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Abstract

We take a game-theoretic approach to the analysis of juries by
modelling voting as a game of incomplete information. Rather than
the usual assumption of two possible signals (one indicating guilt, the
other innocence), we allow jurors to perceive a full spectrum of signals.
We o®er three main results. First, given any voting rule requiring a
¯xed fraction of votes to convict, we characterize the unique symmetric
equilibrium of the game. Second, we obtain a condition under which
unanimity rule exhibits a bias toward convicting the innocent. Third,
we prove a \jury theorem" for the continuous signal model: as the size
of the jury increases, the probability of making a mistaken judgment
goes to zero for every voting rule, except unanimity rule; for unanimity
rule, the probability of a mistake is bounded strictly above zero.



1 Introduction

Consider a group of decision-makers who must choose one of two alterna-

tives. Voters agree on the overall objective, but, on the basis of di®erential

information, they may disagree on which alternative best achieves that goal.

Some examples are:

² A jury deciding whether to convict or acquit a defendant. Jurors agree
about the desirability of acquitting an innocent and convicting a guilty

defendant, but they have di®erent opinions about whether the defen-

dant is innocent or guilty.

² The board of directors of a company deciding whether to approve a
new investment project. All members of the board agree about the

objective of maximizing pro¯ts, but they disagree in their estimates of

the pro¯tability of the project.

² An academic department deciding whether to hire a job candidate.
The common objective is to hire a productive researcher, but there is

disagreement about the academic potential of the candidate.

Although our results apply equally well to all situations exhibiting this

structure, we follow an old literature on information aggregation in elections

by focusing on the jury example. The literature traces back to Condorcet's

(1785) jury theorem, which asserts that, under majority voting, large elec-

torates should reach correct decisions with very high probability (cf. Miller

(1986), Grofman and Feld (1988), Young (1988), Ladha (1992)). It is tra-

ditionally assumed that each voter simply behaves \naively," i.e., as if the

voter were deciding the outcome alone, but Austen-Smith and Banks (1996)
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observe that, given naive behavior on the part of jurors, some may have an

incentive to vote \strategically." In other words, naive behavior does not

generally constitute an equilibrium. We follow subsequent papers in analyz-

ing voting in juries as a Bayesian game in which the jurors' opinions of guilt

or innocence, i.e., their \signals," are private information.

Several versions of the jury theorem under strategic voting have been

o®ered. Feddersen and Pesendorfer (1997) assume discrete distributions of

signals and a continuum of states. Myerson (1997) introduces uncertainty

about the size of the electorate and considers a countable set of players' types

(signals), where the number of voters receiving any given signal is drawn from

a Poisson distribution, the mean of which depends on guilt or innocence. Mc-

Clennan (1998) proves that there is at least one equilibrium that maximizes

the ex ante payo®s of jurors over the class of symmetric strategy pro¯les.

Feddersen and Pesendorfer (1998) analyze a simple model in which there are

two possible signals, one indicating guilt and the other innocence. Given any

voting rule requiring a ¯xed fraction of votes to convict, they are able to

explicitly solve for the unique symmetric, responsive Bayesian equilibrium of

the voting game. They show that a jury theorem holds for all voting rules

other than unanimity: as the size of the jury increases, the probability of

making a mistaken judgment goes to zero for all voting rules, except una-

nimity; in that case, the probability of a mistake is bounded strictly above

zero. Feddersen and Pesendorfer (1998) also give an example comparing dif-

ferent voting rules for a ¯xed jury size: there, the probability of convicting an

innocent defendant under unanimity rule is greater than the probability un-

der majority or any other supermajority rule. McKelvey and Palfrey (1998)

o®er experimental results on the binary signal model roughly consistent with
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the equilibrium predictions.

We depart from the previous literature on juries by assuming that the

signals representing the jurors' opinions of guilt or innocence are drawn

from continuous, rather than discrete (usually binary), distributions. This

is meant to capture the fact that a juror's opinion of the evidence against

the defendant, the case made by the prosecutor, etc., may re°ect a very

rich spectrum of possibilities | possibilities that cannot be summarized by

a dichotomous signal merely indicating guilt or innocence. We impose few

restrictions on the distributions of signals, and we are actually able to ob-

tain a continuous analogue of the \binary signal" model as a special case.

Unlike Feddersen and Pesendorfer (1997), we con¯ne our attention to the

case in which the objectives of the jurors are perfectly aligned. Within this

framework, we analyze voting in juries as a game of incomplete information.

We o®er three main results. First, we establish the existence of a sym-

metric, responsive equilibrium characterized by a cuto® signal: jurors who

get signals indicating a higher likelihood of guilt vote for convicting the de-

fendant while those who get signals indicating a lower likelihood vote for

acquittal. The equilibrium is unique within that class. Moreover, under a

strict monotone likelihood ratio condition, all equilibria are cuto® equilibria;

as a consequence, our uniqueness result extends to the class of all symmetric,

responsive equilibria, even allowing for mixed strategies. With McClennan's

(1998) result, this implies that the equilibrium is optimal: it maximizes the

jurors' ex ante payo®s over the set of symmetric strategy pro¯les. An un-

desirable artifact of the binary signal model of Feddersen and Pesendorfer

(1998), and of the continuous version we consider, is that, typically, jurors

who vote to acquit must use mixed strategies; therefore, they are indi®erent
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between voting to acquit and voting to convict. When continuous distri-

butions are allowed for, that is no longer typically the case. Indeed, under

the strict monotone likelihood ratio condition, all equilibria are essentially

strict: only a juror who receives the cuto® signal (a zero probability event)

is indi®erent to which vote he casts.

Second, we give a su±cient condition for unanimity rule to exhibit a bias

toward convicting the innocent, independently of the size of the jury. This

condition is met in our continuous version of the binary signal model, with

the following implication: unanimity rule leads to a higher probability of

convicting an innocent defendant than majority or any other supermajority

rule. Thus, we ¯nd that Feddersen and Pesendorfer's (1998) ¯xed jury size

example generalizes within the binary signal model. It generalizes beyond

the binary signal model as well: we give an example with exponentially

distributed signals in which the su±cient condition also holds.

Third, we obtain a \jury theorem" for the general continuous signal

model: for all voting rules other than unanimity, the probability of mak-

ing a mistaken judgment goes to zero for any voting rule as the size of the

jury increases; for unanimity rule, the probability of making a mistake is

bounded strictly above zero. Thus, the asymptotic inferiority of unanimity

rule and the asymptotic e±ciency of all other voting rules are fully general

| not merely artifacts of the binary signal model.

