aggregate ideal point is the third unit coordinate vector
2 = €3, so that all resources are allocated to the masses. Our interest will be in
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equilibria such that neither candidate allocates to resources to the other’s group,
ie., x5 = yi = 0, but we first consider the general problem of a candidate in a
symmetric equilibrium; without loss of generality, we focus on candidate A. At
a symmetric equilibrium (z*,y*), candidate A solves the following constrained
maximization problem:

ma G(V(@) = V() Mwa(e) — ualy) +1-

st. x1+axo+a3=1

z1 20,22 > 0,23 > 0.
At such an equilibrium, A’s platform satisfies the Kuhn-Tucker first order con-
dition,

9(0)DV (¢*)A + §Dua(e*) + (1,1, )+ (v1,v2,v3) = 0
vz} =0, vexy =0, vsz; =0

V1207 V2207 V3207

where p is the multiplier on the equality constraint, and v; is the multiplier on

the non-negativity constraint of the consumption of type ¢ voters, and where we
use the fact that V(z*) — V(y*) = 0, and

A = Mua(@®) —ualy®)+1-—A

is A’s gain from winning. Analysis of the first order condition yields an explicit
solution for the unique symmetric equilibrium.

Proposition 1. Under Condition 6, in the symmetric model of balanced-budget
redistribution, assume linear voter utility, i.e., v(r) =r, and
29(0)(1 — 3w)
2g(0)(1 —3w) +1

< A < 29(0)(1 — 3w).

There is a unique symmetric equilibrium: candidate A’s platform is

o 1 1=
L 29(0)(1 — 3w) A
x5 = 0

I;; = 1_IT5

and candidate B’s platform is y* = (0,27, x%).

Several intuitive comparative statics arise immediately for symmetric equi-
libria when candidates allocate resources to themselves and to the masses. First,
as the candidates’ policy weight increases, each allocates more resources to her
elite group, reflecting higher marginal returns from consumption. Second, when
the masses grow in size, i.e., w decreases, the candidates allocate more resources
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to them, reflecting the increased electoral returns. Third, when A is close enough
to one, the candidates actually consume all of the resource, while if A is close
enough to zero, they allocate all resources to the masses, thereby maximizing
aggregate voter welfare. This is consistent with the approximate welfare opti-
mality theorem, Theorem 11, which holds for the general stochastic partisans
model. Because of the linear utility specification here, we see that optimality is
actually attained, not just approximated, when candidates are sufficiently office
motivated.

With linear voter utility, candidates can face a meaningful trade off, but that
it limited, given that one group of voters is always excluded. An economically
more interesting situation is that in which the marginal utility for voters from
consuming all resources is zero, which is assumed by Lindbeck and Weibull
(1987) and implies that the aggregate voter ideal point is located in the interior
of the simplex. For tractability, we maintain linear utility for the candidates;
since Lindbeck and Weibull assume candidates simply maximize votes, they do
not formulate any notion of policy utility for the candidates. For voters, we
assume utility from consumption has a quadratic form:!'6

o(r) = —(1 -7

Then the aggregate ideal point is found by solving the following constrained
maximization problem,

max wo(z1) + wo(ze) + (1 — 2w)v(zs)
zE
st. z1+204+23=1,

which has first order condition

wv'(z1) +p = 0
wv'(z2) +p = 0
(1—2w)v'(z3)+p = 0.

By the first two equations, we have Z; = 2o, and then, using quadratic utility
and substituting for u, the third simplifies to

(1 — 2&))(221) — w(l — 21) = 0.
Solving this, we obtain the aggregate ideal point as

N w . w . 2 —bw
2 —3w’

23w T

2 = ,  Z

IS A
Clearly, as w increases, the aggregate ideal point shifts away from the mass
electorate, and it moves toward the allocation that gives all resources to the
masses as w becomes small.

161 indbeck and Weibull (1987) also assume that marginal voter utility increases to infinity
as consumption goes to zero. Our quadratic specification does not satisfy this condition, but
it generates the same qualitative properties of equilibria.
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We are now interested in equilibria such that all groups receive positive
resources, so we consider the best response problem of candidate A in such a
symmetric equilibrium,

max G(V(z) = V(y"))[Mua(z) —ualy™)) +1 - 2]

st. x1 + a2 + a3 =1,

with first order condition
. A .
9(O)DV(")A + S Dua@”) + (s p,p) = 0.

Analysis of the first order condition, though somewhat more complicated, again
leads to an explicit solution for the unique symmetric equilibrium. For example,
see the pair (z*, y*) in Figure 2, which is computed for parameter values A\ = .1,
w = .28, and ¢(0) = .25, and which depicts contours of the aggregate voter
utility function and the policy utility function of candidate A.

Proposition 2. Under Condition 6, in the symmetric model of balanced-budget
redistribution, assume quadratic voter utility, i.e., v(r) = —(1 —r)%. There is
a unique symmetric equilibrium: in the range of parameters for which all three
voters types receive a positive level of resources, candidate A’s platform is

N w n 1l-w 5
xT =

! 2 — 3w 2 — 3w
N w 1—2w 5
Ty = —

2 2 — 3w 2 — 3w
— 2—5w w 5
37T 23w 23w/’

where

and candidate B’s platform is y* = (0,27, x%).

Several observations are in order. First, if we fix the weights w and vary other
parameters, then the effect on equilibrium platforms is only through the term §.
Thus, as those parameters vary, candidate A’s equilibrium policy platforms vary
along a line segment in the simplex, with one endpoint at the aggregate ideal
point—demonstrating the implication of the aggregate voter theorem, Theorem
14, that the candidate’s strategy space is essentially a one-dimensional manifold,
in this case a linear one. In Figure 2, this is the orange line emanating from
2. Because candidate A’s policy preferences only place positive weight on the
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Figure 2: Balanced budget equilibria

liberal elite (type 1) voters, this line hits the edge of the simplex when ¢ is high
enough, and at that point, it follows the edge of the simplex to the candidate’s
ideal point; thus, the set of possible equilibrium platforms for A is the piecewise
linear path in red, while the set for B is the blue path. Any values of A and
g(0) will determine symmetric equilibrium platforms for the candidates, where
A chooses a platform on the red path, and B chooses the corresponding one on
the blue path.

Second, as we vary the parameters A and ¢(0), we obtain the same intuitive
comparative statics as in the linear case: as ¢g(0) increases from a low value,
0 decreases; and the candidates shift resources from their own elite groups to
the masses. When ¢(0) becomes sufficient high, a candidate’s platform moves
toward the aggregate voter along the edge of the simplex, which also increases
the amount of resources going to the other voter types. As the candidates
become more office motivated, A decreases, and now ¢ increases, which has the
opposite effect: as A increases from a low value, the candidates move away from
the aggregate voter, initially reallocating resources from both other groups to
their own, and eventually taking resources from the masses and moving along
the edge of the simplex to her own ideal point. Moreover, we have A — 0, and
thus % — oo. This entails § — 0, and we see from the solution in Proposition
2 that * — Z, as called for by the approximate welfare optimality theorem,
Theorem 11.
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Figure 3: Comparative statics with respect to w

Finally, the parameter w affects equilibrium platforms through § but also
directly. As w increases, our solution for ¢ shows that the difference between
the resources allocated by a candidate to her own type compared to the other
elite group becomes smaller, i.e., § decreases. At the same time, the aggregate
ideal point moves away from Z3, closer to the ideal points of the elite types,
and the indifference contours of the aggregate voter change shape. In the left-
hand panel of Figure 3, we fix A = .065 and g = .25, and we depict the paths
of equilibrium policies for the candidates as w increases from .202, at which
the candidates choose policies on the edge of the simplex, to .333, where the
candidates locate in the interior of the simplex. As w — 1/3, the aggregate
ideal point converges to z = (1/3,1/3,1/3), and we have

o (1,21 81
3 3’3 33 3)
where this limit it denoted by ¥ in Figure 3. The right-hand panel of the figure

shows the resource allocation to each voter type as a function of w and illustrates
the non-linear effect of group size on equilibrium platforms.

4.4 Generalized Quadratic Utility and Dimension Reduc-
tion

Building on the aggregate voter theorem, we next show that if utility for voters
and candidates is generalized quadratic, with the same matrix of coefficients
for the candidates and aggregate voter, then the strategy sets of the candidates
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effectively become one-dimensional line segments, regardless of the dimension-
ality of the policy space. We say a function u: Z — R is generalized quadratic
if there exist a maximizer z € Z, a constant ( € R, and a symmetric, positive
definite, d x d matrix M such that for all w € Z, we have

u(w) = —(w—2)Mw-—2)+¢.

The function is weighted quadratic if, in addition, the coefficient matrix M is
diagonal, with entries along the diagonal representing the weights placed on
each dimension; this produces indifference curves that are elliptical in shape
and oriented along the axes. It is simply quadratic if M is equal to the identity
matrix.

Condition 7. For all t, u; is generalized quadratic with ideal point 3%, constant
Ct, and coefficient matriz My, where these are bounded, measurable functions of
voter types t.

The next lemma establishes that when individual voter utility is generalized
quadratic, then so is aggregate voter utility. The aggregate voter ideal point
is a linear function of voter ideal points, and the matrix of coefficients for the
aggregate voter is an integral over voter matrices. In particular, if voter utility
is weighted quadratic, then so is aggregate voter utility; and if voter utility is
quadratic, then this is again inherited by the aggregate voter utility. In the latter
special case, note that the aggregate ideal point reduces to a simple weighted
average of voter ideal points,

= [ ()2

In the statement of the lemma, we use the fact that the integral of positive
definite matrices is positive definite, and thus is also invertible.

Lemma 4. Under Conditions 6 and 7, the aggregate utility V in the stochas-
tic partisans model with uniform bias and generalized quadratic voter utility is
generalized quadratic with coefficient matriz

M = 2/ptMth,
and aggregate ideal point

3 = M’l/ptMtéth.

It can be fruitful to combine Condition 7, using Lemma 4, with the assump-
tion that the candidates also have generalized quadratic policy preferences with
coefficient matrix M given in the lemma. The following condition presupposes
quadratic utility on the part of policy-oriented voters.
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Condition 8. Candidate utility functions ua and up are generalized quadratic
with coefficient matrices Mg = Mp = M.

When the candidates and aggregate voter have generalized quadratic utility
with the same matrix of coefficients, the contract curves AV and BV are simply
line segments connecting the ideal point of a candidate with the aggregate ideal
point. Indeed, let M be the coefficient matrix for the aggregate voter, and let
the coefficient matrix for candidate A be oM, where ¢ > 0. Note that a policy
z* is Pareto efficient for {A, V} if and only if z* solves

max aua(z)+ (1 —a)V(z)

for some « € [0,1]. The first order condition for the above problem is
200 M (& — 2")+2(1 —a)M(2-2*) = 0,

or equivalently,

1—
M W sy T 5) = M
ac+1—« ac+1—«

Therefore, applying the inverse M ~! to both sides, z* lies on AV if and only if

oo 11—«

* ~

=7 oza—l—l—ozx aa—i—l—az

for some a € [0, 1]. It follows that the contract curve AV is just the line segment
between the ideal points of candidate A and the aggregate voter, and similar
analysis holds for candidate B.

As stated in the following dimensional reduction theorem, we conclude that
the strategy sets of the candidates reduce to one-dimensional intervals, even if
the underlying policy space is multidimensional. See Figure 4 for an illustration.

Theorem 15. Under Conditions 6-8, for all Nash equilibria (x*,y*) in the
stochastic partisans model with uniform bias and generalized quadratic utility,
there exist o, 8 € [0,1] such that

¥ = ai+(1—-a)2 and y* = By+(1-pP):2
Theorem 13 provides generic conditions on policy weights under which the
candidates adopt distinct platforms in equilibrium. In this spirit, the dimen-
sional reduction theorem leads to a simple set of sufficient conditions for diver-

gence for general policy weights: the equilibrium platforms of the candidates
are divergent if

(a) at least one candidate places positive weight on policy,
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Figure 4: Dimensionality reduction with generalized quadratic utility

(b) candidates and the aggregate voter have generalized quadratic utility with
common coefficient matrix, and

(c) the vectors & — 2 and § — 2 are not positively dependent, i.e., there do not
exist a, > 0 such that a(z — 2) = B(g — 2).

Condition (c) is satisfied in the typical case that the ideal points of the candi-
dates and aggregate voter are not collinear, and it is satisfied if they line up
with & and ¢ on opposite sides of 2. It implies that the intersection of contract
curves is just the aggregate ideal point, i.e., AV N BV = {2}.

Theorem 16. Under Conditions 6-8, assume that 2 € int Z, and that (a)-(c)
above hold. If either Ay > 0 or Ag > 0, then in every Nash equilibrium (z*,y*)
of the stochastic partisans model with uniform bias and generalized quadratic
utility, we have x* # y*.

4.5 Application: Income Taxation

In the absence of results establishing the existence and characterization of equi-
librium in voting models with multidimensional policy spaces, the formal liter-
ature on income taxation has made limited progress in explaining the political
determinants of progressive or regressive tax schedules. Romer (1975), Roberts
(1977), and Meltzer and Richard (1981) analyze redistributive taxation in set-
tings with a linear tax rate and exogenously given revenue requirement; because
of their linearity restriction, these articles are silent on the question of progres-
sivity vs. regressivity of taxes. In this section, we apply our general results to
provide conditions under which one or both parties propose progressive tax poli-
cies in a pure strategy equilibrium of the electoral game, to characterize those
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equilibrium policies, and we examine the effect of parameters on progressiveness
of tax policy.

Current work on progressivity of income tax schedules includes Snyder and
Kramer (1988) and Brett and Weymark (2016), who study the problem by re-
stricting the set of tax policies that the parties can propose to the set of policies
that are the ideal point for some voter type, while Berliant and Gouveia (2025)
use ex post feasibility to reduce the size of the policy space. Roemer (1999,2001)
uses his party unanimity equilibrium approach, in which existence is not an is-
sue, but rather multiplicity of equilibria is a challenge. He restricts tax schedules
to a two-parameter family and assumes a balanced-budget constraint, and he
gives conditions such that in all equilibria (of which there is a continuum), both
parties adopt progressive tax policies. Other contributions include Marhuenda
and Ortuno-Ortin (1995) and De Donder and Hindriks (2004), who provide
partial equilibrium stories for progressive tax outcomes. Carbonell-Nicolau and
Klor (2003) and Carbonell-Nicolau and Ok (2007) study a very general setting,
with the latter paper showing existence of equilibria in mixed strategies, and
the former extending the model to allow for candidate entry.

Instead, we apply the stochastic partisans model to analyze the political
determinants of tax policy, without restricting ex ante the set of tax policies.
Rather than take a revenue constraint as exogenously given, we assume that tax
revenue finances the provision of a public good, and we simplify the analysis by
assuming that voters supply labor inelastically, so each voter is characterized by
an income level. Given this context, we can without loss of generality assume
that a tax schedule specifies an amount paid by, or equivalently a tax rate on
the income of, each voter type. In a simple, two-type model, in which each party
represents one type, we allow arbitrary mixed motivations for parties (formerly
“candidates,” in our earlier terminology); we show that equilibria always exist,
and that the low-income party always proposes a tax schedule that is more
progressive that of the high-income party. Furthermore, we provide conditions
under which both parties adopt progressive tax policies, and we extend the
analysis to the general model with an arbitrary, finite set of voter types.

Formally, we assume a unit mass of policy-oriented voters, and we initially
assume each voter is one of two types, labeled L and H, with the share of type
L being 71, = w € [1/2,1) and type H being 7y = 1 —w € (0,1/2]. Type L
has income wy, > 0 and type H has income wgy > wpr, and thus we refer to L
as the “low-income type” and to H as the “high-income type.” A tax policy is
a schedule 2z = (2, z) € [0,1]2, which specifies tax rate z;, on the income of
type L voters, and a tax rate zy on the income of type H voters. Taxes are
used to finance a public good produced by the following technology:

h(z) = v KZL - (;22) wwr + <ZH - (22};{)2> (1 _W)WH] )

where v and K are parameters. The utility to a voter of type ¢t from tax policy
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z=(zp,2m) is
u(z) = (1= z)we + h(2),

so that v can be interpreted as an implicit weight on the public good, and the
quadratic terms in h(z) capture the deadweight loss from taxation. Within
each voter type ¢, a net bias in favor of party B is distributed according to Fj,
which satisfies the dispersion property in Condition 4. In addition, a mass of
partisan voters turn out to vote stochastically, with the net mass in favor of
party B distributed according to GG, which satisfies the log concavity property
of Condition 4.7

Following standard definitions in the public finance literature, we say a tax
policy z = (zr, zp) is progressive if higher income voters are taxed at a higher
rate than lower income voters, i.e., z;p < zgy. A tax policy z is regressive if
zr, > zm, and it is a flat taz if z;, = zy. A policy Z is more progressive than
policy z if taxation rises more steeply with type, i.e., zg — 2 < Zyg — Zr, in
which case we write Z =, 2. Finally, a policy Z is more expansionist than policy
z if it provides a greater amount of the public good, i.e., h(Z) > h(z), which we
write as z >, 2.

We maintain the assumption that v and K satisfy

0 < K <1< Wmtinwt, (A1)

which guarantees that the ideal tax rates of each voter type on each dimension
lie strictly between zero and one.!® In particular, low- and high-income voters
have ideal points

2t = ((1 - i)K, K> and 27 = (K (1- ﬁ)[() :

Yw 1l-w

respectively, so that each type prefers to tax the other at rate K and to tax
their own type at a lower (but still positive) rate. Immediately, we see that
low-income voters prefer a progressive policy, while high-income voters prefer a
regressive policy. Figure 5 depicts these ideal policies, Z, and Zg, as lying in
the progressive and regressive regions, respectively: the set of progressive tax
policies is the set of points above the dashed 45 degree line; the set of regressive
policies is the set of points below the line; and the dashed line is the set of
flat tax policies. It is a routine calculation to verify that h(2L) > h(zH) if
and only if wr/w < wy /(1 — w), which indeed holds by our assumptions that
w € [1/2,1) and wy > wy, > 0; therefore, left-wing party A’s ideal policy is
more expansionist than right-wing party B’s.

