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1 Introduction

In many situations, a group of individuals must decide between alternative courses of action, in a

context where disagreement (not implementing a choice at all) is the worst possible outcome for

all concerned. A government may need to formulate a long-run response to terrorism: individuals

may (strongly) disagree over the nature of an appropriate response, but everyone would deplore

complete inaction. An academic department may need to make an offer to one of several can-

didates. Again, individuals differ in their relative preferences but no one wants to see their slot

taken away by the Dean because they couldn’t agree on an offer. Similarly, a committee seeking

to spend a budget by the end of the fiscal year may disagree on goals, but the worst outcome

would be to have the funds evaporate owing to lack of use.

The goal of this paper is to study a particular formulation of this situation, which we believe

to be representative of many real-world scenarios.1 We proceed as follows.

A group of n agents must make a joint choice from a set of two alternatives. Each agent must

either name an alternative – A or B – or she can declare “neutrality", in that she agrees to

be counted, in principle, for either side. Once this is accomplished, we tally declarations for each

alternative, including the number of neutral announcements. If, for an alternative, the resulting

total is no less than some exogenously given supermajority, we shall call that alternative eligible.

Because neutral annoucements are allowed for and tallied on both sides, all sorts of combinations

are possible: exactly one alternative may be eligible, or both, or neither. If exactly one alternative

is eligible, that alternative is implemented. If both are eligible – as will typically be the case when

there are a large number of neutrals – one alternative is picked and implemented at random. If

neither is eligible – which will happen if there is a fierce battle to protect one’s favorite alternative

– then no alternative is picked: the outcome is disagreement.

The objective of the paper is to set up this model and study its equilibria.

Several features of the model deserve comment. First, while the specific formulation is cast

in terms of a voting model, we do not necessarily have voting in mind. The exogenously given

supermajority may or may not amount to full consensus or unanimity, and in any case is to be

interpreted as some preassigned degree of consensus that the group needs to achieve. In addition,

one might view the neutrality announcement as the delegation of one’s ballot to an impartial
1Thus it is not an axiomatic description of a normative or quasi-normative solution that we are after, as in Nash

bargaining, nor so we seek to implement a particular solution correspondence by the choice of a mechanism.
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arbitrator, who appreciates the anxiety of all concerned to avoid disagreement, and is therefore

interested in implementing some outcome. We find this option of declaring neutrality particularly

appealing and natural in the description of the situations we have in mind. Yet, the reader should

be careful to note that neutrality and abstention are not the same things.

Next, we are interested in the “intensity" of preference for one alternative over the other, and

how this enters into the decision to be neutral, or to fight for one’s favorite outcome. Specifically,

we permit each person’s valuations to be independent (and private) draws from a distribution, and

allow quite generally for varying cardinal degrees of preference. A corollary of this formulation is

that others are not quite sure of how strongly a particular individual might feel about an outcome

and therefore about how that individual might behave. This is one way in which uncertainty

enters the model.

Uncertainty also plays an additional role, in that no one is sure how many people favor one given

alternative over the other. To be sure, we assume that there is a common prior – represented by

an independent probability p – that an individual will favor one alternative (call it A) over the

other (call it B). Without loss of generality take p ≤ 1/2. If, in fact, p < 1/2, one might say that
it is commonly known that people of “type A" are in a minority, or more precisely in a stochastic

minority.

A major goal of the paper is to study equilibria that “favor” one side: either the minority

or the majority. It is intuitive – and we develop this formally in the analysis – that in any

equilibrium, each individual will use a cutoff rule: there will exist some critical relative intensity

of preference (for A over B or vice versa) such that the individual will announce her favorite

outcome if intensities exceed this threshold, and neutrality otherwise. If the cutoff is lower,

then an individual may be viewed as being more “aggressive”: she announces her own favorite

outcome more easily (and risks disagreement with greater probability). Thus, equilibria in which

an individual of the majority type uses a lower cutoff than an individual of the minority type

may be viewed as favoring the majority: we call them majority equilibria. Likewise, equilibria in

which the minority type uses a lower cutoff will be called minority equilibria.

One might use a parallel from the Battle of the Sexes (after all, in some sense, our model is

an enriched version of that game) to search for particular majority or minority equilibria. For

instance, might one not be able to sustain an equilibrium in which all members of a particular

type are “fully aggressive” (using the lowest possible cutoff) while their opponents all timidly

declare neutrality, regardless of valuation? The answer is that such a configuration is indeed an
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equilibrium. But, as we argue in detail in Section 3.2.2, this equilibrium fails a weak robustness

or stability criterion. If the compatriots of, say, a type-A individual do announce neutrality for a

huge range of relative valuations (rather than the entire range), it will push an individual type-A

person to announce A for a large range of valuations, thus rendering the “perfect neutrality” cutoff

unstable to the tiniest perturbations. As we shall see in Section 3.2.2, uncertainty about group

sizes plays a central and indispensable role in this result, though this is not the only indispensable

role played by uncertainty in this model.

Nevertheless, Proposition 1 establishes that a majority equilibrium – one satisfying the ro-

bustness criterion just described – always exists. In this equilibrium, both sides use “interior”

cutoffs, but the majority uses a more aggressive cutoff than the minority. This is an interesting

manifestation of the “tyranny of the majority”. Not only are the majority greater in number (or

at least stochastically so), they are also more vocal in expressing their opinion. In response –

and fearing disagreement – the minority are more cowed towards neutrality. So in majority equi-

librium, group outcomes are doubly shifted towards the majority view, once through numbers,

and once through greater voice.

We then turn to minority equilibria. Given the refinement described two paragraphs ago, such

equilibria do not generally exist; indeed, it is easy enough to find examples of nonexistence. Yet

Proposition 2 establishes the following result: if the required supermajority µ is not unanimity

(i.e., µ < 1), and if the size of the stochastic minority p exceeds 1 − µ, then for all sufficiently
large population sizes, a minority equilibrium must exist.

How large is large? To be sure, the answer must depend on the model specifics, but our

computations suggest that in reasonable cases, population sizes of 8-10 (certainly less than the

size of a jury!) are enough for existence.

We found this result remarkable, though we confess that we do not understand it fully. In part,

it is intuitive. As population size increases, the two types of uncertainty that we described –

uncertainty about type and uncertainty regarding valuation intensity – tend to diminish under

the strength of the Law of Large Numbers. This would do no good if p < 1 − µ, for then the
minority would neither be able to win, nor would it be able to block the majority. But if p exceeds

1−µ, the minority acquires “credibility" to block the wishes of the majority. This is sufficient to
generate the existence of a minority equilibrium.

For two reasons, this is not a complete explanation. First, credible blocking is not tantamount

to a credible win. Indeed, it is easy to see that as µ goes up, the minority find it easier to block but
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also harder to win. So the previous result must not be viewed as an assertion that the minority

is “better protected” by an increase in µ. [Indeed, as Example 2 in Section 6 makes clear, this is

not true.] Nevertheless, insofar as existence is concerned, the fact that p > 1− µ > 0 guarantees
existence for large population sizes.

