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Abstract

We consider a model of elections in which two office-motivated can-
didates are uncertain about the location of the median voter’s ideal
point, and in which candidates receive private signals about the loca-
tion of the median prior to taking policy positions. Assuming signal
spaces are finite, we show that there is at most one pure strategy equi-
librium and give a sharp characterization, if one exists: after receiving
a signal, each candidate locates at the median of the distribution of the
median voter, conditional on the other candidate receiving the same
signal. A candidate’s position, conditional on his/her signal, is there-
fore a biased estimate of the true median, with candidate positions
tending to the extremes of the policy space. We give sufficient con-
ditions for existence of pure strategy equilibria. Though the electoral
game gives the candidates discontinuous payoffs, we prove existence
and upper hemicontinuity of mixed strategy equilibria generally, and
we characterize mixed strategy equilibria in a special case of the model.
Finally, we consider the consequences of electoral competition for the
welfare of the median voter.



1 Introduction

Remark to us: I haven’t reworked the intro, but here are the main points of
the paper, as they occur to me right now.

• We establish a general model of elections that captures the usual
Downsian model and a large class of probabilistic voting models as
special cases.

• We analyze a previously untouched (except for Chan) aspect of polling,
namely, the effect on candidate platforms.

• We prove uniqueness and fully characterize the pure strategy equilib-
rium of the model, if one exists. Our logic generalizes that of Downs
and Calvert (in a probabilistic voting model), who consider models of
symmetric information.

• We show that the logic does not extend in the expected way, and that
private information leads to a tendency to take more extreme policy
positions.

• We give a new explanation for “platform divergence,” a phenomenon
that almost all models have a hard time explaining.

• We show that pure strategy equilibria in symmetric information mod-
els, including the Downsian model, can be very sensitive to the ad-
dition of asymmetric information: arbitrarily small perturbations can
lead to non-existence of pure strategy equilibrium.

• We extend the mixed strategy equilibrium existence result of Ball
(19??) to a model of asymmetric information.

• We prove upper hemicontinuity of mixed strategy equilibria, providing
a robustness result for symmetric information models: even if pure
strategy equilibria of the Downsian or Calvert models disappear when
a little asymmetric information is added, there will be mixed strategy
equilibria, and all of them will be near the original equilibrium.

• We give a uniqueness result and explicit solution for mixed strategy
equilibria in a special case of the model, allowing us to do comparative
statics.

• We consider welfare issues.
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The most familiar and fundamental prediction in formal political theory
is that of platform convergence. The classical framework for this predic-
tion (Black (1958), Downs (1957)) considers a political contest between two
rational, well-informed candidates who care only about holding office, and
who face a well-informed electorate which cares only about the platform
that the winning candidate will adopt. The so-called “median voter theo-
rem” details that in this environment both office seekers should propose the
platform that corresponds to the median voter’s “ideal” platform.

This prediction extends immediately to office-motivated candidates who
care only about winning, but who are uncertain about the location of the
median voter: in the equilibrium of this probabilistic voting game, both
office seekers propose the platform that corresponds to the median of the
distribution over the median voter’s location.

The intuition underlying the median voter theorem is at once both trans-
parent and compelling: If one candidate does not locate at the median, then
the other candidate maximizes his probability of winning by locating near
the first candidate, but marginally closer to the median, thereby winning
with a probability exceeding one-half.

The qualitative result of platform convergence extends to models with
additional candidate heterogeneity. In a probabilistic voting environment
featuring candidates who care about the policy adopted by the winning
candidate, candidates will adopt platforms that are closer to the median
than are their most-preferred platforms, as they trade-off a less-preferred
platform for an increased probability of winning. In dynamic models with
policy-motivated candidates who cannot commit to their platforms, and
voters who use an incumbent’s policy location to update about his ideology
(and hence likely future policy locations), an incumbent must take a position
sufficiently close to the median voter’s preferred position in order to win re-
election (Duggan (2000), Banks and Duggan (2001), Bernhardt, Hughson
and Dubey (2002)).

This paper shows that this apparently robust result of platform con-
vergence is over-turned if candidates have access to private signals about
the likely location of the median voter. We introduce private polling by
candidates into an otherwise canonical probabilistic voting model. The two
candidates do not know the location of the median voter, but receive private
signals about the median voter’s true location. Given their signals, candi-
dates then simultaneously choose platforms, and the candidate who locates
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closest to the median wins; in the event that both candidates choose the
same platform, each has an equal chance of winning.

We first show that if a pure strategy equilibrium exists, then it is unique.
We then show that although allowing candidates to commission private polls
that provide them information about the median voter’s location seems in-
nocuous, strategic location choices by candidates are radically altered. This
is most starkly highlighted when candidates receive binary signals — “left”
or “right” — about the likely median. Then, as long as the probability can-
didates receive the same signed signal exceeds 0.5, the pure strategy equilib-
rium exists and in it, a candidate receiving a left (right) signal will locate at
the conditional median given that both candidates receive left (right) signals.
Since the median given two “left” signals (of possibly different qualities) is
more extreme than the median given a single “left” signal — it follows that
in a pure strategy equilibrium, candidates locate further from the ex ante
median than their own polling information suggests is the likely location of
the median voter. That is, candidates “bias” their locations in the direc-
tion of their private signals, so that platforms are more dispersed than their
information.

The qualitative nature of this result is robust. If candidates have access
to identical polling technologies (of course, signal realizations can differ),
then a pure strategy equilibrium exists if candidates are sufficiently likely
to receive the same signal realization; and in this pure strategy equilibrium,
a candidate receiving a signal s, will locate at the median of the distribu-
tion over the median voter’s location given that the other candidate also
receives a signal of s. While private polling information necessarily leads
to some dispersion in platforms because candidates receive different signals,
the strategic response of the candidates to this information is to increase fur-
ther this platform dispersion. To adapt Barry Goldwater’s campaign slogan,
“Extremism in the pursuit of victory is no vice.”

The logical underpinnings are quite simple: the probability that a can-
didate wins given both his platform choice and that of his opponent varies
continuously with his platform choice except when the candidates choose the
same platform. Then, a candidate receives a discontinuous jump in his prob-
ability of winning if his platform is marginally closer to the median given
both of their signal realizations. But such jumps in winning probabilities
cannot be consistent with equilibrium platform selections by both candi-
dates. It follows that the only possible platforms on which candidates place
a positive probability mass following a signal s are those that correspond to
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the median of the distribution over the median voter’s location given signal
s, and some signal t for the other candidate: only then does the probability
of winning vary continuously with the candidate’s platform choice.

The strategic impact of private information on candidate location has
a direct voting analog. Here, candidates consider the information associ-
ated with both candidates choosing the same platform; voters consider the
information associated with being pivotal, so that their vote determines dis-
continuously the identity of the winning candidate.

We provide a rich characterization of equilibrium strategies. We pro-
vide sufficient conditions for the existence of a pure strategy equilibrium for
several distinct informational envirnments. We next show that if the pure
strategy equilibrium does not exist (essentially if receiving a signal s does
not make it sufficiently likely that the other candidate received some signal
t), then a mixed strategy equilibrium does exist. Further, if candidates have
access to a common polling technology then there exists an equilibrium in
which candidates adopt the same (possibly mixed) strategy. We show that
equilibrium payoffs vary continuously with (changes in) the environment.

We then consider a specific environment in which candidates obtain
polling information about the electorate’s views at some time prior to the
election, and must then select platforms, recognizing that the median voter’s
preferred position may shift by the election’s date. For example, after plat-
forms have been selected, a weakening economy may change the median
voter’s view about the appropriateness of increased fiscal spending; or ter-
rorist atacks may alter the median voter’s views about the appropriateness of
increased civil rights restrictions. We explicitly solve for equilibrium strate-
gies when candidates have access to a common polling technology, receive
conditionally independent signals, and the shift in the median voter’s posi-
tion after platforms have been chosen is uniformly distributed. This explicit
solution is important, because even when only a (purely) mixed strategy
equilibrium exists, it allows us to determine when candidates tend to locate
more extremely than their signals suggest is appropriate.

Finally, we use these findings to interpret a seemingly puzzling complaint
in both the public press, and academic research. To whit, it is generally rec-
ognized that improved polling techniques lead to a convergence in candidate
platforms, as candidates try to hone in on the median voter’s preferred plat-
form given their current information. Such convergence is often criticized as
being bad for the median voter, and for voters in general — candidates are
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collectively too similar, there is “not enough choice” between candidates,
and “they are all the same”.

Yet, on first pass, it is hard to understand why and how it can hurt
the median voter for candidates to target his likely location with increased
precision; and it is hard to understand why this could reduce the welfare of
risk averse voters with other ideologies who care about electoral outcomes
rather than the location of the candidate for whom they vote, because such
improved targetting is apparently variance-reducing.

We explore this issue within the environment in which candidates obtain
polling information about the electorate’s views at some time prior to the
election, and must then select platforms, recognizing that the median voter’s
preferred position may shift by the election’s date. Within this context, we
reconcile the view that more accurate polling can harm welfare. Increased
polling accuracy allows each candidate to target more accurately the median
voter’s current position; but the median voter’s position may change in the
interim. With better polling, each single candidate’s platform is closer in
expectation to the median voter’s ultimate ideal platform, but the expected
separation in their platforms is reduced. Since the winning platform is the
one that the median voter likes best, this reduced dispersion in platforms
is welfare harming. The optimal amount of polling noise is always interme-
diate — it is never optimal to have perfectly informative signals, in which
case there is no choice amongst candidates; and it is never optimal to have
perfectly uninformative signals. Qualitatively, we show that the more by
which the median voter’s views may change in the interim between when
platforms are chosen and the election date, the noisier is the optimal polling
technology.

2 The Model

Let two political candidates, A and B, simultaneously choose policy plat-
forms, x and y, on the real line, <. For simplicity, we model the electorate as
a cut point, µ, that determines which of the two candidates wins: candidate
A wins the election if |x−µ| < |y−µ| and loses if the inequality is reversed;
if |x − µ| = |y − µ|, then we assume the election is decided by a fair coin
toss, so both candidates win with probability one half. Assuming symmetric
utilities, this allows us to capture representative voter models and, as long
as a median is uniquely defined, models with multiple voters. This would be
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the case with an odd number of voters and with a continuum of voters with
ideal points distributed according to a density with convex support. In such
models, policy z will be majority-preferred to w if and only if it is preferred
by the median voter.

The location of the cut point, µ, is unobserved by the candidates, but
the candidates receive private signals, s and t, of the true location of µ. Let
S denote the finite set of possible signals for A, and let T denote the finite
set of possible signals for B. We suppose the candidates have a common
prior distribution on < × S × T , where the distribution of µ conditional on
s and t is denoted Fs,t, and the marginal probability of signal pair (s, t) is
P (s, t). We denote the marginal probabilities of signal s by P (s) and signal t
by P (t), and we assume throughout that P (s) > 0 and P (t) > 0 for all s ∈ S
and all t ∈ T , allowing us to define conditional probabilities, denoted P (·|s)
and P (·|t), using Bayes rule. The model is completely general with respect
to correlation between the candidates’ signals, allowing for conditionally
independent signals and perfectly correlated signals as special cases.

We assume throughout the following typical regularity conditions on the
conditional distributions: for all s ∈ S and all t ∈ T , Fs,t is continuous,
and, for all a, b, c ∈ < with a < b < c, 0 < Fs,t(a) and Fs,t(c) < 1 implies
Fs,t(a) < Fs,t(b) < Fs,t(c). Thus, Fs,t admits a density, denoted fs,t, with
convex support. We denote the uniquely defined median of Fs,t by ms,t. We
write the distribution of µ conditional on s ∈ S and T ′ ⊆ T as

Fs,T ′(x) =
∑

t∈T ′

P (t|s)
P (T ′|s)Fs,t(x),

when P (T ′|s) > 0. We denote the median of Fs,T ′ , which is uniquely defined,
by ms,T ′ . We write Fs for Fs,T , the distribution of the cutpoint conditional
on s, and we write ms for ms,T , the median of this distribution. We define
the notation Ft and mt similarly. We say signal realizations s and s′ are
conditionally equivalent if, for all t, we have Fs,t = Fs′,t, and similarly for
signals t and t′. Note that conditional equivalence does not restrict the
posteriors on T conditional on s and s′, but Fs,T ′ = Fs′,T ′ nevertheless holds
for all T ′ ⊆ T if s and s′ are conditionally equivalent.

Remark to us: We can allow for distributions with finitely many dis-
continuity points. Our mixed strategy existence and continuity results will
go through unchanged. Our pure strategy equilibrium characterization will
require an additional restriction (though we can still relax continuity a bit).
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The probability that A wins, given distinct platforms x and y and con-
ditional on s and t, is

Fs,t((x + y)/2) if x < y; 1− Fs,t((x + y)/2) if y < x;

and 1/2 if x = y. The probability that B wins is defined symmetrically
and is just one minus the probability that A wins. This defines a Bayesian
game between the candidates, where pure strategies for the candidates are
vectors X = (xs) and Y = (yt) and a candidate’s payoff is the probability of
winning the election. Given pure strategies X and Y , candidate A’s interim
expected payoff conditional on signal s is

ΠA(X,Y |s)
=

∑

t∈T :xs<yt

P (t|s)Fs,t((xs + yt)/2) +
∑

t∈T :yt<xs

P (t|s)(1− Fs,t((xs + yt)/2))

+(1/2)
∑

t∈T :xs=yt

P (t|s),

where we use the usual notation for conditioning on signals. Candidate B’s
interim expected payoff is defined symmetrically and is just one minus A’s
expected payoff. A pure strategy Bayesian equilibrium is a pair (X, Y ) such
that

ΠA(X, Y |s) ≥ ΠA(X ′, Y |s)
for all s ∈ S and all X ′, and

ΠB(X, Y |t) ≥ ΠB(X,Y ′|t)
for all t ∈ T and all Y ′. This formalizes the idea that the candidates’
campaign platforms are optimal given all information available to them.

At times, we will make use of several conditions. The first four define our
“canonical model” of polling, where the candidates employ identical polling
technologies and signals exhibit a natural ordering structure. The first three
impose symmetry on the model.

(C1) S = T .

Thus, we may use the same set I, with elements i, j, etc., to index these sets.
We then write simply P (i, j) for P (si, tj), Fi,j for Fsi,tj , and so on. Condition
(C1) is not restrictive in itself, because realizations can be renamed and
redundant ones may be added to S or T to achieve the required equality,
but the next condition adds substance to this indexing.
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(C2) For all i, j ∈ I, P (i, j) = P (j, i) and Fi,j = Fj,i.

In words, we can identify the ith signal of candidate A with the ith signal
of candidate B, in the sense that they are equally informative. The next
condition is extremely weak: if one candidate receives one signal, then it
must be possible that the other also receives it.

(C3) For all i ∈ I, P (i, i) > 0.

While our model allows for asymmetries between the candidates, it is nat-
ural to expect the candidates to have equal access to polling technology, in
which case (C1)-(C3) are appropriate. In that case, we will be interested
in equilibria in which candidates use their information similarly: we define
a symmetric pure strategy Bayesian equilibrium as an equilibrium (X, Y )
such that xi = yi for all i ∈ I.

The last condition defining the canonical model imposes a natural or-
dering structure on the candidates’ signals. Under (C1)-(C3), which the
condition presumes, we write mi,K for the median of the distribution of µ
conditional on the ith signal of one candidate and the other candidate re-
ceiving a signal indexed by an element of K. We say an ordering < of I
preserves conditional equivalence if, for all i, j ∈ I, i 6= j if and only if i and
j are not conditionally equivalent.

(C4) There is an ordering < of I that preserves conditional equivalence and
such that, for all i, j ∈ I all K ⊆ I with P (K|i) > 0 and P (K|j) > 0,
i < j implies mi,K < mj,K .

This condition is natural if “higher” signals are correlated with higher cut
points, as we would expect. An implication is that, given i < j,

mi,{i} < mj,{i} = mi,{j} < mj,{j},

so that i < j implies mi,i < mj,j . Under (C4), given signal i, we denote by
i + 1 the next signal realization according to <.

Remark to us: Since I’m using i < j to indicate that two signals aren’t
conditionally equivalent, I need to use notation different from the usual <.