1"We can assume that the set of partisan voters (including those who vote and who do
not vote) is partitioned into low and high types, and thus contribute to the public good, by
including those masses in the calculation of w. The critical property is that these citizens vote
for the parties independently of their tax policies.

8By our assumption that 77, = w > 1/2 > 1 — w = 7y, this means that min; 7 = 1 — w.
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Figure 5: Configuration of tax policies

The following comparative statics of 2% and 2 follow by inspection. As
their population share decreases (w declines), or as the marginal returns to
production of the public good become smaller (v declines), the ideal policy of
low-income voters becomes more progressive, but less expansionist. In contrast,
as their population share rises (1 — w increases) or as the returns to production
of the public good improve (v increases), the ideal policy of high-income vot-
ers becomes more progressive and more expansionist. Both voter types prefer
greater expansion when the deadweight loss to taxation declines (K rises).

Two parties, labeled A and B, compete on policy by adopting tax policies
x,y € [0,1])%, the components of which represent tax rates on income of each of
the two types. We assume that party A is a “left-wing party” that represents
the interests of low-income types L, i.e., uq = ur, while party B is a “right-
wing party” that represents the interests of high-income types H, i.e., up = up.
Thus, the ideal points of the parties are the same as those of the income types
they represent: party A has an ideal policy of & = 2” while B has an ideal policy
of § = 2. We assume that each party has mixed motivations, with weights
Aa and Ap on policy for A and B, respectively, and Theorem 6 immediately
delivers existence of an equilibrium. To characterize equilibria and exploit the
general analysis, we impose further structure on the model.

We assume the conditions needed for the aggregate voter theorem, so each
type t voter has a net bias for party B that satisfies Condition 6, so that by
Theorem 14, the parties’ probabilities of winning satisfy (16) and (17), with the
aggregate voter having utility

V(z) = 2[wprur(z)+ (1 —w)prun(z)].
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The aggregate ideal point is thus

A _ PL . PH
- ((l T ena =y (0 v[prpH(l—w)])K)'

Note that 2* > 0 for both ¢ € {L, H}, by the parametric assumptions in (A1)
made above. In fact, 2 always lies on the line segment connecting 3* with 2,
which is always negatively sloped, as in Figure 5, with slope equal to —w/(1—w).
Thus, the aggregate ideal point Z taxes type L voter at a higher rate, and the
type H voter at a lower rate, than 2%; and it taxes type L at a lower rate, and
type H at a higher rate, than 22. In particular, 2L =, 2 =, 2f. While Figure
5 depicts the aggregate ideal point as progressive, this does not hold in general;
below, we specify the conditions under which aggregate progressivity holds.

As Conditions 6-8 are satisfied in the model of income taxation, the di-
mensional reduction theorem, Theorem 15, holds. Thus, the left-wing party A
always sets its equilibrium policy on the line segment between & = 2% and 2,
while the right-wing party B always sets its equilibrium policy on the segment
connecting § = ¥ with 2. This immediately implies that party A’s equilibrium
policy is weakly more progressive than party B’s. They are equally progressive
if and only if both parties set their policies to Z, which in turn occurs if and
only if they are both fully office-motivated, with A4 = A = 0.

The aggregate ideal point 2 is progressive if and only if pr, > pg, i.e., low-
income voters are more sensitive to tax policy than high-income voters are.
When this is the case, the aggregate ideal point must lie above the 45 degree
line, as depicted in Figure 5, and the equilibrium platform of party A is always
progressive. By part (iv) of Theorem 14, the equilibrium platform of party B will
then be progressive if she is purely office motivated, and by upper hemicontinuity
of the equilibrium correspondence, party B’s equilibrium platform is progressive
if she is sufficiently office motivated. Figure 5 depicts this case, with « and y
both lying in the progressive region of tax policies.

The model does not imply the progressive taxes are the only possibility.
The situation is reversed when pr, < pg, as then party B’s equilibrium policy is
always regressive, and party A’s tax policy will be regressive if she is sufficiently
office motivated. It is also possible that the parties take opposing positions on
tax policy: for example, if p;, = pg, and if the parties place positive weight on
policy, i.e., Aa, Ap < 1, then the aggregate ideal point lies on the 45 degree line,
A’s equilibrium policy is progressive, and B’s is regressive. The next proposition
summarizes the preceding observations.

Proposition 3. Under Conditions 6-8, in the two-type model of income tax-
ation, assume (A1). There is a Nash equilibrium, and in every equilibrium
(x*,y*), we have:

(1) If Aa,Ap >0, then & =, x* =, 2 =p y* =) 7.
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(i) If pr, > pm, then Z is progressiwe, and thus x* is progressive. Moreover,
there exists A > 0 such that if A\p < X (holding other parameters fized),
then y* is progressive.

(i) If pr. < pm, then 2 is regressive, and thus y* is regressive. Moreover, there
exists A > 0 such that if Aa < X\ (holding other parameters fized), then x*
18 regressive.

(iv) If pr, = pu and Aa, Ap > 0, then x* is progressive, and y* is regressive.

To gain insight into expansionism of the parties, it is easily calculated that

h(2) > h(2") holds if and only if

w w

e T (18)

wy l-w PL
which always holds because wr/wy < 1 while 1 < w/(1 — w). Thus, the
aggregate ideal tax policy is more expansionist than the right-wing party B’s
ideal policy. Because the equilibrium policy of party B lies between 2 and 277,
strict concavity of h and (18) imply that B’s platform is more expansionist than
its ideal policy. In contrast, h(2L) > h(2) holds if and only if

1-w w

R L 8 (19)
w PH wr,
Unlike (18) above, inequality (19) is not implied by our parametric assumptions,
because pr,/pg may be arbitrarily large. When it does hold, however, we obtain
conditions under which party A is more expansionist than party B. Informally,
under these conditions, B is the party of “small government,” while party A is
the party of “big government.”

Proposition 4. Under Conditions 6-8, in the two-type model of income tax-
ation, assume (A1). Given any Nash equilibrium (z*,y*), we have y* =, 2.

Moreover:
(i) if (19) holds, then we have T* =, 2 = y* =, 22,
(i1) and if it fails, then z* -, .
Finally, we discuss how the model generalizes to the case of |T| > 3 voter
types. We now index types as t = 1,...,n, with incomes ordered as 0 <
w; < wg < ... < wy. The population shares of these types are w; > 0, with

> ,wt = 1. Tax policy is now an n-tuple z = (z)j~; € [0,1]", and the public
good is produced by the following technology:

h(z) = ”yi <ZL - %;f) wiw.
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We can continue to state the main parametric restriction as (Al), with the
understanding that min; w; is now taken over all of the n types. Extending our
earlier terminology, a tax policy z is weakly progressive if z; < 2o < ... < 2z,
with at least one inequality strict, and it is progressive if all inequalities are
strict. A policy that is not weakly progressive is regressive. A tax policy Z is
more progressive than another policy z if zp41 —2¢ < Zpp1—Z fort =1, ...,n—1,
with at least one of the inequalities being strict, and it is more expansionist if
h(Z) > h(z).

Party A is a left-wing party that represents the lowest income type’s inter-
ests, so that uq = w1, while party B is a right-wing party that looks after the
highest income type, so ug = up. All other features of the model are the same,
including that within each type ¢, voters have a net bias for party B distributed
according to Fi, and that that there is a stochastic mass of partisan voters,
with the net mass in favor of B distributed by G. We assume F; and G satisfy
Condition 4, so that Theorem 14 continues to hold.

Analogous to the two-type case, the ideal policy for a type t voter is now to

tax her own type t at rate (1 — L) K, and to tax all other types at the rate

YWt

K. The ideal tax policies of parties A and B are thus, respectively,

&g = 3t = ((1—L)KKK>
ywi
. “H 1
gy =2 = |K,.., K,(l1-— K|,
Ywn,

and party A’s ideal policy is weakly progressive, while party B’s is regressive.
For the aggregate voter, we have V(z) = 23, wipius(2), the aggregate ideal
policy is then

f = (O rm) e (i) )

Thus, the aggregate voter’s ideal policy is weakly progressive if and only if
p1 > p2 > ... > pn, with at least one inequality strict, and it is progressive if
and only if all these inequalities are strict.

and

With at least three types, the aggregate ideal point Z no longer lies on the
line segment connecting 2% with 2. Indeed, the aggregate ideal % is to tax
all types t = 2,...,n — 1 at a rate strictly lower than K (since p; > 0 for all
t) while every point on the segment between 2 and 2 taxes these types at
the rate K. Whether the segment connecting 2 and 2% and the one connecting
% and 27 together form an acute or an obtuse angle depends on the values of
P1, - Pn- If p1 and p, are very small, for example, while po, ..., p,_1 are very
large, then the angle is acute. If the reverse is true, then it is obtuse. Because
2 no longer lies on the line segment connecting 2” with 2/ we can no longer
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say that the equilibrium policies of party A are always weakly more progressive
than the equilibrium policies of party B.

However, we can give sufficient conditions under which party A adopts a
more progressive policy in equilibrium than does party B. The following propo-
sition reports such a condition.

Proposition 5. Under Conditions 6-8, in the n-type model of income tazation,
assume (A1) and p1 > P2 > .. > pn. There exist A > 0 and A < 1 such that
if Aa € [0,A] and A € [\, 1], then for every Nash equilibrium (z*,y*), we have
x*-p Yyt

To see why the proposition holds, note that under our specification of the
model, Conditions 6-8 continue to be satisfied, so the dimensional reduction
theorem holds. Therefore, party A’s and party B’s equilibrium platforms satisfy

= atb+(1-a) and y* = B2 +(1-p)3,

respectively, for some «, 3 € [0,1]. We claim that if p; > pa > ... > py, so that
the aggregate ideal point 2 is progressive, then party A’s equilibrium policy
is more progressive than party B’s equilibrium policy if and only if o < £.
This claim, which is proven in the appendix, immediately implies the sufficient
conditions stated in the proposition, because when Ay = 0 and Ap = 1, part (iv)
of Theorem 14 implies that 2* = 2, and part (iii) of the theorem implies that
y* # 2. By upper hemicontinuity of the equilibrium correspondence, it follows
that if A is sufficiently office motivated and B is sufficiently policy motivated,
then a < 5.

5 Taking Uncertainty to Zero

Our equilibrium existence result, Theorem 6, only relies on log concavity of
the density of the partisan vote, and thus it is consistent with arbitrarily low
variance of the partisan shock 7. For example, we can let g be the normal density
with standard deviation o, and equilibria will exist as ¢ — 0. In this section, we
characterize the limit of equilibria as we remove uncertainty from the model. We
find that, very generally, if one candidate has an electoral advantage, in the sense
that she receives support from a majority of policy-oriented voters whenever the
candidates adopt the same platform, then her probability of winning approaches
one when uncertainty is small. Thus, even a small advantage measured in voter
support translates to an extreme advantage in terms of election outcomes.

We then characterize the limit of candidate platforms in the presence of an
aggregate voter. We first consider the case in which the candidates have op-
posing preferences, in the sense that each prefers the aggregate ideal point to
any platform on the contract curve between her opponent and the voter. If
the electoral advantage x is large, then the advantaged candidate converges to
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her ideal point; otherwise, if x is positive and not too large, then the platform
of the disadvantaged candidate converges to the aggregate ideal point, and the
advantaged candidate converges to the platform that makes the aggregate voter
indifferent—essentially leveraging her advantage to win with probability one at
the closest possible platform to her ideal point, while the disadvantaged can-
didate acts as an anchor, constraining her opponent from adopting even more
extreme platforms. If neither candidate is advantaged, i.e., k = 0, then com-
petitive forces lead the candidates to take platforms approaching the aggregate
ideal, regardless of their underlying policy preferences, as uncertainty goes to
Zero.

In case the candidates’ preferences are more aligned, so that one candidate
may prefer her opponent’s platform to the aggregate ideal point, the analysis
is more involved, and it is more challenging to characterize the limit of equilib-
rium platforms. We then add the structure of quadratic utility, and we give a
full characterization of the limiting platforms as a function of parameters of the
model, including preferences and the electoral advantage of candidate A. In-
terestingly, the limit is independent of the particular sequence of distributions
used, and it gives us a selection from equilibria of the limiting model with no
aggregate uncertainty, analyzed by Peress (2010). Thus, the selected equilib-
rium can be used as approximation of equilibria in more complex models with
aggregate uncertainty, when the level of uncertainty is low.

5.1 Characterization with General Utility

We now maintain the general assumptions of the stochastic partisans model to
analyze the electoral prospects of the candidates, when one has an advantage
vis-a-vis the preferences of policy-oriented voters. Formally, we say candidate A
is advantaged if she receives the support of a majority of policy-oriented voters
when the candidates adopt the same platform, i.e.,

/Ft(O)dT > %

Of course, we say candidate B is advantaged if the above strict inequality is
reversed. We consider a sequence {G"} of distributions that converges weak*
to the unit mass on zero, and a sequence {(z™,y™)} of corresponding standard
equilibria. We use the convention that the candidates’ probability of winning
functions in the game with distribution G™ are denoted P} and Pg, and their
payoff functions are U} and UR.

We also use the fact that if (2™, y") — (z*,y*) and

[ ) - wtnar > 3,

then candidate A’s probability of winning converges to one. Indeed, we can
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choose 7’ such that for sufficiently high n, we have

1
/Ft(ut(x*) —u(y*))dr > 7 > 3
Then for such n,

Pi(z"y") = Gn</Ft(ut(xn)—ut(y"))_ 1)

2
1
> O
> G<7T 2>

— 1

as claimed. We establish, quite generally, that if a candidate has an electoral
advantage, then her probability of winning converges to one.

Furthermore, we give two partial restrictions on limiting platforms under
additional conditions. First, if the equilibrium platforms of the advantaged
candidate, say A, do not approach her ideal point, and if her ideal point does
not garner a majority of support from the policy-oriented voters, then in the
limit, the platforms of the candidates must result in a tie. Second, in the
case of such a tie, if the platforms of the disadvantaged candidate, B, do not
approach a platform that maximizes her support from policy-oriented voters
against the limit of A’s platforms, then B must be indifferent between losing to
A at platform x*, on the one hand, and winning herself with platform B, on
the other.

The following result augments the baseline conditions for the stochastic par-
tisans model only by adding strict quasi-concavity in x (respectively, strict
quasi-convexity in y) to Condition 4, thereby precluding probability of winning
functions that take constant values on open regions of the policy space.

Theorem 17. Under Condition 4, assume that candidate A is advantaged,
and that candidate A’s share of policy-oriented voters, in (12), is strictly quasi-
concave in x and strictly quasi-concave iny. Let {G™} be a sequence of distribu-
tions such that each G™ satisfies (11), each has density g™ that is continuously
differentiable on its support Sgn, and {G"™} converges weak* to the unit mass
on zero. Let {(z™,y™)} be a convergent sequence, with (z™,y™) — (x*,y*), such
that for all n, (x™,y™) is a standard Nash equilibrium of the stochastic partisans
model with partisan shock distribution G™. Then:

(i) Candidate A’s probability of winning converges to one, i.e.,
. n/,.n . n .
Jim Pi(a",y") = L

(i) If x* # &, if Aa > 0, and if A’s ideal point does not gain a majority of
support among policy-oriented voters against y*, i.e.,

/ Fyuy(@) — u(y))dr < »

5) (20)
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then the election is tied among policy-oriented voters, i.e.,

/Ft(ut(x*)—ut(y*))dT = % (21)

(i11) If x* and y* are tied, as in (21), and if y* does not mazimize B’s support
among policy-oriented voters against x*, i.e.,

y* ¢ argmin /Ft(ut(x*) —uy(z))dr, (22)
z2€Z

then candidate B is indifferent between losing to A at x* or winning herself

at y*, i.e.,

Ag(up(y™) —up(z®))+1—-Ap = 0. (23)

To analyze the limiting probabilities of winning for the model in which nei-
ther candidate is advantaged, we assume that the candidates place positive
weight on office, and that the partisan shock becomes degenerate in a way that
is not too asymmetric; formally, G™(0) does not go to zero or one. Then we
establish that the equilibrium probability of each candidate has a positive limit.
To characterize the limits of equilibrium platforms when neither candidate has
an advantage, we show that if a candidate places positive weight on policy, and
if her equilibrium platforms do not approach her ideal point, then her limiting
platform does not garner majority support among policy-oriented voters against
the limiting platform of her opponent. An implication is that if each candidate
places positive weight on policy, and if we have z* # & and y* # g, then the
limiting platforms are tied. We further show that in the case of a tie, the lim-
iting platforms must actually coincide. Finally, in the case of a tie, adding the
assumption that the candidates each place positive weight on office, we prove
that the equilibrium platforms approach the unique equilibrium (z*, z*) of the
model with purely office-motivated candidates.'®

Theorem 18. Under Condition 4, assume that neither candidate is advan-
taged, and that candidate A’s share of policy-oriented voters, in (12), is strictly
quasi-concave in x and strictly quasi-concave in y. Let {G™} be a sequence of
distributions such that each G™ satisfies (11), each has density g™ that is contin-
wously differentiable on its support Sgn, and {G™} converges weak™ to the unit
mass on zero. Let {(z™,y™)} be a convergent sequence, with (x™,y™) — (z*,y*),
such that for all n, (x™,y™) is a standard Nash equilibrium of the stochastic par-
tisans model with partisan shock distribution G™. Then:

(i) If candidate A places positive weight on office, i.e., Aa < 1, and if

liminf G*(0) > O,

n—oo

19Note that by Theorem 10, the equilibrium platform z* in the model with purely office-
motivated candidates is defined independently of the distribution G".
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then A’s equilibrium probability of winning has a positive lower bound, i.e.,
lim Py(z",y") > 0,
n—oo

with an analogous result for B.