Second, the case of unanimity remains open. The techniques used to prove Proposition 2 do not

work in that case, and indeed we conjecture that the result is false. That is, once can write down

a group decision model with unanimity in which a minority equilibrium never exists, no matter

what the population size is. We report on this conjecture in Section 6. So blocking credibility

alone does not translate into the existence of a minority equilibrium in the unanimity case.

The next main result in the paper studies minority equilibrium. Recall that in the majority

equilibrium, the majority group will have a greater chance of implementing its preferred outcome

on two counts: greater voice, and greater number. Obviously, this synergy is reversed for the

minority equilibrium: there, the minority have greater voice, yet they have smaller numbers. One

might expect the net effect of these two forces to result in some ambiguity. The intriguing content

of Proposition 3 is that in a minority equilibrium, the minority must always implement its favorite

action with greater probability than the majority. Voice more than compensates for number.

Our paper thus suggests that in group decision-making the outcomes tend to be invariably

biassed in one direction or another. In majority equilibrium this is obvious. But it is also true

of minority equilubrium. This lends some support to the view that group decision-making tends

to have an extreme character of its own, something that this model does share (but for subtler

reasons) with the battle of the Sexes.

One might criticize Proposition 3 on the grounds that it may be empty. Minority equilibrium

typically exist for large population sizes, but for such equilibria the probability of disagreement

should be very large or approaching unity. [For instance, suppose that µ is very close to unity.

Wouldn’t all outcomes be blocked?] Of course, this sort of argumentation neglects the strategic

nature of decsion-making in this model. Individual cutoffs vary endogenously with population

size, after all. Indeed, Proposition 4 establishes that the probability of disagreement is not only

strictly less than unity in all equilibria and for all population sizes, it is bounded away from one

as the population size goes to infinity.2 Therefore Proposition 3 has a force that does not fade

with increasing population size.
2Once again, we need to assume that µ < 1. The unanimity case is discussed in Section xxx.
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1.1 Literature review

[To be added]

2 The Model

2.1 The Group Choice Problem

A group of n agents must make a joint choice from a set of two alternatives, which we denote by

A and B. The rules of choice are described as follows:

[1] Each agent must either name an alternative – A or B – or she can declare “neutrality", in

that she agrees to be counted, in principle, for either side.

[2] If the total number of votes for an alternative plus the number of neutral votes is no less than

some exogenously given supermajority m (> n/2), then we shall call that alternative eligible.

[3] If no alternative is eligible, no alternative is chosen: a state D (for “disagreement") is the

outcome.

[4] If a single alternative is eligible, then that alternative is chosen.

[5] If both alternatives are eligible, A or B are chosen with equal probability.

2.2 Valuations

Normalizing the value of disagreement to zero, each individual will have valuations (vA, vB) over

A and B. These valuations are random variables, and we assume they are private information.

Use the notation (v, v0), where v is the valuation of the favorite outcome (max{vA, vB}), and v0

is the valuation of the remaining outcome (min{vA, vB}). An individual will be said to be of type
A if v = v(A), and of type B if v = vB. [The case vA = vB is unimportant as we will rule out

mass points below.]

Our first restriction is

[A.1] Each individual prefers either outcome to disagreement. That is, (v, v0)À 0 with probability

one.

In Section 6 we explore the consequences of dropping the assumption that disagreement is worse

than either alternative.
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In what follows we shall impose perfect symmetry across the two types except for the probability

of being one type or the other, which we permit to depart from 1/2. [The whole idea, after all, is

to study majorities and minorities.]

[A.2] A person is type A with (iid) probability p ∈ [0, 1/2], and is type B otherwise. Regardless

of specific type, however, (v, v0) are chosen independently and identically across agents.

2.3 The Game

First, each player is (privately) informed of her valuation (vA, vB). Conditional on this information

she decides to announce either A or B, or simply remain neutral and agree to be counted in any

direction that facilitates agreement. Because an announcement of the opposite alternative (to a

player’s type) is weakly dominated by a neutral stance, we presume that each player either decides

to vote her own type, or to be neutral.3 The rules in Section 2.1 then determine expected payoffs.

3 Equilibrium

3.1 Cutoffs

Consider a player of a particular type, with valuations (v, v0). Define q ≡ n − m. Notice that
our player only has an effect on the outcome of the game (that is, she is pivotal) in the event

that there are exactly q other players announcing her favorite outcome. For, suppose there are

more than q such announcements, say for A. Then B cannot be eligible, and whether or not A

is eligible, our player’s announcement cannot change this fact. So our player has no effect on the

outcome. Likewise, if there are strictly less than q announcements of A, then B is eligible whether

or not A is, and our player’s vote (A or neutral) cannot change the status of the latter.

Now look at the pivotal events more closely. One case is when there are precisely q announce-

ments in favor of A, and q+1 or more announcements favoring B. In this case, by staying neutral

our agent ensures that B is the only eligible outcome and is therefore chosen. By announcing A

she guarantees that neither outcome is eligible, so disagreement ensues. In short, by switching

her announcement from neutral to A, our agent creates a personal loss of v0.

In the second case, there are q announcements or less in favor of B. In this case, by going

neutral our agent ensures that A and B are both eligible, so the outcome is an equiprobable
3For a similar reason we need not include the possibility of abstention. Abstention (as opposed to neutrality)

simply increases the probability of disagreement, which all players dislike by assumption.
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choice of either A or B. On the other hand, by announcing A, our agent guarantees that A is the

only eligible outcome. Therefore by switching in this instance from neutral to announcing A, our

agent creates a personal gain of v − (v + v0)/2.
To summarize, let P+ denote the probability of the former pivotal event (q compatriots an-

nouncing A, q + 1 or more announcing B) and P− the probability of the latter pivotal event (q

compatriots announcing A, q or less announcing B). It must be emphasized that these proba-

bilities are not exogenous. They depend on several factors, but most critically on the strategies

followed by the other agents in the group. Very soon we shall look at this dependence more

closely, but notice that even at this preliminary stage we can see that our agent must follow a

cutoff rule. For announcing A is weakly preferred to neutrality if and only if

P−[v − (v + v0)/2] ≥ P+v0.

Define u ≡ v−(v+v0)/2
v0 . Note that (by [A.1]) u is a well-defined random variable. Then the

condition above reduces to

P−u ≥ P+, (1)

which immediately shows that our agent will follow a cutoff rule using the variable u.

Notice that we include the extreme rules of always announcing neutrality (or always announcing

one’s favorite action) in the family of cutoff rules. [Simply think of u as a nonnegative extended

real.] If a cutoff rule does not conform to one of these two extremes, we shall say that it is interior.

By [A.2], the variable u has the same distribution no matter which type we are referring to.

We assume

[A.3] u is distributed according to the cdf F , with strictly positive density f on (0,∞).

3.2 Symmetric Equilibrium

In this paper, we study symmetric equilibria: those in which individuals of the same type employ

identical cutoffs.

3.2.1 Symmetric Cutoffs

Assume, then, that all A-types use the cutoff uA and all B-types use the cutoff uB. We can now

construct the probability that a randomly chosen individual will announce A: she must be of type

A, which happens with probability p, and she must want to announce A, which happens with
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probability 1 − F (uA). Therefore the overall probability of announcing A, which we denote by
λA, is given by

λA ≡ p[1− F (uA)].

