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Abstract

Two privately-informed …rms challenge each other in a R&D race with …xed ex-
perimentation intensity and winner-take-all termination. The innovation and result-
ing prize can arrive independently to each …rm still in the race, according to identical
Poisson processes of unknown arrival rate. Each …rm observes initially a noisy pri-
vate signal of the invention arrival rate, namely of the “promise” or feasibility of the
research project, and subsequently whether the rival is still in the race or not. Due to
the common-value nature of the game, the equilibrium displays a “winner’s curse”,
which is more extreme than in standard or all-pay ascending common-value auctions
(wars of attrition.) From a normative viewpoint, equilibrium expenditure in R&D
may be either too high or too low with respect to the social optimum, depending on
the (dis)agreement of private information. Speci…cally, whenever the private signals
are su¢ciently di¤erent, the more pessimistic …rm underestimates the optimism of
the opponent and prematurely exits the race, so that R&D activity is ine¢ciently
postponed. Conversely, overinvestment due to duplication costs arises in equilibrium
when private signals are su¢ciently similar, because players herd and fool each other
into believing that the project is quite promising.
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1. Introduction

Investment in Research and Development is widely considered a powerful engine of eco-

nomic growth. Political platforms often include pledges to subsidize and promote R&D as

a key form of investment for the future. There appears to be an implicit but widespread

consensus that, left to market forces, the equilibrium amount of investment in R&D would

be socially suboptimal. Institutions such as patents arose precisely to address some of the

sources of underinvestment, but they still appear inadequate, and further support is often

called for. It would be hard to mention one public statement stigmatizing the “excess”

investment in R&D and the consequent need to curb it.

The theoretical economics literature has emphasized di¤erent sources of distortions in

R&D investment, but its conclusions do not seem to uniformly support this widely held

belief. Paradoxically, partial equilibrium analysis systematically comes to the conclusion

that equilibrium R&D investment is socially excessive, due to duplication costs. This

literature has developed around the workhorse Poisson model of inventions originally pro-

posed by Reinganum (1981, 1982). In the strategic Multi-armed bandit literature (Bolton

and Harris 1999), equilibrium experimentation is sub-optimal only because players cannot

conceal their …ndings from each other: underexperimentation merely consists in the un-

derprovision of a public good. But this context hardly applies to R&D, whose results are

carefully protected for well-known reasons, that we will recall shortly.

In a general equilibrium growth context, Aghion and Howitt (1992) isolate four distor-

tions in R&D investment. A tendency to underinvest is due to two non-strategic reasons.

First, the “appropriability” e¤ect: the innovator who obtains a patent anticipates to re-

ceive ex post “only” the monopoly pro…ts from the invention, less than the social surplus.

This is an undesirable side-e¤ect of the patent system, which was designed to stimulate

investment to begin with. Second, the intertemporal knowledge spillover: each innovator

“is a dwarf standing on giants’ shoulders”, but fails to fully internalize the impact of his

contribution on future research (on future dwarfs sitting on his shoulders). The other two

forces lead to excess R&D investment. In particular, the “creative destruction” e¤ect is

akin to the duplication cost argument of partial equilibrium analysis: a successful innova-

tion displaces incumbent monopolists, making existing technology redundant, a negative

externality ignored by the innovator.

In this paper we identify a novel, purely strategic force that may generate equilib-

rium underinvestment in research. This force originates from imperfect aggregation of

information about the feasibility or “promise” of research projects, before the investment
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necessary to verify this promise occurs.1 The intuition behind this force is simple. It is

not uncommon for an innovation to have many authors, who reach independently and si-

multaneously the same conclusion. Thus, often, an idea “is in the air”, and ex ante several

players conceive the research project as viable and promising. In this case competitive

pressures and randomness are likely to lead to duplication costs and overinvestment in

research.2 In many other circumstances, however, one single researcher or research cen-

ter is much more optimistic than others about a speci…c project, based on preliminary

information/investigation. Negative information tends to be made public, as pessimistic

players give up early or even fail to engage the project. Positive information tends to be

concealed, because disclosing it would lure competitors into the race, and possibly imitators.

However, the mere fact of pursuing a research project reveals one’s optimism about its fea-

sibility: one cannot explore an idea without suggesting to alert potential competitors the

investment opportunity. Hence, when private information is ex ante very heterogeneous,

the average public expectation of the promise of a project tends to fall short of the expec-

tation under fully shared (complete) information. Due to borrowing or talent constraints,

the optimistic player may be limited in the amount of resources she can devote to the

project. Thus, the resulting aggregate level of experimentation is too low.

To summarize: suppose that potential competitors for an innovation can observe each

other’s engagement in the research project and roughly agree ex ante about its promise,

but do not know that they agree. Then, they tend to fool each other into believing that the

project is more promising than they individually thought, and overinvest in the aggregate.

Even when the project is quickly successful, they duplicate their e¤orts. Conversely,

1As an example of how large corporations go about scouting promising projects, P…zer, currently
the largest pharmaceutical company in the world after recently absorbing Warner-Lambert/Parke-Davis,
invested in 2002 $5.3 billion in R&D through its specialized arm P…zer Global Research and Development,
which employs 12,500 scientists. In addition to this massive structure, quoting from the company o¢cial
website,“250 partners in academia and industry strengthen our position on the cutting edge of science and
biotechnology by providing access to novel R&D tools and to key data on emerging trends.”

2A famous and thrilling example, illustrated in a recent best-seller (Brenda Maddox 2002, Rosalind
Franklin: The Dark Lady of DNA, HarperCollins), is the discovery of the helicoidal structure of DNA
by Crick and Watson in England. Their Nobel-winning publication, based to a large extent on Rosalind
Franklin’s pioneering X-ray pictures of “wet” DNA …laments in Cambridge, preceded by a few weeks a
likely identical discovery by Linus Pauling, who had been working independently for months on the same
project in California. Pauling, an outspoken anti-nuclear advocate, could not travel to England to see
Franklin’s images because under investigation for anti-American activities (this was the world before the
World Wide Web). Arguably, ex post, Pauling’s enormous talent (testi…ed by the two Nobel prizes he
received) would have been better allocated elsewhere. This phenomenon is quite pervasive. Technology
Review, MIT’s Magazine of Innovation, is a monthly MIT publication devoted exclusively to R&D, a
veritable Who’s Who of this “industry”. Each issue reports on several research projects, either new basic
ideas or developments of existing ones, that are still years away from commercial implementation, and
o¤ers the readers a glimpse of the technological innovations to expect years later. Each such article contains
a table with the (usually between …ve and ten) companies involved in that speci…c research enterprise,
and makes clear that typically, based on past experience, at most one of them will be successful.
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suppose that competitors strongly disagree ex ante about the promise of a project, but

do not know it. Then, the pessimistic players herd on the e¤orts of optimistic ones, but

eventually quit the race and in doing so give up their assessment of the project. Hence,

information ‡ows only from pessimistic to optimistic players, mostly negative information

is aggregated, and total investment is too low.

This argument rests on two central assumptions: agents involved in the same research

have private information about its promise, that they have no incentives to disclose, but

may publicly observe (at least a noisy signal of) the research e¤ort devoted to the project

by competitors. From an empirical viewpoint, the …rst assumption is hardly questionable:

R&D results are carefully protected, and industrial espionage actively promoted in re-

sponse. Moreover, when private corporations sponsor university research, as a norm they

require the faculty and graduate students involved to sign non-disclosure and exclusive-

licensing agreements. The second assumption is potentially more controversial: the amount

of resources invested by a company in R&D, which may signal by revealed preferences the

company’s private information, is public information in the US only at the aggregate …rm

level, for tax reasons, and not at the single project level. In Europe, not even …rm-level

information is typically disclosed in a veri…able manner. We make our second assumption

as a …rst cut to this problem, and discuss at the end the extension to private information

about variable and unobservable intensity of R&D investment at the project level.

Based on these premises, we lay out a simple analytic framework to explore the ag-

gregation of private information in R&D races. Two privately-informed …rms challenge

each other in a research race with winner-take-all termination. The prize can arrive in-

dependently to each player still in the race, with identical Poisson arrival processes of

underlying unknown parameter, measuring the “promise” of the project. A private signal

informs players of the promise of the project. Over time, each …rm decides whether to

stay in the race, paying a ‡ow cost, or to drop out of it. Once a …rm has dropped out,

prohibitive sunk costs make re-entry economically unfeasible.

We show that there is a unique symmetric semi-separating Perfect Bayesian equilib-

rium of this game. For any initial private signal realization, each …rm selects a stopping

time conditional on the opponent still being in the race or not. As time goes by and the

innovation does not arrive, a …rm becomes more and more pessimistic about the inno-

vation’s arrival rate, and eventually quits the race. The monotonicity of the equilibrium

stopping time in the signal yields two implications. First, when both players are still in

the race, each …rm infers that the opponent’s signal is at least as large as the inverse of

the equilibrium strategy, and quits when the ‡ow investment cost equals the expected ‡ow

bene…t conditional on this information. Surprisingly, the possibility that the opponent
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wins the race in the next instant turns out to have no e¤ect on the marginal value of

waiting, and hence on the equilibrium stopping time. Second, quitting the race suddenly

reveals all private information to the opponent, who then holds complete information and

quits when the expected ‡ow bene…t of investment equals the ‡ow cost.

Due to the common-value nature of the game, the equilibrium displays a rather extreme

“winner’s curse” property. Speci…cally, if the two private signal realizations are su¢ciently

similar, when the more pessimistic …rm drops out of the race the other …rm immediately

follows suit, and regrets not having quit sooner. Initially, the latter …rm entertains ex-

pectations about the relative optimism of the opponent that ex post turn out to be too

optimistic; when the opponent quits, beliefs over the promise of the project discontinu-

ously “drop”. If the two private signals are very similar, then the negative surprise will be

particularly unpleasant, hence the regret.

Our welfare analysis compares the aggregate discounted amounts of experimentation

in equilibrium and in the e¢cient team solution. The winner-take-all assumption makes

the two …rms unwilling to share their private information, unless they are joined in a

single team. If future payo¤s are discounted, we show the optimal team policy is to gather

information on the arrival rate of the project as quickly as possible: the team runs both

…rms’ facilities in parallel until the expected joint marginal bene…t of waiting is larger than

the joint marginal cost, and then stops them simultaneously.

In equilibrium, instead, a …rm may prematurely drop out of the race because her

private information is very negative relative to joint aggregate information. Leaving the

race early means not testing the idea and pursuing the project extensively. Therefore,

the remaining player learns the opponent’s private information, but does not observe the

same amount of negative public information (no prize arrival) as in the team solution.

Thus, this player is more optimistic than the team, and “overshoots” the team solution

by experimenting longer. In the Poisson linear structure of our model, in equilibrium the

premature exit of the pessimistic …rm exactly o¤sets the belated exit of the remaining

…rm, and the joint experimentation durations are the same as in the team solution. But

some experimentation is postponed to the future, ine¢ciently slowing down the joint rate

of innovation arrival. Due to discounting, if the …rms’ signals are very disperse, then the

equilibrium discounted expenditure in R&D will be too low with respect to the social

optimum due to this postponement. If instead, the …rms’ signal are very close, then the

“winner’s curse” property of the equilibrium implies that both …rms will suboptimally

delay their exit from the race, and equilibrium overexperimentation takes place.

From an institutional viewpoint, R&D cooperatives have become increasingly popular

arrangements, in the US between universities and corporations , in Japan among competing
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…rms. Although their primary rationale appears to be pooling resources to overcome

borrowing constraints and to share …xed costs, they also involve transfers of technology

(see e.g. Adams et alii (2000)). Thus, in our perspective they might also be greatly

bene…cial to pool information about the preliminary promise of a project.

In Section 7 we discuss various extensions of the model, and show the robustness of

our key normative insight linking the dispersion of private information to equilibrium

(in)e¢ciency. We propose two tractable ways to accommodate gradual accumulation of

private information over time, concerning intermediate outcomes of research; we relax the

assumption of common arrival rate, to capture di¤erent approaches to the same research

question; and we consider time-variable but unobservable experimentation intensity.

Section 2 reviews the related theoretical literature, Section 3 lays out the model, Section

4 characterizes the team solution, Section 5 the unique symmetric monotonic equilibrium,

Section 6 compares the two solutions from a normative viewpoint, Section 7 discusses

robustness, an Appendix contains the proofs.

2. Related Literature

Our work is related to several strands of literature, but presents important conceptual

di¤erences with respect to each of them.

First and foremost, the key benchmark are R&D races modeled either as di¤erential or

stopping games. The di¤erential game approach is put forth in Reinganum (1981, 1982).

