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Abstract

This paper develops a dynamic theory of the interaction of organizational capacity

and its institutional context. Higher capacity enables organizations to deliver projects

efficiently, while institutional barriers allow opposing interests to reallocate project

payoffs at the cost of delays. Projects that are small and distributionally unequal are

vulnerable to revisions. Project designers avoid revisions by equalizing distributive

benefits or inflating project scales to increase the cost of revisions. We show that

“matched” levels of capacity and institutional barriers minimize welfare. Organiza-

tional systems with high capacity and low institutional barriers, or low capacity and

high institutional barriers, generate more efficient outcomes.
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1 Introduction

It is now a truism that organizations are crucial for executing major undertakings in modern

society, ranging from government policies to construction to product development. Leaders

or policy-makers can set objectives and promise results, but a bureaucratic machinery is in-

evitably needed to produce on-the-ground outcomes. Capturing organizational performance

is obviously a formidable task, but practitioners and scholars have increasingly coalesced

around the concept of organizational capacity as one of its central determinants.1

The appeal of organizational capacity is seemingly obvious. Higher capacity — loosely

speaking, a better ability to “get things done” — should produce outputs that are more

timely, more efficient, or of higher quality. A wide variety of studies have shown that under-

resourced or under-paid organizations produce worse results.2 This perspective implicitly

assumes that organizations have coherent objectives and significant latitude to achieve them.

Yet the assumption is tenuous when internal or external interests can exploit institutional

processes to reshape outcomes. Under the threat of contestation, the effects of capacity

become less clear. To take a simple example, suppose that a legal regime grants broad

standing to sue project developers on environmental grounds. A high capacity organization

might invite suits that incur costly delays because victorious litigants can be confident in

the quick implementation of their proposals.

A look at aggregate data across countries highlights the lack of obvious relationships

between organizational capacity and project outcomes. Figure 1 plots the average construc-

tion cost per kilometer of public infrastructure projects for 59 countries, as calculated by

the New York University Transportation Costs Project (Marron Institute of Urban Manage-

ment, 2023), against measures of capacity in national bureaucracies.3 The plots show no

correlation between costs and World Bank data on bureaucratic quality and the education

level of public sector workers, and also suggest little role for national wealth. While obvi-

ously crude, the figure implies that organizational capabilities alone cannot be the dominant

1Bodies as varied as the UNDP, USAID, OECD (2011), and the European Centre for Development
Policy Management (Keijzer et al., 2011) identify organizational capacity as a key developmental objective.
Additionally, scholarly mentions of the term have increased sharply since the 1990s. As of October 2023,
Google Scholar returned about 4,970 results for “organizational capacity” between 1990 and 1999, 16,300
between 2000 and 2009, 22,500 between 2010 and 2019, and 17,500 since 2020.

2See for example Derthick (1990); Rauch and Evans (2000); Gorodnichenko and Peter (2007); Propper
and Van Reenen (2010); Warren (2014); Decarolis et al. (2020).

3The Transportation Costs Project dataset includes 588 projects that overlapped with the period 2011-
2020. Costs are given in real 2021 PPP dollars. The Bureaucratic Quality and Tertiary Educated Index data
come from the World Bank’s Country-Level Institutional Assessment and Review and Worldwide Bureau-
cracy Indicators, respectively. We averaged scores over the period 2011-2020. Appendix D provides further
examples and detail.
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Figure 1: Transportation Costs and Bureaucratic Capacity
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Note: Plots average cost per kilometer of major public transportation projects against World Bank

measures of bureaucratic quality (left) and proportion of tertiary-educated public sector workers (right).

Each point represents a country average for projects active between 2011 and 2020. Red data points

indicate OECD countries.

driver of many important outcomes of interest.4

This paper develops a theory of policy-making that integrates organizational capacity

and its institutional context. Its main objective is to show how these factors jointly affect

the planning and execution of complex projects, in terms of scale, distribution of benefits,

and delays. As a starting point, consider a politician who proposes the development of a

public works project. Before the project reaches completion, the opposition may attempt

to renegotiate its key features. But unlike a standard bargaining game, the politician and

the opposition cannot terminate the game by agreeing to a proposal. This is because the

project is administered by a bureaucratic organization, whose capacity determines its rate

of progress, and hence its eventual cost and whether new opportunities for interim revisions

will arise. As such, we integrate an institutional process, which governs the bargaining over

the project, with an organizational process, which governs the completion of the project.

While ubiquitous, this combination has not thus far been theoretically analyzed.

We formalize the organizational process with a discrete Markov process representation

of projects. Completing a project requires traversing a sequence of bureaucratic stages; for

example, organizational procedures often specify that research and development must be

completed before construction can begin.5 Capacity is the probability of progressing from

4Liscow et al. (2023) find that higher capacity U.S. state transportation departments reduce road resur-
facing costs. As the study notes, these projects tend to generate relatively little political controversy.

5A good example is the Federal Transit Administration (FTA) Capital Investment Grants (CIG) program,
which is the US federal government’s main mechanism for supporting public transportation projects. CIG
proposals must complete two stages before construction can begin: the “Project Development” stage includes
environmental review, approval by local authorities, and commitments for some non-federal funds; second,
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each stage to the next in a given period. If it does not progress, the project remains in the

same stage to begin the next period. Each period before completion imposes costs that are

increasing in the project’s scale. Thus in isolation, higher organizational capacity — due to

better personnel or technology — reduces costs and variability in delivery times.

We embed the organizational process in an institutional process that allows revision of

some project features. At the inception of a project, one agent, the project designer, chooses

its scale and a distribution of benefits between herself and an opposing agent. The former

is irreversible, while the latter is renegotiable. The distributive component corresponds

to downstream decisions such as siting or contractor selection that are possible only after

the scale is established.6 In subsequent periods, agents randomly receive opportunities to

attempt revisions. Depending on the project, these could arise from a turnover in political

leadership, a shift in the power balance between organizational factions, or the mobilization

of NIMBY groups. Attempting a revision automatically pauses progress, and if the attempt

is successful the revising agent chooses a fresh distribution of payoffs. The probability of

success corresponds to the openness of the institutional environment to such interventions.7

The initial proposer must then take the possibility of strategic revisions into account in

choosing project parameters.

The interaction between the organizational and the institutional processes has significant

implications for project design and execution. We first consider projects of fixed scale, which

restrict the agents to propose and possibly revise the distribution of benefits. These choices

are driven primarily by the running costs that would be generated by attempted revisions.

Very large projects are maximally unequal and never revised, because the costs of delay out-

weigh any benefit from attempting revision. Very small projects are also maximally unequal

but always revised, because delays do not impose significant costs. Finally, projects of in-

termediate size feature a combination of revision by at most one agent and more egalitarian

distributions to deter revisions.

We then ask how the initiating agent chooses scale in anticipation of these dynamics.

When the opposing agent is unlikely to have revision opportunities, the optimal scale is

large enough to deter revisions while allocating all benefits to the initiator. When revision

the “Engineering” stage finalizes funding sources and design details, including geotechnical and safety reports.
6As an example, the 1973 election of Maynard Jackson, Atlanta’s first black mayor, disrupted ongoing

plans for a new international airport. Instead of proceeding with the development of a new site, Jackson
pushed to expand an existing airport that was located closer to his political base, resulting in today’s
Hartsfield-Jackson airport.

7Administrative procedures such as the US National Environmental Policy Act (NEPA) mandate reviews
of government-involved projects that invite intervention by outside groups (e.g., Mandelker, 2010). As we as-
sume, challenges can impose costly delays: the US GAO (2014) estimated that the 197 NEPA environmental
impact statements completed in 2012 took an average of 4.6 years to finalize.
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opportunities become more likely, the threat of revisions depends on relative capacity, or

the difference between the probabilities of project progress and revision success. High rela-

tive capacity again allows the initiator to propose a maximally unequal project that avoids

revisions. At intermediate capacity, revisions become more potent, but the initiator can

forestall them by upscaling projects while maintaining high inequality. The tactic of inflat-

ing running costs becomes untenable as relative capacity declines further. Revisions then

emerge as an effective threat, and reduced distributive inequality may be necessary to deter

them. Both revisions and greater equality reduce the initiator’s expected payoff and thereby

result in downscaled projects. Increasing capacity therefore has the overall effect of reducing

revisions and increasing both scale and inequality.

The equilibrium design choices have significant welfare implications. Upscaled projects,

which occur under intermediate relative capacity, cause the agents to do collectively worse

than no project at all. An organizational and institutional system that features low capacity

and high openness to the opposition makes upscaling impossible, while a system with high

capacity and low openness makes upscaling unnecessary. Tactical upscaling is also impossible

when prevented by budgets or physical limitations. Somewhat surprisingly, higher capacity

can increase expected obstruction and delay in the presence of scale caps.

We finally explore the implications of allowing project cancellation. To do this, we

extend the model to two phases, where the first is designated for preliminary work prior to

the determination of scale and distribution, and the second is identical to our main model.

During the first phase, the opposition can cancel the nascent project outright and thereby

prevent some of the worst projects from proceeding. This proves to be at best a partial

remedy, as cancellation itself activates the institutional barriers that affect revisions. Thus,

attempts to cancel can eliminate some bad projects but increase costs and delays for others.

The main insight of our theory is that the implications of organizational capacity cannot

be considered in isolation of its institutional context. Whether in the public or private sector,

formal or informal channels create the potential for reallocating benefits, killing projects,

and inflating costs. As a result, capacity enhancements that have the mechanical effect of

improving technical execution may ultimately worsen project outcomes. In such settings,

reforming institutions becomes more important than adding capacity.

Related Literature. A large literature in political economy has analyzed the dynamics of

policies under transitions in political power (Alesina and Tabellini, 1990; Alesina and Drazen,

1991; Battaglini and Coate, 2008; Gersbach et al., 2020; Gratton et al., 2021; Harstad, 2023).

Within this literature, a main contribution of this paper is its explicit consideration of a

distinct bureaucratic process that governs the production of policy outcomes. Policies and
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their dynamics are not fully determined by the decision-maker in power. The bureaucratic

process unfolds in parallel to the political process. It impacts the decisions of principals, and

it is essential for understanding the form of long-term policies.

Our theory takes the political view of organizational systems as coalitions of individual

interests, as outlined by March (1962) and Cyert et al. (1963) and surveyed in Gibbons

et al. (2013). Work in this literature has examined on how institutions should be designed

to improve project selection or collaboration between competing agents. In general, the

organizational process that delivers a project is determined prior to the institutional process

of selecting the winning project (e.g., Bonatti and Rantakari, 2016; Callander and Harstad,

2015). The innovation of our paper is in modeling institutional and organizational processes

that run simultaneously. Any bargaining between parties over claims to project output ends

stochastically when the organization finishes. Previous work has also considered the issue of

contested control in organizations, but from the angle of inefficient investments in order to

change the transition process itself (Skaperdas, 1992; Rajan and Zingales, 2000). We focus

instead of the inefficiencies that emerge under a fixed institutional system for transitions,

such that project design itself is altered in order to preserve claims for some members.

Theoretical efforts at modeling organizational capacity have thus far adopted widely di-

vergent approaches. Huber and McCarty (2004, 2006) examine the relationship between a

legislative principal and a bureaucratic agent, and represent capacity as the variance of pos-

sible outcomes following a bureaucratic policy choice. The outcome space in these models is

ideological, and the outputs include delegation, compliance, and whether legislation is possi-

ble. Ting (2011) and Turner (2020) also examine this setting, but model capacity as policy

valence and costs, respectively. Foarta (2022) formalizes capacity as agency cost structure

in a dynamic electoral model. Aside from a different set of outcomes, one contribution of

the present paper is a general notion of organizational capacity that generates both variance

and costs. This approach is consistent with a predominant approach in empirical research,

which is to treat capacity as an input into organizational production functions. Such inputs

include information (Lee and Zhang, 2017) and perhaps most prominently, human capital

(Brown et al., 2009; Dal Bó et al., 2013; Acemoglu et al., 2015; Bolton et al., 2016).8

Finally, several theoretical models address the design of long-term policies (e.g., Battaglini

et al., 2012; Callander and Raiha, 2017; Chen et al., 2023), with a growing literature focusing

on the optimal provision of dynamic incentives for multistage projects (e.g., Toxvaerd, 2006;

Green and Taylor, 2016; Feng et al., 2021; Foarta and Sugaya, 2021). We abstract from

8Other lines of theoretical work have used related notions of ‘state capacity’ to explore the ability of
the state to achieve macro-objectives such as tax collection and law enforcement (Besley and Persson, 2009;
Johnson and Koyama, 2017). One emphasis of this work is the creation of capacity in the shadow of political
transitions. By contrast, we address policymaking at the organizational level, taking capacity as given.
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incentive problems in order to explore project design in anticipation of transitions of control.

Paper Structure. The rest of the paper is organized as follows. Section 2 describes the

model, and Section 3 analyzes it and presents the main results. Section 4 extends the

model to multiple phases with cancellation. Section 5 briefly presents three examples that

illustrate applied implications. Finally, Section 6 discusses several extensions and concludes.

The Appendix contains all formal derivations and proofs.

2 Model

Consider an environment with discrete time periods, t = 0, 1, 2.... There are two agents, A

and B, representing two distinct constituencies. Agent A is in control of decision-making at

time 0, and agent B represents an opposing interest within the same organization. Examples

of agents might include politicians or division heads.Agent A initiates a long-term project

at time 0. The game ends when the project is completed.

The Project. The project delivers value v > 0 per unit produced. It has two main

characteristics: irreversible investment and renegotiable claims. We map the irreversible

aspect to a scale choice s ≥ 0, denoting the number of units to be built. We map the

renegotiable claims to a division rule for how the project’s output will be split, with some

fraction going to agent A and the remainder going to agent B.

Once initiated, the project is run by a non-strategic bureaucracy. To be completed, the

project must traverse two stages. It starts in a development stage, denoted d. Once it is

reaches completion, it enters the execution stage, denoted e. Progression from one stage to

the next depends on the bureaucracy’s organizational capacity. Higher capacity allows the

bureaucracy to overcome faster the technical hurdles needed to move the project forward.

We parameterize capacity by p, to capture the probability the project moves from stage d to

stage e in any given period. With probability 1−p, the project does not progress that period.

This implies that a project that is not interrupted is expected to be completed in 1
p
periods.

Every period the project stays in stage d costs each agent c(s). This captures in reduced form

the use of common organizational resources. We assume a continuously differentiable convex

cost function with a constant elasticity ε > 1 : c(s) = sε. This functional form allows us

to derive closed form solutions for our results. While they facilitate the analytical solution,

neither the linearity of the benefit function nor the constant elasticity of the cost function

are key drivers our results. As made clear in the proofs, the main forces in the model emerge
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in a setting with a concave benefit and convex cost.9

Transitions of Control and Revisions. In period 0, agent A initiates the project by

choosing its irreversible characteristic, the scale s, and an initial, but reversible division rule

that assigns fraction wA of total benefits to A and the rest to B.

At the beginning of each period t ≥ 1, control over the project may change. With prob-

ability r ∈ (0, 1), agent A has control, and with probability 1− r, agent B has control. The

transition in control captures a leadership change or simply the arrival of an opportunity for

intervention by the opposition, for instance through a lawsuit. This transition opportunity is

a function of the competitiveness of the institutional system and of the individual resources

of the opposition. We take it as independent of the progress of the project itself.10 Notice

that agent A is more likely to be in control whenever r > 1
2
, and agent B is more likely to

be in control when r < 1
2
. We will refer to the agent who is more likely to be in control as

advantaged, and to the agent less likely to be in control as disadvantaged.