Assuming (C1)-(C3), we say symmetric information holds if, for all i, j ∈
I with P (i, j) > 0, we have

P (i, k)Fi,k = P (j, k)Fj,k
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for all k ∈ I. Note the implication that P (i, k) = P (j, k). Thus, if signal
realizations i and j are consistent, then one candidate’s information following
i is exactly that of the other following j. Under symmetric information, I
may be partitioned into equivalence classes as

I(i) = {j ∈ I | P (i, j) > 0},

and these have the property that, for all j ∈ I(i) and all k ∈ I, Fi,k = Fj,k,
i.e., i and j are conditionally equivalent. Thus, following consistent signal
realizations, the distribution of µ is actually common knowledge. Moreover,
we see that, for all j ∈ I(i), P (i, j) = 1/|I|2 and P (j|i) = 1/|I|. Note
that symmetric information holds trivially if information is complete, i.e.,
P (i|i) = 1 for all i ∈ I. The electoral game with set I(i) of signal realizations
may be analyzed independently. That is, (X, Y ) is a pure strategy Bayesian
equilibrium if and only if, for each equivalence class I ′, the restricted strate-
gies (XI′ , YI′) = (xi, yj)i,j∈I′ are an equilibrium of the restricted game with
payoffs

ΠA(XI′ , YI′ |i) =
|{j ∈ I ′ | xi < yj}|

|I ′| F ((xi + yj)/2)

+
|{j ∈ I ′ | yj < xi}|

|I ′| (1− F ((xi + yj)/2))

+
|{j ∈ I ′ | xi = yj}|

2|I ′|

for all i ∈ I ′, and likewise for candidate B.1 We call this the component
game of I ′. While some of our results are general, some of them will apply to
symmetric information games by decomposing them into component games
that satisfy our assumptions.

Symmetric information essentially implies (C4). Let F 1, F 2, . . . , F l be
the distributions corresponding to the component games, and let mk be the
median of F k. As long as these medians are distinct, i.e., k 6= k′ implies
mk 6= mk′ , then the elements of I can be ordered so that lower signal
realizations correspond to component games with lower medians, fulfilling
(C4).

It is instructive to define A’s ex ante expected payoff, the candidate’s
1In fact, because the posteriors above are independent of i, we may view every pure

strategy Bayesian equilibrium of the restricted game as a mixed strategy equilibrium of a
complete information game between the candidates.
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expected payoff before receiving any signal, as

ΠA(X,Y ) =
∑

s∈S

P (s)ΠA(X, Y |s),

with candidate B’s ex ante expected payoff, ΠB(X,Y ), defined similarly.
Clearly,

ΠA(X,Y ) + ΠB(X, Y ) = 1

for all X and Y . Note that (X, Y ) is a pure strategy Bayesian equilibrium
if and only if

ΠA(X,Y ′) ≥ ΠA(X,Y ) ≥ ΠA(X ′, Y )

for all X ′ and all Y ′. Under (C1)−(C3), the ex ante payoffs of the candidates
are symmetric, in the sense that

ΠA(X, Y ) = ΠB(Y,X)

for all X and Y . Thus, we may view the pure strategy Bayesian equilibria of
electoral competition as equilibria of a two-player, symmetric, constant sum
game. A consequence of the constant sum property is “interchangeability”
of equilibria: if (X, Y ) and (X ′, Y ′) are equilibria, then so are (X, Y ′) and
(X ′, Y ). With symmetry, if (X, Y ) is an equilibrium, then so is (Y, X).

Example: The Downsian and Probabilistic Voting Models.

[ I have to fill this in. ]

Example: The Stacked Uniform Model. In the canonical model, we de-
compose the cut point µ as µ = α + β, where α and β are independent
random variables, with α uniformly distributed on [−a, a] and β a discrete
random variable, with support on b1 < b2 < · · · < bc. Let Q(k) denote the
probability of bk. We assume that the candidates share the same set of signal
realizations, so (C1) is satisfied, and that their signals depend stochastically
on the the realization of β, where Q(i, j|k) is the probability, conditional on
bk, that the candidates receive the ith and jth signals. Then

P (i, j) =
c∑

k=1

Q(i, j|k)Q(k),

so (C3) is satisfied if, for all i, j ∈ I, there is some k such that Q(i, j|k) > 0.
Conditional on bk, the distribution of µ is uniform on [bk − a, bk + a], with
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piece-wise linear distribution

Fk(z) = max
{

min
{

0,
x− bk + a

2a

}
, 1

}
.

By Bayes rule, the probability of bk conditional on signals i and j is

Q(k|i, j) =
Q(i, j|k)Q(k)

P (i, j)

when well-defined, and the distribution of µ conditional on signals i and j
is

Fi,j(z) =
c∑

k=1

Q(k|i, j)Fk(z).

Thus, (C2) is satisfied if Q(i, j|k) = Q(j, i|k) for all i, j, and k. This special
case of our model describes a situation in which there is a finite number of
preliminary cut point locations, a finite number of possible signals about
these preliminary locations generated by candidate polling, and a uniform
disturbance to the preliminary cut points.

A nice special case is three possible preliminary cut point locations and
three possible signals: m = 3, b1 = −b, b2 = 0, b3 = b, and I = {−1, 0, 1}.
If a > b, then we have “single-plateaued” conditional densities, as in Figure
1, with density over the center range equal to 1/2a.

[ Figure 1 here. ]

If b < a, then the distribution Fi,j is as in Figure 2.

[ Figure 2 here. ]

Thus, the shape of the posterior distributions of µ is that of “stacked”
uniform distributions with shifted supports, with the general shape of the
distribution depending on the size of the discrete component relative to the
breadth of the support of the disturbance term. Assuming a > b, and given
z ∈ [b− a, a− b], note that

Fi,j(z) = Q(−1|i, j)
(

z + b + a

2a

)
+ Q(0|i, j)

(
z + a

2a

)

+Q(1|i, j)
(

z + a− b

2a

)

=
1
2

+
z + Q(−1|i, j)−Q(1|i, j)

2a
.
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This gives us a useful expression for the conditional distributions over a
relevant range of cut point realizations. In particular, if the conditional
median mi,j satisfies b− a ≤ mi,j ≤ a− b, then it implies

mi,j = (Q(1|i, j)−Q(−1|i, j))b,
giving a simple expression for the conditional median.

For general numbers of preliminary cutpoint locations and signal real-
izations, our equilibrium characterization results are sharpest for the case in
which a is large, specifically, a ≥ bc − b1. This implies that bc − a ≤ b1 + a
and gives us single-plateaued conditional densities, as in Figure 1. More-
over, this restriction implies that conditional medians lie within the center
interval: for all i ∈ I, bc − a ≤ mi,i ≤ b1 + a. To see this, note that a
lower bound for mi,i is given by setting Q(1|i, i) = 1, in which case Fi,i is
uniform with median b1 ≥ bc−a. Therefore, bc−a ≤ mi,i. An upper bound
for mi,i is given by setting Q(c|i, i) = 1, in which case Fi,i is uniform with
median bc ≤ b1 + a, and therefore mi,i ≤ b1 + a, as claimed. Note that, as a
consequence,

Fi,j(z) =
c∑

k=1

Q(k|i, j)
(

z + a− bk

2a

)

=
1
2

+
z −∑c

k=1 Q(k|i, j)bk

2a

for all z ∈ [bc − a, b1 + a]. Therefore, when a ≥ bc − b1, we have

mi,j =
c∑

k=1

Q(k|i, j)bk,

generalizing the above expression for the conditional median and illuminat-
ing the joint restriction on Q and the bk’s imposed by (C4). This allows us
to write

Fi,j(z) =
a−mi,j + z

2a

for all z ∈ [bc − a, b1 + a], which implies

Fi,j(z)− Fi,j(w) =
z − w

2a

for all z, w ∈ [bc − a, b1 + a]. Note that, assuming (C4), mh,i < mj,k implies
that Fh,i(z) > Fj,k(z) for all z ∈ [bc − a, b1 + a], i.e., that Fj,k stochastically
dominates Fh,i over the interval.
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Example: Shape-Invariant Conditional Model. We assume that the shape
of the distribution of the cut-point conditional on pairs of signal realizations
is the same regardless of the signal realizations. This is equivalent to identi-
fying the median conditional on the signal realizations as a scale parameter
of a family of shape-invariant distributions. Formally, we assume that

Fi,j(z + mi,j) = Fk,l(z + mk,l),

for all z ∈ < and all i, j, k, l ∈ I. As is well known, the assumption that
conditional distributions form a family of shape-invariant distributions is
pervasive in classical statistics, the most celebrated example of such a fam-
ily of distributions being homoschedastic econometric models with normal
errors.

3 Pure Strategy Equilibrium

The main result of this section is a full characterization of the pure strategy
Bayesian equilibria of the canonical model: if such an equilibrium exists,
then it is unique, and, after receiving a signal, a candidate locates at the
median of the distribution of µ, conditional on both candidates receiving that
signal. A corollary, with a natural restriction on conditional medians, is that
candidates tend to take policy positions that are extreme relative to their
expectations of the cut point, given their information. In other words, the
position of a candidate is a biased estimator of the cut point: candidates
who receive high signals will overestimate the cut point, while those who
receive low signals will underestimate it. We also take up the question of
existence of pure strategy equilibrium, giving sufficient conditions for the
binary signal and multi-signal models.

The characterization result relies on the following lemma, which is proved
in the appendix in a somewhat more general form.

Lemma 3 In the canonical model, let (X,Y ) be a pure strategy Bayesian
equilibrium. If xi = yj for some i, j ∈ I with P (i, j) > 0, then xi = yj =
mi,j.

For the intuition behind this lemma, suppose that candidates A and
B locate at the same point following two signal realizations, i and j, and
suppose for simplicity that these are the only realizations after which they
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locate there. (The proof uses condition (C4) to rule out the remaining
cases.) Then, conditional on those realizations, each candidate expects to
win the election with probability one half. We claim that, if the location of
the candidates is not the median conditional on i and j, then the payoff of
either candidate will be increased by a small move toward that median: if
A deviates in this way, for example, then the candidate’s expected payoff
given other realizations for B will vary continuously, but the payoff given
realization j will jump discontinuously above one half. Therefore, a small
enough deviation will increase A’s payoff, something that is impossible in
equilibrium.

The proof of the characterization is then quick work.

Remark to us: This result holds as long as, for all i and j with i < j
(so not conditionally equivalent), P (i, j)Fi,j is continuous. This captures
symmetric information models as a special case.

Theorem 1 In the canonical model, if (X,Y ) is a pure strategy Bayesian
equilibrium, then xi = yi = mi,i for all i ∈ I.

Proof: First, consider a symmetric equilibrium (X,Y ), where xi = yi for
all i ∈ I. By (C4) and Lemma 3, we have xi = yi = mi,i, as required. Now
suppose there is an asymmetric equilibrium (X,Y ), where xi 6= mi,i for some
i ∈ I, and define the strategy Y ′ = X for candidate B. Then, by symmetry
and interchangeability, (X, Y ′) is a symmetric Bayesian equilibrium with
xi 6= mi,i, a contradiction.

When symmetric information holds in the canonical model, we must have
mi = mi,i. To see this, note that

Fi(mi) =
∑

j∈I

P (j|i)Fi,j(mi) =
1
2

and that, for all j with positive probability in the above sum, P (j|i) = 1/I(i)
and Fi,j(mi) = Fi,i(mi,i). Therefore,

∑

j∈I

P (j|i)Fi,j(mi) =
∑

j∈I(i)

1
I(i)

Fi,j(mi)

=
∑

j∈I(i)

1
I(i)

Fi,i(mi)

= Fi,i(mi),
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establishing the claim. Thus, Theorem 1 has the following familiar implica-
tion.

Corollary 1 In the canonical model with symmetric information, if (X, Y )
is a pure strategy Bayesian equilibrium, then xi = yi = mi for all i ∈ I.

Theorem 1 and Corollary 1 give a necessary, not a sufficient, condition
for existence of a pure strategy equilibrium. It is clear — and will fol-
low from later results — that, with symmetric information, the strategies
specified in Corollary 1 do indeed form an equilibrium. The next exam-
ple shows, however, that pure strategy equilibria do not exist generally. In
fact, the example begins with an arbitrary symmetric information model
and demonstrates arbitrarily close models with no pure strategy equilibria,
illustrating the fragility of the pure strategy equilibria in the above corol-
lary. We return to the issue of robustness of equilibria in our analysis of
mixed strategy equilibria. An implication of results there is that, even if
pure strategy equilibria cease to exist in models close to symmetric infor-
mation, mixed strategy equilibria do exist and will necessarily be “close” to
the pure strategy equilibrium of the original model.

Example: Non-existence of Pure Strategy Equilibrium. In the canonical
model, let I = {−1, 0, 1}, let P (i, j) = 1/9 for all i, j ∈ I, and let Fi,j = F for
all i, j ∈ I. Thus, symmetric information holds, and the unique pure strategy
Bayesian equilibrium is (X, Y ) such that xi = yj = m for all i, j ∈ I, where
m is the median of F . Now let {F̂ k} and {F̃ k} be sequences of distributions
converging weakly to F defined by F̂ k(z) = F (z + 1/k) and F̃ k(z) = F (z −
1/k) for all z ∈ <. Denoting the medians of these distributions by m̂k and
m̃k, we have m̂k = m − 1/k and m̃k = m + 1/k for all k. Now perturb
the original specification of the game so that F−1,−1 = F̂ k and F1,1 = F̃ k.
Thus, by Theorem 1, if there is a pure strategy equilibrium, then it is (X, Y )
defined by x−1 = y−1 = m̂k, x0 = y0 = m, and x1 = y1 = m̃k. This is not
an equilibrium, however, because candidate A can deviate profitably to X ′

defined as X but with x′−1 = 0. To see this, note that, in the perturbed
game, we have

ΠA(X,Y | − 1) =
1
3

(
1
2

+ F ((m̂k + m)/2) + F ((m̂k + m̃k)/2)
)

and

ΠA(X ′, Y | − 1) =
1
3

(
(1− F̂ k((m̂k + m)/2)) +

1
2

+ F ((m + m̃k)/2)
)

.
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By construction, F ((m̂k+m)/2) < 1/2, so the second term in ΠA(X ′, Y |−1)
is strictly greater than the second term in ΠA(X, Y | − 1). The sum of
the remaining terms in ΠA(X ′, Y | − 1) is weakly greater than the sum in
ΠA(X,Y | − 1) if

F ((m + m̃k)/2) ≥ F̂ k((m̂k + m)/2).

Using m̂k = m− 1/k, m̃k = m + 1/k, and the definition of F̂ k, this reduces
to F (m + 1/2k) ≥ F (m + 1/2k). Thus, the deviation to X ′ increases candi-
date A’s expected payoff, and we conclude that there does not exist a pure
strategy Bayesian equilibrium for games arbitrarily close to the original.

In many situations where signals can be ordered, it is reasonable to sup-
pose that some signals indicate lower cut points and other signals indicate
higher ones. Then Theorem 1 has the following consequence for the equilib-
rium positions of the candidates.

Corollary 2 In the canonical model, assume that there exists n̄ ∈ I such
that i < n̄ implies mi,i < mi and n̄ < i implies mi < mi,i. If (X, Y ) is a
pure strategy Bayesian equilibrium, then xi < mi for i < n̄ and mi < xi for
i > n̄.

We next determine conditions under which the pure strategy equilib-
rium characterized in Theorem 1 exists. We consider two kinds of environ-
ments. The first, and simplest, is the canonical model with two possible
signals, where our condition is rather weak. The second is the multi-signal
case, where we impose additional restrictions. In both cases, pure strategy
equilibrium existence holds essentially if, conditional on each signal i, the
probability that the other candidate received that signal is high enough.

Remark to us: Unlike our result for the multi-signal model, our result
for the binary signal model assumes continuous conditional distributions.

Theorem 2 (Binary Signals) In the canonical model, let I = {−1, 1}. Then
a sufficient condition for the existence of the unique pure strategy Bayesian
equilibrium, where candidates locate at mi,i, following signal i ∈ I, is that

P (1|1)f1,1((z + m1,1)/2) ≥ P (−1|1)f1,−1((z + m−1,−1)/2)
P (−1| − 1)f−1,−1((z + m−1,−1)/2) ≥ P (1| − 1)f1,−1((z + m1,1)/2)

for all z ∈ [m−1,−1,m1,1].
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Proof: We will show that (X, Y ) is an equilibrium, where xi = yi = mi,i

for all i = −1, 1. Consider candidate A’s best response problem, conditional
on signal 1. If the candidate deviates to x ∈ [m−1,−1,m1,1], then the change
in the candidate’s interim expected payoff is

P (−1|1)[F1,−1((m1,1 + m−1,−1)/2)− F1,−1((x + m−1,−1)/2)]
+P (1|1)[F1,1((x + m1,1)/2)− (1/2)]

=
∫ m1,1

x
[P (−1|1)f1,−1((z + m−1,−1)/2)− P (1|1)f1,1((z + m1,1)/2)] dz

≤ 0.

Thus, the deviation does not increase the candidate’s expected payoff. It is
easily verified that deviations x < m−1,−1 and x > m1,1 are also unprofitable.
A similar argument holds for signal i = −1, and a symmetric argument for
candidate B establishes that (X, Y ) is an equilibrium.