Similarly, the probability that a randomly chosen individual will announce B is given by

λB ≡ (1− p)[1− F (uB)].

With this notation in hand, we can rewrite the cutoff rule (1) more explicitly. First, add P− to

both sides to get

P−(1 + u) ≥ P+ + P−.

Assuming that we are studying this inequality for a person of type A, the right-hand side is the

probability that exactly q individuals announce A, while the left-hand side is the joint probability

that exactly q individuals announce A and no more than q individuals announce B. With this in

mind, we see that the cutoff uA must solve the equationµ
n− 1
q

¶
λqA

qX
k=0

µ
n− 1− q

k

¶
λkB(1− λA − λB)n−1−q−k(1 + uA) =

µ
n− 1
q

¶
λqA(1− λA)n−1−q. (2)

Likewise, the cutoff uB solvesµ
n− 1
q

¶
λqB

qX
k=0

µ
n− 1− q

k

¶
λkA(1− λA − λB)n−1−q−k(1 + uB) =

µ
n− 1
q

¶
λqB(1− λB)n−1−q. (3)

We will sometimes refer to these cutoffs as “best responses", though it should be clear that

uA embodies not just a “response" by an individual but also an equilibrium condition: that this

individual response is equal to the cutoff employed by all compatriots of the same type.

3.2.2 A Simple Refinement

At this stage, an issue arises which we would do well to deal with immediately. It is that a

symmetric cutoff of∞ is always a best response for any type to any cutoff employed by the other

type, provided that q > 0. This is easy enough to check: if no member in group A is prepared to

declare A in any circumstance, then no A-type will find it in her interest to do so as well. This is

because (with q > 0) no such individual is ever pivotal.

Hence the “full neutrality cutoff" u =∞ is alaways a best response. But it is an unsatisfactory

best response. The reason is that if the compatriots of, say, a type-A individual do announce A

for a tiny range of very high u-values, it will push an individual type-A person to announce A for

a large range of u-values, thus rendering the cutoff uA =∞ “unstable".
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First let us give an intuitive argument for this. Consider an individual of type A, and let us

entertain a small perturbation in the strategy of her compatriots: they use a very large cutoff,

but not an infinite one. Now, in the event that our agent is pivotal, it must be that her group is

very large with high probability, because her compatriots are only participating to a tiny extent,

and yet there are q participants in the pivotal case. This means that group A is likely to win

(conditional on the pivotal event), and our individual will want to declare A for a large range of

her u-values. This shows the “instability” of the cutoff uA =∞.
This argument has a clean counterpart in the formal analysis. Once we allow for compatriots

(say, of type A) to use any interior cutoff uA, we have λA > 0, so that (2) reduces to the simpler

form
qX
k=0

µ
n− 1− q

k

¶
λkB(1− λA − λB)n−1−q−k(1 + u0A) = (1− λA)n−1−q. (4)

where we’re denoting our individual’s cutoff by u0A as a reminder that we haven’t imposed the

symmetry condition yet.

If we divide λB by 1− λA, we form the probability that a randomly chosen person announces

B conditional on her not announcing A. Let’s call this probability π:

π ≡ λB
1− λA .

With this notation, (4) may be rewritten as

1

1 + u0A
=

qX
k=0

µ
m− 1
k

¶
πk(1− π)m−1−k, (5)

where m, it will be recalled, is the size of the supermajority (n− q in other words). Now imagine
that all compatriots have a very large cutoff, so that uA is very big. Then λA is close to zero,

so that π ' λB. So, by (5), u0A is bounded. This means that the full-neutrality response is not
robust to small perturbations away from full neutrality.

These arguments are a fortiori true in the special case of unanimity: q = 0. Indeed, it is easy

to check that full neutrality is never a best response in this case, so no robustness arguments need

to be invoked.
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3.2.3 Equilibrium Conditions

In summary, then, the arguments of the previous section permit us to rewrite the equilibrium

conditions (2) and (3) as follows:

α(uA, uB) ≡ (1 + uA)
qX
k=0

µ
m− 1
k

¶
πk(1− π)m−1−k = 1, (6)

and

β(uA, uB) ≡ (1 + uB)
qX
k=0

µ
m− 1
k

¶
σk(1− σ)m−1−k = 1, (7)

where m = n− q, π ≡λB/1−λA, and σ ≡λA/1−λB.
We dispose immediately of a simple subcase: the situation in which there is simple majority

and n is odd, so that q precisely equals (n− 1)/2. The following result applies:

Observation 1 If q = (n− 1)/2, there is a unique equilibrium which involves uA = uB = 0.

To see why this must be true, consult (6) and (7). Notice that when q = (n − 1)/2, it must be
that m− 1 = n− q− 1 = q. So the best responses must equal zero no matter what the size of the
other group’s cutoff. In words, there is no cost to announcing one’s favorite outcome in this case.

Recall that the only conceivable cost to doing so is that disagreement might result, but in the

pivotal case of concern to any player, there are q compatriots announcing the favorite outcome,

which means there are no more than n− 1− q = q opposing announcements. So disagreement is
not a possibility.

In the remainder of the paper, then, we concentrate on the case in which a genuine supermajority

is called for:

[A.4] q < (n− 1)/2.

The following observations describe the structure of response functions in this situation. [A.1]—

[A.4] hold throughout.

observation 2 A symmetric response ui is uniquely defined for each uj, and declines contin-

uously as uj increases, beginning at some positive finite value when uj = 0, and falling to zero as

uj →∞.

observation 3 Consider the point at which type A’s response crosses the 450 line, or more

formally, the value ū at which α(ū, ū) = 1. Then type B’s best response cutoff to ū is lower than

ū, strictly so if p < 1/2.
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While the detailed computations that support these observations are relegated to the Appendix,

a few points are to be noted. First, complete neutrality is never a (robust) best response even

when members of the other group are always announcing their favorite alternative. The argument

for this is closely related to the remarks made in Section 3.2.2 and we shall not repeat them here.

On the other hand, “full aggression” – u = 0 – is also never a best response except in the

limiting case as the other side tends to complete neutrality. These properties guarantee that

every equilibrium (barring those excluded in Section 3.2.2) employs interior cutoffs.

observation 3 requires some elaboration. It states that at the point where the best response of

Group A leaves both sides equally aggressive (so that uA = uB = u), group B’s best response leads

to greater aggression. The majority takes greater comfort from its greater number, and therefore

are more secure about being aggressive. There is less scope for disagreement. However, note the

emphasized qualification above. As we shall see later, it will turn out to be important.

Figure ?? provides a graphical representation. Each response function satisfies observation 2,

and in addition observation 3 tells us that the response function for B lies above that for A at

the 450 line. We have therefore established the following proposition.

Proposition 1 An equilibrium exists in which members of the stochastic majority – group B –

behave more aggressively than their minority counterparts: uB < uA.