(i) If x* # 3 and Aa > 0, then

N =

/ Fy(u(a®) — w(y"))dr <

with an analogous result for B.

(i) If the limiting platforms are tied among policy-oriented voters, i.e.,

* * 1
/Ft(ut(x ) —w(y*))dr = > (24)
then the limiting platforms of the candidates coincide, i.e., x* = y*.

() If (24) holds and Aa, Ap < 1, then z* = y* = z*.

5.2 Limits of Equilibria with Aggregate Voter

Theorems 17 and 18 inform us of the limits of equilibrium platforms as uncer-
tainty becomes small under very general conditions; in this subsection, to gain
further analytical traction, we impose more structure: we assume that idiosyn-
cratic bias is uniformly distributed, so that the aggregate voter theorem applies,
and the unique equilibrium platform in the model with purely office-motivated
candidates is just the aggregate ideal point: z* = Z. Our analysis in this subsec-
tion, and the next on quadratic utility, relies on two lemmas, which are easily
extracted from the preceding two theorems.

The first lemma gives conditions under which the aggregate voter must be
indifferent between electing candidates A or B, when given their limiting plat-
forms. Essentially, if A’s advantage is not too large, and if A’s platforms do not
approach her ideal point, then the aggregate voter must be indifferent: if she
strictly preferred to elect A, then the candidate could increase her payoffs by
moving closer to her ideal point and still win with probability approaching one;
and if she strictly preferred to elect B, then A could shift in the direction of
the aggregate ideal point to win and increase her payoffs. The result is a simple
translation of part (ii) of Theorem 17 to the model with aggregate voter: in-
equality (20) becomes V(Z)+x < V(y*), and the conclusion (21) of the theorem
becomes (25), below.

Lemma 5. Under Conditions 4 and 6, assume that V is strictly quasi-concave;
that Aa, A\g > 0; that candidate A is advantaged, i.e., k > 0; and that the can-
didates’ contract curves with the aggregate voter intersect only at the aggregate
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ideal point, i.e., AV N BV = {2}. Let {G™} be a sequence of distributions such
that each G™ satisfies (11), each has density g™ that is continuously differen-
tiable on its support Sgn, and {G™} converges weak* to the unit mass on zero.
Let {(z™,y™)} be a convergent sequence, with (z™,y™) — (x*,y*), such that for
all n, (z™,y™) is a standard Nash equilibrium of the stochastic partisans model
with partisan shock distribution G™. If V(&) + k < V(y*) and z* # I, then
the aggregate voter is indifferent between candidate A winning with x* and B
winning with y*, i.e.,

V) 4k = V(y). (25)

The second lemma provides conditions for another form of indifference, now

for the disadvantaged candidate, B. If the aggregate voter is indifferent between
electing one candidate or the other, and if B’s platforms do not approach the
aggregate ideal point, then she must be indifferent between losing to A at the
limiting platform z* or winning herself with y*. If candidate B strictly pre-
ferred to lose to A at x*, then her equilibrium payoff would be negative when
uncertainty is sufficiently small, contradicting Theorem 3, which establishes that
candidate payoffs are strictly positive at all standard equilibria; and if B strictly
preferred to win with y*, then she could shift toward the aggregate voter to win
with probability close to one, thereby increasing her payoffs. The result is a sim-
ple translation of part (iii) of Theorem 17 to the model with aggregate voter:
inequality (20) becomes V(&) + x < V(y*), and the assumption (22) becomes
y* # 2, giving us (26).
Lemma 6. Under Conditions 4 and 6, assume that V is strictly quasi-concave,
that Aa, A > 0 and that candidate A is advantaged, i.e., & > 0. Let {G™} be
a sequence of distributions such that each G™ satisfies (11), each has density
g™ that is continuously differentiable on its support Sgn, and {G™} converges
weak™ to the unit mass on zero. Let {(x",y™)} be a convergent sequence, with
(2™, y™) — (z*,y*), such that for all n, (z™,y™) is a standard Nash equilib-
rium of the stochastic partisans model with partisan shock distribution G™. If
V(z*) 4+ & = V(y*) and y* # 2, then candidate B is indifferent between losing
to A at x* or winning herself at y*, i.e.,

Ag(up(y™) —up(z*))+1—-Ap = 0. (26)

We can now characterize the limits of equilibrium platforms, when one can-
didate has an electoral advantage, candidates and voters have general utility
functions, the candidates’ preferences are opposed, in the sense that each prefers
the aggregate ideal point to any platform on the contract curve between her op-
ponent and the voter. If the electoral advantage « is large, then the advantaged
candidate, A, converges to her ideal point; otherwise, if k is not too large, then
B’s platform converges to the aggregate ideal point, and A’s converges to the
platform that makes the aggregate voter indifferent. Intuitively, candidate A
leverages her advantage to win with probability one at the closest possible plat-
form to her ideal point, while candidate B acts as an anchor, constraining A
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Figure 6: Limiting platforms with opposed candidate preferences

from adopting even more extreme platforms. See Figure 6 for a depiction in
which the candidates and aggregate voter have quadratic utility.

Theorem 19. Under Conditions 4 and 6, assume that V is strictly quasi-
concave; that Aa, A\ > 0; that candidate A is advantaged, i.e., £ > 0; and
that candidate B prefers Z to all other platforms on A’s contract curve with the
aggregate voter, i.e., for all x € AV, we have ug(0) > up(x). Let {G"} be
a sequence of distributions such that each G™ satisfies (11), each has density
g™ that is continuously differentiable on its support Sgn, and {G™} converges
weak™® to the unit mass on zero. Let {(z",y™)} be a convergent sequence, with
(2™, y™) = (z*,y*), such that for all n, (z™,y™) is a standard Nash equilibrium
of the stochastic partisans model with partisan shock distribution G™.

(i) If « > V(0) — V(Z), then * = &, and otherwise,
(i1) if K <V(0) =V (%), then y* =0 and V(z*) + k = V(0).

To characterize the limits of equilibrium platforms when the electoral playing
field is level, i.e., kK = 0, we continue to assume some disagreement in the candi-
dates’ preferences, now in the sense that the contract curves of the candidates
with the aggregate voter intersect only at the aggregate ideal point. We show
that competitive forces lead the candidates to take platforms approaching the
aggregate ideal, regardless of their underlying policy preferences, as uncertainty
goes to zero. Interestingly, this results holds even if the candidates care solely
about policy, rather than office.

Theorem 20. Under Conditions 4 and 6, assume that V is strictly quasi-
concave; that Aa, Ap > 0; that neither candidate is advantaged, i.e., k = 0; and
that the candidates’ contract curves with the aggregate voter intersect only at the
aggregate ideal point, i.e., AV N BV = {2}. Let {G™} be a sequence of distribu-
tions such that each G™ satisfies (11), each has density g™ that is continuously
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differentiable on its support Sgn, and {G"™} converges weak* to the unit mass
on zero. Let {(z™,y™)} be a convergent sequence, with (z™,y™) — (x*,y*), such
that for all n, (x™,y™) is a standard Nash equilibrium of the stochastic partisans
model with partisan shock distribution G™. Then x* = y* = Z.

Remark 13. Duggan and Ma (2023) analyze a multidimensional model of
bargaining with a fixed agenda setter, an arbitrary number of voters, and an
arbitrary voting rule. Translating the aggregate voter in our model into the
agenda setter, and the two candidates into two voters, a platform at which
the candidates’ contract curves cross, i.e., z € AV N BV, is referred to as a
“constrained core” alternative by Duggan and Ma. That paper shows formally
that in three or more dimensions, the constrained core is generically empty, i.e.,
for “almost all” specifications of utility functions, the unique intersection of the
contract curves is the aggregate ideal point. Thus, when d > 3, the assumption
AV N BV = {3} is generically satisfied. [

Theorem 19 does not pin down the limit of equilibrium platforms when
candidate preferences are not opposed, but Lemmas 5 and 6 do have implications
for the general case. If (*,y*) is the limit of standard equilibria in the model
with an aggregate voter and with A having an electoral advantage, then we can
say that one of the following holds:

e rF =1,

e y* =Zand V(z*) + Kk =V(2),
o (z*,y*) solve the system of equations

Vi )+rk = V(")
)\BuB(y*)—l—l—/\B = )\BUB({E*).

However, this observation does not imply that there is a unique limit of equilib-
rium platforms; in case there is a unique limit, it does not identify the relevant
case in terms of model parameters; and it does not shed light on the nature of
the solution to the above system of equations.

5.3 Full Characterization with Quadratic Utility

The characterization result of Theorem 19 addresses the case in which the can-
didates have opposing preferences, but the analysis is incomplete, as it does not
account for equilibria in which one candidate prefers her opponent’s platform
to the aggregate ideal point. In this subsection, we complete the analysis by
adding the structure of generalized quadratic utility: aggregate voter utility is
generalized quadratic with coefficient matrix M; candidates also have general-
ized quadratic utility each with coefficient matrix M; and ideal points Z, g, and
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%2 = 0 are distinct and such that & and ¢ are not positive scalar multiples of
each other.

Theorem 19 immediately applies to the quadratic model, where candidates’
preferences are suitably opposed as long as the angle formed by their ideal
points with the aggregate ideal point is obtuse, in the sense that ZMg < 0; see
Figure 6 for an illustration. In fact, because all equilibria are standard when the
candidates’ ideal points do not point in the same direction, we can drop that
explicit restriction from the following corollary.

Corollary 6. Under Conditions 6-8, assume that Aa,\p > 0; that 2 = 0
with & and § forming an obtuse angle, i.e., TM7y < 0; and that candidate A is
advantaged, i.e., k > 0. Let {G™} be a sequence of distributions such that each
G" satisfies (11) and each has density g™ that is continuously differentiable on
its support Sgn, and assume that {G™} converges weak™ to the unit mass on
zero. Let {(z™,y™)} be a convergent sequence, with (x™,y™) — (z*,y*), such
that for all n, (z™,y™) is a Nash equilibrium of the stochastic partisans model
with uniform bias, generalized quadratic utility, and partisan shock distribution
G™. Then candidate A’s probability of winning converges to one, y* = 0, and

conditions (i) and (i) of Theorem 19 hold.

Theorem 20, which considers the case in which neither candidate is advan-
taged, also applies. The key assumption there was that the candidates’ contract
curves with the aggregate voter intersect only at the aggregate ideal point; in
the quadratic environment, this condition is automatically satisfied as long as
the candidate ideal points do not point in the same direction from z = 0. Thus,
equally matched candidates are induced to choose platforms close to the aggre-
gate ideal point as electoral uncertainty becomes small.

Corollary 7. Under Conditions 6-8, assume that Aa, A\p > 0; that 2 = 0 with
& and § not pointing in the same direction, i.e., &4 < ||Z| |§]l; and that neither
candidate is advantaged, i.e., k = 0. Let {G"} be a sequence of distributions
such that each G™ satisfies (11) and each has density g™ that is continuously
differentiable on its support Sgn, and assume that {G™} converges weak* to the
unit mass on zero. Let {(x™,y™)} be a convergent sequence, with (z™,y") —
(x*,y*), such that for all n, (x™,y™) is a Nash equilibrium of the stochastic
partisans model with uniform bias, generalized quadratic utility, and partisan
shock distribution G™. Then x* = y* = 0.

When one candidate is advantaged and the candidates’ preferences are not
opposed, the characterization of limiting platforms is complex. It is still the
case that when k is large, the advantaged candidate A locates at her ideal
point, and when k is lower, it may be that the disadvantaged candidate B
acts as an anchor at the aggregate ideal point, which A’s platform makes the
aggregate voter indifferent between electing either candidate. However, we also
find an “exceptional case” in which the limit of platforms is not as in Corollary
6. The advantaged candidate A still pulls policy as far as possible toward (but
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not to) her ideal point while winning with probability close to one, and the
disadvantaged candidate B still acts as an anchor, but not at Z = 0. Rather,
B’s platform is positioned away from Z = 0, giving A greater latitude in choosing
her platform.

The exceptional case is when (i) A’s electoral advantage is not too great,
(ii) B does not place too much weight on office, and (iii) polarization among
the candidates is low enough, in the sense that the angle formed by their ideal
points relative to the aggregate voter is small enough. Under these conditions,
the situation described in part (ii) of Corollary 6, where B positions at 2 = 0
and A makes the aggregate voter indifferent, cannot be obtained as the limit of
equilibria as uncertainty is removed from the model. The issue is that when un-
certainty is small, candidate B would prefer that candidate A wins, rather than
winning herself near the voter ideal point, and she thus becomes unwilling to act
as an anchor for A. See the left-hand panel of Figure 7, where B has an incentive
to deviate to platforms near xz* to increase her payoff. In this exceptional case,
the limit of equilibrium platforms requires a different characterization, which
we provide in closed form.

Lemmas 5 and 6 provide the key insight needed for the analysis. If the ad-
vantaged candidate A’s equilibrium platforms do not converge to her ideal point,
i.e., 2* # &, then the indifference condition (25) for the aggregate voter must
hold; and if the disadvantaged candidate B does not position at the aggregate
ideal point, then the indifference condition (26) for B must hold. This gives us
two equations specified at the end of the preceding subsection,

Viad) +x = V(B9) (27)
Apup(By)+1—-Ap = Apup(ai), (28)

in two unknowns, o and 3, where we use the dimensionality reduction theorem
for quadratic utility. The right-hand panel of Figure 7 depicts a solution («, 3)
to the system of equations for which f > 0 and o < 1, where B’s platform is
positioned to make the aggregate voter indifferent between electing one candi-
date or the other, and A’s platform is positioned to make B indifferent between
winning and losing.

The remainder of this subsection establishes the limiting characterization of
equilibria, with special attention on the exceptional case. Toward this end, we
solve (27) and (28) using the following shorthand:

X = \piMi r = 2s@Mi)
Y = M\ggMy A = 1Apdrdn

where XY > 0 follows from positive definiteness of M, and A > 0, since
Ap € (0,1]. Then equation (27) simplifies to

—?X +B%Y +kAp = 0. (29)

60



Figure 7: Limit of equilibria in the exceptional case

Equation (28) becomes
20Y — (%Y +1 - Ap — 2a\g(iM9)) + a*X = 0, (30)
and substituting in (29), we obtain the restriction
20Y —2a\g(ZMy)+1—Ap+rAg = 0.
This allows us to solve for § in terms of «, as follows:

ﬁ o (/\B(fMyA)>a_1—)\B+FL)\B

= % 5y = Ta-A.

Substituting the latter expression into (30) gives us a quadratic equation in
«, which we can solve for: in case the angle between & and g is obtuse, i.e.,
TMy <0, set

Lo _ —hAY - JTAY)? 4 (X ~T?Y)(A%Y + )
X -T2y ’

and in case the angle is acute, i.e., TMgy > 0, set

W —TAY + /(TAY )2 + (X —T?2Y)(A?Y + k)

X -T%Y

In either case, we have
B0 = Ta’—A.

In the expression for a”, note that since M is symmetric and positive definite,
XY > (xMy)? follows from the Cauchy-Schwartz inequality, and the inequality
in fact holds strictly, since the ideal points £ and ¢ are not collinear with, and
on the same side of, 2 = 0. Thus, when £M7 < 0, we have o® < 0, and when
#Mg > 0, we have a® > 0.
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Figure 8: Sliding lemma

The analysis is facilitated by the following sliding lemma, which allows us
to leverage the indifference conditions of Lemmas 5 and 6. To convey the idea,
imagine pairs (¢/,3’) and (o”,8"”) with 0 < o” < o/, 0 < B’ < ', and
||z > B9l See Figure 8 for an illustration of the situation. Then the
aggregate voter utility at platforms o’% and (9, is greater, respectively, than
the utility at o/’ and 8”¢. Suppose that the aggregate utility difference is the
same, i.e., V(a"2) — V('2) = V(8"g) — V(B'9). Since ||Z|| > 8|9, and
since V is concave, it follows that the distance between o/% and o’% is smaller
than the distance between ') and 3"§. Moreover, assume that candidate B is
indifferent between losing to A with o/Z or winning herself with 3'g.

Now, we “slide up” the contract curves to o’ and 8”¢. Recall that the
move from 3¢ to 8¢ is larger than the move from o’% to o’’#. In addition,
because the former move is in the direction of B’s ideal point g, and because
B'1 is further from her ideal point, the gradient of her utility function is higher
along this move. Combined, this means that the utility difference for candidate
B between 5"f and f'¢ exceeds the utility difference between o”% and «o'%.
Since she was initially indifferent between winning and losing, candidate B now
strictly prefers to win with 5"y, rather than lose to A at o/’z. Alternatively, if
we begin by assuming that candidate B is indifferent between losing to o/’ or
winning with 8”¢, then we “slide down” the contract curves to conclude that
she strictly prefers to lose to A with o”%, rather than win with 8'y. Here, we
assumed o/ ||Z]] > B’||9||, but the logic also holds when o”||Z|| > 5”9l

Lemma 7. Under Conditions 6-8, let 0 < o” < o' and 8" < 3, with 8’ + 3" >
0. If

V(dz) =V(a"z) = V(By) - V(") (31)
and either o ||Z|| > B'||9]] or &"||Z|| > 8"y, then

up(d's) —up(a’2) < wup(f'9) —up(B’9).