We leave several important issues for further work. One is the extension

of our results to situations in which the jurors' preferences are not perfectly

aligned. Other issues are allowing for correlation among the jurors' signals

and for the possibility of more than two \states," the latter not relevant to the

jury model perhaps, but certainly to others. Finally, there is the possibility
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of limited communication among jurors. As stressed by Coughlan (1997), a

single nonbinding \straw vote" is enough to allow jurors to share all their

information in the binary signal model, thus eliminating the strategic aspects

of voting in a common preference environment. In general, a ¯nite number

of \straw votes" is enough to allow jurors to share all their information if the

distribution of signals is discrete. But, when the opinions of jurors can re°ect

subtle nuances of trials, a continuous distribution of signals seems better

suited to model the di±culties associated with limited communication.

2 Preliminaries

We consider n ¸ 2 jurors who must decide whether to convict or acquit a

defendant. The defendant is either innocent, I, or guilty, G, with probabili-

ties P (I) and P (G). Each juror i receives a real-valued signal si distributed

according to F (¢jG) or F (¢jI), depending on whether the defendant is guilty
or innocent. After receiving their signals, which are private information, the

jurors simultaneously vote to convict or acquit. Once the votes are tallied,

the defendant's fate is determined by an anonymous, monotonic decision rule,

i.e., there is some integer, k, such that the defendant is convicted, C, if k or

more jurors vote to convict and acquitted, A, otherwise.

We assume the jurors have a common preference to convict the guilty and

acquit the innocent. We assume that these outcomes are equally desirable

and normalize the jurors' payo®s in those cases to u(CjG) = u(AjI) = 0.

In the cases of convicting the innocent or acquitting the guilty, the jurors

receive negative payo®s u(CjI) and u(AjG). In e®ect, the ex ante cost of
conviction is u(CjI)P (I), and the cost of acquittal is u(AjG)P (G). We use

½ =
u(AjG)
u(CjI)

P (G)

P (I)
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to denote the relative cost of acquittal.

A strategy for juror i is a measurable mapping ¾i : < ! [0; 1], where

¾i(si) is the probability that the juror votes to convict. The probability that

i votes to convict, conditional on the defendant being innocent, is

Z
¾i(s)¹I(ds);

where ¹I is the probability measure induced by F (¢jI). The probability

that i votes to convict conditional on guilt is identical, except that ¹G, the

probability measure induced by F (¢jG), is used. Probabilities of acquittal
are written similarly, but integrating 1¡ ¾i rather than ¾i.
A pro¯le of strategies is denoted ¾ = (¾1; : : : ; ¾n). Given ¾, the proba-

bility that the defendant is convicted conditional on being innocent, denoted

P¾(CjI), is
X

MµN
jM j¸k

�
¦j2M

µZ
¾j(s)¹I(ds)

¶
¦j =2M

µZ
[1¡ ¾j(s)]¹I(ds)

¶¸
:

The probability that the defendant is guilty conditional on begin acquitted,

denoted P¾(AjG), is
X

MµN
jM j<k

�
¦j2M

µZ
¾j(s)¹G(ds)

¶
¦j =2M

µZ
[1¡ ¾j(s)]¹G(ds)

¶¸
:

The ex ante payo® of a juror is

u(CjI)P¾(CjI)P (I) + u(AjG)P¾(AjG)P (G):

Let ¾¡i represent the strategies of jurors other than i. The probabilities

that i is pivotal (that is, that his vote decides the fate of the defendant)
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conditional on innocence and guilt, P¾¡i(pivjI) and P¾¡i(pivjG), are de¯ned
as

X

MµN
jM j=k¡1
i=2M

�
¦j2M

µZ
¾j(s)¹I(ds)

¶
¢ ¦j =2M

j 6=i

µZ
[1¡ ¾j(s)]¹I(ds)

¶¸

and

X

MµN
jM j=k¡1
i=2M

�
¦j2M

µZ
¾j(s) ¹G(ds)

¶
¢¦j =2M

j 6=i

µZ
[1¡ ¾j(s)]¹G(ds)

¶¸
;

respectively.

Using the above de¯nitions, we obtain an expression for a juror's payo® in

terms of his probability of being pivotal. It translates to our framework the

insight from the literature on strategic voting that a voter should condition

his vote on being pivotal, as this is the only event where his vote might a®ect

his payo®.

Proposition 1 Given ¾¡i, the ex ante payo® to juror i of ¾i is an a±ne

transformation of

µZ
¾i(s) ¹I(ds)

¶
u(CjI)P¾¡i(pivjI)P (I)

¡
µZ

¾i(s)¹G(ds)

¶
u(AjG)P¾¡i(pivjG)P (G):

The proof of this and other auxiliary results is found in the appendix.

An equilibrium is a pro¯le ¾ such that, for every juror i and every ¾0i,

u(CjI)P¾(CjI)P (I) + u(AjG)P¾(AjG)P (G)

¸ u(CjI)P¾0i;¾¡i(CjI)P (I) + u(AjG)P¾0i;¾¡i(AjG)P (G):
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A responsive equilibrium is an equilibrium ¾ such that each ¾i is responsive:

0 <

Z
¾i(s) ¹G(ds) < 1 and 0 <

Z
¾i(s)¹I(ds) < 1:

There are always unresponsive equilibria: if k < n, it is an equilibrium for

the jurors to convict regardless of their signals; if k > 1, it is an equilibrium

acquit regardless of signal. A cuto® equilibrium is a pure strategy equilibrium

¾ such that each ¾i is a cuto® strategy: there is some si 2 [¡1;1] such that

¾i(s) =

½
1 if s > si
0 if s < si

for all s 2 <. The cuto® strategy associated with a given cuto® is unique up
to the behavior of the juror upon receiving the cuto® signal. Given assump-

tion (A1), below, this is a zero-probability event, and we will not distinguish

between cuto® strategies that di®er only at the cuto®.

In what follows we maintain several assumptions on F (¢jI) and F (¢jG).
We will see that these assumptions enable us to restrict our attention to

cuto® equilibria.

(A1) The distribution functions are absolutely continuous with respect to

Lebesgue measure and have piecewise continuous densities f(¢jI) and
f(¢jG).

This assumption implies that the distribution functions are di®erentiable at

all but a ¯nite number of points. We will use Sd to denote the subset of

signals in S on which F (¢jI) and F (¢jG) are both di®erentiable.

