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1. INTRODUCTION

We analyze a class of complete information, two-candidate voter participation games in which
players in two groups decide whether to vote for their favorite candidate or abstain. We consider a
generalized version of plurality rule according to which one group must exceed the votes cast by the
other group by a certain (possibly negative) number in order to win the election. Ties are resolved
by a (possibly biased) coin toss. Participation is costly, and the costs of voting may vary across
players.

In the special case when one of the two groups is empty, the game becomes a discrete public
good provision game. In particular, we can interpret players’ decision to participate as a contribu-
tion of one unit towards the public good. The number of contributions must exceed a threshold in
order for the good to be provided, and players receive no refunds if that threshold is not reached.

Thus, the class of games we consider encompasses those analyzed by Palfrey and Rosenthal,
1983, as well as games analyzed by Palfrey and Rosenthal, 1984. In the former, the authors studied
rational turnout under complete information, while in the latter they analyzed the incentives for
the collective provision of public goods. Unlike our analysis, both of these studies are executed
under the restriction that players’ participation costs are identical.

We have three main results. First, we characterize the Nash equilibria of these games as
stationary points of a minmax optimization problem. Although this result may have independent
value for the purposes of computation of equilibria in these games, its importance in our analysis
stems from the fact that the objective function of this optimization problem is a Morse function
for almost all participation costs. The Hessian of a Morse function is not singular at all the critical
points of that function.

We use the above to establish that, except for a closed set of measure zero of participation
costs, all the Nash equilibria of the participation games we consider are regular. In the games we
analyze, an equilibrium is regular if players that use a pure strategy strictly prefer that strategy,
and the Jacobian associated with the indifference conditions of the players that use non-degenerate
mixed strategies is not singular. Our earlier characterization immediately yields that all totally
mixed Nash equilibria of a participation game are regular, for almost all participation costs. A
simple additional step allows us to extend this conclusion to equilibria that also involve pure
strategy choices by players.

Regular equilibria are isolated, and are locally expressible as continuous functions of pa-
rameters. Furthermore, these equilibria can be “purified,” i.e. approximated by Bayesian Nash
equilibria of nearby games of incomplete information, as shown originally by Harsanyi, 1973a, and,
with a much shorter proof, by Govindan, Reny, and Robson, 2003. As we discuss in the concluding
section of our analysis, these properties imply that the received dichotomy in the literature on
the possibility of rational turnout between games of complete and incomplete information merits
further qualification. In particular, if a (regular) voter participation game of complete information
admits equilibria with high turnout, then these equilibria essentially survive in nearby games of
incomplete information.3

We emphasize that regularity of the Nash equilibrium set for the games we study does not
3Aldrich, 1993, and, more recently, Feddersen, 2004, provide a review of the literature on rational turnout.
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follow from the corresponding theorem of Harsanyi, 1973b, for finite games in normal form. The
reason is that the latter theorem is obtained by, in principle, perturbing the payoffs associated with
each possible outcome of the game. Yet, the anonymity built into our game implies that players
assign the same payoff for large sets of outcomes. Indeed, although a game with n players has 2n

possible outcomes in our analysis, each player can receive only four distinct possible payoffs from
these outcomes. Nevertheless, we can show that these games are regular by only perturbing the n
parameters reflecting these players’ cost of participation.

De Sinopoli and Iannantuoni, 2005, also show generic regularity of k-candidate (k ≥ 2)
plurality voter participation games.4 Their theorem is obtained by following a line of proof similar
to that used by Harsanyi, 1973b, and van Damme, 1987. The proof proceeds by creating a mapping
the range of which is the set of payoff parameters, and concludes by application of a version of Sard’s
theorem.

De Sinopoli and Iannantuoni show generic regularity in the space of games defined over
the n (k + 1) parameters corresponding to the n players’ k payoffs associated with the victory
of each of the k candidates, as well as each player’s cost of participation. This involves some
overparameterization, as the authors discuss in their remark 6, page 486, to the effect that their
conclusion holds even if participation costs are assumed identical across players, i.e. for a space of
games with a total of only nk + 1, instead of n (k + 1), parameters.

Lastly, motivated by an example to the contrary, we consider whether the games we analyze
admit equilibria in which, within each group, players with higher participation cost abstain with
weakly higher probability. We call such equilibria monotone, and establish their existence for all
games.

The analysis in the sequel is organized as follows. In section 2 we formally define the games
analyzed and establish some preliminary results. In section 3 we provide the characterization of
equilibria in these games. We show that regular games are generic in section 4, and establish
existence of monotone equilibria in section 5. We conclude in section 6.