The next theorem characterizes the limit of equilibria as we remove uncer-
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tainty from the model. When the candidates’ ideal points form an obtuse angle
with the aggregate ideal point, i.e., Mgy < 0, Corollary 6 applies, so we now
focus on the acute angle case, Mg > 0. The theorem identifies a cutoff level
of electoral advantage such that for k exceeding that level, candidate A’s equi-
librium platforms approach her ideal point as uncertainty becomes small. For a
lower level of advantage, it is possible that candidate B’s platforms converge to
the aggregate ideal point, anchoring the platform of candidate A, who leverages
her advantage by choosing platforms that converge to a point making the ag-
gregate voter indifferent. The remaining case is the exceptional case discussed
above, in which A’s advantage is not too large, B does not place too much weight
on office, and the candidates’ preferences are sufficiently aligned. In that case,
the candidates’ equilibrium platforms converge to the unique solution (a?, 8°)
to equations (27) and (28).

Theorem 21. Under Conditions 68, assume that As, Ap > 0; that Z = 0 with
T and § forming an acute angle, i.e., 0 < TMgy; that & and § do not point
in the same direction, i.e., £y < ||Z| ||4]l; and that candidate A is advantaged,
i.e., k> 0. Let {G™} be a sequence of distributions such that each G™ satisfies
(11) and each has density g™ that is continuously differentiable on its support
San, and assume that {G™} converges weak™ to the unit mass on zero. Let
{(z™,y™)} be a convergent sequence, with (x™,y™) — (z*,y*), such that for all
n, (2", y") is a Nash equilibrium of the stochastic partisans model with uniform
bias, generalized quadratic utility, and partisan shock distribution G™. Then
candidate A’s equilibrium probability of winning converges to one, and

(i) if K > R, then x* = %,

(i) otherwise, if K < & and Ap(up(0) —up(@z))+1—Ag >0, then (z*,y*) =
(az,0),

(i1i) and if kK < B and Ap(up(0) —up(@z)) + 1 — Ap < 0, then (z*,y*) =
(a2, 8%),
where @ and K are defined by
V@i)+x = V() and ® = V(BY) —V(2),
and B is the lower solution to

)\B(’U,B(ByA) — ’U,B(ii')) + 1-— )‘B = 0.

Example 4. In Figure 9, we depict equilibrium platforms and candidate A’s
probability of winning as we remove uncertainty from the model, when the angle
formed by the candidates’ ideal points is obtuse. In both panels, we assume
quadratic utility, ||Z]| = ||g]l =1, 2 -5 = —.8, k = .5, and Ay = Ap = 1. Since
A’s advantage is not too large, part (ii) of Theorem 21 applies, so we know
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Figure 9: Removing uncertainty: obtuse angle

that the advantaged candidate A’s probability of winning (black) converges to
one and that A’s platform (orange) converges to & = .7071, while B’s platform
(blue) converges to the aggregate voter’s ideal point at zero. In the left-hand
panel, we compute equilibria assuming G is the logistic distribution, with scale
parameter s, and in the right-hand panel, we assume G is normal with standard
deviation s. Notably, we see that convergence of A’s platform is non-monotonic:
when the variance of the partisan shock decreases, A’s probability of winning
initially increases in a convex way, and she moves toward the aggregate voter to
take advantage of the voter’s responsiveness to her platform. As A’s probability
of winning becomes concave, the candidate pulls her platform toward her ideal
point, leveraging her electoral advantage, at negligible cost to her probability of
winning, which converge to one. [J

Example 5. In Figure 10, we maintain the assumptions of Figure 9, but we
now examine the exceptional case by setting the angle between the candidates’
platforms to be acute: -y = .8. By Theorem 21, we know that candidate
A’s probability of winning (black) converges to one, that A’s platform (orange)
converges to a’ = .8123, and that B’s platform (blue) converges to 3° = .3999.
In the left-hand panel, we compute equilibria assuming G is the logistic dis-
tribution, with scale parameter s, and in the right-hand panel, we assume G
is normal with standard deviation s. As in the previous example, we see that
convergence to the limit is non-monotonic for the advantaged candidate, as A
does not exert her leverage until the variance of the partisan shock is relatively
small. [

5.4 Limiting Model of Peress (2010)

The limit of our model, once uncertainty is completely removed, is analyzed by
Peress (2010). That paper characterizes equilibria in which one candidate, say
A, has an electoral advantage: assuming the electoral advantage is not too large,
the disadvantaged candidate locates at the “vote-maximizing point,” and the
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Figure 10: Removing uncertainty: exceptional case

advantaged candidate locates at the best element of the “pseudo-core.” Peress
states his result in the general model, without the aggregate voter structure of
the previous subsection. With that structure, the description of equilibria in his
model simplifies: candidate B locates at the aggregate ideal point y = 2 = 0,
and candidate A locates on the contract curve with the aggregate voter to make
the voter indifferent, i.e., A’s platform z solves

V() = V(z)+s, (32)

where a solution exists as long as k < V/(0) — V(&). This creates a tie, as half of
all voters support A, while the other half support B, and Peress assumes that
the tie is broken in favor of the advantaged candidate: A wins with probability
one. The remainder of the discussion assumes x < V' (0)—V (&), so that A cannot
locate at her ideal point and win with certainty, irrespective of B’s location. In
this case, let T denote the unique solution to (32). We also assume for simplicity
that aggregate voter utility and candidate utilities are quadratic, so ¥ = a2 lies
on the line segment between A’s ideal point and Z = 0.

The platforms described above form an equilibrium of the model of Peress
(2010) with no partisan shock, by a suitable choice of winning probability for the
disadvantaged candidate B when her platform creates a tie. In the stochastic
partisans model, when g < 0, the platforms also characterize the limit of
equilibria as uncertainty goes to zero. This characterization continues to hold
when Mg > 0 and B’s office motivation is high enough, as long as the angle
formed by the candidates’ ideal points is not too small. The next example
discusses the exceptional case, where the equilibrium described by Peress (2010)
fails to capture the limit of equilibria in our model.

Example 6. In the stochastic partisans model, assume that the aggregate
voter result holds, that A is advantaged (so x > 0), that utilities are quadratic,
that B is purely policy motivated, and that & and ¢ each have norm one, with
acute angle & - § > 0 formed between them. Let {(z",3y™)} be a sequence of
equilibria as {G™} converges weak* to the unit mass on zero, and suppose toward
a contradiction that: y™ — 2 = 0, that ™ — T, where T is the solution to (32),
and that candidate A’s probability of winning converges to one. We specify the
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location of candidate ideal points as in the left-hand panel of Figure 7, and we
specify k£ > 0 such that T is located as in the figure; in particular, candidate
B strictly prefers T to 2. Then for high enough n, candidate B’s equilibrium
expected payoff satisfies

Up(z",y") = Pp(a",y")[up(y") —up(z")] <0,

whereas B could replicate A’s platform to obtain Ug(z™,2™) = 0. Thus, for
high enough n, (2™, y™) is not an equilibrium, a contradiction. In the model of
Peress (2010) with no partisan shock, the configuration in the left-hand panel
of Figure 7 can be supported as an equilibrium by specifying that B loses with
probability one whenever her platform creates a tie with A. [

Theorem 21 demonstrates that the characterization of limits of equilibria in
the stochastic partisans model is more nuanced in the exceptional case, with
limits «* and y* being the unique solution to the equations (27) and (28).
Interestingly, the pair (z*,y*) gives us an additional equilibrium in the limiting
model of Peress with no uncertainty.

Example 7. In the model of Peress (2010) with no partisan shock, we continue
to assume that utilities are quadratic, ||Z|| = ||g]| = 1, and that & - § > 0. The
right-hand panel of Figure 7 depicts a solution to equations (27) and (28), where
we assume Ap < 1. Here, candidate B locates at the platform 57 that makes her
indifferent between winning at 3°j or losing to A at a®#. Since 1 —Ag > 0, this
implies that on policy grounds, a’# is preferred to 5%). The aggregate voter is
indifferent between electing A and B, so the election is tied, and we break the
tie in favor of candidate A. Note that B has the option of stealing victory from
A by choosing a platform even closer (in the small circle around the origin),
but by equation (28), this deviation is not profitable for B. Meanwhile, if A
deviates to a preferred policy, then victory shifts to B, so this is not profitable.
Thus, (a’%, 3%) comprises an equilibrium of the limiting model. For example,
specifying £ = § = 1 with 2 - § = &, and setting Ap = .9 and xk = .15, the
unique solution to the two equations is a® = .082 and 3° = .396. O

Peress (2010) defines an equilibrium to be “regular” if the advantaged can-
didate chooses a platform in the pseudo-core. In the context of this subsection,
that means candidate A chooses a platform x such that V' (0) < V(z) 4 &, which
ensures that she garners at least half of the vote. Proposition 4 of that paper
shows that every regular equilibrium has the form described above in part (ii)
of Theorem 21: candidate B locates at y = Z = 0, and candidate A locates at
ai, where @ solves (32). Proposition 5 of Peress (2010) states that under quasi-
concavity conditions satisfied here, there is no irregular equilibrium in which
each candidate chooses a platform distinct from her ideal point. However, the
preceding example demonstrates that such an equilibrium does indeed exist.2°

20Peress checked for irregular equilibria in the one-dimensional model and only found ex-
amples in which both candidate ideal points were on the same side of the vote-maximizing
point. This is the extreme case of & -4 = 1 in our example, but equilibria of the sort we
illustrate will exist for an open set of parameters.
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Moreover, part (iii) of Theorem 21 shows that for some parameter values, these
irregular equilibria are the ones selected by the limit of equilibria in the model
with the partisan shock, as uncertainty goes to zero.

6 Symmetric Model

In the symmetric version of the stochastic partisans model, with uniform bias,
we assume that the politicians’ and voters’ utility function are quadratic, that
candidates’ ideal points are equidistant from the aggregate ideal point, that
preference parameters are symmetric between the candidates, that neither can-
didate has a bias advantage, and that the distribution of the net mass of partisan
voters is symmetric around zero.

Thus, in the symmetric model with uniform bias, we assume: (i) u4, up, and
V are quadratic with ||Z|| = ||g|| > 0 = 2, (ii) the vectors & — 2 and § — £ are not
positively dependent, so that conditions (a)—(c) of Theorem 16 hold, (iii) there
exists A such that Ay = Ap = A, (iv) K = 0, and (v) for all 7, g(7) = g(—n).
The placement of the aggregate voter at the origin is, of course, a normalization
that is without loss of generality, and we let r = ||Z|| = ||§|| denote the extremity
of the candidates, relative to the aggregate voter. Let 6 = (& - §)/r? denote the
angle between the candidates’ ideal points. By Theorem 15, in any equilibrium
(x*,y*), there exist «, 8 € [0, 1] such that

¥ = at and y* = [9.

Thus, we can view the strategy set of each candidate as the unit interval [0, 1],
which corresponds to a platform between the candidate and aggregate voter.
For simplicity, we maintain the assumption that AV and BV are contained in
the interior of Z, so that boundary issues are moot.

6.1 Uniqueness of Symmetric Equilibrium

In this symmetric setting, we are especially interested in symmetric equilibria,
which we can represent by a single scalar v € [0,1] such that « = 8 = ~.
See Figure 11. Recall that at an equilibrium (z*,y*), candidate A’s platform
satisfies the necessary first order condition:

A
9(0)DV (") [Mua(z”) —ua(y)) + 1= A + 5 Dua(a®) = 0,
where we use the facts that x + V(2*) — V(y*) = 0 and that G(0) = 3. Using

DV (z) = =2z and Duy(z) = 2(& — z), 2* = v&, and y* = ~§, the first order
condition becomes

A1=7)z = g(0)2v2[Mua(y®) —ua(y9)) +1 = AL
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Figure 11: Symmetric equilibrium in the symmetric model

Because optimal platforms for A always lie on the contract curve AV, which
is the line segment from 0 to &, we can restrict attention to derivatives in the
direction ﬁ:ﬁ Taking the dot product with this unit vector, and dividing by

|Z]|, the first order condition simplifies further to
A1 =7) = g(0)2y[Aua(y®) —ua(vg)) +1 = A
Moreover, using 2 = gy, the utility difference is
ua(v®) —ua(yy) = 2v(&2 —19),

where, as & and ¢ are not positively dependent, we have & — 2y > 0. Since
r = ||&||, this can be written in terms of the angle between the candidates as

ua(v&) —ua(yg) = 2/2[*(1 - 0)y.

Finally, the first order condition for a symmetric equilibrium becomes
112 1-A
0 = 29(0)2I21°Q = O)y + —— |7 +7 - L (33)

The right-hand side of this equation is increasing in <y, since it is negative at
v = 0, and since it is positive at v = 1, the intermediate value theorem implies
that a solution exists; and since the right-hand side is strictly increasing in +,
it therefore has exactly one solution.

Since (33) is quadratic, we can solve for the unique symmetric equilibrium
explicitly and perform several simple comparative statics. For the comparative
statics analysis, note that the right-hand side in (33) is strictly increasing in g(0),
and it is strictly decreasing in A and . It follows that when the election outcome
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becomes more sensitive to platforms, in the sense that g(0) increases, the equi-
librium coefficient + decreases, i.e., the candidates shift toward the aggregate
voter, becoming more moderate. In contrast, when the candidates become more
policy motivated, or when their interests become more aligned, in the sense that
0 increases, they shift toward their ideal points and become more extreme rela-
tive to the aggregate voter. While the first of these two observations are intuitive
and can be found in the one-dimensional version of the model (where they are
analogous to results of Bernhardt, Duggan, and Squintani (2009)), the third
comparative static on alignment 6 is essentially multidimensional. Our result
suggests, for example, that if two parties are controlled by elites with similar
preferences on one dimension, then the equilibrium platforms of the parties will
be pulled in the direction of their common preference—even if this leaves some
probability of winning on the table.

The next theorem summarizes the analysis of symmetric equilibria in the
symmetric model.

Theorem 22. Under Conditions 4 and 6, the symmetric stochastic partisans
model with uniform bias and quadratic utility has a unique symmetric Nash
equilibrium ~*, which is the unique solution to equation (33). Moreover, v* =
0 if and only if the candidates are purely office motivated, i.e., A = 0, and
otherwise, the candidates choose divergent platforms. Assuming A > 0, the
symmetric equilibrium is given by

2
- <1 + 729@)9”) + \/<1 + 729(0)§1A)> +169(0)[|&]12(1 — )
89(0)[|21*(1 - 0) '

*

Finally, the candidates become more moderate as the outcome of the election
becomes more sensitive to policy; they become more extreme as they place greater
weight on policy or their preferences become more aligned:

Dyoyy" < 0, Dxy* > 0, and Dgy* > 0.

6.2 Comparative Statics

So far, we have restricted attention to symmetric equilibria, but if we seek to
understand the equilibrium response to parameters that enter asymmetrically,
then the analysis must account for equilibria in the asymmetric model, rec-
ognizing that such equilibria will likely be asymmetric. Before proceeding to
the comparative statics, we address some calculus preliminaries in the general
framework of Section 2. First, to represent the candidates’ first order condi-
tions, we define the function ¢ = (¢4, ¢p): (int Z)? — R? as follows: given any
x,y € int Z, assuming P4, Pp, ua, and up are continuously differentiable,

d)(x ) 7 (DzPA)AA+/\APADuA
Y= | (D,Pg)Ap + ApPpDup |’
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where P4, Pg, D, P4, and D, Pg are evaluated at (z,y), Duga is evaluated at
x, Dup is evaluated at y, and

Ay = )\A(UA(,T)—UA(y))-Fl—)\A
AB = )\B(uB(y)—uB(:v))—i-l—)\B.

Of course, an interior platform pair (x,y) satisfies the first order conditions for
the candidates if and only if ¢(z,y) = 0.

The following lemma establishes that at any interior platform pair gener-
ating positive payoffs for the candidates, the necessary first order condition is,
in fact, sufficient for equilibrium, and that the second order condition holds
strictly at any solution to ¢ = 0. The result assumes that the candidates place
strictly positive weight on policy, and it hinges on log concavity of the proba-
bility of winning functions. The lemma does not depend on quadratic utility or
symmetry, and it is stated for the general model under general differentiability
conditions.

Lemma 8. Under Conditions 1-3, in the general model, assume Ag, Ap > 0
and:

(i) ua and up are twice continuously differentiable,
(ii) the Hessian matrices D*ua(z) and D*up(z) are negative definite on int Z,

(iii) for ally € Z, Py(-,y) is twice continuously differentiable on {x € intZ :
Pa(z,y) > 0}, and

(iv) for all x € Z, Pg(x,-) is twice continuously differentiable on {y € intZ :
PB (Ia y) > 0}

Then for all (z*,y*) € (int Z)? such that Ua(x*,y*) > 0 and Ug(x*,y*) > 0,
if ¢(a*,y*) = 0, then the pair (x*,y*) is a Nash equilibrium, and the second
partial derivatives D2Ua(z*,y*) and DZUp(x*,y*) are negative definite.

In the context of the model with quadratic utility and uniformly distributed
bias, the function ¢: (0,1)? — R? takes the simpler form

g(V(az) + K =V (B9))[Aa(ua(az) —ua(By)) + 1 — Aa]l DoV (ad)
+AaG(V(az) + k — V(B9))Daua(a)
Plo, B) = ,
g(V(az) +x =V (89))[Ap(us(BY) — us(ai)) + 1 — As]DsV (B7)
+As(1 = G(V(az) + k- V(89)))Dsur(8Y)

where we suppress dependence on parameters of potential interest, including
A, Ap, and k. The next lemma, which is key to signing comparative statics
on parameters such as A4 and s, provides the sign of the determinant of the
system of first order conditions: beginning from a symmetric solution to the
candidates’ first order conditions in the symmetric model with quadratic utility
and uniform bias, the determinant has positive sign.
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Lemma 9. Under Conditions 4 and 6, in the symmetric stochastic partisans
model with uniform bias and quadratic utility, for ally € [0, 1] such that ¢(~y,~) =
0, the Jacobian of the system of first order conditions has the form

Do(r.7) = [Z 2} (34)

where |b] < —a, and b has the sign

1446
signA(% —~y>.