If the project is not completed in any given period, then the agent in control may choose

to trigger a revision. Doing so freezes the project for one period: it does not advance from

stage d to stage e that period. With probability q, the revision is successful and the revising

agent can modify the division of output between agents. The parameter q captures the

openness of the institutional system, or the effective power of an agent in control.

Together, the parameters r and q describe the institutional environment. The constraints

they impose on the organization are independent of its capacity to run the project. Yet, as

the organization operates in the institutional environment, these constraints interact with

capacity to shape the resulting project and to introduce potential delays.

Payoffs. The project’s output is divided between the agents according to the division rule

in place at the time it enters stage e. There is no discounting between periods. However,

the running cost is paid every period the project is in stage d. Therefore, a project of scale

s and with payoff share wi to agent i ∈ {A,B}, which is completed after T periods delivers

the following payoff to agent i:

wi · v · s− T · c(s). (1)

Equilibrium Concept. We derive the Markov Perfect Equilibria of this game with state

variables for periods t ≥ 1 being the current project stage, S ∈ {d, e}, the agent in control

9The restriction to ε > 1 is necessary in order to ensure convexity.
10In the political context, we think of any one project as having a relatively small impact on the likelihood

of a political transition. Likewise, the characteristics of the project itself determine its likelihood of facing
review, not the progress made by the bureaucracy.
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that period, i ∈ {A,B}, and the project division currently in place (w, 1−w), with w ∈ [0, 1].

In period 0, the state variable is i = A. In each period t ≥ 1 when S = d, agent i chooses a

probability of revision σi ∈ [0, 1] and a payoff share wi ∈ [0, 1] for agent i to maximize her

own expected utility. In period 0, agent A chooses scale s ≥ 0 and payoff share wA ∈ [0, 1].

3 Analysis

Our game has two parts, which we analyze separately:

1. Project design in period 0. Agent A sets the irreversible project characteristic, s.

2. Transitions of control and revisions. While the project is in stage d, the agent in

control chooses whether to revise. Revising entails choosing a new payoff division rule.

We start with the revision game over the project’s division, and then ask how agent A sets

its scale.

3.1 Revision Dynamics

For any ongoing project, we are interested in understanding when revisions will be triggered

and how the division rule will be revised. Because of the agents’ freedom to choose any

division rule in a revision, the revision game has an infinite number of possible states in each

period t. To make progress in the analysis, we note that the problem is in fact stationary:

regardless of t, the continuation game is the same for each agent conditional on the state

variable (w, 1−w) which describes the division rule where agent A receives fraction w ∈ [0, 1]

of the output. As such, the agent’s revision strategy will be the same given any (w, 1− w).

This reduces our problem to a game with only two possible division rules: a rule (wA, 1−wA)

that is chosen by agent A in a revision, or a rule (1− wB, wB) that is chosen by agent B in

a revision. With this insight, the project’s evolution into the next period can be represented

as a Markov chain with six states, as shown in Figure 2.

The probability of moving from stage d to any of the possible states depends on capac-

ity, p, the institutional variables, r and q, and the revision probabilities σA and σB. The

transition probabilities between states are given in Figure 3.

With this representation of the problem, we can compute P(e, wℓ|d, i, wk), the expected

probability of reaching stage e with project division wℓ starting from state (d, i, wk), where

i, k, ℓ ∈ {A,B}. Also, we compute T(e, wℓ|d, i, wk), the expected number of periods for this

9



Figure 2: Markov Graph of Project Evolution

Note: Illustrates the Markov Process that governs the evolution of the project. Each state registers the

project stage (d and e), the agent in control (A or B) and the current division rule (wA for A or wB for B).

transition. This allows us to express the expected utility for agent A in state (d, i, wk) as:

EUA = [P(e, wA) · wA + P(e, wB) · (1− wB)] · vs

− [P(e, wA) · T(e, wA) + P(e, wB) · T(e, wB)] · c(s). (2)

For agent B, the expected utility is analogous, with the corresponding payoffs at each ter-

minal state: fraction 1− wA of v · s at (e, wA) and fraction wB at (e, wB).

We note that the revision game differs from a classical bargaining game. One major point

of departure is the independent organizational process for running the project. Whenever an

agent chooses not to revise, the game does not necessarily end. The project is not completed

until it reaches stage e, which depends on the organization’s capacity. Agents therefore

bargain over benefits in the shadow of a stochastic process for project completion.

Revision Strategies. Having expressed the problem in a form that allows us to compute

expected utilities, we turn to the agents’ choices of revision probabilities σA and σB. Notice

that a higher choice of σi increases both P(e, wi) and T(e, wi) in the agent’s expected utility.

In choosing whether to trigger a revision, each agent weighs the benefit of tilting the division

rule in her favor relative to the cost of increasing the expected cost of completion. The

following Lemma shows that this trade-off results in a threshold value of relative cost below

which a revision is triggered.
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Lemma 1 Revisions follow a threshold strategy: There exist thresholds sl(w
A, wB) and

sh(w
A, wB) with sl ≤ sh such that

• The disadvantaged agent (j) revises the project (σj = 1) if s ≤ sl, and does not revise

otherwise (σj = 0);

• The advantaged agent (i) revises the project (σi = 1) if s ≤ sh, and does not revise

otherwise (σi = 0).

The threshold values for sl and sh are given by c(sh)
sh

= qv(wA +wB − 1), c(sl)
sl

= qv(wA +

wB −1) ·min

{
pr

pr+2q(1−r)
, p(1−r)
p(1−r)+2qr

}
. Each agent revises as long as the relative cost of doing

so is not too large. The advantaged agent is more likely to be in control in the future. This

agent expects a higher chance of reaching execution with her preferred payoff division in

place; hence, she has a higher tolerance for costly delays from a revision.

In addition, we show in the Appendix that there exists a third threshold sm(w
A, wB),

such that there is equilibrium multiplicity for s ∈ [sm, sh].
11 Specifically, there are three

possible equilibria: (σA, σB) ∈ {(1, 0), (0, 1)} and a mixing equilibrium. In this region, the

profitability of one agent’s revision depends on the other’s revision strategy. Our results

are substantially unchanged by the equilibrium selected in the multiplicity region, and we

therefore focus the discussion going forward on the equilibrium implied in Lemma 1. In the

Appendix, we present the solution for each possible equilibrium in the multiplicity region

and show how the results have a similar structure and intuition even when selection induces

modest changes in project scale.

The Choice of Division Rule. We derive next the division rules chosen in revisions.

Agent i’s choice of wi will be a best response to the strategy of the other agent, j, and

therefore maximizes

U i(wi|wj, s) =
[
P i
i (σ

A, σB) · wi + P i
j (σ

A, σB) · (1− wj)
]
· vs− P i

c(σ
A, σB) · c(s), (3)

where P i
i , P

i
j and P i

c are functions of p, q, r with expressions that depend on the equilibrium

strategies σA, σB.12 They capture, respectively, the probability of the project reaching state

(e, wi), the probability of the project reaching state (e, wj), and the expected time for project

11Threshold sm is given by c(sm)
sm

= qv(wA + wB − 1) ·max{ pr
pr+2q(1−r) ,

p(1−r)
p(1−r)+2qr}.

12The superscript denotes the agent in control, and the subscript the agent whose chosen project division
is in place when the project enters stage e. These expressions are stated explicitly in the Appendix.
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Figure 4: Revision Best Responses

(a) Low s: s = 0.2 (b) Medium s: s = 0.35

Note: Depicts the payoff distribution chosen by each agent in case of a revision (dashed line for agent B
and solid line for agent A), as a function of the other agent’s revision strategy, given r = 0.4, v = 3,
q = 0.25, and p = 0.35.

completion. This formulation shows that the expected utility for each agent i is piecewise

linear in wi whenever σA, σB ∈ {0, 1}.13

Given the threshold triggers for revisions discussed in Lemma 1, the choice for agent B

reduces to two options. The first is to assign agent A just enough payoff such that she will

not want to change the division rule going forward, and thus PB
B = 1, PB

A = 0. The second

option is to choose a division rule that gives nothing to A, i.e., set wB = 1, and face the

probability of future revisions. This implies PB
B ≤ 1. Likewise, agent A has two options:

either set wA < 1 such that PA
A = 1, or set wA = 1 and have PA

A ≤ 1.

The solutions wB(wA) and wA(wB) are the best responses of the two agents to their

respective problems. Figure 4 depicts these. The next lemma summarizes how these best

responses come together to form an equilibrium.

Lemma 2 Given p, q and r, there exists wAc, wBc ∈ [0, 1] and a corresponding scl ≡
sl(w

Ac, wBc) such that along with snl = sl(1, 1), s
n
h = sh(1, 1), we have the following choices

of division rules:

• If s ≤ scl or snh < s then each agent assigns all benefits to themselves: wA = wB = 1;

13For the mixed strategy equilibrium with σA ∈ (0, 1) or σB ∈ (0, 1), the expected utility is monotonic in
wi. This case is analyzed in the Appendix.
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• If scl < s ≤ snl then the advantaged agent (i) sets wi < 1, whereas the disadvantaged

agent (j) sets wj = 1;

• If snl < s ≤ snh then the advantaged agent sets wi = 1, and the disadvantaged agent sets

wj < 1.

The project’s scale determines the cost of attempting a revision. A very small cost makes

revisions too easy to deter. A very high cost makes revisions prohibitively costly. In both

cases, the agent in control assigns all project output to herself, as deterrence through a more

equal payoff split is ineffective. The calculus changes if the revision cost is intermediate. If

both agents would revise a rule that gives them no payoff, then the advantaged agent will

revise to a more equal payoff division in order to deter future revisions by the opposition.

As the revision cost increases, the advantaged agent will not revise if the division rule in

place gives her enough. Therefore, a disadvantaged project initiator will compromise on the

payoff division rule from the beginning to prevent future revisions.

Lemmas 1 and 2 together describe when a revision will be triggered, by which agent, and

which division rule will be put in place. Figure 5 summarizes these two results, as a function

of the project’s scale.

3.2 Choosing Project Scale in Period 0

The irreversible project characteristic s is set by agent A in period 0. This determines the

revision game analyzed in the previous subsection. Here, we examine the choice of s.

Understanding how the revision game will unfold, agentA derives expected utilityEUA(s) =

UA(wA(s), wB(s), s). She chooses s to solve

max
s≥0

EUA(s). (4)

Figure 5: Revision Equilibrium as a Function of Scale

scl0 snl snh scale

All revise
(low scale / cost)

No one revises
(high scale / cost)

Only advantaged
agent (i) revises

and deters revisions

No one revises,
disadvantaged agent
(j) deters revisions

wi = wj = 1 wi < 1, wj = 1 wi = 1, wj < 1 wi = wj = 1

14



Benchmark without Transitions. To clarify the importance of anticipated revisions,

it is helpful to consider the benchmark case where there are no transitions of control (r =

1). Agent A starts in control in period 0 and remains in control until the project reaches

execution. Agent A has no reason to revise her own project. She chooses wNT = 1 and s ≥ 0

to maximize

max
s

v · s− c(s)

p
, (5)

where 1
p
is the expected time to project completion. The scale sNT is implicitly given by

c′(sNT ) = vp. (6)

Design Choices under Transitions. Each scale choice made by agent A in period 0

maps to the expected revision responses depicted in Figure 5. Choosing a large scale (above

snh) allows A to design the project without the prospect of a future revision of the division

rule. A small scale makes future revisions unavoidable. While the per period running costs

are small, delays due to revisions may significantly inflate the total project cost. Finally,

an intermediate scale can induce future revisions. Yet, revisions are costly and entail com-

promise, and agent A can avoid them by simply inflating s. When this happens is formally

shown in the next result, along with the implications for equilibrium project scale.

Proposition 1 (Capacity and Project Scaling) There exist two thresholds p(ε, q, r) >

p(ε, q, r), with p(ε, q, r) ≤ εq such that the equilibrium scale s∗ satisfies the following:

• (Unconstrained project) If p ≥ p, then s∗ equals the benchmark scale under no transi-

tions of control, s∗ = sNT .

• (Upscaled project) If p ∈ (p, p), then s∗ is strictly higher than the benchmark without

transitions, s∗ > sNT .

• (Downscaled project) If p ≤ p, then s∗ is strictly lower than in the benchmark without

transitions s∗ < sNT .

The thresholds satisfy p(ε, q, r) > q when r < 1
2
and p(ε, q, r) = 0 for r ≥ 1

2
.14 Proposition

1 shows how the strategic use of scale depends on bureaucratic capacity relative to insti-

tutional constraints. When capacity is high, the expected duration of the project is short,

14The statement of the proposition applies to the equilibrium selection implied by Lemma 1 or the mixing
equilibrium in the region of multiplicity described in the analysis for that Lemma. If the equilibrium selected
in the multiplicity region is the one where the disadvantaged agent revises and the advantaged agent does
not, then the statement must be amended with an additional region (pm, pM ), with pm > p where the scale
s∗ is either strictly lower or strictly higher than sNT . Details are given in the proof in Appendix B.3.
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which keeps its implied running costs low. Then, the revision-deterring benefits of a large

scale outweigh the running costs. Agent A is able to choose a project scale equal to that

of the benchmark without transitions of control. This alone is enough to deter revisions,

without the need to compromise on payoff division.

As capacity decreases, the expected project runtime and associated costs increase. Agent

A would ideally reduce the scale to adjust for these higher costs. Yet, she must keep the

scale large enough to deter revisions, which results in upscaling. Finally, as capacity drops

even more and the run time increases further, upscaling becomes too costly. Instead, agent A

reduces scale below what she would ideally set in the absence of transitions. This is because

she expects agent B to revise the project. The delay from revision attempts and a possibly

unfavorable division rule make the project less appealing, which leads to downscaling.

The next result establishes the implications of the revision equilibrium for inequality in

the division rule.

Proposition 2 (Payoff Inequality and Revisions) The equilibrium project division is

maximally unequal and there are no revisions if p > p(ε, q, r). Revisions occur with positive

probability and both agents may receive a part of the project output and only if p ≤ p(ε, q, r).

As long as capacity p is high enough relative to institutional constraints (q and r) and

costs (ε), the initiating agent, A, can strategically choose the irreversible project charac-

teristic (scale s) in order to deter revisions and assign all benefits to herself. As capacity

decreases, using scale to deter revisions becomes too inefficient. The advantaged agent will

revise, and if the scale is still sufficiently large, she will set a payoff division to deter further

revisions by the disadvantaged agent. This reduces equilibrium payoff inequality. Otherwise,

both agents will play a winner-take-all game where everyone revises whenever the opportu-

nity arises and attempts to assign all project output to herself. We illustrate the equilibrium

project scale and expected payoff division in Figure 6.

An immediate observation from Propositions 1 and 2 is that higher capacity, on average,

increases project scale and inequality, but reduces the likelihood of revisions. The project

initiator harnesses the shorter expected project runtime of greater capacity to her advantage:

she makes projects larger, extracts greater benefits for herself, and deters future revisions.

Corollary 1 (Effect of Higher Capacity) Higher bureaucratic capacity p is expected to

increase the equilibrium scale s∗, the project initiator’s payoff share wA, and to reduce the

likelihood of revisions.