(A2) The densities have common support, S = (S; S), where S; S 2 [¡1;1]:
f(sjI) > 0 and f (sjG) > 0 for all s 2 S.

The latter implies that ¹I and ¹G have the same sets of measure zero. The

terms \¹I-a.e." and \¹G-a.e." are thus synonymous, so we can use \a.e."

without ambiguity.
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(A3) The likelihood ratio, f(sjI)=f (sjG), is weakly decreasing on S.

This assumption is standard and amounts to assuming that higher signals

are stronger (or at least not weaker) indications of guilt. Sometimes we will

want a stronger condition to hold locally: we will say that the likelihood

ratio is strictly decreasing at x 2 S if for all x0; x00 2 S with x0 < x < x00,
f(x0jI)
f(x0jG) >

f (xjI)
f(xjG) >

f(x00jI)
f(x00jG) :

As we will see, a juror who behaves \naively" (i.e., as if his vote alone de-

termines the outcome) after receiving signal s would prefer to convict if

f(sjI)=f(sjG) > ½ and would prefer to acquit if f(sjI)=f(sjG) < ½.

(A4) lims#S
f (sjI)
f(sjG) > ½ > lims"S

f(sjI)
f(sjG) .

Thus, (A4) implies that there must be a signal low enough to induce a naive

juror to acquit, and a signal high enough to induce him to convict.

Lemma 0, stated in the appendix, establishes some implications of (A1){

(A4). Among those that are well-known, F (¢jG) exhibits (strict) ¯rst order
stochastic dominance over F (¢jI), and the ratios

1¡ F (sjI)
1¡ F (sjG) and

F (sjI)
F (sjG)

are weakly decreasing.

3 Existence and Uniqueness

Consider any pro¯le ¾ of responsive strategies and any juror i. Since the

strategies are responsive, P¾¡i(pivjG) and P¾¡i(pivjI) are positive. Hence,
under our assumptions the expression

J(¾¡i; s) =
P¾¡i(pivjI)
P¾¡i(pivjG)

f(sjI)
f(sjG) ¡ ½
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is well-de¯ned on S. Moreover, for ¯xed ¾¡i, it is weakly decreasing in its

second argument. Note that J(¾¡i; s) > 0 if and only if

u(CjI)P¾¡i(pivjI)P (I)f (sjI) < u(AjG)P¾¡i(pivjG)P (G)f(sjG):

That is, J(¾¡i; s) > 0 if and only if a juror's expected gain from voting to

convict, conditional on receiving signal s and on the strategies of others, is

less than the expected gain from voting to acquit. Hence, as shown in the

following lemma, jurors will be inclined to acquit when J is positive and to

convict when it is negative. In contrast, a naive juror would behave as if the

terms P¾¡i(pivjI) and P¾¡i(pivjG) were equal to one, and he would vote to
acquit if

u(CjI)P (I)f(sjI) < u(AjG)P (G)f (sjG)

and to convict if the inequality were reversed.

Lemma 1 Given responsive strategies ¾¡i for jurors other than i, a strategy

¾i is a best response for i if and only if it satis¯es the following a.e.:

¾i(s) =

½
1 if J(¾¡i; s) < 0
0 if J(¾¡i; s) > 0:

If the likelihood ratio is strictly decreasing at inffs 2 S j J(¾¡i; s) � 0g; ¾i
is a best response for i if and only if it is equivalent a.e. to the following

cuto® strategy ~¾i:

~¾i(s) =

½
1 if J(¾¡i; s) � 0
0 else.

Since J is weakly decreasing in its second argument, an implication of the

¯rst part of the preceding lemma is that jurors always have best response

cuto® strategies. Hence, if a pro¯le of strategies is an equilibrium when
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jurors are restricted to cuto® strategies, it will be an equilibrium of the

unrestricted game. From the second part of the lemma, if the likelihood

ratio is strictly decreasing, then all best responses for a juror are equivalent

to cuto® strategies, regardless of the strategies of others, and all equilibria

are equivalent to cuto® equilibria.

When all jurors other than i use the same cuto® strategy, given by cuto®

s, we will write J(s; s) for J(¾¡i; s). That is,

J(s; s) =

µ
1¡ F (sjI)
1¡ F (sjG)

¶k¡1 µ
F (sjI)
F (sjG)

¶n¡k f(sjI)
f(sjG) ¡ ½:

Henceforth, we will only consider cuto® strategies, and we will view J as a

mapping de¯ned on S £ S.
We have already noted that J is weakly decreasing in its second argument.

The following lemma further characterizes J for the case in which the jurors

use the same cuto® strategy.

Lemma 2 J is continuous and weakly decreasing in its ¯rst argument. In

addition,

lims#S J(s; s) > 0 and lims"S J(s; s) < 0:

Finally, J(s; s) = 0 has at most one solution.

The following theorem establishes existence of a cuto® equilibrium under

our assumptions (A1){(A4). The equilibrium is unique within the class of

symmetric, responsive cuto® equilibria. If the likelihood ratio is strictly

decreasing, there are no other symmetric, responsive equilibria.

Theorem 1 There exists a symmetric, responsive cuto® equilibrium with

cuto® given by s¤ = inffs 2 S j J(s; s) � 0g. It is unique within the class
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of symmetric, responsive cuto® equilibria. If the likelihood ratio is strictly

decreasing at s¤, then this equilibrium is unique a.e. within the class of all

symmetric, responsive equilibria.

Proof: By Lemma 1, s¤ de¯nes a symmetric, responsive cuto® equilibrium

if and only if s¤ 2 S, J(s¤; s) ¸ 0 for all s < s¤, and J(s¤; s) � 0 for all

s > s¤.

Take any s < s¤ and suppose J(s¤; s) < 0. Since J is continuous in

its ¯rst argument, by Lemma 2, there is some ² > 0 such that s¤ ¡ ² > s

and J(s¤ ¡ ²; s) < 0. Since J is weakly decreasing in its second argument,

J(s¤ ¡ ²; s¤ ¡ ²) < 0, contradicting our de¯nition of s¤. Therefore, s < s¤

implies J(s¤; s) ¸ 0. Now take any s > s¤ and suppose J(s¤; s) > 0. Since J

is continuous in its ¯rst argument, there is some ² > 0 such that s¤ + ² < s

and J(s¤ + ²; s) > 0. Since J is weakly decreasing in its second argument,

J(s¤+²; s¤+²) > 0. But then, since J is also decreasing in its ¯rst argument,

by Lemma 2, J(ŝ; ŝ) > 0 for all ŝ < s¤ + ², contradicting the de¯nition of s¤.