The sufficient condition of Theorem 2 is reasonably weak. If signals
are not negatively correlated, so that P (1|1) ≥ P (−1|1) and P (−1| − 1) ≥
P (1| − 1), then it is sufficient that

f1,1((z + m1,1)/2) ≥ f1,−1((z + m−1,−1)/2)
f−1,−1((z + m−1,−1)/2) ≥ f1,−1((z + m1,1)/2)

for all z ∈ [m−1,−1, m1,1]. The first of these inequalities can be thought of
as comparing f1,1, shifted to the left by m1,1/2, and f1,−1, shifted to the left
by m−1,−1/2. The nature of the comparison may be clearer if it is rewritten
as:

f1,1

(
m1,1 −m−1,−1

2
+ z

)
≥ f1,−1(z)

for all z ∈ [(3m−1,−1 −m1,1)/2, (m1,1 + m−1,−1)/2]. Thus, the condition is
that f1,1, shifted to the left by (m1,1 − m−1,−1)/2 > 0, is greater than or
equal to f1,−1 over a given range. This is clearly true for the stacked uniform
model with a > bc − b1, where conditional densities are all equal to 1/2a
over the relevant range. The condition holds in the version of the shape-
invariant conditional model in which f1,−1 is the translation of f1,1 with
median (m1,1 + m−1,−1)/2. More generally, the condition holds if f1,−1 has
median near (m1,1 + m−1,−1)/2 and is somewhat more dispersed than f1,1,
as we would expect if identical signals decrease the variance of the cutpoint
distribution and opposing signals offset each other.
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To simplify our sufficiency argument for existence in the multi-signal
case, we provide separate conditions on the distribution of the cut point
conditional on signal realizations and on the priors over signal pairs. Our
first restriction on conditional distributions is a regularity condition that
reinforces the symmetry already present in the canonical model.

(C5) For all i, j ∈ I with P (i, j) > 0, mi,j = (mi,i + mj,j)/2.

This is trivially satisfied under symmetric information. It is satisfied in the
stacked uniform model, assuming a ≥ bc − b1, if

Q(k|i, j) =
Q(k|i, i) + Q(k|j, j)

2
,

or equivalently,

Q(i, j|k)
P (i, j)

=
1
2

(
Q(i, i|k)
P (i, i)

+
Q(j, j|k)
P (j, j)

)
,

for each disturbance k.

We also consider a stochastic dominance-like restriction on the condi-
tional distributions. Note that the property mi,i ≤ mj,j ≤ mk,k, below,
would also follow from (C4).

(C6) For all i, j, k ∈ I with i ≤ j ≤ k, we have mi,i ≤ mj,j ≤ mk,k, and

Fi,j((mi,i + z)/2) ≥ Fj,k((mk,k + z)/2)

for all z ∈ [mi,i,mk,k].

The meaning of the inequality in the latter condition may be more trans-
parent if rewritten as:

Fi,j(z) ≥ Fj,k

(
mk,k −mi,i

2
+ z

)

for all z ∈ [mi,i/2, (mi,i + mk,k)/2]. Thus, the distribution conditional on
signals j and k must dominate, when shifted to the left by the amount
(mk,k−mi,i)/2 > 0, the distribution conditional on signals i and j. Clearly,
(C6) is stronger than stochastic dominance in that Fj,k is shifted to the left,
but it is weaker in that the inequality must hold only over a given range.
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Again, the condition is trivially satisfied under symmetric information, and,
as we discuss below, the condition is satisfied in the stacked uniform model
with sufficiently large enough support for the noise term.

Our restriction on priors over signals formalizes the idea that, conditional
on a candidate’s own signal, the probability that the other candidate received
the same signal is sufficiently high. In fact, the condition is somewhat weaker
than that, because it only restricts “net” probabilities. The condition is
stated for the canonical model.

(C7) For all i ∈ I,
∑

j∈I:j≤i

P (j|i) ≥
∑

j∈I:j>i

P (j|i)
∑

j∈I:j<i

P (j|i) ≤
∑

j∈I:j≥i

P (j|i).

In words, for any signal i, it must be that i is a “median” of the distribution
P (·|i) on I.2 The condition is trivially satisfied under symmetric informa-
tion, because, given any i ∈ I, the only signals j such that P (j|i) > 0 are
conditionally equivalent to i. A stronger condition is that P (i|i) ≥ 1/2 for
all i ∈ I. It is clear that (C7) most restrictive for the “extremal” signals, for
which P (i|i) ≥ 1/2 is necessary, and that its restrictiveness depends on the
total number of possible signals. In the binary signal model, for example,
it is satisfied whenever signals are not negatively correlated. In the multi-
signal model, it is clearly satisfied in the case of perfect correlation, where
P (i|i) = 1 for all i ∈ I. Perfect correlation can be relaxed, of course, but the
extent to which that is possible depends on the number of possible signals
and the conditional distributions.

Theorem 3 (Multiple Signals) In the canonical model, (C5)-(C7) are suf-
ficient for the existence of the unique pure strategy Bayesian equilibrium,
where candidates locate at mi,i following signal i ∈ I.

Proof: We show that (X,Y ) is an equilibrium, where xi = yi = mi,i for all
i ∈ I. Without loss of generality, we focus on candidate B’s best response
problem after receiving signal j. Consider a deviation to strategy Y ′. There

2Equivalently, we may write
P

j:j≤i P (j|i) ≥ 1/2 and
P

j:i≤j P (j|i) ≥ 1/2.
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are two cases: y′j < mj,j and mj,j < y′j . In the first case, define

G = {i ∈ I : mi,i ≤ y′j}
L = {k ∈ I : mj,j ≤ mk,k}.

Note that, for all i ∈ I \ (G ∪ L) such that P (i|j) > 0, we have y′j < mi,i <
mj,j . It follows that, for such i,

Fi,j((y′j + mi,i)/2)− [1− Fi,j((mi,i + mj,j)/2)] ≤ 0,

where we use (C5) to deduce Fi,j((y′j + mi,i)/2) ≤ 1/2 and Fi,j((mi,i +
mj,j)/2) = 1/2. Intuitively, B’s gains from deviating when A receives signal
si, with i ∈ I\(G∪L), are non-positive. Therefore, the change in B’s interim
expected payoff satisfies

ΠB(X, Y ′|j)−ΠB(X, Y |j)
≤

∑

i∈G
P (i|j)[1− Fi,j((mi,i + y′j)/2)− 1 + Fi,j((mi,i + mj,j)/2)]

+
∑

k∈L
P (k|j)[Fj,k((y′j + mk,k)/2)− Fj,k((mj,j + mk,k)/2)]

=
∑

i∈G
P (i|j)[(1/2)− Fi,j((mi,i + y′j)/2)]

+
∑

k∈L
P (k|j)[Fj,k((y′j + mk,k)/2)− (1/2)],

which is non-positive if
∑

i∈G
P (i|j)[(1/2)− Fi,j((mi,i + y′j)/2)]

≤
∑

k∈L
P (k|j)[(1/2)− Fj,k((y′j + mk,k)/2)].

Letting i∗ minimize Fi,j((mi,i + y′j)/2) over G, and letting k∗ maximize
Fj,k((mi,i + y′j)/2) over L, the latter inequality holds if

[(1/2)− Fi∗,j((mi∗,i∗ + y′j)/2)]
∑

i∈G
P (i|j)

≤ [(1/2)− Fj,k∗((y′j + mk∗,k∗)/2)]
∑

k∈L
P (k|j),

which follows from conditions (C5)-(C7). Thus, deviating to y′j < mj,j is
not profitable for candidate B. A symmetric argument applies to the case
mj,j < y′j .
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The following corollary for symmetric information models is immediate.
Though it establishes a unique pure strategy Bayesian equilibrium, we will
see that this uniqueness result extends to mixed strategies as well.

Corollary 3 In the canonical model with symmetric information, the strat-
egy pair in which candidates locate at mi following signal i ∈ I is the unique
pure strategy Bayesian equilibrium.

We have shown that our restriction, (C7), on the signals’ conditional cor-
relation, together with the regularity conditions (C5) and (C6), is sufficient
for existence of pure strategy equilibrium. We now show that (C7), under
(C5) and a stronger version of (C6), is actually necessary for equilibrium
existence. In the next condition, we essentially strengthen (C6) by stating
it with equality.

(C6′) For all i, j, k ∈ I with i ≤ j ≤ k, we have

Fi,j((mi,i + z)/2) = Fj,k((mk,k + z)/2)

for all z ∈ [mi,i,mk,k].

Theorem 4 In the canonical model, under (C5) and (C6′), and (C7) is
necessary for the existence of the unique pure strategy Bayesian equilibrium,
where candidates locate at mi,i, following signal i ∈ I.

We need a real proof of this theorem.

It is immediate that, under (C5), condition (C6′) is satisfied in the shape-
invariant conditional model. To see this, take any signals i, j,, and note that,
by (C5), we have

mi,i + z

2
= mi,j +

z −mj,j

2
mk,k + z

2
= mj,k +

z −mj,j

2
.

Thus,

Fi,j((mi,i + z)/2) = Fi,j(mi,j + (z −mj,j)/2)
= Fj,k(mj,k + (z −mj,j)/2) = Fj,k((mk,k + z)/2),
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where the second equality above uses shape-invariance. At the same time,
under (C5), condition (C6′) holds also in the stacked uniform model when
a sufficiently high, i.e., a ≥ bc − b1. Take i, j, k as in the condition and
z ∈ [mi,i, mk,k]. Then, because Fi,j is linear with slope 1/2a over [mi,i,mk,k],
we have

Fi,j((mi,i + z)/2) = Fi,j(mi,j + (z −mj,j)/2)

=
1
2

+
z −mj,j

4a
,

and similarly for Fj,k((mk,k + z)/2). This establishes the claimed equality
for the stacked uniform model.

4 Mixed Strategies

Our results for pure strategy equilibria suggest that, when there are many
signals, existence of pure strategy equilibrium becomes difficult to maintain.
We model mixed strategies in the electoral game as follows. We allow candi-
date A to randomize over campaign platforms following signal s according to
a distribution Gs. A mixed strategy for A is then a vector G = (Gs) of such
distributions. Likewise, a mixed strategy for B is a vector H = (Ht) of distri-
butions conditional on signals. We may use the shorthand Gs(z)− or Ht(z)−

for the lefthand limits of these distributions, e.g., Gs(z)− = limw↑z Gs(w).
Accordingly, Gs has a mass point at x if Gs(x)−Gs(x)− > 0.

To extend our definition of interim expected payoffs, define the probabil-
ity that A wins using platform x following signal s, while B uses y following
t, as

πA(x, y|s, t) =





Fs,t((x + y)/2) if x < y
1− Fs,t((x + y)/2) if y < x
1/2 if x = y,

and define πB(·|s, t) = 1 − πA(·|s, t). Then, given mixed strategies (G, H),
candidate A’s interim expected payoff conditional on signal s is

ΠA(G,H|s) =
∑

t∈T

P (t|s)
∫

πA(x, y|s, t)Gs(dx)Ht(dy),

and B’s interim payoff ΠB(G,H|t) is defined similarly. Abusing notation
slightly, we may write ΠA(X, H|s) for the expected payoff when A uses the
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degenerate mixed strategy with Gs(xs)−Gs(xs)− = 1 for all s ∈ S. Likewise
for B. A mixed strategy Bayesian equilibrium is a pair (G,H) such that

ΠA(G,H|s) ≥ ΠA(G′, H|s)

for all s ∈ S and all G′, and

ΠB(G,H|t) ≥ ΠB(G,H ′|t)

for all t ∈ T and all H ′. Note that, in equilibrium, if xi is a continuity point
of ΠA(X, H|i) in the support of Gi, then the expected payoff from xi must
equal ΠA(G,H|i). Candidate A must therefore be indifferent over all such
points.

As with pure strategies, we can define ex ante expected payoffs as

ΠA(G,H) =
∑

s∈S

P (s)ΠA(G,H|s)

ΠB(G,H) =
∑

t∈T

P (t)ΠB(G, H|t).

Thus, we may again view mixed strategy Bayesian equilibria of the electoral
game as equilibria of a two-player, constant-sum game. In the canonical
model, the game is symmetric and we define a symmetric mixed strategy
Bayesian equilibrium as a pair (G,H) of strategies such that G = H.

The next theorem establishes, for the general model, existence of mixed
strategy equilibria in which candidates use mixed strategies with support
bounded as follows. Define m = max{ms,t : s ∈ S, t ∈ T} and m =
min{ms,t : s ∈ S, t ∈ T}. Let M = [m, m] denote the interval defined by
the conditional medians. We say (G,H) has support in M if the candidates
put probability one on this set following all signal realizations: for all s ∈ S,
Gs(m)−Gs(m)− = 1, and likewise for all t ∈ T .

Theorem 5 There exists a mixed strategy Bayesian equilibrium with sup-
port in M . Under (C1) and (C2), there exists a symmetric mixed strategy
Bayesian equilibrium with support in M .

Proof: We use the existence theorem of Dasgupta and Maskin (1986) for
multi-player games with one-dimensional strategy spaces. To apply this
result, we view the electoral game as a |S|+ |T |-player game, in which each
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type (corresponding to different signal realizations) of each candidate is a
separate player. Player s (or t) has strategy space M ⊆ <, a compact set,
with pure strategies denoted xs (or yt). Then (X, Y ) = (xs, yt)s∈S,t∈T is
a pure strategy profile, one for each type. We use (X−s, Y ) to denote the
result of deleting xs from (X,Y ). The payoff function of player s ∈ S is

Us(X, Y ) = P (s)ΠA(X,Y |s),
and the payoff function of player t ∈ T is

Ut(X, Y ) = P (t)ΠB(X,Y |t).
The space of mixed strategies for each player type s (or t) is M, the Borel
probability measures on M , with mixed strategies denoted Gs (or Ht). Then
(G, H) is a mixed strategy profile, one for each type. Note that

∑

s∈S

Us(X, Y ) +
∑

t∈T

Ut(X, Y ) = 1

for all X and Y , so the total payoff is trivially upper semi-continuous. Fur-
thermore, payoffs are between zero and one, so they are bounded. Note that
Us is discontinuous at (X,Y ) only if xs = yt for some t ∈ T . Therefore, the
discontinuity points of Us lie in a set that can be written as A∗(s), as in
Dasgupta and Maskin’s equation (2). Likewise for the discontinuity points
of Ut. It remains to be shown that Us (likewise Ut) is weakly lower semi-
continuous in xs, i.e., for all xs ∈ M , there exists λ ∈ [0, 1] such that, for all
(X−s, Y ),

Us(X,Y ) ≤ λ lim inf
z↓xs

Us(z, X−s, Y ) + (1− λ) lim inf
z↑xs

Us(z, X−s, Y ).

In fact, it is straightforward to verify that this condition holds with equality
for λ = 1/2. Let T+ = {t ∈ T : xs < yt}, let T− = {t ∈ T : yt < xs}, and
let T 0 = {t ∈ T : xs = yt}. Since

Us(X,Y ) =
∑

t∈T−
P (s, t)(1− Fs,t((xs + yt)/2)) +

∑

t∈T 0

P (s, t)(1/2)

+
∑

t∈T+

P (s, t)Fs,t((xs + yt)/2),

it follows that

lim inf
z↑xs

Us(z, X−s, Y )

=
∑

t∈T−
P (s, t)(1− Fs,t((xs + yt)/2)) +

∑

t∈T 0∪T+

P (s, t)Fs,t((xs + yt)/2)
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and

lim inf
z↓xs

Us(z,X−s, Y )

=
∑

t∈T−∪T 0

P (s, t)(1− Fs,t((xs + yt)/2)) +
∑

t∈T+

P (s, t)Fs,t((xs + yt)/2).

The claim

Us(X, Y ) = (1/2) lim inf
z↓xs

Us(z, X−s, Y ) + (1/2) lim inf
z↑xs

Us(z, X−s, Y )

then follows immediately. The condition is verified for Ut using exactly the
same arguments. By Dasgupta and Maskin’s (1986) Theorem 5, there exists
a mixed strategy equilibrium of the multi-player game, and, therefore, of the
electoral game when strategies are restricted to M . To see that, following
a signal s, candidate A has no profitable deviations outside M , take any
x > m. Note that, for all t ∈ T and all y ∈ M , we have πA(m, y|s, t) ≥
πA(x, y|s, t). Letting G′ be any deviation such that G′

s puts probability one
on xs > m, and letting G′′ put probability one on m instead, we have

ΠA(G′,H|s) ≤ ΠA(G′′,H|s) ≤ ΠA(G,H|s).
A similar argument applies when x < m, yielding the claim. Adding (C1)
and (C2), the electoral game can be viewed as a two-player, symmetric zero-
sum game. Therefore, by existence of equilibrium and by interchangeability,
there exists a symmetric mixed strategy equilibrium.

We next study the continuity properties of the mixed strategy equilib-
rium correspondence as we vary the parameters of the model, namely, the
candidates’ marginal prior on S × T and the conditional distributions of
µ. To state our continuity result, we index these parameters by a metric
space Γ, with typical element γ representing a specification of the model.
Let the marginal probability of (s, t) in game γ be P γ(s, t), and let the
distribution of µ conditional on s and t in γ be F γ

s,t. We assume that this
indexing is continuous. That is, for each s ∈ S and t ∈ T , if γn → γ, then
P γn(s, t) → P γ(s, t) and F γn

s,t → F γ
s,t weakly. Let M(γ) denote the inter-

val defined by the extreme conditional medians in game γ, and note that,
by the assumption of continuous indexing, the correspondence M : Γ ⇒ <
so-defined is continuous.

