
Unraveling of Dynamic Sorting

Ettore Damiano

University of Toronto

Li, Hao

University of Toronto

Wing Suen

The University of Hong Kong

April 14, 2002

Abstract: We consider a two-sided, �nite-horizon model of search and matching with

heterogeneous types on both sides of the market. The quality of the pool of potential
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With automatic participation of all agents in each round, the market performs a sorting

function in that more attractive types of agents have a chance to meet and match with

their peers in earlier rounds of the market. If agents incur an arbitrarily small cost in order

to participate in each round, however, the market completely loses its sorting function as

all agents rush to participate in the �rst round and match with anyone they meet.
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1. Introduction

Search takes time, and trading opportunities may change as time passes. The possibility of

vanishing trading opportunities introduces an element of urgency in the search process that

is absent in search models with a stationary environment. Consider, for example, a shopper

who comes across an item on clearance sale. He may choose to do some more comparison

shopping before deciding whether to buy that item, as is described in conventional models

of search (e.g., McCall 1970; Rothschild 1973), but there is a possibility that the item will

be sold out when he comes back. In such a non-stationary environment, the celebrated

result of the equivalence between search with recall and search without recall no longer

holds. Our shopper may rush to a purchase without extensive search, especially if the shop

is crowded with fellow customers. One can even imagine a shopping frenzy that arises as

a result of this type of behavior. Indeed, trading opportunities can themselves be shaped

by the search process. The relationship between search and evolving trading opportunities

introduces an interesting element in the dynamics of search that has not been adequately

analyzed in the existing literature. Our paper attempts to make a �rst cut at this kind of

interactions.

We analyze the search process in the context of matching markets, in which people who

have found an acceptable match leave the market and hence a�ect the pool of potential

partners available to subsequent searchers. Burdett and Coles (1997) and Shimer and

Smith (2000a) have characterized steady state search equilibrium in such markets, but the

focus on steady states does not give due recognition to the often non-stationary nature of

these markets.1 A number of entry-level labor markets for professionals (e.g., academic

economists, hospital interns, federal law clerks) are organized around annual recruitment

cycles. Employers who fail to �ll a vacancy or job-seekers who fail to secure a position by

the end of one cycle have to bear a substantial cost. These labor markets are best viewed

1 Smith (1995) �rst studied an in�nite horizon matching model with no entry, where non-steady state
dynamics is driven by temporary matches that are formed because �nding acceptable mates takes time
and waiting is costly in terms of foregone production. Shimer and Smith (2000b) examine the possibility
that e�cient search and matching requires non-stationarity.
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as having a de�nite terminal date; the fact that there will be another recruitment cycle

the following year does not make the market environment stationary.

The study of the operation of matching markets and its associated coordination prob-

lems has been pioneered in a series of papers by Alvin Roth and his coauthors (e.g., Roth,

1984, Roth and Xing, 1994). They describe how participants on both sides of such markets

often try to arrange interviews and make contract o�ers ahead of an agreed upon starting

date, or rush to sign contracts ahead of their competitors. Two types of ine�ciencies can

occur in the rush to sign contracts. This �rst type of ine�ciency involves mismatches

because information about quality of applicants and about positions is not yet available

when participants sign early contracts. This type of ine�ciency has been studied by Li and

Rosen (1998), Li and Suen (2000), and Suen (2000). Unraveling, or early contracting, oc-

curs in this type of models because it provides insurance bene�ts to risk-averse participants

in spite of sorting ine�ciency due to lack of match information.

Another type of sorting ine�ciency occurs when the rush to contract ahead of com-

petitors causes congestion of proposals and decisions at the early stages of the market.

In their study of the market for clinical psychologists, Roth and Xing (1997) demonstrate

that market participants may strategically choose to match with less desirable partners

lest the pool of acceptable matching partners dries up quickly. We argue in this paper that,

under certain conditions, this type of behavior can result in a concentration of activities

in the early market and an almost total collapse of trade in the later stages of the market.

Since market participants cannot consider more than a few choices simultaneously, the

congestion of search and contracting in the early stages of the market results in reductions

in the scope of the market and in the e�ciency of sorting. Even if a wider and more

prolonged search is bene�cial to both sides of the market from a collective point of view,

the competitive pressure to contract early may con�ne market participants to localized

search. This is illustrated in a recent paper by Niederle and Roth (2001). Using data from

the entry-level market for American gastroenterologists, they show that unraveling reduces

the market scope in that gastroenterologists are more likely to be employed at the same

hospital in which they were residents than they were when a centralized clearinghouse was

in use. Presumably sorting is more e�cient in a national market than in segmented local
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markets, so the result of Niederle and Roth demonstrates the loss of sorting e�ciency when

congestion occurs as a result of rushing to contract early.

Our paper uses a stylized model of search that illustrates how search decisions interact

with evolving matching opportunities in a matching market with a �nite horizon. A

job market operates in two rounds. Applicants di�er in a one-dimensional productive

attribute, called \type," and so do �rms. We assume the production function exhibits

complementarity between worker type and �rm type, so there are bene�ts from matching

high type workers with high type �rms. In the �rst round, applicants and �rms meet each

other randomly and they decide whether or not to form a match. If they do, they get their

payo�s and withdraw from the market. Otherwise, they proceed to the second (and last)

round. Those who proceed to the second round again meet each other randomly, and since

this is the last round, they match with whomever they meet. One of our objectives is to

investigate whether there will be \excessive" search and matching in the �rst round.

We consider two cases of the job market. In the �rst case, there is no search cost.

Because search is free, everybody participates in the �rst round market. Equilibrium in-

volves a uniform threshold such that an applicant accepts an o�er from a �rm if the latter's

type exceeds the threshold, and waits for the second round otherwise. If all applicants and

�rms follow this strategy, types lower than the threshold will not �nd a match and will

participate in the second round market. Furthermore, some types higher than the thresh-

old will not be lucky enough to �nd an acceptable match and will also participate in the

second round market. When the expected type of all those who will be in the second round

market equals the acceptance threshold, we have an equilibrium. In this equilibrium, the

job market performs a sorting function by giving higher types a chance to meet with their

peers and realize their higher match values. The sorting function is admittedly crude due

to the kind of search frictions we have imposed, but it turns out to be socially e�cient

in that it maximizes the expected total match values realized in two rounds of random

matching.

In the second case of the job market, applicants and �rms have to incur a small cost in

order to participate in each round of the market. It is apparent that the original equilibrium

we consider will not survive. To begin, agents of type lower than the threshold have no

{ 3 {



reason to pay the cost to be in the �rst round market since they face zero probability of

forming a match. As these types withdraw, higher types that still participate in the �rst

round market now have greater chances of meeting their peers and they exit the market in

greater numbers. As a result, the pool of the �rst round market improves while the pool

of the second round market worsens. But this division into an \elite" upmarket in the

�rst round and a downmarket in the second round cannot be an equilibrium, because the

best types in the downmarket have incentives to join the upmarket knowing that they are

acceptable because they are the best in the downmarket pool. As more of the best types

from the second round market join the �rst round market, the pool in the second round

worsens further, which lowers the acceptance threshold in the �rst round still further. If

the participation cost is arbitrarily small, the result is that in the only equilibrium the

market completely loses its sorting function as all agents rush to participate in the �rst

round and match with any one they meet. There is a total collapse of the second round

market. Needless to say, such unraveling outcome is the most ine�cient, even though the

participation cost is arbitrarily small.

2. E�ciency with Automatic Participation

To analyze how the search process interacts with matching opportunities over time, we

consider a �nite horizon two-sided matching market where there is no infusion of new

agents in the relevant horizon. Matching can occur in any of the several matching rounds,

but agents leave the market once they form a match. Thus the distribution of agents

change endogenously over time. Agents are forward looking and their decisions on whether

to search or to form a match will depend on their expectations about future matching

opportunities. The avor of the interactions that arise in this type of settings can be

conveniently conveyed in a market with two matching rounds. The extension to multiple

matching rounds will be described in Section 4.