Therefore, s > s¤ implies J(s¤; s) � 0, giving us the ¯rst part of the theorem.

To prove the second part of the theorem, consider any s0 such that

J(s0; s) ¸ 0 for all s < s0 and J(s0; s) � 0 for all s > s0. If s0 < s¤,

take ² > 0 such that s¤¡ ² > s0. Then J(s0; s¤¡ ²) � 0. Since J is decreasing

in its ¯rst argument, J(s¤ ¡ ²; s¤ ¡ ²) � 0, contradicting our de¯nition of s¤.

If s0 > s¤, take ² > 0 such that s¤ + ² < s0. Then J(s0; s¤ + ²) ¸ 0. Since J is

decreasing in its ¯rst argument, J(s¤ + ²; s¤ + ²) ¸ 0. Since J is decreasing

in its second argument, by Lemma 2, as well as its ¯rst, J(s; s) ¸ 0 for all

s < s¤ + ². Then, since J(s; s) = 0 has at most one solution by Lemma 2,

J(s; s) > 0 for all s < s¤ + ², contradicting our de¯nition of s¤.

To prove the third part of the theorem, assume that the likelihood ratio
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is strictly decreasing at s¤. In any symmetric, responsive equilibrium, the

jurors use the same best response strategy. By Lemma 1, this strategy is

equivalent a.e. to a cuto® strategy, and we just proved uniqueness within the

class of symmetric, responsive cuto® equilibria.

4 Examples

We give two examples to illustrate the general model developed above. The

¯rst is a continuous analogue of the binary signal model of Feddersen and

Pesendorfer (1998), in which our pure strategy cuto® equilibria can be inter-

preted as puri¯cations of the mixed strategy equilibria of their model. More

generally, any discrete signal model could be matched with a continuous ana-

logue in a similar way. We will see that a condition on the ratio of hazard

rates used in the next section holds for majority and supermajority rules. In

the second example, the signals of the jurors are exponentially distributed.

This functional form is particularly tractable: the ratio of hazard rates is con-

stant in this model, easily delivering the condition of the next section; and

the probabilities of convicting an innocent and of acquitting a guilty defen-

dant are positive and independent of the number of jurors under unanimity

rule, anticipating our result on the asymptotic inferiority of unanimity rule.

To de¯ne the binary signal model in our framework, let S = (0; 2),

f(sjI) =

½
p if 0 < s � 1
1¡ p if 1 < s < 2;

and

f (sjG) =

½
1¡ p if 0 < s � 1
p if 1 < s < 2:

13



In order to satisfy (A3) and (A4), we impose 1=2 < p < 1 and

p

1¡ p > ½ >
1¡ p
p
:

It follows that

J(s; s) =

8
>>>><
>>>>:

µ
1¡ sp

1¡ s+ sp

¶k¡1 µ
p

1¡ p

¶n¡k+1
¡ ½ if 0 < s � 1

µ
1¡ p
p

¶k µ
s¡ 1¡ ps+ 2p
1 + ps¡ 2p

¶n¡k
¡ ½ if 1 < s < 2:

Note that J is weakly decreasing (strictly so if 1 < k < n), and that it is

discontinuous at s = 1. See Figure 1.

[Figure 1 about here.]

Recall that s¤ is de¯ned in the statement of Theorem 1 as inffs 2 S j
J(s; s) � 0g. Since

J(1; 1) =

µ
p

1¡ p

¶n¡2k+2
¡ ½

lim
s#1
J(s; s) =

µ
p

1¡ p

¶n¡2k
¡ ½;

we see that J(1; 1) > 0 if and only if (1) k < n
2
+ 1 or (2) k = n

2
+ 1 and

½ < 1; and lims#1 J(s; s) � 0 if and only if (3) k > n
2
or (4) k = n

2
and

½ ¸ 1. We conclude that s¤ < 1 if neither (1) nor (2) hold; s¤ > 1 if neither

(3) nor (4) hold; and s¤ = 1 in the remaining cases. Once the location of

s¤ is determined, the unique equilibrium is either given by s¤ = 1 or by the

solution to J(s¤; s¤) = 0.

In particular, we note that if a supermajority is required to convict, s¤ < 1

follows; if a majority is required and ½ ¸ 1, again s¤ < 1. That is, in
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equilibrium, jurors who receive some signals below one (indicating innocence)

will vote to acquit, while those who receive other signals below one will vote

to convict. Note also that s¤ = 1 holds if and only if either k = n
2
+ 1 and

½ < 1 or else k = n
2
and ½ ¸ 1. Thus, it is an equilibrium for jurors to \vote

with their signals" only under majority rule (or close to it) and then only for

restricted ½'s.

In the model of Feddersen and Pesendorfer (1998), jurors get one of only

two possible signals: a signal that innocence is likely, which occurs with

probability p if the defendant is innocent and with probability 1 ¡ p if the
defendant is guilty, and a signal that guilt is likely, which occurs with the

same probabilities reversed. Our example replaces the innocence signal with

a continuum of signals from 0 to 1, and the guilt signal with a continuum

of signals from 1 to 2. Whereas jurors who receive the innocence signal in

their model vote to acquit with some probability, say a, and to convict with

some probability 1 ¡ a (assuming supermajority rule), we partition (0; 1)

into two intervals (0; a) and (a; 1); jurors who receive signals in (0; a) vote

to acquit, and those who receive signals in (a; 1) vote to convict. Thus, the

cuto® equilibrium in our version of the binary signal model is a puri¯cation

of the mixed strategy equilibrium in their model.

Theorem 1 guarantees existence of a symmetric, responsive cuto® equi-

librium and uniqueness within that class; but because the likelihood ratio is

not strictly decreasing in our version of the binary signal model, the theo-

rem does not guarantee uniqueness within the larger class of all symmetric,

responsive equilibria. Indeed, because jurors who receive signals between 0

and 1 are indi®erent between voting to convict and voting to acquit, there is

a continuum of symmetric, responsive non-cuto® equilibria: we could spec-
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ify any subset of (0; 1) with Lebesgue measure a and have jurors receiving

signals therein vote to acquit, jurors receiving other signals vote to convict.

Note, however, that the likelihood ratio is strictly decreasing at one; thus, if

s¤ = 1, then there are no symmetric, responsive non-cuto® equilibria.