Theorem 5 establishes the existence of a mixed strategy equilibrium for
all γ ∈ Γ. Therefore, since the electoral game is constant sum, the ex ante
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expected payoff of a candidate in game γ is the same for in all mixed strat-
egy equilibria. These payoffs, or “values,” are denoted vA(γ) and vB(γ).
Furthermore, each candidate has a mixed strategy, called an “optimal strat-
egy,” that guarantees the candidate’s value, no matter which strategies are
used by the opponent. If (C1) and (C2) hold for the game γ, then the game
is symmetric, so these values are identical and constant at one half. The
next theorem establishes that the values of the candidates vary continuously
in the parameters of the game, even when asymmetries are allowed.

Theorem 6 The mapping vA : Γ → < is continuous.

Proof: We prove lower semi-continuity of vA. A symmetric argument proves
lower semi-continuity of vB = 1− vA, which gives us upper semi-continuity
of vA, as well. Let γn → γ, and suppose vA(γ) > lim inf vA(γn). Let Πn

A

denote A’s ex ante expected payoff function corresponding to γn, and let ΠA

denote the ex ante payoffs corresponding to γ. Let Mn denote the interval
M(γn), let M = M(γ), and let M̂ be any compact set containing M in its
interior. By continuity, therefore, we have Mn ⊆ M̂ for high enough n. For
each n, let (Gn,Hn) be an equilibrium with support in Mn for the electoral
game indexed by γn, so Πn

A(Gn,Hn) = vA(γn) and Πn
B(Gn,Hn) = vB(γn).

By compactness of M̂ , we may go to a weakly convergent subsequence of
{(Gn,Hn)}, also indexed by n, with limit (G, H). Going to a further subse-
quence if necessary, we may assume {vA(γn)} converges to limit v < vA(γ).
Let (G∗,H∗) be an equilibrium of the electoral game indexed by γ, so G∗

is an optimal strategy for A, which guarantees a payoff of at least vA(γ) in
game γ. Thus, ΠA(G∗,H) ≥ vA(γ). In particular, there exists X∗ such that

ΠA(X∗,H) ≥ vA(γ) > v.

We claim that, as a consequence, there exists X ′ such that

Πn
A(X ′,Hn) >

ΠA(X∗,H) + v

2

for high enough n. But this, with v(γn) → v, contradicts the assumption
that Gn is a best response to Hn for candidate A. We establish the claim
in three steps.
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Step 1. By Lemma 1 (in the appendix), for every s ∈ S, we have either
∑

t∈T

P (t|s)[Ht(x∗s)−Ht(x∗s)
−][Fs,t(x∗s)]

≥ 1
2

∑

t∈T

P (t|s)[Ht(x∗s)−Ht(x∗s)
−] (1)

or
∑

t∈T

P (t|s)[Ht(x∗s)−Ht(x∗s)
−][1− Fs,t(x∗s)]

≥ 1
2

∑

t∈T

P (t|s)[Ht(x∗s)−Ht(x∗s)
−]. (2)

Let S− be the set of s ∈ S such that (1) holds, and let S+ be the set
of s ∈ S \ S− such that (2) holds. For s ∈ S−, let {xk

s} be a sequence
increasing to x∗s, and for s ∈ S+, let {xk

s} be a sequence decreasing to x∗s.
In addition, we choose each xk

s to be a continuity point of Ht for all t ∈ T .
(This is possible because T is finite and each Ht has a countable number of
discontinuity points.) Thus, Ht(xk

s) −Ht(xk
s)
− = 0 for all t ∈ T . For each

m, define the strategy Xk = (xk
s) for candidate A.

Step 2. We now argue that Xk satisfies lim inf ΠA(Xk,H) ≥ ΠA(X∗,H).
For each t ∈ T , let λt denote the measure generated by the distribution Ht,
let µt denote the degenerate measure with probability Ht(x∗s)−Ht(x∗s)− on
each x∗s, and let νt = λt − µt. Let

π∗s,t(z) = πA(x∗s, z|s, t)

denote A’s probability of winning using x∗s, conditional on signal s, when B
receives signal t and chooses platform z, and let

πk
s,t(z) = πA(xk

s , z|s, t)

denote A’s probability of winning using xk
s , conditional on signal s, when B
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receives signal t and chooses platform z. Note that

ΠA(Xk,H)−ΠA(X∗, H)

=
∑

s∈S

P (s)
∑

t∈T

P (t|s)
∫

[πk
s,t(z)− π∗s,t(z)]λt(dz)

=
∑

s∈S−

∑

t∈T

P (s, t)[Ht(x∗s)−Ht(x∗s)
−][Fs,t((x∗s + xk

s)/2)− (1/2)]

+
∑

s∈S+

∑

t∈T

P (s, t)[Ht(x∗s)−Ht(x∗s)
−][1− Fs,t((x∗s + xk

s)/2)− (1/2)]

+
∑

s∈S

∑

t∈T

P (s, t)
∫

[πk
s,t(z)− π∗s,t(z)] νt(dz).

Since πk
s,t − π∗s,t → 0 almost everywhere (νt), the corresponding integral

terms above converge to zero. Thus, by our construction of Xk,

lim inf
m→∞ΠA(Xk, H) ≥ ΠA(X∗,H) > v,

as desired.

Step 3. Choose m such that ΠA(Xk,H) > (ΠA(X∗,H) + v)/2 and set
X ′ = Xk. To prove our claim that Πn

A(X ′,Hn) > v for high enough n,
define the functions

φ′s,t(z) = πA(x′s, z|s, t)
φn

s,t(z) = πγn

A (x′s, z|s, t).
Note that

ΠA(X ′,H) =
∑

s∈S

∑

t∈T

P (s, t)
∫

φ′s,t(z) Ht(dz),

and, letting Pn = P γn ,

Πn
A(X ′,Hn) =

∑

s∈S

∑

t∈T

Pn(s, t)
∫

φn
s,t(z) Hn

t (dz).

Thus, it suffices to show that
∫

φn
s,t(z) dHn

t →
∫

φ′s,t(z) dHt

for each s ∈ S and t ∈ T . To prove this, fix ε > 0. Because x′s = xk
s is not a

mass point of Ht, we may specify an interval Z = [z, z] with x′s ∈ (z, z) such
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that Ht(z)−Ht(z)− < ε/4. By weak convergence, we have Hn
t (z)−Hn

t (z)− <
ε/2 for sufficiently high n. Furthermore, {φn

s,t} is a sequence of functions
that are non-decreasing on [m, z] and converge pointwise to φ′s,t on this
interval, so they converge uniformly to φ′s,t on the interval. Similarly, each
φn

s,t is non-increasing on [z, m], so the functions converge uniformly to φ′s,t
on this interval. Choosing n high enough that |φn

s,t(z) − φ′s,t(z)| < ε/2 for
all z ∈ [m, z] ∪ [z,m], we have

∣∣∣∣
∫

φn
s,t(z) dHn

t −
∫

φ′s,t(z) dHt

∣∣∣∣ < ε,

as required.

Letting B denote the Borel probability measures over X, define the mixed
strategy equilibrium correspondence E : Γ ⇒ BS∪T so that E(γ) consists of
all mixed strategy equilibrium pairs (G,H). We have seen that this corre-
spondence has non-empty values. The next result establishes an important
continuity property of the equilibrium correspondence.

Theorem 7 The correspondence E : Γ ⇒ BS∪T has closed graph.

Proof: Let γn → γ, let (Gn,Hn) ∈ E(γn) for each n, and suppose that
(Gn, Hn) → (G, H). If (G,H) /∈ E(γ), then, using the notation from the
proof of Theorem 6, one candidate, say A, has a pure strategy X such that

ΠA(X,H) > vA(γ). (3)

But then, as in the proof of Theorem 6, we can find X ′ satisfying (3) such
that no x′s is a mass point of any Ht, and then we can show that

Πn
A(X ′,Hn) >

ΠA(X, H) + vA(γ)
2

for high enough n. But vA(γn) → vA(γ) by Theorem 6, so it follows that

Πn
A(X ′,Hn) > vA(γn)

for high enough n, contradicting the assumption that Gn is a best response
to Hn for A in the electoral game indexed by γn.
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To this point, our results have established existence of mixed strategy
equilibria with support in M , but we have not provided a necessary condition
to bound the supports of equilibrium mixed strategies. Our next result does
just that for the canonical model, showing that all mixed strategy equilibria
have support in M .

Theorem 8 In the canonical model, if (G, H) is a mixed strategy Bayesian
equilibrium, then it has support on M .

Proof: Let (G,H) be a mixed strategy Bayesian equilibrium, let xi =
sup{x ∈ < : Gi(x) = 0} be the lower bound of the support of Gi for each
i ∈ I, and let x = mini∈I xi be the minimum of these lower bounds. Suppose
that x < m, and take i such that xi = x. By symmetry and interchange-
ability, (G,G) is also an equilibrium, so we may assume that H = G. Define
the pure strategy Xn as follows. In case Gi puts positive probability on x,
i.e., Gi(x)−Gi(x)− > 0, then let xn

i = x for all n. Otherwise, let {xn} be a
sequence decreasing to x such that each xn is in the support of Gi. Further-
more, choose xn so that ΠA(Xn,H|i) = ΠA(G,H|i) for all n. To see that
this is possible, set x1 arbitrarily and note that we can choose any continuity
point of A’s expected payoff function in the support of Gi and in the interval
[x, (x + xn−1)/2] to satisfy the desired condition. Since there is at most a
countable number of discontinuity points of A’s payoff function, such a point
can be found unless the support of Gi in [x, (x + xn−1)/2] is countable. In
that case, however, any point in the support of Gi in this interval will satisfy
the desired condition, and there will be at least one such point by the as-
sumption that xi = x. In any case, we have ΠA(Xn,H|i) = ΠA(G,H|i) for
all n and limn→∞Gi(xn

i )− = 0. Now consider a pure strategy X ′ satisfying
x′i = m, and note that

ΠA(X ′,H|i)− πA(Xn,H|i)

=
∑

j∈I

P (j|i)
[∫

[x,xn
i )

[Fi,j((xn
i + z)/2)− Fi,j((x′i/ + z)/2)]Hj(dz)

+
∫

[xn
i ,x′i)

[1− Fi,j((x′i + z)/2)− Fi,j((xn
i + z)/2)]Hj(dz)

+(Hj(x′i)−Hj(x′i)
−)[(1/2)− Fi,j((xn

i + x′i)/2)]

+
∫

(x′i,∞)
[Fi,j((x′i + z)/2)− Fi,j((xn

i + z)/2)]Hj(dz)

]
.
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For each j ∈ I, the first integral goes to zero, because limn→∞Hj(xn
i )− =

limn→∞Gj(xn
i )− = 0. The third integral is clearly non-negative, and the

integrand of the second integral is strictly positive, because Fi,j((w+z)/2) <
1/2 for all w ≤ m and all z < m. The remaining term is similarly non-
negative. This establishes that, for all j ∈ I, the limit of the expression in
brackets is non-negative. It is actually strictly positive for j = i, for in that
case

lim
n→∞Hj(x′i)

− −Hj(xn
i )− = Gi(m)− > 0,

and the second integral converges to
∫

[x,x′i)
[1− Fi,j((x′i + z)/2)− Fi,j((x + z)/2)]Hj(dz),

which is positive. Since P (i|i) > 0, we conclude that

ΠA(X ′,H|i) > πA(Xn,H|i) = πA(G,H|i)

for high enough n, contradicting the assumption that (G,H) is a mixed
strategy Bayesian equilibrium.

Theorem 8 can be applied to symmetric information models to substan-
tially strengthen our existence and uniqueness results for that class of model.
The next corollary follows from Theorem 8 by decomposing any symmetric
information game into its component games. If F is the distribution corre-
sponding to one component, then M , defined for the component game, is
just the singleton consisting of the median of F , and Theorem 8 establishes
that the unique mixed strategy equilibrium of the component game is the
strategy pair such that each type chooses the median with probability one.

Corollary 4 In the canonical model with symmetric information, the strat-
egy pair in which candidates locate at mi with probability one following signal
i ∈ I is the unique mixed strategy Bayesian equilibrium.

With Theorem 7, this tells us that, in games close to symmetric infor-
mation, mixed strategy equilibria must be close to the pure strategy equilib-
rium, in the sense of weak convergence. This applies to our above example
of non-existence of pure strategy equilibria: though pure strategy equilibria
do not exist, for every open set around m and for high enough k, mixed
strategy equilibria exist and all put probability one on that open set. Thus,
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while the example shows the fragility of pure strategy equilibria, we obtain
a robustness result in mixed strategies.

We have not yet considered whether the distributions used by candidates
in equilibrium may contain atoms or not. Our next result shows that, with
some reasonable structure on the electoral game, the candidates may have
atoms only at the conditional medians, mi,i. This is true for pure strategy
equilibria by Theorem 1, but it actually holds for mixed strategy equilib-
ria quite generally. In addition to (C1)-(C4), we will impose the following
“monotone likelihood ratio” on the candidates’ beliefs.

(C8) For all i, j, i′, j′ ∈ I, if i < i′ and j < j′, then

P (j|i′)P (j′|i) ≤ P (j|i)P (j′|i′).

Assuming P (j|i) and P (j|i′) are positive, this can be written more intuitively
as

P (j′|i)
P (j|i) ≤ P (j′|i′)

P (j|i′) ,

which gives the condition its name. The condition is clearly satisfied in the
case of perfect correlation and in the case of independent signals.

A plausible interpretation of signals in our model is that they indicate the
ideological leanings of the electorate, i.e., whether the cut point µ is likely to
be located more to the left or more to the right. Under that interpretation,
the following stochastic dominance condition, which also presumes (C1)-
(C4), is natural.

(C9) For all i, i′ ∈ I with i < i′, for all j ∈ I, and for all z ∈ M with
0 < Fi′,j(z) < 1, we have Fi′,j(z) < Fi,j(z).

A consequence of (C9) is that Fi′,j(z) ≤ Fi,j(z). This claim is certainly true
if Fi′,j(z) = 0 or 0 < Fi′,j(z) < 1. If Fi′,j(z) = 1 but Fi,j(z) < 1, then, using
continuity, decrease z to z′ such that Fi,j(z′) < Fi′,j(z′) < 1, contradicting
(C9). Thus the claim follows. Note that (C9) is implied by (C4) in the
stacked uniform model when a ≥ bc − b1, for in that case mi′,j > mi,j , and

Fi′,j(z) =
1
2

+
z −mi′,j

2a
< <

1
2

+
z −mi,j

2a
= Fi,j(z),

yields the condition.
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The next lemma, which is proved in the appendix, establishes an im-
portant consequence of these conditions. Setting αj = 1 for all j ∈ H and
αj = 0 otherwise, we see that this consequence actually strengthens (C4).

Lemma 4 In the canonical model, assume (C8) and (C9). For each j ∈ I,
let αj ∈ [0, 1]. For all i, i′ ∈ I with i < i′ and for all z ∈ M with

0 < αjP (j|i)P (j|i′)Fi′,j(z) < αjP (j|i)P (j|i′)

for at least one j, we have
∑

j∈I αjP (j|i)Fi,j(z)∑
j∈I αjP (j|i) >

∑
j∈I αjP (j|i′)Fi′,j(z)∑

j∈I αjP (j|i′) .

This allows us to prove (in the appendix) a final lemma on the location
of mass points of equilibrium mixed strategies. It parallels, under the extra
conditions of (C8) and (C9), the earlier Lemma 3.

Lemma 5 In the canonical model, assume (C8) and (C9). Let (G, H) be a
mixed strategy Bayesian equilibrium. For all z ∈ M , if Gi(z)−Gi(z)− > 0
for some i ∈ I and Hj(z) − Hj(z)− > 0 for some j ∈ j with P (i, j) > 0,
then z = mi,j.

For the intuition behind this lemma, suppose that candidates A and
B both put positive mass on the same point z ∈ M following two signal
realizations, i and j. Lemma 4 allows us to assume that i and j are the
only signal realizations after which the candidates put positive mass at this
point. At this point, the argument proceeds as for Lemma 3. Conditional
on realizations i and j, each candidate expects to choose z with positive
probability, and, if z is not equal to mi,j , then either candidate, say A, can
transfer probability mass from z and move it toward mi,j an arbitrarily small
amount. This increases A’s expected payoff discretely in case B chooses z,
and it affects A’s expected payoff continuously otherwise. Therefore, a small
enough deviation will increase A’s expected payoff.

We now derive our restriction on atoms of mixed strategy equilibria:
in the symmetric model with (C8) and (C9), the only possible atom of an
equilibrium distribution, Gi or Hi, is mi,i. Note that, save for the added
assumptions of (C8) and (C9), the result generalizes Theorem 1.
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Theorem 9 In the canonical model, assume (C8) and (C9). Let (G, H)
be a mixed strategy Bayesian equilibrium. If Gi(z) − Gi(z)− > 0 for some
i ∈ I, then z = mi,i. If Hj(z)−Hj(z)− > 0 for some j ∈ I, then z = mj,j.