Agents on each side of the market di�er in a one-dimensional productive characteristic,

called \type." Types of agents on the two sides of the market are distributed continuously

and symmetrically on the support [a; b] � (0;1), with density f and distribution F . We
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assume complementarity between agents' types. In particular, match value to a type x

agent, if matched with a type y agent on the other side of the market, is xy. We also

rule out side payment between any two agents that have matched. Agents who fail to

�nd a match at the end of all matching rounds su�er a large cost, which we normalize by

assuming that such agents get a payo� of 0 regardless of type.2 Agents are risk-neutral,

and do not discount between the two rounds.3

In this section, we consider the case of no search cost. Therefore unmatched agents

automatically participate, or search, in each round of market. The search technology as-

sumed in this paper is primitive: if the type distribution function is G, then the probability

that any type x agent meets a type y or lower from the other side of the market is simply

given by G(y). In other words, the search technology in our model is random matching.4

Since an unmatched agent gets a payo� of 0, agents accept all random matches in the

second (and last) round of the market. Anticipating this, an agent of type x agrees to

match with y in the �rst round if and only if y � m, where m is the symmetric expected

type in the second round. This implies a uniform thresholdm for all types of agents. Note

that any type lower than m is rejected by other types lower than m, as well as by all types

higher than m.

The expected type in the second round market, m, is determined by the distribution

of types that remains unmatched after the �rst round. Let k represent the �rst round

acceptance threshold. Since a pair of agents leave the market only when both are of type

greater than k, the size of the second round market is:

R(k) = 1� (1 � F (k))2:

2 Our results are una�ected as long as the unmatched payo� is lower than the lowest match payo� for
every type.

3 Adding a discount factor does not change any of our conclusions. Further, since production by
agents takes place only after the conclusion of the job market, regardless of whether matches are formed
in the �rst round or in the second round, it is reasonable to assume no discounting in our setup.

4 Montgomery (1991), Lagos (2000), and Shimer (2001), among others, have considered models with
more realistic search frictions. We adopt the simplistic random matching technology here because it makes
the evolution of distribution of types analytical more tractable. In the search and matching literature,
random matching technology is sometimes referred to as \linear," as opposed to \quadratic" (e.g. Smith,
1995). With a quadratic search technology, the matching payo� of any agent is una�ected by the matching
decision of agents with whom he is not willing to match. This rules out congestion or crowding out match
externalities that are crucial for our results.
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Then, m is determined by k according to:

m(k) =

Z b

a

xdG(x; k);

where G(x; k) is the distribution of types in the second round, given by

G(x; k)R(k) =

(
F (x); if x � k;

F (k) + (F (x) � F (k))F (k); if x > k.

Since R(a) = 0, the above de�nition does not cover m(a). Instead, we de�ne5

m(a) = lim
k!a

m(k):

We can verify that G(x; k) stochastically dominates G(x; k0) if k > k0. It follows that

m0(k) > 0 for any k 2 (a; b).

Definition 1. A threshold type ke is an equilibrium if ke = m(ke).

Starting from an acceptance threshold k in the �rst round, if the resulting expected

type m(k) in the second round falls below k, then k is too high to be justi�ed. On

the other hand, if m(k) exceeds k, agents are not picky enough in the �rst round. A

rational expectations equilibrium occurs when the expected type m(k) that results from

an acceptance threshold k precisely justi�es k. Our �rst result is that an equilibrium

always exists in our model.

Proposition 1. An equilibrium ke 2 (a; b) exists.

Proof. By de�nition, we have:

m(b) =

Z b

a

xdF (x) < b;

m(a) = lim
k!a

 Z k

a

xf(x)

R(k)
dx+

Z b

k

xf(x)

2� F (k)
dx

!
=

1

2
a +

1

2

Z b

a

xf(x)dx > a:

5 As can be seen from the following proof of Proposition 1, our de�nition of m(a) rules out k = a
as an equilibrium. Letting m(a) = a would make k = a an equilibrium, but this equilibrium would not
be robust, if with some probability agents who are indi�erent between accepting their match in the �rst
round and waiting for the second round "tremble" and reject their match.
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1 1.38 2

1
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Figure 1

Since m(k) is a continuous function, by the Intermediate Value Theorem, an equilibrium

ke 2 (a; b) exists. Q.E.D.

Figure 1 shows the case of uniform type distribution on [1; 2]. There is a unique

equilibrium at ke = 1:38 in this case. However, since m0(k) > 0, expectations about the

prospects in the second round market can be self-ful�lling and multiple equilibria may

occur. The type distribution F may be concentrated around types just above ke, such

that further increases in k from ke lead to sharp increases in the second round expected

type. Such increases may then be self-ful�lling, resulting in another equilibrium with a

�rst round acceptance threshold k higher than ke. The issue of multiple equilibria is

certainly interesting, but is orthogonal to the purpose of the present paper.6 The following

proposition uses a log-concavity condition on the type distribution to rule out multiple

equilibria.7

6 Li and Suen (2001) deal with the issue of multiple equilibria in an early contracting model based on
the trade-o� between insurance bene�ts and sorting ine�ciency.

7 A log-concavity condition is used in Burdett and Coles (1997) to establish existence of a stationary
search equilibrium. Their uniqueness result is obtained under a stronger condition on the type distribution.
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Proposition 2. If the distribution of types F (x) is log-concave, then there is a unique

equilibrium.

Proof. A su�cient condition for uniqueness of equilibrium is that m0(k) < 1 for all k.

To check that this condition is indeed satis�ed, note that m(k) can be written as:

m(k) = w(k)q(k) + (1� w(k))Q(k); (1)

where q(k) = E[x j x < k], Q(k) = E[x j x � k], and w(k) = F (k)=R(k). Thus, m(k) is

a weighted average of the conditional mean below k and the conditional mean above k.

Take derivative of equation (1), we get

m0(k) = w(k)q0(k) + (1� w(k))Q0(k) + w0(k)(q(k) �Q(k)):

Under the assumption of log-concavity of F , q0(k) < 1 and Q0(k) < 1 (see An, 1998).

Furthermore, w0(k) = f(k)F 2(k)=R2(k) > 0 and q(k) < Q(k). Thus, m0(k) < 1.

Q.E.D.

In an equilibriumwith �rst round threshold ke, the market performs a sorting function

by giving types higher than ke a chance to meet with their peers and realize their higher

match values. The sorting is crude due to the kind of search frictions we have imposed.

But can it be improved without changing the random matching search technology? In

particular, is the equilibrium acceptance threshold ke optimal from the point of view of

maximizing the expected total match values realized in two rounds of random matching?

In other words, are agents in the market too selective, or do they rush to match in the

�rst round?

To answer the above e�ciency question, consider a social planner's problem of choosing

a threshold type k to maximize the total match values in the two rounds.8 In the �rst

For our next result, log-concavity of the function
R
x

a
F (t)dt su�ces to guarantee uniqueness of equilibrium.

The proof is available from the authors. We use a stronger condition in this paper, namely log-concavity
of F (x), in order to simplify the proof.

8 This formulation of the social planner's problem puts restrictions on what the planner can do. In
particular, the planner cannot choose di�erent acceptance thresholds for di�erent types. If the planner can
tax or subsidize people who form a match in the �rst round market, this restriction amounts to con�ning
the planner to choosing a proportional tax or subsidy rate that is uniform for all agents.
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round \elite" market, only those with types higher than k will match. So if Q(k) is the

conditional mean of types above k, expected match value from the �rst round market is

Q2(k). Similarly, since the mean type in the second round market ism(k), expected match

value from the second round market is m2(k). Thus, the total match value for one side of

the market is:

V (k) = (1 �R(k))Q2(k) +R(k)m2(k):

In the decentralized market of the �rst round, the matching decisions of individual

agents have external e�ects on the agents who remain in the second round market. By

choosing the threshold k appropriately, the socially planner can potentially internalize the

externalities and increase total match value. The next result shows that this is not the

case: the planner can do no better than the decentralized market.

Proposition 3. If k� solves the social planner's problem, then k� is an equilibrium.