Before leaving the binary signal model, we calculate the hazard rates

f(sjI)
1¡ F (sjI) =

½ p
1¡sp if 0 < s � 1
1
2¡s if 1 < s < 2

and

f(sjG)
1¡ F (sjG) =

½ 1¡p
1¡s+sp if 0 < s � 1
1
2¡s if 1 < s < 2:

Thus, the ratio of the hazard rate when innocent to the hazard rate when

guilty increases from p=(1 ¡ p) at s = 0 to (p=(1¡ p))2 at s = 1, and then
drops to one for 1 < s < 2.

To de¯ne the exponential model, let S = (0;1), f(sjI) = ¸e¡¸s, and

f(sjG) = °e¡°s. In order to satisfy (A3) and (A4), we need ¸ > ° and

¸=° > ½. It follows that

J(s; s) =

µ
e¡¸s

e¡°s

¶k¡1 µ
1¡ e¡¸s
1¡ e¡°s

¶n¡k
¸e¡¸s

°e¡°s
¡ ½;

which is strictly decreasing and continuous on S. See Figure 2.

[Figure 2 about here.]

The unique equilibrium is found by solving J(s¤; s¤) = 0; for the special

case of unanimity rule, we readily obtain

s¤ =
1

(¸¡ °)n ln
µ
¸

°½

¶
:

The hazard rates when innocent and guilty are ¸ and °, respectively, so the

ratio of hazard rates is constant. (Other examples with constant ratios of
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hazard rates can be easily obtained from certain parameterizations of the

Pareto and Weibull distributions.) Under unanimity rule, the probability of

convicting the defendant, conditional on innocence, is

(1¡ F (s¤jI))n =
³½°
¸

´ ¸
¸¡°
;

and the probability of acquitting the defendant, conditional on guilt, is

1¡ (1¡ F (s¤jG))n = 1¡
³½°
¸

´ °
¸¡°
:

Note that both probabilities are strictly positive and independent of the size

of the jury. As a consequence, the probability of making a mistake does not

go to zero as the size of the jury increases, a result we prove later in more

generality.

5 The Bias of Unanimity Rule

In this section, we investigate jury decision-making under di®erent possible

voting rules. The main result of the section gives a su±cient condition for

unanimity rule to exhibit a bias in favor of convicting innocent defendants

independently of the size of the jury. We write sk for the cuto® corresponding

to the unique symmetric, responsive cuto® equilibrium when the number of

votes needed to convict is k. Thus, the cuto® corresponding to unanimity rule

is given by sn, and the cuto® corresponding to simple majority rule (with an

odd number of voters) is given by s(n+1)=2. We write Jk to make explicit the

dependence of J on the decision rule. We write Pk(CjI) for the probability
of conviction conditional on innocence, and Pk(AjG) for the probability of
acquittal conditional on guilt, under the unique symmetric, responsive cuto®

equilibrium, when the number of votes needed to convict is k. De¯ne

H(sjI) = f(sjI)
1¡ F (sjI) and H(sjG) = f(sjG)

1¡ F (sjG);
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the hazard rates when the defendant is innocent and when he is guilty.

Theorem 2 If

lim
s"sn

H(sjI)
H(sjG) � lim

s#sk

H(sjI)
H(sjG)

then

Pn(CjI)
1¡ Pn(AjG) >

Pk(CjI)
1¡ Pk(AjG) ;

for all k = 1; 2; : : : ; n¡ 1.

Proof: Note that

Pn(CjI)
1¡ Pn(AjG) =

(1¡ F (snjI))n
(1¡ F (snjG))n

and, for k = 1; 2; : : : ; n¡ 1,

Pk(CjI)
1¡ Pk(AjG) =

Pn
m=k

¡
n
m

¢
(1¡ F (skjI))m(F (skjI))n¡mPn

m=k

¡
n
m

¢
(1¡ F (skjG))m(F (skjG))n¡m

=

(1¡ F (skjI))k(F (skjI))n¡k
�¡
n
k

¢
+

Pn
m=k+1

¡
n
m

¢ ³
1¡F (skjI)
F (skjI)

´m¡k¸

(1¡ F (skjG))k(F (skjG))n¡k
�¡

n
k

¢
+

Pn
m=k+1

¡
n
m

¢ ³
1¡F (skjG)
F (skjG)

´m¡k¸ :

By (4) of Lemma 0, on strict ¯rst order stochastic dominance,

nX

m=k+1

µ
n

m

¶µ
1¡ F (skjI)
F (skjI)

¶m¡k
<

nX

m=k+1

µ
n

m

¶µ
1¡ F (skjG)
F (skjG)

¶m¡k
:

Hence, for k = 1; 2; : : : ; n¡ 1,

Pk(CjI)
1¡ Pk(AjG) <

(1¡ F (skjI))k(F (skjI))n¡k
(1¡ F (skjG))k(F (skjG))n¡k

;
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so it remains only to be shown that

µ
1¡ F (snjI)
1¡ F (snjG)

¶n

¸
µ
1¡ F (skjI)
1¡ F (skjG)

¶k µ
F (skjI)
F (skjG)

¶n¡k

for k = 1; 2; : : : ; n¡ 1.
Take any ² > 0 such that sn ¡ ² 2 S and sk + ² 2 S. By de¯nition of sn

and sk and because J is decreasing in both arguments, Jn(sn ¡ ²; sn ¡ ²) >
0 ¸ Jk(sk + ²; sk + ²). Note that we can write

Jk(s; s) =

µ
1¡ F (sjI)
1¡ F (sjG)

¶k µ
F (sjI)
F (sjG)

¶n¡k H(sjI)
H(sjG) ¡ ½

for all s 2 S, giving us
µ
1¡ F (sn ¡ ²jI)
1¡ F (sn ¡ ²jG)

¶n H(sn ¡ ²jI)
H(sn ¡ ²jG)

>

µ
1¡ F (sk + ²jI)
1¡ F (sk + ²jG)

¶k µ
F (sk + ²jI)
F (sk + ²jG)

¶n¡k H(skjI)
H(skjG)

:

Taking limits and using continuity of F (¢jI) and F (¢jG), we have
µ
1¡ F (snjI)
1¡ F (snjG)

¶n

lim
s"sn

H(sjI)
H(sjG)

¸
µ
1¡ F (skjI)
1¡ F (skjG)

¶k µ
F (skjI)
F (skjG)

¶n¡k
lim
s#sk

H(sjI)
H(sjG);

and the assumption of the theorem delivers the desired inequality.