Proposition 1 captures an interesting aspect of the “tyranny of the majority”. Not only are the

majority greater in number (at least stochastically so in this case), they are also more vocal in

expressing their opinion. So group outcomes are doubly shifted – in this particular equilibrium

– towards the majority view, once through numbers, and once through greater voice.4 We will

call such an equilibrium a majority equilibrium.

4 Minority Equilibria

4.1 Existence

Figure ??, which we used in establishing Proposition 1, is drawn from actual computation. We

used the exponential distribution F (u) = 1− exp−2.2u to describe draws of u and the following
4Notice that this model has no voting costs so that free-riding is not an issue. Such free-riding is at the heart

of the famous Olson paradox (see Olson [1965]), in which small groups may be more effective than their larger

counterparts.
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additional parameters: n = 4, q = 1 and p = 0.4. Under this specification, there is, indeed, a

unique equilibrium and (by Proposition 1) it must be the majority equilibrium.

Further experimentation with these parameters leads to an interesting outcome. When n is

increased, the response curves appear to “bend back" and intersect yet again, this time above

the 450 line (see Figure ??). A minority equilibrium (in which uA < uB, so that the minority are

more aggressive) makes its appearance. For this example, it does so when there are 12 players.

The bending-back of response curves to generate a minority equilibrium appeared endemic

enough in the computations, that we decided to probe further. To do this, we study large popula-

tions in which the ratio of q to n is held fixed at ν ∈ (0, 1/2). More precisely,we look at sequences
{n, q} growing unboundedly large so that q is one of the (at most) two integers closest to νn. We
obtain the following analytical confirmation of the simulations:

Proposition 2 Assume that 0 < ν < p < 1/2. Consider any sequence {n, q} such that n → ∞
and q is one of the (at most) two integers closest to νn. Then there exists a finite N such that

for all n ≥ N , a minority equilibrium must exist.

Several comments are in order. First, if there is a minority equilibrium, there must be at least

two of them, because of the end point restrictions implied by Observations 1 and 2. Some of these

equilibria will suffer from stability concerns similar to those discussed in Section 3.2.2. But there

will always be other minority equilibria that are “robust” in this sense.5

Second, it might be felt that the threshold N described in Proposition 2 may be too large for

“reasonable” group sizes. Our simulations reveal that this is not true. For instance, within the

exponential class of valuation distributions, the threshold at which a minority equilibrium appears

is typically around N = 10 or thereabouts, which is by no means a large number.

Third, the qualification that ν > 0 is important. The unanimity case, with q = 0 is delicate.

We return to this issue in Section 6. The case p ≤ ν, which we do not treat here, is also of interest.
See Section 6 for further discussion.

Finally, we provide some intuition as to why minority existence is guaranteed for large n but

not so for small n. Observe that when n is “small", there are two sorts of uncertainties that plague

any player. She does not know how many people there are of her type, and she is uncertain about

the realized distribution of valuations. Both these uncertainties are troublesome in that they may

precipitate costly disagreement. The possibility of disagreement is lowered by more and more
5Once again, this follows from the end-point restrictions.
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people adopting a neutral stance, though after a point it will be lowered sufficiently so that it

pays individuals to step in and announce their favorite outcome. For a member of the stochastic

majority, this point will be reached earlier, and so a majority equilibrium will always exist.

On the other hand, when n is large, these uncertainties go away or at any rate are reduced.

Now the expectation that the minority will be aggressive can be credibly self-fulfilling, because

the expectation of an aggressive strategy can be more readily transformed into the expectation of

a winning outcome.

Notice – as discussed in the Introduction – how this model is akin to but simultaneously

much richer than the symmetric Battle of the Sexes. By permitting different and heterogeneous

valuations, as well as different group sizes, we obtain a more nuanced description of when the

double equilibrium actually comes into being.

4.2 Minorities Win in Minority Equilibrium

In this section we address the distinction between an equilibrium in which one group behaves

more aggressively, and one in which that group wins more often. For instance, in the majority

equilibrium the majority fights harder and wins more often than the minority does. [It cannot

be otherwise, the majority are ahead both in numbers and aggression.] But there is no reason to

believe that the same is true of the minority equilibrium. The minority may be more aggressive,

but the numbers are not on their side.

However, a remarkable property of this model is that a minority equilibrium must involve the

minority winning with greater probability than the majority. Provided that a minority equilibrium

exists, aggression must compensate for numbers.

Proposition 3 In a minority equilibrium, the minority outcome is implemented with greater

probability than the majority outcome.

This framework therefore indicates quite clearly how group behavior in a given situation may

be swayed both by majority and minority concerns. When the latter occurs, it turns out that we

have some kind of “tyranny of the minority": they are so vocal that they actually swing outcomes

(in expectation) to their side.
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5 The Probability of Disagreement

In the previous section we established the existence of a minority equilibrium. However, existence

was guaranteed only for large n. Hence, for this result to be meaningful it must be the case that

for large n, the probability of disagreement is bounded away from one. Our next proposition

proves exactly that.

Proposition 4 Assume that 0 < ν < p < 1
2 . Consider any sequence {n, q} such that n → ∞

and q is one of the (at most) two integers closest to νn. Then the probability of disagreement is

bounded away from one.

The intuition for this result is the following. Suppose that the probability of disagreement is

high. Then the probability that each group is blocking the supermajority of its rival is also high.

We show that if group A, for example, is blocking group B, then the latter will be discouraged

from casting a B vote: doing so will most likely lead to disagreement, while casting a neutral vote

ensures an agreement on A.

To formalize the above intuition, we do the following. We begin by showing that if the prob-

ability of each group blocking its rival goes to one, then there must be a lower bound on the

probabilities with which a random individual votes for A or B, i.e. λA or λB respectively. Next,

we show that this implies that π and σ are bounded below by q
m−1 . Recalling the equilibrium

equations, it follows that the cutoffs must be going to infinity in contradiction to our first step.

What allows individuals to agree, even when there are great many of them, is the option

to remain neutral. This can be seen if we analyze a restricted version of our model in which

individuals have only two options: A or B. We carry out this analysis in Section 6.1. There, we

show that Proposition 4 ceases to hold.

6 Extensions

6.1 No Neutrality

In our opinion, when faced with impending disagreement, the option of a neutral stance is very

natural. This is why we adopted this specification in our basic model. [As discussed already,

neutrality is not to be literally interpreted as a formal announcement, but rather as a willingness

to delegate one’s vote to an impersonal arbiter who is pledged to achieving agreement if at all
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possible.] Nevertheless, it would be useful to see if the insights of the exercise are broadly preserved

if announcements are restricted to be either A or B.

We can quickly sketch such a model. An individual is now pivotal under two circumstances.

In the first event, the number of people announcing her favorite outcome is exactly q, which

we assume to be less than (n − 1)/2.6 By announcing her favorite, then, disagreement is the

outcome, while an announcement of the other alternative would lead to that alternative being

implemented. The loss, then, from voting one’s favorite in this event is precisely v0 (recall that the

disagreement payoff is normalized to zero). In the second event, the number of people announcing

the alternative is exactly q. By announcing her favorite, she guarantees its implementation, while

the other announcement would lead to disagreement. So the gain from voting one’s favorite in

this event is v. Consequently, an individual will announce her favorite if

Pr(exactly q others vote for alternative)v ≥ Pr(exactly q others vote for favorite)v0.