At each moment in time t; each …rm i selects an experimentation intensity ui (t), paying

a quadratic cost. The intensity a¤ects linearly the Poisson rate of arrival of the invention,

which is ui (t)¸. Innovation arrivals are independent across …rms, and the …rst …rm to

achieve the innovation wins the race. A simpli…ed version of this di¤erential game, where

each …rm experiments with …xed intensity until it drops out of the race, can be understood

as a stopping game. Choi (1985) takes this simpli…ed route to extend the analysis to the

case of uncertain ¸ with commonly known prior. This work is further extended by Malueg

and Tsutsui (1999) in a full-‡edged Poisson di¤erential game à la Reinganum. In these

models with symmetric information, equilibrium R&D investment is socially excessive,

due to duplication costs.3 This occurs essentially because the patent system allows the

3Before the full-‡edged dynamic approach of Reinganum (1981), the duplication costs e¤ect is identi…ed
in the “static” models of Dasgupta and Stiglitz (1980), Loury (1979) and Lee andWilde (1980). Reinganum
(1981) also identi…es a source of under-investment in the following technological externality. Say that in
the team’s problem, each project’s success rate increases with the expenditure in both facilities, because
of so called “knowledge sharing.” As a result, fractioning expenditure across facilities increases the joint
hazard rate of the innovation. In order to separate the welfare e¤ect of information aggregation from
this purely technological and well-understood ine¢ciency, our model assumes constant returns to scale in
R&D: the total arrival rate of an invention rises linearly in the number of active players.
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…rst innovator to fully appropriate the entire associated stream of pro…ts. In its strategic

decision, each …rm trades o¤ the expected bene…t for winning the race against her own

experimentation costs in the race, and does not internalize the opponents’ experimentation

costs. We adopt Choi’s simple model to address, for the …rst time in this literature, the

e¤ects of private information. We identify both instances of overinvestment, due to the

“winner curse” e¤ect, and of underinvestment, due to the postponement of research activity

that follows ine¢cient information aggregation.4

An alternative approach to modeling R&D competition is the “tug-of-war”: …rms

take turns in making costly steps towards a “…nish line.” In the absence of uncertainty,

when solved by backward induction these games predict a rather dramatic preemption

e¤ect: once a …rm is known to be ahead in the race, the opponents drop out of the

race, and the winner acts as if she faced no competition in the race (Fudenberg, Gilbert,

Stiglitz and Tirole (1983), Harris and Vickers (1985)). As a result, the equilibrium displays

no duplication costs, and it is indeed socially e¢cient. However, once we reintroduce

uncertainty in the duration of each step (Lippman andMcCardle (1985), Harris and Vickers

(1987)) the preemption e¤ect vanishes, and equilibrium R&D investment is again socially

excessive, due to duplication costs.

While our game shares elements of an all-pay ascending auction, or equivalently of

a war of attrition5 with common values (see Krishna and Morgan (1997) for a general

treatment), the payo¤ speci…cations are di¤erent, and this induces a radically di¤erent

equilibrium behavior. To see this, consider as a benchmark the symmetric equilibrium

strategy of the standard common-value ascending second-price auctions (Milgrom (1981)):

a player with private signal x quits the game just at the …rst time ¿(x) when the ‡ow cost

of waiting equals the expected ‡ow bene…t conditioned on both players holding signal x.

In the monotonic symmetric equilibrium of a common-value war of attrition, each player

leaves the race much earlier than this ¿(x). If in fact the opponent adopts strategy ¿ ; as

the conjectured optimal best-response own stopping time ¿(x) is approaching, the player

increasingly believes that the opponent’s signal is likely to be larger than x; and hence that

4Beyond the problem of patent races, some have investigated the welfare implications of the patents
institution determined by its innovation di¤usion function. Scherer (1967) and Horstmann, MacDonald
and Slivinski (1985) point out that …rms may choose not to patent, because patents allow for imitation.
At an institutional level, Scotchmer and Green (1990) compare First-to-File with First-to-Invent rule, and
Choi (1998) focuses on litigations. Llobet, Hopenhayn and Mitchell (2001) introduce a mechanism-design
approach to reward cumulative innovations.

5Fudenberg and Tirole (1985, 1986) model a duopoly war with changing demand as a war of attrition
with private information of private values (marginal costs). Similarly to our results, they show that the
weakest …rm may exit too early or too late with respect to social optimum, but this is purely coincidental.
While in our R&D race problem the welfare analysis compares the e¢cient team of …rms’ solution with the
equilibrium durations, in their dupoly problem welfare is assessed by comparing equilibrium consumers’
surplus before and after the weakest …rm exits.

6



the race is lost. As the expected bene…t of staying in the race vanishes, the …rm anticipates

exit to avoid paying the cost of attrition. In our game, prize arrivals are i.i.d. across …rms,

with same but unknown arrival rate. Hence the information that the opponent’s signal

is larger than x does not imply that the …rm will lose the race, but rather conveys good

news on the …rm’s prize promise (arrival rate), so that such a …rm holding x is induced to

postpone exit after ¿ (x) : In a sense, the informational spillover that derives from common

value and independent arrivals places our game on the opposite side of common-value wars

of attritions, with common-value standard auctions in between.6

Chamley and Gale (1994) [CG] study a discrete-time timing game of common interest,

where …rms are privately informed on the “state of the economy” and may have invest-

ment opportunity, that can be irreversibly exercised at any period. As in our model, an

irreversible timing decision is the only instrument to communicate private information,

and this results in imperfect information aggregation. Two key di¤erences distinguish our

analysis from CG. First, in CG …rms face a coordination problem, where either all should

invest or none; if it were feasible for them to communicate, they would have no reason to

conceal their private information. We analyze a game of con‡icting interests, with payo¤

congestion, so …rms have every incentive to conceal their private information, and would

always downplay the promise of the project, if they could persuade outsiders. But, they

are forced to slowly and imperfectly reveal their precious private information if they want

to act upon it, a tension that is crucial to our results and that is absent in CG. Second, CG

focus on prior-information aggregation, and allow for no joint information accumulation

over time. So, their game ends almost immediately if time periods become very short.

Ine¢ciency then results because …rms may quickly coordinate on a wrong decision (either

invest in a good state, or underinvest in bad state). Herding delays investment, as each

…rm would like to wait and see how many opponents choose to invest. In our R&D game,

instead, public learning over time plays a central role, as the negative public information

that the prize has not arrived works against the good news that the opponent is still in the

race. Also, the rate of accumulation of public information is proportional to the number

of players still in the race. Herding extends experimentation durations and works in favor

of overinvestment.7

6Ine¢ciency of the equilibrium of our R&D game originates from imperfect information aggregation,
partly arising from an informational cascade in the sense of Smith and Sorensen (2000). Our …rms invest
too much when their private signals are in su¢cient agreement: mutual observation of actions leads to
place too much weight on the public information that the opponent is still in the game, ine¢ciently
correlating the equilibrium behaviors of the two players. Unlike herding models, we consider two long-run
and forward-looking players, who act at endogenous times.

7Gul and Lundholm (1995) study a two-player continuous-time coordination timing game that shares
many similarities with CG. Again, players would like to exchange information if they were allowed to, and
the herding e¤ect goes in the direction of delaying an irreversible decision with random consequences (i.e.
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3. The Game

Two players, A and B; play the following optimalstopping game. A prize b > 0 arrives

to player i = A;B at a random time ti ¸ 0, according to a Poisson process of constant

hazard rate ¸; c.d.f. F (tij¸) = 1¡ e¡¸ti and density f(tij¸) = ¸e¡¸ti. Conditional on the
common ¸; the two arrivals are independent. In order to know ti and receive the prize,

player i must keep paying a ‡ow cost c > 0. Stopping payments of such costs implies that

the prize is abandoned irreversibly and ti will never be learned. We make a winner-take-

all assumption: the …rst player to receive the prize ends the game. Costs and prizes are

discounted at rate r:

The common hazard rate of arrival of the prize, ¸ ¸ 0, is drawn by Nature, unobserved
by the players, from a Gamma distribution:

¼ (¸) =
®¯

¡(¯)
e¡®¸¸¯¡1; for ® > 0; ¯ > 0:

Before starting to pay costs, each player i observes a private signal zi · 0 distributed

according to a negative exponential distribution: for every Z · 0 and z = zi,

H(Zj¸) = Pr(z · Zj¸) = e¸Z with density H 0(Zj¸) = h(Zj¸) = ¸e¸Z:

The two private signals zA; zB are conditionally (on ¸) independent.

We will refer to a “project” as the possibility of paying c to activate the arrival of a

prize. In our game each player has a “project”; based on the realization of the private

signal, he decides whether to pursue it or not and, if so, when to stop it irreversibly

conditional on the other player being still in the game or not. The canonical application of

the model is as follows. Each of two …rms might start an R&D project of the same nature.

Before starting the project, each …rm observes a private signal on its “promise.” This key

parameter is common to both projects, because they revolve around the same question,

device etc.; but, conditional on the promise, the actual winner is determined by luck and

by willingness to continue investing resources in research.

Belief Updating. Two posterior beliefs play a key role in our analysis. We consider

player A0s updating, player B0s being symmetric. First, suppose that player A is fully

informed about the signal realizations zA = x; zB = y, and that project A has not delivered

a prize by time t and project B by time t0. Conditional on this information, the posterior

delaying investment in CG’s terminology). As in our game, the …rst players who takes her timing decision
reveals all her private information, leaving the opponent to act fully informed.
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belief density on ¸ is a Gamma with parameters ®¡ x¡ y + t+ t0 and ¯ + 2:

¼ (¸jzA = x; zB = y; tA ¸ t; tB ¸ t0) =
¼ (¸) h (xj¸)h (yj¸) [1¡ F (tj¸)] [1¡ F (t0j¸)]R

¤
¼ (¸0) h (xj¸0)h (yj¸0) [1¡ F (tj¸0)] [1¡ F (t0j¸0)] d¸0

=
e¡®¸¸¯¡1¸e¸x¸e¸ye¡¸te¡¸t

0R
¤
e¡®¸0¸0¯¡1¸0e¸0x¸0e¸0ye¡¸0te¡¸0t0d¸0

=
e¡¸(®¡x¡y+t+t

0)¸¯+1

¡ (¯ + 2) (®¡ x¡ y + t+ t0)¡¯¡2 :

for ease of notation, we shall henceforth denote ¼ (¸jzA = x; zB = y; tA ¸ t; tB ¸ t0) by
¼t;t0(¸jx; y), with c.d.f. ¦t;t0(¸jx; y):
Second, suppose that player A is fully informed about her own private signal realization

zA = x; that own prize has not arrived yet by t, the other prize has not arrived by t0, and

that the opponent has a signal zB not smaller than y: Conditional on this information, the

posterior belief density on ¸ is:

¼ (¸jzA = x; zB ¸ y; tA ¸ t; tB ¸ t0) =
¼ (¸) h (xj¸) [1¡H (yj¸)] [1¡ F (tj¸)] [1¡ F (t0j¸)]R

¤
¼ (¸0)h (xj¸0) [1¡H (yj¸0)] [1¡ F (tj¸0)] [1¡ F (t0j¸0)] d¸0

=
e¡®¸¸¯¡1¸e¸x

¡
1¡ e¸y¢ e¡¸te¡¸t0R

¤
e¡®¸0¸0¯¡1¸0e¸0x

¡
1¡ e¸0y¢ e¡¸0te¡¸0t0d¸0

=
¸¯
£
e¡¸(®+t+t

0¡x) ¡ e¡¸(®+t+t0¡x¡y)¤
¡ (¯ + 1)

h
(®+ t+ t0 ¡ x)¡¯¡1 ¡ (®+ t+ t0 ¡ x¡ y)¡¯¡1

i
For ease of notation, we shall henceforth denote ¼ (¸jzA = x; zB ¸ y; tA ¸ t; tB ¸ t0) by
¼t;t0(¸jx; y+), with c.d.f. ¦t;t0(¸jx; y+):
The key statistic to determine optimal stopping in the model is the expected hazard

rate of prize arrival. Conditional on “complete” information (x; y; t; t0) this is:

Et;t0 [¸jx; y] =
Z
¤

¸¼t;t0 (¸jx; y) d¸

=

R
¤
e¡¸(®¡x¡y+t+t

0)¸¯+2d¸

¡ (¯ + 2) (®¡ x¡ y + t+ t0)¡¯¡2

=
¯ + 2

®¡ x¡ y + t+ t0 ;

and conditional on the information that the opponent’s signal is above y:

Et;t0 [¸jx; y+] =
Z
¤

¸¼t;t0 (¸jx; y+) d¸

=

Z
¤

¸¯+1
£
e¡¸(®+t+t

0¡x) ¡ e¡¸(®+t+t0¡x¡y)¤
¡ (¯ + 1)

h
(®+ t+ t0 ¡ x)¡¯¡1 ¡ (®+ t+ t0 ¡ x¡ y)¡¯¡1

id¸
= (¯ + 1)

(®+ t+ t0 ¡ x)¡¯¡2 ¡ (®+ t+ t0 ¡ x¡ y)¡¯¡2
(®+ t+ t0 ¡ x)¡¯¡1 ¡ (®+ t+ t0 ¡ x¡ y)¡¯¡1 :
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It is immediate to see that Et;t0 [¸j x; y] is increasing in x and y and decreasing in t; t0; the
next Lemma shows that this is the case also for Et;t0 [¸j x; y+] :

Lemma 1. The posterior expected hazard rates of arrival Et;t0 [¸jx; y] ; Et;t0 [¸jx; y+] ;
conditional on: no prize A arrival by time t; no prize B arrival by time t0, the realization

of the signal zA = x, and the realization of signal zB being (respectively) equal to or larger

than y, are both strictly decreasing in t and in t0; and strictly increasing in x and in y:

Furthermore,

lim
t!1

Et;t0 [¸jx; y] = 0; lim
t!1

Et;t0 [¸j x; y+] = 0:

Next, knowing that the opponent’s private signal realization equals y for sure is bad

news compared to knowing only that it is larger than y.