Proof: Let (G,H) be a mixed strategy Bayesian equilibrium, and suppose
Gi(z) − Gi(z)− > 0 for some i ∈ I but z 6= mi,i. By symmetry and inter-
changeability, (G,G) is an equilibrium, and we haveP (i, i) > 0, by (C3). By
Theorem 8, we must have z ∈ M , and then Lemma 5 implies that z = mi,i,
a contradiction.

Theorem 9 does not quite allow us to easily use differentiable methods in
the analysis of mixed strategy equilibria. While the result limits the poten-
tial discontinuities of equilibrium mixed strategies to a finite set, there may
be other points at which an equilibrium distribution Gi is non-differentiable,
though continuous. In fact, the Cantor-Lebesgue function (see Wheeden and
Zygmund, 1977) is an example of a continuous distribution that puts prob-
ability one on its points of non-differentiability, so this technical problem is
a potentially significant one. In our analysis of equilibrium uniqueness in
the three-signal stacked uniform model, we therefore restrict attention to a
subset of mixed strategy equilibria: we say a strategy pair (G, H) is regular
if, for all i ∈ I and all z ∈ <, either Gi is differentiable at z or it is discon-
tinuous at z, and similarly for Hi. This restriction eliminates the problem
anticipated above, at the cost of omitting some pathological equilibria from
the analysis.

Suppose (G,H) is a regular mixed strategy Bayesian equilibrium. Under
the conditions of Theorem 9, we can decompose the probability measure
generated by Hj into a degenerate measure with mass Hj(mj,j)−Hj(mj,j)−

on mj,j and an absolutely continuous measure with density hj . The expected
payoff of candidate A from pure strategy X against H, conditional on signal
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i, is then

ΠA(X, H|i)
=

∑

j:mj,j<xi

P (j|i)(1− Fi,j((xi + mj,j)/2))(Hj(mj,j)−Hj(mj,j)−)

+
∑

j:mj,j=xi

P (j|i)(1/2)(Hj(mj,j)−Hj(mj,j)−)

+
∑

j:xi<mj,j

P (j|i)Fi,j((xi + mj,j)/2)(Hj(mj,j)−Hj(mj,j)−)

+
∑

j∈I

P (j|i)
[∫ xi

−∞
(1− Fi,j((xi + z)/2))hj(z) dz

+
∫ ∞

xi

Fi,j((xi + z)/2)hj(z) dz

]
.

Note that this expected payoff is differentiable at xi if there is no j such
that xi = mj,j . Indeed, it is enough that, if xi = mj,j , then Hj does not put
positive mass on mj,j . In this case, the usual first order condition must be
satisfied at xi, i.e.,

0 =
∑

j:mj,j<xi

P (j|i)
[
−1

2
fi,j((xi + mj,j)/2)(Hj(mj,j)−Hj(mj,j)−)

]

∑

j:xi<mj,j

P (j|i)
[
1
2
fi,j((xi + mj,j)/2)(Hj(mj,j)−Hj(mj,j)−)

+
∑

j∈I

P (j|i)
[∫ xi

−∞
−1

2
fi,j((xi + z)/2)hj(z) dz + (1− Fi,j(xi))hj(xi)

+
∫ ∞

xi

1
2
fi,j((xi + z)/2)hj(z) dz − Fi,j(xi)hj(xi)

]
.

We will use these observations next to construct a regular mixed strategy
equilibrium in the stacked uniform model.

5 The Stacked Uniform Model

In this section, we construct an example of a mixed strategy equilibrium in
the stacked uniform model and examine some properties of that equilibrium.
The construction works by conjecturing the general form of the equilibrium,
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then deducing strong necessary conditions for the conjectured strategies to
be an equilibrium, and finally checking that the strategies so-characterized
are indeed mutual best responses. We consider the canonical stacked uniform
model assuming sufficiently large support of the disturbance term, i.e., a ≥
bc − b1, and imposing several restrictions on the marginal prior on signal
pairs.

(C10) For all i, i′ ∈ I, if i < i′, then

0 ≤
∑

j:j<i

P (j|i)−
∑

j:j<i

P (j|i′) ≤
∑

j:i≤j<i′
P (j|i′).

The first inequality is a stochastic dominance condition, formalizing the
obvious intuition: the higher a candidate’s signal, the more likely is the
other candidate to also receive a higher signal. The second inequality, which
can be rewritten as

∑

j:j<i

P (j|i′) ≤
∑

j:j<i′
P (j|i′),

limits the extent of this dominance: if we move from i to i′, the signals below
i will lose probability, but not too much.

(C11) For all i, j ∈ I, P (i|i) ≥ P (i|j).

That is, the likelihood a candidate receives a signal is greatest when the
other candidate receives the same signal.

An important consequence of (C10) is that the subset of signals i such
that

∑

j∈I:j≤i

P (j|i) ≥
∑

j∈I:j>i

P (j|i)
∑

j∈I:j<i

P (j|i) ≤
∑

j∈I:j≥i

P (j|i)

is an interval. That is, letting C denote this subset, with c = minC and
c = max C, if c ≤ i ≤ c, then i ∈ C. To see this, suppose

∑

j∈I:j<i

P (j|i) >
∑

j∈I:j≥i

P (j|i),
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and take i′ > i. Then

1
2

<
∑

j∈I:j<i

P (j|i) ≤
∑

j∈I:j<i′
P (j|i′),

where the first inequality follows by supposition and the second by (C10).
The following condition is self-explanatory.

(C12) C 6= ∅.

The last condition we impose is a technical one needed for the proof of
equilibrium existence in the multi-signal stacked uniform model.

(C13) For all i, j ∈ I, if c < j < i, then

P (j|i)(mi,j −mj,j) ≥ (P (j|j)− P (j|i))(mi,j −mc,c),

and, if i < j < c, then

P (j|i)(mj,j −mi,j) ≥ (P (j|j)− P (j|i))(mc,c −mi,j).

The condition limits (C11), saying roughly that P (j|j) cannot exceed P (j|i)
by too much, where the stated bound depends on distances between con-
ditional medians. Note that the condition is satisfied if signals are unin-
formative, when we would have P (j|j) = P (j|i). It is satisfied if signals
are perfectly correlated, for then C = I, and the condition is vacuously
satisfied. Finally, note that it is also vacuously satisfied in the three signal
model, with I = {−1, 0, 1} and C = {0}, for in this case there do not exist
distinct signals to the right of c = 0 or the the left of c = 0.

We conjecture a symmetric equilibrium in which candidates who receive
a central signal i ∈ C choose the conditional median mi,i with probability
one. Candidates who receive other signals use mixed strategies that are
non-atomic with differentiable densities and convex supports, say [xi, xi].
We conjecture supports that are non-overlapping, adjacent, and ordered
identically to signals, so xc+1 = mc,c and, for all i > c, xi = xi−1. Our
analysis will mainly be concerned with the conditions that need to be fulfilled
by the distribution, say Gi, used by the candidates after signal realizations
i /∈ C. Under the assumptions of this section, we can analyze the cases i < c
and i > c independently, and we will therefore focus on the latter. Once we
have fully characterized what such a strategy pair, say (G,G), would have
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to look like if it were an equilibrium, we will check that it actually is an
equilibrium.

Because we assume G satisfies non-overlapping supports, we see that,
for every differentiability point x in the support of Gi, gj(x) > 0 implies
j = i. This allows us to simplify the first order condition for i > c from the
previous section to: for all x ∈ [xi, xi],

P (i|i)gi(x)(2Fi,i(x)− 1)

= −
∑

j∈C

1
2
P (j|i)fi,j((x + mj,j)/2)

−
∑

j∈I\C
P (j|i)

[∫ x

−∞

1
2
fi,j((x + z)/2)gj(z) dz

+
∫ ∞

x

1
2
fi,j((x + z)/2)gj(z) dz

]
,

unless i = c + 1, in which case the condition holds on the half open interval
(mc,c, xc+1]. Since the candidate’s expected payoff is constant over the rele-
vant interval, it must, in particular be linear over this interval, so the second
order condition must be satisfied with equality. Using the assumption of uni-
form distributions, the second order condition reduces to the following: for
all x ∈ [xi, xi],

3gi(x)fi,i(x) + g′i(x)(2Fi,i(x)− 1) = 0,

with the same qualification if i = c+1. Since the platform mc,c will have no
mass when the candidate receives signal c + 1, we include it in the interval
as well, yielding a differential equation in gi that is easily solved: we find
that, for all x ∈ [xi, xi],

gi(x) = gi(xi)
(

1− 2Fi,i(xi)
1− 2Fi,i(x)

) 3
2

,

which yields the distribution

Gi(x) = gs(xi)((1/2)− Fi,i(xi))
3/2

∫ x

xi

1
((1/2)− Fi,i(z))3/2

dz.

Thus, the second order condition pins down the density gi up to the location
of xi and the initial condition gi(xi).
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These parameters are determined by the first order condition for each
signal realization and by our assumption of non-overlapping adjacent sup-
ports. In the stacked uniform model, which we consider here, the first order
condition reduces to

gi(x) =
−∑

j∈I:j<i P (j|i) + P (i|i)(1− 2Gi(x)) +
∑

j∈I:i<j P (j|i)
4aP (i|i)(2Fi,i(x)− 1)

.

Evaluated as xi, this becomes

gi(xi) =
−∑

j∈I:j<i P (j|i) +
∑

j∈I:j≥i P (j|i)
4aP (i|i)(2Fi,i(xi)− 1)

,

which is positive for i > c, as is required. For signal c + 1, we have xc+1 =
mc,c by construction. This pins down gc+1(xc+1) through the first order
condition. We then find xc+2 as the solution to

Gc+1(x) = 1,

if such a solution exists. This pins down gc+2(xc+2) through the first order
condition, and so on. It is straightforward to verify that, given xi < mi,i, a
solution to Gi(x) = 1 exists for all i > c. Using Fi,i(x) = Fi,i(xi)+(x−xi)/2a
for x ∈ [xi,mi,i,], note that

∫ x

xi

1
((1/2)− Fi,i(z))3/2

dz =
4a√

1
2 − Fi,i(xi) + xi−x

2a

− 4a√
1
2 − Fi,i(xi)

.

Solving Fi,i(xi,i) + (mi,i − xi)/2a for mi,i, we see that

lim
x↑mi,i

∫ x

xi

1
((1/2)− Fi,i(z))3/2

dz = ∞,

which yields the desired solution.

It is prohibitively difficult to solve for these parameters in the general
case, but the next result establishes several properties of our conjectured
equilibrium. We first show that the strategies defined above do, indeed,
form an equilibrium. We then note that the density used following signal re-
alizations i > c is increasing, so more extreme positions are more likely than
more moderate ones, and that the support of this density is bounded above
by the conditional median mi,i. Thus, a candidate never chooses positions
more extreme than what might be chosen in the pure strategy equilibrium.
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In the third part of the theorem, we index the marginal prior on I×I by the
elements of a metric space Γ, as in P γ(i, j). We consider a sequence {γn}
of games, where, for each n, we let Gn denote the strategy profile defined
above, gn

i the corresponding density used after signal realization i, and xn
i

and xi the lower and upper bounds of the support of gn
i . We show that, as

the net probability that his/her opponent has a more moderate signal goes
to zero, the mixed strategy used by a candidate approaches the point mass
on the candidate’s conditional median.

Theorem 10 In the canonical stacked uniform model with a ≥ bc − b1,
assume (C10)-(C13).

1. The above strategies form a mixed strategy Bayesian equilibrium.

2. For i > c, gi is increasing and convex and xi < mi,i.

3. Let {γn} be a sequence with Cγn = C for all n and, for all i ∈ I,
lim infn→∞ P γn(i|i) > 0. For i > c, if

∑

j∈I:j<i

P γn(j|i)−
∑

j∈I:j≥i

P γn(j|i) → 0,

then xn
i → mi,i and, for all x < mi,i gn

i (x) → 0.

Proof: 1. Take any i, k ∈ I with c < k ≤ i. Let X be a pure strategy such
that xi = xk, and let X ′ be a pure strategy such that x′i = x′ ∈ (xk, xk].
Define

ψk(x) =
xk − x

4a
,

and note that this quantity is positive. The change in candidate A’s expected
payoff, conditional on signal i, upon moving from xk to x′ is

ΠA(X ′, G|i)−ΠA(X, G|i)
=

∑

j∈C:j<k

P (j|i)ψk(x′)−
∑

j∈C:j>k

P (j|i)ψk(x′)

+
∑

j /∈C:j<k

P (j|i)
∫ xk

−∞
ψk(x′)gj(z) dz −

∑

j /∈C:k<j

P (j|i)
∫ ∞

xk

ψk(x′)gk(z) dz

+P (k|i)
[∫ x′

xk

ψk(x′)gk(z) dz

+
∫ xk

x′
(Fi,k((x + z)/2) + Fi,k((xk + z)/2)− 1)gk(z) dz

]
,
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where the second term on the righthand side is zero, by construction. The
last terms on the righthand side, corresponding to signal k, simplify to P (k|i)
times

ψk(x′)Gk(x′) +
∫ xk

x′

xk + x′ + 2z

4a
gk(z) dz − 1−Gk(x′)

a

c∑

h=1

Q(h|i, k)bh

= ψk(x′)Gk(x′) +
∫ xk

x′

xk + x′ + 2z − 4xk

4a
gk(z) dz

+
1−Gk(x′)

a

c∑

h=1

Q(h|i, k)(xk − bh).

Therefore,

ΠA(X ′, G|i)−ΠA(X, G|i)

= ψk(x′)


 ∑

j:j<k

P (j|i)−
∑

j:j>k

P (j|i)

 + P (k|i) [ψk(x′)Gk(x′)

+
∫ xk

x′

xk + x′ + 2z − 4xk

4a
gk(z) dz +

1−Gk(x′)
a

c∑

h=1

Q(h|i, k)(xk − bh)

]
.

Note that this change is equal to zero, by construction, if i = k. If k < i,
then

∑

j:j<k

P (j|i)−
∑

j:j>k

P (j|i) ≤
∑

j:j<k

P (j|k)−
∑

j:j>k

P (j|k)

by (C10). Furthermore,

P (k|i)
[
ψk(x′)Gk(x′) +

∫ xk

x′

xk + x′ + 2z − 4xk

4a
gk(z) dz

+
1−Gk(x′)

a

c∑

h=1

Q(h|i, k)(xk − bh)

]

≤ P (k|k)
[
ψk(x′)Gk(x′) +

∫ xk

x′

xk + x′ + 2z − 4xk

4a
gk(z) dz

+
1−Gk(x′)

a

c∑

h=1

Q(h|k, k)(xk − bh)

]
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if and only if

P (k|i)
(

c∑

h=1

Q(h|k, k)bh −
c∑

h=1

Q(h|i, k)bh

)

≤ (P (k|k)− P (k|i))
[
ψk(x′)Gk(x′) +

∫ xk

x′

xk + x′ + 2z − 4xk

4a
gk(z) dz

+
1−Gk(x′)

a

c∑

h=1

Q(h|i, k)(xk − bh)

]
.

This is implied by

P (k|i)
(

c∑

h=1

Q(h|k, k)bh −
c∑

h=1

Q(h|i, k)bh

)

≤ (P (k|k)− P (k|i))
(

c∑

h=1

Q(h|i, k)(mc,c − bh)

)
,

which follows from (C13). Therefore,

ΠA(X ′, G|i)−ΠA(X,G|i) ≤ ΠA(X ′, G|k)−ΠA(X, G|k) = 0,

and we conclude that

ΠA(X ′, G|i) ≤ ΠA(X,G|i)
whenever x′ ∈ (xk, xk]. Indeed, if c + 1 < k, then xk is a continuity point of
A’s expected payoff function, so the inequality also holds at xk.

If k = c + 1, then xk = mc,c is not a continuity point, and this argument
no longer holds. In this case, let x′ = mc,c, let {xn} be a decreasing sequence
converging to mc,c, and let Xn be defined as X ′ but with xn

i = xn. Then
we have

[ΠA(X ′, G|i)−ΠA(X, G|i)]− lim
n→∞[ΠA(Xn, G|i)−ΠA(X, G|i)]

= P (c|i)
[
1
2
− (1− Fi,c((xc+1 + mc,c)/2))− ψc+1(mc,c)

]

+P (c + 1|i)
[∫ xc+1

mc,c

(2Fi,c+1((z + mc,c)/2)− 1)gc+1(z) dz

− lim
n→∞

∫ xc+1

xn

(2Fi,c+1((z + mc,c)/2)− 1)gc+1(z) dz

]

= P (c|i)
[
1
2
− (1− Fi,c((xk + mc,c)/2))− ψc+1(mc,c)

]
.
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Note that

ψc+1(mc,c) = Fi,c+1((xc+1 + mc,c)/2)− Fi,c+1(mc,c)),

so we have

[ΠA(X ′, G|i)−ΠA(X, G|i)]− lim
n→∞[ΠA(Xn, G|i)−ΠA(X, G|i)]

= P (c|i)
[
Fi,c(mc,c)− 1

2

]

≤ 0,

where the inequality follows from c < i and (C4), which implies mc,c < mi,c.
Therefore,

[ΠA(X ′, G|i)−ΠA(X,G|i)] ≤ lim
n→∞[ΠA(Xn, G|i)−ΠA(X, G|i)] ≤ 0,

and we conclude that

ΠA(X ′, G|i) ≤ ΠA(X, G|i),
as in the earlier case.