Moreover, downscaling and revisions, which can occur in equilibrium only if p(ε, q, r) > 0,

require a disadvantaged project initiator.
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Figure 6: Equilibrium Project Characteristics

Note: Equilibrium s (left) and Agent A’s expected payoff share (right) depicted in solid black lines for

r = 0.4, v = 5, and q = 0.25. The red dashed line shows the scale sNT , and the green dashed line shows the

social planner’s solution (with equal weight on each agent).

Corollary 2 (Conditions for Upscaling and Revisions) Downscaling and revising hap-

pen in equilibrium only when the project initiator (agent A) is disadvantaged (r < 1
2
).

For a disadvantaged agent, a lower scale can be beneficial because it forces the advantaged

agent to compromise more on payoff division in a revision in order to deter further revisions.

This substitution between scale and compromise size does not emerge for the advantaged

agent, as the disadvantaged agent would never be able to revise and offer enough payoff to

the advantaged agent to deter further revisions.

3.3 Welfare

Our results so far show that organizational capacity has pronounced effects on project design.

Higher values of capacity increase payoff inequality, while low and medium values result in

downscaling or upscaling. These strategies suggest significant implications for social bene-

fits. In particular, when capacity lies in the interval (p, p), projects are both upscaled and

unequally divided, and are therefore especially harmful to the non-initiating agent.

To investigate the aggregate benefits from the project, we consider the problem for a

social planner who weighs the two agents equally. Given (3) and Proposition 1, the resulting

social welfare function takes a relatively simple form:

W = vs∗ − 2PA
c c(s

∗). (7)

Proposition 3 uses expression (7) to derive the interval P of capacity values under which the

17



resulting project produces lower welfare than no project at all; that is, where W < 0.

Proposition 3 (Welfare) There exists an interval P ⊂ [0, 1] such that W < 0 for p ∈ P
and W ≥ 0 for p /∈ P. The interval is P = (p, 1) if ε < 2 and P = (p, 2q) if r < 1

2
and

ε ≥ 2.

Proposition 3 highlights the two drivers of welfare losses. First, a low cost elasticity

(ε < 2) makes large scale projects more desirable. This is socially harmful given that the

initiator does not internalize the cost borne by the other agent. The second driver of welfare

losses is the use of strategic upscaling to deter revisions. The size of the interval P is

determined by institutional constraints. When agent A is advantaged (r ≥ 1
2
), this effect is

null. For the opposition, the expected gain from revisions is low if they are unlikely to stay

in control. Agent A faces a low threat of revisions, and therefore does not distort the project

enough to cause a welfare loss.

The calculus changes if the initiator is disadvantaged (r < 1
2
). In this case, the expected

gains from a revision are larger. To deter revisions, agent A responds with larger distortions.

The distortion is particularly costly when the project is overscaled and highly unequal.

Therefore, the interval P is a subset of the region (p, p).

Corollary 3 The bounds of interval P are increasing in q.

As legal or institutional challenges become more potent (i.e., q increases), the interval P
shifts toward higher values of p. This reflects the greater incentive to upscale as the threat

of successful revisions increases. As a result, low-welfare projects are avoided only when

organizational capacity is very high or very low relative to q.

Figure 7 illustrates welfare as a function of p for different values of q. Consistent with

Proposition 3, it shows that the values of p and q that induce upscaling are especially

bad for welfare. As these values move in tandem, the implication is that systems with

high institutional barriers and high capacity are prone to producing inefficient projects. By

contrast, systems with “mismatched” capacity and barriers produce higher welfare, but with

some drawbacks. Under low capacity and high barriers, projects are costly and possibly too

small. Under high capacity and low barriers, higher social welfare comes at the expense of

high inequality in the assignment of benefits.

3.4 Scale Caps

In our model, agent A has full flexibility to choose the project scale. Yet, in practice, project

designers may face hard limits that create a scale ceiling. This maximum achievable scale
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Figure 7: Welfare
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Note: Welfare as a function of p at different values of q when c(s) = s2, r = 0.4, and v = 1.

may not be large enough to accommodate agent A’s desired upscaling. A cap on scale may

therefore help to avoid upscaling and its associated welfare loss. In what follows, we show,

however, that it induces more revisions in equilibrium and increases expected total cost.

Consider an exogenous ceiling on project scale, smax. This value may be set, for instance,

by legal budget caps, technological limits, or bounds on physical space. If this upper bound

binds, then running costs will not be high enough to induce acquiescence from agent B, and

revisions cannot be avoided in equilibrium.

Proposition 4 (Scale Caps and Revisions) If the scale cap satisfies smax ≤ scl , then the

equilibrium project inequality is maximal and each agent revises a project favorable to their

opponent (σA = σB = 1).

Agent A uses scale strategically to deter revisions, up to the ceiling smax. At that point,

the ability to increase scale is exhausted. If the ceiling smax is low, the cost of delays is low

relative to the potential gain from a revision. Compromising on how project benefits are

divided remains the only tool to deter revisions. Yet, with a low smax, the needed compromise
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would have to be exceedingly large. Instead, each agent prefers to enter a ‘winner-take-all’

regime (wA = wB = 1) where everyone revises.

For a fixed smax, increasing capacity p increases the likelihood of revisions. The scale

needed to deter revisions rises with p. Moreover, as p increases, the expected project du-

ration, and therefore the expected running cost, is smaller. This makes revisions more

appealing and their deterrence more difficult.

Corollary 4 (Scale Caps and Higher Capacity) With fixed smax < ∞, higher organi-

zational capacity p increases, in expectation, the likelihood of project revisions and delays.

However, conditional on the equilibrium with revisions, higher p reduces expected delays.

4 Cancellation versus Revision

Thus far, revisions have been the only meaningful barrier for the project initiator. The

preceding results show that this assumption gives the initiator considerable proposal power.

In many settings opponents clearly have access to additional tools; in particular, institu-

tional mechanisms such as environmental litigation can sometimes cancel projects entirely.

While the threat of termination may plausibly discipline A, our theory suggests that like

revisions, cancellations must also face institutional constraints. In this section we examine

the implications of cancellations for project properties such as survival, welfare, and delays.

We implement cancellation by adding an initial planning phase to the basic model, which

we refer to in this section as the main phase. The planning phase might represent the pro-

duction of preliminary research or broad project outlines prior to a specific proposal. In

the setting of US infrastructure construction, interested local governments take the initial

step by formulating proposals for a Capital Improvement Grant administered by the Federal

Transit Administration (FTA). Controversy and termination prior to major construction

have featured prominently in domains such as American energy projects. In 2017, develop-

ers abandoned Cape Wind, which was slated to be the country’s first large offshore wind

facility, after over a decade of legislative, regulatory, and judicial disputes over environmental

and aesthetic issues. In 2021, the Biden administration effectively ended the Keystone XL

pipeline, which would have efficiently transported “tar sands” oil from Alberta to the Gulf

Coast. This decision reversed approvals granted during the Trump administration, which

were themselves reversals of Obama administration policy. Thus, the two phases together

capture the idea that quitting is the more natural remedy early in the life-cycle of a project,

while more fine-grained modifications become feasible as concrete features become evident.

The planning phase has stages dp and ep that mirror the development and execution

phases of the main phase, respectively. Agent A initiates a new project in period 0, and A
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Figure 8: Planning Phase Markov Process
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q

p(1− σB
q ) qσB

q

ep 0 0 1 0

qp 0 0 0 1

Note: Transition matrix for the planning phase. Each state of the Markov Process is given
by the project stage and controlling agent.

and B gain control with probabilities r and 1− r in each subsequent period, respectively. A

new project begins in stage dp and progresses toward stage ep with probability p in each period

if the controlling agent chooses to continue it. Reaching ep results in the commencement of

period 0 of the main phase with A as initiator in the subsequent period.15

An attempt to quit succeeds with probability q. Success concludes the project in stage

qp; this is equivalent to a final scale of zero. We allow only agent B to quit, as the project

initiator would presumably not quit its own project. Because scale is not yet determined,

the running cost per period is fixed at cp > 0. Similarly, the lack of established distributional

parameters implies that there can be no meaningful revisions. The planning phase produces

no direct benefits for the agents. We assume that B breaks ties in favor of continuing.

Figure 8 presents the transition matrix for the equilibrium Markov chain. This allows us

to derive the threshold main phase expected value, EUB(s∗), below which B quits:

vBq ≡
(
1

p
− 1

q

)
cp. (8)

This expression conveys two important intuitions about quitting: B continues any project

that produces positive expected value in the main phase if p > q, and attempts to quit any

project with negative expected value if p < q.

In a stationary strategy, B either quits or continues whenever it gains control. This allows

us to derive some simple measures of the consequences of quitting. Under a quitting strategy,

the probability of successful termination in the planning phase is (1−r)(1−p)q
rp+(1−r)q

. Quitting also

produces delays. If B continues, then the planning phase will conclude in 1/p periods in

15We obtain similar results if the initiating agent in the main phase is randomly chosen.
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expectation. Quitting increases this to (1−r)(q−p)+1
rp+(1−r)q

periods, which lengthens the completion

time of the planning phase if q < p. Finally, conditional upon reaching the main phase, a

quitting strategy will have imposed an expected (1−r)(1−p)
rp

periods of additional delay.

We use the welfare expressions from the previous section to derive the following result,

which provides conditions under which B cancels projects in equilibrium.

Proposition 5 (Cancellation) There exists an interval Pc ≡
[
pc, pc

]
, that is non-empty

if cp is sufficiently high and satisfies q < pc ≤ εq ≤ pc such that:

(i) For r > 1/2, B continues if and only if p ∈ Pc when p > p; B continues only if

p ∈ Pc when p < p.16

(ii) For r < 1/2, B continues if and only if p ∈ Pc when p > p. Additionally, B quits

for p sufficiently close to 0, and continues for p in a neighborhood of q if ε ≥ 2.

Proposition 5 first establishes a region Pc of values of p where agent B has an incentive to

continue. If it exists, Pc contains εq, at which point p > q, agent A becomes able to propose

her ideal scale sNT , and project welfare is non-negative. One incentive to cancel arises when

p is very low relative to q. As is evident from the expression for vBq (8), this means that

cancelling is “easier” than proceeding. Agent B also cancels for values of p above Pc, as

these induce agent A to choose a large, unequal project in the main phase.

Part (i) of the proposition focuses on the case of B as the disadvantaged agent. In this

case, cancellation only occurs for p contained within Pc. In part (ii), agent B is advantaged

and faces two additional considerations. When p is slightly greater than q it faces the

threat of a harmful upscaled project in the main phase. This produces an incentive to

cancel the lowest-welfare projects. Next, B strictly benefits from some under-scaled projects,

and therefore continues projects when p is near q. Figure 9 illustrates the resulting three

cancellation regions and their implications for delay in the case of quadratic costs. Notably,

the attempted cancellation of low-welfare projects (where p > q > q) lengthens the expected

completion time of the planning phase.

What kinds of projects survive quitting? The welfare implications of the planning phase

are ambiguous. The top half of Figure 10 illustrates this by superimposing agent B’s cancel-

lation strategy on main phase welfare, as plotted in Figure 7. The clear implication is that

cancellation does not necessarily coincide with low welfare. To avoid high delay costs due to

low capacity, B cancels projects that promise positive welfare upon reaching the main phase.

It also continues some moderately inefficient projects in order to avoid high delay costs from

16For quadratic costs (ε = 2), Pc =

[
2cp−2

√
cp(cp−q2v2)

qv2 ,
2cp+2

√
cp(cp−q2v2)

qv2

]
and p ∈ Pc is necessary and

sufficient for continuation for all p.
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Figure 9: Planning Phase Delays
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Note: Expected length of planning phase, with equilibrium cancellation (red) and continuation (gray) by

agent B. Parameters are c(s) = s2, v = 1, q = 0.3, r = 0.4, and cp = 0.1. Dashed line indicates benchmark

of no quitting.

obstruction. Thus, while the ability to quit gives agent B some power to prevent the worst

projects from proceeding, institutional costs limit its usefulness.17

Observe finally that running costs from the planning phase could potentially dissuade

agent A from even starting the project. The bottom half of Figure 10 pushes the exercise

one step further by asking when agent A would wish to initiate a project at all, anticipating

B’s strategy. The added delay from the planning phase causes A to hold back on projects

when p is relatively low. These include some that agent B would not have cancelled. In the

example, A proceeds with neither strictly positive nor strictly negative welfare projects.

5 Applications

Our model produces a range of predictions about the implications of changes in organizational

capacity (p) and the ability to exploit institutional mechanisms to revise projects (q and r).

This section presents three brief applications that show how its predictions are consistent

with seemingly disparate facts about key project characteristics in major organizations.

A main challenge of any application lies in measuring the exogenous parameters of inter-

17A legitimate question is what happens when cancellations and revision can happen within the same
phase. We show separately that in a one-phase game where players can either revise or quit, quitting can
occur in equilibrium on if p < q.
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Figure 10: Welfare and Quitting
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Note: Welfare and quitting as a function of p at different values of q. Parameters are c(s) = s2, r = 0.4,

v = 1, and cp = 0.1. On top row, red indicates projects that agent B quits. On bottom row, blue

additionally indicates projects that A does not initiate.

est. For example, many of our results depend on the relative values of p and q, and therefore

require a means to draw meaningful comparisons between capacity and institutional con-

straints. While there have been numerous efforts at empirically measuring each in isolation

(e.g., Tsebelis, 2002; Besley and Persson, 2011; Dal Bó et al., 2013; Bolton et al., 2016), we

are not aware of any effort to quantify them simultaneously. Thus, the examples necessarily

rest on some auxiliary assumptions about the parameters.

Subway Construction. According to the Transportation Costs Project, recent US rail

construction costs have been the sixth highest in the world (Marron Institute of Urban

Management, 2023). Subways in particular have faced extreme cost pressures, due to both

the technical difficulty of building in high-density urban areas and the web of institutions

that fund and oversee their construction.

The construction of the Washington DC Metro system in the early 1970s exemplified the

confluence of institutional constraints with limited organizational capacity (Schrag, 2006).
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To address the Washington Metropolitan Area Transportation Authority’s (WMATA) short-

comings in expertise, labor, and capital, General Manager Jackson Graham relied extensively

on external consultants. Graham also encountered extensive resistance from local stakehold-

ers; the National Park Service, for example, opposed the siting of stations in areas under its

jurisdiction. In anticipation of widespread opposition, WMATA Deputy General Manager

Warren Quenstedt adopted an upscaling strategy along with Graham:

We want to get as much under construction as we possibly can, so it would

cost more to cover it up than it would to finish it. Always we wanted to give

the board . . . an unacceptable alternative, so that we would take them down the

road we wanted to go. If we hadn’t done that, everything would have bogged

down into bureaucratic debate, and quibbling, and so forth that goes on all the

time. (Schrag, 2006, pp. 145-46)

More recently, the $4.6 billion Phase 1 of the New York City Second Avenue Subway

(SAS) became the most expensive subway line in the world upon its opening in 2017.18 The

project, which added three stations along a three kilometer extension of an existing subway

line, was first conceived in the early 20th century and saw preliminary excavations in 1972.

As Goldwyn et al. (2023) documents, the primary agencies in charge of the SAS, the state-

level Metropolitan Transportation Authority (MTA) and its New York City Transit (NYCT)

agency, faced constraints from authorities responsible for parks, roads, buildings, and the

environment. These included a city Department of Transportation requirement that roads

remain open during construction, and a $15 million payment to New York City Parks to

occupy part of a local playground as a staging site.