In particular, the determinant of the Jacobian is positive at every symmetric
solution (v,7) to the first order conditions:

det Dp(vy,v) > 0.

We can now conduct comparative statics analysis, beginning from the sym-
metric equilibrium of the symmetric model, that allows asymmetric perturba-
tions of the electoral game. Let ¢ = («, 3) denote a platform pair, and let 6
be any finite-dimensional parameter of interest. We then write ¢(o, ) for the
parameterized first order conditions of the candidates, D,¢(o,8) for the Jaco-
bian of the system, i.e., the derivative with respect to the endogenous variables
a and B, and Dy¢(o, ) for the derivative with respect to the coordinates of 6.
Given a symmetric solution & = (%,%) to the first order conditions for a given
value 6, Lemma 9 shows that D,¢(5, é) has non-zero determinant and is thus
non-singular. By the implicit function theorem, for an open set around é, there
is a unique equilibrium o*(#) near &, and moreover, o*(-) is a C! function with
derivative

DQU*(é) = _[DU¢(&7§)]_1D9¢(679~)
at 0. Letting Dy$(5,60) have the form in (34), it follows that
5 1 a —b
~ 71 _
[DU¢(050)] - ag _ b2 |: -b a :| ’

so we can obtain the comparative static of ¢ at 0 by simple matrix multiplication.

For example, let & = (%,%) be the unique symmetric equilibrium in the
symmetric model with policy weights equal to A, and consider the effect of A4
increasing above A4 = A > 0. Note that

9lua(72) —uwa(39)) — 1D,V (2) + GDyua(52) ]

DAA(ZS(&?S‘A) = 0

Since ¢4 (7,%) = 0, it is straightforward to see that the upper entry in the above
matrix is strictly positive. Then the change in equilibrium platforms is given by

X 1 a —b c
Daaomha) = ‘m[—b a HO]
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where |b| < —a and ¢ > 0.

By Lemma 9 and the above discussion, we conclude that when candidate
A’s weight on policy increases, she becomes more extreme, as her equilibrium
platform shifts in the direction of her ideal point, away from the aggregate voter:

D,\Aa*(S\A) = ac > 0,

a2 — b2

In contrast, the effect on candidate B’s platform, namely,

v be
Dr.f*(Aa) = 55

a

has the same sign as b, i.e.,
. S , 146
sign Dy, 8*(Aa) = sign <T —~y>.

For example, when § = —1, so the candidates are diametrically opposed, the
sign of the comparative static is negative, so that candidate B moderates by
shifting toward the aggregate voter. When the candidates are more aligned,
this comparative static can be reversed: if § € (—1,1), then for A > 0 close
enough to zero, v will be small, and D, ,8* will be positive. At work is the
fact that when the candidates are highly opposed, A’s shift toward her ideal
point increases the threat to B, incentivizing the latter candidate to moderate.
When the candidates are more aligned and the symmetric equilibrium is not
too extreme (so 7y is not too close to one), A’s shift can be beneficial to B,
decreasing the threat and allowing her to also become more extreme.

Theorem 23. Under Conditions 4 and 6, in the symmetric stochastic partisans
model with uniform bias and quadratic utility, assume A > 0. At the symmetric
Nash equilibrium ~*, the equilibrium platform of candidate A becomes more ex-
treme as she places greater weight on policy; candidate B’s equilibrium platform
becomes more extreme if the degree of equilibrium moderation is not too great
relative to the degree of alignment between the candidates. Formally,

- ~ 146
Dy,a*(Aa) > 0 and signDy,B"(Aa) = sign <%—”y*>,

where ;\A = A

To examine the effect of increasing candidate A’s electoral advantage to small
k > 0, note that if & is the symmetric equilibrium at x = 0, then

- Ag(0)Dyua(v2) }
Dio(c,0) = 7 2 ,
000 = | D
where we use ¢’(0) = 0. Assuming A > 0, the change in equilibrium platforms
is then given by
« - 1 a —b d
DRU(O) - _ag_b2|:_b a:||:_d:|7
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where |b| < —a and d > 0. We conclude that when A’s advantage increases,
the candidate leverages her advantage to pull policy in the direction of her ideal
point:

N ad + bd

DHCY (O) = —m > 0.

In contrast, B is forced to moderate her platform by moving toward the aggre-
gate voter :

. bd + ad
This intuitive comparative static runs counter to a result found by Groseclose
(2001) in a different model; whereas Groseclose assumes a single policy dimen-
sion and uncertainty about the location of the median voter, we allow multiple
dimensions and assume that voter policy preferences are known to the candi-
dates.?!

Theorem 24. Under Conditions 4 and 6, in the symmetric stochastic partisans
model with uniform bias and quadratic utility, assume X > 0. At the symmet-
ric Nash equilibrium, as the electoral advantage of candidate A increases, her
equilibrium platform becomes more extreme, and the platform of candidate B
becomes more moderate:

D.a*(0) > 0 and D,B"(0) < 0.

6.3 Application: Cultural and Economic Polices

Following the contributions of Romer (1975), Roberts (1977), and Meltzer and
Richard (1981), which treat economic policy as the main (and in their mod-
els, the only) dimension of political conflict, there has been growing recognition
that redistributive policies may also be affected by competition along a sec-
ond, cultural and social dimension. Roemer (1998) and Roemer, Lee, and Van
Der Straeten (2007) consider models in which, in addition to tax policy, parties
compete on issues like religion, affirmative action, and immigration policy, em-
ploying the party unanimity equilibrium concept to establish the existence of an
equilibrium. Other papers, such as Krasa and Polborn (2012) and Besley and
Persson (2023), allow for a cultural dimension, but they assume that competi-
tion is on only one of the two dimensions. Enke, Polborn, and Wu (2025) allow
for a second dimension that they refer to as moral values, but treat the parties’
positions as exogenous; in an extension where they endogenize these positions,
they assume that the parties maximize a weighted average of the utilities of
voters who support them. Buisseret and van Weelden (2025) allow for party

21The intuitive comparative static result is also found by Duggan (2025a) in the stochastic
valence model; see the latter paper for a discussion about the difference in candidate incentives
that leads to the contrary findings.
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competition on both taxes and culture, but cultural policy is binary and they
establish existence of pure strategy equilibrium under the assumption that the
policy motivation of the parties is endogenously determined by the sets of voters
who support them.

In this section, we show how our results for the stochastic partisans model
can be applied to study party competition in two dimensions of policy, an eco-
nomic dimension and a cultural dimension, which stands in for issues such as
LGBTQ rights, abortion, immigration, and gun control. We assume the policy
space is Z = [0,1]2, and a generic policy is denoted z = (2, 2.), with z. being
economic policy and z. being cultural policy. We do not specify a model of
tax and redistribution for these preferences in this application, but our previous
application on progressive taxation and the voluminous political economy lit-
erature, beginning with seminal contributions cited above, suggest foundations
for how such preferences could be induced.

We assume that a fraction v < 1/2 of voters are left-leaning on both economic
and cultural policy, and thus have ideal point (0,0), while another fraction v
are right-leaning on both issues and have ideal point (1,1). A fraction (1 —2v)u
are culturally progressive but economically conservative, with ideal point (1,0),
while the remaining fraction (1 —2v)(1 — u) are culturally conservative but eco-
nomically left-leaning, with ideal point (0,1). We maintain the assumption that
i < 1/2, which means that more voters are economically left leaning than are
right leaning, and that more are culturally right leaning than are left leaning.?2
We identify each of four voter types with one of these ideal points, where voter
preferences are quadratic. For voter type t with ideal point 2t = (z%, z1), the

utility from policy (ze, 2c) is then

1 . 1 -
uzt 5t (Ze, Ze) = _5(28 - 2% - E(zc - z)% (35)

The two parties A and B share the policy preferences of the type (0,0) and
(1,1) voters, respectively, so that usg = ugo and up = wui1, and the parties’
ideal points are & = (0,0) and § = (1, 1) respectively. Thus, A is the party of the
left, representing voters who are left-leaning on both policy dimensions, and B
is the party of the right, representing those who are consistently right-leaning.
See Figure 12, where the corners of the policy space are the ideal points of each
voter type, with A and B located on the 45 degree line.

In addition to these policy oriented voters, there is a mass of partisan voters
distributed by a function G satisfying Condition 4. We also assume that each
type of t voter has a net bias for party B that satisfies Condition 6, so that the
aggregate voter result of Theorem 14 applies, and the parties’ probabilities of
winning satisfy (16) and (17). Finally, we assume that p; = 1/2 for all types ¢,

22These assumptions are consistent with survey results for 982 voters reported by the 2025
June Omnibus Political Quadrant Analysis: https://public.tableau.com/shared/KFCNKGP2
87:display_count=n&:origin=viz_share_link
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Figure 12: Cultural and economic policies

to ensure that the support of the bias term is large enough to satisfy (9).2% In
the present context, aggregate utility is then

V(z) = wvuoo(z)+ (1—2v)(1 — puo1(z) + (1 — 2v)puy o(2) + vus 1(2),
and thus the aggregate ideal point is
2 o= (%,%2) = (v+(Q=20)p,v+ (1 —20)(1—p)).

Here, the first coordinate is simply the share of voters who are conservative
on the economic dimension, and the second coordinate is the share who are
liberal on economic policy. Equivalently, by the symmetry built into the model,
the first and second coordinates of the aggregate ideal point are the shares of
voters who are liberal and conservative, respectively, on cultural policy. By our
assumption that p < 1/2, the aggregate ideal point % lies due northwest of the
“neutral” policy (1/2,1/2) on the dotted line depicted in Figure 12. Note that
the angle 6 formed by the party ideal points (relative to the aggregate ideal
point) is necessarily obtuse, because AV, the line segment between # and 2, is
steeper than 45 degrees, and BV, the line between 4 and 2, is flatter.

Because Conditions 7 and 8 also hold, Theorem 15 applies, so party A chooses
a platform on the contract curve AV in Figure 12, while party B chooses a
platform on the contract curve BV . Note that the lengths of these line segments
are the same by the fact that Z. + 2. = 1. Formally, in equilibrium, party A

23Technically, the results of Subsections 6.1 and 6.2 implicitly assume that the coefficient
matrix M for the aggregate voter utility function is the identity matrix. Here, it is M = i[ ,
which has the same effect as scaling the value g(0) by 1/4 in the earlier subsections. Thus,
our comparative statics results for the symmetric model carry over unchanged.

(0]



chooses a policy ai + (1 — )z for some « € [0, 1], and party B chooses a policy
B9+ (1—pB)Z for some 3 € [0, 1]. We furthermore assume that the parties have the
same level of policy motivation, i.e., Aa4 = Ap = X for some A € [0,1], and that
neither party has an electoral advantage, i.e., K = 0. Therefore, the assumptions
of Section 6 are satisfied by the symmetric model of cultural and economic
policy—up to a translation of the ideal points—and so the main conclusions of
Theorems 22-24 apply.

In particular, Theorem 22 implies that there is a unique symmetric equilib-
rium, with o = * = v*, where v* is determined by the parameters of the
model as follows:

2
0)(1-A 0)(1-A

~ (1+ 4oy >)+\/(1+g< L=0) 1 ag(0) “
7= : 36

29(0)
The expression above is actually simpler than the formula for v* in Theorem
22, as the terms ||Z||?(1 — @) are not present. Letting r denote the magnitude
IZ]|, note that if we translate ideal points so that the aggregate voter is located
at the origin, then r is just the norm of party A’s ideal point. Using the fact
that 2 lies on the dotted line in Figure 12, it can be shown that r?(1 —v) =1,

which gives us the simpler expression in (36).

Substantively, the solution for v* in (36) means that, unsurprisingly, if A > 0,
then in equilibrium party B will be to the right of the aggregate voter on both
economic policy and culture, while party A will be to the left of the aggregate
voter on both dimension. More interestingly, however, because AV is steeper,
and BV is flatter, than the 45 degree line, the right-leaning party B is further
to the right of the aggregate voter on economic policy than it is on culture,
and the left-leaning party A is more out of step with the voter on culture than
on economics. Comparing across parties, A is more misaligned (relative to the
aggregate voter) than B on culture, and the situation is reversed on economic
policy, where B is more misaligned that A.

If 11 decreases, so that the economically left-wing, and socially right-wing,
position (0,1) becomes more popular relative to the position (1,0), then this
causes the aggregate ideal point to shift upward along the dotted line, further
to the northwest in Figure 12. This leaves v* unaffected, as discussed above,
but it causes AV to become steeper, and BV flatter. In turn, this exaggerates
the imbalances across dimensions within each party: party A becomes more
misaligned on culture and less misaligned on economic policy, while party B
becomes more misaligned on economic policy and less on culture. For exam-
ple, party A’s degree of misalignment on the culture dimension relative to the
aggregate ideal point is

v+ (1=2v)(1 —p) —v(v+ (1 —2v)(1 — p)),
and the derivative of this with respect to pis —(1 —+)(1 —2v) < 0. That is, as

u decreases, cultural misalignment increases at the rate (1 —v)(1 — 2v), as does
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the rate of economic misalignment for party B. Similarly, party A’s degree of
misalignment on the economic dimension is

v+ (1=2v)p—~(v+ (1 - 2v)p),

and this decreases at the rate (1 —)(1 — 2v) as p decreases, as does the rate of
B’s misalignment on the cultural dimension.

Proposition 6. Under Conditions 4 and 6, in the symmetric model of cultural
and economic policy with uniform bias and quadratic utility, assume A > 0.
There is a unique symmetric Nash equilibrium v*, and assuming XA > 0, this is
given by (36). Then:

(i) party A’s misalignment relative to the aggregate voter is greater on the
culture dimension than on the economic dimension, i.e.,

(I=-+A-20)1—-p) > 1=+ 1-2v)p),

(i) party B’s misalignment relative to the aggregate voter is greater on the
economic dimension than on the culture dimension,

(iii) as the mass of culturally conservative and economically liberal voters in-
creases, i.e., pu decreases, A’s misalignment on the culture dimension in-
creases, and its misalignment on the economic dimension decreases,

(iv) and B’s misalignment on the culture dimension decreases, and its mis-
alignment on the economic dimension increases.

As the parties become more policy motivated, i.e., A increases, or as voting
becomes less sensitive to platforms, i.e., g(0) decreases, Theorem 22 tells us that
the symmetric equilibrium platforms shift toward the parties’ ideal points, so
parties become more polarized. Although the parties diverge from the aggregate
voter by the same amount, A and g(0) have differential effects across dimensions:
because the slope of the line segment AV is greater than one, party A’s shift
away from the aggregate ideal point is greater on the culture dimension than
on the economic dimension, and analogously, party B’s moves away more on
the economic dimension than on the culture dimension. If y decreases, so that
the segment AV becomes steeper, then these imbalances are magnified, and in
the limit, when p = 0, the aggregate ideal point is at (0, 1), party A is aligned
with the voter on economic policy, while B is aligned on cultural policy; in this
case, A’s shift is entirely on the culture dimension, while B’s is entirely on the
economic dimension.

Proposition 7. Under Conditions 4 and 6, in the symmetric model of cultural
and economic policy with uniform bias and quadratic utility, assume X > 0. As
g(0) decreases or X increases:
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(i) party A’s misalignment relative to the aggregate voter increases on both
dimensions, and the rate of increase is greater on the culture dimension
than on the economic dimension, i.e.,

DA.%'Z < DA.%'Z < 0 and Dg(o)xz > Dg(o)xz > 0,
where x* = v*& + (1 —v*)2 is A’s symmetric equilibrium platform,

(i) party B’s misalignment relative to the aggregate voter increases on both
dimensions, and the rate of increase is greater on the economic dimension
than on the culture dimension,

(i11) the increase in misalignment of party A on the culture dimension is greater
than the increase in party B’s misalignment on the culture dimension, i.e.,

—D,\:vz > D,\yz and Dg(o)xz > —Dg(o)yz,
where y* = v*§ + (1 —v*)Z is B’s symmetric equilibrium platform,

(iv) the increase in A’s misalignment on the economic dimension is less than
the increase in misalignment of B on the economic dimension.

We can also apply Theorems 23 and 24 to examine the effects of asymmetric
changes in parameters, such as an increase in party A ’s electoral advantage or
its weight on policy (holding B’s fixed). Theorem 24 implies that in the first
case, as Kk becomes slightly positive, party A’s platform shifts down the segment
AV toward A’s ideal point and away from the aggregate voter, while party
B’s shifts down BV away from its ideal point and toward the aggregate voter.
Theorem 23 tells us that if A’s policy motivation A4 increases slightly, then the
party again shifts toward its ideal point, whereas B’s response is ambiguous.
We do not re-state those results here, but we end by noting that if u is close
to one half, then the aggregate ideal point approaches (1/2,1/2), and the angle
becomes close to 180 degrees, i.e., 8 is close to —1. Since v* > 0 is unaffected by
1, Theorem 23 implies that for p close enough to one half, we have Dy, 8* < 0.
In this case, as A becomes more policy motivated, B responds by unambiguously
shifting toward the aggregate voter.