Lemma 2. For any t; t0; x; and y < 0; ¦t;t0(¸jx; y) ÁFSD ¦t;t0(¸jx; y+) ÁFSD ¦t;t0(¸jx; 0):
Hence

Et;t0 [¸jx; y] < Et;t0 [¸jx; y+] < Et;t0 [¸j x; 0] :

4. The Team Solution

We begin our analysis by studying the …rst-best solution, in which players join forces in

a single team, sharing four pieces of information: the two signal realizations x; y, that

project A has not delivered a prize by time t and project B by time t0. In principle the

team may choose to stop projects in sequence. We …rst consider the case in which one

of the two projects (project “1”) has been irreversibly stopped at time T1 ¸ 0, and the

other (project “2”) is still ongoing at time T2 ¸ T1. This will allow us later, by backward
induction, to solve the problem where both projects are still ongoing. Project 1 may be

indi¤erently either project A or B; as they have identical statistical properties.

4.1. Optimal Stopping of the Last Project by the Team

Value Equation. At time t; conditional on a true value of the prize hazard rate ¸;

unknown to the players, and on no prize arrival to date, the expected value of planning to

stop a single project at some future date T2 ¸ t equals

U2;t (T2j¸) =
Z T2

t

f (sj¸)
1¡ F (tj¸)

·Z s

t

(¡c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds+

1¡ F (T2j¸)
1¡ F (tj¸)

Z T2

t

(¡c) e¡r(v¡t)dv

where the subscript “2” denotes the relevance of this value for the second project, the …rst

project being already o¤ line. The …rst term is the expected discounted return in case the

prize arrives before the project is stopped. Here f (sj¸) = [1¡ F (tj¸)] = ¸e¡¸(s¡t) is the
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density of the prize arrival time, conditioned on no prize having arrived so far. The second

term is the expected discounted return in case the prize does not arrive by the planned quit-

ting time T2; premultiplied by the chance that this happens [1¡ F (T2j¸)] = [1¡ F (tj¸)] =
e¡¸(T2¡t). The team, having stopped the …rst project at calendar time T1, plans at time

t ¸ T1 to stop the second project at time T2 ¸ t to maximize the expectation of this value
given posterior beliefs, namely

max
T2¸t

W2;t(T2jx; y; T1) = max
T2¸t

Z
¤

U2;t (T2j¸) ¼t;T1(¸jx; y)d¸; (4.1)

where recall that ¼t;T1(¸jx; y) denotes the density of posterior beliefs conditional on the
signal realizations x; y being known exactly, and on the facts that neither prize had arrived

by time T1, when the …rst project was stopped, and that the second project running alone

did not arrive in [T1; t) either. The optimal stopping time of the second project, after

stopping the …rst at T1, and as planned at time t ¸ T1, is thus:

T ¤2;t(x; y; T1) = argmax
T2¸t

W2;t(T2jx; y; T1):

In order to determine this optimal choice, we may di¤erentiate the valueW2;t(T2jx; y; T1)
with respect to current time t and obtain a di¤erential equation for the value, which is the

Bellman equation for this problem. However, we choose to work directly on the integral

form of the value, as written above, for two reasons. First, the integral form allows to solve

for the value function without having to guess its functional form, as is commonly done

in dynamic programming or in solving di¤erential equations. Second, this approach is

constructive, thus rigorous and transparent, and needs no indirect arguments based on the

applicability of recursive methods, which often lack su¢cient conditions for an optimum.

First-Order Condition. Notice that the team’s expected value W2;t(T2jx; y; T1) =
Et;T1[U2;t (T2j¸)jx; y] of stopping the second project at time T2; after stopping the …rst
at time T1, depends on T2 only through the integrand value U2;t (T2j¸) conditional on ¸.
Therefore, W2;t(T2jx; y; T1), just like U2;t (T2j¸), is C2 in T2 for every T2 ¸ t and every

x; y; t; T1. To …nd the team’s optimal stopping time of the remaining running project, we

take a derivative of the expected value function (4.1). Since this type of manipulations

will be used repeatedly in later omitted proofs, it is instructive to go through them at least

once:
dW2;t (T2jx; y; T1)

dT2
=

Z
¤

d

dT2
U2;t (T2j¸) ¼t;T1 (¸jx; y) d¸

=

Z
¤

·
f (T2j¸)
1¡ F (tj¸)

µZ T2

t

(¡c) e¡r(v¡t)dv + e¡r(T2¡t)b
¶
¡ f (T2j¸)
1¡ F (tj¸)

Z T2

t

(¡c) e¡r(v¡t)dv

11



+
1¡ F (T2j¸)
1¡ F (tj¸) (¡c) e

¡r(T2¡t)
¸

¼ (¸) h (xj¸) h(yj¸) [1¡ F (tj¸)] [1¡ F (T1j¸)]R
¤
¼ (¸0)h (xj¸0) h(yj¸0) [1¡ F (tj¸0)] [1¡ F (T1j¸0)] d¸0d¸

= §T2¡t (T2; T1; t; T1; x; y)
Z
¤

·
f (T2j¸)

1¡ F (T2j¸)b¡ c
¸
¢

¢ ¼ (¸)h (xj¸)h(yj¸) [1¡ F (T2j¸)] [1¡ F (T1j¸)]R
¤
¼ (¸0) h (xj¸0)h(yj¸0) [1¡ F (T2j¸0)] [1¡ F (T1j¸0)] d¸0d¸

= §T2¡t (T2; T1; t; T1; x; y) (bET2;T1 [¸jx; y]¡ c)
/ bET2;T1 [¸jx; y]¡ c

where recall ET2;T1 [¸j x; y] is the expected value of ¸ conditional on the posterior beliefs
¼T2;T1 (¸jx; y) ; and we introduce the normalizing factor:

§T2¡t (T2; T1; t; T1; x; y) ´ e¡r(T2¡t)
R
¤
¼ (¸) h (xj¸)h(yj¸) [1¡ F (T2j¸)] [1¡ F (T1j¸)] d¸R

¤
¼ (¸0) h (xj¸0) h(yj¸0) [1¡ F (tj¸0)] [1¡ F (T1j¸0)] d¸0 > 0:

Therefore, the FOC simply equates the posterior expected hazard rate of the remaining

prize to the cost/bene…t ratio:

bET2;T1 [¸jx; y] = c: (4.2)

Intuitively, the marginal cost c of proceeding an extra instant must equal the marginal

bene…t, which consists of the prize b multiplied by its expected hazard rate conditional on

all available information. Due to exponential discounting, this condition is independent

of the planning time t; therefore an optimal stopping time T2 2 [T1;1), if it exists, is
time-consistent.

Optimal Stopping Time. We now determine the optimal stopping time of the second

project, T ¤2;t(x; y; T1) for any signal pair x; y, current calendar time t; and time T1 when

the …rst project was stopped. Since

ET2;T1 [¸jx; y] =
¯ + 2

®¡ x¡ y + T1 + T2 ;

the FOC (4.2) yields the unique solution:

T2(x; y; T1) =
b

c
(¯ + 2) + x+ y ¡ ®¡ T1: (4.3)

Lemma 3. For every pair of signals x; y, if the team has stopped the …rst project at time
T1; the optimal stopping time of the second project is

T ¤2 (x; y; T1) = maxfT1;
b

c
(¯ + 2) + x+ y ¡ ®¡ T1g:
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Proof. We are left to verify a su¢cient condition. For every x; y; t; T1;

dW2;t (T2jx; y; T1)
dT2

_ bET2;T1 [¸jx; y]¡ c = b
¯ + 2

®¡ x¡ y + T1 + T2 ¡ c;

this immediately implies:

T2 < (>)
b

c
(¯ + 2) + x+ y ¡ ®¡ T1 () dW2;t (T2jx; y; T1)

dT2
> (<)0:

Therefore T2(x; y; T1) if positive, is the unique local and thus global maximum of the

value function W2;t(T2jx; y; T1); independently of t. It follows that if t < T2(x; y; T1);

then the second project is kept open at time t; whereas if t ¸ T2(x; y; T1); it is optimal

to turn the second project o¤. This in turn implies that the optimal stopping time is

T ¤2 (x; y; T1) = maxfT1; T2(x; y; T1)g:
The above Lemma implies that if the team carries on both projects for a long enough

time, before the stopping one of them, then it must stop both of them at the same time.

Corollary 1. If the team stops one project at a time T1 such that

T1 ¸ max
½
0;
1

2

·
(¯ + 2)

b

c
+ x+ y ¡ ®

¸¾
´ T ¤(x; y); (4.4)

then it optimally stops also the second project simultaneously at T ¤2 (x; y; T1) = T1.

The expression for T ¤(x; y) (when positive) is intuitive. The stopping time is longer the

larger the bene…t/cost ratio b=c, the higher the signal realizations x; y, the higher the prior

mean ¯=® and the prior variance ¯2=® of beliefs about the hazard rate ¸. The variance

e¤ect stems from a standard option value of information: stopping later means (in the

language of Moscarini and Smith 2001) experimenting more, because one sacri…ces payo¤s

today in the hope of a random return to new knowledge in the future.

4.2. Optimal Stopping of the First Project by the Team

We may now calculate by backward induction the optimal stopping time of the …rst project

T ¤1 (x; y): Speci…cally, we will show that the team’s optimal policy always prescribes to stop

both projects simultaneously, so that T ¤1 (x; y) = T
¤(x; y) = T ¤2 (x; y; T

¤
1 (x; y)):

Let F̂ (sj¸) be the c.d.f. associated with the arrival of the prize to either one of the
two projects at time s, thus

F̂ (sj¸) = 1¡ (1¡ F (sj¸))2 ; with density F̂ 0 (sj¸) = f̂ (sj¸) = 2f (sj¸) (1¡ F (sj¸)) :
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For any t ¸ 0; conditional on a known value of ¸, the value of stopping the …rst project
at time T1 equals:

U1;t (T1j¸) =

Z T1

t

2f (sj¸) (1¡ F (sj¸))
(1¡ F (tj¸))2

·Z s

t

(¡2c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds

+
(1¡ F (T1j¸))2
(1¡ F (tj¸))2

·Z T1

t

(¡2c) e¡r(v¡t)dv + e¡r(T1¡t)U2;T1 (T ¤2 (x; y; T1)j¸)
¸

where the …rst line collects payo¤s in case the prize arrives while both projects run together

(before T1), and the second line the cost of running two projects fruitlessly until T1 and

then collecting the payo¤ of continuing optimally with one project from that moment

forward. The team plans at time t a stopping time T1 to maximize the expectation of this

value given current posterior beliefs:

W1;t(T1jx; y) =
Z
¤

U1;t (T1j¸)¼t;t (¸jx; y) d¸:

The optimal stopping time as planned at t is thus:

T ¤1;t(x; y) = argmax
T1¸t

W1;t (T1jx; y) :

To …nd the optimal stopping time, again, we take a derivative of this value function W1;t

with respect to T1, and present the …nal result of substantial manipulations in the following:

Lemma 4. For every pair of signals x; y; and any time t ¸ 0; the marginal value of waiting
to stop the …rst project is proportional to

dW1;t (T1jx; y)
dT1

/ ¡c+ ET1;T1 [¸ (b¡ U2;T1(T ¤2 (x; y; T1)j¸)) jx; y] :

Intuitively, by delaying the stopping time T1 of the …rst project, the team pays the ‡ow

cost c and receives the expected marginal bene…t ET1;T1 [¸ (b¡ U2;T1(T ¤2 (x; y; T1)j¸)) jx; y].
At hazard rate ¸; the prize arrives and the bene…t b is incurred, but on the other hand the

continuation value U2;T1(T
¤
2 (x; y; T1)j¸) of proceeding with only one project is lost. Notice

that U2;T1(T
¤
2 (x; y; T1)j¸) < b, as in the continuation the team can earn at most b; and

not immediately a.s. Furthermore, the hazard rate ¸ of the prize and the continuation

value conditional on ¸; namely U2;T1(T
¤
2 (x; y; T1)j¸); are multiplied within the posterior

expectation: the team cares about their covariance induced by the common dependence

on ¸. If both projects are stopped together, namely if T1 is such that T ¤2 (x; y; T1) = T1, then

clearly the continuation value of the second project alone is zero: U2;T1(T
¤
2 (x; y; T1)j¸) = 0.