Against these constraints, the MTA had limited internal resources for managing complex

projects. Until 2003, NYCT had 1,600 employees dedicated to design and construction man-

agement. The MTA’s Capital Construction Company (MTACC) subsequently replaced these

employees with a much smaller staff that relied instead on external consultants. In its 2007

budget, the company reported a 2006 headcount of 96 full-time equivalent (FTE) employees,

with 30 categorized as MTACC-wide “Administration” and five “Engineering/Capital” staff

dedicated to the SAS (Metropolitan Transportation Authority, 2007). The latter category

was projected to expand to 13 after groundbreaking in 2007. By 2014, the staff had expanded

to 126 FTEs, with 14 in Administration and 18 in Engineering/Capital specific to the SAS

18Funding was provided by local and federal sources, with the FTA providing $1 billion. Phase 2 of the
SAS, which will add additional track and three new stations, received FTA approval in 2023 and is slated
to cost $6.3 billion.
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(Metropolitan Transportation Authority, 2015).19

The resulting SAS stations were notably large, reflecting the upscaling region of Propo-

sition 1. Uncharacteristically for New York, the stations featured mezzanine levels and were

longer than their platforms by 60% to 160% – far more than typical stations in comparable

systems. The extra size gave NYCT staff and services access to exclusive working and stor-

age spaces. Part of NYCT’s success in gaining concessions was due to its ability to withhold

approvals from its parent agency. Goldwyn et al. (2023) estimate that scale alone more than

doubled the cost of the SAS, and was the largest single contributor to its overall excess costs.

20th Century US Infrastructure. Proposition 1 shows that as q increases relative to

p, project designers may prevent revisions by increasing scales beyond their ideal levels. If a

planning phase exists, as in Proposition 5, the relative increase in q may also result in projects

being canceled before breaking ground. As Altshuler and Luberoff (2003) relate, changes in

the political environment that enabled interest group opposition have upended the trajectory

of US infrastructure projects. In the mid-20th century, urban planners exemplified by figures

such as Robert Moses operated with few constraints, often promoting automobile-centered

ideas for urban renewal, supported of local business interests (Caro, 1974).

The programs operated, moreover, in relative secrecy, so that those affected

often learned of projects just before the bulldozers rolled. In the early years

there were no organized interest groups monitoring or learning from these ex-

periences, much less providing potential victims with tactical assistance. Since

their cause seemed hopeless, even those most adversely affected generally gave

in without a fight. This tendency was accentuated by the fact that the victims

were disproportionately poor and black. (Altshuler and Luberoff, 2003, p. 22)

Assisted by the national rise of civil rights and environmental movements, as well as

laws such as NEPA and the Clean Air Act, conflicts over infrastructure development rose

drastically starting in the late 1960s. The increasingly effective political mobilization, which

might be interpreted as a decrease in r and an increase in q, affected numerous ongoing

projects. For example, a 1982 court order paused construction of the New York Westway in

order to protect local fish breeding grounds. The project, which was intended to replace a

decaying highway along the west side of Manhattan, was eventually canceled in 1985 after

over a decade of development and $200 million in expenditures.20

19Plotch (2015) reviews the roles of under-staffing and poor consultant work in accounting for infrastruc-
ture project delays.

20See Sam Roberts, “The Legacy of Westway: Lessons from its Demise.” New York Times, 10/7/1985.
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For planners, the response to more effective contestation was not to abandon large

projects, but rather to expand their size.21 This strategy was in evidence in the construc-

tion of the Boston Central Artery/Tunnel (CA/T, better known as the “Big Dig”), which

replaced an elevated highway in downtown Boston with a technologically ambitious tunnel

and associated connecting structures. In addition to local interests, stakeholders in CA/T

included the Massachusetts and federal governments, which provided its primary funding,

as well as neighboring municipalities. The ultimate design contained over 1,500 mitigation

agreements, which expanded the project to include wetlands restoration, landfill redevelop-

ment, and the construction of an artificial reef.22 While the original highway was constructed

in five years in the 1950s, the CA/T took over 20 years of planning and construction, at a

cost more than double that of early projections.

Inequality in Government Procurement. By Corollary 1, the distributive consequence

of increasing p is greater inequality in how benefits are distributed at the project level.

Government procurement provides a natural setting for examining this implication. US

federal procurement is a highly regulated process that employs hundreds of thousands of

personnel.23 As in the r < 1/2 case in the model, existing laws provide frequent opportunities

for revisions. Losing or excluded bidders can challenge award decisions with either the

contracting agency or the Government Accountability Office (GAO), and successful appeals

can change awardees, re-open competition, or result in a range of intermediate steps. Between

fiscal years 2018 and 2022, about half of the 2,000 or so cases per year heard by the GAO

received some form of remediation (US GAO, 2022).

The Competition in Contracting Act mandates a default process of “full and open com-

petition,” whereby prospective contractors submit competitive bids that are evaluated ac-

cording to preset criteria. However, a substantial minority of contracts are awarded on a

non-competitive, “sole source” basis. This process is intended for circumstances such as

absence of alternate suppliers, emergencies, or one of several public interest criteria. These

21Altshuler and Luberoff (2003) also point out that in some cases projects also expanded their distributive
reach, consistent with Proposition 2.

22See Daniel C. Wood, “Learning From The Big Dig.” Public Roads 65(1), July/August 2001.
23The stages of the federal contracting process fit well with the stage structure of our model. As DiIulio

(2014) describes:

[T]he federal contracting process has three separate but related parts: (1) planning (how
federal agencies decide what and how much to contract for . . . and what terms and conditions are
they subject to); (2) awarding (the background market research, . . . the budgetary criteria, and
the precise procedures for awarding competitive bids or making noncompetitive selections);
and (3) overseeing (everything from routine reporting requirements to financial audits, field
inspections, public comments, and impact studies). [p. 65]
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contracts require increasing levels of justification and approval as their size grows, but ob-

servers have noted that agencies have substantial discretion to adopt them (e.g., Dahlström

et al., 2021). Sole-sourcing therefore serves as a plausible proxy for high-inequality projects.

The Department of Defense (DoD) is both the largest user of sole-source contracts and

one of the few recent examples of a substantial increase in organizational capacity in the

federal government. In 2009, DoD began a long-term expansion its acquisition workforce,

which had declined significantly since the 1990s (Gates et al., 2022). This effort, which was

exempted from concurrent DoD hiring freezes, resulted in growth from about 130,000 to

over 180,000 staff between fiscal years 2009 and 2021. The added personnel significantly

enhanced the ability of program managers to oversee the contracting process (DiIulio, 2014).

Importantly, expansion was highly uneven during this period, with no headcount change

between fiscal years 2011 and 2014 and a net growth of 15,000 between 2014 and 2017.

The fiscal years 2014 through 2017 coincided with the second term of the Obama presi-

dency, during which Democrats and Republicans split control of government. Defense spend-

ing changed ony modestly during this period, but outlays from non-competitive contracts of

all sizes grew far faster than those from competitive contracts. For example, among awards

worth over $1 million, outlays from competitive contracts decreased by 1.5%, compared to

a 34.4% increase from non-competitive contracts.24 Thus, this era saw dramatic growth in

both organizational capacity and less egalitarian projects.25

6 Discussion and Concluding Remarks

Within academic and policy circles, bureaucratic capacity has become a hallmark of good

management and governance. In isolation, better-resourced or better-equipped organizations

can naturally be expected to complete given tasks more efficiently and predictably. But

organizations inevitably function within an institutional environment in which interested

agents generate their tasks and opposing agents attempt to renegotiate them. In contrast

with the consensus about the benefits of capacity, much less is understood about how capacity

interacts with its institutional environment.

Our theory addresses this interaction, focusing on two fundamental aspects of insti-

tutional decision-making processes: transitions of control and revisions of ongoing projects.

These features alone produce a rich interdependence between organizational and institutional

24Data from https://usaspending.gov. Competitive contracts accounted for 53% of the DoD total.
The disparity is somewhat higher for higher-valued contracts.

25The acquisition workforce continued to grow during the Trump administration, and the level of sole
source contracts remained high, but these developments also coincided with higher defense spending starting
in fiscal year 2018.
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processes. The overarching implication is that greater capacity does not unambiguously im-

prove performance. High capacity relative to ease of revision maximizes execution speed but

also delivers all benefits to the initiator. Exogenous limits on scale induce revisions, which

reduce ex ante inequality but increase delays. When initiators cannot expect continuous

managerial control, low capacity also encourages revisions, and moderate capacity gives ini-

tiators incentives to inflate scales. Inflated projects minimize welfare, and even the ability

to cancel at an early phase does not entirely eliminate them. Thus, institutional reforms

should target the “matched” profiles of organizational capacity and institutional constraints

that encourage the inefficient project upscaling.

Our results speak to contemporary policy debates about the role of institutional and

legal barriers in various domains. Such barriers have long been recognized as parts of the US

regulatory landscape (Pressman and Wildavsky, 1984; Smith et al., 1999). In recent years

they have attracted fresh attention as sources of delay and cost inflation in areas such as

infrastructure, housing, and clean energy (Mehrotra et al., 2022; Brooks and Liscow, 2023).

To expand upon our basic ideas, we briefly discuss two other institutional features com-

monly observed in practice. These extensions provide additional insights without undoing

our main results. Further details on each are provided in Appendix C.

Multiple Project Phases. Section 4 extended the baseline model to a more complex

project completion process, where the opposing agent B could cancel in a preliminary phase.

As an alternative, complex projects may present multiple opportunities for politicians to

revisit basic questions of scale and distribution. Thus, the project scale parameter we took

as irreversible may be modified. We extend the model to ask how the possibility of resetting

program parameters mid-stream affects project scale and revisions. In particular, the project

here consists of two structurally identical phases, each of which is identical to the basic model.

The phases are dynamically linked through their cost functions: a higher scale in phase 1

reduces the cost of running the project in phase 2. The phase 1 and 2 projects may thereby

be understood as pilot and final projects, respectively. The agent who happens to be in

control when the first phase is completed becomes the initiator for the second phase. This

agent chooses the second phase scale, regardless of what the scale was in phase 1. Thus,

in contrast with Section 4, agent B may modify project characteristics in phase 1 and gain

control as the initiator in phase 2, but cannot quit.

The additional initial phase shows how uncertainty over future control affects project

design. A higher scale in the first phase lowers the threshold for upscaling in the second

phase. This disincentivizes investment in scale by agent A in phase 1, reducing the phase 2

scale below that which A would choose if her continued control were assured. A may forgo
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funding the project altogether by setting the phase 1 scale to zero if it anticipates a low

welfare project that has the potential to penalize the non-initiating agent in phase 2.

Variable Capacity. We can also adapt the model to allow scale to impact capacity di-

rectly. Organizations may be able to handle and move forward lower scale projects easily,

while larger scale projects may trigger additional compliance procedures or more specialized

expertise. For instance, in hierarchical organizations, more expertise layers may be involved

in larger projects (Garicano, 2000).

In our model, making p a function of scale operates akin to the budget limits described

above. For instance, consider the case in which, above some sp > 0, the speed of completion

goes to 0. This limits any equilibrium scale choice by agent A to one that can be handled

given the organization’s capacity. As a result, project scale is lower and the likelihood of

revisions is higher than in a world with constant capacity.

Implications for Future Work. While the model parameterizes many features relevant

to organizations, institutions, and projects, it also omits several. Consider the problem

of product development with uncertain technologies. If a project has quality dimensions

that are unknown at the point of initiation, then agents may seek revisions as they learn

about payoff implications. Our framework may then be applied to ask how organizational

capacity generates over- or under-investment in risky technologies. Other applications might

usefully exploit plausible relationships between parameters. For example, the probabilities

of retaining control or revising successfully may depend on scale or the rate of progress.

Finally, the implications of organizational capacity and the institutional environment

raise several questions about their origins. We mention several as possibilities for further

inquiry. First, agents may have incentives both to invest in the capabilities of organizations

that may far outlive them, as well as to develop the institutional forums for determining

project outcomes. Next, the openness of an institutional system to revisions could invite

more participants, which would be better approximated by having more agents and a richer

distributive space. Finally, it may be useful to unpack the capacity parameter p to reflect

the realities of modern projects. For example, outside contractors often play major roles in

large infrastructure construction, but whether such players ultimately enhance capacity, or

are symptoms of low capacity, is not obvious.26

26See Ralph Vartabedian, “How California’s faltering high-speed rail project was ‘captured’ by costly
consultants.” Los Angeles Times, April 26, 2019.
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Dal Bó, E., Finan, F., Rossi, M.A., 2013. Strengthening State Capabilities: The Role of
Financial Incentives in the Call to Public Service. Quarterly Journal of Economics 128,
1169–1218.

Decarolis, F., Giuffrida, L.M., Mollisi, V., Spagnolo, G., 2020. Bureaucratic Competence
and Procurement Outcomes. Journal of Law, Economics, and Organization 36, 537–597.

Derthick, M., 1990. Agency Under Stress. Brookings Institution, Washington, DC.

DiIulio, J., 2014. Bring Back the Bureaucrats: Why More Federal Workers will lead to
Better (and Smaller!) Government. Templeton Foundation Press, West Conshohocken,
PA.

Feng, F.Z., Taylor, C.R., Westerfield, M.M., Zhang, F., 2021. Setbacks, Shutdowns, and
Overruns. SSRN Working Paper 3775340 .

Foarta, D., 2022. How Organizational Capacity Can Improve Electoral Accountability. Amer-
ican Journal of Political Science 67, 776–789.

Foarta, D., Sugaya, T., 2021. Wait-and-See or Step In? Dynamics of Interventions. American
Economic Journal: Microeconomics 13, 399–425.

Garicano, L., 2000. Hierarchies and the organization of knowledge in production. Journal
of political economy 108, 874–904.

Gates, S.M., Roth, E., Kempf, J., 2022. Department of Defense Acquisition Workforce
Analyses: Update Through Fiscal Year 2021. RAND Corporation, Santa Monica, CA.

Gersbach, H., Jackson, M.O., Muller, P., Tejada, O., 2020. Electoral Competition with
Costly Policy Changes: A Dynamic Perspective. SSRN Working Paper 3615402 .

Gibbons, R., Matouschek, N., Roberts, J., 2013. Decisions in Organizations, in: Gibbons,
R., Roberts, J. (Eds.), The Handbook of Organizational Economics, Princeton University
Press, Princeton, NJ. pp. 373–431.

Goldwyn, E., Levy, A., Ensari, E., 2023. The New York Case. Technical Report. NYU
Marron Institute of Urban Management.

Gorodnichenko, Y., Peter, K.S., 2007. Public Sector Pay and Corruption: Measuring Bribery
from Micro Data. Journal of Public Economics 91, 963–991.

32



Gratton, G., Guiso, L., Michelacci, C., Morelli, M., 2021. From Weber to Kafka: Political
Instability and the Overproduction of Laws. American Economic Review 111, 2964–3003.

Green, B., Taylor, C.R., 2016. Breakthroughs, Deadlines, and Self-reported Progress: Con-
tracting for Multistage Projects. American Economic Review 106, 3660–3699.

Harstad, B., 2023. The conservation multiplier. Journal of Political Economy 131, 1731–1771.

Huber, J.D., McCarty, N., 2004. Bureaucratic Capacity, Delegation, and Political Reform.
American Political Science Review 98, 481–494.

Huber, J.D., McCarty, N., 2006. Bureaucratic Capacity and Legislative Performance, in:
Adler, E.S., Lapinski, J.S. (Eds.), The Macropolitics of Congress, Princeton University
Press, Princeton, NJ. pp. 50–78.

Johnson, N.D., Koyama, M., 2017. States and Economic Growth: Capacity and Constraints.
Explorations in Economic History 64, 1–20.