7 Conclusion

The previous literature has not offered a framework for modeling multidimen-
sional candidate competition that generates competitive and meaningful elec-
tions. We provide such a framework: equilibria exist generally in the stochastic
partisans model in any number of dimensions, while candidates have mixed mo-
tivations that typically lead to equilibria in which they adopt distinct platforms
and each win with positive probability. At the same time, uncertainty may be
arbitrarily small, and we obtain the social optimality result from the literature
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with vote-maximizing candidates as the limiting case when uncertainty is re-
moved from our model. We give conditions under which election outcomes are
as if there is a single, aggregate voter whose choices are subject to noise; we add
the assumption of quadratic utility to obtain a dimensional reduction result;
and we then add symmetry to explicitly solve for equilibrium and perform com-
parative statics. Simple applications to distributive politics, income taxation,
and cultural and economic policy confirm the tractability of the framework,
and they demonstrate the promise for future applications to understand how
democratic elections aggregate voter preferences to address inherently multidi-
mensional problems.

A  Proofs Omitted from Text

A.1 Proof of Lemma 1

Fix y € Z. First, assume x* solves (6). Since the exponential function is a
monotonic transformation, it then solves

max Ua(zx,y),
e Alz,y)

and thus it solves (7). Conversely, assume Condition 1 holds. In case A4 < 1,
candidate A can set x = y, and by Condition 1, we have P4(y,y) > 0, and thus
Ua(y,y) = Pa(y,y)(1 — Xa) > 0. This implies that x € Z4(y). Consider the
remaining case A4 = 1, Condition 2 holds, and y # &. Since Pa(y,y) > 0 and
P4 is continuous, we can choose a € (0,1) small enough that

Pilat+(1—a)y) > 0 and walaz+ (1—a)y) > ua(y),

which imply az+ (1 —a)y € Z4(y). In either case, we conclude that Z4(y) # 0,
and thus all best response platforms for A must belong to Z4(y). In particular,
we can restrict A’s maximization problem to Z4(y), and as the log function is a
monotonic transformation, we conclude that if z* solves (7), then it solves (6).

A.2 Proof of Theorem 1

The electoral game features compact, convex strategy sets, and candidate pay-
offs are continuous. It follows immediately that the candidates’ best response
correspondences have nonempty values and closed graph. First, assume Ay, Ap <
1. To invoke Kakutani’s theorem, we need only show that the best response cor-
respondences of the candidates are convex valued. Focusing on candidate A, we
will argue that for all y € Z,

BRa(y) = argmaxUa(z,y)
EAS
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is convex. By Lemma 1, candidate A’s best response platforms are just the
solutions to (6), and by Condition 3, the objective function in (6) is concave
in . Thus, BRa(y) is convex. Let BRp(x) denote the set of best response
platforms for B. By Kakutani’s theorem, the correspondence ¢p: Zx2Z = Z x Z
defined by ¥ (z,y) = BRa(y) x BRp(x) has a fixed point, (z*,y*), which is a
Nash equilibrium. Finally, given any Aa, Ag € [0, 1], we can let {(A\"}, \})} be
any sequence satisfying Ay, N < 1 for all m and (N}, \5) — (Aa,Ap). For
each m, we have shown there exists an equilibrium (z™,y™). Since Z x Z is
compact, the sequence {(z™,y™)} has a convergent subsequence, and by closed
graph of the equilibrium correspondence, the limit of this subsequence is an
equilibrium of the model with parameters A4 and Ap.

A.3 Proof of Theorem 2

Since the game with office-motivated candidates is constant sum, the claimed
inequalities follow by definition of equilibrium. Next, suppose toward a contra-
diction that (z*,y*) and (Z, ) are distinct equilibria, and assume without loss of
generality that x* # Z. Equilibria of constant-sum games are interchangeable,
so (Z,y*) is also an equilibrium. By Condition 1, candidate A’s equilibrium
payoff is positive, and thus z*,Z € Ss(y*). Letting 2’ = %x* + %y*, strict
quasi-concavity yields

PA(xlay*) > min{PA(x*uy*)apA(jay*)}u

contradicting the fact that both platform pairs are equilibria. Thus, there is a
unique equilibrium, say, (z*,y*). Finally, assume P4(z, z) is constant in z, and
suppose toward a contradiction that x* # y*. Then

Pa(x™,2") > Pa(x",y*) > Pa(y",y") = Pa(z",2"),

where the first inequality follows since y* is a best response to z* for B, and
the second follows since x* is a best response to y* for A. We conclude that
Py(x*,y*) = Pa(y*,y*). Again letting 2’ = %x* + %y*, strict quasi-concavity
gives us

Pa(z',y*) > min{Pa(z*,y"), Pa(y™,y")} = Pal(a",y"),

a contradiction, from which we conclude that z* = y*.

A.4 Proof of Theorem 3

Under Condition 1, Lemma 1 directly implies that if a candidate places positive
weight on office, then her equilibrium payoff is always positive. Now, let A4 = 1,
and consider any equilibrium (z*,y*). Assume that Uga(z*,y*) = 0. We claim
that y* = Z. Indeed, otherwise, since Pa(y*,y*) > 0 and P4 is continuous, we
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can choose a € (0,1) such that af + (1 — a)y* gives candidate A a positive
payoff. This contradicts the fact that z* is a best response for A to y*, and
it follows that y* = &, as claimed. We conclude that if Us(z*,y*) = 0, then
(z*,y*) is non-standard, and by an analogous argument, if Ug(z*,y*) = 0,
then the equilibrium is non-standard. Equivalently, if (z*,y*) is standard, then
Ua(z*,y*) > 0 and Ug(z*,y*) > 0.

A.5 Proof of Theorem 4

Let {(6™,2™,y™)} be a sequence of models and corresponding equilibria that
satisfies the closed graph criterion at (0, z,y). Suppose toward a contradiction
that (z,y) is not an equilibrium in model 8. To simplify notation, define

Ay = Mi(uh(z) —uf(y) +1-2

AT = Ny (uly (@) —ud (y™) F 1= NG
By condition (iii), for all € > 0, some candidate has an e-robust better reply.
Let E4 denote the set of € > 0 such that A has an e-robust better reply, and let
EB be the analogous set for B. Without loss of generality, assume E4 contains
arbitrarily small € > 0, i.e., 0 is an accumulation point of E4. Given any € € Ey,

let z € Z be an e-robust better reply, which implies U§(z,y) > Uf(z,y), or
equivalently,

PR(z, )Ny (@ (z) —uly(y) +1 = 2]
> Ph(z,y)N (@) —ul(y) +1 -9,

Defining
A, = M(uh(z) —ul(y) + 1=,
this becomes
A, Pz,
—73(17 v oo
Az Pi(zy)

For each integer k, choose ¢, € E 4 such that

1 A Pi(z,y)
€ < mln{E,A—z—% .

By the definition of e-robust better reply, there exists 7, such that for all m >
My, inequality (8) holds. For each k, choose my, high enough that mj > my and
my > my_1, making {z™*} a subsequence of {z™}, and {y™*} a subsequence

of {y™}.
For each k, we then have
Py (@™, y™) _ Ph(x,y)
PE™ (2, yme) P4(zy)
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Define
AL = A () ™) H 1=
and note that A¥ — A, as k — oo. Then

AL A
AT A,

as k — oo, and we can choose k high enough that

A, AF 1/A, P§
max{ek,A—x—Agfk} < —(——M)

In particular, for such k, we have

N
A, AL A PY(z,y)

€r +

which implies

AL Pli(z,y)

< — .
* AT T Pi(z,y)

From (37), it follows that for such k,

szk (Imk,ymk) < PZ(xvy) Al,: _ Pfl(xvy)
P (2k, yme) Pi(z,y) A" Pi(z)
Ak
= A;’Enk .

Then, however, we have

Py (@™ y™) o AL
szk (Z, ymk) A;’ETL)@ I

or equivalently,

Py (zyym™) A > P (e ) AT

This implies that U4 (z,y™*) > U4"" (z™*,y™*) for high enough k, contra-

dicting the fact that (z"*,y™*) is an equilibrium in 6™*.

A.6 Proof of Theorem 5

Assume that the sequence {6™} of models satisfies (a) and (b), and that (z™, y™)
is an equilibrium of each 8™, with (z™,y™) — (x,y). We show that a subse-
quence of {(0™, 2™, y™)} satisfies the closed graph criterion at (6, z,y). Since
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conditions (i) and (ii) are satisfied by construction, we focus on condition (iii).
To this end, assume that (z,y) is not an equilibrium at 6, and let € > 0. We
show that some candidate has an e-robust better reply.

We claim that either
liminf P§" (™, y™) < Pi(z,y)
m—0o0
or

liminf PS" (2™, y™) < Ph(x,y).

m—oo -

Indeed, if the first inequality does not hold, then

1imiangm(a:m,ym) > Pz(xvy)a

m—0o0
which implies

limsup (1 - P§" (2™, y™) < 1-Pi(z,y),

m— 00

which implies the second inequality. Therefore, we can assume without loss
of generality that the first inequality holds. We then move to a convergent
subsequence of {#™} (still indexed by m, for simplicity) such that

lim P§"(a™,y™) < Pi(z,y). (38)

m—r oo

Note that for all m, candidate A has the option of choosing platform y™, so
since (2™, y™) is an equilibrium, we have

UAm(‘rmvym) > UAm(ymvym) > I(l_)‘A)v

where the inequality follows from (5). Borrowing notation from the proof of
Theorem 4, this implies

I(l — )\A)
> 7A?

PAm (xm, ym)

Letting A4 be an upper bound for A™ it follows that

I(l — )\A)

PAm(xmaym) Zm > 07
A

so that sz (™, y™) has a positive lower bound. By inequality (38), we conclude
that P4(z,y) > 0, which implies x = y.

We claim that y > x. Indeed, suppose toward a contradiction that = > y. By
condition (a), there exist open sets G containing « and H containing y such that
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P4"(-) — 1 uniformly on G x H. In particular, observe that P} (z™,y™) — 1,
ie., P]‘g,m (™, y™) — 0. However, an argument analogous to the above

PBm(xm7ym) > (1 _?)(1 — )‘B)

> LS > 0,
Ap

where A is an upper bound for Ag(up(y) —up(z)) +1— Ap. This contradicts
the observation that B’s probability of winning converges to zero. We conclude
that y > x, as claimed, which means that in the limiting model, the platforms
x and y create a majority tie, and thus P (z,y) < 1.

We break the remainder of the proof into two cases. The first case is = # y.
For a € (0,1), we can define z, = az + (1 — a)y, and since > y, Lemma 2
implies z, = y. This gives us P§(za,y) = 1 > 0. Moreover, by condition (a),
we have P§" (z4,y™) — 1. We claim that for a € (0, 1) close enough to one, z,
is a profitable deviation for A at (z,y) in 0, or equivalently,

Pilwy)  _ Da
P4 (20,9) A,

Indeed, note that the left-hand side above is equal to P§(z,y) < 1, while the
right-hand side converges to one as a T 1, as claimed. Thus, we can choose
a € (0,1) close enough to one that U9 (z4,y) > U4 (z,y). Now, inequality (8)
becomes

Pflm (xmv ym) 0

— e < Palzy)te
P (z,y™)

Taking the limit as m — oo, and using (38) and P§" (24, y™) — 1, we see that

the above inequality holds for high enough m, and we conclude that z, is an

e-robust better reply.

The second case is ¢ = y. Since (z,y) is not an equilibrium, there is a policy
z # y such that z = y. For o € (0,1), define z, as above, so that z, = y and
P4 (24,y) = 1 > 0. Again, we have U (z4,y) > U4(x,y) for a close enough to
one, and inequality (8) holds for m sufficiently high. We conclude that z, is an
e-robust better reply.

A.7 Proof of Theorem 7

Let («*,y*) be a standard equilibrium, and consider candidate A. Suppose
toward a contradiction that z* is not Pareto optimal for T U {A}, and let 2’ be
a platform that makes A and all policy-oriented voters weakly better off, and
either gives A strictly higher utility than does z, or it gives a measurable set
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S C T of voters a strictly higher utility than . By (10), it follows that

G(2(/Ft(ut(x') —ut(y*))dr> - 1)
> G(2</Ft(ut(x*) —ut(y*))dT) - 1)

= Pu(x*,y").

Pa(a',y")

\%

By Theorem 3, we have U (z*,y*) > 0, and therefore
Pa(2',y*) > Pa(a*,y") > 0,
and
A(ua(@) —ua(y®) +1=Aa > da(ua(z®) —ua(y*)+1-Aa > 0.

Now, in case ua(z') > ua(z*), we have

Ua(a',y") = Pa(z’,y")[Aa(ua(@’) —ua(y™)) +1 - Aa]
> Pa(a™,y")[Ma(ua(@’) —ua(y™)) + 1 — M4
> Pa(z*,y")Aa(ua(z®) —ua(y®)) + 1 — 4]
= Ua(z",y"),

which contradicts the fact that z* is a best response to y*. In the remaining
case that ui(z') > wu(z*) for all ¢ € S with 7(S) > 0, we observe that since
0 < Pa(z*,y*) < 1, we have

0 < G<2</Ft(ut(x*)—ut(y*))m') _1) < 1,

s0 2([ Fy(ui(z*) — ui(y*))dr — 1 belongs to the support set Sg of G. Since

2(/Ft(ut(:1:’) —ut(y*))dT) -1 > 2</Ft(ut(x*) —ut(y*))dT) —1,

it follows that P4 (z',y*) > Pa(z*,y*). Finally, we have

Ua(a',y") = Pa(e’,y")Aalua(@’) —ua(y™)) +1 -
> Pa(z",y ) Ma(ua(a’) —ualy®)) +1— A4l
> Pa(z*,y" ) Aa(ua(z®) —ua(y®)) + 1 — 4]
= Ua(z™,y"),

again a contradiction. We conclude that (z*,y*) is Pareto optimal for T U {A},
and an analogous argument proves the Pareto optimality result for T'U { B}.
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A.8 Proof of Theorem 9

By Theorem 6, an equilibrium exists. To show uniqueness, it suffices by Theorem
2 to argue that P4 (x,y) is strictly quasi-concave in & € S4(y), with an analogous
argument applying to candidate B. To this end, consider any distinct z,z’ €
Sa(y), and assume without loss of generality that Py(x,y) < Pa(a’,y). Note
that the support set Sg of G contains both

2 (/ Fi(u(2) —ut(y))dT) 1 and 2 (/ Fi(us(2') —ut(y))d7> Y

where the first term above is less than or equal to the second. Setting z” =
%x + %x’ , our strict quasi-concavity assumption implies

2 (/ Fy(ug(2") — ut(y))d7’> —1 > 2 (/ Fy(ug(z) — ut(y))dT) ~1.

Then we have

Pa(2",y) = G (2

= Pa(x,y),

and we conclude that P4 (z,y) is strictly quasi-concave in x € S4(y). Theorem 2
then implies that there is a unique equilibrium (x*, y*), and since A’s probability
of winning P4(z, z) when both candidates choose the same platform is constant
, we have x* = y*. Next, assume that x* is interior, and that voter utilities are
differentiable. Since z* solves

I;lea?;tht(ut(z) —u(y*)),

it satisfies the first order condition

> wifilue(@®) = wi(y*)) Du(z*) = 0.

teT

Using «* = y*, this coincides with the first order condition of the problem (13),
and since the objective function in the latter problem is concave, we conclude
that z* solves (13), as required.

A.9 Proof of Lemma 3

Consider any interior equilibrium (z*, y*). In case one candidate is purely office
motivated, then under the assumptions of the theorem, the other must place
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positive weight on office. It follows from Lemma 1 that each wins with positive
probability, so the equilibrium is standard. In the remaining case, each candi-
date places positive weight on policy, i.e., Ag,Ap > 0. Since the equilibrium
is interior, the first order condition for each candidate must hold; for example,
candidate A’s first order condition is

29[ a(ua(e”) —ua(y™)) +1 = A4 / ftDuy(z")dr + AaGDua(z™) = 0.

If (x*,y*) is non-standard, then one candidate, say A, wins with probability
one, so G =1 in the above first order condition. Then, since G is differentiable,

we must have
g(2(/Ft(ut(:v*)—ut(y*)>d7—1) Y

so the first order condition implies that Du4(z*) = 0, i.e., * = & # §. Then for
a € (0,1) small enough, we have ug(ag + (1 — a)z*) > up(z*) and Pg(z*, aj+
(1 — a)z*) > 0, but this implies that

Up(z*, o+ (1—a)z*) > 0 = Ug(z*,y*),

contradicting the fact that y* is a best response to z*. We conclude that (x*, y*)
is standard.

A.10 Proof of Theorem 14

The argument for part (i) proceeds as in the proof of Theorem 7 and is left
to the reader. Now, assume that us and each u; are differentiable and x* is
interior. Then A’s optimization problem is

max Gk +V(x) = V(y))[Aa(ua(z) —ualy)) +1 = Aal,

with first order condition
gV'[Aa(ua(z) —ualy)) +1—=Aa] + GraDus = 0

holding at z*. Thus, x* solves the first order condition for maximizing aua +
(1 — @)V, and since the latter function is concave, part (ii) follows. It is clear
that if candidate A is office motivated, then her unique optimal policy is x = Z,
regardless of B’s platform, which gives us part (iii).

A.11 Proof of Corollary 4

First, assume that A4 > 0, so that « > 0. If candidate A located at x* = Z in
equilibrium, then by part (ii) of Theorem 14, the first order condition

aDuag(2)+(1—a)DV(Z) = 0
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would need to hold. Of course, DV (2) = 0, but since & # 2, and since uz
is concave, we have aDuy(2) # 0 = (1 — a)DV(2). From this contradiction,
we conclude x* # 2. Next, assume Ay € [0,1), which implies a € [0,1). If
candidate A located at z* = Z in equilibrium, then since Du4 (%) = 0 # DV (%),
the first order order condition for the problem in part (i) of Theorem 14 again
leads to a contradiction, and we conclude that z* # Z.