Define w ≡ v/v0. Then equilibrium cutoffs wA and wB are given by the conditions

wAPr(|A| = q) ≥ Pr(|B| = q) (8)

and

wBPr(|B| = q) ≥ Pr(|A| = q) (9)

where |A| and |B| stand for the number of A- and B-announcements out of n − 1 individuals,
and where equality must hold in each of the conditions provided the corresponding cutoff strictly

exceeds 1, which is the lower bound for these variables.

In this variation of the model, it is obvious that at least one group must be “fully aggressive"

(i.e., its cutoff must equal one).7 Moreover, as long as we are in the case q < (m − 1)/2, both
groups cannot simultaneously be “fully aggressive": one of the cutoffs must strictly exceed unity.

So, in contrast to our model, in which all (robust) equilibria are fully interior, the equilibria

here are at “semi-corners". Nevertheless, one can study majority and minority equilibria in a

parallel manner.

Specifically, to unearth a majority equilibrium, set wB = 1. Then, using the equality version

of (8), it must be the case that

wA =

µ
pF (wA) + (1− p)
p[1− F (wA)]

¶n−1−2q
(10)

6The case q = (n − 1)/2 is exactly the same as in Observation 1 for the main model. No matter what the
valuations are, each individual will announce her favorite outcome.

7Simply examine (8) and (9) and note that both right-hand sides cannot strictly exceed one.
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Likewise, to examine possible minority equilibria, set wA = 1. Then use the equality version of

(9) to assert that

wB =

µ
p+ (1− p)F (wB)
(1− p)[1− F (wB]

¶n−1−2q
(11)

in any minority equilibrium.

It is easy to use (10) to conclude that

Observation 4 [1] A majority equilibrium always exists, and moreover there exists at least one

which is robust in the sense of Section 3.2.2. [2] A (robust) minority equilibrium may or may not

exist, but it does exist if (n, q) are sufficiently large. [3] In any minority equilibrium, the minority

outcome is implemented with greater probability than the majority outcome.

So the broad contours of our model can be replicated in this special case. This is reassuring,

because it reassures us of the robustness of the results. At the same time this allows us to highlight

the main implication of allowing voters to remain neutral: absent neutrality voters may be locked

in situations in which they are almost certain to disagree. This is formalized in the next result.

Observation 5. Assume 0 < ν < p < 1
2 . Consider any sequence {n, q} such that n→∞ and

q is one of the two integers closest to νn. There exists a sequence of semi-corner equilibria for

which the probability of disagreement coverges to one.

The above result demonstrates the importance of being neutral: Neutrality allows the players to

avoid disagreement. Recall that Proposition 4 establishes that with neutrality, the probability of

disagreement at every interior equilibrium is bounded away from one. Once the option of neutrality

is taken away, the probability that players reach a disagreement (at any interior equilibrium) goes

to one.

6.2 Comparative statics on the supermajority rule

Up to this point we have focused on group size as a determinant of the existence of minority

equilibria. A related question is whether existence is affected by variations in the supermajority

rule.

Common intuition suggests that a higher supermajority requirement facilitates the emergence

of a minority equilibrium. Indeed, the comparative politics literature compares different political

systems and motivates what has been termed “consensus systems” (Lipjiart (1985)) by the desire

to protect minorities from the tyrany of the majority.
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Our model allows us to investigate the hypothesis discussed above. We have already shown that

when the supermajority is relatively high (i.e., mn > 1 − p), the existence of minority equilibria
is guaranteed for large n. The question is, whether the minority can get its way when the

supermajority requirement is relaxed. This is the subject of our next proposition.

Proposition 5 Assume that 0 < p < ν < 1
2 . Consider any sequence {n, q} such that n→∞

and q is one of the (at most) two integers closest to νn. Then there exists a finite N such that

for all n ≥ N , a minority equilibrium does not exist.

Taken together, Propositions 2 and 5 may suggest a monotonic relation between the super-

majority requirement and the “power” of the minority. However, it is not clear whether this is

true in our model. To see why, consider an A voter and the equilibrium equation (6). Holding

B’s cutoff fixed, as q decreases, A’s cutoff increases, i.e., the group fights less aggressively. This

follows from the fact that as q decreases, the probability, that the B-types would block A from

being chosen, increases. Because the above effect of lowering q applies to both groups, it is not

clear which group benefits from this change. To demonstrate the ambiguous effect of lowering q

consider the following example.

Example 2. Let n = 1, 000 (in light of Proposition 3 we intentionaly pick a large n), p = 0.4

and consider the distribution function F (u) = 1− 1√
ln(u+e)

. For q = 300 there exists a minority

equilibrium uA ' 1.35 and uB ' 80. However, for q = 10 there exists no minority equilibrium.
The above example seems to suggest that for some distribution functions a minority equilibrium

may not exist when the supermajority requirement is close to unanimity.

Conjecture 1 Suppose m = n. There exists a family of distribution functions for which a

minority equilibrium does not exists for any n.

6.3 Certain group size

In this section we investigate the implication of uncertainty regarding the size of one’s group. For

this purpose, we modify our model by assuming that it is common knowledge that there are nA

individuals of type A and nB > nA individuals of type B. We retain all our other assumptions.

The first observation we make is that our arguments in Section 3.2.2. do not apply to this new

model. To see why, consider the case when all B types are voting for B, whereas only extreme

A-types are voting for A. When an A-type knows exactly how many B-types there are, he realizes
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that he can only create a disagreement by voting for A. Therefore, when group sizes are known,

the two corner equilibria are robust (in the sense of Section 3.2.2). This suggests that the corner

equilibria are unnatural in the following sense: when faced with some uncertainty about group

sizes, some individuals may still put up a fight.

Our second observation relates to the importance of group size in the emergence of minority

equilibria. Potentially, the existence of minority equilibria in our original model may be due to

two types of uncertainties that are relaxed in large groups. First, as the number of individuals in

the group increases, voters have a more accurate estimate of the proportion of their types in the

group. Second, as the population increases, each individual has a better picture of the distribution

of intesities among his compatriots.

To better understand the effect of the first type of uncertainty, we focus now on a model in

which the numbers of A types and B types are known. We ask whether in this new model,

minority equilibria can arise for any n. It can easily be shown that the equilibrium cutoff for

one type depend only on the equilbrium cutoff of the other type. More precisely, an equilibrium

(uA, uB) satisfies the following equations,

(1 + uA)

qX
k=0

µ
nB
k

¶
(F (uB))

nB−k (1− F (uB))k = 1

(1 + uB)

qX
k=0

µ
nA
k

¶
(F (uA))

nA−k (1− F (uA))k = 1

where nA < nB are the number of individuals of type A and B respectively.

It is straightforward to construct examples in which there does not exist a minority equilibrium

for small nA and nB. For instance, take F (u) = 1− 1√
ln(u+e)

, nA = 2, nB = 3 and q = 1. For these

values there exists a unique interior majority equilibrium, uA ≈ 250 and uB ≈ 0.22. However,

using arguments similar to those employed in Proposition 2 and 4, one can show that for large

n a minority equilibrium exists and the probability of disagreement is bounded away from one.