Keijzer, N., Spierings, E., Phlix, G., Fowler, A., 2011. Bringing the invisible into perspective.
Reference paper for using the 5Cs framework to plan, monitor and evaluate capacity and
results of capacity development processes. Maastricht: ECDPM.

Lee, M.M., Zhang, N., 2017. Legibility and the Informational Foundations of State Capacity.
Journal of Politics 79, 118–132.

Liscow, Z., Nober, W., Slattery, C., 2023. Procurement and Infrastructure Costs. NBER
Working Paper 31705 .

Mandelker, D.R., 2010. The National Environmental Policy Act: A Review of its Experience
and Problems. Washington University Journal of Law and Policy 32, 293–312.

March, J.G., 1962. The Business Firm as a Political Coalition. Journal of Politics 24,
662–678.

Marron Institute of Urban Management, 2023. Transit costs project. URL: https:

//transitcosts.com.

Mehrotra, N., Turner, M.A., Uribe, J.P., 2022. Does the US Have an Infrastructure Cost
Problem? Evidence from the Interstate Highway System. Unpublished manuscript, Brown
University .

Metropolitan Transportation Authority, 2007. MTA 2007 Adopted Budget – February Fi-
nancial Plan 2007-2010.

Metropolitan Transportation Authority, 2015. MTA 2016 Budget and 2016-2019 Financial
Plan Adoption Materials.

OECD, 2011. The Enabling Environment for Capacity Development. URL: https://www.
oecd.org/development/accountable-effective-institutions/48315248.pdf.

33

https://transitcosts.com
https://transitcosts.com
https://www.oecd.org/development/accountable-effective-institutions/48315248.pdf
https://www.oecd.org/development/accountable-effective-institutions/48315248.pdf


Plotch, P.M., 2015. What’s Taking So Long? Identifying the Underlying Causes of De-
lays in Planning Transportation Megaprojects in the United States. Journal of Planning
Literature 30, 282–295.

Pressman, J.L., Wildavsky, A., 1984. Implementation: How Great Expectations in Wash-
ington are Dashed in Oakland. University of California Press, Los Angeles.

Propper, C., Van Reenen, J., 2010. Can Pay Regulation Kill? Panel Data Evidence on
the Effect of Labor Markets on Hospital Performance. Journal of Political Economy 118,
222–273.

Rajan, R.G., Zingales, L., 2000. The Tyranny of Inequality. Journal of public Economics
76, 521–558.

Rauch, J.E., Evans, P.B., 2000. Bureaucratic Structure and Bureaucratic Performance in
Less Developed Countries. Journal of Public Economics 75, 49–71.

Schrag, Z.M., 2006. The Great Society Subway: A History of the Washington Metro. Johns
Hopkins University Press, Baltimore.

Skaperdas, S., 1992. Cooperation, Conflict, and Power in the Absence of Property Rights.
American Economic Review 82, 720–739.

Smith, V.K., Von Haefen, R., Zhu, W., 1999. Do Environmental Regulations Increase Con-
struction Costs for Federal-aid Highways? A Statistical Experiment. Journal of Trans-
portation and Statistics 2, 45–60.

Ting, M.M., 2011. Organizational Capacity. Journal of Law, Economics, and Organization
27, 245–271.

Toxvaerd, F., 2006. Time of the Essence. Journal of Economic Theory 129, 252–272.

Tsebelis, G., 2002. Veto Players: How Political Institutions Work. Princeton University
Press, Princeton, NJ.

Turner, I.R., 2020. Policy Durability, Agency Capacity, and Executive Unilateralism. Pres-
idential Studies Quarterly 50, 40–62.

US GAO, 2014. National Environmental Policy Act: Little information exists on NEPA
analyses. 14-370.

US GAO, 2022. GAO Bid Protest Annual Report to Congress for Fiscal Year 2022. 23-
900462.

Warren, P.L., 2014. Contracting Officer Workload, Incomplete Contracting, and Contractual
Terms. RAND Journal of Economics 45, 395–421.

34



Appendix
For Online Publication

A Preliminaries

Let (wA, 1− wA) denote the division of the total benefits vs between agents A and B when
the division was put in place by agent A, such that agent A receives fraction wA, and agent
B receives fraction 1−wA. Similarly, let (1−wB, wB) denote the division of the total benefits
vs between agents A and B when the division was put in place by agent B, such that agent
A receives fraction 1 − wB, and agent B receives fraction wB. Finally, let rA stand for the
probability of agent A being in control (rA = r) and rB stand for the probability of agent B
being in control (rB = 1− r).

Given the Markov transition probabilities, the expected utility for agent i ∈ {A,B}
starting in the next period with the payoff division in place set by agent i is

U i(wi|wj, s, σA, σB) = sv · [P i
i · wi + P i

j · (1− wj)]− P i
c · c(s), (9)

where

P i
i =

(
1 +

q(rjσj(1− rjσj))

p(1− riσi)(1− rjσj) + qriσi(1− rjσj)

)−1

, (10)

P i
j =

(
1 +

p(1− riσi)(1− rjσj) + qriσi(1− rjσj)

qrjσj(1− riσi)

)−1

, (11)

P i
c =

1

p

(
1− rjσj p(1− riσi) + 2qriσi

p(1− riσi) + q(riσi + rjσj)

)−1

. (12)

B Proofs

B.1 Proof for Lemma 1

Consider first the pure strategy equilibria, σA, σB ∈ {0, 1}. An equilibrium exists if each
agent i ∈ {A,B} prefers to follow his/her prescribed strategy given the other agent j’s
strategy. For agent i, if σi = 1, then the ex-ante payoff from a revision is

U i,R = q · U i(wi) + (1− q) · U i(1− wj).

If σi = 0, then the ex-ante payoff from project continuation with the division rule set by
agent j is

U i,C = p · sv · (1− wj) + (1− p) · U i(1− wj).
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Case 1: σA = 1 and σB = 1. This is an equilibrium if U i,R ≥ U i,C for i ∈ {A,B}. These
conditions reduce to two upper bounds on c(s)/s, such that this equilibrium is sustainable if

c(s)

s
≤ qv(wA + wB − 1) ·min

{
p(1− r)

p(1− r) + 2qr
;

pr

pr + 2q(1− r)

}
.

Case 2: σA = 1 and σB = 0. This is an equilibrium if UA,R ≥ UA,C and UB,R ≤ UB,C .
These conditions reduce to two thresholds:

c(s)

s
≤ qv(wA + wB − 1),

c(s)

s
≥ qv(wA + wB − 1)

p(1− r)

p(1− r) + 2qr
.

Therefore, the equilibrium exists for

c(s)

s
∈
[
qv(wA + wB − 1)

p(1− r)

p(1− r) + 2qr
, qv(wA + wB − 1)

]
.

Case 3: σA = 0 and σB = 1. This is an equilibrium if UA,R ≤ UA,C and UB,R ≥ UB,C .
These conditions reduce to two thresholds:

c(s)

s
≥ qv(wA + wB − 1)

pr

pr + 2q(1− r)
,

c(s)

s
≤ qv(wA + wB − 1).

Therefore, the equilibrium exists for

c(s)

s
∈
[
qv(wA + wB − 1)

pr

pr + 2q(1− r)
, qv(wA + wB − 1)

]
.

Case 4: σA = 0 and σB = 0. This is an equilibrium if UA,R ≤ UA,C and UB,R ≤ UB,C .
These conditions reduce to the same lower bound c(s)

s
≥ qv(wA + wB − 1).

Consider next the case of mixed strategy equilibria.

Case 5: σA ∈ (0, 1) or σB ∈ (0, 1). If Agent A mixes with σA ∈ (0, 1), this requires
UA(wA|1, σB) = UA(1− wB|0, σB), and thus the equilibrium σB∗ is

σB∗ =
p(qsv(wA + wB − 1)− c(s))

(1− r)[p(qsv(wA + wB − 1)− c(s)) + 2qc(s)]
. (13)

Similarly, if Agent B mixes, then UB(wB|σA, 1) = UB(1 − wA|σA, 0). Thus the equilibrium
σA∗ is

σA∗ =
p(qsv(wA + wB − 1)− c(s))

r[p(qsv(wA + wB − 1)− c(s)) + 2qc(s)]
. (14)
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The mixing probabilities must satisfy σB ∈ [0, 1] and σA ∈ [0, 1]. Given (13) and (14), this
implies

c(s)

s
∈
[
pqv(wi + wj − 1)max

{
1− r

p(1− r) + 2qr
,

r

pr + 2q(1− r)

}
, qv(wA + wB − 1)

]
. (15)

Notice that the above condition allows for an equilibrium with σA = 1, σB ∈ (0, 1) if c(s)
s

=

1−r
p(1−r)+2qr

and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
= 1−r

p(1−r)+2qr
. Conversely, an equilibrium with σA ∈

(0, 1), σB = 1 exists if c(s)
s

= r
pr+2q(1−r)

and max

{
1−r

p(1−r)+2qr
, r
pr+2q(1−r)

}
= r

pr+2q(1−r)
.

Therefore, we have the following bounds in terms of c(s)
s

for the equilibrium regions:

c(sh)

sh
= qv(wA + wB − 1),

c(sm)

sm
= qv(wA + wB − 1) ·max

{
pr

pr + 2q(1− r)
,

p(1− r)

p(1− r) + 2qr

}
,

c(sl)

sl
= qv(wA + wB − 1) ·min

{
pr

pr + 2q(1− r)
,

p(1− r)

p(1− r) + 2qr

}
.

This implies the following corresponding bounds on wi, for i, j ∈ {A,B}:

wi
1 = 1− wj +

c(s)

s

1

qv
, (16)

wi
2 = 1− wj +

c(s)

s

1

qv
+ 2

c(s)

s

1

pv
min

{
1− r

r
,

r

1− r

}
, (17)

wi
3 = 1− wj +

c(s)

s

1

qv
+ 2

c(s)

s

1

pv
max

{
1− r

r
,

r

1− r

}
. (18)

B.2 Proof for Lemma 2

Denote the advantaged agent as i. That is, i = A if r ≥ 1
2
and i = B if r < 1

2
. Denote the

disadvantaged agent as j.

Part 1: Revision strategy for agent less likely to be in control (agent j)

Given that the expected utility U j is linear in wj for fixed wi and s, agent j has two possible
choices for wj :

1. wj < 1 such that the equilibrium has σi = 0. This value is wj = wj
1 as given in (16)

(given the equilibrium selection where the equilibrium selected in the multiplicity region is
not σi = 1, σj = 0). In this case, the expected utility for agent j is

U j = svwj
1 −

c(s)

p
= sv(1− wi) + c(s)

(
1

q
− 1

p

)
. (19)
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Note that this case is obtained as long as wj
1 ≤ 1, that is

wi ≥ c(s)

s

1

qv
(20)

2. wj = 1. Then, we have one of the following sub-cases:
Case 2(a): The equilibrium is σA = σB = 1. This happens when wj

3 ≤ 1, that is

wi ≥ c(s)

s

1

qv
+

c(s)

s

1

pv

2ri

1− ri
. (21)

Then,

U j = sv − sv
qri2wi

p(1− r)r + q(1− 2(1− r)r)
− c(s)

p

pri + q

p(1− r)r + q(1− 2(1− r)r)
. (22)

Case 2(b): The equilibrium is σi = 1, σj = 0. This happens when wj
2 ≤ 1 < wj

3, that is

c(s)

sqv
+

c(s)

spv

2(1− ri)

ri
≤ wi <

c(s)

sqv
+

c(s)

spv

2ri

1− ri
. (23)

Then,

U j = sv − sv
qriwi

p(1− ri) + qri
− c(s)

p

p+ qri

p(1− ri) + qri
. (24)

Case 2(c): The equilibrium is σi = 0, σj = 0. This happens when 1 < wj
1, that is

wi <
c(s)

s

1

qv
. (25)

In this case, the expected utility for agent j is

U j = sv − c(s)

p
. (26)

Best response for j. If wi ≤ c(s)
sqv

, then the solution is wj = 1, and the equilibrium is

σi = σj = 0. We only need to compare Cases 1 and 2(a), (b) for the region where wi > c(s)
sqv

,

so that wj
1 < 1. In this region, the internal solution wj

1 is chosen if and only if

wi ≤ c(s)

sqv
+

c(s)

spv

2ri

1− ri
. (27)

Notice that this is exactly the condition for wj
3 ≤ 1.
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Therefore, agent j′s best response can be summarized as follows:

wj(wi, s) =


1 if wi ≤ c(s)

sqv
,

wj
1 < 1 if c(s)

sqv
< wi < c(s)

sqv
+ c(s)

spv
2ri

1−ri
,

1 if c(s)
sqv

+ c(s)
spv

2ri

1−ri
≤ wi;

Part 2: Revision strategy for agent more likely to be in control (agent i)

Given that the expected utility EU i is linear in wi for fixed wj and s, agent i has two possible
choices for wi:

1. wi < 1 such that the equilibrium has σj = 0. This value is wi = wi
3 as given in (18)

(given the equilibrium selection where the equilibrium selected in the multiplicity region is
not σi = 1, σj = 0). In this case, the expected utility for agent i given σi = 1, σj = 0 is

U i = svwi
3 −

c(s)

p
= sv(1− wj) +

c(s)

p

(
p

q
+

2ri

1− ri

)
− c(s)

p
. (28)

Note that this case is obtained as long as wi
l ≤ 1, that is

wj ≥ c(s)

s

1

qv
+

c(s)

s

1

pv

2ri

1− ri
. (29)

2. wi = 1. This happens in the following subcases:
2(a). When wj

3 the equilibrium is σA = σB = 1 when wi
3 < 1, that is

wj >
c(s)

s

1

qv
+

c(s)

s

1

pv

2ri

1− ri
. (30)

Then,

U i = sv − svwj q(1− ri)2

pri(1− ri) + q(1− ri)2 + qri2
− c(s)

p

p(1− ri) + q

p(1− ri)ri + q(1− ri)2 + qri2
. (31)

2(b). If wi
2 ≤ 1 < wi

3, then wi = 1 corresponds to the equilibrium where σj = 0 as in
Case 1.

2(c). If 1 < wi
2, then the solution is wi = 1.

Best response for i. Comparing expected utilities from Cases 1 and 2 when wi
3 < 1, we

find that the solution is wi = wi
3 if

wj ≤
(
c(s)

s

1

qv
+

c(s)

s

1

pv

2ri

1− ri

)(
1 +

2q(1− ri)2

pri(1− ri) + qri2

)
. (32)
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Therefore, agent i′s best response can be summarized as follows:

wi(wj, s) =



1 if wj ≤ c(s)
s

(
1
qv

+ 1
pv

2ri

1−ri

)
,

wi
3 < 1 if c(s)

s

(
1
qv

+ 1
pv

2ri

1−ri

)
< wj < c(s)

s

(
1
qv

+ 1
pv

2ri

1−ri

)(
1 + 2q(1−ri)2

pri(1−ri)+qri2

)
,

1 if c(s)
s

(
1
qv

+ 1
pv

2ri

1−ri

)(
1 + 2q(1−ri)

p(1−ri)+qri
1−ri

ri

)
≤ wj;

Part 3: Equilibrium payoffs given s

Given the best responses derived in Parts 1 and 2, the Nash equilibrium becomes
wi(s) = wj(s) = 1 if c(s)

s
≥ c(snh)

snh
or c(s)

s
≤ c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

wi(s) = 1, wj(s) = wj
1 ≤ 1 if

c(snl )

snl
≤ c(s)

s
<

c(snh)

snh
,

wi(s) = wi
3 ≤ 1, wj(s) = 1 if ,

c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

< c(s)
s

≤ c(snl )

snl
;

(σi∗(s), σj∗(s)) =


(0, 0) if

c(snl )

snl
≤ c(s)

s
,

(1, 0) if
c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

< c(s)
s

≤ c(snl )

snl
,

(1, 1) if c(s)
s

<
c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

.