Proof. Taking derivative of V (k) with respect to k, we get:

V 0(k) = 2(1 �R)QQ0 + 2Rmm0 �R0(Q �m)(m+Q): (2)

Now, notice that for all values of k, m(k) and Q(k) also satisfy the relationship,

(1�R(k))Q(k) +R(k)m(k) =mu; (3)

where mu is the unconditional mean of the distribution F of types. So we can di�erentiate

equation (3) with respect to k to get

(1�R)Q0 +Rm0 �R0(Q �m) = 0: (4)

Substitute this into equation (2) to get

V 0(k) = 2(1�R)QQ0 + 2Rmm0 � ((1�R)Q0 +Rm0)(m+Q)

= (Q �m)((1 �R)Q0 �Rm0) (5)

From equation (4), we also have

Rm0 � (1�R)Q0 = R0(Q �m)� 2(1�R)Q0

= 2f(1 � F )(Q �m)� 2(1�R)(f=(1 � F ))(Q � k)

= 2f(1 � F )(k �m): (6)

{ 9 {



Substitute (6) into (5) gives

V 0(k) = 2(Q�m)f(1 � F )(m � k):

Since V 0(a) > 0 and V 0(b) < 0, the optimal threshold k� is an interior solution and satis�es

the �rst-order condition V 0(k�) = 0. Thus, m(k�) = k� and k� is be an equilibrium

threshold in the decentralized market. Q.E.D.

Equation (2) in the proof of Proposition 3 shows that raising the �rst round acceptance

threshold k has two counteracting e�ects on the expected match value. On one hand, since

Q0(k) > 0 and m0(k) > 0, an increase in the acceptance threshold from its equilibrium

value improves the quality of the pool of agents in both the �rst round \elite" market and

in the remaining second round market.9 This suggests that agents in the decentralized

market will not be selective enough in their choice of matching partners in the �rst round.

On the other hand, since R0(k) > 0, raising the �rst-round acceptance threshold increases

the size of the second round market, where expected match value is lower than in the �rst

round \elite" market. An agent of type x > ke who accepts a marginal partner of type

slightly lower than ke will bear a small cost, but will confer a discrete increase in payo� to

that marginal type because it gives the marginal type a chance to match with higher types.

In the absence of side payment between agents, this external bene�t does not enter into

the matching decisions and this suggests that agents will be too selective in the �rst round.

Proposition 3 establishes that at the point k = m(k) these two e�ects exactly cancel each

other, so that the decentralized equilibrium is also socially e�cient.

The e�ciency result may appear surprising, and one naturally wonders to what extent

it depends on our strong symmetry assumptions that the two sides of the market have the

same type distributions and that the match value function takes the symmetric product

form of xy. It turns out that the symmetry assumptions are not crucial for our e�ciency

result. To see this, suppose the match value function is still xy but the two sides have

di�erent type distributions, Fx and Fy. For any multiplicatively separable match value

9 Transferring marginal students from an elite university to a bad college raises the average student
quality in both schools.
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function (with positive cross derivatives), we can always rede�ne the types so that the

match value function takes the form xy. In this asymmetric random matching model, an

equilibrium is given by two acceptance thresholds kx and ky, such that in the �rst round

market kx is the marginal x-type that y-agents are willing to accept, and ky is the marginal

y-type that x-agents are willing to accept. In equilibrium matches are formed in the �rst

round market when types x � kx and y � ky meet with each other, with kx equal to the

expected type of x-agents in the second round and ky equal to the expected type of y-

agents. The following proposition shows that if a social planner can choose two acceptance

thresholds for the �rst round market, one for each side, then equilibrium thresholds will

be chosen. The proof is similar to that of Proposition 3 and is relegated to the Appendix.

Proposition 4. If k�x and k
�

y solves the social planner's problem in the asymmetric model,

then k�x and k�y is an equilibrium.

Dynamic sorting allows higher types to meet with each other in the �rst round. How

much is the gain from the optimal dynamic sorting relative to pure random matching?

In our example of uniform type distribution on [1; 2], pure random matching, which is

equivalent to dynamic sorting with an acceptance threshold k equal to either a or b, gives an

expected match value of V 0 = 2:25, while e�cient sorting with ke = 1:38 gives an expected

match value of V � = 2:272. The percentage gain from the optimal dynamic sorting seems

small, less than 1%, but this is only because of the rather limited extent of complementarity

in this example. The gain is signi�cantly greater, if either the support of the types is wide

([1; 10] instead of [1; 2]), or the match value function exhibits \increasing returns" to types

(x2y2 instead of xy). To isolate the sorting gains from complementarity e�ects that may

arise from rescaling the types, a more accurate measure of sorting e�ciency is needed. In

our numerical example with uniform type distribution on [1; 2] and match value function

xy, the total match value from perfect positive assortative matching is only V1 = 2:333.

This suggests that we measure dynamic sorting e�ciency by (V ��V 0)=(V1�V 0), which

implies a relative gain of 23.5% from the optimal dynamic sorting. In Section 4, we show

that having more rounds of matching further improves the sorting e�ciency.

Though our optimality results may not be completely general given other types of

search technologies, we want to stress that multiple matching rounds allow higher quality
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agents to meet one another in an \elite" early market. Under complementarity of types,

the early market improves the chance of assortative matching. Such sorting function of

the early market, however, is rather precarious; it hinges on our assumption of zero search

cost. In the following section, we show how sorting in the early market will unravel when

search costs are introduced.

3. Ine�ciency with Endogenous Participation

In the model of the previous section, agents do not \search." They appear in the �rst round

market even if they have no chance of forming a match. This seems innocuous if there is no

cost of participating in the market. But by appearing in the market without any prospect

of getting matched, agents of lower types impose a negative \search" externality on others

who intend to match. Ironically, such negative externality turns out to be necessary for the

market to perform the sorting function in the early round. High type agents who happen

to meet the low type agents in the �rst round will have to try their luck again in the second

round market. The externality imposed by low type agents therefore helps preserve the

quality of the pool in the second round market. Without this externality e�ect, matching

opportunities in the second round market will deteriorate and this can lead to a collapse

of the second round market. In this section we assume that there is a small and uniform

participation cost c in each market that is additive in an agent's payo�. Our aim is to

investigate whether endogenous participation will cause adverse selection that leads to the

unraveling of the second round market.

With participation cost, agents make sequential decisions on participation and match-

ing. Conditional on participation, the matching decisions of the agents in the �rst round

market are determined by their expectation of the average type in the second round mar-

ket. The participation decision depends both on the expected type in the second round

and on the prospects of �nding a mutually acceptable match in the �rst round. We now

show that participation in the �rst round market is determined by a threshold rule.

Lemma 1. There exists a threshold l 2 [a; b] such that agents of types higher than l

participate in the �rst round market, and types lower than l wait for the second round

market.
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Proof. Letm be the expected match type in the second round market. Then, in the �rst

round market, conditional on participation, a match between type x and type y is mutually

agreeable if and only if xy � xm� c and xy � ym� c. Consider the participation decision

in the �rst round by an agent of type x. It is optimal for type x agent to participate in

the �rst round market if

Ey[p(x; y)xy + (1� p(x; y))(xm � c)]� c � xm � c;

where the expectation is taken with respect to the distribution of types y that participate

in the �rst round market, and p(x; y) is the probability that agents of types x and y form

a match. The above inequality can be written as:

Ey[p(x; y)y + (1� p(x; y))(m � c=x)] � m:

Any type x0 > x agent can follow the same acceptance strategy of type x, and can guarantee

that p(x0; y) = p(x; y) for any y by rejecting any type y that is willing to accept type x0

but not type x. Since m � c=x is increasing in x, the above strategy implies that it is

optimal for type x0 to participate. Q.E.D.

The presence of search cost changes the character of the matching decision. An agent

who rejects a match in the �rst matching round will have to incur the search cost again

to participate in the second round. Since agents of higher types have relatively more

to gain from �nding a good match, they tend to be more willing to incur the uniform

cost c. Unlike the model of Section 2, therefore, acceptance thresholds di�er for di�erent

participating types in the �rst round market. To describe the mutual acceptance interval

for any potential participating type x, �x an expected type m 2 [a; b] in the second round,

and let

u(x) = m� c

x
:

When u(x) lies between a and b, it represents the lowest type that type x is willing to

accept. Similarly, de�ne

v(x) =
c

m� x
:
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When v(x) lies between a and b, it is the highest type that is willing to accept type x. The

following properties of u(x) and v(x) are immediate: (i) u(x) is increasing and concave,

and v(x) is increasing and convex; (ii) there are at most two intersections of u(x) and v(x);

(iii) u(x) = x = v(x) at any intersection x; and (iv) u(x) < x if and only if v(x) > x. If the

threshold for participation in the �rst round market is l, a match between participating

types x and y is mutually acceptable if and only if

minfv(x); bg � y � maxfu(x); lg: (7)

The pool of agents in the second round market therefore consists of all those with type

lower than l, as well as those with x � l but whose random encounter in the �rst round

does not satisfy equation (7).