By simple stochastic dominance arguments, it can be shown that in any minority equilbrium the

minority wins more often.

We conclude that certainty regarding the numbers of A and B types is not sufficient to generate

a minority equilibrium; even when the numbers of A and B types are known, we still need n to

be sufficiently large for the minority to prevail.
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6.4 Types who prefer disagreement to the rival alternative

Suppose there exist types who rank disagreement above their second best alternative. Clearly,

voting for the preferred alternative is weakly dominant for these types. Hence, in any interior

equilibrium these individuals would vote their type. In this sense, incorporating these voters into

our model is equivalent to adding aggregate noise. We believe that if the proportion of such types

is sufficiently low, all of our results continue to hold.

7 Appendix

Proof of observation 2. For concreteness, set i = A and j = B. Fix any uB ∈ [0,∞). Recall
that

π =
λB

1− λA =
(1− p)[1− F (uB)F (uB)]
1− p[1− F (uA)F (uA)] ,

so that π is continuous in uA, with π → 1 − F (uB) as uA → 0, and π → (1 − p)[1 − F (uB)] as
uA → ∞. Consequently, recalling (6) and recalling that q < (n − 1)/2, we see that α(uA, uB)
converges to a number strictly less than one as uA → 0, while it becomes unboundedly large as

uA → ∞. By continuity, then, there exists some uA such that α(uA, uB) = 1, establishing the

existence of a cutoff.

To show uniqueness, it suffices to verify that α is strictly increasing in uA. Because the expres-

sion
Pq
k=0

¡m−1
k

¢
πk(1 − π)m−1−k must be decreasing in π, it will suffice to show that π itself is

declining in uA, which is a matter of simple inspection.

To show that the response uA strictly decreases in uB, it will therefore be enough to establish

that α is also increasing in uB. Just as in the previous paragraph, we do this by showing that π

is decreasing in uB, which again is a matter of elementary inspection.

Finally, we observe that uA ↓ 0 as uB ↑ ∞. Note that along such a sequence, π → 0 regardless

of the behavior of uA. Consequently,
Pq
k=0

¡m−1
k

¢
πk(1− π)m−1−k converges to 1 as uB ↑ ∞. To

maintain the equality (6), therefore, it must be the case that uA ↓ 0.
Of course, all these arguments hold if we switch A and B.

Proof of Observation 3 . Let u be defined as in the statement of this Observation. Define

λA ≡ p[1− F (u)] and λB ≡ (1− p)[1− F (u)]. Then

(1 + u)

qX
k=0

µ
m− 1
k

¶
πk(1− π)m−1−k = 1, (12)
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where π ≡ λB/(1− λA). Now recall that σ in (7) is defined by σ = λA
1−λB , so that if we consider

the corresponding value σ defined by setting uA = uB = u, we see that

σ ≤ π if and only if λA(1− λA) ≤ λB(1− λB).

But λA ≤ 1/2 (because p ≤ 1/2), so that the second inequality above holds if and only if λA ≤ λB,
and this last condition follows simply from the fact that p ≤ 1/2.
So we have established that σ ≤ π. It follows that

qX
k=0

µ
m− 1
k

¶
πk(1− π)m−1−k ≤

qX
k=0

µ
m− 1
k

¶
σk(1− σ)m−1−k

and using this information in (12), we must conclude that

β(u, u) = (1 + u)

qX
k=0

µ
m− 1
k

¶
σk(1− σ)m−1−k ≥ 1, (13)

Recalling that β is increasing in its first argument (see proof of observation 1 ??), it follows from

(13) that type B’s best response to u is no bigger than u.

Finally, observe that all these arguments apply with strict inequality when p < 1/2.

Proof of Proposition 1. For each uB ≥ 0, define φ(uB) by composing best responses: φ(uB) is
A’s best response to B’s best response to uB. By observation 2, we see that A’s best response is a

positive, finite value when uB = 0, and therefore so is B’s response to this response. Consequently,

φ(0) > 0. On the other hand, A’s best response is precisely u when uB = u, and by Observation

3 we must conclude that φ(u) < u. Because φ is continuous (Observation 2 again), there is

u∗B ∈ (0, u) such that φ(u∗B) = u∗B. Let u∗A be type A’s best response to u∗B. Then it is obvious
that (u∗A, u

∗
B) is an equilibrium. Because u

∗
B < u, we see from Observation 2 that u∗A > u. We

have therefore found a majority equilibrium.

Proof of Proposition 2. Consider any sequence {n, q} as described in the statement of the
proposition. Because p > ν, there exists a cutoff uA > 0 and a finite n∗ such that for all n ≥ n∗,

λA ≡ p [1− F (uA)] > q

n− 1 ' ν. (14)

Note that there is also an associated sequence {m} defined by m ≡ n− q.
We break the proof up into several steps.

Step 1. We claim that there exists an integer M such that for each m ≥ M there is umB < ∞
that solves the following equation:

qX
k=0

µ
m− 1
k

¶
(πm)

k (1− πm)m−1−k = 1

1 + uA
(15)
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where

πm ≡ λmB
1− λA

and

λmB ≡ (1− p) [1− F (umB )] .

We prove this claim. Note that for all n ≥ n∗, 1− p > p > q/(n− 1), so that

π ≡ (1− p)(n− 1)
m− 1 >

q

m− 1 '
ν

1− ν
for all n ≥ n∗. Consequently, by the Strong Law of Large Numbers (SLLN),

qX
k=0

µ
m− 1
k

¶
πk (1− π)m−1−k → 0

asm and q grow to infinity. It follows that there existsM such that for allm ≥M (and associated

q),
qX
k=0

µ
m− 1
k

¶
πk (1− π)m−1−k < 1

1 + uA
. (16)

For such m, provisionally consider umB = 0. Then

λmB
1− λA

=
1− p

1− p [1− F (uA)] ,

and using this in (14), we conclude that

πm =
λmB

1− λA
=

1− p
1− p [1− F (uA)] >

(1− p) (n− 1)
m− 1 = π.

Combining this information with (16), we see that if umB = 0, then

qX
k=0

µ
m− 1
k

¶
πkm (1− πm)m−1−k <

1

1 + uA
. (17)

Next, observe that if umB is chosen very large, then λmB and consequently πm are both close to

zero, so that
Pq
k=0

¡
m−1
k

¢
πkm (1− πm)m−1−k is close to unity. It follows that for such umB ,

qX
k=0

µ
m− 1
k

¶
πkm (1− πm)m−1−k >

1

1 + uA
. (18)

Combining (17) and (18) and noting that the LHS of (15) is continuous in umB , it follows that for

all m ≥M there exists 0 < umB <∞ such that the claim is true.

Step 2. One implication of (15) in Step 1 is the following assertion: as (m, q)→∞,

πm → ν/(1− ν) ∈ (0, 1), and in particular, umB is bounded. (19)
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To see why, note that 1
1+uA

∈ (0, 1). Using (15) and SLLN, it must be that πm → ν/(1−ν) ∈ (0, 1)
as (m, q)→∞. Recalling the definition of πm it follows right away that umB must be bounded.