Part 4: Other equilibrium selection in the region of multiplicity

If the equilibrium selected in the region of multiplicity is σi = 0, σj = 1, then the thresholds
described above change in the following way. For agent j (the disadvantaged agent), the
threshold needed for wj < 1 is now wj

2 ≤ 1. This means that

wi ≥ c(s)

s

1

qv
+ 2

c(s)

s

1

pv

1− r

r
. (33)

The analysis for the cases when wj = 1 (cases 2(a)-(c) above) is unchanged. Then, the best
response for j is

wj(wi, s) =


1 if wi ≤ c(s)

sqv
+ c(s)

s
1
pv

2(1−ri)
ri

,

wj
1 < 1 if c(s)

sqv
+ c(s)

spv
2(1−ri)

ri
< wi < c(s)

sqv
+ c(s)

spv
2ri

1−ri
,

1 if c(s)
sqv

+ c(s)
spv

2ri

1−ri
≤ wi;

For agent i, the threshold for wi < 1 is the same, at wi
3. An alternative threshold

of wi
1 would also deter revisions, but at a higher cost for agent i. If wi = 1, then cases

2(a), 2(b) do not change. If wi
1 < 1 < wi

2, then the solution is wi
1. This case requires

c(s)
sqv

≤ wj ≤ c(s)
sqv

+ c(s)
spv

2(1−ri)
ri

. Finally, case 2(c) requires 1 < wi
1. Therefore, the only difference

from our previous analysis is to check when wi
1 may be the solution. We obtain that w = wi

1
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whenever wj ≤ c(s)
s

1
qv

+ c(s)
spv

2(1−ri)
ri

= wi
2. This implies

wi(wj, s) =



1 if wj ≤ c(s)
s

1
qv
,

wi
1 < 1 if c(s)

s
1
qv

< wj ≤ c(s)
s

1
qv

+ c(s)
s

1
pv

2(1−ri)
ri

,

1 if c(s)
s

1
qv

+ c(s)
s

1
pv

2(1−ri)
ri

< wj ≤ c(s)
s

1
qv

+ c(s)
s

1
pv

2ri

1−ri
,

wi
3 < 1 if c(s)

s

(
1
qv

+ 1
pv

2ri

1−ri

)
< wj < c(s)

s

(
1
qv

+ 1
pv

2ri

1−ri

)(
1 + 2q(1−ri)2

pri(1−ri)+qri2

)
,

1 if c(s)
s

(
1
qv

+ 1
pv

2ri

1−ri

)(
1 + 2q(1−ri)

p(1−ri)+qri
1−ri

ri

)
≤ wj;

This results in the following Nash Equilibrium
wi(s) = wj(s) = 1 if c(s)

s
≥ c(snh)

snh
or c(s)

s
≤ c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

wi(s) = wi
1 ≤ 1, wj(s) = 1 if c(snm)

snm
≤ c(s)

s
<

c(snh)

snh
,

wi(s) = 1, wj(s) = wj
1 ≤ 1 if

c(snl )

snl
≤ c(s)

s
< c(snm)

snm
,

wi(s) = wi
3 ≤ 1, wj(s) = 1 if ,

c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

< c(s)
s

≤ c(snl )

snl
;

(σi∗(s), σj∗(s)) =


(0, 0) if

c(snl )

snl
≤ c(s)

s
,

(1, 0) if
c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

< c(s)
s

≤ c(snl )

snl
,

(1, 1) if c(s)
s

<
c(snl )

snl

ri(p(1−ri)+qri)
ri(p(1−ri)+qri)+2q(1−ri)2

.

If the equilibrium in the region of multiplicity is the mixing equilibrium, then each agent
must have the same expected utility given any w they select – as the mixing probabilities
adjust to the selected w to ensure indifference. Therefore, the analysis is the same as in the
case in which the equilibrium selection in the multiplicity region is σi = 1, σj = 0.

B.3 Proof for Proposition 1

We derive the equilibrium s∗ chosen by Agent A in period 0. We solve the problem for
the case when r > 1

2
in the subsection B.3.1. We solve the problem for the case when

r < 1
2
in subsection B.3.2. In each subsection, the derivation is divided into three parts:

(1) For each equilibrium pair (wA∗, wB∗) identified in Lemma 2, we characterize the value
function for agent A at time 0, EUA(s), and the optimal s in each equilibrium region; (2)
we derive the conditions for the optimal s to be in each of the four equilibrium regions;
(3) we characterize the global maximizer. Then, in section B.3.3 we show the result about
downscaling or upscaling.

B.3.1 The case when r ≥ 1
2
.

Part 1: EUA(s) and the optimal s in each region

(i) If
c(snh)

snh
≤ c(s)

s
, where

c(snh)

snh
≡ c(sh(w

A=wB=1))
sh(wA=wB=1)

:
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The expected utility when the equilibrium is (σA, σB) = (0, 0) and wA = wB = 1 is

EUA(s) = sv − c(s)

p
(34)

The optimal s in this region is

s∗ =

{
c′−1(vp) if c′(snh) < vp

snh if c′(snh) ≥ vp
(35)

(ii) If
c(snl )

snl
≤ c(s)

s
≤ c(snh)

snh
, where

c(snh)

snl
≡ c(sl(w

A=wB=1))
sl(wA=wB=1)

:

The expected utility given (σA, σB) = (0, 0) and wA = 1, wB = c(s)
s

1
qv

is:

EUA(s) = sv − c(s)

p
(36)

The optimal s in this region is

s∗ =


snh if c′(snh) < vp

c′−1(vp) if c′(snh) ≥ vp ≥ c′(snl )

snl if c′(snl ) > vp

(37)

(iii) If
c(scl )

scl
≤ c(s)

s
≤ c(snl )

snl
, where

c(scl )

scl
≡ c(snl )

snl
max

{
r(p(1− r) + qr)

r(p(1− r) + qr) + 2q(1− r)2
,

(1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2

}
, (38)

then (σA, σB) = (1, 0) and wA = c(s)
s

1
qv

+ 2 c(s)
s

1
pv

r
1−r

, wB = 1, so that

EUA(s) =
c(s)

p

(
p

q
+

3r − 1

1− r

)
. (39)

Notice that ∂EUA(s)
∂s

> 0 and therefore s∗ = snl . Notice also that ∂2EUA(s)
∂s2

> 0, so EUA(s)
is convex in this region.

(iv) If c(s)
s

≤ c(scl )

scl
, the expected utility given (σA, σB) = (1, 1) and wA = wB = 1 is:

EUA(s) =
p(1− r) + qr

pr(1− r) + qr2 + q(1− r)2

(
svr − c(s)

p

p(1− r) + q

p(1− r) + qr

)
, (40)
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where we note that p(1−r)+qr
pr(1−r)+qr2+q(1−r)2

> 1. Then,

s∗ =

 c′−1

(
vpr p(1−r)+qr

p(1−r)+q

)
if c′(scl ) ≥ vpr p(1−r)+qr

p(1−r)+q

scl if c′(scl ) < vpr p(1−r)+qr
p(1−r)+q

(41)

Part 2: Optimal s.

Claim 1h. If p ≥ q

(
ε− 2r

1−r

)
≡ ph, then s∗ = c′−1(vp) and s∗ ≥ snl .

Proof. Notice that for any s, EUA(s|σA = σB = 0) > EUA(s|σA = σB = 1). Therefore,

if in the region
c(snl )

snl
≤ c(s)

s
we have s∗ = c′−1(vp), then this is the global maximizer. Given

that ε · c(s3) = s · c′(s3) and solutions (35) and (37), we have that s∗ = c′−1(vp) iff p ≥ ph.

Claim 2h. Given q, r and ε, there exists p̃ such that if p̃ ≤ p < ph, then the solution is
s∗ = snl .

Proof. For p < ph, optimal s in the interval s ≥ snl is snl . Note that the expected utility
is increasing in the interval [scl , s

n
l ]. Therefore, if EUA is also increasing over (0, scl ), then the

global optimum is s∗ = snl . Solving the inequality in (41), the condition c′(scl ) < vpr p(1−r)+qr
p(1−r)+q

reduces to p ≥ p̃, where

p̃ =

{
q

2(1−r)r
[ε(1− r)− (1− 2r)2 − (r2 + 1) + (1− r)

√
δ], if (i) or (ii)

0, otherwise
(42)

where
δ = (1− r)[(3− r)− 2(1− r)((1− r)2 + (1− 2r)2)ε+ (1− r)2ε, (43)

and conditions (i) and (ii) are as follows:

(i) : 2
r(2(1− r)2 + r2)

1− r
< ε ≤ 2− r + r2(2r − 1)

(1− r)(2− r)
, (44)

and

(ii) : ε >
2− r + r2(2r − 1)

(1− r)(2− r)
and

q <
1− r

2(4r(1− r)2 + 2r3 − (1− r)ε)
·
(
r2 − 2(1− r)2 + (1− r)ε

+
√

(1− r)2ε2 − 2(1− r)((1− r)2 + (1− 2r)2)ε+ (2(1− r)2 − r2)

)
Claim 3h. If p < p̃ such that maxs∈(0,scl ) EUA(s) has an interior solution, then the optimal
s∗ = snl .

Proof. If c′(snl ) > vp and c′(scl ) > vpr p(1−r)+qr
p(1−r)+q

, let s∗11 ∈ (0, scl ) denote the maximizer for

EUA(s|σA = σB = 1). Finding the global maximizer requires comparing expected utilities
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EUA(s∗11|σA = σB = 1) and EUA(snl |σA = σB = 0). We note that s∗11(σ
A = σB = 1)

and EUA(s∗11|σA = σB = 1) are increasing in r, and snl is increasing in r, meaning that
EUA(s3|σA = σB = 0) is decreasing in r. At r = 1, EUA(s∗11|σA = σB = 1) = EUA(snl |σA =

σB = 0). At r → 1
2
, EUA(s∗11|σA = σB = 1) = s∗11v

p+q
p+2q

− 2
c(s∗11)

p
< snl v

p+q
p+2q

= EUA(snl |σA =

σB = 0). Moreover, for s ∈ (scl , s
n
l ), EUA(s) is increasing and convex. Therefore, ∀r ∈ (1

2
, 1),

given the monotonic increase in EUA(s∗|σA = σB = 1) and EUA(snl |σA = σB = 0) and the
limit points, we have EUA(s∗11|σA = σB = 1) ≤ EUA(snl |σA = σB = 0). This means that
s∗ = snl .

Summary: To sum up, the optimal s when r > 1
2
is:

s∗ =

{
c′−1(vp) if p > ph

snl if p ≤ ph
. (45)

B.3.2 The case when r < 1
2
.

Part 1: EUA(s) and the optimal s in each region

(i) If
c(snh)

snh
≤ c(s)

s
: The expected utility when the equilibrium is (σA, σB) = (0, 0) and

wA = wB = 1 is

EUA(s) = sv − c(s)

p
, (46)

and so

s∗ =

{
c′−1(vp) if c′(snh) < vp,

snh if c′(snh) ≥ vp.
(47)

(ii) If
c(snl )

snl
≤ c(s)

s
≤ c(snh)

snh
: The expected utility is (σA, σB) = (0, 0) and wA = c(s)

s
1
qv
, wB =

1:

EUA(s) = c(s)

(
1

q
− 1

p

)
, (48)

and the optimal s is therefore at a corner:

s∗ =

{
c′−1(snh) if q ≤ p,

c′−1(snl ) if q > p.
(49)

(iii) If
c(snl )

snl

(1−r)(pr+q(1−r))
(1−r)(pr+q(1−r))+2qr2

≤ c(s)
s

≤ c(snl )

snl
: The expected utility is (σA, σB) = (0, 1) and

wA = 1, wB = c(s)
s

1
qv

+ 2 c(s)
s

1
pv

1−r
r
:

EUA(s) = sv − c(s)

p

2− r

r
. (50)
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The optimal s in this region is thus

s∗ =


snl if c′(snl ) ≤ vp r

2−r
,

c′−1

(
vp r

2−r

)
if c′(scl ) < vp r

2−r
< c′(snl ),

scl if c′(scl ) ≥ vp r
2−r

.

(51)

(iv) If c(s)
s

≤ c(snl )

snl

(1−r)(pr+q(1−r))
(1−r)(pr+q(1−r))+2qr2

: The expected utility is (σA, σB) = (1, 1) and wA =

wB = 1:

EUA(s) =
p(1− r)r + qr2

pr(1− r) + qr2 + q(1− r)2

(
sv − c(s)

pr

p(1− r) + q

p(1− r) + qr

)
, (52)

The optimal s∗ in this region is thus

s∗ =

 c′−1

(
vpr p(1−r)+qr

p(1−r)+q

)
if c′(scl ) ≥ vpr p(1−r)+qr

p(1−r)+q
,

scl if c′(scl ) < vpr p(1−r)+qr
p(1−r)+q

.
(53)

Part 2: Optimal s.

Claim 1l. If p ≥ εq ≡ pl, then s∗ = c′−1(vp) and s∗ ≥ s1.

Proof. Notice that for any s, EUA(s|σA = σB = 0) > EUA(s|σA = σB = 1). Therefore,

if in the region
c(snh)

snh
≤ c(s)

s
we have s∗ = c′−1(vp), then this is the global maximizer. Given

that ε · c(s1) = s · c′(s1) and solutions (35) and (37), we have that s∗ = c′−1(vp) iff p ≥ εq.

Claim 2l. The expected utility EU(s) is discontinuous at scl : it exhibits an upwards jump.

Proof. Given (22) and (24), the difference in expected utilities at scl is:

EUA(scl |σA = 0, σB = 1)− EUA(scl |σA = σB = 1) = vscl

· 2q2r2(1− r)2

[pr(1− r) + qr2 + q(1− r2)] · [pr(1− r) + q(1− r)2 + 2qr2]
> 0. (54)

Claim 3l. If q < p < εq, there is a local maximum at snh and an interior local maximum
for s ∈ [0, snl ].

Proof. By (49), the expected utility is convex and increasing over (snl , s
n
h). For s ∈

(scl , s
n
l ), the expected utility EUA(s|σA = 0, σB = 1) is decreasing at snl . To show this,

notice that c′(snl ) > vp r
2−r

whenever

εq

(
2− r

r
− 2(1− r)

rε

)
> p. (55)

As 2−r
r

− 2(1−r)
rε

> 1 for r < 1
2
, this holds for all p ≤ εq. Hence, EUA(s|σA = 0, σB = 1) either

has an interior maximum in (scl , s
n
l ), or the function achieves its maximum at the corner scl .
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Figure 11: Bounds for Case a

(a) Bounds on ε (b) Implied pint for q = 0.4, ε = 2

Then, the expected utility EUA is maximized either at snh or at some value s < snl .

Claim 4l. There exists pl > q such that the global maximum is at s = snh for pl < p < pl.

Proof. There are three possible local maxima for s < snl : (a) The expected utility has
an internal maximum for s ∈ (scl , s

n
l ), in which case this is also higher than any maximum

achieved for s ≤ scl ; (b) the expected utility is decreasing over (scl , s
n
l ) and increasing over

(0, scl ); and (c) the expected utility is decreasing over (scl , s
n
l ) and it has an internal maximum

in (0, scl ). We consider each case below.