Lemma 1 and the matching rule (7) suggest the following de�nition of equilibrium in

a two-round random matching model with participation cost:

Definition 2. An equilibrium is a participation threshold le 2 [a; b] and an expected type

me 2 [a; b] for the second round market, such that (i) given me, any type x � le prefers

participating in the �rst round market and any type x < le prefers waiting for the second

round market; and (ii) given le and me, the expected type in the second round market

resulting from the participation decision and the optimal matching rule is precisely me.

The rest of this section is devoted to characterizing equilibrium in the market and

examining how equilibrium changes when search cost becomes arbitrarily small. We assume

that

c < minfa2; a(mu � a)g;

where mu is the unconditional mean of the type distribution function F .10 The condition

c < a2 ensures that the lowest type agent will participate in the matching market at

least once, and c < a(mu � a) implies that participation in pure random matching is

worthwhile even if the lowest type agent can get the perfect matching payo� for free.

10 The above assumption reduces the number of cases we need to consider. A result analogous to Lemma
2 below can be obtained if 0 < c < a2.
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Since we are interested in the equilibrium for small participation costs, these assumptions

are not restrictive.

Now, consider how to analyze the �rst part of the equilibrium condition. We show

that there is a well-de�ned function h(m) that gives the participation threshold l, such

that given m any types higher than h(m) are better o� participating in the �rst round

market, and types lower than h(m) are better o� waiting for the second round market.

Lemma 2. Suppose that c < minfa2; a(mu�a)g. Then, there exists m̂ 2 (a+c=b; a+c=a)

such that h(m) = a for any m 2 [a; m̂], h(m) is strictly between a and m and increases for

any m 2 (m̂; b), and h(b) = b.

The proof of Lemma 2 is in the Appendix. We illustrate the intuition behind this

result with Figure 2, which shows the functions u(x) and v(x) for a given value of m. Also

shown is a square box [l; b]� [l; b] which represents the pool of agents participating in the

�rst round market.11 Random encounters that fall in the shaded region result in matches

in the �rst round. A moment's reection suggests that any l below the intersection of u(x)

and v(x) cannot be the participation threshold: such a type has no prospect for �nding

a mutually agreeable match in the �rst round and is better o� not participating. We can

therefore focus on type l above the intersection point. If l is strictly greater than a, then

h(m) = l if and only if type l is indi�erent between participating and not participating in

11 The assumption c < minfa2 ; a(mu � a)g implies that the two functions u(x) and v(x) intersect at
most once in [a; b]� [a; b]. See the proof of Lemma 2 in the appendix.
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the �rst round market. Notice that when m falls, the u(x) curve shifts up while the v(x)

curve shifts down. This increases the bene�t from participating in the �rst round market

as the probability of �nding a match in the �rst round rises. The participation threshold

h(m) therefore decreases as m falls. When m is very low (say, m � a+ c=b), the u(x) and

v(x) curves are so far apart that the whole box [l; b]� [l; b] lies between them even if l = a.

Any type is better o� participating than not participating. It follows that h(m) = a.12

We next analyze the second part of the equilibrium de�nition. For this we need to

calculate the distribution of the pool of agents who will be in the second round market. Fix

any participation threshold l and expected type m. As in the proof of Lemma 2, there are

three cases regardingm. The �rst case is m 2 (a+ c=a; b]; the other two cases are similar.

In the �rst case, we can de�ne l = m� c=b such that v(l) = b, and l = 1
2
(m +

p
m2 � 4c)

such that u(l) = v(l). Then, for l 2 [l; l], the set of mutually agreed matches in round 1 is

as depicted in Figure 2. The corresponding distribution G(x;m; l) of types that remain in

the second round market is given by

G(x;m; l)R(m; l)

=

(
F (x); if x � l;

F (l) + 1
1�F (l)

R x
l
(1 � F (minfv(x); bg) + F (maxfu(x); lg)� F (l))dF (x); if x > l

where R(m; l) is the size of the market in the second round, given by

R(m; l) = F (l) +
1

1� F (l)

Z b

l

(1� F (minfv(x); bg) + F (maxfu(x); lg) � F (l))dF (x):

If l 2 [a; l), any participating type below the intersection point l have no prospect of being

matched in the �rst round. The distribution of the types in the second round market is

given by

G(x;m; l)R(m; l)

=

(
F (x); if x � l;

F (l) + 1
1�F (l)

R x
l
(1 � F (minfv(x); bg) + F (maxfu(x); lg)� F (l))dF (x); if x > l

12 Indeed h(m) = a even if m is slightly above a + c=b. See the proof of Lemma 2 in Appendix for
details.
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where R(m; l) is given by

R(m; l) = F (l) +
1

1� F (l)

Z b

l

(1� F (minfv(x); bg) + F (maxfu(x); lg) � F (l))dF (x):

Finally, if l 2 (l; b], since v(x) > u(x) for any such l, everyone who participate in the �rst

round market will get matched. Only types x < l remain in the second round market.

Therefore the distribution is given by

G(x;m; l)F (l) =

(
F (x); if x � l;

F (l); if x > l.
(8)

Note that in this case the distribution G(x;m; l) is just the lower truncation of the original

distribution F at the point l; it does not depend on the value ofm. The second equilibrium

condition in De�nition 2 can now be formally represented by the equation

me =

Z b

a

xdG(x;me; le):

The next lemma shows that for any l the equation m =
R b
a
xdG(x;m; l) admits at least

one solution in m, corresponding to the case where all types above l are matched with

probability 1.

Lemma 3. For any l 2 [a; b], m =
R b
a
xdG(x;m; l) is satis�ed if m = E[x j x < l]. Further,

there is no other solution to the equation in the region where m � l + c=b.

Proof. The function q(l) = E[x j x < l] is increasing in l and satis�es q(l) < l for any

l > a. At l = a, the limit of q(l) is a. Thus, if we let m = q(l), then for any l 2 [a; b], we

have l > m� c=b = l. This means the distribution G(x;m; l) of types in the second round

market is given by equation (8), which is a lower truncation of the original distribution

F (x). By de�nition then, (l;m) satis�es m =
R b
a
xdG(x;m; l). For the second part of

the statement, note that m � l + c=b implies that the distribution G(x;m; l) is given by

equation (8), which does not depend on m. Q.E.D.

Putting Lemmas 2 and 3 together, we can establish the existence of an equilibrium.

Proposition 5. For any participation cost c > 0, le = a and me = a is an equilibrium.
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Proof. By Lemma 2, h(a) = a. By Lemma 3, l = a and m = a satis�es the equation

m =
R b
a
xdG(x;m; l). Q.E.D.

Without participation cost, we have identi�ed in Section 2 an equilibrium with full

participation and a uniform acceptance threshold ke > a such that all types higher than

ke accept each other. This equilibrium unravels when participation cost is positive. First,

types lower than ke have no reason to pay the cost to be in the �rst round market since

they face zero probability of forming a match. As these types withdraw, higher types that

still participate in the �rst round market now see greater chances of meeting their peers.

As a result, the pool of the �rst round market improves while the pool of the second round

market worsens. But this will give incentives for the best types in the second round market

to join the �rst round market, knowing that they are acceptable because they are the best

in the second round pool. As more of the best types from the second round market join

the �rst round market, the pool in the second round worsens further, which lowers the

acceptance threshold in the �rst round still further. The result of this \unraveling" is

the equilibrium established in Proposition 5. In such an equilibrium, the second round

market ceases to operate as agents rush to form matches in the �rst round with anyone

they happen to meet. The sorting function a�orded by multiple rounds of search collapses

under adverse selection.

Proposition 5 establishes full unraveling as an equilibrium outcome, but it does not

rule out the existence of other equilibria with partial participation in the �rst roundmarket.

Of particular interest is whether there exists another equilibrium in the neighborhood of

the equilibrium with no search cost when search costs becomes arbitrarily small. The

following result states that the answer is no. Indeed, the full unraveling outcome, with

le = a and me = a, is the only equilibrium when the participation cost is arbitrarily small.