Step 3. Next, we claim there exists an integer M∗ such that

For all m ≥M∗, umB > uA. (20)

To establish this claim, note first, using (14), that

p [1− F (uA)] > q

n− 1 =
q

m−1
1 + q

m−1
>

q
m−1

1−p
p + q

m−1

where the last inequality follows from the assumption that p ∈ ¡0, 12¢, so that 1−pp > 1. A sinmple

rearrangement of this inequality shows that

(1− p) [1− F (uA)]
1− p [1− F (uA)] >

q

m− 1 '
ν

1− ν (21)

Now suppose, contrary to the claim, that umB ≤ uA along some subsequence of m. Then on that
subsequence,

πm =
λmB

1− λA
=
(1− p) [1− F (umB )]
1− p [1− F (uA)] ≥

(1− p) [1− F (uA)]
1− p [1− F (uA)] (22)

Combining (21) and (22), we may conclude that along the subsequence of m for which umB ≤ uA,

inf
m
pm >

ν

1− ν ,

which contradicts (19) of Step 2.

To prepare for the next step, let ûmB denote the best response of the B-types to uA = uA. That

is,
1

1 + ûmB
=

qX
k=0

µ
m− 1
k

¶
σkm (1− σm)m−1−k , (23)

where

σm ≡ λA

1− λ̂mB
and

λ̂
m

B ≡ (1− p) [1− F (ûmB )]

Step 4. There is an integer M∗∗ such that for all m ≥M∗∗ ûmB > u
m
B .

To prove this claim, suppose on the contrary that ûmB ≤ umB along some subsequence of m. [All
references that follow are to this subsequence.] Then

σm =
λA

1− λ̂mB
=

p [1− F (uA)]
1− (1− p) £1− F ¡ûmB ¢¤ ≥ p [1− F (uA)]

1− (1− p) £1− F ¡umB¢¤ = λA
1− λmB

. (24)
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Recall from (19), Step 2, that λmB
1−λA → ν

1−ν . Therefore λ
m
B → λB, where λB ≡ ν

1−ν
¡
1− λA

¢
.

Recall from (14) that λA > ν, , so that λB < ν and in particular λB < λA. Because p < 1/2,

so is λB, and these last assertions permit us to conclude that λA
¡
1− λA

¢
> λB

¡
1− λB

¢
, or

equivalently, that
λA

1− λB
>

λB

1− λA
.

Using this information in (24) and recalling that λmB → λB, we may conclude that

lim inf
m→∞σm ≥

λA

1− λB
>

λB

1− λA
=

ν

1− ν ,

where the last equality is from (19). It follows from (23) that ûmB →∞. But this contradicts our
supposition that ûmB ≤ umB (that along a subsequence) because the latter is bounded; see (19) of

Step 2.

To complete the proof of the proposition, define, for each m ≥ M∗∗ and each uA ∈ (0, uA],
ψm(uA) as the difference between B’s best response to uA and the value of uB to which uA is a

best response. By Step 1 and Observation ??, ψm is well-defined and continuous on this interval.

Using Observation ?? yet again, it is easy to see that (for each m) ψm(uA) < 0 for small values

of uA, while Step 4 assures us that ψm(uA) > 0. Therefore for each m, there is ũmA ∈ (0, uA) such
that ψm(ũmA ) = 0. If we define ũ

m
B to be the best response to ũ

m
A , it is trivial to see that (ũ

m
A , ũ

m
B )

constitutes an equilibrium.

Finally, note that

ũmA < uA < u
m
B < û

m
B < ũ

m
B ,

where the second inequality follows from Step 3, the third inequality from Step 4, and the last

inequality from the fact that the best response function is decreasing (Observation ??). This

means that (ũmA , ũ
m
B ) is a minority equilibrium.

Proof of Proposition 3. Recall (6) and (7) and note that uA < uB in a minority equilibrium. It

follows right away that
Pq
k=0

¡
m−1
k

¢
πk(1−π)m−1−k >Pq

k=0

¡
m−1
k

¢
σk(1−σ)m−1−k, so that π < σ.

Expanding this inequality, we conclude that λB(1 − λB) < λA(1− λA). Because λA < 1/2, this
means that λB < λA.

Now turn to the difference in probability that A (rather than B) is the outcome. Let |A| (resp.
|B|) denote the number of A (resp. B) announcements. Notice that

Pr(|A| ≥ q + 1; |B| ≤ q) =
nX

k=q+1

µ
n

k

¶ qX
j=0

µ
n− k
j

¶
λkAλ

j
B(1− λA − λB)n−k−j ,
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while

Pr(|B| ≥ q + 1; |A| ≤ q) =
nX

k=q+1

µ
n

k

¶ qX
j=0

µ
n− k
j

¶
λkBλ

j
A(1− λA − λB)n−k−j ,

Let ∆ ≡ Pr(|A| ≥ q+1; |B| ≤ q)−Pr(|B| ≥ q+1; |A| ≤ q). Then, combining the equalities above,

∆ =
nX

k=q+1

µ
n

k

¶ qX
j=0

µ
n− k
j

¶
[λkAλ

j
B − λkAλjB](1− λA − λB)n−k−j > 0,

because λA > λB and k > j.

But it is easy to verify that

∆ = Pr(A wins)− Pr(B wins),

and the proof of the proposition is complete.

Proof of Proposition 4. Assume that q < n−1
2 (When q = n−1

2 the probability of disagreement

is zero). Note that the probability of disagreement is equal to Pr(|A| > q, |B| > q). It suffices to
show that Pr(A > q) and Pr(B > q) cannot both converge to one. To see this, note that

Pr(|A| > q, |B| > q) ≤ min{Pr(|A| > q),Pr(|B| > q)}.

Suppose, to the contrary, that limn→∞ Pr(A > q) = 1 and limn→∞ Pr(B > q) = 1. The proof

proceeds in two steps. In the first step we show that for large n both λA and λB are strictly above

υ. Moreover, if either λA or λB converges to υ, then it converges at a rate slower than 1√
n
. In the

second step we show that this implies that the equilibrium cutoffs, uA and uB, must be growing

to infinity, in contradiction to step 1.

Step 1. limn→∞ (λA−υ)
√
n√

λA(1−λA)
=∞ and limn→∞ (λB−υ)

√
n√

λB(1−λB)
=∞.

We prove limn→∞ |λA−υ|
√
n√

λA(1−λA)
=∞, similar arguments hold for λB.

Assume to the contrary that there exists a subsequence for which limn→∞
(λknA −υ)√n√
λA(1−λA)

= c,

where −∞ ≤ c <∞.
Let Xn denote the number of A announcements (i.e., |A|). By the Berry-Esseen Theorem (see

???), for some ε < Φ(−c), there exists an N such that for n > N

Pr(Xn > q) = Pr(
Xn − nλknAq
nλknA (1− λknA )

>
−(λknA − υ)√nq
λknA (1− λknA )

) < 1−Φ(−c) + ε < 1

and this contradicts our premise that limn→∞ Pr(|A| > q) = 1.
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Recalling that π = λB
1−λA and σ = λA

1−λB , it follows from step 1 that limn→∞
(π− υ

1−υ )
√
n√

π(1−π) = ∞

and limn→∞
(σ− υ

1−υ )
√
n√

σ(1−σ) =∞.