Theorem 2 has a clear interpretation when P (G) = P (I), in which case

it follows from the theorem that

Pn(CjI)P (I)
Pn(CjG)P (G) + Pn(CjI)P (I) >

Pk(CjI)P (I)
Pk(CjG)P (G) + Pk(CjI)P (I) :

That is, the probability that the defendant is innocent, conditional on con-

viction, is higher under unanimity rule than when k votes are required to

convict.
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To give a more transparent su±cient condition for the result of Theorem

2, we use the following lemma, which establishes that sk is weakly decreasing

in k. That is, as the number of votes required to convict the defendant

increases, jurors become more willing to vote for convicting.

Lemma 3 If n ¸ k0 > k ¸ 1, then sk0 � sk.

We can now state a corollary of Theorem 2.

Corollary 1 If H(sjI)=H(sjG) is weakly increasing on an open interval in-
cluding [sn; sk], then

Pn(CjI)
1¡ Pn(AjG) >

Pk(CjI)
1¡ Pk(AjG) ;

for all k = 1; 2; : : : ; n¡ 1.

The proof, given Theorem 2 and Lemma 3, is straightforward. Applied to

the binary signal model, because the ratio of hazard rates is strictly increasing

from 0 to 1, we know that the conclusion of the corollary holds if sk < 1. In

particular, it holds if k > n
2
+ 1 or if both k = n

2
+ 1 and ½ ¸ 1. Applied to

the exponential model, since the ratio of hazard rates is constant, unanimity

rule exhibits a bias toward convicting the innocent compared to any other

voting rule.

6 A Jury Theorem

In this section, we investigate the asymptotic properties of jury decision

rules as jury size increases. We show that, as the jury size becomes large,

the probability of making a wrong judgment goes to zero for every voting

rule except unanimity. Rather than specify the number of votes needed to
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convict, we will here de¯ne a rule by the fraction, say ®, of votes needed.

Thus, unanimity rule will be represented by ® = 1. Given n, the decision

rule requiring k votes to convict would be represented by ® = k=n. For ease

of exposition, we only consider combinations of ® and n such that ®n is an

integer. We write P®;n(CjI) for the probability of conviction conditional on
innocence and P®;n(AjG) for the probability of acquittal conditional on guilt,
under the unique symmetric, responsive cuto® equilibrium, when the ® rule

is used and the number of jurors is n.

Theorem 3 If the ratio of hazard rates is bounded above by some H < 1
and below by some H > 0, then

lim inf
n!1

P1;n(CjI) + P1;n(AjG) > 0;

and, for all 0 < ® < 1,

lim sup
n!1

P®;n(CjI) + P®;n(AjG) = 0:

Proof: We use the notation J®;n to make explicit the dependence of J on

the decision rule and number of jurors. Note that we can write

J®;n(s; s) =

µ
1¡ F (sjI)
1¡ F (sjG)

¶®n¡1 µ
F (sjI)
F (sjG)

¶n¡®n f (sjI)
f(sjG) ¡ ½

= [L®(s)]
n

µ
f(sjI)
f (sjG)

¶µ
1¡ F (sjG)
1¡ F (sjI)

¶
¡ ½;

where we de¯ne

L®(s) =

µ
1¡ F (sjI)
1¡ F (sjG)

¶® µ
F (sjI)
F (sjG)

¶1¡®

for all s 2 S. Note also that J®;n(s; s) can be written

J®;n(s; s) = [L®(s)]
n H(sjI)
H(sjG) ¡ ½:
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From Theorem 1, for each n there is a unique symmetric, responsive cuto®

equilibrium characterized by the cuto® sn = inffs 2 S j J®;n(s; s) � 0g. We
claim that L®(sn) ! 1. If not, we can extract a subsequence with limit

less than one or with limit greater than one. Without loss of generality,

we suppose this is true of fsng. In the ¯rst case, take m high enough that

L®(sm)mH < ½. Using continuity of L®, we can take s < sm close enough to

sm so that L®(s)mH < ½. But then

J®;m(s; s) < ½¡ ½ = 0;

contradicting the de¯nition of sm. In the second case, take m high enough

that L®(sm)
mH > ½. Using continuity of L®, we can take s > sm close

enough to sm so that L®(s)
mH > ½. But then

J®;m(s; s) > ½¡ ½ = 0;

contradicting the de¯nition of sm.

To prove the ¯rst part of the theorem, note that, from L1(sn) ! 1 and

strict ¯rst order stochastic dominance ((4) of Lemma 0), sn ! S. By assump-

tion (A1), the likelihood ratio has at most a ¯nite number of discontinuity

points, so there exists l such that, for all m > l, sm is a continuity point of

J1;m. Hence J1;m(sm; sm) = 0 for all such sm, by de¯nition. Thus,

P1;m(CjI)
1¡ P1;m(AjG) =

µ
1¡ F (smjI)
1¡ F (smjG)

¶m

= ½
H(smjG)
H(smjI)

for all m > l. Since sn ! S,

lim
n!1

P1;n(CjI)
1¡ P1;n(AjG) = ½ limsn!S

H(snjG)
H(snjI)

¸ ½

H
;

and no subsequence of fP1;m(CjI) + P1;m(AjG)g can go to zero, proving the
¯rst part of the theorem.
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To prove the second part of the theorem, take 0 < ® < 1. We ¯rst claim

that L®(s) = 1 implies 1¡ F (sjG) > ® > 1¡ F (sjI). We use the facts that
x®(1 ¡ x)1¡® is single-peaked at x = ® and, by strict ¯rst order stochastic
dominance, 1¡ F (sjI) < 1 ¡ F (sjG) for all s 2 S. If ® � 1¡ F (sjI) then
® � 1¡ F (sjI) < 1¡ F (sjG) and, by single-peakedness,

(1¡ F (sjI))®(F (sjI))1¡® > (1¡ F (sjG))®(F (sjG))1¡®;

or equivalently L®(s) > 1, a contradiction. Similarly, if 1 ¡ F (sjG) � ®,

then 1 ¡ F (sjI) < 1¡ F (sjG) � ® and, by single-peakedness, L®(s) < 1, a

contradiction establishing the claim. Since L® is decreasing, continuous, and

lims!S L®(s) = lims!S
³
f(sjI)
f(sjG)

´1¡®
> 1

lims!S L®(s) = lims!S

³
f(sjI)
f(sjG)