In this case the familiar expression dW1;t (T1jx; y) =dT1 / (bET1;T1 [¸jx; y]¡ c) obtains.
Lemma 4 and Corollary 1 together immediately imply that the optimal stopping time
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T ¤1 (x; y) of the …rst project cannot exceed the magnitude T
¤(x; y) de…ned in (4.4). In fact,

by Corollary 1, if T1 > T ¤(x; y); then T ¤2 (x; y; T1) = T1; and thus by Lemma 4:

dW1;t (T1jx; y)
dT1

/ ¡c+ ET1;T1 [¸ (b¡ U2;T1 (T ¤2 (x; y; T1)j¸)) jx; y]

= ¡c+ bET1;T1 [¸jx; y] = ¡c + b
¯ + 2

®¡ x¡ y + T1 + T1
< ¡c+ b ¯ + 2

®¡ x¡ y + 2T ¤ (x; y) = 0:

If parameters are such that T ¤(x; y) = 0; then T ¤2 (x; y; T
¤
1 (x; y)) = T ¤1 (x; y) = 0 and no

project is ever started. But, in the case that T ¤(x; y) > 0; the key question is still whether

it is best for the team to stop the two projects simultaneously at time T ¤(x; y); or to stop

them sequentially, so that T ¤1 (x; y) < T
¤
2 (x; y; T

¤
1 (x; y)): By Corollary 1 sequential stopping

requires that T ¤1 (x; y) < T
¤(x; y); the following Lemma shows that this inequality is in fact

impossible.

Lemma 5. For every pair of signals x; y such that T ¤(x; y) > 0; the optimal stopping

time T ¤1 (x; y) of the …rst project cannot be smaller than T
¤(x; y):

The results of this section are summarized in the following Proposition.

Proposition 1. (The Team Solution) For every pair of signals x; y on the unobserved
promise ¸ of the two projects, the team optimally stops both projects simultaneously at

time

T ¤1 (x; y) = T
¤
2 (x; y; T

¤
1 (x; y)) = maxf0; T ¤(x; y)g;

where

T ¤(x; y) ´ 1

2
[(¯ + 2)

b

c
+ x+ y ¡ ®]:

5. Equilibrium in Semi-Separating Strategies

5.1. De…nition

In the game, each player observes only her own private signal and whether her rival is still

in the race. Owing to the winner-take-all assumption, no player would reveal her private

signal truthfully to the opponent. Hence, private information may only be revealed through

quitting decisions. A player draws information from elapsing time in two ways. First, she

veri…es that no prize has arrived (when one prize arrives, the game is over); second, she

can see whether the opponent is still in the game or not. The …rst piece of information

is always bad news, because posterior beliefs deteriorate in a FSD sense by Lemma 2;
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the second is either bad or good news, depending on the monotonicity of the opponent’s

quitting strategy in her private signal.

For each player i = A;B, a pure strategy in this game is a pair of functions (¿ i1; ¿
i
2).

We focus on symmetric equilibria, hence we omit the superscript i from the strategies.8

The stopping time function as “quitter no. 1”, given own private signal and that the

opponent is still in the race, is denoted by ¿ 1 : R¡ ! R+. Here, for any x, the stopping
time ¿ 1(x) prescribes that the player stays in the race until time ¿1 (x) unless observing

that the opponent has left the race at any time ¿̂ < ¿1 (x) : The choice of the extended

positive real numbers R+ as the range of ¿1 is made to allow for the possibility that a
player may decide to stay in the game and wait for the prize forever, given some signal

realization x; and given that the opponent is not leaving the game either. Note that the

stopping time ¿ 1 (x) = 0 prescribes that the player should not enter the race at all.

The stopping time function as “quitter no. 2”, given own private signal and that the

opponent has already left the game, is denoted by ¿2 : R¡£R+ ! R+. Here ¿2 (x; ¿̂ ) ¸ ¿̂
describes the player’s stopping time when holding signal x and after the opponent has quit

at time ¿̂ :We restrict attention to strategies where ¿1 satis…es the following monotonicity

requirement: there exist x; ¹x · 0 such that

¿ 1(x) =

8<: 0 if x · x
positive and strictly increasing if x < x · ¹x
1 if x > ¹x:

In particular, if ¹x = 0; then the stopping time ¿1 (x) is …nite for any x: We denote by g

the inverse function of ¿ 1 on the domain [x; ¹x]: We look for a Symmetric Monotone Per-

fect Bayesian Equilibrium (SMPBE): both players adopt the same equilibrium strategy

(¿¤1; ¿
¤
2), which is a best response to itself, and ¿

¤
1 also satis…es the above monotonicity re-

quirement with thresholds denoted by x¤, ¹x¤. The equilibrium is semi-separating, because

not entering the game reveals to the opponent only an upper bound x¤ to the observed

private signal.

5.2. Equilibrium Play After the Opponent Quits

In a SMPBE, when a player enters the game at time 0, and then quits …rst at time

¿̂ > 0 according to the equilibrium strategy ¿¤1, the remaining player perfectly infers

8Without loss in generality, we can restrict attention to time-consistent stopping times chosen by the
players, function of the private signal and of how many players are left in the game, but not of calendar
time. In fact, consider (for the sake of illustration) player A; even if he revises his stopping decision as
time goes by, all that matters to player B is when player A does quit, because player B observes only
player A0s actions, not his intentions. So any previous plans made by A and later revised are immaterial:
player B cares about A0s decision to stop at time ¿ as planned at time ¿ :
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her opponent’s private information g¤(¿̂ ). From that moment on, the remaining player

updates beliefs and solves a single-project decision problem equivalent to that of the team.

It follows immediately that the optimal stopping time of the last player is given by the

team’s stopping rule, conditional on the …rst player having left at ¿̂ > 0, namely ¿ ¤2(y; ¿̂ ) =

T ¤2 (y; g(¿̂ ); ¿̂ ):

Proposition 2. (Equilibrium Play after the Opponent Has Quit) In any SMPBE,
for any ¿̂ > 0; the optimal stopping time of a player with signal x, after the opponent quits

at time ¿̂ and reveals her private information g¤(¿̂), equals the team’s optimal stopping

time of the second project conditional on the same information:

¿¤2(x; ¿̂) = maxf¿̂ ;
b

c
(¯ + 2) + x+ g¤(¿̂ )¡ ®¡ ¿̂g:

As mentioned, if one player even fails to join the game, then her private signal cannot

be perfectly inferred by the opponent, because the equilibrium strategy ¿¤1 is not invertible

for x · x¤, or ¿̂ = 0: Assuming that player B does not join the game, for the sake of

illustration, the expected continuation value of player A at time t for quitting at time ¿A

may be expressed as:

W2;t(¿
Ajx; g¤ (0)¡; 0) ´

Z
¤

U2;t
¡
¿Aj¸¢ ¼(¸jzA = x; zB · g¤ (0) ; tA ¸ t; tB ¸ 0)d¸;

where by de…nition, g¤ (0) = x¤: This allows to conclude the following:

Proposition 3. (EquilibriumPlay after the Opponent Has Not Joined the Game)
In any SMPBE, the optimal stopping time of a player with signal x; conditional on the

opponent not having joined the game, equals

¿ ¤2(x; 0) = maxf0;
b

c
(¯ + 1) + x+ x¤ ¡ ®g:

Since entering the game for an arbitrarily small length of time, and then quitting,

perfectly reveals own private information x, while not joining the game at all only reveals

an upper bound x¤ to x, there is a natural discontinuity in the equilibrium strategy ¿¤2(x; ¿̂)

at ¿̂ = 0: In fact, for any x > ® ¡ (¯ + 2) b=c ¡ x¤, so that entering the game for some
time is optimal,

lim
¿̂#0
¿¤2(x; ¿̂) =

b

c
(¯ + 2) + x+ x¤ ¡ ® > max

½
0;
b

c
(¯ + 1) + x+ x¤ ¡ ®

¾
= ¿¤2(x; 0):
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5.3. Equilibrium Play Before the Opponent Quits

The most complex part of the equilibrium characterization concerns the earlier phase of

the game, when both players are still in the game. Each player must plan an optimal

stopping time based on the hypothesis that the opponent will quit later, and on the

resulting information about the opponent’s private information.

The Value Function. We …rst determine the value function of a player at any time

t > 0 for quitting at time ¿ ¸ t; conditional on the facts that opponent has not quit yet at
time ¿ and is adopting a monotonic strategy (¿1; ¿ 2) ; with associated inverse g = ¿¡11 . We

need to distinguish four events that can take place at any time s between the current time

t and any future date ¿ at which the player plans to quit …rst (i.e. provided the opponent

has not quit by then). We consider the problem of player A who contemplates stopping

…rst at time ¿A, the other player’s calculations being symmetric.

1. Player A’a prize arrives at tA 2 [t; ¿A); before (the prize arrives to the rival at time)
tB and before (the opponent quits …rst at time) ¿B. In this case, A wins and takes

all, the game is over at time tA. Conditional on the true arrival rate ¸, the c.d.f. of

this event is

Pr(tA · s; tB > tA; ¿
B > tAjtA > t; tB > t; ¿B > t; ¸) =

Pr(tA · sjtA > t; ¸) Pr(tB > tAjtB > t; ¸) Pr(¿B > tAj¿B > t; ¸)
=

F (sj¸)
1¡ F (tj¸)

1¡ F (tAj¸)
1¡ F (tj¸)

1¡H(g (tA) j¸)
1¡H(g (t) j¸)

The density of this event for tA = s 2 [t; ¿A] is
d

ds

·
F (sj¸)

1¡ F (tj¸)
1¡ F (tAj¸)
1¡ F (tj¸)

1¡H(g (tA) j¸)
1¡H(g (t) j¸)

¸
s=tA

=
f (sj¸)

1¡ F (tj¸)
1¡ F (sj¸)
1¡ F (tj¸)

1¡H(g (s) j¸)
1¡H(g (t) j¸)

2. Player B’s prize arrives at tB 2 [t; ¿A); before A’s prize arrives at tA and before A
quits at ¿A: As a result, B wins and takes all, the game is over at time tB. Reasoning

as above, the density of this event for tA = s 2 [t; ¿A] is
f (sj¸)

1¡ F (tj¸)
1¡ F (sj¸)
1¡ F (tj¸)

1¡H(g (s) j¸)
1¡H(g (t) j¸) :

3. Player B quits at ¿B 2 [t; ¿A) …rst, i.e. before either prize arrives. Then the signal
zB = y is revealed to A by inverting y = g(¿B): The density of this event for

tA = s 2 [t; ¿A] is
h(g (s) j¸)g0 (s)
1¡H(g (t) j¸)

µ
1¡ F (sj¸)
1¡ F (tj¸)

¶2
:
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4. Nothing happens in the time interval [t; ¿A): no one quits and no prize arrives. In

such a case, player A quits at ¿A. The probability of this event is

Pr
¡
tA > ¿

AjtA > t; ¸
¢
Pr
¡
tB > ¿

AjtB > t; ¸
¢
Pr
¡
¿B > ¿Aj¿B > t; ¸¢

=

Ã
1¡ F ¡¿Aj¸¢
1¡ F (tj¸)

!2
1¡H(g ¡¿A¢ j¸)
1¡H(g (t) j¸)

Each of the four events has associated a corresponding PDV of payo¤s. We can write

the expected value at time t for planning at time t to stop at some time ¿ > t, conditional

on ¸. Following the order of the four events, and using the subscript “1” to denote the

stopping time as quitter no. 1:

Q1;t (¿ j¸) =

Z ¿

t

f (sj¸)
1¡ F (tj¸)

1¡ F (sj¸)
1¡ F (tj¸)

1¡H(g (s) j¸)
1¡H(g (t) j¸)

·Z s

t

(¡c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds

+

Z ¿

t

f (sj¸)
1¡ F (tj¸)

1¡ F (sj¸)
1¡ F (tj¸)

1¡H(g (s) j¸)
1¡H(g (t) j¸)

·Z s

t

(¡c) e¡r(v¡t)dv
¸
ds

+

Z ¿

t

µ
1¡ F (sj¸)
1¡ F (tj¸)

¶2
h(g (s) j¸)g0 (s)
1¡H(g (t) j¸)

·
¡
Z s

t

ce¡r(v¡t)dv + e¡r(s¡t)Ws;s(¿
¤
2(x; s)jx; g(s))

¸
ds

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
1¡H(g (s) j¸)
1¡H(g (t) j¸)

·
¡
Z ¿

t

ce¡r(v¡t)dv
¸

which can be compacted as follows:

=

Z ¿

t

f (sj¸)
1¡ F (tj¸)

1¡ F (sj¸)
1¡ F (tj¸)

1¡H(g (s) j¸)
1¡H(g (t) j¸)

·Z s

t

(¡2c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds

+

Z ¿

t

µ
1¡ F (sj¸)
1¡ F (tj¸)

¶2
h(g (s) j¸)g0 (s)
1¡H(g (t) j¸)

·Z s

t

(¡c) e¡r(v¡t)dv + e¡r(s¡t)W2;s(¿
¤
2(x; s)jx; g(s); s)

¸
ds

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
1¡H(g (¿) j¸)
1¡H(g (t) j¸)

·Z ¿

t

(¡c) e¡r(v¡t)dv:
¸

Here W2;s(¿
¤
2(x; s)jx; g(s); s) is the expected continuation value if the opponent leaves at s

and the player optimally stops at ¿ ¤2(x; s) ¸ s, given that no prize has arrived by s: At any
time t > 0; the expected value of this strategy given t-current posterior beliefs is therefore

V1;t (¿ jx) =
Z
¤

Q1;t (¿ j¸)¼t;t (¸jx; g (t)+) d¸:

Given that the opponent adopts a monotonic strategy ¿ ¤1; with inverse g
¤; quitting …rst at

time ¿ 1 = ¿ ¤1(x) after observing private signal x = g
¤(¿ 1), each player chooses the optimal

stopping time as quitter no. 1 by solving

¿¤1;t(x) = argmax
¿¸t

V1;t (¿ jx) :
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The First-Order Condition: Necessity and Su¢ciency. In order to …nd the op-

timal stopping time of a player before the opponent quits, we di¤erentiate the expected

value V1;t (¿ jx) with respect to the stopping time ¿ :

V 01;t (¿ jx) =
Z
¤

·
f (¿ j¸)

1¡ F (tj¸)
1¡ F (¿ j¸)
1¡ F (tj¸)

1¡H(g (¿ ) j¸)
1¡H(g (t) j¸)

µZ ¿

t

(¡2c) e¡r(v¡t)dv + e¡r(¿¡t)b
¶

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
h(g (¿) j¸)g0 (¿ )
1¡H(g (t) j¸)

·Z ¿

t

(¡c) e¡r(v¡t)dv + e¡r(¿¡t)W2;¿ (¿
¤
2(x; ¿ )jx; g(¿); ¿)

¸
¡2 (1¡ F (¿ j¸)) f (¿ j¸) [1¡H(g (¿) j¸)] + [1¡ F (¿ j¸)]

2 h(g (¿) j¸)g0 (¿ )
[1¡ F (tj¸)]2 [1¡H(g (t) j¸)]

Z ¿

t

(¡c) e¡r(v¡t)dv

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
[1¡H(g (¿) j¸)]
[1¡H(g (t) j¸)] (¡c) e

¡r(¿¡t)
#
¼t;t (¸jx; g (t)+) d¸

=

Z
¤

·
f (¿ j¸)

1¡ F (tj¸)
1¡ F (¿ j¸)
1¡ F (tj¸)

1¡H(g (¿) j¸)
1¡H(g (t) j¸) e

¡r(¿¡t)b

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
h(g (¿ ) j¸)g0 (¿)
1¡H(g (t) j¸) e

¡r(¿¡t)W2;¿ (¿
¤
2(x; ¿ )jx; g(¿); ¿ )

+

µ
1¡ F (¿ j¸)
1¡ F (tj¸)

¶2
[1¡H(g (¿) j¸)]
[1¡H(g (t) j¸)] (¡c) e

¡r(¿¡t)
#
¼t;t (¸jx; g (t)+) d¸

= §t;t(¿ ; x; g (¿)+)

Z
¤

½
f (¿ j¸)

1¡ F (¿ j¸)b+
h(g (¿ ) j¸)g0 (¿)
1¡H(g (¿ ) j¸)W2;¿ (¿

¤
2(x; ¿ )jx; g(¿); ¿))¡ c

¾
¼¿;¿ (¸jx; g (¿ )+)d¸

/ bE¿;¿ [¸jx; g (¿ )+]+W2;¿ (¿
¤
2(x; ¿)jx; g(¿); ¿ )E¿;¿

·
h(g (¿) j¸)g0 (¿ )
1¡H(g (¿) j¸)

¯̄̄̄
x; g (¿)+

¸
¡c (5.1)

where we introduce a new normalizing factor

§t;t (¿ ; x; g (¿)+) ´ e¡r(¿¡t)
R
¤
¼ (¸)h (xj¸) [1¡H(g (¿ ) j¸)] [1¡ F (¿ j¸)]2 d¸R

¤
¼ (¸) h (xj¸) [1¡H(g (t) j¸)] [1¡ F (tj¸)]2 d¸0 > 0:

The last line of Equation (5.1) describes the marginal value at ¿ of waiting before drop-

ping out of the race. It depends on the ‡ow cost ¡c and on two ‡ow bene…t terms, the …rst
one is the prize value b times the expected hazard rate E¿;¿ [¸jx; g (¿)+] of prize arrival,
and the second one is the product of the expected hazard rate E¿;¿

h
h(g(¿)j¸)g0(¿)
1¡H(g(¿)j¸)

¯̄̄
x; g (¿ )+

i
of the opponent leaving the game and of the returns from this event, expressed by the

continuation value W2;¿ (¿
¤
2(x; ¿ )jx; g(¿); ¿ ):

Remarkably, the possibility that the opponent receives the prize does not enter the

marginal value of waiting to quit the game …rst. The derivative V 01;t (¿ jx) captures the
di¤erence in value at ¿ between, on the one hand, staying in the race for an extra ¢¿ and

then leaving at time ¿ + ¢¿ ; and on the other hand of leaving immediately at ¿ ; for ¢¿
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small. In this period of time ¢¿ , the cost c¢¿ is paid upfront and sunk, and either one of

the two prizes of size b or W2;¿ (¿
¤
2(x; ¿)jx; g(¿ ); ¿ ) may arrive. But nothing may arrive, in

which case one quits, or the opponent may win in the meantime: either way, the payo¤ is

zero. It is immaterial to this cost-bene…t analysis that the prize could also arrive to the

opponent: the only e¤ect of this is to end to game before ¿ + ¢¿ at no further cost, nor

bene…t to the player. Since the player is anyway ending the game at time ¿ + ¢¿ ; the

arrival of the prize to the opponent at any given t 2 (¿ ; ¿ + ¢¿) bears no change in the
player’s marginal value for waiting as ¢¿ vanishes. If the loser of the race were either to

pay a …ne or to receive a runner-up prize, then this remarkable fact would not be true.

At ¢¿ = 0; or t = ¿ ; we know that the opponent prize has not arrived yet by as-

sumption. We now show that a player cannot optimally stay in the game forever, given

any signal realization x; and given that the opponent is never going to leave the game

with positive probability. This allows us to conclude that there are no SMPBE where the

players herd on each other’s experimentation so much that they remain in the race forever.

Furthermore, we show that it cannot be the case that a player decides to quit the race too

early if her signal is good enough.

Lemma 6. Suppose that player B plays a monotonic strategy ¿ 1, of quitting …rst at time
¿1(y) after privately observing y, with inverse g. For any signal x observed by player

A, there exists ¹¿ > 0 large enough that player A’s marginal value of waiting V 01;t(¿ jx) is
negative for any ¿ ¸ ¹¿ : For any x such that bE0;0 [¸jx; g (0)+] > c; there exists ¿ > 0

small enough that V 01;t(¿ jx) > 0 for any t · ¿ · ¿ :

Lemma 6 shows that if the opponent plays a monotonic strategy with inverse g; then

a player that happens to be in the race at time t > 0; and that is endowed with a

signal x such that bE0;0 [¸j x; g (0)+] > c; optimally chooses to stop at a …nite time

¿1;t (x) = maxft; ¿ 1 (x)g; where the stopping time ¿ 1 (x) must satisfy the …rst-order con-
dition V 01;t(¿ jx) = 0: This is because it is optimal to enter the game, while staying in the
game too long eventually has strictly negative marginal value. Since the last line of (5.1) is

independent of current time t, this shows that for any observed private signal realization x

and any current time t; the sign of the derivative V 01;t (¿ jx) must be independent of t: As a
result, for any x and any t; any stopping time ¿ 1 (x) satisfying the FOC V 01;t (¿ jx) = 0 must
be independent of t; and hence must be time consistent. All this implies the following: if

the opponent plays a monotonic strategy with inverse g; a player who chooses to enter the

race and holds a signal x such that bE0;0 [¸j x; g (0)+] > c; must optimally plan to quit

the game at a time ¿ that satis…es the First-Order Condition V 01;t(¿ jx) = 0:
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Equilibrium Characterization. The key result of this subsection is a new type of

winner’s curse, that we identify in any monotonic equilibrium of this class of optimal-

stopping games of con‡icting interests. Suppose that (say) player B adopts a monotonic

strategy g; and that player A endowed with signal x plans, in the event that B remains in

the race, to quit …rst at a time ¿ which satis…es the FOC V 01;t (¿ jx) = 0: Then, if B quits

…rst at any time ¿̂ earlier than but close enough to ¿ , then A must also immediately leave

the race, regretting not having left earlier: formally, T ¤2 (x; g (¿̂) ; ¿̂) = ¿̂ : The intuition

behind this result is simple. When player A plans to remain in the race at any time

t < ¿ ; and to leave exactly at ¿ ; she conditions on player B still being in the race and

hence on the expectation E[zBjzB ¸ g (t)] with respect to B’s signal. If in fact B quits

…rst at a time ¿̂ when A is about to do so at ¿ , namely ¿̂ is close to but smaller than

¿ ; then A at ¿̂ suddenly realizes that B had observed signal zB = g (¿̂), which is much

smaller than E[zBjzB ¸ g (¿̂ )] and hence smaller also than E[zBjzB ¸ g (¿ )]: This wake-up
call induces a sudden pessimistic revision of A0s beliefs; accordingly, A quits immediately

after B, regretting her previous over-optimistic expectation of the rival’s assessment of the

project’s feasibility.

Lemma 7. Suppose that player B plays a monotonic strategy (¿1; ¿2) with inverse g =

¿¡11 . For any signal x; if player A is planning to quit …rst at time ¿ > 0 such that

V 01;t(¿ jx) = 0; then for any ¿̂ < ¿ but close enough to ¿ player A’s optimal stopping

strategy after B quits at ¿̂ is to follow suit:

¿¤2(x; ¿̂) = ¿̂ > T2(x; g(¿̂ ); ¿̂ ) =
b

c
(¯ + 2) + x+ g (¿̂)¡ ¿̂ ¡ ®

and hence A’s continuation value is W2;¿̂ (¿
¤
2(x; ¿̂ )jx; g(¿̂); ¿̂) = 0:

Proof. By de…nition, ¿ ¤2(x; ¿̂ ) = maxf¿̂ ; T2(x; g (¿̂) ; ¿̂)g; where T2(x; g(¿̂ ); ¿̂ ) satis…es:

c = bET;¿̂ [¸j x; g (¿̂ )] = b ¯ + 2

®¡ x̂¡ g (¿̂ ) + T + ¿̂ :

Since the RHS is strictly decreasing in T; the claim follows from:

c > bE¿̂ ;¿̂ [¸jx; g (¿̂ )] = b ¯ + 2

®¡ x̂¡ g (¿̂) + ¿̂ + ¿̂ ;

and since the RHS is continuous in ¿̂ ; it is enough to show that:

c > bE¿;¿ [¸j x; g (¿)] :

22



In fact, using the hypothesis and Equation (5.1), we write:

0 = V 01;t(¿ jx)
/ bE¿;¿ [¸jx; g (¿ )+] +W2;¿ (¿

¤
2(x; ¿ )jx; g(¿); ¿)E¿;¿

·
h(g (¿) j¸)g0 (¿ )
1¡H(g (¿) j¸)

¯̄̄̄
x; g (¿ )+

¸
¡ c

¸ bE¿;¿ [¸jx; g (¿ )+]¡ c
> bE¿;¿ [¸jx; g (¿ )]¡ c

the …rst inequality follows because h(g(¿)j¸)g0(¿)
1¡H(g(¿)j¸) > 0 and W2;¿ (¿

¤
2(x; ¿)jx; g(¿); ¿ ) > 0;

whereas the second inequality follows from Lemma 2.

In light of the Lemma 7, for any x; the First-Order Condition V 01;t (¿ jx) = 0 can be

rewritten very simply as:

c = bE¿;¿ [¸jx; g (¿)+] = b (¯ + 1) (®+ 2¿ ¡ x)
¡¯¡2 ¡ (®+ 2¿ ¡ x¡ g(¿ ))¡¯¡2

(®+ 2¿ ¡ x)¡¯¡1 ¡ (®+ 2¿ ¡ x¡ g(¿ ))¡¯¡1 ; (5.2)

which says that a player quits …rst when the ‡ow cost equals the expected ‡ow bene-

…t consisting of the value of the prize b times expected hazard rate ¸ of arrival of the

prize, conditional on own private information x; on the opponent’s private signal y being

larger than g (¿) ; and on neither prize having arrived by time ¿ : In any SMPBE (¿¤1; ¿
¤
2) ;

equilibrium symmetry implies that g¤(¿¤1(x)) = x (and in particular g
¤ (0) = x¤); so that

Equation (5.2) is further simpli…ed as:

c = bE¿;¿ [¸jx; x+] = b (¯ + 1)
h
(®+ 2¿ ¡ x)¡¯¡2 ¡ (®+ 2¿ ¡ 2x)¡¯¡2

i
h
(®+ 2¿ ¡ x)¡¯¡1 ¡ (®+ 2¿ ¡ 2x)¡¯¡1

i (5.3)

By Lemma 1, the RHS of this equation is strictly decreasing in ¿ and strictly increasing

in x: Therefore, this equation has a unique positive solution ¿1 (x) for any x such that:

bE0;0 [¸j x; g¤ (0)+] = bE¿;¿ [¸j x; x¤+] ¸ c;

and no solutions otherwise. In particular, x¤ = g¤ (0) is uniquely pinned down by

c = bE0;0 [¸jx¤; x¤+] :

Also, notice that by ¿1(x) is increasing in x for any x ¸ x¤, as required by our monotonicity
restriction.