Step 2. If limm→∞
(π− υ

1−υ )
√
m−1√

π(1−π) = ∞ and limm→∞
(σ− υ

1−υ )
√
m−1√

σ(1−σ) = ∞, then uA −→ ∞ and

uB −→∞.

As in step 1 we provide a proof for uA and similar arguments follow for uB.

Recalling equation (6), we now show that the right hand side of this equation converges to zero.

Let Yn be the sum of successes from a binomial distribution with probability of success π and

with m− 1 draws. Therefore,

qX
k=0

µ
m− 1
k

¶
πk(1− π)m−1−k = Pr(Yn ≤ q) ≤ Pr(|Yn − (m− 1)π| ≥ (m− 1)π − q)

<
V ar(Yn)

((m− 1)π − q)2 =
1

(
(π− q

m−1 )
√
m−1√

π(1−π) )2
→ 0,

where the last inequality is by Chebyshev’s inequality and the limit follows from the premise.

Therefore, by (6) it must be that uA −→ ∞. This implies that λA → 0, in contradiction to step

1.

This concludes the proof.

Proof of Observation 4. Define δ ≡ 1/(n− 1− 2q), and rewrite (8) to obtain

(1 +wδA)[1− F (wA)] = 1/p. (25)

Notice that when wA = 1, the LHS of (25) equals 2, while the RHS is strictly greater than 2

(because p < 1/2). Now we consider two cases.

Case 1. There is some w such that the LHS of (25), evaluated at wA = w, strictly exceeds 1/p.

In this case, the first intersection (not counting tangencies) of the function (1+xδ)[1−F (x)] with
the value 1/p can easily be seen to be a robust equilibrium, along with the value wB = 1.

Case 2. (1 + xδ)[1 − F (x)] is no more than 1/p for all x. In this case it can be verified that
wA =∞ and wB = 1 is the a majority equilibrium satisfying our robustness criterion.

This proves part [1]. For part [2], rewrite (9) as

(1 +wδB)[1− F (wB)] = 1/(1− p). (26)
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Notice that when wB = 1, the LHS of (26) equals 2, while the RHS is strictly smaller than 2

(because p < 1/2).

Now suppose that there is some w such that the LHS of (26), evaluated at wB = w, is strictly

less than 1/(1 − p). In this case, study the second intersection (not counting tangencies) of the
function (1 + xδ)[1 − F (x)] with the value 1/(1 − p), along with the value wB = 1. If no such

intersection exists, set wB =∞. It can be verified that we have found a robust equilibrium.
It remains to show that the condition in the first line in the previous paragraph is satisfied for

all (n, q) large enough. To this end, fix some w such that 1−F (w) < 1/2(1− p). Now take (n, q)
to infinity adn notice that δ → 0. Therefore wδ converges to 1. It follows that for large (n, q),

(1 +wδ)[1− F (w)] < 1/(1− p),

and we are done.

Proof of Observation 4, part [3]. The probability that the minority outcome is implemented

is given by

Pr (|A| ≥ m) =
nX

k=m

µ
n

m

¶
[p+ (1− p)F (ωB)]k [(1− p) (1− F (ωB))]n−k

Similarly,

Pr (|B| ≥ m) =
nX

k=m

µ
n

m

¶
[(1− p) (1− F (ωB))]k [p+ (1− p)F (ωB)]n−k

Thus, Pr (|A| ≥ m) > Pr (|B| ≥ m) if and only if

(1− p) (1− F (ωB)) < p+ (1− p)F (ωB)
(1− p) (1− 2F (ωB)) < p

1− 2F (ωB) <
p

1− p
1− p

1− p < 2F (ωB)

1

2

µ
1− 2p
1− p

¶
< F (ωB)

The last inequality can be written as follows:

1

2(1− p) > 1− F (ωB) ((*))

From (26) it follows that

1− F (ωB) = 1

(1− p) ¡1 + ωδB¢
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where ωB > 1. Hence, (1− p)
¡
1 + ωδB

¢
> 2(1− p), which implies (*).¥

Proof of Observation 5. Let ω∗B > 1 be the solution to the following equation:

p+ (1− p)F (ω∗B) = (1− p) [1− F (ω∗B)]

We proceed in two steps.

Step 1. There exists a sequence of semi-corner minority equilibria that converges to (1,ω∗B).

Fix ωA at one. Note that when ωB = ω∗B the RHS of (11) is smaller than the LHS. For any

ε > 0, set ωB = ω∗B + ε. Because
p+(1−p)F(ω∗B+ε)
(1−p)[1−F(ω∗B+ε)]

> 1, there exists N (ε) <∞ such that for all

n ≥ N (ε), the LHS of (11) is strictly greater than its RHS. It follows that for all n ≥ N (ε), there
exists an equilibrium (1,ωnB) where ω

n
B ∈ (ω∗B,ω∗B + ε). This establishes the first step.

Step 2. The probability of disagreement, along the sequence of equilibria that converge to

(1,ω∗B), converges to one.

Along the above sequence, the proportion of players voting for A in this equilibrium converges

to p+ (1− p)F (ω∗B) > ν. Assume that the probability of disagreement along this sequence does
not converge to one. Then the proportion of players voting for B must converge to zero. But this

proportion converges to (1− p)(1− F (ω∗B)) >> 0.¥

Proof of Proposition 5. Suppose on the contrary that a minority equilibrium (unA, u
n
B)

exists along some subsequence of n [all references that follow are to this subsequence]. Then

limn→∞(unA, u
n
B) is either (∞,∞), (0,∞) or a pair of strictly positive but finite numbers (u∗A, u∗B).

To prove that our supposition is wrong, we show that none of these limits are true.

Assume (unA, u
n
B) → (∞,∞). Then λnA → 0 and λnB → 0. This implies that πn → 0 and

σn → 0. But this implies, by equations (6) and (7) and using SLLN, that (unA, u
n
B) → (0, 0), a

contradiction.

Assume (unA, u
n
B)→ (0,∞). Then λnA → p and λnB → 0, so that σn → p < ν < q

m−1 . But using

(7) and SLLN, this implies that unB → 0, a contradiction.

Assume (unA, u
n
B) → (u∗A, u

∗
B), where both u

∗
A and u

∗
B are strictly positive and finite. Using

SLLN and equations (6) and (7), it follows that πn and σn must both converge to q
m−1 . This

means that λnA → λ∗A and λ
n
B → λ∗B such that

λ∗B
1− λ∗A

=
λ∗A

1− λ∗B
This equlity holds only if λ∗A = λ

∗
B, or if λ

∗
A = 1−λ∗B. Suppose the former is true. Then πn → π∗
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where

π∗ =
λ∗B

1− λ∗A
<

ν

1− υ '
q

m− 1
But the above inequlity implies, by (6) and SLLN, that unA → 0, a contradiction. Suppose next

that λ∗A = 1− λ∗B. But 1− λ∗B > p > λ∗A, a contradiction.¥
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