2. MODEL & PRELIMINARIES

We shall be concerned with a participation game played by two sets of players, N = {1, ..., n}
and M = {n+ 1, ..., n+ µ}, with µ ≤ n.5 We denote a generic player in N by i, and reserve j for a
generic player in M . Each group N and M have a favorite candidate in a two-candidate election.
Players receive a payoff equal to 1 if their favorite candidate wins the election, and 0 if the other
group’s favorite candidate wins the election.

Player i’s strategy is whether to vote in favor of group N ’s candidate at a cost ci ∈ R++,
i ∈ N , or abstain.6 Similarly the strategy of player j is whether to vote in favor of group M ’s

4Although De Sinopoli and Iannantuoni consider simple plurality rule games with ties resolved by a fair lottery
in the main analysis, their results extend to a more general class of games when it comes to the voting rule, as they
discuss in remark 1, page 484.

5As a mnemonic rule, we shall reserve Latin characters for variables or parameters pertaining to players in N , and
Greek characters for players in M .

6We follow the standard approach of eliminating players’ dominated strategy to vote in favor of the candidate of
the opposing group.
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candidate at a cost κj ∈ R++, j ∈M , or abstain. We denote the vector of costs for players i ∈ N
by c = (c1, ..., cn) ∈ eC ≡ Rn++, and that for players j ∈M by κ = (κn+1, ...,κn+µ) ∈ eK ≡ Rµ++.

We represent a strategy for player i ∈ N by the probability of participation pi ∈ [0, 1]. We
denote the vector of strategies for players in N by p = (p1, ..., pn) ∈ [0, 1]n. We similarly define
the strategy of player j ∈ M by πj ∈ [0, 1], and collect the strategies of players in M in vector
π = (πn+1, ...,πn+µ) ∈ [0, 1]µ. We use the standard notation p−i (π−j) to represents the strategies
of all players in N except i (M except j).

Denote the actual number of votes cast by group N by l, and the corresponding number cast
by group M by λ. Group N wins if l − λ > w, w ∈ Z. Group M wins if l − λ < w. In cases of
a “tie,” l − λ = w, group N wins with probability bw ∈ [0, 1], and group M wins with probability
1− bw.

Observe that w = 0, bw = 1
2 corresponds to the familiar plurality rule with ties resolved by

coin-toss. The case when w 6= 0, or w = 0, bw ∈ {0, 1}, corresponds to a generalized version of what
Palfrey and Rosenthal, 1983, refer to as the status quo rule. Finally, the case when µ = 0, w ∈
{1, ..., n}, bw = 1 corresponds to the public good provision games analyzed by Palfrey and Rosenthal,
1984, assuming no refunds when the good is not provided. We represent a game satisfying the above
assumptions by Γ (c,κ, w, bw).

We now define the probability that exactly l players from set N\C vote, C ⊂ N , as the
following function of players’ strategies:

f (p, l, C) ≡
( P

K∈Ll(C)

³Q
i∈K pi

Q
i∈N\(K∪C) (1− pi)

´
if l ≤ |N\C|

0 if l > |N\C| , l < 0
,

where Ll (C) ≡ {K ⊆ N\C : |K| = l}. We similarly define the corresponding function for group M
as:

φ (π,λ, C) ≡
( P

K∈Λλ(C)

³Q
j∈K πj

Q
j∈M\(K∪C) (1− πj)

´
if λ ≤ |M\C|

0 if λ > |M\C| , λ < 0
,

where Λλ (C) ≡ {K ⊆M\C : |K| = λ}. Now φ (π,λ, C) represents the probability that exactly
λ players from set M\C vote, where C ⊂M .

Given the above, the probability of victory of group N is a function:

F (p,π) ≡
µX

λ=0

nX
l=λ+w+1

f (p, l, ∅)φ (π,λ, ∅) + bw µX
λ=0

f (p,λ+ w, ∅)φ (π,λ, ∅) .

The probability of victory of group M is simply

Φ (p,π) ≡ 1− F (p,π) .

Denote partial derivatives of F , Φ by Fi, Φj . We establish the following lemma, which we
will use in the remainder of the analysis:
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Lemma 1 Assume i ∈ N , j ∈M . Then:

Fi (p,π) = F
¡¡
p−i, 1

¢
,π
¢
− F

¡¡
p−i, 0

¢
,π
¢
, and (1)

Φj (p,π) = Φ
¡
p,
¡
π−j , 1

¢¢
− Φ

¡
p,
¡
π−j , 0

¢¢
. (2)

Proof. See the appendix.
In the appendix, we provide explicit expressions for the quantities in (1) (and (2)), which can

be interpreted in terms of the probability that player i (respectively, j) is “pivotal.” By inspection
of the right hand side of (1) and (2), it is immediate that these quantities appear in the conditions
for a Nash equilibrium of game Γ (c,κ, w, bw).