So far, our analysis has singled out as the unique candidate SMPBE stopping strat-

egy, the monotone function ¿¤1 such that: ¿
¤
1 (x) is the unique solution of the FOC

(5.3) if bE¿;¿ [¸jx; x¤+] > c, and ¿¤1 (x) = 0 otherwise. Lemma 6 has shown that if
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bE¿;¿ [¸jx; x¤+] > c and the opponent adopts the stopping strategy ¿¤1; each player en-

dowed with signal x who happens to be in the race at time t …nds it optimal to leave the

race at time ¿ ¤1 (x) > 0: So, in order to conclude that the strategy ¿
¤
1 is the unique SMPBE,

we are only left to determine the optimal decision at the very beginning of the game, i.e.

at time t = 0:

Lemma 8. Suppose that player B plays the …rst-quitter stopping strategy ¿¤1. If player

A holds a signal x · x¤; then at time 0 she optimally chooses not to enter the game.

Whereas if x > x¤; then player A enters the game at time 0; and optimally selects the

time-consistent stopping time ¿¤1 (x) :

The following Proposition summarizes our …ndings for equilibrium play before the

opponent quits and, together with Proposition 2, fully characterizes the unique SMPBE

f¿¤1; ¿ ¤2g.

Proposition 4. (Equilibrium Play Before the Opponent Has Quit) The unique
SMPBE quitting time, conditional on a private signal x and on the opponent still being

in the game, is

¿¤1(x) =
½
0 if x < x¤

¿1(x) if x ¸ x¤;
where ¿1(x) is the unique increasing solution of

c = b (¯ + 1)
(®+ 2¿ ¡ x)¡¯¡2 ¡ (®+ 2¿ ¡ 2x)¡¯¡2
(®+ 2¿ ¡ x)¡¯¡1 ¡ (®+ 2¿ ¡ 2x)¡¯¡1 ;

and x¤ < 0 is the unique root of ¿1 (x¤) = 0, namely

c = b (¯ + 1)
(®¡ x¤)¡¯¡2 ¡ (®¡ 2x¤)¡¯¡2
(®¡ x¤)¡¯¡1 ¡ (®¡ 2x¤)¡¯¡1 :

6. Welfare Comparison

We may now compare the team solution to the equilibrium outcome, and investigate the

welfare properties of the unique SMPBE. We will show that the absence of information-

sharing may induce in equilibrium either over-experimentation or under-experimentation,

relative to the e¢cient team’s policy, depending on the agreement of the private signal

realizations x and y. Speci…cally, equilibrium play features excess experimentation if x

and y are close enough, suboptimal experimentation if x and y are su¢ciently far apart.

In the analysis presented in this section, without loss of generality, we let x · y so that

24



player A is the …rst to quit in equilibrium, and to avoid triviality we assume that y > x¤,

so that at least one player participates.

Suppose that the more optimistic private signal y is su¢ciently close to the other

signal x (and that in particular x > x¤): Our “winner’s curse” e¤ect implies that player

A’s stopping time is optimal, given her own signal x and the information that player B’s

signal y is larger than x: When player A quits the game, she reveals her signal x to B:

If y is in fact very close to x; player B learns that the players have illuded each other

into remaining too long in the race. Hence, B immediately follows A suit and quits the

game, regretting not having left before. When regret occurs, there is clearly excessive

experimentation in equilibrium because both projects are stopped too late.

Lemma 9. Suppose that y ¸ x: If

¿¤1(x) > T
¤(x; y) =

1

2

·
(¯ + 2)

b

c
¡ ®+ x+ y

¸
(6.1)

then both players’ equilibrium experimentation durations are longer than the e¢cient

duration:

¿ ¤2(y; ¿
¤
1(x)) = ¿

¤
1(x) > T

¤(x; y):

Since T ¤(x; y) is increasing in both x and y, given that y ¸ x; the inequality in Equation
(6.1) holds if x and y are su¢ciently close. The source of the ine¢ciency is herding, as

the …rst player to quit puts too much weight on the public information that the opponent

is still in the game, and too little weight on her own private information. As is standard

in R&D races literature, this ine¢ciency manifests itself as duplication costs.

More complex is the case when the private signals x and y are su¢ciently spread apart.

In this case player A underestimates the opponent’s signal y and quits too soon. This is

the case when

¿ ¤1(x) < T
¤(x; y) (6.2)

which, given that y ¸ x; is true when x is small enough given y: While clearly player A’s
equilibrium amount of experimentation is too low, the remaining player B may stay in the

race longer than T ¤(x; y) and possibly “make up” for player A’s underexperimentation. In

order to answer this question, we need to distinguish two cases depending on whether or

not player A has entered the race at all. The least interesting case occurs when x · x¤ so
that ¿ ¤1 (x) = 0; and A does not enter the race. In such a case player B only learns that

x · x¤ but cannot precisely …gure out x; hence she plays:

¿ ¤2(y; 0) =
b

c
(¯ + 1) + y + x¤ ¡ ®:
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Therefore ¿¤2(y; 0) · T ¤(x; y) if and only if bc¯ + y + 2x¤ ¡ ® · x · x¤: This con…guration
identi…es a strong but somewhat special instance of underexperimentation. Due to imper-

fect equilibrium information transmission when the most pessimist player does not even

enter the race, both players wind up stopping too soon in equilibrium.9

The most interesting situation is the one where x ¸ x¤; so that player A initially enters
the race, but then prematurely exits. In this case, player B correctly infers the signal x

upon seeing A quitting the game. As a result, player B will surely stay in the race longer

than the team T ¤(x; y): Since ¿¤1(x) < T
¤(x; y); in fact:

¿¤2(y; ¿
¤
1(x)) =

b

c
(¯+2)+g(¿)+y¡®¡ ¿ ¤1(x) >

b

c
(¯+2)+x+y¡®¡T ¤(x; y) = T ¤(x; y):

The …rst question is whether or not playerB will make up forA’s too short experimentation

duration, or she would even exceeds optimal joint duration. In our Gamma-Poisson model,

B’s equilibrium stopping time ¿¤2(y; ¿ ) is linear in signals and in A’s exit time ¿ : As

a consequence, player B’s extended duration in the race exactly o¤sets the premature

quitting by player A:

Lemma 10. Suppose that y > x > x¤: If ¿¤1(x) < T ¤(x; y): Then the total equilibrium

experimentation duration (conditional on no prize arrival) exactly equals the optimal team

duration:

¿ ¤2(y; ¿
¤
1(x)) + ¿

¤
1(x) =

b

c
(¯ + 2) + x+ y ¡ ® = 2T ¤(x; y):

While total experimentation durations coincide in the equilibrium and in the team

solution, a key di¤erence remains. The team solution dictates that the two projects should

be synchronized and stopped simultaneously. In equilibrium this does not happen as player

A exits too soon. As a result, in this case the only di¤erence between the SMPBE strategies

and the optimal team’s policy consists of a “postponement” of player A’s experimentation

duration. Since the team is impatient, we claim that this postponement corresponds to

suboptimally slowing down the joint rate of innovation arrival. More precisely, we shall

devote the remainder of the analysis to show that this postponement corresponds to an

instance of suboptimal equilibrium experimentation, whose interpretation is two-fold: both

the expected PDV of experimentation costs and the total expected discounted bene…t of

experimentation are smaller in equilibrium than in the team solution. We decompose

the expression for ex ante team’s welfare W (T1; T2jx; y), conditional on stopping the …rst
project at time T1 and the second one at time T2, as the di¤erence between expected

9Conversely, ¿¤2 (y; 0) > T ¤(x; y) if and only if
b
c¯ + y + 2x¡ ® > x: As it will be made clear soon, as

long as the discount factor r is strictly positive, this induces equilibrium under-experimentation if ¿¤2 (y; 0)
is close enough to 2T ¤(x; y); and equilibrium over-experimentation otherwise.
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discounted reward, including all possible cases of arrival or non-arrival of the prize, and

the expected PDV of costs:

W (T1; T2jx; y) = B (T1; T2jx; y)¡ C (T1; T2jx; y)

where the bene…ts from investment in research are

B (T1; T2jx; y) = b

Z
¤

·Z T1

0

2f (sj¸) (1¡ F (sj¸)) e¡rsds

+(1¡ F (T1j¸))
Z T2

T1

f (sj¸) e¡rsds
¸
¼0;0 (¸jx; y) d¸

and the costs are:

C (T1; T2jx; y) = c
Z
¤

·Z T1

0

2f (sj¸) (1¡ F (sj¸))
Z s

0

2e¡rvdvds+ (1¡ F (T1j¸))2
Z T1

0

2e¡rvdv

+(1¡ F (T1j¸))
Z T2

T1

f (sj¸)
Z s

T1

e¡rvdvds+ (1¡ F (T1j¸)) (1¡ F (T2j¸))
Z T2

T1

e¡rvdv
¸
¼0;0 (¸jx; y) d¸:

We then proceed to show the following result:

Lemma 11. If y > x > x¤; and ¿¤1(x) < T ¤(x; y); then both the expected PDV of

research costs and of the prize are smaller in equilibrium than in the team solution:

C(¿¤1 (x) ; ¿
¤
2(y; ¿

¤
1 (x))jx; y)<C(T ¤(x; y); T ¤(x; y)jx; y) and henceB(¿ ¤1 (x) ; ¿ ¤2(y; ¿ ¤1 (x))jx; y)

< B(T ¤(x; y); T ¤(x; y)jx; y):

We recall that the source of this key result is a failure of information aggregation.

Private information can only be revealed credibly by quitting decisions, therefore (when

playing monotonic strategies) it may ‡ow only from the initially more pessimistic player

to her opponent, and never vice versa. The analysis of this section is summarized in the

following:

Proposition 5. (EquilibriumUnder- and Over-Experimentation)Given the unique
SMPBE (¿¤1; ¿

¤
2) with entry signal threshold x

¤ and the team’s solution T ¤; there exists an

increasing continuous function » : (x¤; 0]! (x¤; 0], implicitly de…ned by

¿ ¤1(x) = T
¤(x; »(x)) =

1

2

·
(¯ + 2)

b

c
¡ ®+ x+ »(x)

¸
;

such that »(x) > x for any x; and that for any y > x:

1. if y > »(x), namely if the two private signals disagree su¢ciently, then equilibrium

experimentation is suboptimal: both the total expected discounted experimentation

costs and the total expected discounted prize are strictly smaller in equilibrium than

in the team’s solution.
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2. if instead y < » (x) ; then equilibrium experimentation is excessive, so that total

expected discounted experimentation costs are strictly larger in equilibrium than in

the team’s solution.

7. Discussion and Extensions

Our construction can be extended in several dimensions. In this section we discuss some the

most interesting ones. It would go beyond the scope of this single paper to cover all cases

thoroughly. While we have some formal arguments to validate robustness, whose proofs are

available upon request, we also present reasons to expect our results to survive qualitatively

intact, and we trace a map for future research. We remark that our welfare analysis

has been so far con…ned to conditional statements, given private information draws. In

future research we will address the question of unconditional equilibrium e¢ciency, at two

levels: for a given project promise ¸ we can average over private information draws using

their likelihood, and …nally we can average over projects ¸ drawn from the prior belief

distribution.

Deterministic Accumulation of Knowledge over Time. Our model inherits from

di¤erential game models of R&D races the assumption that innovation arrival is governed

by a Poisson process of parameter ¸: This is equivalent to say that the unknown innovation

hazard rate L(t; ¸) ´ f (tj¸) = [1¡ F (tj¸)] is constant over time (and equal to ¸): Then,
it is natural to postulate conjugate Gamma prior and negative exponentially distributed

signals. It is not too di¢cult, however, to extend our equilibrium construction when the

innovation hazard rates L(t; ¸) of unknown parameter ¸ is not constant over time. The

engine of our equilibrium characterization is Theorem A.1 in the Appendix. Its power goes

well beyond the Gamma-Poisson speci…cation of our model.

Make the following mild regularity assumptions: the distribution of ¸ has connected

support ¤ (with ¸ = inf ¤ and ¹̧ = sup¤), the hazard rate of the prize L(t; ¸) is continuous

in t; ¸, and strictly increasing in ¸ for every t; with L(t; ¹̧) > c=b > L (t; ¸), and the density

h (xj¸) of private signals x is di¤erentiable, with support X µ R, and limx!supX h (xj¸) <
1: In this environment, it can be shown that our equilibrium characterization presented

in Propositions 2 and 4 holds if the following two substantive restrictions are met. First,

the signal density h(xj¸) is log-supermodular, i.e. the ratio h0(xj¸)=h(xj¸) is strictly
increasing in ¸: Second, the expected hazard rates Et;t0 [L(t; ¸)jx; y] and Et;t0 [L(t; ¸)j x; y+]
are strictly decreasing in t for any …xed signals x; y and t0; and they both attain the

lower bound L (t; ¸) in the limit as t ! 1: The …rst condition is reminiscent of log-
supermodularity conditions for equilibrium existence derived in Athey (1999) and in Reny
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(1999). The second condition requires that for any …xed pair of signals x; y; as time goes

by and the innovation does not arrive, one becomes more and more pessimistic about the

promise of the project, both in the case that one knows precisely both signal realizations

x and y; or that one only knows one signal realization to be precisely x while that the

other signal realization is larger than y: We underline that this is not unduly strong.