A.12 Proof of Corollary 5

The first part of the corollary follows because, by Condition 6, it is a strictly
dominant strategy for the office-motivated candidate to choose Z. For the second
part, we show that the other candidate has a unique optimal policy; we consider
candidate A’s best response to 2. Clearly, A’s unique optimal policy is & if she
is purely office motivated, so assume A4 > 0. Since y = 2 # &, Lemma 1
implies that candidate A’s optimal platforms are just those solving (6), and
since A4 > 0, it follows that In(Aa(ua(z) —ua(y)) +1 — A4) is strictly concave
of x on Z4(y). The term In(Pa(z,y)) is concave in z, by Condition 4, and thus
the objective function in (6) is strictly concave and has a unique maximizer, say
x*, and we conclude that (z*, 2) is the unique equilibrium.

A.13 Proof of Proposition 1

Recall the maximization problem

mas G(V(@) = V() Mwa(e) — ualy) +1-

st. x1+axo+a3=1
1 EO;IQ 205:173205

with Kuhn-Tucker first order condition,

9(0)DV (¢*)A + §Dua(e*) + (1,1, )+ (v1,v2,v3) = 0
vz} =0, vexy =0, vs25 =0

V1207 V2207 V3207

where p is the multiplier on the equality constraint, and v; is the multiplier on
the non-negativity constraint of the consumption of type ¢ voters, and where

A = MNua(@®) —ualy™)+1-—A
is A’s gain from winning.

Using DV (z) = (w,w, 1 — 2w) and Dua(z) = (1,0,0), the first order condi-
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tion implies

A
g(0)Aw + 3 +pu+vn = 0
9g0)Aw +p+vy =
g(0)A(l —2w)+p+rvs =
Note that
9g0)Aw+rvy = —p = g(0)A(1 — 2w) + vs,

and since 1 — 2w > w, this implies that v > v3 > 0. By the complementary
slackness condition vexe = 0, we conclude that xo = 0; that is, candidate A
allocates no resources to the conservative elites. Since x1 + x3 = 1, we have
1 = 0 or 5 = 0 or both. We focus on equilibria for which z; > 0 and x3 > 0,
which will exist for a range of policy weights. Then the first order conditions

imply

g(O)Aw—I—%—I—,u =0
—9(0)A(1 - 2w)

L.
Substituting the second equation into the first, we have

A
g(0)A(Bw —1)+ 5 = 0
Since A = Az} + 1 — A, we can solve the latter equation to obtain the only

possible symmetric equilibrium strategy for A as

o 1 1=
L 29(0)(1 — 3w) A
x5 = 0

xy = 1—uai,

where B’s platform is y* = (0,2z%,2%). From the above solution, we see that
such an equilibrium exists when
29(0)(1 — 3w)
2g(0)(1 —3w) +1

< A < 29(0)(1 - 3w),

whereas outside that range, the candidates allocate all resources to their own
elites when A is too high, and they allocate all resources to the masses when A
is too low.

A.14 Proof of Proposition 2

We are interested in equilibria such that all groups receive positive resources,
so we consider the best response problem of candidate A in such a symmetric
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equilibrium,
max G(V(z) = V(y"))[Mua(z) —ualy™)) +1 - 2]
st. x1 + a2 + a3 =1,

with first order condition

G(ODV(#)A + 3 Duae’) + (m i) = 0.

Using our assumptions that voter utility from consumption is quadratic and
candidate utility is linear, this becomes

g(0)w(l —z))A+ % +p =0 (39)
g0 w(l—z5)A+pu = 0 (40)
g(0)(1 —2w)1—zH)A+pn = 0. (41)

Combining the first two equations, (39) and (40), we have
gOlzs —a)A+S = 0 (42)
By symmetry, we have yi = x5, and thus
A= Nay—y))+1=X = Aoy —a3)+1— A\

Substituting this expression into (42), and writing § = 2} — z3, we have a
quadratic equation

1-A] 1
g(())ms[(SJr—A ]—5 = 0

which gives us an explicit solution

5o L|1=a 1= 2+ 1
2 A A g(0)w

for the difference in a candidate’s consumption and her opponents consumption
in a symmetric equilibrium platform pair.

To calculate the amount allocated to the other elite group, x5, in terms of
4, we use (40) and (41) to obtain

gO)w(l —z3)A = g(0)(1 —2w)(1 —x3)A,

which gives us

1—3w w
s 1—2w+(1—2w>x2 (43)
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Since z7 = 1 — x5 — 3, we can then write z] in terms of x5 as

N w 1—w
= 1—2w_(1—2w>x2' (44)

Then we have

5 N N w 2-3w)\ .,
= T — Ty = — T
L2 1— 2w 1—2w)7%

from which we deduce

N w 1—2w 5

Ty = - .
? 2-3w \2-3w

Using (44) and (43), we obtain the consumption of types 1 and 3 as

. w 1-w

o= 2—3w+<2—3w>6
N 2 — 5w w 5

T3 = -
’ 2-3w \2-3w/’

while, by symmetry, candidate B’s platform is y* = (x5, 27, 2%).

A.15 Proof of Lemma 4

Letting M* = 2p,M" and ¢, = 2p,(; for each voter type t, set M and % as in
the statement of the lemma, and set

¢ = zMz—/thtzterr/@dT.
Note that
Viz) = 2

prut(z)dr

= 2 [ pi[—(z = 2)My(z — 2) + (]dr

= /[—thz + 22’]\%? — 2t]\7[t2t + 2p:(eldT

= —z(/Mth>z+2Z/Mtéth—/étMtéthJr/é}dT

= —zMz+422MZ—-Z2M2+(
—(z—-2)M(z - 2) + ¢,

and thus V is generalized quadratic with ideal point 2.
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A.16 Proof of Theorem 16

Assume A4 > 0, and let (z*,y*) be an equilibrium. Then 2* lies on AV and by
Corollary 4, we have * # 2 (for this conclusion, we use the assumption that 2
is interior, but we do not require that # is also interior). As well, y* lies on BV
Since the ideal points are not positively dependent, we have (AV\{2})NBV = 0,
and thus x* # y*.

A.17 Proof of Proposition 5

By the argument in the paragraph following the statement of the proposition, it
is enough to prove our claim that when p; > p2 > ... > p,, party A’s equilibrium
policy is more progressive than party B’s if and only if a < 3. It is a routine
calculation to verify that:

[« B—a
T2 —21)— (Y2 — Y1) = —+7P1—p2:|K
( )L ) YW vZ;pgwg( )
8-«
@41 —x) = (W1 —y) = ——=——(pe —pr1)K, t=2,...,n-1
v 28 Piwi
[ B B—a ]
Tn —Tpn—-1) — Yn — Yn—1 = —t = Pn—1 — Pn K.
( )= ) [ Ywn vZ;pgwg( )

Now, if A’s policy is more progressive than party B’s policy, i.e., xg11 — x¢ >
Yyey1 — Y for all t = 1,...,n — 1, then from the expressions above for any t =
2,...,n—1, using p; > p+1, we obtain S—a > 0. Next, assuming that 5 > «a > 0,
this means that all of the expressions on the right hand sides of the above
displayed equations are positive whenever p; > ps > ... > p,,. Therefore, party
A’s policy is more progressive than party B’s.

A.18 Proof of Theorem 17
For part (i), first assume y* = &. Since A is advantaged and y™ — &, we have
N n 1
[ Btw@) - wtir > [ Fodr > 5,

and therefore P} (#,y") — 1. Then

(Jim P2 o) )i -

n—oo

Y

(Jim, PR 0 ) Aaa(e) — wa@) + 1= A4

= lim Ua(z",y")
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> lim Ua(z,y")

- n—ooo

= 1-Aa.

In case A4 < 1, this limit implies P%(z™,y™) — 1. In the remaining case that
Aa = 1, suppose toward a contradiction that there exists p € [0,1) such that
for arbitrarily high n, we have P} (z",3y") < p. By Theorem 3, the candidate’s
equilibrium payoff is positive, and so ua(z™) > ua(y™) for all n, and thus we
have

Ua(z™,y") < Plua(a") —ua(y"))

for arbitrarily high n. Setting p’ € (p,1), since P} (Z,y") — 1, we have
P™(z,y™) > p’ for sufficiently high n, and for arbitrarily high n, it follows
that

Ua(z,y") > p'(ua(@) —uwa(y")) > Dlua(@) —ualy™)) > Ualz",y"),

where we use ua (%) > ua(x™) > uag(y™). Therefore, there exists n such that &
is a profitable deviation for candidate A, a contradiction.

Next, assume y* # Z. Using the assumption that A is advantaged, choose
a € (0,1) small enough that

. . 1
/Ft(ut((l — )y +ai) —uw(y*))dr > 3
which implies
P (1 —-a)y" +az,y") — 1.

If A4 = 0, then this yields the result, as A’s equilibrium probability of winning
from ™ is no less than that from a + (1 — a)y*. Now, assume A4 > 0. Since
ua((l — a)y* + ai) > ua(y*), we have

Ui(1—a)y" +at,y”) — Aaua((l—a)y" +ad) —ualy™))+1—Aa
> 11— Ay,

and thus

lim Uj(z",y") > lim UL((1 - a)y* +ai,y") > 1—Aa.

n—oo n—oo
Since the above limit of equilibrium payoffs is positive and Z is compact, this
implies that A’s equilibrium probability of winning has a positive lower bound.
This in turn implies that

N~

/ Fyuy(a®) — w(y*)dr >
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In addition, since that limit is strictly higher than 1—M\4, we also have ua(z*) >
ua(y*). Now, suppose toward a contradiction that there exists p € [0,1) such
that for arbitrarily high n, we have P} (2", y") < P. Then for such n,

Ux(",y") < PAa(ua(™) —uwa(y™)) +1—Aa)
< Aa(ua(@®) —ua(y”)) +1—Aa.

However, for v € (0, 1), strict quasi-concavity implies
* X % 1
[ Rt =+ —utar > [ R > 3,
and for 7 small enough, we have

ua((l=7)2" +99") —ualy”) > Plua(z”) —ualy’)).

Then we have P} ((1 —vy)a* +~vy*,y") — 1 and

Jim UA((1 =72+ ") = Aalua((l=7)z" +99") —ualy™) +1 -2
> PAa(ua(x™) —ua(y™))+1—2Aa)
> Ui(z",y"),

but then there exists n such that (1 — )z* + vy* is a profitable deviation for
A, a contradiction.

For part (ii), assume z* # Z. There are two cases to preclude. The first is
that

N 1
/Ft(ut(x*) —u(y*))dr < 3
In this case, we have P} (z",y") — 0, contradicting part (i). The remaining

case is that the reverse strict inequality holds. Then there exists o € (0, 1) small
enough that

/Ft(ut((l —a)r* +at) —u(y*))dr > %

Then we have

Pi(z",y") =1 and Pi((1-a)z"+ai,y") —1,

and
li_)rn Ui((1—a)x™ +az,y™)
= Mua((l—a)z" +ad) —ua(y™))+1—Aa
> Aa(ua(@®) —ua(y™)) +1-Aa

_ : n(,n ,n
- nlggoUA(I Y )a
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where the inequality uses concavity of ug and A4 > 0. This implies that (1 —
a)z* 4+ ai is a profitable deviation for A when n is large, a contradiction.

For part (iii), assume there exists z’ € Z such that

/Ft(ut(x*) —w(2))dr < /Ft(ut(:v*) —ut(y*))dr,
and suppose toward a contradiction the strict inequality
Ag(up(y™) —up(z*)+1—-Ap < 0,

which then holds at (z™,y™) for sufficiently high n, by continuity. For each n,
since (z*,y*) is a standard equilibrium, Theorem 3 implies that candidate B’s
payoff is positive, i.e., UR(z",y") > 0, and in particular, Pg(z™,y™) > 0. But
the above inequality implies that for high enough n,

Up(z"y") = Ppa",y")[As(up(y") —up(z")) +1-Ap] < 0,

a contradiction. Next, suppose the strict inequality holds in the reverse direc-
tion. For 8 € (0,1), our strict quasi-concavity assumption implies

/ Fulur(a®) —w((1 - By° + B))dr < / Fyluy(a®) —w(y"))dr = 1,

where the equality holds by (21). We then have
PR(z™, (1 - Py  +52') — 1.
Moreover, for 5 > 0 small enough, we have
A(up((1 = B)y* + B2') —up(z*))+1—-Ag > 0,
and thus,
lim UR (2™, (1 - B)y* + B2')

Ae(up((1—B)y* + B2') —up(x)) +1—Ap
> 0
= lim Ug(z™,y"),

n—oo

and again, we obtain a profitable deviation for B when n is high enough, a
contradiction.

A.19 Proof of Theorem 18

For part (i), assume A4 < 1 and liminf,,_,o, G™(0) > 0. Note that
Ui(e™y") = Ui(y",y")
= Piy"y")1 - 4]

= G"<2/Ft(0)d7—1> [1— A

= G™M0)[1 - A,
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where we use the assumption that neither candidate is advantaged. Thus, we
have

liminf U} (z",y™) > [1 — Aa]liminf G™(0).

n—00 n—00

Then the limit infimum of A’s equilibrium payoffs is strictly positive, which
implies lim, o P4 (2™, y™) # 0. Of course, an analogous argument holds for
candidate B.

For part (ii), assume =* # &, and suppose toward a contradiction that

/Ft(ut(x*)—ut(y*))dT > %

Then there exists « € (0,1) small enough that

/Ft(ut((l —a)a tad) —w() > g
which implies
Py((1—-a)z" +az,y") — 1,
but then, since u4 is concave and A4 > 0, we have

Jim UL((1 — a)x* + az,y") Aa(ua((l—a)z™ + ai) —ua(y™)) +1—Aa
Aa(ua(@™) —ua(y™) +1—Aa

lim U} (2", y™).

n—00

V

This implies that (1 — «)z* + «d is a profitable deviation for A when n is
sufficiently high, a contradiction.

For part (iii), assume that

/ Fu(e®) — u(y")dr = 1,

and suppose toward a contradiction that x* # y*. Letting

= — 1' Pn n n
p lim PR (2", y"),
since at least one candidate has positive probability of winning in the limit, we
can assume without loss of generality that p < 1. We first consider the case
Aa < 1 and wa(z*) > ua(y*). Define o = #H Note that since neither
candidate is advantaged, we have

/Ft(ut(y*)—ut(y*)dT = /Ft(o)dT = %,
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so our strict quasi-concavity assumption implies

1

/Ft(ut((l —am)x + any®) —u(y*))dr > 3

for all m, and in particular,

|
-

lim Py((1 — am)x™ + amy™, y")

n—oo
It follows that for each m, we can choose n,, > n,,—1 sufficiently high that

m—1
Py (1 — am)z™ + amy™,y"™) > “m

and thus

lim U™ ((1 — am)z™ + amy™, y"™)

= Aa(ua(@®) —ua(y®)) +1—Aa
> PAa(ua(@®) —ua(y®)) +1— A4

= lim Uy (z"m,y™™).

Thus, for high enough m, candidate A can profitably deviate to (1 — a,,, )z* +
Q. y* in the model with shock distribution G™™, a contradiction.

In case A < 1 and ua(z*) < ua(y*), setting ay = 3, we have

lim U3((1 — ai)z™ + a1y™,y")

= d(ua((l —a))z* +a1y™) —ua(y™) +1—Aa
> Aa(ua(@) —ua(y™) +1—-Aa
> pAaua(@®) —ua(y™)) +1— A4

_ : n(,n ,n
- nlggoUA(I Y )a

and A has a profitable deviation to (1 — «q)z* + ay* for high enough n, again
a contradiction.

In the remaining case that A4 = 1, since (z™,y™) is a standard equilibrium,
we have uy(2™) > ua(y™) for all n, and by continuity, ua(z*) > ua(y*). Fixing
~v € (P, 1) and setting 2’ = yx*+ (1 —~)y™*, our strict quasi-concavity assumption
implies

[ Ftue) i > 3.

and since u 4 is concave with ua(z*) > ua(y*), we also have

ua(z') > pua(z®) + (1 —=Dlualy”).
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For small enough « € (0,1), the inequality

1
/Ft(ut((l —a)r’ + az) —u(y*))dr > 3
is maintained, and now
ua((l—a)a’ +ai) > Pua(@®)+(1-plualy’).
Then we have P}((1 — a)z’ + az,y™) — 1, and
lim T7((1 - )z’ + az,y")
= M(ua((l—a)2’ +a) —up(y*))+1—Aa
> AaPua(e™) + (1 =Plualy”) —ua(y™)) +1-Aa
= PPa((ua(z®) —ua(y")) +1— A4
= le Ui(z™,y"),

but then for high enough n, candidate A can profitably deviate to (1—a)z’+ag,
a contradiction. We conclude that z* = y*.