(a). EUA(s|σA = 0, σB = 1) is increasing at scl if

ε
q(2− r)

pr + 2q(1− r)

(1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2
< 1 (56)

which implies

p ≥ pint ≡

 q
2r(1−r)

(
(1− r)2(2ε− 3) + r2(ε1−r

r
− 2) +

√
δ2

)
, if (iii)

εq, otherwise
, (57)

where

δ2 = (1+ r2)2 − 4r(1− r2)− 2ε(r2(1− r)2 − r4 +2(1− r2))− ε2(4(1− r)3 − r3(2− r)), (58)

and

(iii) : 1 +
2r2

1− r
< ε <

3

2
−

1− r − r2 −
√
(1− 2r)2(1 + 2r3) + r2(2− 4r2 − 3r2(1− r)2)

2r(1− r)2
.

To illustrate what these bounds imply, Figure 11 shows the bounds on ε as a function of r
(Panel a) and the implied pint as a function for r (Panel b) for q = 0.4 and ε = 2. Moreover,
given the bounds on ε and r ∈ [0, 1

2
], we can derive the lower bound q ≤ pint.
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If εq > p > pint, then EUA(s|σA = 0, σB = 1) is maximized at a value s∗ ∈ (scl , s
n
l ).

Moreover, notice that EUA(s∗|σA = 0, σB = 1) > EUA(s|σA = σB = 1), since the expected
utility when σA = 0, σB = 1 is higher than the expected utility when σA = σB = 1 at any s.

To find the global maximum, we compare the expected utility at s∗ against the expected
utility at snh:

EUA(s∗) = s∗v

(
1− 1

ε

)
(59)

EUA(snh) = snhv

(
1− q

p

)
(60)

where

s∗ =

(
vp

ε

r

2− r

) 1
ε−1

(61)

snh = (vq)
1

ε−1 (62)

Notice that EUA(snh) ≥ EUA(s∗) implies

q

(
1− q

p

)ε−1

≥ p

ε

r

2− r

(
1− 1

ε

)ε−1

. (63)

At p = q, the left-hand side of (63) is 0, whereas the right-hand side of the equation is
positive. At p = εq, the left-hand side of (63) is positive and necessarily higher than the
right-hand side, given that the expected utility achieves its global maximum at snh when
p = εq. The left-hand side of the inequality is decreasing in q for q ∈ (p

ε
, p), while the right

side is constant in q. Moreover, the left-hand is concave for q < 2p
ε

or ε = 2 and convex

for q ≥ 2p
ε

and ε ̸= 2. Therefore, the functions of q on each side of the inequality satisfy
single-crossing for q ∈ (p

ε
, p). Inverting this relationship as a function of p, it follows that

there exists pla ∈ [q, εq] such that (63) is satisfied iff p ≥ pla; that is, the optimal s is snh for

p ≥ pla.27

(b). If q < p < pint, then EUA(s) is decreasing for s to the right of scl ; additionally, the
expected utility is increasing for s to the left of scl if

c′(scl ) ≤ vpr
p(1− r) + qr

p(1− r) + q
, (64)

that is28
εq

pr + 2q(1− r)

(1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2
− p(1− r) + qr

p(1− r) + q
≤ 0. (65)

The first derivative of (65) with respect to p is strictly negative given q ∈ (0, 1), r ∈

27Note: if ε = 2, then we can have pla > pint. For instance, if q = 0.5, r = 0.495; in which case

pint = 0.5822 and pla = 0.625.
28Note that this case exists as long as p > q.
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(0, 0.5), ε > 1, which means that the left-hand side of the above expression is monotonically
decreasing in p. Therefore, there exists at most one value pint2∗ ≥ q such that inequality
(65) is satisfied for all p ≥ pint2∗. A necessary condition for pint2∗ > q is that

ε > 1 + 2
r2

1− r
. (66)

Therefore, let

pint2 =


q if pint2∗ ≤ q

pint2∗ if pint2∗ ∈ (q, pint)

pint otherwise

. (67)

For p ∈ (pint2, pint), in the region (0, snh), the expected utility EUA(s) is maximized at scl .
It remains to compare EUA(scl |σA = 1, σB = 0) and EUA(snh|σA = 0, σB = 0). We have

EUA(scl ) = (vq)
1

ε−1v

(
pr

pr + 2q(1− r)

(1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2

) 1
ε−1

(
1− q(2− r)

pr + 2q(1− r)

(1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2

)
, (68)

EUA(snh) = (vq)
1

ε−1v

(
1− q

p

)
. (69)

Consider the function ∆(p, q, r, ε) ≡ [EUA(snh)−EUA(scl )/](vq)
1

ε−1 . Then, ∆(p, q, r, ε) is
continuous in p over (q, pint). It is also increasing in p over that interval, a result we derive
through numerical methods for q ∈ (0, 1), r ∈ (0, 1

2
), ε > 1 (and analytically for ε = 2). As

p → q, we have EUA(scl ) > 0 = EUA(snh), and hence ∆(p, q, r, ε) < 0. As p → pint, we have
EUA(snh) ≥ EUA(scl ). Hence, ∆(p, q, r, ε) ≥ 0. Then, there exists a unique plb ∈ [q, pint] such

that EUA(snh) ≥ EUA(scl ) if and only if p ≥ plb. Notice also that, if pla > pint, then by

continuity we have plb = pint.

(c). If q < p < pint2, then the expected utility has an interior local maximum for
s ∈ (0, scl ], and it is decreasing over (scl , s

n
l ). If plb > q, then the global maximum is not at

snh. If plb = q, then for the global maximum is at snh if EUA(snh) ≥ EUA(s∗|σA = σB = 1),
where

EUA(s∗) =

(
vpr(p(1− r) + qr)

ε(p(1− r) + q)

) 1
ε−1 v(pr(1− r) + qr2)

pr(1− r) + q(1− r)2 + qr2

(
1− 1

ε

)
(70)

We have EUA(s∗) ≤ EUA(snh) if(
p(1− r) + qr

ε(p(1− r) + q)

) 1
ε−1

· pr(1− r) + qr2

pr(1− r) + q(1− r)2 + qr2

(
1− 1

ε

)
≤ q

1
ε−1v

(
1− q

p

)
(71)

At p = q, the right-hand side of (71) is 0, whereas the left-hand side of the equation is
strictly positive. At p = εq, the right-hand side of (71) is positive and necessarily higher
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than the left-hand side, given that the expected utility achieves its global maximum at snh
when p = εq. Both sides of the inequality are increasing and convex in p for p ∈ (q, εq).
Therefore, the functions of p on each side of the inequality (71) satisfy single-crossing. It
follows that there exists plc ∈ [q, εq] such that (71) is satisfied iff p ≥ plc.

Notice that 4(a) − 4(c) imply that there is a unique pl = max{pla, plb, plc} with pl > q

such that for p ∈ [pl, pl] the expected utility is maximized at s = snh. Otherwise, the optimal
s is in (0, snl ).

Claim 5l. If p ≤ q, then EUA(s) is decreasing for s ≥ scl .

Proof. Follows from (46) and (48) with p ≤ q.

B.3.3 Over-/Under-scaling.

Define

p(ε, q, r) =

{
ph if r ≥ 1

2

pl if r < 1
2

(72)

p(ε, q, r) =

{
0 if r ≥ 1

2

pl if r < 1
2

(73)

If p ≥ p, then by Claims 1h and 1l, the optimal s chosen by A is s∗ = c′−1(vp). The
benchmark without transitions of control is sNT = c′−1(vp). Therefore, s∗ = sNT .

If p ∈ (p, p), then

c′(s∗) =

{
εqv p(1−r)

p(1−r)+2qr
if r ≥ 1

2
.

εqv if r < 1
2
.

(74)

Then, for r ≥ 1
2
, p < p means p < q ε(1−r)−2r

1−r
. Notice that, rearranged, this expression is

qε p(1−r)
p(1−r)+2qr

> p. This is, s∗ > sNT . For r < 1
2
, p < p means p < qε. Thus, εqv > vp and so

s∗ > sNT .
If p ≤ p, then the only relevant case is the one where r < 1

2
. We have the following three

sub-cases:
1. First, if s∗ is the interior solution to maximizing EUA(s|σA = 0, σB = 1). In this case,

c′(s∗) = vp r
2−r

< vp = c′(sNT ). Therefore, there is downscaling relative to sNT .

2. If at the optimum for A, s = scl , then from (65),
c′(scl )

vpr
< p(1−r)+qr

p(1−r)+q
< 1

r
= c′(sNT )

vpr
, which

implies that scl < sNT and thus downscaling.
3. If s∗ is the interior solution to maximizing EUA(s|σA = 1, σB = 1), then c′(s∗) =

vpr p(1−r)+qr
p(1−r)+q

< vp = c′(sNT ), and thus downscaling.

B.3.4 Other equilibrium selections in the multiplicity region

If the mixing equilibrium is played in the region of multiplicity, then the above analysis
unchanged. If the other pure strategy equilibrium is played instead (σi = 0, σj = 1), then
the analysis does not change for r ≤ 1/2 (in the region (snm, s

n
h), the equilibrium payoff
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division is wA = 1, wB = wB
1 and no one revises; hence, for s ∈ (snm, s

n
h), the expected utility

for agent A is the same as in the main analysis above. If r > 1/2 and the equilibrium
played in the multiplicity region is σi = 0, σj = 1, where i is the advantaged agent, then for
s ∈ (snm, s

n
h) the expected utility is

EUA(s) = c(s)(
1

q
− 1

p
). (75)

Then, the optimal s in this region is either c′(snm) if q > p or c′(snh) if q ≤ p. Notice, however,
that EU(snm|wA = 1) > EU(snm|wA

1 ). Hence, if εq > p > q(ε−21−r
r
) > ph, then the optimal s∗

is s∗ ∈ {snm, snh}, and there is either downscaling if

(
pr

pr+2q(1−r)

) 1
ε−1

(
1− qr

pr+2q(1−r)

)
>

(
1− q

p

)
or upscaling otherwise. Therefore, if r > 1

2
and the equilibrium selection in the region of

multiplicity is (0, 1), then:
if p < ph, upscaling

if ph ≤ p ≤ q(ε− 21−r
r
), unconstrained

if q(ε− 21−r
r
) < p < εq, down-/up-scaling

if εq ≤ p, unconstrained.

(76)

B.4 Proof for Proposition 2

If r ≥ 1
2
, then the equilibrium strategies are σA = σB = 0, and wA = 1, wB = 1. If r < 1

2
,

then the equilibrium strategies are σA = σB = 0, and wA = 1 if p > p. For p ≤ p, then

there are two possible equilibria: either σA = 0, σB = 1, or σA = σB = 1. In the first
equilibrium, s∗ = scl and wA = 1, wB < 1. Therefore, given r > 0, with positive probability
the resulting project division is (1−wB, wB) where wB < 1. In the first equilibrium, s∗ < scl
and wA = 1, wB = 1. Therefore, the resulting project division will allocate all benefits to
only one agent.

B.5 Proof for Corollary 1

Follows directly from Proposition 1 given that s∗ increases in p and the equilibrium revision
strategies have σA = 1 or σB = 1 for p ≤ p and σA = σB = 0 for p > p.

B.6 Proof of Corollary 2

Follows directly from Proposition 1 given that p = 0 for r ≥ 1
2
, and the equilibrium revision

strategy has σA = 1 or σB = 1 only if p ≤ p.
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B.7 Proof for Proposition 3

The welfare function given project designer A and a social planner that places equal weight
on each agent is:

W = s∗v − 2PA
c

c(s∗)

p
.

Part 1: If r ≥ 1
2
. If p ≥ p = q

(
ε− 2r

1−r

)
, then s∗ = c′−1(vp) = sNT , and 29

W < 0 ⇔ ε < 2. (77)

Moreover, note that if ε < 2, then p < 0, meaning that W < 0 for all p ∈ [0, 1]. If p < p
(note that a necessary condition is that ε > 2), then s∗ = snl . Thus

W = vsnl

(
1− 2q(1− r)

p(1− r) + 2qr

)
= vsnl

p(1− r) + 2q(2r − 1)

p(1− r) + 2qr
> 0.

Part 2: If r < 1
2
. If p ≥ p(ε, q, r), then c′(s∗) = vp and the condition for W < 0 is as in

(77). If p(ε, q, r) < p < p(ε, q, r), then s∗ = snh, and

W = vsnh

(
1− 2

q

p

)
Thus,

W < 0 ⇔ p < 2q and p < p < εq

If p ≤ p(ε, q, r), then:
(i) if p > pint such that c′(s∗) = vpr

2−r
, then

W = vs∗
(
1− 2

r

ε(2− r)
(1 +

p(1− r)

pr + q(1− r)
)

)
,

which means that W > 0 given ε > 1.

(ii) if s∗ = scl , then

W = vscl

(
1− (1− r)(pr + q(1− r))

(1− r)(pr + q(1− r)) + 2qr2
2qr

pr + 2q(1− r)

)
> 0.

(iii) if c′(s∗) = vpr p(1−r)+qr
p(1−r)+q

, then

W = vs∗
(
1− 2r

p(1− r) + qr

ε(p(1− r) + q)

)
> 0.

29Note that for c(s) = s2, we have ε = 2, hence W ≥ 0 when r ≥ 1
2 .
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To summarize,

W < 0 if


ε < 2 & r ≥ 1

2
,

qε < p < 1 & ε < 2 & r < 1
2
,

p < p < min{2q, p} & r < 1
2

.

The interval P is therefore:

P =

{
(p, 1) if ε < 2,

(p, 2q) if r < 1
2
and ε ≥ 2.

(78)

B.8 Proof for Corollary 3

Follows given the upper bound 2q and the lower bound q on p(ε, q, r|r < 0.5).

B.9 Proof for Proposition 4

If c(smax)
smax ≤ c(scl )

scl
then as shown in Lemma 2, the equilibrium play is σA = σB = 1 and

wA = wB = 1 for all s ≤ scl . Therefore, the choice of s will be in the region where everyone
revises and there is maximal inequality.

B.10 Proof for Corollary 4

The value scl is increasing in p. Therefore, the probability of any fixed scale cap satisfying
smax ≤ scl increases.

B.11 Proof for Proposition 5

For both cases of r, we calculate conditions under which agent B continues whenever it has
control, or:

vBq =

(
1

p
− 1

q

)
cp ≤ EUB(s∗). (79)

where vBq (8) is the expected cost of completing the design phase given no attempts at
cancellation, and EUB(s∗) is agent B’s expected payoff in the main phase (where agent A
initiates).

(i) r > 1/2. In this case, s∗ = sNT if p ≥ p (where p = q ε(1−r)−2r
1−r

), and s∗ =
(

2qr+p−pr
qpv(1−r)

) 1
1−ε

otherwise. Agent B’s expected utility in the main phase then evaluates to:

EUB(s∗) =

 −p
1

ε−1

(
v
ε

) ε
ε−1 if p ≥ p

−1
p

(
2qr+p−pr
qpv(1−r)

) ε
1−ε

if p < p.
(80)

Observe that EUB(s∗) and s∗ are continuous at p = p.
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There are two subcases. First, consider the case where p > p (which is assured for all p
if ε ≤ 2).