Among other things, it does not require that the actual innovation hazard rate L(t; ¸) be

decreasing over time. As knowledge accumulate throughout the R&D process, the true

hazard rate of an innovation is likely to be increasing over time; but it is also quite likely

that one becomes less optimistic about its feasibility as time goes by and the innovation

does not materialize.

If the cross-partial derivative of the hazard rate function L(t; ¸) is non-positive (note

that in the Poisson case it is exactly to zero), our main welfare prediction extends in

qualitative terms provided that the team’s optimal solution is to start either no or both

projects, as in our model. While we have not formally ruled it out, the possibility that the

team’s optimal policy entails activating just one project appears quite unlikely. Since the

two prize arrivals are independent, keeping two projects open instead of one is equivalent

to doubling the intensity of experimentation. As the team is impatient and discounts the

future, whenever the marginal trade-o¤ between ‡ow costs and expected ‡ow value is pos-

itive, it is plausible that the team will choose to pursue the prize at the maximal intensity

available. This suggests that (possibly after making further regularity assumptions ruling

out implausible circumstances) our result that the team optimally chooses to switch o¤

both projects at the same time extends also to this more general environment.

Random Accumulation of Private Information over Time. Knowledge about the

project may also arrive randomly as the race unfolds, and therefore remain private. A

simple way to capture this phenomenon within our Gamma-Poisson model is to assume

that, after the initial signal zi · 0; each …rm i who remains in the race may also observe

“good news” as time goes by. Each good news is the arrival of a known event at uncertain

times, following a Poisson process of parameter K¸; where K > 1: Therefore, the more

promising the project, the higher ¸ and the more frequently good news accrue, typically

before the innovations itself. For any pair of signals x; y; any time t; and any number n

of good-news accrued to date t, the posterior distribution of ¸ is again a Gamma. The

calculation of the marginal value of waiting is carried on in analogous way as in the present

model. The relevant events are (i) the arrival of prize, (ii) the exit of the opponent, (iii) the

arrival of good news. Each of these events corresponds to a ‡ow bene…t that one weighs

against the ‡ow cost of remaining in the race.
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Just like in our model, a symmetric monotonic equilibrium strategy consists of two

stopping time functions. For any pair (x; n) representing private information, the …rst

stopping time function ¿1 prescribes to leave the race at time ¿1 (x; n) as long as the

opponent is still in the race, whereas given that the opponent left the race at time ¿ ;

equilibrium exit is prescribed by stopping time function ¿2 (x; n; ¿) : As in our model,

the equilibrium displays a winner’s curse property as …rms herd on each other as long as

they both stay in the race. Notice that private information (x; n) a¤ects the equilibrium

stopping time ¿ 1 only through on posterior beliefs about ¸: therefore, by de…nition of

good news ¿1 is monotonically increasing in x and n: For any time ¿ there is a unique

decreasing function »¿ such that for any n; ¿1 (»¿ (n) ; n) = ¿ : When the opponent is still

in the race, the only information available is that her private information (x; n) satis…es

x > »¿ (n) ; when the opponent leaves the race he reveals that x = »¿ (n) and hence he

delivers a discrete lump of bad news. Albeit x and n cannot be separately identi…ed¡the
opponent could have been initially very pessimistic, but then received plenty of interim

good news before quitting, or vice versa¡all one needs to infer from the opponent’s quit is
the opponent’s posterior beliefs about ¸; which are in 1:1 correspondence with the stopping

time. All of our results then survive qualitatively. If one …rm exits prematurely either

because its initial signal is very bad, or because it is unlucky and receives no good news

at the beginning of the race, then the rate of innovation is ine¢ciently slowed down as

valuable experimentation activity is postponed in the future.

Partially Independent Values. Another feasible extension consists of allowing for

interdependent values, instead of pure common value. The two …rms address the same

research project, each choosing a di¤erent approach to …nd a solution. The arrival rate

of invention i = A;B is ¸i = ¸ + "i; where ¸ » Ga(®; ¯) and "i » Ga(®; ¯i); with "A
and "B independent. Here ¸ measures the “promise” of the project, and the idiosyncratic

components "i measure the speci…c promise of the approach chosen by player i. If ¯ = 0

then ¸ = 0 a.s. and the two projects are independent, so no informational spillovers occur

in the game; if ¯A = ¯B = 0 then ¸i = ¸ a.s. and we are back to our common value case.

Each private signal zi · 0 is drawn from the distribution e¸izi; so it is informative about

own line of research and partially about the competitor’s. For any pair of values of "A; "B
the game can be transformed into ours. Allowing for uncertainty about "A; "B requires

for each player a further integration over this additional dimension of uncertainty. This

is simple due to the properties of Gamma distributions, which imply ¸i » Ga(®; ¯ + ¯i).
It is natural to conjecture that a unique symmetric monotone equilibrium exists, which

features the winner’s curse, and a new threshold function ¹»(¢) depending also on ¯A; ¯B
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determines the same qualitative welfare implications.

Variable Experimentation Intensity. The most di¢cult extension allows for variable

intensity of R&D investment. This requires abandoning the relatively comfortable envi-

ronment of stopping games, to venture in the more technically involved class of di¤erential

games. Our model could be augmented, following Reinganum (1981), by assuming that

at each moment in time t; each …rm i pays cost C (ui (t)) ; if it wants to select ‡ow ex-

perimentation intensity ui (t) to enjoy innovation hazard rate of ui (t)¸, where C is an

increasing and convex function.10 Again assuming that exit is irreversible, we would say

that each …rm may only observe if the opponent is engaging in the R&D race, but cannot

observe precisely how many resources she is allocating to it.

As in our stopping game environment, the value of experimentation is larger, the larger

is the expected hazard rate of the prize. Both in the team’s problem and in equilibrium,

the optimal experimentation intensity, given all available information, is determined by

equating the ‡ow marginal costs with expected continuation marginal bene…ts. Unlike in

our stopping game environment, however, also higher-order moments of beliefs with respect

to the unknown hazard rate are likely to play a role. For example, the higher the variance,

the larger is the marginal value of gathering information, and hence the larger the optimal

experimentation ‡ow. While the …rst-moment e¤ect suggests that the optimal amount of

experimentation is increasing in the signals and decreasing in time, this is counteracted by

the e¤ect of the variance of beliefs, which is decreasing in time and increasing in signals.

Despite this complication, we feel that it is likely that a monotonic equilibrium akin to

the ones we study in this paper exists (possibly under reasonable regularity conditions).

In this di¤erential game environment, a monotonic equilibrium strategy is de…ned as a

pair of policy functions decreasing over time and increasing in signals. The …rst one ³1
prescribes the experimentation intensity ³1 (x; t) at any time t as long as the opponent

is still in the race, whereas given that the opponent left the race at time ¿ ; equilibrium

intensity is prescribed by ³2 (x; ¿ ; t) ; with ³2 increasing in ¿ : Due to the monotonicity

requirements, each signal x identi…es a unique stopping time ¿1 such that ³1 (x; ¿ 1) = 0;

and this relation is strictly increasing.

In such an equilibrium, information aggregation would be analogous to our stopping

game equilibrium. If the opponent is still in the race at time ¿ ; each player only knows

10The closest contribution appearing in the literature is Malueg and Tsutsui (1999) who allow for un-
known hazard rate ¸ but not for private information. Their calculation techniques hinge on the belief over
¸ having a Gamma distribution. This is incompatible with equilibrium beliefs for the continuous-signal
case, since inference under asymmetric information yields a left-truncated distribution. As is typically the
case in these continuous action games of private information, resorting to a discrete signal construction is
likely to disturb pure-strategy existence.
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that her opponent’s signal y is strictly larger than the unique z such that ³1 (z; ¿) = 0: If

the opponent leaves the race at ¿ ; the player learns that y is exactly equal to the unique

z such that ³1 (z; ¿) = 0: As a result, this monotonic equilibrium displays an analogous

winner’s curse to the one we identify in this paper.

Turning to welfare analysis, the two e¤ects identi…ed in our simpler stopping game

would still hold in the monotonic equilibrium. When signals are very close, the winner’s

curse would determine excessive experimentation durations, and when signals are very far

apart, the pessimistic …rm would leave the race too early. It is also still the case that, as

soon as one …rm leaves the race, the remaining one acts fully informed. But the analysis

is made more complex by the possibility of counteracting e¤ects. First, the expected

hazard rate has an additional impact on experimentation intensity. If the signals are very

spread apart, the optimistic …rm would expect that the opponent also holds a good signal,

and vice versa. As long as both …rms are still in the race, while the pessimistic …rm

would choose to experiment less than the optimal team’s choice, the optimistic …rm would

choose to experiment more than the team, and the total e¤ect remains to be veri…ed.

The second complication is introduced by cost convexity (decreasing returns to scale).

Given aggregate information, the least costly team’s experimentation policy requires to

equalize experimentation intensity across the two facilities. Equilibrium investment rates

are di¤erent across …rms, making it costlier to achieve the same aggregate experimentation

intensity as the team. The last complication we identify is the e¤ect of variance over

experimentation intensity: this is relevant because, as long as both …rms are still in the

race, the team’s information is more precise than the players.

Overall, the above considerations suggest the following equilibrium welfare properties.

Once one …rm has left the race, the remaining …rm acts fully informed. Because of con-

vex costs, it chooses experimentation intensities that are smaller than the team’s optimal

solution in the same contingencies.11 As long as both …rms are still in the race, however,

the e¤ect of convex costs is counteracted by the fact that the team, holding more pre-

cise information, is likely to hold less pressing incentives to gather information through

experimentation. If the …rst …rm leaves the race much earlier than in the team’s optimal

solution, then the second property is likely dominated by the …rst one. This suggests that

our main welfare result extends to the case of variable experimentation: when signals are

spread apart enough, overall equilibrium underexperimentation takes place.

11The e¤ect on experimentation costs is however undetermined, as it may be that in equilibrium …rms
experiment less than it is optimal, but at a higher cost than the team’s.
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A. Appendix

We …rst prove a technical result that will prove useful many times through the paper.

Theorem A.1. Let q
³
¸;~µ
´
: ¤£<n ! <+, di¤erentiable in ~µ and integrable in ¸ withR

¤
q
³
¸;~µ
´
d¸ 2 (0;1). Then the c.d.f. de…ned by:
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A su¢cient condition for the latter inequality is that the RHS be strictly increasing in L.
Since the RHS is di¤erentiable in L, it su¢ces that
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or
@ log q
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q(¸;~µ)R L
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d¸ = 1; this follows from the assumption that the LHS is strictly

increasing in ¸.

Proof of Lemma 1. It su¢ces to show that for every x; y; t; t0, the c.d.f. associated
with the posterior beliefs ¼t;t0 (¸jx; y+) are stochastically strictly decreasing in t and in t0
and strictly increasing in x and in y: We prove all these results as corollaries of Theorem
A.1, a general result proved in the Appendix. Let ~µ = (x; y; t; t0) ; and

q
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that limt!1Et;t0 [¸j x; y+] = 0 follows from:

lim
¿!1

¼¿;¿ (¸ > "jx; y+)

= lim
¿!1

R1
"
e¡®¸¸¯¡1¸e¸x

¡
1¡ e¸y¢ e¡¸2¿d¸R1

"
e¡®¸0¸0¯¡1¸0e¸0x

¡
1¡ e¸0y¢ e¡¸2¿d¸0 = 0:
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The proof of the second inequality is analogous.