´®
< 1

(using L'Hôpital's rule and (3) of Lemma 0), the set L¡1® (1) is a non-empty

closed interval, [s0; s00], with S < s0; s00 < S. By continuity of the distribution

functions, we can take ± > 0 such that 1¡ F (sjG) > ® > 1¡ F (sjI) for all
s 2 [s0 ¡ ±; s00 + ±]. Since L®(sn) ! 1, there exists l such that, for all m > l,

sm 2 [s0 ¡ ±; s00 + ±].
The last part of the proof is a straightforward application of the law

of large numbers. To prove P®;n(AjG) ! 0, de¯ne the probability space

S1 = S £ S £ ¢ ¢ ¢ with the product measure generated by ¹G, and de¯ne
the sequence X1; X2; : : : of i.i.d. random variables satisfying

Xi =

½
1 if si ¸ s00 + ±
0 else,

where si is the ith component of (s1; s2; : : : ) 2 S1. By the strong law of

large numbers, 1
n

Pn
i=1Xi converges almost surely to 1 ¡ F (s00 + ±jG) as n
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goes to in¯nity. In particular, it converges in probability:

P

Ã
1¡ F (s00 + ±jG)¡ 1

n

nX

i=1

Xi > ²

!
! 0

for all ² > 0. De¯ne the sequence Y1; Y2; : : : of random variables as

Yn =
1

n
#fi � n j si ¸ sng;

and note that, for m > l, Yn ¸ 1
n

Pn
i=1Xi. Hence,

P (1¡ F (s00 + ±jG)¡ Yn > ²) ! 0;

or equivalently,

P (Yn < 1¡ F (s00 + ±jG)¡ ²) ! 0

for all ² > 0. Since 1¡F (s00 + ±jG) > ®, we can set ² = 1¡F (s00+ ±jG)¡®,
yielding P (Yn < ®) ! 0. That is, the probability that the fraction of jurors

voting to convict a guilty defendant is smaller than ® goes to zero as the

size of the jury goes to in¯nity. Therefore, P®;n(AjG) ! 0. The proof that

P®;n(CjI) ! 0 is analogous.

Note that the alternative condition

lims#S
f(sjI)
f (sjG) <1 and lims"S

f(sjI)
f (sjG) > 0

implies the existence of bounds H < 1 and H > 0, since (1¡ F (sjI))=(1¡
F (sjG)) is bounded below by one and bounded above by lims#S f (sjI)=f (sjG).
This su±cient condition for the theorem has a clear interpretation: a juror

cannot be arbitrarily sure that the defendant is guilty or arbitrarily sure that

he is innocent. The alternative condition is stronger than the one used in the

theorem: it is ful¯lled in the binary signal model but not in the exponential

model, where the likelihood ratio goes to zero as s goes to in¯nity.
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Appendix

Proposition 1 Given ¾¡i, the ex ante payo® to juror i of ¾i is an a±ne

transformation of

µZ
¾i(s) ¹I(ds)

¶
u(CjI)P¾¡i(pivjI)P (I)

¡
µZ

¾i(s)¹G(ds)

¶
u(AjG)P¾¡i(pivjG)P (G):

Proof: Let N denote the set of jurors. Note that

P¾(CjI) =

µZ
¾i(s) ¹I(ds)

¶ X

MµN
jM j¸k¡1
i=2M

�
¦j2M

µZ
¾j(s) ¹I(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹I(ds)

¶¸

+

µZ
[1¡ ¾i(s)]¹I(ds)

¶ X

MµN
jM j¸k
i=2M

�
¦j2M

µZ
¾j(s) ¹I(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹I(ds)

¶¸
;

and

P¾(AjG) =

µZ
¾i(s) ¹G(ds)

¶ X

MµN
jM j<k¡1
i=2M

�
¦j2M

µZ
¾j(s)¹G(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹G(ds)

¶¸

+

µZ
[1¡ ¾i(s)]¹G(ds)

¶ X

MµN
jM j<k
i=2M

�
¦j2M

µZ
¾j(s)¹G(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹G(ds)

¶¸
:
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Inserting these expressions into u(CjI)P¾(CjI)P (I) + u(AjG)P¾(AjG)P (G)
and simplifying, we get

µZ
¾i(s) ¹I(ds)

¶
u(CjI)

X

MµN
jM j=k¡1
i=2M

�
¦j2M

µZ
¾j(s)¹I(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹I(ds)

¶¸
P (I)

¡
µZ

¾i(s)¹G(ds)

¶
u(AjG)

X

MµN
jM j=k¡1
i=2M

�
¦j2M

µZ
¾j(s)¹G(ds)

¶
¢

¦j =2M
j 6=i

µZ
[1¡ ¾j(s)]¹G(ds)

¶¸
P (G) + constant,

where the last term is independent of ¾i.
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Lemma 0

1¡ F (sjI)
1¡ F (sjG) and

F (sjI)
F (sjG) are weakly decreasing.(1)

1¡ F (sjI)
1¡ F (sjG) � f (sjI)

f(sjG) � F (sjI)
F (sjG) for all s 2 S:(2)

lim
s#S

f(sjI)
f (sjG) > 1 and lims"S

f(sjI)
f (sjG) < 1:(3)

F (sjI) > F (sjG) for all s 2 S:(4)

If
f(sjI)
f(sjG) > lims"S

f (sjI)
f(sjG) then

1¡ F (sjI)
1¡ F (sjG) >

1¡ F (sjI)
1¡ F (sjG)(5)

for all s < s and all s 2 S:

If
f(sjI)
f(sjG) < lims#S

f (sjI)
f(sjG) then

F (sjI)
F (sjG) <

F (sjI)
F (sjG)(6)

for all s > s and all s 2 S:

Proof: Results (1) and (2) follow from (A1){(A3) and are well-known. Re-

sult (3) follows easily from (A3) and (A4). Result (4), stated with weak

inequality (that is, ¯rst order stochastic dominance) is a well-known implica-

tion of (A3). Strict inequality follows from result (3) above. If (5) fails then,

by (1) above,

1¡ F (sjI)
1¡ F (sjG) =

1¡ F (sjI)
1¡ F (sjG) for all s 2 [ŝ; s]

for some ŝ < s. Consequently,

D

µ
1¡ F (sjI)
1¡ F (sjG)

¶
= 0;
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or equivalently

1¡ F (sjI)
1¡ F (sjG) =

f(sjI)
f (sjG) ;(7)

for all s 2 [ŝ; s] \ Sd. Note that
f(sjI)
f (sjG) > lim

s"S

f (sjI)
f(sjG)

and assumption (A4) imply that there is a s0 ¸ s such that

f (sjI)
f(sjG) >

f(xjI)
f (xjG)

for all x ¸ s0. Taking any s 2 (ŝ; s) and using (7),

1¡ F (sjI) =

Z S

s

f(sjI)
f(sjG)f (xjG) dx

=

Z s0

s

f (sjI)
f(sjG)f (xjG) dx+

Z S

s0

f(sjI)
f(sjG)f (xjG) dx

>

Z s0

s

f (xjI)
f(xjG)f(xjG) dx+

Z S

s0

f(xjI)
f (xjG)f(xjG) dx

= 1¡ F (sjI);

where the inequality follows from assumption (A3) and our choice of s0. But

this is a contradiction, establishing (5). The proof of (6) is analogous.