Now take any i, k ∈ I with k ≤ i and c < k ≤ c. Let X be a pure
strategy such that xi = mk,k, and let X ′ be a pure strategy such that
xi = x′ ∈ (mk−1,k−1,mk,k]. Then

ΠA(X ′, G|i)−ΠA(X, G|i)

= ψk(x′)


 ∑

j:j<k

P (j|i)−
∑

j:k<j

P (j|k) + P (k|i)(Fi,k((x′ + mk,k)/2)− 1/2)


 .

Note that

Fi,k((x′ + mk,k)/2)− 1/2 ≤ −ψk(x′)

follows from

ψk(x′) = Fi,k(mk,k)− Fi,k((x′ + mk,k)/2)

and mk,k ≤ mi,k. Therefore,

ΠA(X ′, G|i)−ΠA(X, G|i)

≤ ψk(x′)


 ∑

j:j<k

P (j|i)−
∑

j:k≤j

P (j|k)


 ,
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which is non-positive if i = k by definition of k ∈ C. If i > k, then the
inequality follows from (C10), and we conclude that

ΠA(X ′, G|i) ≤ ΠA(X, G|i),

whenever x′ ∈ (mk−1,k−1,mk,k]. That the inequality actually holds for x′ =
mk−1,k−1 as well follows from (C4) and an argument similar to that used in
the previous paragraph.

Finally, take any i, k ∈ I with k ≤ i and k < c. Let X be a pure strategy
such that xi = xk, and let X ′ be a pure strategy such that x′i = x′ ∈ [xk, xk).
Then, we have

ΠA(X, G|i)−ΠA(X ′, G|i)

= ψk(x′)


 ∑

j:j<k

P (j|i)−
∑

j:k<j

P (j|i)

 + P (k|i) [−ψk(x′)(1−Gk(x′))

+
∫ x′

xk

(Fi,k((xk + z)/2) + Fi,k((x′ + z)/2)− 1)gk(z) dz

]
.

If i = k, then, by definition of k < c, we know that the first term on
the righthand side is negative. Since ΠA(X ′, G|k) − ΠA(X, G|k) = 0 by
construction, the second term is positive. If k < i, then the first term
decreases, by (C10). Furthermore,

P (k|i) [−ψk(x′)(1−Gk(x′))

+
∫ xk

x′
(Fi,k((x′ + z)/2) + Fi,k((xk + z)/2)− 1)gk(z) dz

]

≤ P (k|k)
[−ψk(x′)(1−Gk(x′))

+
∫ xk

x′
(Fk,k((x′ + z)/2) + Fk,k((xk + z)/2)− 1)gk(z) dz

]
,

where the inequality follows from (C11) and from the fact that Fi,k stochas-
tically dominates Fk,k, by stochastic dominance. Thus, the second term
decreases as well. We conclude that

ΠA(X, G|i) ≤ ΠA(X ′, G|i),

whenever x′ ∈ [xk, xk). Indeed, if k < c − 1, then xk is a continuity point,
so the inequality also holds at xk. If k = c − 1, then xk = mc,c, which is
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not a continuity point of A’s expected payoffs. In this case, we may argue
as above that the inequality remains true for x′ = mc,c.

We now argue that the candidate has no profitable deviation, conditional
on signal i, from the mixed strategy G. First, consider the case i > c. Let X
satisfy xi = xi, and let X ′ satisfy x′i = x. Suppose x < xi and that x does not
lie below the supports of all distributions. (That case is easily checked and
is omitted.) Then either x ∈ [xk, xk] for some k /∈ C, or x ∈ [mk−1,mk−1]
for some k ∈ C. Suppose the former. In fact suppose xk < c, and define
the pure strategies Xj as follows: for j /∈ C, let xj

i = xj , and for j ∈ C, let
xj

i = mj,j . Our above arguments show that

ΠA(X ′, G|i)−ΠA(X,G|i)
= [ΠA(X ′, G|i)−ΠA(Xk+1, G|i)]

+
∑

j:k<j<c

[ΠA(Xj , G|i)−ΠA(Xj+1, G|i)]

+
∑

c≤j<c

[ΠA(Xj , G|i)−ΠA(Xj+1, G|i)]

+
∑

j:c<j<i

[ΠA(Xj , G|i)−ΠA(Xj+1, G|i)]

≤ 0.

Other cases are proved the same way, by decomposing a deviation to the
left after signal i into a finite number of moves across the supports for other
signal realizations. This proves that A has no deviation to the left after
signal i, and a symmetric argument shows that there are no deviations to
the right. Finally, the same argument for candidate B establishes that the
strategy pair (G,G) is a mixed strategy equilibrium.

2. That gi is increasing and convex is apparent from the functional form
of the density. That xi < mi,i follows from the discussion above, where it is
shown that, given xi < mi,i, we have

lim
x↑mi,i

∫ x

xi

1
((1/2)− Fi,i(z))3/2

dz = ∞.

This, with an induction argument starting with xc+1 = mc,c yields the
desired conclusion.

3. Since Cγn = C for all n, xc+1 is constant along the sequence. By
part 2, we therefore have xn

i < mi−1,i−1 for all i > c. This implies that
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1 − 2Fi,i(xn
i ) ≥ 1 − 2Fi,i(mi−1,i−1) > 0 for all n, so the denominated in

the above expression for gi(xi) does not go to zero. We therefore have
gn
i (xn

i ) → 0. Then, fixing x < mi,i, we see that gn
i (x) → 0. And, from

the above expression for Gi(x), we see that Gn
i (xn

i ) = 1 for all n implies
xn

i → mi,i.

6 Three Signal Realizations

We now turn to the special case of three signal realizations in the canonical
stacked uniform model. Thus, I = {−1, 0, 1}. We again assume sufficiently
large support of the noise term, i.e., a ≥ bc − b1, without imposing any re-
striction on the number of disturbances. In contrast to the previous section,
we impose symmetry in the model.

(C14) For all z ∈ X and all i, j ∈ I, P (i|0) = P (−i, |0), P (−i|i) = P (i| − i),
P (0|i) = P (0| − i), and Fi,j(z) = 1− F−i,−j(−z).

Note the consequence of the first part of the condition that P (1|1) = P (−1|−
1), while the last part of the condition implies that m0,0 = 0 and m−1,−1 =
−m1,1. With only three signals, condition (C10) only binds when i = 0 and
i′ = 1, or when i = −1 and i′ = 0. It turns out that, with the symmetry
imposed in this section, this will not be needed for existence here. Condition
(C11) is also simplified, but we will only use two inequalities from this condi-
tion: P (1|1) ≥ P (1| − 1) (and its symmetric counterpart). Condition (C12)
is automatically satisfied, because 0 ∈ C under our symmetry assumption.
In fact, C contains only zero unless P (1|1) ≥ 1/2, in which case C = I.
Finally, condition (C13) is vacuously satisfied.

The consideration of this special case allows us to strengthen the results
of the previous section. We prove that the equilibrium characterized there
is actually unique among all “fully symmetric” equilibria, and we give more
precise results on the possibility that candidates choose extremal positions.
Finally, we examine two special information structures. In this model, we
say a mixed strategy G is symmetric about zero if, for all i ∈ I and all z ∈ X,
Gi(z) = 1−G−i(−z). A mixed strategy Bayesian equilibrium (G,H) is fully
symmetric if G and H are symmetric about zero
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Theorem 11 In the canonical stacked uniform model with a ≥ bc − b1,
assume I = {1, 0,−1}, (C8), (C9), (C14), and P (i|i) ≥ P (i| − i) for all
i ∈ I. There is a unique fully symmetric equilibrium. In it, each candidate
plays x0 = 0 upon receiving the signal i = 0. Upon receiving signal i 6= 0,
each candidate plays x = mi,i if P (1|1) ≥ 1/2. Otherwise, if P (1|1) < 1/2,
then the mixed strategy played upon receiving signal i = 1 is given by

G1(z) =
(1− 2P (1|1))(√m1,1 −√m1,1 − z)

2P (1|1)
√

m1,1 − z
,

for all z ∈ [0, 4m1,1P (1|1)(1− P (1|1))].

Proof: Note that, by Theorem 8, in any equilibrium (G,H), we must have
Gi(m1,1) −Gi(m−1,−1)− = Hi(m1,1) −Hi(m−1,−1)− for all i ∈ I. The first
step of the proof is to show that, given any potential fully symmetric equi-
librium strategy for one candidate, a best response for the other, conditional
on the zero signal, is to locate at zero. The second step is to prove, using
the construction of the previous section, the existence of a fully symmetric
equilibrium with support in M . The third step is to show that, in every fully
symmetric equilibrium, the candidates locate at zero following the zero sig-
nal. The final step is to pin down the strategies of the candidates following
extreme signal realizations.

Step 1: Now, let H be any strategy symmetric about zero for candidate
B with support in M and with mass points (if any) only at conditional
medians, i.e., Hi(y) − Hi(y)− > 0 implies y = mi,i. Let X be a pure
strategy with x0 = 0, let X ′ be a pure strategy with x′0 = x′ 6= 0, and note
that

ΠA(X,H|0)−ΠA(X ′, H|0)

=
1∑

j=−1

P (j|0)
[∫ m1,1

x′

[
F0,j (z/2)− F0,j

(
(x′ + z)/2

)]
Hj(dz)

+
∫ x′

0
[F0,j(z/2)− (1− F0,j((x′ + z)/2))]Hj(dz)

+
∫ 0

−m1,1

[(1− F0,j(z/2))− (1− F0,j((x′ + z)/2))]Hj(dz)

]
.

Recall that, for all j ∈ I and all w, z ∈ [bc − a, b1 + a],

F0,j (w)− F0,j (z) =
w − z

2a
.
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Therefore, we have

F0,j(z/2)− F0,j((x′ + z)/2) = (1− F0,j((x′ + z)/2))− (1− F0,j(z/2)),

and the above expressions corresponding to j = 1,−1 can be simplified to

∫ x′

0
[F0,j(z/2)− (1− F0,j((x′ + z)/2))]Hj(dz)

+
∫ 0

−x′
[(1− F0,j(z/2))− (1− F0,j((x′ + z)/2))]Hj(dz).

By assumption, we have F0,−1 (−z) = 1 − F0,1 (z) for all z ∈ <. Using
P (1|0) = P (−1|0), we then see that

∑

j=−1,1

P (j|0)

[∫ x′

0
[F0,j(z/2)− (1− F0,j((x′ + z)/2))]Hj(dz)

+
∫ 0

−x′
[(1− F0,j(z/2))− (1− F0,j((x′ + z)/2))]Hj(dz)

]

is equal to P (1|0) times

∫ x′

0
[1− F0,1(−z/2)− F0,1(−(x′ + z)/2) + F0,1(z/2)

−1 + F0,1((x′ + z)/2)]Hj(dz) +
∫ 0

−x′
[F0,1(−z/2)− F0,1(−(x′ + z)/2)

−F0,1(z/2) + F0,1((x′ + z)/2)]Hj(dz).

To see that each of these integrals is positive, note that the first integrand is
equal to x′/4a, and the second is equal to (x′/2a) + (z/a), which is positive
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for all z ∈ [0, x′]. Therefore, we have

ΠA(X, H|0)−ΠA(X ′, H|0)

≥ P (0|0)
[∫ m1,1

x′

[
F0,0 (z/2)− F0,0

(
(x′ + z)/2

)]
H0(dz)

+
∫ x′

0
[F0,0(z/2)− (1− F0,0((x′ + z)/2))]H0(dz)

+
∫ 0

−m1,1

[(1− F0,0(z/2))− (1− F0,0((x′ + z)/2))]H0(dz)

]

= P (0|0)
[∫ m1,1

x′
[F0,0(z/2)− F0,0((x′ + z)/2)

+F0,0(z/2)− F0,0((x′ + z)/2)]H0(dz)

+
∫ x′

0
[F0,0(z/2)− 1 + F0,0((x′ + z)/2)

+F0,0(z/2)− F0,0((−x′ + z)/2)]H0(dz)
]

=
P (0|0)

2a

[∫ m1,1

x′
−x′H0(dz) +

∫ x′

0
(x′ + z)H0(dz)

]

=
P (0|0)

2a

[
x′(2H0(x′)− 1) +

∫ x′

0
zH0(dz)

]

> 0,

where the first inequality follows from the preceding remarks; the first
equality follows from symmetry of F0,0 and H0,0; the second equality uses
F0,0(z/2) − 1 = −F0,0(−z/2); and the last inequality relies on the assump-
tion that the median of H0 is zero. A symmetric argument holds for x′ < 0,
and we conclude that x0 = 0 is a best response to H.

Step 2: All of the conditions of Theorem 10 are fulfilled, except for part
of (C11), namely, P (1|1) ≥ P (1|0) and P (0|0) ≥ P (0|1). For the special
case of three signals, the latter inequality is not used, and the former is only
used to prove that x0 = 0 is a best response following i = 0, which is proved
in Step 1. We conclude that the strategies defined in the previous section
form a fully symmetric equilibrium.

Step 3: Let (G,H) be a fully symmetric equilibrium. To see that G0

and H0 both put probability one on m0,0 = 0, suppose that G0(0) < 1. By
symmetry and interchangeability, we may also suppose H = G. Since G0

has no other mass points, by Theorem 9, we can choose a strictly increasing
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sequence {xn} in the support of G0 such that G0(xn) → 1. Since each xn is
a continuity point of A’s expected payoff, conditional on i = 0, we have

ΠA(Xn,H|0) = ΠA(G,H|0)

for all n, where Xn is a pure strategy with xn
0 = xn. Take any n such that

G0(xn) = H0(xn) > 1/2, and recall that

ΠA(X,H|0)−ΠA(Xn,H|0) =
P (0|0)

2a

[
xn(2H0(xn)− 1) +

∫ xn

0
zH0(dz)

]
,

as shown in Step 2. This quantity is positive, however, a contradiction.
Therefore, G0(0) = 1, and a symmetric argument shows that G0(0)− = 0 as
well. We conclude that G0 puts probability one on zero.

Step 4: To pin down G1, again let (G,H) be a fully symmetric equi-
librium, and suppose H = G. To see that G1(0) = 0, let X be such that
x0 = x ∈ (m−1,−1, 0), and note that

ΠA(X,H|1)

= P (0|1)F0,1(x/2) +
∑

j=−1,1

P (j|1)

[∫ x

m−1,−1

(1− Fj,1((x + z)/2)Hj(dz)

+
∫ m1,1

x
Fj,1((x + z)/2)Hj(dz)

]
.

Using Theorem 9, each Hj is differentiable at x, and candidate A’s payoff is
differentiable at x, so we have

∂

∂x1
ΠA(X, H|1)

=
P (0, 1)

2
f0,1(x/2) +

∑

j=−1,1

P (j|1)

[∫ x

m−1,−1

−1
2
fj,1((x + z)/2)Hj(dz)

+(1− Fj,1(x))hj(x) +
∫ m1,1

x

1
2
fj,1((x + z)/2)Hj(dz)− Fj,1(x)hj(x)

]

=
P (0|1)

4a
+

∑

j=−1,1

P (j|1)[(1− 2Fj,1(x))hj(x) +
1
4a

(1− 2Hj(x))].

Since the median of F1,1 is positive and the median of F−1,1 is zero, by
(C14), the only term above that may be positive is 1−2Hj(x). If G1(0) > 0,
then, by Theorem 9, we may take a strictly decreasing sequence {xn} in the
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support of G1 such that G1(xn) → 0. Because each xn is a differentiable
point of ΠA, we must have ∂

∂x1
ΠA(xn,H|1) = 0 for all n. Note, however,

that 1 −H1(xn) = 1 − G1(xn) → 1, while 1 − 2H−1(xn) is bounded below
by −1. Therefore, by the assumption that P (1|1) ≥ P (−1|1), we have

lim inf
n→∞

∂

∂x1
ΠA(Xn,H|1) >

P (1|1)− P (−1|1)
4a

≥ 0

a contradiction. We conclude that G1(0) = 0, and a symmetric argument
shows G−1(0) = 1.