For part (iv), assuming (24), part (iii) delivers z* = y*. Suppose toward
a contradiction that z* = y* # 2*. Then in the model with vote-maximizing
candidates, (*,y*) is not an equilibrium. Thus, one candidate, say A, has a
profitable deviation, i.e., there exists ’ € Z such that

/ Fy(uy(a) — w(y"))dr > / Fy(uy(z®) — w(y*))dr

= /Ft(())dr

1
= 3
where the last equality uses the assumption that neither candidate is advan-
taged. Again, let a,, = #ﬂ’ so that
1
/Ft(ut((l — Q)T+ apa’) — u(y*))dr > B

for all m. As in the proof of part (ii), we can choose a subsequence {n,,} such
that

i Pim((1 = am)z™ + apa’,y™™) = 1.
This implies that
Jim UL (1= am)a” +ama’,y™) = Aa(way’) —ua(y) +1-Aa
> Pl — A4
= lim U3, y")

which again yields a profitable deviation, a contradiction.
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A.20 Proof of Theorem 19

For part (i), assume x > V(0) — V(Z). Then for all o € (0,1), we have
V(ad)+r > V(0) = V(y),
and thus P} (a,y™) — 1. Then for all « € (0, 1), we have
Jim Ug(a",y") > lim Uj(ad,y")
= M(ua(az) —ua(y*))+1—Aa.
Therefore, taking the supremum over « € (0, 1), we have
AMua(e™) —ua(y®) +1-2Aa = lim UZ(z",y")

n—oo

)\A(UA(i) — uA(y*)) +1—=Aa.

Y

Since A4 > 0, this implies that «* = Z.

Next, assume k < V(0) =V (Z). We claim that V(&)+x < V(y*), for suppose
otherwise. Then we have

Vi )+ > V(@)+r > V(y)

and P} (z™,y™) — 1. If 2* # &, then there exists a € (0, 1) small enough that
V((1—a)z* 4+ az) + k> V(y*), which implies

Pi(1—-a)z" +at,y") — 1,
but then
lim U4((1 - e’ +a,y") = Aa(ua((l—a)a’ +ad) —ua(y')) +1 - Aa
Aa(ua(z™) —uay™)+1—Aa

_ : ni.n o, n
- nh_)H;O[JA('r Y )7

V

which implies that (1 — a)a* 4+ aZ is a profitable deviation for A when n is
sufficiently high. Thus, we have x* = Z, but then the assumption of the claim
implies
V() > V(@) +r = V(z¥)+ &,
which implies Pf(2™,0) — 1. Since up(0) > up (%), we then have
ILm Ug(z™,0) = Ap(up(0)—up(®))+1—-Ap > 0 = lim Ug(z",y"),

n—oo

which implies that y = 0 is a profitable deviation for B when n is high enough.
This establishes the claim.

To finish the proof of part (ii), consider the case * # &. Using the preceding
claim, Lemma 5 implies that V(z*) + x = V(y*), and in particular, z* €
AV \ {0}. If y* # 0, then Lemma 6 implies that

Ap(up(y’) —up(z®)) +1-Ap = 0,
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but we have up(y*) > up(0) > up(xz*), which contradicts the above equality.
Thus, y* = 0, so Lemma 5 gives us V(2*) + k = V(0). In the remaining case
that * = &, note that candidate B can adopt y = 0, and then Pj(z™,0) — 1,
and once again, B can profitably deviate to y = 0, a contradiction.

A.21 Proof of Theorem 20

First, consider the case that * # 0 and y* # 0. Since z* € AV \ {0}, it follows
that z* ¢ BV, so there exists y' such that up(y’) > ug(z*) and V(y') > V(z*).
Then PE(z",y') — 1, and we have

. n/.n ,n > : n(, m
nh_}rr;OUB(x ) > nh_)H;OUB(yux )
= Ap(up(y') —up(z™)) +1-Ap
> 0. (45)

In particular, candidate B’s equilibrium probability of winning has a positive
lower bound, i.e.,

liminf Pg(z",y") > O,

n—oo

which in turn implies V (z*) < V(y*), or equivalently,

N~

/EWMﬂ—m@WM <

A symmetric argument for candidate B, using y* € BV \ {0}, yields the opposite
weak inequality, giving us (24). By part (iii) of Theorem 18, it follows that
z* = y*, but since AV N BV = {0}, this is a contradiction. Next, consider the
case that z* = 0 and y* # 0. Then V(2*) > V(y*), or equivalently,

* * 1
[ Bt~ unar > 5,
so part (ii) of Theorem 18 implies that z* = &, a contradiction. Similarly, we

cannot have z* # 0 and y* = 0. The only possibility is the remaining case that
¥ =y*=0.

A.22 Proof of Lemma 7

Because M is symmetric and positive definition, the operation (z,y) — xMy is
an inner product. To simplify notation, we then define the inner product norm

I llar by

Izl = VzMz,
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so that aggregate voter utility is V() = —||z||%;, and candidate utility functions
are ua(z) = —||2 — 2||3; and up(z) = —||§ — 2||%;. Since

d d

“V(ad) = ~20f2l3, and  —V(55) = 2803,
we have
V(i) -V(d'E) = / —2a|2||3,da (46)
v -vEn = [ -8lilds (a7)
Furthermore, since
Luplad) = —lj—adl}, = 20M(G - ad)
and
Lun(89) = —g—Bill% = 20— B33
a3 B\PY) = a3 Y Yl = Yl
we also have
up('2) —up(a’z) = / 2EeM(§ — a)da

’

un(8'd) —un(3's) = [ 201 8)lil}ds.

Then

’ ’
[e3%

250ngda—/ 20|23 da

al’

[e3

un(e's) ~un(e’s) = [

"

and
N N 4 2 4 112
up(8'3) - us(8'7) — /ﬁ 201gl13,d8 - /ﬁ 28)13,45.
By (31)—(47), the desired inequality holds if and only if
6/ a/
[ 2Nilkas > [ 2eatgda,
ﬁ// a//
which is equivalent to

193,38 = B") > &Mjla’ —a”).

We can write the latter as

W8 — 8 > [#llar(e’ - a><%) (48)

1202 191122
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where EM G < ||Z||as |9]|as, by the Cauchy-Schwartz inequality.

To show (48), we claim that

B =B8Nl > (o' = a”")||2]|ar- (49)
Indeed, note that (31) can be written as
(o —a") (o' +a"l|zl3, = (B =B")(B + Bl

so the claimed inequality (49) holds if 8’ + 5" > 0 and

B+ B8Nl < (o +a”")|2]|ar-

In case 5”||9|lar < &”||Z||ar, note that the reverse inequality leads to:

B+ B8Nl = (@ +a")|lEar
= Blilu > Nzlm
= B =0Nilm > (@ =)l

And in case f'||g||ar < &||Z||ar, the reverse inequality (8" + )||Gllar > (o +
o"||Z||ar implies B8”||§llar > &”||Z]|ar > 0. But then

BI913 < (@)l and (872913 > (@")*|123s,
which implies
(—(@)?+ (@23 < (=) + B9l

contradicting (31). We conclude that inequality (49) holds. Finally, using the
Cauchy-Schwartz inequality, (49) implies (48), as required.

A.23 Proof of Theorem 21

Because each candidate chooses a platform on the contract curve between herself
and the aggregate voter, and these line segments intersect only at the aggregate
ideal point, every equilibrium (z™,y™) is standard. Therefore, by Corollary 1,
each candidate wins with positive probability in equilibrium. By Theorem 17,
candidate A’s probability of winning converges to one, so it suffices to show
(i)—(iii) in the remainder of the proof.

For part (i), assume x > &, which implies V(&) + & > V(B§). Suppose
toward a contradiction that «* # &. Then we cannot have V(2) + x > V(y*),
else candidate A could deviate to platforms closer to her ideal point and still win
with probability converging to one. Thus, V(&) + « < V(y*), and by Lemma
5, the indifference condition (25) for the aggregate voter holds at (z*,y*). Let
B > 0 satisty V(&) +x = V(B7), so, letting § = B7, voter indifference also holds
at (#,7). Note that



which implies B < B. Then
Ap(up(B9) —up(®) +1-Ap < Ap(up(B) —up(@) +1-Ag = 0

Given voter indifference at (z*,y*) and at (i, 33), we can slide down from the
second to the first to conclude that candidate B would rather lose to A at x*
than win herself at y*. Technically, we have

Vi) +x = V(") and V(&)+rk = V(B9),

which implies

Then Lemma 7 implies that

up(t) —up(z*) < up(By)—us(y"),

which implies

Ap(up(y®) —up(x*) +1-Ap < Ap(up(By) —up(2)) +1-Ap
B

IA
>
s}
S
sy}

= O7

where the equality holds by definition of 5. But then, for sufficiently high n,
this implies

Ug(a",y") = Pp(a",y")As(up(y") —up(@")) +1—Ag] < 0,
contradicting Theorem 3.

Henceforth, assume x < K. Note that since P}(z",y") — 1, candidate
B’s equilibrium payoff converges to zero: UR(z™,y™) — 0. Furthermore, we
claim that x* # Z. Indeed, suppose toward a contradiction that z* = &. Since
V(%) + Kk < V(B9), it follows that there exists 3’ € (8, 1] close enough to 3 such
that V(&) + k < V(8'y). Letting y' = 8'g, we have Pg(z"™,y’) — 1, and since
up(y') > up(B7), we also have

lim Up(a"y) = Ap(us(y) —up(@)) +1- A
> Ap(up(By) —up(2)) +1—Ap
= 0
= nlgréoUB(x Y™,

Then for high enough n, 3’ is a profitable deviation for candidate B, a contra-
diction.

For part (ii), add the assumption that Ag(ug(0) — up(@t)
Suppose toward a contradiction that x* # @z. Letting z* =

1-Xp >0.

a*Z, we cannot
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have a* < @, else candidate A could deviate to platforms closer to her ideal
point and still win with probability converging to one. Then a* > @, and thus,
by voter indifference, we have y* # 0. Letting y* = §*g, the above claim

and Lemma 6 together imply that (a*, 8*) solves (27) and (28), and therefore

r* = a3 and y* = ). Since voter indifference holds at (z*,y*) and (a,0),

we slide from (a’%, 3%)) down to (@, 0), and we conclude that
up(z”) —up(@z) < up(y")—us(0),
which implies
Ag(up(0) —up(@z))+1—Ap < Ap(up(y*) —up(z*))+1—-Ag = 0,
which contradicts the assumption of part (ii).

For part (iii), instead add the assumption that A (up(0)—up(az))+1-Ap <
0. We have established that z* # &, so V(z*) + K = V(y*). Then we cannot
have y* = 0, for that would imply z* = @z, but we have assumed that B would
rather lose to A at @ than win herself at 0. This means that for n high enough,
B’s equilibrium payoff is negative, which is impossible. Thus, we have y* # 0,
and as argued in the proof of part (ii), this implies #* = a"% and y* = 3°%.

A.24 Proof of Lemma 8

Consider (z*,y*) € (int Z)? such that Ua(z*,y*) > 0 and Ug(z*,y*) > 0, and
assume that ¢(z*,y*) = 0. In particular, we have

DmUA(:v*,y*) = (DIPA)AA +AaPsDuy = 0.
Focusing on candidate A, note that x* € Z4(y*) by assumption, and that

* ok 1 * ok
D, In(Ux(z*,y*)) = WDUEUA(I YY) = 0.

Since
In(Ua(z",y") = In(Pa(z",y")) +(Aa(ua(@®) —ua(y")) +1—Aa)

is concave in x, it follows that z* maximizes In(Ua(x,y*)) over € Za(y*).
Then Lemma 1 implies that z* is a best response to y*. A symmetric argument
for B implies that y* is a best response to x*, i.e., (x*,y*) is an equilibrium.

For the second part of the lemma, note that the second partial derivative of
U4 with respect to x is

[(D2PaA)Aa + Aa(D2Pa)  Dua] + Aa(DePa) ' Dua + AaPaD?*ua.  (50)
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The third term above is negative definite by A4 > 0, by negative definiteness of
D?u 4, and by the assumption that Ua(x*,y*) > 0, which implies P4 > 0. For
the second term, note that the first order condition for A implies

ADuy = ———D,Py, (51)

and thus the second term in (50) equals

which, since U4 (z*,y*) > 0 implies A4 > 0, is negative semi-definite.

For the first term in (50), note that by log concavity of Pa(-,y), the second
derivative
2 * * 1 T 1 2
Dm ln(PA(fL' Y )) = __Q(DzPA) D, Py + —DmPA
P2 P4
is negative semi-definite, and thus so is
1
———(D,Ps)'D,Ps + D?Py.
Py
Substituting the first order condition from (51) into the expression in brackets,
we obtain

A 1
(DiPA)AA—P—j(DIPA)TDzPA = (DiPa) = 5~ (DsPa)" DuPa,

A

which is negative semi-definite, by log concavity. This shows that D2U 4 (z*, y*)
is negative definite, and a symmetric argument delivers the result for B.

A.25 Proof of Lemma 9

In the general symmetric model, the partial derivative of ¢4 with respect to «
is

Dadala, ) = ¢'AaDaV(a#)® + ghaDaua(ad)DaV (i) + gAaDLV (o)
429D,V (i) Doua(ai) + AaGD2ua (o),

and the partial derivative of ¢ 4 with respect to g is

Dgpa(a,B) = —g'DgV(B))AaD.V (i) — gAaDpua(Bg) DoV (i)
—AagDgV (BY)Doua(at),
where ||Z|| = ||9]], K = 0, and A = A4 = Ap. Given a symmetric platform pair

(v,7), the above expressions simplify: a = 5 =v, A = Ay = Ap, and we also
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have V(ai) = V(3¢), which implies that ¢'(V(az) + k — V(B87)) = ¢'(0) = 0.
Similarly, G(V (ad)+r—V(B4)) = G(0) = 3, which implies g(0) > 0. Moreover,
we have D,V (a&) = DgV (5y) as well.

The above derivatives then simplify to

AD?2
Dada = gAD2V +2\gD.V Dous + g”“‘ (52)
and

D3¢A = —g)\DguADaV—)\gDaVDauA, (53)

where g is evaluated at zero, D,V , D,u 4, and Diu 4 are evaluated at az =
~v&, and Dguy is evaluated at 8 = vg. We now assume that (v,7) satisfies
the candidates’ first order conditions, and in particular, ¢4(v,v) = 0, and
we will establish that the second partial derivative dominates the cross partial
derivative: —Do¢a > |Dgoal.

We separate out the case that A = 0, which is only possible if A = 1 and
the candidates locate at the same platform, i.e., v& = ~g. Since

AD,
6a(1,7) = gADV + 52 = o, (54)

this implies that Dyus = 0, which implies that v = 1 = 6. In this case, we
have Doga = D2uy/2 < 0 and Dgpa = 0, so the desired inequality holds. In
the remainder of the analysis, we assume A > 0. Under the latter assumption,
if A\ =0, then —Dy¢a > |Dgdal reduces to —gAD2V > 0, which clearly holds.
Henceforth, we also assume that A > 0. Returning to (52) and (53), note that
each of the four terms in the expression for D, ¢4 is negative, the first and third
strictly so, and thus D,¢4 < 0. We also have —gD,V Dyuy > 0, but the sign
of —gDguaD,V depends on the angle # and the coefficient ~.

To show —D,¢a > Dgpa, note that the inequality holds if
—ADoVDoua > —ADoVDguy. (55)

This holds trivially if D,V = 0. Otherwise, we have D,V < 0, and since utility
is quadratic, the inequality (55) is equivalent to

)Y

<

(@ —1d)z = (2-v
Using ||Z|| = ||9||, this holds if and only if Z& > &, which indeed holds by the
Cauchy-Schwartz inequality.
The remaining inequality to be verified is —Do¢a > —Dgpa, which is equiv-
alent to

AD2
gAD2V + 3)\gDoVDaua + %“A < —g\DguaD,V.
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Since A, A > 0, candidate A’s first order condition (54) implies that Daug > 0.
Substituting

A gAD.V

2 Doua
from the first order condition, the inequality in question becomes

AD,VD2u,

AD2V +3ADoV Doua —
DauA

—ADguaDoV.  (56)

The three terms on the left-hand side above are negative, the first and third
strictly so, and thus (56) holds if

—ADguaDoV —ADoVDous > 0.
Next, we focus on the case in which the opposite inequality holds.

Note that the left-hand side of the desired inequality (56) is independent of
6, so we can choose = —1 as the worst case; indeed, Dgua(89) = 2(Z—p9)y =
2(zg — BYY) is decreasing in &g, so the right-hand side is decreasing in &j as
well. The inequality therefore holds if

DaVDiuA > ADguaD,V 4+ XD,V Dyua
Daoug - A '

The latter inequality holds trivially if D,V = 0, and otherwise, we have D,V <
0. Dividing both sides by D,V the inequality holds if

DZUJA < ADgug + ADguy - Dgug + Daua
Douy  — A ua(v2) —ua(y9) + % '

Since the numerator on the right-hand side is non-positive, A = 1 is the worst
case, so the inequality holds if

D2uy < Dpgua + Doua

Doua = ua(y®) —ua(vy)
Since utility is quadratic, we have D2u 4 (ad) = —2%%, so the inequality holds if
—2%3 < 2( — )y +2(& —v2)%
20 —y2)2) T (@)@ —vP) — (@ —yE) (& —vE)’
or equivalently,
L 22 — vy + 22 — vid)
1—v ~ TE — 2980 + V209 — T3 + 293T — 23%

Using ||Z]| = ||9]|, the latter inequality simplifies to
1 _E) + 2v3E — 32
1—+v —y&g + iz
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Dividing the numerator and denominator of the right-hand side by z&, and

assuming the worst case scenario § = —1, this becomes
1 2y
l—y = 2y

which indeed holds.

At a platform pair (y,7) such that ¢(v,~) = 0, symmetry implies that the
Jacobian of the system of first order conditions has the form in (34), namely,

Do(v,v) = [Z ”

and we have shown that || < —a. From (53), it is apparent that if A = 0, then
b=0. If A > 0, then the first order condition (54) implies that D,V < 0, so
the sign of Dgg,4 is

sign (Dgua + Daua) = sign((& —79)§ + (2 — 7E)2)
= sign (Z% + &Y — 2vET)

- g 2 77

giving us the desired sign of b. Finally, we conclude that
det Do(v,v) = a>—b* > 0,

as required.
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