Proposition 6. When participation cost c is su�ciently small but positive, le = a and

me = a is the only equilibrium.

Proposition 6 is proved in Appendix. We illustrate the result with a numerical ex-

ample based on the uniform type distribution on [1; 2]. In this case, besides the sequence

of equilibria with le = 1 and me = 1, there exists another sequence of equilibria with
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incomplete unraveling for c � 0:0016. The solution values of such a sequence are displayed

graphically in Figure 3, panel (a). As search cost c decreases, the participation threshold l

�rst rises and then falls. The reason for this non-monotonic relationship is that there are

two opposing e�ects of a reduction in search cost. On one hand, a lower search cost tends

to directly encourage more people to participate in the �rst round, therefore lowering the

participation threshold. On the other hand, a smaller c means that the u(x) and v(x)
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functions are closer to each other. In other words, since searching again in the second

round also becomes less costly, agents become more picky conditional on participation.

This tends to reduce the probability of �nding a suitable match for the marginal type,

thereby discouraging them from participating in the �rst round. Indeed when c is very

small (c < 0:0016 in our example), the u(x) function becomes almost horizontal while

the v(x) function becomes almost vertical. Almost all participating agents in the �rst

round market will be accepted with probability 1, which renders the second round market

a lemons market. Equilibrium with partial unraveling (i.e., l > 1) ceases to exist and the

only equilibrium is one with full unraveling.

Panel (a) of Figure 3 also indicates that, for all values of c, the equilibrium second-

round expected type m is never close to the value of m(ke) = 1:38 that we �nd in the

model without search cost. Equilibria in these two models are not directly comparable as

the match patterns are di�erent, so we use the e�ciency measure introduced in Section

2. In our example of uniform type distribution on [1; 2], pure random matching (or the

full unraveling equilibrium) gives an expected match value of V 0 = 2:25, e�cient sorting

with ke = 1:38 gives an expected match value of V � = 2:272, and the perfect sorting

gives a total match value of V1 = 2:333. We use V 0 and V1 as benchmarks to calculate

the sorting e�ciency measure, (V � V 0)=(V1� V 0), where V is the equilibrium expected

match value (before subtracting search costs). The result is shown in panel (b) of Figure 3.

The value of the sorting measure ranges between 1.96% and 14.35%, signi�cantly smaller

than the value 23.5% achieved by the optimal dynamic sorting in Section 2. Regardless of

whether there is full or partial unraveling, endogenous participation produces a signi�cant

deterioration in sorting e�ciency.

4. Multiple Matching Rounds

In this section we extend the analysis to the case of more than two matching rounds. Such

an extension is useful because it illustrates the kind of analytic techniques that may be

needed in an environment of non-stationary matching opportunities. The main result from

this exercise is that adding more matching rounds adds to the contrast between automatic
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participation and endogenous participation: sorting e�ciency improves in the model with

automatic participation, while full unraveling remains an equilibrium in the model with

endogenous participation.

Consider �rst the case of automatic participation (no search cost). To �x idea, suppose

there are three instead of two matching rounds. In the last matching round, since the

value of being unmatched is zero, any pair of agents will match. Thus the threshold for

acceptance is k3 = a. In the second matching round, the distribution of types depends on

agents' choice in round 1. We can denote this distribution by G2. The analysis in Section

2 shows that, regardless of the distribution of types, there is a threshold k2 2 (a; b) such

that only agents with type greater than or equal to k2 are accepted. Since k2 is also equal

to the expected type in the third round, the expected payo� in the second round to an

agent of type x is (
x
�
G2(k2)k2 +

R b
k2
xdG2(x)

�
; if x � k2;

xk2: if x < k2.

Note that the payo� is discontinuous at x = k2. In round 1, therefore, di�erent agents

will have di�erent acceptance thresholds in the same market. In particular, agents of type

x � k2 will accept any type y � k1 where

k1 = G2(k2)k2 +

Z b

k2

xdG2(x); (9)

while agents of type x < k2 is willing to accept any type y � k2. Because of the discontinu-

ity in the payo� function, however, no one is willing to accept agents of type x < k2 in the

�rst round. A pair of agents will match in round 1 if and only if x � k1 and y � k1. So,

even though there are more than one acceptance thresholds adopted by di�erent agents in

the �rst round market, only the threshold k1 in equation (9) matters. In other words we

have described an equilibrium in which there is e�ectively a uniform acceptance threshold

in each round, with k1 > k2 > k3, and the distribution of types in di�erent rounds evolves

accordingly.

The above discussion leads to a general de�nition of equilibrium with T matching

rounds. For each t = 1; : : : ; T , let Gt be the symmetric type distribution in round t, and

kt be the threshold type. In the �rst round of the market, G1 is just F , the initial type

distribution.
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Definition 3. A sequence of threshold types k1; k2; : : : ; kT = a and a sequence of type

distributions G1 = F;G2; : : : ; GT , are an equilibrium if (i) for any t = 1; 2; : : : ; T � 1,

Gt+1(x)Rt+1(kt) =

(
Gt(x); if x � kt;

Gt(kt) + (Gt(x) �Gt(kt))Gt(kt); if x > kt;
(10)

where Rt+1(kt) = 1 � (1 �Gt(kt))2 is the size of the round t+ 1 market; and (ii) for any

t = 1; : : : ; T � 1,

kt = Gt+1(kt+1)kt+1 +

Z b

kt+1

xdGt+1(x): (11)

According to the above de�nition, in each round t, there is a uniform acceptance

threshold kt such that only types higher than kt have a positive probability of being

matched. Further, the second equilibrium condition above implies that kt > kt+1 for each

t. Any equilibrium involves a decreasing sequence of acceptance thresholds k1; : : : ; kT , so

that agents in equilibrium become increasingly less picky as matching proceeds over time.

Also, the sequence of type distributions is ordered by stochastic dominance: Gt �rst order

stochastically dominates Gt+1 for each t = 1; : : : ; T � 1. Finally, De�nition 3 assumes that

the market does not end before the �nal round T . The justi�cation for this follows the

same logic as Proposition 1. If the market were to end in round t < T � 1, with kt = a,

then for any type distribution Gt at the beginning of round t, the expected match type

from waiting for another round would be given by

1

2
a+

1

2

Z b

a

xGt(x)dx;

which is greater than a. Thus, agents who were accepting types marginally higher than a

in round t market were not making the optimal decision, implying that the market cannot

end in round t.

Proposition 7. (i) An equilibrium in the T -round model exists with k1 < b. (ii) If the

initial distribution of types F is log-concave, then there is a unique equilibrium.

The proof of Proposition 7 is rather involved and is relegated to Appendix. The

main technical di�culty lies in the fact that the matching decisions are determined by a
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backward induction through equation (11), while the evolution of matching opportunities

is determined by a forward induction through equation (10). We overcome this di�culty

by introducing an algorithm that iterates back and forth between equations (10) and (11),

resulting in a �xed point in k1.

What can we say about the sorting e�ciency of an equilibriumwith multiple matching

rounds? For any sequence of acceptance thresholds k1; : : : ; kT�1, the expected total match

value is given by:
TX
t=1

�T�1
s=T�tRT�s+1(kT�s)

 Z b

kt

xdGt(x)

!2

;

where R1(k0) = 1, and where the sequence of type distributions G1 = F;G2; : : : ; GT

satisfy equation (10). It is clear that having more than two matching rounds improves

sorting e�ciency: even if the thresholds k1; : : : ; kT�1 are constrained to be the same,

by setting these thresholds to equal ke (the two-round equilibrium threshold), multiple

matching rounds a�ord more chances for higher types to meet one another. To be sure,

the acceptance thresholds k1; : : : ; kT�1 need not be the same, and this allows �ner sorting

of agents into T classes instead of just two classes.13 Indeed we can make a stronger claim.

Imagine that a social planner chooses a sequence of acceptance thresholds k1; : : : ; kT to

maximize the expected total match value. If the optimal sequence is a decreasing sequence,

then it is an equilibrium in the T -round matching model. The proof of this result has

to restrict attention to sequences of decreasing thresholds, but we conjecture that the

equilibrium is e�cient among all sequences. Since the objective of the social planner is

to improve sorting e�ciency, it makes little sense for the planner to allow two agents to

match in one round while disallowing the same two types of agents from matching in later

rounds. The following statement is proved in the Appendix.