To determine the conditions satisfying (79), it will be convenient to multiply both sides
of the expression by p, which simplifies the expressions while preserving inequalities. This
produces an equivalent condition for B to continue:(

1− p

q

)
cp ≤ −p

ε
ε−1

(v
ε

) ε
ε−1

. (81)

As the left-hand side is linear and decreasing in p, and the right-hand side is concave and
decreasing in p, expression (81) holds iff p ∈ Pc′ ≡

[
pc

′
, pc

′]
, where pc

′
and pc

′
satisfy (81)

with equality.
To show that εq ∈ Pc′ , we find argmaxp p(EUB(s∗) − vBq ), which is assured of being in

Pc′ if it is non-empty. This is easily calculated as:

pc∗
′
=

(
cp(ε− 1)

q

)ε−1
ε

vε
.

Setting pc∗
′
= εq and solving for cp then produces a value of cp such that εq ∈ Pc′ :

c′p =
(qv)

ε
ε−1

ε− 1
. (82)

Substituting c′p into EUB(s∗)− vBq produces a value of zero. Thus, at cp = c′p, p
c′ = pc

′
= εq.

Now observe that because EUB(s∗) is independent of cp, (79) implies that if p ∈ Pc′ for
any c′p, then it remains so for any cp < c′p. It also implies that c′p is the maximum value of

cp for which Pc′ is non-empty. Thus εq ∈ Pc′ whenever it is non-empty.
To show that q < pc

′
, note that limq→p+ vBq = 0 and EUB(sNT ) is negative and bounded

away from zero for p > q. This implies that (79) cannot hold for an interval of p above q,
and thus q ̸∈ Pc′ .

Defining Pc =
[
pc, pc

]
as the interval

[
pc

′
, pc

′]
produces the stated result.

Second, suppose that p < p. It is straightforward to verify that EUB(s∗) < −p
1

ε−1

(
v
ε

) ε
ε−1

for all such p; i.e., EUB(s∗) is less than what B would receive if A chose s = sNT because
s∗ > sNT . Consequently, p ∈

[
pc

′
, p
]
is necessary, but no longer sufficient for B to continue.

(ii) r < 1/2. There are three subcases. First, for p ≥ p, we begin by deriving Pc. In

this case, s∗ = sNT for p ≥ εq and (to prevent revision) s∗ = (qv)
1

ε−1 for p ∈ (p, εq). This
produces the following expressions for agent B’s expected main phase payoff:

EUB(s∗) =

{
−p

1
ε−1

(
v
ε

) ε
ε−1 p ≥ εq

− (qv)
ε

ε−1

p
p ∈ (p, εq)

Note that the two expressions for EUB(s∗) are equal at p = εq.
To determine the conditions satisfying (79), it will be convenient to multiply both sides
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of the expression by p, which simplifies the expressions while preserving inequalities. Then,
pEUB(s∗) is weakly concave and decreasing in p and pvBq is linear and decreasing in p. Thus

B continues iff p ∈ Pc′′ ≡
[
pc

′′
, pc

′′]
, where pc

′′
and pc

′′
satisfy (79) with equality, and pc

′′
= pc

′

as derived in part (i). We calculate the value of pc
′′
directly by solving (79) for p, producing

q

(
1 + (qv)

ε
ε−1

cp

)
. Clearly, pc

′′
> q. If pc

′′
< p, then B continues for all p ≥ p.

To show that εq ∈ Pc′′ , observe that p(EUB(s∗)− vBq ) is linear and increasing in p. We

may therefore apply the same argument as in part (i) to show that εq = pc
′′
= pc

′′
for cp = c′p

(as derived in expression (82)) and εq ∈ [pc
′′
, pc

′′
] for cp < c′p.

Defining Pc =
[
pc, pc

]
as the interval

[
max{p, pc′′}, pc′′

]
produces the result for p > p.

Second, consider the neighborhood around p = q. As q < p, there are three possible

values for s∗. We evaluate EUB(s∗) for each.

1. If c′(s∗) = vpr
2−r

, or equivalently s∗ =
(

vpr
(2−r)ε

) 1
ε−1

, then at p = q we have:

EUB(s∗|σA = 0, σB = 1) =
(2r2 − 5r + 2)

(
(2−r)ε
qrv

) ε
1−ε

qr
.

This is positive for r < 1/2.

2. If s∗ = scl =
(

p2(1−r)r2+pqr(5r2−6r+3)−2q2(3r3−5r2+3r−1)
pq(1−r)rv(pr+q(1−r))

) 1
1−ε

, then at p = q we have:

EUB(s∗|σA = 0, σB = 1) =
(2r2 − 5r + 2)

(
−2r3+5r2−3r+2

qrv(1−r)

) ε
1−ε

qr
.

This is positive for r < 1/2.

3. If c′(s∗) = vpr(p(1−r)+qr)
p(1−r)+q

, or equivalently s∗ =
(

vpr(p(1−r)+qr)
(p(1−r)+q)ε

) 1
ε−1

, then at p = q we have:

EUB(s∗|σA = 1, σB = 1) = v

(
1− r (ε+ 1)

(r2 − r + 1)ε

)(
(2− r)ε

qrv

) 1
1−ε

.

This value is non-negative for r < 1/2 and ε ≥ 2.

As EUB(s∗) is continuous in the neighborhood of p = q and vBq is continuous and equals
zero at p = q, we conclude that B continues in some neighborhood of p = q.

Third, consider the neighborhood around p = 0. As EUB(s∗) is clearly bounded and
vBq increases without bound as p approaches zero, there exists a neighborhood of 0 in which
vBq > EUB(s∗) and B quits.
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C Extensions

C.1 Multiple Project Phases

Section 4 develops a two-phase model in which agent A is the initiator in both phases and
agent B can kill nascent projects in the first phase. This setting might describe projects with
a clear advocate (A) and a back-loaded delivery. In this extension we develop an alternative
two phase project structure that givers B greater opportunity to revise basic features.

The extension captures three features that may be factors in large, complex projects.
First, they may mobilize opponents to revisit scale. For example, in 2011 the Obama ad-
ministration proposed the $30 billion Gateway Program to upgrade rail links between New
York and New Jersey. Despite favorable FTA reviews, the Trump administration effectively
canceled the program, only to have it revived under the Biden administration.30 Second,
they may present opportunities for learning by doing. The early phases of such projects
may therefore be investments that reduce subsequent construction or implementation costs.
Finally, investments may also provide benefits in their own right, independently of the final
project outcome. We examine the incentives for investment and, analogously to Section 4,
the conditions that prevent projects from starting at all.

Each phase of the two-phase model is structurally similar to the basic model. Agent A
has control at the start of phase 1, and has control at the start of phase 2 with probability
r. Denote the parameters for scale, distribution, and valuation in phase τ by sτ , wτ , and vτ ,
respectively. As in the basic model, the scale sτ and benefit division wτ are chosen by the
initial incumbent in each phase, and vτ is exogenous. To keep the analysis tractable, when
there are multiple equilibria we select the one in which only the favored agent revises.

The phases are dynamically linked through their cost functions. Let the running cost of
each period in phase τ be c(sτ ) = mτs

2
τ , where mτ > 0 and m1 = 1. In phase 2, m2 = 1/s1,

so that early investments in the project reduce future marginal costs. Note that in isolation,
phase 1 of the model is identical to the basic game if s2 = 0 and ε = 2, and phase 2 of the
model is identical to the basic game if s1 = 1 and ε = 2.

Within each phase τ , actions following the choice of sτ only affect payoffs through the
division of the total project payoff vτsτ . Thus, the agents’ incentives following the initial
period are similar to those of the one-phase game, and we can exploit the derivations of
Section 2 to analyze revisions and the choice of wτ . The second phase primarily affects agent
A’s incentives in choosing the phase 1 scale, which affects phase 2 costs. Due to the simple
structure of m2 and quadratic costs, s1 linearly scales A’s phase 2 expected payoff. Her phase
1 objective can be expressed as:

EUA(s1, w1) + s1Ũ
A, (83)

where ŨA is agent A’s phase 2 expected payoff prior to the revelation of the phase 2 initiator.
Maximizing (83) with respect to s1 produces the optimal initial investment. Roughly

speaking, the phase 1 investment is the scale of the one-phase game, s∗, adjusted to reflect
ŨA. Importantly, ŨA is negative whenever r < 1

2
, as well as for some values of p between p

30See Matt Hickman, “New York and New Jersey’s long-delayed Gateway Program faces a more favorable
outlook under Biden presidency.” The Architect’s Newspaper, November 10, 2020.
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Figure 12: Investment with Two Phases
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Note: Initial investment (s1, blue), benchmark investment (orange) in a setting with where A chooses s2

and w2 in phase 2, and investment in the one-phase game (s∗ = sNT , green), as a function of p.

Parameters are r = 0.55, v1 = 1, v2 = 5, and q = 0.35. Vertical lines are located at the thresholds q and 2q,

between which upscaling may occur in the basic model.

and p (where p = 2q under quadratic costs) when r > 1
2
. When this happens, the phase 1

scale s∗1 is lower than s∗. Consistent with Lemma 1, s∗1 may even be low enough to induce
revisions in equilibrium. Negative values of ŨA play a role similar to that of increasing the
cost of high project scales in the one-phase model: inhibiting large scales generates projects
that are insufficient to deter revisions.

Beyond merely reducing scale, the optimal scale in the initial phase may be zero, which
in effect cancels the project. For a favored (r > 1

2
) phase 1 initiator, cancellations occur

because of the potential for upscaling. As Figure 6 illustrates, under moderate capacity a
disadvantaged agent B upscales to prevent revisions. This can produce a highly undesirable
expected payoff for agent A, especially if she is not overwhelmingly likely to retain power.
A highly competitive political environment thereby forces A to internalize in part the social
benefits of the project.31 As Proposition 3 shows, these benefits are minimized at interme-
diate levels of capacity. By contrast, under low capacity, downscaled projects are relatively
efficient and do not invite cancellation. And under high capacity, a favored initiator is likely
to benefit from an unequal phase 2 project.

Figure 12 illustrates the role of cancellations in the r > 1
2
case by comparing phase 1

investments against two benchmarks. In the first benchmark, A remains in control with
certainty at the beginning of phase 2, but faces the possibility of revision in both phases. As
expected, the possibility of losing control over the final project depresses investment. The
second benchmark is simply the equilibrium scale sNT in the one-phase game. The initial
investment s∗1 may be up- or downscaled relative to this benchmark, depending on agent A’s

31Note, however, that public projects may provide public good benefits to actors besides agents A and B.
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expected phase 2 payoffs. In this example, power transitions are likely (r = 0.55), so the
threat of upscaling by B in phase 2 causes downscaling and cancellations when capacity is in
the interval [p, p]. This non-monotonicity of project scale with respect to capacity reflects in
part the non-monotonicity of social benefits in the one-phase game, as illustrated in Figure
7.

C.2 Variable Capacity

In this extension, we consider the case where scale impact capacity directly. Organizations
may be able to move projects ahead swiftly as long as the project size is not too large;
however, once a project is too big, the capacity to handle it decreases. In the extreme case,
it may completely overwhelm the organization, making it impossible to run projects beyond
a certain size. To capture this idea, we allow capacity to decrease as a function of s. In the
simplest case, p(s) may take the form of a step function:

p(s) =

{
ph if s ≤ sp

pl if s > sp
, (84)

where ph > pl, and sp > 0 denotes the maximal scale at which the organization can work at
capacity ph. For projects with scale above sp, capacity drops to pl.

Such a step function for p(s) means that solving for agent A′s optimal choice of scale
requires doing the analysis of Lemmas 1 and 2 and Proposition 1 first for the case when
s ≤ sp and then for the case when s > sp, and then choosing among the two resulting
solutions the scale s that is the global maximizer. Figure 13 illustrates this case. In the
benchmark case of our main model, if p = ph throughout, the optimal s∗ for agent A is at
the upscaling value of snh. However, if capacity drops above sp, then the expected utility at
snh also declines, so much so as to make it optimal for agent A to pick scale scl instead. The
project is downscaled in order to avoid the drop in capacity at the larger scale. Clearly, if
we let pl = 0, then sp acts as an effective scale cap: it’s a ceiling on the scale that agent A
would ever choose.

D Data on Transportation Construction Costs and Bu-

reaucratic Capacity

Figure 1 in the paper shows that average construction costs for public transportation projects
seem unrelated to measures of organizational capacity. In this section we provide additional
data that are consistent this claim.

Our data on construction costs come from the Transportation Costs Project at the New
York University Marron Institute of Urban Management. As of September 2023, the project
had gathered full or partial cost data on over 900 projects, with cost estimates on projects
in 184 cities in 59 countries.32 For each project, they report average costs per kilometer at

32Data accessed at https://docs.google.com/spreadsheets/d/16GoHcbW-eVzHUUP XCWVXS1s
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Figure 13: Investment with Two Phases

Note: Agent A′s expected utility when q = 0.29, r = 0.375, v = 5, ε = 2, with a step function p(s) where

ph = 0.4, pl = 0.31, sp = 0.5 (solid black line). The dashed gray line shows the expected utility in the

benchmark case where p = ph throughout.

2021 PPP dollars. To calculate mean costs, we restricted our analysis to projects that either
started or concluded within the years 2011 to 2020. Figure 14 shows that construction vary
widely at all levels of GDP per capita.

Our national-level measures of bureaucratic quality come from two World Bank sources.
The first is the World Bank Country-Level Institutional Assessment and Review (CLIAR)
measure of Bureaucratic Quality, which awards higher scores to countries where the “bureau-
cracy tends to be somewhat autonomous from political pressure and to have an established
mechanism for recruitment and training.” We draw additional data from the World Bank
Worldwide Bureaucracy Indicators, which provides a more fine-grained set of indicators.
From this source, we used the variables Public Sector Employment Share (of total national
employment), Public Sector Tertiary Educated Share, and Public Sector Wage Premium.
These variables capture the size and human capital levels of national bureaucracies, while
also offering substantial overlap in country coverage with the Transportation Costs Project
data. For all variables we calculated country averages from 2011 to 2020.

Figure 15 plots average construction costs against all four measures of bureaucratic ca-
pacity. (The CLIAR and Public Sector Tertiary Educated Share variables were also used in
Figure 1.) None show an obvious relationship, though in some cases the variance in costs is
maximized at high or low levels of capacity. The plots additionally show little relationship
among the predominantly wealthy members of the Organization for Economic Cooperation
and Development (OECD), as well as little difference between OECD and non-OECD mem-
bers.

i3ZBnmZh4kvdSX7muU/, September 25, 2023.
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Figure 14: Transportation Costs and Bureaucratic Capacity
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Note: Plots average cost per kilometer of major public transportation projects against 2021 GDP per

capita. Each point represents a country average for projects active between 2011 and 2020. Red data

points indicate OECD countries.

Figure 15: Transportation Costs and Bureaucratic Capacity
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Public Sector Wage Premium (bottom right). Each point represents a country average for projects active

between 2011 and 2020. Red data points indicate OECD countries.
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Figure 16: Transportation Costs and Bureaucratic Capacity
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Note: Plots average cost per kilometer of major public transportation projects against World Bank CLIAR

Bureaucratic Quality. Each point represents a country average for projects active between 2011 and 2020.

Darker data points indicate countries with greater than 70% of project miles in tunnels.

Finally, according to the Transportation Costs Project’s analysis, tunneling is a common
cost driver for transportation projects.33 Figure 16 therefore re-plots the CLIAR data to
show countries with at least 70% of project-miles in tunnels. Remarkably, costs continue to
vary considerably within this subgroup, especially among high-capacity bureaucracies.

33See https://transitcosts.com/new-data/.
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