Now suppose P (1|1) < 1/2 and the support of G1 is not an interval with
lefthand endpoint zero, i.e., for some c, d ∈ < such that 0 < c < d, we have
G1(c) = G1(d) < 1. Without loss of generality, assume d is in the support
of G1, i.e., G1(d) < G1(e) for all e > d. Note that, by Theorem 9, d is a
continuity point of A’s expected payoff conditional on i = 1. Let X be a
pure strategy with x1 = d, so

ΠA(X,H|1) = ΠA(G,H|1),

and let X ′ be a pure strategy with x′1 = d′ = (c + d)/2. We will argue that
a deviation to X ′ is, conditional on i = 1, profitable for candidate A. By
Theorem 9, the distribution G1 is differentiable on [0,m1,1), and we let g1
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denote this density. Using symmetry of G about zero, we have

ΠA(X ′,H|1)−ΠA(X, H|1)

= P (−1|1)
[∫ m1,1

0
[F1,−1((d− z)/2)− F1,−1((d′ − z)/2)]g1(z) dz

+(1−G1(m1,1)−)[F1,−1((d−m1,1)/2)− F1,−1((d′ −m1,1)/2)]
]

+P (0|1)[F1,0(d/2)− F1,0(d′/2)]

+P (1|1)
[∫ c

0
[F1,1((d + z)/2)− F1,1((d′ + z)/2)]g1(z) dz

+
∫ m1,1

d
[F1,1((d′ + z)/2)− F1,1((d + z)/2)]g1(z) dz

+ (1−G1(m1,1)−)[F1,1((d′ + m1,1)/2)− F1,1((d + m1,1)/2)]
]

= P (−1|1)
[
G1(m1,1)−

(
d− d′

4a

)
+ (1−G1(m1,1)−)

(
d− d′

4a

)]

+P (1|1)
[
[G1(m1,1)−

(
d′ − d

4a

)
+ (1−G1(m1,1)−)

(
d′ − d

4a

)]

+P (0|1)
(

d− d′

4a

)

=
(

d− d′

4a

)
[P (−1|1) + P (0|1)− P (1|1)]

> 0,

where the last inequality follows from P (1|1) < 1/2, a contradiction. We
conclude that the support of G1 is an interval with lefthand endpoint zero.

Suppose P (1|1) > 1/2 but the support of G1 is not an interval with
righthand endpoint m1,1, i.e., for some c, d ∈ < such that c < d < m1,1,
we have 0 < G1(c) = G1(d). Without loss of generality, assume c is in
the support of G1. Then, moving from c to c′ = (c + d)/2, the previous
inequality again yields a contradiction.

From Theorem 9, the support of G1 must be, in fact, a non-degenerate
interval if P (1|1) < 1/2. Because candidate A must be indifferent over all
platforms in this interval, the first and second order conditions from the
previous section must be satisfied, and, as shown in the discussion before
Theorem 10, it follows that

G1(z) = gs(x1)((1/2)− F1,1(x1))
3/2

∫ x

x1

1
((1/2)− F1,1(z))3/2

dz
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for all z in the support of G1, where

g1(x1) =
−1 + 2P (1|1)

4aP (1|1)(2F1,1(x1)− 1)

and x1 = 0. Using

F1,1(z) =
1
2

+
z −m1,1

2a
,

this simplifies to

G1(z) =
(1− 2P (1|1))(√m1,1 −√m1,1 − z)

2P (1|1)
√

m1,1 − z
,

for all z in the support of G1. Solving G1(z) = 1 gives us the upper bound
of the support, 4m1,1P (1|1)(1 − P (1|1))]. If P (1|1) > 1/2, then the sup-
port of G1 must be degenerate: otherwise, the same first and second order
conditions must hold, and the density of G1 is given above, but this is neg-
ative. From our above argument, it follows that G1 is degenerate on m1,1,
as required.

The closed form of G1 in Proposition 11 immediately yields results about
the likelihood that the candidates locate more extremely than their informa-
tion suggests. Let Γ3 index parameterizations of the canonical three signal
model as considered in this section, where P γ(i, j) denotes the marginal
probability of signals i and j and F γ

i,j the distribution of µ conditional on i
and j in the game γ. As usual, we assume these parameterizations are con-
tinuous. Let mγ

i,j denote the median of F γ
i,j and let mγ

i denote the median
of F γ

i , which are also continuous in γ. The first corollary establishes that,
when the probability the other candidate receives the same signal is close
to one half, a candidate who receives a left or right signal almost always
chooses a platform more extreme than suggested by that signal alone.

Corollary 5 Let {γn} be a sequence converging to γ such that F γn

i,j = F γ
i,j

for all i, j ∈ I. Let {(Gn, Hn)} be the corresponding sequence of mixed
strategy Bayesian equilibria, and let

zn = 4mγ
1,1P

γn(1|1)(1− P γn(1|1))

denote the upper bound of the support of Gn
1 . If P γn(1|1) ↑ 1/2, then zn →

mγ
1,1 and Gn

1 (mγ
1) → 0. If P γn(1|1)) ↓ 0, then zn → 0 and Gn

1 (mγ
1) → 0.
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The corollary also shows that, when the probability that the other candi-
date receives the same signal is very small, the candidates take very moderate
positions. In fact, upon inspecting the closed form of G1 in Proposition 11,
we see that, fixing z in the support of G1, the derivative of G1 at z is

−
√

m1,1 −√m1,1 − z

2P (1|1)2
√

m1,1 − z
,

which is negative, so G1(z) is decreasing in P (1|1). This observation yields
the next corollary.

Corollary 6 Let γ, γ′ ∈ Γ3 be parameterizations such that P γ(1|1) < P γ′(1|1)
and mγ

1,1 = mγ′
1,1, and let (Gγ ,Hγ) and (Gγ ,Hγ) be the corresponding mixed

strategy Bayesian equilibria. Then Gγ′
1 first order stochastically dominates

Gγ′
1 .

This result implies that there is a unique threshold in P (1|1) that de-
termines whether a candidate is likely to choose a location more extreme
than m1, the “non-strategic” choice induced by the candidate’s private in-
formation only. We end this section by surveying three examples of the
three-signal stacked uniform model, in which we consider the probability
of extremal electoral platforms as a function of different parameters of the
model. The key feature of the first example is that, because P (1|1) is nat-
urally bounded strictly above zero, the candidates receiving left or right
signals will always be much more likely to take extreme positions.

Example: Three Spatial Signals with Correlation. Consider the three-
signal stacked uniform model in which there are three equally likely prelimi-
nary cut points, β, may take three values: −1, 0, or 1. Three possible signal
realizations, −1, 0, or 1, correspond to these as follows. With probability
q, the candidates receive conditionally independent signals: the probability
that the signal is correct is p, while the probability that the signal is “off by
one” is r.

p = Pr(si = 0|β = 0) = Pr(si = 1|β = 1) = Pr(si = −1|β = −1)
r = Pr(si = 1|β = 0) = Pr(si = −1|β = 0) = Pr(si = 0|β = 1)

= Pr(si = 0|β = −1)

We assume that p > r > 1 − p − r, so we require r < 1/3 as well. With
probability 1 − q, the candidates receive identical signals, with the same
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distribution. Given β = k, the joint probability of signals i and j is

Q(i, j|k) = q Pr(i|k) Pr(j|k) + (1− q) Pr(i|k)

if i = j, and Q(i, j|k) = q Pr(i|k) Pr(j|k) otherwise. It is easily shown that

P (1|1) = q
p2 + r2 + (1− p− r)2

p + r + (1− p− r)
+ (1− q)

m1,1 = q
p2 − (1− p− r)2

p2 + r2 + (1− p− r)2
+ (1− q)

p− (1− p− r)
p + r + (1− p− r)

m1 =
p− (1− p− r)

p + r + (1− p− r)
.

From these expressions, we can obtain an expression for G1(m1) as a function
of p, q, and r, which we omit because not very insightful. Calculations
executed with Maple found that G(m1) is maximal for q = 1, p approaching
1/3 (from above), and r approaching 1/3 (from below). This allows us to
calculate an upper bound for the mass that the candidates place on moderate
positions after left and right signals:3

lim
p↓ 1

3
,r↑ 1

3
,q→1

G1 (m1) =
1
2
(
√

2− 1) ≈ 0.207.

Figure 3 illustrates these comparative statics.

[ Figure 3 here. ]

In Figure 3a, we fix q = 1 and view G1(m1) as a function of p and r alone;
in 3b, we fix p = .35 and view G1(m1) as a function of q and r; and in 3c,
we fix r = .3 and view G1(m1) as a function of p and q. In each, negative
values correspond to pairs (p, r) such that G1 is degenerate on m1,1.

The key characteristic of the second example is that the moderate signal
si = 0 is completely uninformative. In this case, we show that the prob-
ability that the candidates receiving the informative signal extremize the
informational content of the signal is inversely related with the likelihood of
the uninformative signal.

Example: A Conditionally Independent Uninformative Signal.
3The case for p = 1/3, r = 1/3 is meaningless because m1 = 0, and G (m1) is indeter-

minate.
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Assume that β ∈ B = {−1, 1}, with Pr(β = 1) = 1/2. Each candidate
i independently receives one of two possible signals, si1 and si2, with real-
izations in B. The probability that i receives signal si1is set to be r. Signal
si2 is completely uninformative, so that Pr(si2 = β|β) = 1/2. Signal si1 is
informative and we parametrize Pr(si1 = β|β) = q + (1− q)/2, so that si1 is
completely uninformative if q = 0, and si1 is fully informative if q = 1. This
formulation falls into our analysis if we let si = 0 when i receives signal si2,
and si = si1 if i receives signal si1. Note that si|β are i.i.d.

Our Theorem implies that the pure-strategy equilibrium exists if and
only if r ≥ 1

1+q2 , i.e. fixing how informative it is, if the informative signal is
likely enough.

If r < 1
1+q2 there is a unique mixed strategy equilibrium such that each

player i plays m0,0 = 0, upon receiving the uninformative signal si = 0,
and that if she receives the signal si = 1, she plays the mixed strategy
distribution:

G (z) =
(1− r(1 + q2))

(√
2rq −

√
2qr − r(1 + q2)z

)

r(1 + q2)
√

2qr − r(1 + q2)z
for z ∈ (0, 2rq(2−r(1+q2)).

The median of the distribution of the random median voter’s bliss point is
obtained by solving

Pr (β = 1|si = 1)
∫ m1,1

−a−1

1
2a

dx+Pr (β = −1|si = 1)
∫ m1,1

−a+1

1
2a

dx = 1/2, hence m1 = q.

By plotting the level curves of G (m1) in the space of parameters (q, r), we
can have a feeling for how likely the candidate receiving an informative signal
will extremize its informational content in equilibrium. In the figure below,
the higher is the level curve, the lower is G (m1) (i.e. the more likely is the
candidate to choose a location that extremizes the informational content of
her signal). The top level stands for G (m1) = 0, and the bottom level curve
for G (m1) = 1.

We conclude this section by constructing an example of a polling tech-
nology that induces the candidates never to play a location that is more
extreme than what is suggested by their private information. The key as-
sumption is that the candidates share the same informational sources. Thus
if an agent observes an informative signal, the signal obtained by the oppo-
nent does not contain any additional information. As a result the median
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conditional on the agent’s private information coincides with the median
conditional on both agents having the same signal realization. Since this
statistics is the upper bound of the agents’ mixed strategies, the agents will
never extremize their choices.

Example: A Correlated Uninformative Signal. Assume that β ∈ {−1, 1},
with Pr(β = 1) = 1/2. There is a single informative signal s ∈ {−1, 1}, with
Pr (s = β|β) = q > 1/2. Each candidate independently observes s with some
probability. This environment is captured by our framework by saying that
si = s with probability r and si = 0 with probability 1− r.

Straightforward calculations give:

Pr (β = b|si = s) = Pr (β = b|s1 = s, s2 = s) , for b = −1, 1.

It follows that ms,s = ms, and that P (1|1) = r. Thus if r < 1/2, then the
candidate receiving the informative signal s = 1 will randomize on locations
that belong to (0,m1) . If instead r ≥ 1/2, she will choose the location m1

with probability one.

7 Welfare

In this section we explore how voter welfare is affected by the polling tech-
nology. We seek to glean insights into what determines whether voters prefer
that candidates have access to noisier or less noisy polling technologies; and
how preferences over polling technology varies with ideology. We will distin-
guish both the direct welfare impact of the polling technology quality, and
the indirect impact of the polling technology due to the strategic responses
of candidates. For ease of simplicity we will investigate welfare within the
environment of 2-signal realization uniform stacked models, parametrized as
follows.

The median voter’s position is given by µ = α + β, where α is in-
dependently and uniformly distributed on [−a, a], and β ∈ {−1, 1} with
Pr(β = 1) = 1/2. Candidate j receives signal sj ∈ {−1, 1}, j = A,B.
With probability q ≥ 0, candidates receive the same signal, where Pr(sA =
sB = µ|µ) = p > 0.5; while with probability 1− q, candidates receive condi-
tionally independent signals of the same precision, so that Pr(sj = µ|µ) =
p, j = A,B. A voter with ideological location θ, derives quadratic disutility
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of u(θ, y) = −(θ − y)2 from a winning candidate who adopts platform y.4

In equilibrium, each candidate j adopts pure strategies, locating at

m1,1 = (2p− 1)[q + (1− q)
1

p2 + (1− p)2
], if sj = 1;

and locating at

m−1,−1 = −(2p− 1)[q + (1− q)
1

p2 + (1− p)2
], if sj = −1.

Since 1
p2+(1−p)2

> 1, it follows that m1,1 − m1 rises as the correlation, q,
between signals falls. Platform separation is zero if signals are perfectly cor-
related so that m1 = m1,1 = 2p− 1, and, and as correlation is reduced, can-
didates choose to strategically separate their platforms by more and more.

With probability qp+(1−q)p2, both candidates receive the signal corre-
sponding to β; with probability 2(1− q)p(1− p), candidates receive distinct
signals; and with probability q(1 − p) + (1 − q)(1 − p)2, both candidates
receive the signal −β. The welfare of a voter with ideology µ + z is thus
given by

W (z; p, q, a) =
1
2




∫ a

−a




min{L(α + 1,m1,1), L(α + 1,m−1,−1)}Pr(sA 6= sB|β = 1)
+L(α + 1, m1,1) Pr(sA = sB = 1|β = 1)

+L(α + 1,m−1,−1) Pr(sA = sB = −1|β = 1)


 dα

2a




+
1
2




∫ a

−a




min{L(α− 1,m1,1), L(α, m−1,−1)}Pr(sA 6= sB|β = −1)
+L(α− 1,m1,1) Pr(sA = sB = 1|β = −1)

+L(α− 1,m−1,−1) Pr(sA = sB = −1|β = −1)


 dα

2a


 ,

4One interpretation of this environment is that at date 1, candidates observe signals
about the median voter’s current location β ∈ {−1, 1}, and then choose their platforms.
The election is at date 2. Between dates 1 and 2, the median voter’s preferred platform
may change. For example, if the economy declines between dates 1 and 2, the median
voter may become more predisposed toward a platform that features a more aggressive
economic stimulus package. The support of α captures the degree to which the median
voter’s most preferred platform can change over time. While p captures the precision that
candidates receive about the median voter’s initial location, and q captures the initial
signal correlation, as the support of α is increased, the effective precision in a candidate’s
signal falls, while the effective correlation between signals rises (if α > 0, candidate signals
will tend to be below µ, while if α < 0, candidate signals will tend to exceed µ).
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after some calculations, we obtain

W (z; p, q, a) = −1
2
(qp + (1− q)p2)(

∫ a

−a

(1 + α + z −m1,1)2

2a
dα +

∫ a

−a

(−1 + α + z + m1,1)2

2a
dα)

−1
2
(q(1− p) + (1− q)(1− p)2)(

∫ a

−a

(1 + α + z + m1,1)2

2a
dα +

∫ a

−a

(−1 + α + z −m1,1)2

2a
dα)

−(1− q)p(1− p)(
∫ −1

−a

(1 + α + z + m1,1)2

2a
dα +

∫ a

−1

(1 + α + z −m1,1)2

2a
dα)

−(1− q)p(1− p)(
∫ 1

−a

(−1 + α + z + m1,1)2

2a
dα +

∫ a

1

(−1 + α + z −m1,1)2

2a
dα)

Here, we have substituted for m−1,−1 = −m1,1, to write welfare solely
as a function of m1,1. With quadratic dis-utility, expected utility depends
only on the mean payoff, and the variance. Note that ideology, z, does
not affect the (symmetric) bounds of integration, reflecting that the median
voter is decisive, and enters only separably and symmetrically elsewhere;
the difference between the median voter’s welfare and that of voter z is z2,
independent of the polling technology, (p, q). It follows that all voters share
a common appraisal of the attractiveness of a particular polling technology,
and thus we can set z = 0 without loss of generality. By exploiting the
symmetry of the induced expression, we obtain:

W (p, q, a) = −(1− q)p(1− p)
[∫ 0

−a
(α + 1 + m1,1)2

dα

2a
+

∫ a

0
(α + 1−m1,1)2

dα

2a

]

−1
2

∫ a

−a

[
(α + 1−m1,1)2(qp + (1− q)p2) + (α + 1 + m1,1)2

(
q(1− p) + (1− q)(1− p)2

)] dα

2a
.

When exploring how the voters’ welfare changes as a function of the un-
derlying characteristics of the model, our results identify three major forces
that determine ex-ante welfare. Two of these forces are statistical properties
polling technology, they are signals precision and signals correlation. The
third one is the strategic effect on candidates’ location, which compares the
equilibrium candidates choice, with the location of “non-fully-strategic” can-
didates that condition their choice only on their private information. Since
we would like to isolate the statistical effects from the strategic effect, we
first consider a simplified model, where the strategic effect is shut down,
and also signal precision and correlation are uniquely pinned down by our
parameters in the model.
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Specifically, we suppose that a = 0, in which case the median is just β.
Then the precision of the signal that candidates receive about the median
voter’s location is p, and the signal correlation is q. In this benchmark
case, strategic considerations do not arise because m1 = m1,1 = 1 and
m−1 = m−1,−1 = −1, so that each candidate locates as if she were non-
strategically locating at the median given only his own information.