Proposition 8. There is an equilibrium sequence of thresholds, k1; : : : ; kT , that maxi-

mizes the expected total match value among all decreasing sequences.

With more rounds of matching, dynamic sorting becomes more e�cient. In our ex-

ample of uniform type distribution on [1; 2], pure random matching, which is equivalent to

13 The notion of \classes" here is di�erent from that in Burdett and Coles (1977). In their model, agents
of class i only match with agents in the same class. In our model, agents of class t (i.e., x 2 [kt; kt�1))
match with agents of class s or above in round s � t.
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dynamic sorting with a single round, gives an expected match value of V 0 = 2:25, while dy-

namic sorting with two rounds and the optimal acceptance threshold ke = 1:38 in the �rst

round gives an expected match value of V � = 2:272. With three rounds of matching, the

optimal (and the unique equilibrium) acceptance thresholds are k1 = 1:48 in the �rst round

and k2 = 1:32 in the second round. The resulting expected match value is V �� = 2:284.

According to the e�ciency measure introduced in Section 2, in this example a matching

market with three rounds achieves the e�ciency level of (V �� � V 0)=(V1 � V 0), which

represents 40.7% of the available e�ciency gain (the di�erence between perfect sorting and

random matching). This gain is quite impressive compared to the e�ciency gain of 23.5%

with two rounds of matching.

The improvement in sorting e�ciency a�orded by multiple matching rounds does not

extend to the case with endogenous participation. A simple induction argument makes

this point clear. In round T � 1, if the market has not already ended, our two-round

unraveling result in Section 3 applies: there is an equilibrium in which all agents who

are still participants in the round T � 1 market accept anyone they meet. But then in

round T � 2, agents should anticipate that the market will close in the next round. So

round T � 2 is just like the next-to-last round. Our two-round unraveling result again

applies, and so on. Thus, for any �nite T , the only equilibrium with T matching rounds

when search cost per round is arbitrarily small is that the market operates only for the

�rst round in which all agents participate and accept whomever they meet. When agents

choose when to search, adding more matching rounds only serves to hasten the date of

search and contracting for all market participants. The unraveling of contracting date

does not come with any increase in matching e�ciency. Regardless of how many potential

matching rounds there are, our result of the total collapse of the sorting function under

endogenous participation applies.

5. Conclusions

Economists have long recognized that in a matching market both matching decisions and

search decisions involve externalities and can cause market ine�ciency. The existing litera-

ture (Diamond 1982; Mortensen 1982; Hosios 1990) has focused on the search externalities
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by assuming homogeneity on the two sides of the market. The research on the search ex-

ternalities culminates in the so-called Hosios (1990) condition for search e�ciency, which

requires the equality of an agent's bargaining power and the elasticity of the matching

function. A recent paper by Shimer and Smith (2001) examines the implications of search

and matching externalities in a dynamic model with heterogeneous agents. The Hosios

condition does not hold in the model of Shimer and Smith: in the decentralized market

attractive types search too little and match too readily, while unattractive types search

too much and match too infrequently. In a di�erent setup with posted prices and directed

search, Shi (2001) �nds e�ciency in his dynamic matching model with heterogeneous

agents.

The papers on search and matching ine�ciencies mentioned above focus on steady-

state stationary analysis, which greatly reduces the distributional complexity of search and

matching dynamics. Our model is motivated by the concern that the steady state need

not be the relevant horizon in many market for entry level professional workers. We posit

that the dynamics in this kind of markets are better captured by a �nite horizon model

with no replacement of the types that have formed matches and left the market.

Focusing on the interactions between a �xed and non-replaceable set of agents height-

ens the uncertainties inherent in matching markets with frictions. Agents of higher types

can no longer count on the infusion of new agents if they refuse to match with lower types

in the early market. The situation is somewhat akin to that in a bank run (Diamond and

Dybvig 1983), in which depositors lay claims on a �xed amount of bank reserves, or in

a buying frenzy (DeGraba 1995), in which potential buyers do not wait for further infor-

mation lest the good becomes sold out. The unraveling result in this paper also shares

some similarities with Akerlof's (1970) story of the market for lemons. In both stories,

the externalities present in the participation decisions of the agents combine with hetero-

geneity in the market to create adverse selection in the quality of potential trades in the

market. In Akerlof's model, adverse selection arises because of private information about

the quality of the good being traded. In comparison, adverse selection arises in our model

because trading opportunities for those who wait directly depend on search and matching

activities in the early market.
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The endogenous evolution of trading opportunities poses di�cult problems for equi-

librium analysis. In Diamond and Dybvig (1983) depositors care only about the total

amount of reserves available; in DeGraba (1995) consumers care only about the total stock

of the good available. Characterizing trading opportunities in matching markets is a lot

more complicated because agents are heterogeneous and sorting is important. We are able

to make some progress on this front by making simplifying assumptions about the search

technology and the match value function, and by ruling out side transfers. Relaxing these

assumptions in a tractable way is a challenge that lies ahead.

Appendix

Proof of Proposition 4. For any pair of thresholds kx and ky, let

R(kx; ky) = 1� (1� Fxkx))(1 � Fy(ky))

be the size of second round market. De�ne

Qx(kx) = E[x j x � kx];

Qy(ky) = E[y j y � ky]:

Let mx(kx; ky) be the mean of x-agents in the second round market, and de�ne my(kx; ky)

similarly. An equilibrium is characterized by kex and key such that

kx = mx(kx; ky);

ky =my(kx; ky):

The planner's problem is to choose kx and ky to maximize the total match value V (kx; ky),

given by

(1 �R(kx; ky))Qx(kx)Qy(ky) +R(kx; ky)mx(kx; ky)my(kx; ky):

Taking derivatives, we have

@V

@kx
= (1�R)Q0xQy +Rmy

@mx

@kx
+Rmx

@my

@kx
+ (mxmy �QxQy)

@R

@kx
:

But we know that for any kx,

(1 �R)Qx +Rmx = mu
x;
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where mu
x is the unconditional mean of x. Di�erentiate the above with respect to kx to

get

(1 �R)Q0x +R
@mx

@kx
+ (mx �Qx)

@R

@kx
= 0:

Similarly, if mu
y is the unconditional mean of y, then for any ky we have

(1�R)Qy +Rmy = mu
y :

Di�erentiate with respect to kx to get

R
@my

@kx
+ (my �Qy)

@R

@kx
= 0:

We can therefore follow similar procedures as those in the proof of Proposition 3 to get

@V

@kx
= (Qy �my)

�
(1 �R)Q0x � (Qx �mx)

@R

@kx

�
= (Qy �my) ((1�R)(Qx � kx)fx=(1 � Fx) � (Qx �mx)fx(1� Fy))

= (Qy �my)fx(1� Fy)(mx � kx);

where fx is the density function corresponding to Fx. This implies that the equilibrium

threshold kex is the optimal choice for the threshold of the x-agents. Similarly, @V=@ky = 0

at the equilibrium threshold key. Q.E.D.

Proof of Lemma 2.

(i) Assume m 2 (a + c=a; b]. (Note that by assumption c < a(mu � a) so a + c=a < b.)

Then, m2 > 4c and u(a) > a > v(a). By the properties of u(x) and v(x), there is exactly

one intersection between u(x) and v(x) in [a; b], given by l = 1
2 (m +

p
m2 � 4c). De�ne

l = m � c=b such that v(l) = b. If type l � l is the threshold participation type, then

since u(l) � v(l), type l will not accept any type that is willing to accept type l. Since

participation is costly, such type cannot be the threshold. If some type l 2 (l; l] is the

threshold, the di�erence between the participation payo� and the waiting payo� for l is

�c+
Z v(l)

l

lx
f(x)

1� F (l)
dx+

1� F (v(l))

1� F (l)
(lm� c)� (lm� c):
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Thus, type l prefers participating to waiting if

Z v(l)

l

xf(x)dx + (1� F (v(l)))
�
m� c

l

�
�m (1� F (l)) � 0:

The left-hand-side is increasing in l because m > l � l and v(l) > u(l). Further, at l = l,

since v(l) = l, the left-hand-side of the above inequality is negative. Similarly, if some type

l 2 (l; b] is threshold, then participating is optimal for type l if

Z b

l

xf(x)

1� F (l)
dx�m � 0:

The left-hand-side of the above inequality is increasing in l, is positive at l = b when

m < b and approaches 0 from below if m = b. Thus, for m 2 (a+ c=a; b], there is a unique

threshold type h(m) 2 (l; b] which is indi�erent between participating and waiting, such

that by Lemma 1, all types above h(m) prefer participating and all types below prefer

waiting. Note that h(m) � m, with equality only if m = b, because either h(m) � l < m,

or h(m) > l in which case
R b
l
xf(x)dx=S(l) > l. Further, we can verify that the left-hand-

side of each participation condition above is strictly decreasing in m, implying that h(m)

is strictly increasing in m.