Proof of Lemma 4. First we expand the derivative as in the analysis determining
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Using the expression for W2;T1 (T
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+
1

2
ET1;T1 [¸U2;T1 (T ¤2 (x; y; T1)j¸) jx; y]¡ ET1;T1 [¸U2;T1 (T ¤2 (x; y; T1)j¸) jx; y]

+ET1;T1 [¸jx; y]ET1;T1 [U2;T1 (T ¤2 (x; y; T1)j¸) jx; y]
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/ 1

2
fbET1;T1 [¸jx; y]¡ c¡ ET1;T1 [¸U2;T1 (T ¤2 (x; y; T1)j¸) jx; y]g

/ ¡c+ ET1;T1 [¸ (b¡ U2;T1(T ¤2 (x; y; T1)j¸)) jx; y] :

Proof of Lemma 5. First we calculate

U2;t (T j¸) =

Z T

t

f (sj¸)
1¡ F (tj¸)

·Z s

t

(¡c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds+

1¡ F (T j¸)
1¡ F (tj¸)

Z T

t

(¡c) e¡r(v¡t)dv:

=

Z T

t

¸e¡¸(s¡t)
·Z s

t

(¡c) e¡r(v¡t)dv + e¡r(s¡t)b
¸
ds¡ e¡¸(T¡t)

Z T

t

(¡c) e¡r(v¡t)dv

= (¸b¡ c) 1¡ e
¡(¸+r)(T¡t)

¸+ r
:

Using this expression in the claim of Lemma 4, for every T1 2 (t; T ¤(x; y)] we obtain:

dW1;t (T1jx; y)
dT1

/ ¡c + ET1;T1
"
¸

Ã
b¡ (¸b¡ c) 1¡ e

¡(¸+r)(T ¤2 (x;y;T1)¡T1)

¸+ r

!
jx; y

#

using c = ET1;T1 [cjx; y] ; some algebra and T ¤(x; y) > 0;

= ET1;T1

"
(¸b¡ c) r + ¸e

¡(¸+r)(T ¤2 (x;y;T1)¡T1)

¸+ r
jx; y

#

=

Z
¤

(¸b¡ c) r + ¸e
¡(¸+r) b

c
(¯+2)+x+y¡®¡2T1

r + ¸

e¡¸(®¡x¡y+2T1)¸¯+1

¡ (¯ + 2) (®¡ x¡ y + 2T1)¡¯¡2
d¸

/ S(T1) ´
Z
¤

µ
¸
b

c
¡ 1
¶
r + ¸e¡(¸+r)(

b
c
(¯+2)+x+y¡®¡2T1)

¸+ r
e¡¸(®¡x¡y+2T1)¸¯+1d¸;

where note that S(T ¤(x; y)) = 0 by construction.
Di¤erentiating S(T1) we obtain:

S 0 (T1) =
d

dT1

"Z
¤

µ
¸
b

c
¡ 1
¶
r + ¸e¡(¸+r)(

b
c
(¯+2)+x+y¡®¡2T1)

¸+ r
e¡¸(®¡x¡y+2T1)¸¯+1d¸

#

=

Z
¤

µ
¸
b

c
¡ 1
¶ ¡2r¸+ 2r¸e¡(¸+r)( bc (¯+2)+x+y¡®¡2T1)

¸+ r
e¡¸(®¡x¡y+2T1)¸¯+1d¸

= 2r

Z
¤

µ
¸
b

c
¡ 1
¶
r + ¸e¡(¸+r)(

b
c
(¯+2)+x+y¡®¡2T1)

¸+ r
e¡¸(®¡x¡y+2T1)¸¯+1d¸

+2r

Z
¤

µ
¸
b

c
¡ 1
¶ ¡¸¡ r
¸+ r

e¡¸(®¡x¡y+2T1)¸¯+1d¸

= 2rS(T1)¡ 2r
Z
¤

µ
¸
b

c
¡ 1
¶
e¡¸(®¡x¡y+2T1)¸¯+1d¸

= 2rS(T1)¡ 2r ¡ (¯ + 2)

(®¡ x¡ y + 2T1)¯+2
·

(¯ + 2)

®¡ x¡ y + 2T1
b

c
¡ 1
¸
:
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So, …nally we obtain the di¤erential equation

S 0(T1) = 2rS(T1)¡ 2r ¡ (¯ + 2)

(®¡ x¡ y + 2T1)¯+32(T
¤(x; y)¡ T1) (A.3)

where clearly (® ¡ x ¡ y + 2T1)¯+3 > 0: We use (A.3) to prove the claim. First, we
exclude an optimal interior (positive) T ¤1 (x; y) 2 (0; T ¤(x; y)): By contradiction: if there is
an optimal interior T1 = T ¤1 (x; y) 2 (0; T ¤(x; y)), it must satisfy the NFOC

dW1;t (T1jx; y)
dT1

= 0) S(T1) = 0:

But then, S(T ¤1 (x; y)) = 0 and T
¤
1 (x; y) < T

¤(x; y) in (A.3) together imply S0(T ¤1 (x; y)) < 0.
By continuity there exists " > 0 such that S(T ¤1 (x; y) + ") < 0: Then by smoothness of
S (many times di¤erentiable) and S(T ¤(x; y)) = 0 there exists a T 01 2 (T ¤1 (x; y); T ¤(x; y))
such that S0 (T 01) = 0 > S (T 01) ; but from (A.3) T 01 < T ¤(x; y) and S (T 01) < 0 imply
S 0 (T 01) < 0 a contradiction. Second, we exclude a corner solution at T1 = T ¤1 (x; y) = 0:
For this, we would require

dW1;t (0jx; y)
dT1

· 0) S(0) · 0

which, together with T ¤(x; y) > 0 = T ¤1 (x; y) and (A.3), imply S
0 (0) < 0: But then the

function S(t) keeps declining at increasing rate from the initial value S(0) · 0 (formally
the di¤erential equation for S is exploding downward) as t rises from 0, contradicting
S(T ¤(x; y)) = 0:

Proof of Proposition 3. We consider the problem of player A who contemplates
stopping second at time ¿A, player B0s problem being symmetric. In the same manner as
in the proof of Proposition 3, we compute

E [¸j zA = x; zB · y; tA ¸ t; tB ¸ t0]
=

Z
¤

¸
¼ (¸)h (xj¸)H (yj¸) [1¡ F (tj¸)] [1¡ F (t0j¸)]R

¤
¼ (¸0) h (xj¸0)H (yj¸0) [1¡ F (tj¸0)] [1¡ F (t0j¸0)] d¸0d¸

=

Z
¤

¸
e¡®¸¸¯¡1¸e¸xe¸ye¡¸te¡¸t

0R
¤
e¡®¸0¸0¯¡1¸0e¸0xe¸0ye¡¸0te¡¸0t0d¸0

d¸ =

Z
¤

¸¯+1e¡¸(®+t+t
0¡x¡y)

¡ (¯ + 1) (®+ t+ t0 ¡ x¡ y)¡¯¡1d¸

=
¡(¯ + 2) (®+ t+ t0 ¡ x¡ y)¡¯¡2
¡ (¯ + 1) (®+ t+ t0 ¡ x¡ y)¡¯¡1 =

¯ + 1

®¡ x¡ y + t+ t0 :

If the FOC has a positive solution, this is unique and a global maximum of the value
function. Therefore, the desired stopping time is the maximum of 0 and the solution ¿A

to c = bE
£
¸j zA = x; zB · g (0) ; tA ¸ ¿A; tB ¸ 0)

¤
.

Proof of Lemma 6 From Proposition 2, we have

¿ ¤2(x; ¿ ) = maxf¿ ;
b

c
(¯ + 2) + x+ g(¿)¡ ®¡ ¿g:
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Since g (¿ ) · 0; it follows that b
c
(¯ + 2) + x + g(¿) ¡ ® ¡ ¿ · b

c
(¯ + 2) + x¡ ® ¡ ¿ : For

any x; there is ¹¿ large enough such that for any ¿ ¸ ¹¿ ; b
c
(¯ + 2) + x ¡ ® ¡ ¿ · ¿ ; hence

¿¤2(x; ¿) = ¿ ; W2;¿ (¿
¤
2(x; ¿)jx; g (¿) ; ¿) = 0 and

V 01;t (¿ jx) / bE¿;¿ [¸jx; g (¿ )+] +W2;¿ (¿
¤
2(x; ¿)jx; g(¿ ); ¿ )E¿;¿

·
h(g (¿) j¸)g0 (¿ )
1¡H(g (¿ ) j¸)

¯̄̄̄
x; g (¿)+

¸
¡ c

= bE¿;¿ [¸jx; g (¿ )+]¡ c · bE¿;¿ [¸jx; 0] = ¯ + 2

®¡ x+ 2¿ ! 0 for ¿ !1:

where the inequality follows by Lemma 2.
Since

V 01;t (¿ jx) = bE¿;¿ [¸jx; g (¿ )+] +W2;¿ (¿
¤
2(x; ¿)jx; g(¿ ); ¿ )E¿;¿

·
h(g (¿) j¸)g0 (¿ )
1¡H(g (¿ ) j¸)

¯̄̄̄
x; g (¿)+

¸
¡ c

¸ bE¿;¿ [¸jx; g (¿ )+]¡ c;

for any x such that bE0;0 [¸jx; g (0)+] > c; and any t · ¿ small enough, it must be that
V 01;t (¿ jx) > 0 by continuity of V 01;t:
Proof of Lemma 8. Consider the choice at time t = 0 of player A with a signal x: If

she chooses not to enter the game and set ¿ = 0; her payo¤ is V1;0 (0jx) = 0: If she chooses
to enter the game, and set ¿ > 0; then she will observe whether B enters the game or not.
This allows us to write A’s expected payo¤ for playing any ¿ > 0 as:

V1;0 (¿ jx) = Pr (zB · xjx) lim
t#0
W2;t(¿

¤
2(x; 0)jzA = x; zB · x; tB ¸ 0)+[1¡ Pr (zB · xjx)] lim

t#0
V1;t (¿ jx)

Suppose …rst that x is such that bE¿;¿ [¸jx; x+] · c; and hence that the equilibrium
prescription is ¿1 (x) = 0: Since this implies that for any ¿ ¸ t > 0; V 0t (¿ jx) < 0; it follows
that for any ¿ > 0; limt#0 V 01;t (¿ jx) < 0: Since

b
¯ + 1

®¡ x¡ x+ 2¿ < b
¯ + 2

®¡ x¡ x+ 2¿ = bE¿;¿ [¸jx; x] < bE¿;¿ [¸jx; x+] ;

where the last inequality is by from Lemma 2, it follows that ¿ ¤2(x; 0) = 0 by Proposition 3,
and hence limt#0W2;t(¿

¤
2(x; 0)jzA = x; zB · x; tB ¸ 0) = 0: So the player optimally chooses

to follow the equilibrium prescription ¿1 (x) = 0: Second, suppose that x is such that
bE¿;¿ [¸jx; x+] > c; the player will comply with the equilibrium prescription ¿1 (x) > 0
because limt#0W2;t(¿

¤
2(x; 0)jzA = x; zB · x; tB ¸ 0) ¸ 0 and for any ¿ small enough

limt#0 V 01;t (¿ jx) > 0:
Proof of Lemma 11. Consider the time-0 team’s expected costs for adopting stopping

times T1 · T2 (such that T1 + T2 = 2T ¤) and conditional on any ¸:

C (T1; T2j¸) = c
·Z T1

0

2f (sj¸) (1¡ F (sj¸))
Z s

0

2e¡rvdvds+ (1¡ F (T1j¸))2
Z T1

0

2e¡rvdv

+(1¡ F (T1j¸))
Z T2

T1

f (sj¸)
Z s

T1

e¡rvdvds+ (1¡ F (T1j¸)) (1¡ F (T2j¸))
Z T2

T1

e¡rvdv
¸
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= c

·Z T1

0

2¸e¡¸se¡¸s
Z s

0

2e¡rvdvds+ e¡2¸T1
µZ T1

0

2e¡rvdv
¶

+e¡¸T1
Z T2

T1

¸e¡¸s
Z s

T1

e¡rvdvds+ e¡¸T1e¡¸T2
Z T2

T1

e¡rvdv
¸

= c

·
2
1¡ e¡2¸T1

r
¡ 4¸

(2¸+ r) r

¡
1¡ e¡(2¸+r)T1¢+ 2

r

¡
e¡2¸T1 ¡ e¡(2¸+r)T1¢

+
1

r

µ
e¡¸T1

¡
e¡(¸+r)T1 ¡ e¡¸T2¡rT1¢¡ e¡¸T1 ¸

¸+ r

¡
e¡(¸+r)T1 ¡ e¡(¸+r)T2¢¶

+
1

r

¡
e¡¸T2¡(r+¸)T1 ¡ e¡(¸+r)T2¡¸T1¢¸

multiplying by r=c; simplifying terms and substituting 2T ¤ ¡ T1 for T2;
rC (T1; 2T

¤ ¡ T1j¸)
c

=
2r

2¸+ r
¡ e¡(2¸+r)T1 r2

(¸+ r) (2¸+ r)
¡ r

¸+ r
e¡(¸+r)2T

¤+rT1

Taking a derivative with respect to T1;

@C (T1; 2T
¤ ¡ T1j¸)

@T1
/ e¡(2¸+r)T1 r2

¸+ r
¡ r2

¸+ r
e¡(¸+r)2T

¤+rT1 = e¡(2¸+r)T1
r2

¸+ r

¡
1¡ e¡(¸+r)2(T ¤¡T1)¢ :

This quantity is strictly positive if and only if T1 < T ¤; thereby implying that if T1+T2 =
2T ¤; then C (T1; T2j¸) is maximized by setting T1 = T ¤ = T2:
If y ¸ x > x and ¿ ¤1(x) < T ¤(x; y); then, since ¿¤2 (y; ¿¤1 (x)) = 2T ¤(x; y)¡ ¿¤1(x);

C (¿ ¤1 (x) ; ¿
¤
2 (y; ¿

¤
1 (x)) j¸) < C (T ¤ (x; y) ; T ¤ (x; y) j¸) for every ¸;

and henceZ
¤

C (¿ ¤1 (x) ; ¿
¤
2 (y; ¿

¤
1 (x)) j¸)¼0;0 (¸jx; y) d¸ <

Z
¤

C (T ¤ (x; y) ; T ¤ (x; y) j¸)¼0;0 (¸jx; y) d¸:

This inequality, together with the inequality

W (¿¤1 (x) ; ¿
¤
2 (y; ¿

¤
1 (x)) jx; y) < W (T ¤ (x; y) ; T ¤ (x; y) jx; y)

implied by the team’s optimal stopping times T1 = T2 = T ¤ (x; y) ; shows that

B (¿¤1 (x) ; ¿
¤
2 (y; ¿

¤
1 (x)) jx; y) < B (T ¤ (x; y) ; T ¤ (x; y) jx; y) :
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