The median voter’s welfare is simply given by

W (p, q) = −Pr(σA = σB = −µ)4 = −4(q(1− p) + (1− q)(1− p)2).

Differentiating with respect to p and q, it follows immediately that in-
creased precision raises welfare, but increased correlation reduces welfare:

∂W (p, q)
∂q

= −4p(1− p) < 0;
∂W (p, q)

∂p
= 4[(2− q)(1− p) + qp] > 0.

While the parameter p has a positive effect on welfare, it is also the case
that according to Blackwell theory, a more informative signal structure may
reduce welfare. If correlation is high, in fact, then a “Blackwell garble”
of the signals can raise welfare. For example, suppose that q = 1 so that
signals are perfectly correlated. Introduce i.i.d. garbles to this signal such
that Pr(σj = σ|σ) = z ≥ 0.5, j = A,B. Then median voter welfare becomes
W (z) = −4[(1 − z)2p + z2(1 − p)]. Differentiating with respect to z we see
that reducing the garble lowers welfare if p < z:

dW (z)
dz

= 8(p− z) < 0 if p < z.

We can use this result to understand the puzzle of why voters may dislike
improved polling technologies, that more accurately identifies his preferred
position. On first pass, it appears that “information is bad”. However, it
is really the correlation that is bad. While the Blackwell garble reduces the
precision of the signal, it also reduces the correlation between signals. In
turn, this reduce correlation raises the probability that the median voter
will have a choice between platforms. The garble would always hurt vot-
ers if they had to select a given candidate, because the garble causes any
given candidate to target the median less accurately; but voters can choose
between candidates when they offer distinct platforms, and this option to
choose has significant value.

Turning to our full-fledged 2-signal uniform stacked model, we will first
analyze the strategic effect. We compare the equilibrium candidates choice,
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with the location of “non-fully-strategic” candidates that condition their
choice only on their private information, and with optimal location on the
stand point of voters. By combining previous analysis with this section
results, it turns out that these three quantities are ordered. We have seen
that the strategic interaction between candidates causes them to locate more
extremely than their private information suggests is the likely median. If
the median voter could choose the amount by which candidates ‘biased’
their location following a signal realization, they would choose to increase
the bias in their location beyond what candidates strategically choose, as
voter’s value the increased choice.

Proposition 1 The optimal location for the voters m∗
1 is increasing in p,

and decreasing q. For any p, q, a,

m∗
1 > m1,1 > m1.

The difference m∗ − m1,1 is decreasing in q, and increasing in p if a is
sufficiently small, but decreasing in p if a is sufficiently large.

Proof: Solving the first order condition of (??) with respect to “m”, we
obtain

m∗ = 2p− 1 + (1− q)p(1− p)(a +
1
a
).

Comparing the optimal m∗ with the actual m1,1 chosen by the candidates
we obtain

m∗ −m1,1 = (1− q)
[
(2p− 1) + p(1− p)(a +

1
a
)− 1

1− 2p(1− p)

]
> 0.

Turning our consideration to the statistical properties of the polling tech-
nology, it is easy to show that signal correlation is always bad in terms of
welfare, as it reduces the likelihood that candidates take different locations.
For any p, and a, an increase in q is to be understood as in increase of the
correlation among signals, conditional on the actual median realization µ.

Proposition 2 For any p, q, a, an increase in the correlation q decreases
welfare W (p, q, a).
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Proof: First we show that by substituting m1,1 in W (p, q, a), and differen-
tiating with respect to q, we obtain an expression which is decreasing in a.
In fact

∂2W

∂q∂a
∝ (−20p3 + 8p4 − 4p + 16p2

)
q + 1− p− 4p4 − 6p2 + 10p3

<
(−20p3 + 8p4 − 4p + 16p2

)
+ 1− p− 4p4 − 6p2 + 10p3 < 0,

where the last inequality has been checked with Maple for the relevant range,
p ∈ [1/2, 1], and the first one follows from −20p3 + 8p4 − 4p + 16p2 > 0,
which again has been checked with Maple.

Secondly, we see that

∂

∂q

(
∂W

∂q

∣∣∣∣
a=1

)
∝ −8p− 112p3 + 48p2 + 128p4 − 72p5 + 16p6 > 0

in the relevant range, as checked with Maple.

Finally, we see that

∂W

∂q

∣∣∣∣a=1
q=1

∝ 22p2 − 7p + 1− 40p3 + 44p4 − 28p5 + 8p6 < 0,

as Maple concludes for the relevant range.

With respect to the effect of the “precision” parameter p, the picture gets
blurrier. For general values of a, it turns out that the interaction between
the strategic effect and the precision of the signals upsets the monotonic
relation of welfare with respect to precision. I turns out that welfare is
increasing in p over a certain range, and then decreasing. The following
indifference curves (derived for the case that q = 0, perfectly independent
signals, and for the case a = 2) illustrate the point.

We can plot the optimal p∗(a, q) for welfare, in the following three-
dimensional picture, in which the optimal p∗ is decreasing in a, and in-
creasing in q.

In essence, the reason why welfare is not monotonic in p is analogous
to the reason of why it is possible to obtain a welfare-increasing Blackwell
garble in the simpler model where a = 0. Even if q = 0, the signals sA and
sB are not independent given µ, but are only independent given β. Hence,
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when a > 0, any realization α 6= 0 induces spurious correlation between the
signals sA and sB. Moreover, the extent of this spurious correlation depends
itself on p (it is increasing in p). As a result, an increase in p does not
correspond only to an increase of signals’ precisions, but also to an increase
in their correlation. These two quantities have opposite effect on welfare, as
a result welfare admits an optimal p strictly smaller than 1.

A Appendix

Lemma 1 Let (G,H) be any pair of mixed strategies. For all s ∈ S and all
w, z ∈ <, one of three possibilities obtains: either

∑

t∈T

P (t|s)[Ht(z)−Ht(z)−][Fs,t(w)]

=
1
2

∑

t∈T

P (t|s)[Ht(z)−Ht(z)−]

=
∑

t∈T

P (t|s)[Ht(z)−Ht(z)−][1− Fs,t(w)],

or
∑

t∈T

P (t|s)[Ht(z)−Ht(z)−][Fs,t(w)]

<
1
2

∑

t∈T

P (t|s)[Ht(z)−Ht(z)−]

<
∑

t∈T

P (t|s)[Ht(z)−Ht(z)−][1− Fs,t(w)],

or the reverse inequalities hold. Likewise for G and all t ∈ T and all w, z ∈
<.

Proof: Given s ∈ S and z ∈ <, the first possibility clearly obtains if
P (t|s)[Ht(z)−Ht(z)−] = 0 for all t ∈ T . Suppose P (t|s)[Ht(z)−Ht(z)−] > 0
for some t ∈ T , and define the distribution function F ∗ as follows:

F ∗
s (w) =

∑
t∈T P (t|s)[Ht(z)−Ht(z)−]Fs,t(w)∑

t∈T P (t|s)[Ht(z)−Ht(z)−]
.

Then the three possibilities above correspond to the three possibilities:
F ∗

s (w) = 1/2, F ∗
s (w) < 1/2, and F ∗

s (w) > 1/2.
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Lemma 2 Let (G, H) be a mixed strategy Bayesian equilibrium. For all
z ∈ <, if Gs′(z)−Gs′(z)− > 0 for some s′ ∈ S and Ht′(z)−Ht′(z)− > 0 for
some t′ ∈ T with P (s′, t′) > 0, then

∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−][Fs′,t(z)]

=
1
2

∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−]

=
∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−][1− Fs′,t(z)].

and
∑

s∈S

P (s|t′)[Gs(z)−Gs(z)−][Fs,t′(z)]

=
1
2

∑

s∈S

P (t′|s)[Gs(z)−Gs(z)−]

=
∑

s∈S

P (s|t′)[Gs(z)−Gs(z)−][1− Fs,t′(z)].

Proof: We prove the first equalities. If they do not hold for some z and
some s′ and t′ with P (s′, t′) > 0, then, by Lemma 1, we may assume that
∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−][1− Fs′,t(z)] >
1
2

∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−]

or
∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−][Fs′,t(z)] >
1
2

∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−].

We focus on the first inequality, as a symmetric proof addresses the second.
For each t ∈ T , let λt denote the measure generated by the distribution Ht,
let µt denote the degenerate measure with probability Ht(z)−Ht(z)− on z,
and let νt = λt − µt. Let {xn} be a sequence decreasing to z, and let Gn be
the mixed strategy defined by replacing Gs in G with point mass on xn. Let

πs′,t(w) = πA(z, w|s′, t)
denote A’s probability of winning using z when B receives signal t and
chooses platform w, and

πn
s′,t(w) = πA(xn, w|s′, t)
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denote A’s probability of winning using xn when B receives signal t and
chooses platform w. Note that

ΠA(Gn,H|s′)−ΠA(G,H|s′)
=

∑

t∈T

P (t|s′)
∫

[πn
t (w)− πt(w)]λt(dw)

=
∑

t∈T ′
P (t|s′)[Ht(z)−Ht(z)−][1− Fs′,t((z + xn)/2)− (1/2)]

+
∑

t∈T

P (t|s′)
∫

[πn
t (w)− πt(w)] νt(dw).

Since πn
s′,t − πs′,t → 0 almost everywhere (νt), the corresponding integral

terms above converge to zero. Thus,

lim
n→∞ΠA(Gn,H|s′)−ΠA(G,H|s′)

=
∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−][Fs′,t(z)]

−1
2

∑

t∈T

P (t|s′)[Ht(z)−Ht(z)−]

> 0,

and it follows that ΠA(Gn,H|s) > ΠA(G,H|s) for high enough n, a contra-
diction.

We now define a condition that imposes distinct medians, conditional
on sets of signal realizations. It weakens (C4) and, in particular, is stated
without the symmetry conditions (C1)-(C3).

(C4′) For all s, s′ ∈ S, not conditionally equivalent, and all T ′ ⊆ T with
P (T ′|s) > 0 and P (T ′|s′) > 0, we have ms,T ′ 6= ms′,T ′ . For all t, t′ ∈ T ,
not conditionally equivalent, and all S′ ⊆ S with P (S′|t) > 0 and
P (S′|t′) > 0, we have mS′,t 6= mS′,t′ .

We argue that (C4′) should be thought of as a very weak restriction
on the candidate’s beliefs. Fixing the conditional distributions {Fs,t} and
viewing the marginal P on S × T as an element p of the unit simplex ∆ ⊆
<|S|+|T |, the next proposition establishes that (C4′) is satisfied generically.
Let ms,T ′(p) and mS′,t(p) be the conditional medians determined by p and
the conditional distributions.
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Proposition 3 Assume that, for all s ∈ S and all z ∈ <, there exist t, t′ ∈ T
such that Fs,t(z) 6= Fs,t′(z). And assume that, for all t ∈ T and all z ∈ <,
there exist s, s′ ∈ S such that Fs,t(z) 6= Fs′,t(z). Then the set

P = {p ∈ ∆ : (C4′) is satisfied }
is open and dense in ∆.

Proof: Fix s, s′ ∈ S, not conditionally equivalent, and T ′ ⊆ T . It suffices
to show that the set of p’s such that ms,T ′(p) = ms′,T ′(p) is closed and
nowhere dense. That it is closed is obvious, following from continuity of the
conditional distributions. Take any p ∈ ∆, and note that, by assumption,
there exist t, t′ ∈ T such that Fs′,t(ms′,T ′(p)) < Fs′,t′(ms′,T ′(p)). Now per-
turb p so that P (·|s) is unchanged, but P (·|s′) moves an arbitrarily small
amount of probability from t to t′. This will lead to a decrease in the median
conditional on s′ and T ′, as required.

Lemma 3 Assume (C4′). Let (X,Y ) be a pure strategy Bayesian equilib-
rium. If xs = yt for some s ∈ S and some t ∈ T with P (s, t) > 0, then
xs = yt = ms,t.

Proof: Let S′ = {s ∈ S : xs = z}, and let T ′ = {t ∈ T : yt = z}. Take any
s′ ∈ S′ and any t′ ∈ T ′ with P (s′, t′) > 0. Lemma 2 implies

∑

t∈T ′

P (t|s′)
P (T ′|s′) [Fs′,t(z)] =

1
2
, (4)

where we use Ht(z) −Ht(z)− = 1. Thus, z = ms′,T ′ . If there exists s ∈ S′

with s′ 6= s and P (s, t′) > 0, then (4) must hold for s as well, implying
z = ms,T ′ . Since P (T ′|s′) > 0 and P (T ′|s) > 0, (C4′) implies that s and
s′ are conditionally equivalent. The symmetric argument for candidate B
establishes that P (s′, t) > 0 implies that t and t′ are conditionally equivalent.
Now take any t ∈ T such that P (t|s′) > 0. This implies P (s′, t) > 0, so
Fs′,t = Fs′,t′ . Therefore, (4) reduces to Fs′,t′(z) = 1/2, i.e., z = ms′,t′ .

Lemma 4 In the canonical model, assume (C8) and (C9). For each j ∈ I,
let αj ∈ [0, 1]. For all i, i′ ∈ I with i < i′ and for all z ∈ M with

0 < αjP (j|i)P (j|i′)Fi′,j(z) < αjP (j|i)P (j|i′)
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for at least one j, we have
∑

j∈I αjP (j|i)Fi,j(z)∑
j∈I αjP (j|i) >

∑
j∈I αjP (j|i′)Fi′,j(z)∑

j∈I αjP (j|i′) .

Proof: Take i, i′ ∈ I, z ∈ <, and αj ’s as in the statement of the lemma. By
assumption, αjP (j|i) > 0 and αjP (j|i′) > 0 for some j, so cross multiply
and rewrite the desired inequality as

∑

j,j′∈I

αjαj′P (j|i)P (j′|i′)Fi,j(z) >
∑

j,j′∈I

αjαj′P (j|i′)P (j′|i)Fi′,j(z).

We compare the two sides of the inequality one pair {j, j′} at a time. For
j = j′, we have

α2
jP (j|i)P (j|i′)Fi,j(z) ≥ α2

jP (j|i)P (j|i′)Fi′,j(z)

from (C9). Moreover, there is at least one j such that α2
jP (j|i)P (j|i) > 0

and Fi′,j(z) ∈ (0, 1), which implies Fi,j(z) > Fi′,j(z) and gives us a strict
inequality. For distinct j and j′, say j < j′, we want to show that

αjαj′ [P (j|i)P (j′|i′)Fi,j(z) + P (j′|i)P (j|i′)Fi,j′(z)]

is greater than or equal to

αjαj′ [P (j|i′)P (j′|i)Fi′,j(z) + P (j′|i′)P (j|i)Fi′,j′(z)].

Note that, by (C9), we have

Fi,j(z) ≥ max{Fi,j′(z), Fi′,j(z)} ≥ min{Fi,j′(z), Fi′,j(z)} ≥ Fi′,j′(z),

and therefore

Fi,j(z)− Fi′,j′(z) > Fi′,j(z)− Fi,j′(z).

Then (C8) implies

P (j|i)P (j′|i′)(Fi,j(z)− Fi′,j′(z)) ≥ P (j|i′)P (j′|i)(Fi′,j(z)− Fi,j′(z)),

which yields the desired inequality.
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Lemma 5 In the canonical model, assume (C8) and (C9). Let (G, H) be a
mixed strategy Bayesian equilibrium. For all z ∈ M , if Gi(z)−Gi(z)− > 0
for some i ∈ I and Hj(z) − Hj(z)− > 0 for some j ∈ I with P (i, j) > 0,
then z = mi,j.

Proof: Define the sets

S′ = {i ∈ I : Gi(z)−Gi(z)− > 0}
T ′ = {j ∈ I : Hj(z)−Hj(z)− > 0}.

Take any i′ ∈ S′ and j′ ∈ T ′ such that P (i′, j′) > 0. Lemma 2 implies

∑

j∈I

P (j|i′)[Hj(z)−Hj(z)−][Fi′,j(w)] =
1
2

∑

j∈I

P (j|i′)[Hj(z)−Hj(z)−].

If P (i, j′) > 0 for some i ∈ S′ with i 6= i′, then the above equality must hold
for i as well. Setting αj = Hj(z) − Hj(z)−, we see that (C8), (C9), and
Lemma 4 imply that i and i′ are conditionally equivalent. The symmetric
argument for candidate B establishes that P (i′, j) > 0 implies that j and
j′ are conditionally equivalent. Now take any j ∈ I such that P (j|i′) > 0.
This implies P (i′, j) > 0, so Fi′,j = Fi′,j′ . Therefore, the above implication
of Lemma 2 reduces to Fi′,j′(z) = 1/2, i.e., z = mi′,j′ .
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