(ii) Next, assume m 2 (a + c=b; a + c=a]. We have b > v(a) � a � u(a). Thus, if

u(x) and v(x) intersect each other on [a; b], they intersect twice. A necessary condition

for intersection is that 1
2
(m � p

m2 � 4c) � a, which requires that m � 2a. But since

m � a+c=a, we would have c � a2, contradicting the assumption of the lemma. Therefore,

u(x) < v(x) for all x 2 [a; b]. Using the same argument as in the case of m 2 (a + c=a; b],

we can show that if

Z v(a)

a

xf(x)dx + (1� F (v(a)))
�
m� c

a

�
�m < 0;

then there is a unique threshold type h(m) 2 (a;m), strictly decreasing in m, which

is indi�erent between participating and waiting, such that all types above h(m) prefer

participating and all types below prefer waiting. If instead

Z v(a)

a

xf(x)dx + (1� F (v(a)))
�
m� c

a

�
�m � 0;
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no type can be indi�erent between participating and waiting, and so h(m) = a. De�ne

m̂ 2 (a+ c=b; a+ c=a) such that the above inequality holds with equality. This is possible

because, (i) the left-hand-side of the inequality is decreasing in m; (ii) at m = a + c=b,

we have v(a) = b and the left-hand-side is positive because c < a(mu � a); and (iii) at

m = a + c=a, we have v(a) = a and the left-hand-side is negative.

(iii) Finally, assume m � a+ c=b. Then, v(a) � b and u(b) � a. By the properties of u(x)

and v(x), we have u(x) � a and v(x) � b for all x 2 [a; b]. If any type l is the participation

threshold, then participating is optimal for type l if

Z b

l

xf(x)

1� F (l)
dx�m � 0:

Since
R b
l
xf(x)dx=(1�F (l)) is increasing in l, by the assumption of the lemma,m � a+c=b

implies that m <
R b
l
xf(x)dx=(1 � F (l)) for any l. Any type l is better o� participating.

It follows that h(m) = a for any m � a + c=b. Q.E.D.

Proof of Proposition 6. Suppose that there is an equilibrium other than le = a

and me = a regardless of how small c is. Then, there is a sequence of equilibria with

participation threshold lc and expected type mc for each c > 0. By Lemma 3, for any

c > 0, there is no equilibrium with l and m other than the full unraveling equilibrium

such that m � l + c=b. Therefore, the sequence of equilibria has mc > lc + c=b and hence

mc > lc for each c. For any c that is su�ciently small, we have mc > a + c=a. It follows

from the proof of Lemma 2 that there is exactly one intersection of v(x) and u(x) in [a; b],

and lc > l = 1
2(mc +

p
m2

c � 4c). On the other hand, we already know from Lemma 3

that lc < l =mc � c=b. Thus, when c is arbitrarily close to 0, lc is arbitrarily close to mc.

Moreover, as c converges to 0, the distribution G(x;mc; lc) becomes arbitrarily close to

G(x;mc; lc)F (lc) =

(
F (x); if x � lc;

F (lc); if x > lc,

which is independent of mc. From the second part of De�nition 2, the above condition

implies mc = E[x j x < lc], which is less than lc, contradicting our earlier conclusion that

mc > lc. Q.E.D.
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Proof of Proposition 7. For the following proof of Propositions 6 and 7, it is conve-

nient to write ~Gt(x) =
R x
a
Gt(z)dz, St(x) = 1 � Gt(x), and ~St(x) =

R b
x
St(z)dz for any t.

Also, for each round t, threshold kt and type distribution Gt, let

m(kt;Gt) = Gt(kt)kt +

Z b

kt

xdGt(x);

so that the second equilibrium condition can be written as kt�1 = m(kt;Gt). Whenever

confusion does not arise, we write mt instead of m(kt;Gt).

(i) The existence of equilibrium can be shown with an induction argument. We know

from Proposition 1 that for any initial type distribution G an equilibrium exists when

T = 2. Suppose that an equilibrium exists in a model with T � 2 rounds, and let

k1(T ;G) be the largest equilibrium threshold in the �rst round market with the initial

type distribution G. Then, consider the following algorithm for �nding an equilibrium

with T + 1 rounds of the market in total and the initial type distribution F : start with a

�rst round threshold type k1 2 (k1(2;F ); b); set the type distribution G1 in the �rst round

market to F ; use G1 and k1 to compute the type distribution G2 in round 2 according to

the �rst equilibrium condition (10); use k1 and G2 to determine a round 2 threshold k2

from the second equilibrium condition (11). If k2 = k1(T ;G2), then an equilibrium has

been found by combining this particular k1 with the sequence of T thresholds that starts

with the resulting k2, with the resulting G2 as the initial type distribution.

The above process is well-de�ned, because for each k1 and F , the type distributionG2

in the second round is uniquely de�ned according to (10). Further, (11) uniquely de�nes

a second round threshold k2 for any k1 � k1(2;F ). To see this latter point, rewrite the

condition as follows:

k1 =

Z b

a

xdG2(x) +

Z k2

a

(k2 � x)dG2(x):

Using integration by parts and equation (10) for G2, noting that k2 � k1, we can further

rewrite the above as

~F (k2) = ~F (k1) � F (k1) ~S(k1):

Since k1(2;F ) is the largest equilibrium threshold in the �rst round market with T = 2

and the initial type distribution F , we have

~F (k1) � F (k1) ~S(k1)
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for any k1 � k1(2;F ), with equality if and only if k1 = k1(2;F ). Thus, the �rst equilibrium

condition uniquely de�nes k2 for any k1 � k1(2;F ).

Now, from De�nition 1 (or equivalently De�nition 3) we know that k2 = a when

k1 = k1(2;F ), so k2 < k1(T ;G2) if we start the process with k1 = k1(2;F ). On the other

hand, from (11) we have k2 = b when k1 = b, so k2 > k1(T ;G2) if we start with k1 = b.

Continuity of k2 and k1(T ;G2) in k1 then implies that the algorithm yields at least one

k1 2 (k1(T ;G2); b) such that k2 = k1(T ;G2), which identi�es an equilibrium with T + 1

rounds from the induction assumption.

(ii) To prove the uniqueness of the equilibrium, consider the following algorithm for �nding

an equilibrium with T rounds of the market in total and the initial type distribution F :

start with a �rst round threshold type k1; use the initial distribution G1 = F to compute

the type distribution G2 in round 2 from the �rst equilibrium condition (10); use k1 and

G2 to determine a round 2 threshold k2 from the second equilibrium condition (11); use

k2 and G2 to �nd G3; repeat this process for all t = 3; : : : ; T � 1, until we �nd kT�1 and

GT . Suppose for now that this algorithm is well-de�ned; we will check this later. Since the

algorithm de�nes a sequence of decreasing thresholds, we have gt(x)=Gt(x) = f(x)=F (x)

for all x � kt�1 and for each t = 2; : : : ; T � 1, and is therefore a decreasing function due

to log-concavity of F . If kT�1 =
R b
a
xdGT (x), we have found an equilibrium.