Lemma 1 Given responsive strategies ¾¡i for jurors other than i, a strategy

¾i is a best response for i if and only if it satis¯es the following a.e.:

¾i(s) =

½
1 if J(¾¡i; s) < 0
0 if J(¾¡i; s) > 0:

(8)

If the likelihood ratio is strictly decreasing at inffs 2 S j J(¾¡i; s) � 0g; ¾i
is a best response for i if and only if it is equivalent a.e. to the following

cuto® strategy ~¾i:

~¾i(s) =

½
1 if J(¾¡i; s) � 0
0 else.

28



Proof: Suppose ¾i satis¯es (8). Take any strategy ¾0i, and de¯ne the sets

V = fs 2 S j J(¾¡i; s) < 0 and ¾0i(s) < 1g

W = fs 2 S j J(¾¡i; s) > 0 and ¾0i(s) > 0g:

Note that ¾i(s) = 1 for all s 2 V and ¾i(s) = 0 for all s 2 W . Thus, using
Proposition 1, the payo® from ¾i to juror i exceeds the payo® from ¾0i by

Z

V

(1¡ ¾0i(s))
£
u(CjI)P¾¡i(pivjI)P (I)f (sjI)

¡u(AjG)P¾¡i(pivjG)P (G)f(sjG)
¤
ds

¡
Z

W

¾0i(s)
£
u(CjI)P (I)P¾¡i(pivjI)f(sjI)

¡u(AjG)P (G)P¾¡i(pivjG)f(sjG)
¤
ds:

By construction, s 2 V implies J(¾¡i; s) < 0, which implies that the in-

tegrand of the ¯rst integral is positive; s 2 W implies J(¾¡i; s) > 0, which

implies that the integrand of the second integral is negative. Since ¾0i violates

(8) if and only if V [W has positive measure, any strategy satisfying (8) is

a best response and any strategy violating (8) is not.

If the likelihood ratio is strictly decreasing at inffs 2 S j J(¾¡i; s) � 0g;
J(¾¡i; s) = 0 has at most one solution, and hence (8) implies ¾i is equivalent

a.e. to ~¾i, a cuto® strategy.

Lemma 2 J is continuous and weakly decreasing in its ¯rst argument. In

addition,

lims#S J(s; s) > 0 and lims"S J(s; s) < 0:

Finally, J(s; s) = 0 has at most one solution.
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Proof: The ¯rst part follows directly from (A1), (A3), and (1) of Lemma 0.

Note that

lim
s#S
J(s; s) = lim

s#S

µ
F (sjI)
F (sjG)

¶n¡k
lim
s#S

f (sjI)
f(sjG) ¡ ½

=

µ
lim
s#S

f(sjI)
f (sjG)

¶n¡k+1
¡ ½

> 0;

and

lim
s"S
J(s; s) = lim

s"S

µ
1¡ F (sjI)
1¡ F (sjG)

¶k¡1
lim
s"S

f (sjI)
f(sjG) ¡ ½

=

µ
lim
s"S

f(sjI)
f (sjG)

¶k

¡ ½

< 0;

where we make use of L'Hôpital's rule, (A4), and (3) of Lemma 0. This

proves the second part of the lemma.

For the third part, take any signal s such that J(s; s) = 0. We claim

that, for all s0 > s, J(s0; s0) < J(s; s) = 0. By the de¯nition of J and (1) of

Lemma 0, if

f (s0jI)
f(s0jG) <

f (sjI)
f(sjG) ;

we are done. Thus, by assumption (A3), we suppose the two likelihood ratios

are equal. Note that, by assumption (A4), either

f(sjI)
f (sjG) < lim

s#S
f (sjI)
f(sjG)

or

f (s0jI)
f(s0jG) =

f(sjI)
f (sjG) > lim

s"S

f (sjI)
f(sjG) :
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If the ¯rst inequality holds, then

F (s0jI)
F (s0jG) <

F (sjI)
F (sjG)

by (6) of Lemma 0. If the second holds, then

1¡ F (s0jI)
1¡ F (s0jG) <

1¡ F (sjI)
1¡ F (sjG) :

by (5) of Lemma 0.

We look at three cases. If 1 < k < n, then by the de¯nition of J and the

preceding discussion, we are done. If k = n, then

J(s; s) =

µ
1¡ F (sjI)
1¡ F (sjI)

¶n¡1 f(sjI)
f (sjG) ¡ ½:

If

f(sjI)
f(sjG) > lim

s"S

f(sjI)
f(sjG) ;

then by (5) of Lemma 0 we are done. Otherwise, we have

f(sjI) = f(sjG) ¢ lim
s"S

f(sjI)
f(sjG)

for all s ¸ s. Then, after integrating and rearranging terms,

1¡ F (sjI)
1¡ F (sjG) = lim

s"S

f(sjI)
f (sjG) :

Using J(s; s) = 0, we get

½ =

µ
lim
s"S

f(sjI)
f (sjG)

¶n

:

But

lim
s"S

f (sjI)
f(sjG) < 1;
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by (3) of Lemma 0, so

lim
s"S

f(sjI)
f (sjG) > ½;

contradicting (A4). The case k = 1 is analogous. This establishes the claim

that s0 > s implies J(s0; s0) < 0. Therefore, J(s; s) = 0 has at most one

solution.

Lemma 3 If n ¸ k0 > k ¸ 1, then sk0 � sk.

Proof: Recall that

Jk(s; s) =

µ
1¡ F (s j I)
1¡ F (s j G)

¶k¡1 µ
F (s j I)
F (s j G)

¶n¡k
f (s j I)
f(s j G) ¡ ½:

By (2) of Lemma 0, given arbitrary s 2 S,
1¡ F (s j I)
1¡ F (s j G) � F (s j I)

F (s j G) ;

which implies Jk0(s; s) � Jk(s; s) for k0 > k. This implies

fs 2 S j Jk(s; s) � 0g µ fs 2 S j Jk0(s; s) � 0g;

from which we conclude sk0 � sk.
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