To show that there is a unique equilibrium, we need to compute the derivatives with

respect to k1. Recognizing that k1 determines both the sequence of thresholds kt and

the sequence of distributions Gt, we use the following iterative method. For each t =

1; : : : ; T � 2, using integration by parts, we can rewrite (11) as follows:

~Gt(kt+1) = ~Gt(kt)�Gt(kt) ~St(kt):

Since the algorithm determines a decreasing sequence of thresholds, we can write the above

as:

~F (kt+1) = ~F (kt) � F (kt) ~St(kt):

For t = 1, taking derivatives implies that

dk2
dk1

=
F (k1)(1 + S(k1)) � f(k1) ~S(k1)

F (k2)
:
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Note that dk2=dk1 > 1 if

F (k2) < F (k1)� f(k1) ~S(k1):

For t = 2; : : : ; T � 1, we use another way of rewriting the second equilibrium condition for

round t� 1, again with integration by parts, to get

kt�1 = kt + ~St(kt):

Combining the above two equations we have for t = 2; : : : ; T � 1

~F (kt+1) = ~F (kt) � F (kt)(kt�1 � kt):

The above equation can be used to compute each dkt=dk1 recursively, starting from

dk2=dk1. Taking derivatives, we have for t = 2; : : : ; T � 1

F (kt+1)
dkt+1
dk1

= (2F (kt)� f(kt) ~St(kt))
dkt
dk1

� F (kt)
dkt�1
dk1

:

An equilibrium is de�ned by kT�1 =
R b
a
xdGT (x), or with similar manipulations as

above, by

kT�2 = kT�1 +
~F (kT�1)

F (kT�1)
:

The above can be viewed as an equation in k1. Since F is log-concave, ~F=F is increasing,

and it follows that a unique �xed-point in k1 exists if dkT�1=dk1 > dkT�2=dk1. Thus, if

for any each t = 1; : : : ; T � 2,

Gt(kt+1) < Gt(kt)� gt(kt) ~St(kt);

then we obtain dkt+1=dk1 > dkt=dk1 recursively, starting from dk2=dk1 > 1, and therefore

the equilibrium is unique.

It remains to argue that for any distribution G, any thresholds k > k0, such that

k > k1(2;G), k0 is determined by

~G(k0) = ~G(k) �G(k) ~S(k);

and g(x)=G(x) is decreasing for any x < k, we have

G(k0) < G(k) � g(k) ~S(k):
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This condition is su�cient, because even though changes in k1 a�ect all distributions Gt,

the stated condition applies to all G, k and k0 that are linked through the equilibrium

conditions and is therefore stronger than Gt(kt+1) < Gt(kt) � gt(kt) ~St(kt) for any each

t = 1; : : : ; T � 1. To see why the condition is true, note that since g(x)=G(x) is decreasing

in x, and we have

g(x) > G(x)
g(k)

G(k)

for any x < k. Integrating from k0 to k (note that k0 < k by assumption) gives

G(k) �G(k0) > ( ~G(k)� ~G(k0))
g(k)

G(k)
:

Since ~G(k0) = ~G(k)�G(k) ~S(k), we have

G(k0) < G(k) � g(k) ~S(k);

as desired.

To complete the proof of uniqueness, we argue that the above iterative algorithm

is well-de�ned. This can be established by an induction argument. We know that the

algorithm is well-de�ned for T = 2 and the initial distribution F if we start with any k1,

by Proposition 2. For T = 3 and the initial distribution F , we have seen from part (i) of

the proof that the algorithm is well-de�ned if we start with k1 � k1(2;F ). Let k1(3;F )

be the resulting unique equilibrium threshold in the �rst round, and then the algorithm

is well-de�ned for any k1 � k1(3;F ). Now, suppose that it is well-de�ned for any T � 3

and F if we start with any k1 � k1(T ;F ). Then, for the model with T + 1 rounds,

by the induction assumption the iterative algorithm is well-de�ned for the �rst T � 1

rounds if we start with any k1 � k1(T ;F ), and yields a unique sequence of k2; : : : ; kT�1,

with dkt+1=dk1 > dkt=dk1 for each t = 1; : : : ; T � 2, and the associated sequence of

G2; : : : ; GT , such that kT�1 � k1(2;GT�1). The latter inequality guarantees that the

second equilibrium condition determines a unique kT � a, which in turn determines GT+1

by the �rst equilibrium condition. Thus, the algorithm is well-de�ned in round T as well

as in the �rst T � 1 rounds, completing the induction argument. Q.E.D.

Proof of Proposition 8. The e�ciency of an equilibrium can be established with an

induction argument. Fix a market with a total of T rounds and the initial distribution
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F . For any sequence of decreasing thresholds k1; : : : ; kT�1, let Gt, t = 2; : : : ; T , be de�ned

according to equation (10), starting from G1 = F . Let VT be the expected total match

value for round T , with type distribution GT :

VT =

 Z b

a

xdGT (x)

!2

:

For each t = 1; : : : ; T � 1, recursively de�ne the expected total match value from round t

onward:

Vt =

 Z b

kt

xdGt(x)

!2

+Rt+1(kt)Vt+1;

which, by integration by parts, can be more conveniently written as

Vt =
�
ktSt(kt) + ~St(kt)

�2
+Rt+1(kt)Vt+1:

The social planner's objective is then to maximize V1.

Assume that the planner chooses a decreasing sequence of thresholds. Our induction

argument starts with the observation from Proposition 3 that for the two-round case, any

optimal threshold satis�es equation (11). Now, assume that this holds for any T�1 rounds,
so that for each t = 2; : : : ; T � 1, any sequence of decreasing thresholds that maximizes

Vt satis�es the equilibrium condition that kt�1 = mt. Then, for a sequence of thresholds

k1; : : : ; kT�1 to maximize V1, it is necessary that kt�1 =mt for all t � 3, and that @V1=@k1,

evaluated at k1; : : : ; kT�1, is equal to zero. We will show that these necessary conditions

imply that k1 =m2, which establishes the proposition by induction.

To show k1 = m2, we recursively derive the expressions of V1 and @V1=@k1, both

evaluated at the optimal sequence of thresholds k1; : : : ; kT�1. To start, from the induction

assumption that kT�1 =mT , we have

VT = k2T�1:

To compute @VT =@k1, we rewrite VT as

VT =

 
kT�1 +

GT�1(kT�1) ~ST�1(kT�1)� ~GT�1(kT�1)

RT (kT�1)

!2

:
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Taking derivatives with respect to k1, and evaluating at kT�1 =mT , which, by integration

by parts is equivalent to

GT�1(kT�1) ~ST�1(kT�1) = ~GT�1(kT�1);

we �nd that @VT =@k1 is given by

2kT�1
RT (kT�1)

 
GT�1(kT�1)

@ ~ST�1(kT�1)

@k1
+ ~ST�1(kT�1)

@GT�1(kT�1)

@k1
� @ ~GT�1(kT�1)

@k1

!
:

Since kT�1 < k1, we have

~ST�1(kT�1)
@GT�1(kT�1)

@k1
=

@ ~GT�1(kT�1)

@k1
;

and therefore
@VT
@k1

= 2kT�1
GT�1(kT�1)

RT (kT�1)

@ ~ST�1(kT�1)

@k1
:

Now, we can proceed to round T � 1, and so on. In recursively computing @Vt=@k1, we

treat the thresholds k2; : : : ; kT�1 as independent variables, and recognize that the choice

of k1 a�ects only the sequence of distributions G2; : : : ; GT . These recursive computations

lead to

V2 =m2
2 �

T�1X
t=2

2kt ~St(kt)G2(kt);

and its derivative
@V2
@k1

= 2m2
@ ~S2(k2)

@k1
+

T�1X
t=2

2kt ~St(kt)
@S2(kt)

@k1
:

Since for each t = 2; : : : ; T � 1,

@S2(kt)

@k1
= f(k1)S(k1)

G2(kt)

R2(k1)
;

and since m2 = k2 + ~S2(k2), we have

@V1
@k1

= �2f(k1)(k1S(k1) + ~S(k1))k1 + 2f(k1)S(k1)m
2
2 + 2R2(k1)m2

@m2

@k1
:

Using the de�nition of m2 and integration by parts, we can rewrite m2 as

m2 = k1 +
1

R2(k1)
(F (k1) ~S(k1) � ~F (k1) + ~F (k2)):
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The derivative of m2 with respect to k1 is

@m2

@k1
=

f(k1)

R2(k1)
( ~S(k1)F

2(k1) + 2S(k1)( ~F (k1) � ~F (k2))):

Substituting m2 and @m2=@k1, we have

@V1
@k1

=
2f(k1)

R2(k1)
(F (k1) ~S(k1) + S(k1)( ~F (k1) � ~F (k2)))(m2 � k1):

Thus, the optimal �rst round threshold k1 satis�es k1 = m2, completing the induction

argument. Q.E.D.
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