In the next section we use lemma 1 to give a characterization of Nash equilibrium as a
stationary point of a non-linear programming problem.

3. NASH EQUILIBRIA

The fact that the change in the probability of victory from a players’ participation decision
is obtained as the partial derivatives of the probability of victory of the respective group in lemma
1, allows us to characterize Nash equilibria of game Γ (c,κ, w, bw) as stationary points of a minmax
problem:

Lemma 2 (p,π) is a Nash equilibrium of Γ (c,κ, w, bw) if and only if it is a stationary point of the
following minmax problem

min
π
max
p

⎛⎝F (p,π)−X
i∈N

pici +
X
j∈M

πjκj

⎞⎠ s.t. (3)

p ∈ [0, 1]n ,π ∈ [0, 1]µ .

Proof. We proceed by formulating the Langrangean for the maximization problem

Lp (p,b,d;π) = F (p,π)−
X
i∈N

pici +
X
j∈M

πjκj +
X
i∈N

bipi +
X
i∈N

di (1− pi)

from which we obtain the following maximization conditions, for all i ∈ N :

Fi (p,π)− ci + bi − di = 0
bipi = di (1− pi) = 0
bi, di ≥ 0, pi ∈ [0, 1]

We deduce from (1) that these conditions are equivalent to:

pi

⎧⎨⎩
= 1 if F

¡¡
p−i, 1

¢
,π
¢
− ci > F

¡¡
p−i, 0

¢
,π
¢

∈ [0, 1] if F
¡¡
p−i, 1

¢
,π
¢
− ci = F

¡¡
p−i, 0

¢
,π
¢

= 0 if F
¡¡
p−i, 1

¢
,π
¢
− ci < F

¡¡
p−i, 0

¢
,π
¢ (4)
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We similarly proceed by transforming the minimization problem of (3) into a maximization one
and writing the Langrangean

Lπ (π,β, δ;p) = −F (p,π) +
X
i∈N

pici −
X
j∈M

πjκj +
X
j∈M

βjπj +
X
j∈M

δj (1− πj) .

We now obtain the analogous conditions

Φj (p,π)− κj + βj − δj = 0

βjπj = δj (1− πj) = 0

βj , δj ≥ 0, πj ∈ [0, 1] .

which, again by lemma 1, are equivalent to

πj

⎧⎨⎩
= 1 if Φ

¡
p,
¡
π−j , 1

¢¢
− κi > Φ

¡
p,
¡
π−j , 0

¢¢
∈ [0, 1] if Φ

¡
p,
¡
π−j , 1

¢¢
− κi = Φ

¡
p,
¡
π−j , 0

¢¢
= 0 if Φ

¡
p,
¡
π−j , 1

¢¢
− κi < Φ

¡
p,
¡
π−j , 0

¢¢ . (5)

But conditions (4) and (5) are necessary and sufficient for (p,π) to constitute a Nash equilibrium.

The characterization in lemma 2 is an immediate consequence of lemma 1. A somewhat more
subtle implication follows by the remark, on which we shall elaborate shortly, that the objective
function in the programming problem (3) is a Morse function, for almost all costs of participation
c, κ. In the next section we shall use this fact to show that game Γ (c,κ, w, bw) is regular for almost
all c, κ.

4. REGULAR EQUILIBRIA

Before we proceed to study regularity of the equilibria of game Γ (c,κ, w, bw), we clarify some
terminology. A critical point of a smooth function f : Rk −→ R is a point x ∈ Rk such that all
the partial derivatives of f vanish at x: fh (x) = 0, h = 1, ..., k. A critical point is degenerate if the
Hessian of f at x is singular, det [Dfx] = 0; it is not degenerate if det [Dfx] 6= 0. Function f is a
Morse function if it does not have degenerate critical points.

An application of Sard’s theorem demonstrates that Morse functions abound. In particular,
given function f : Rk −→ R:

Theorem 1 (Guillemin and Pollack, 1974, page 43) The function fa = f +
Pk
h=1 ahxh is a Morse

function for almost every a ∈ Rk.

We now develop notation in order to define regular equilibria of game Γ (c,κ, w, bw). Consider
an equilibrium of game Γ (c,κ, w, bw) in which players in N1 ⊆ N and M1 ⊆ M are indifferent
between participating and abstaining, players in N2 and M2 strictly prefer to abstain, and players
in N3 andM3 strictly prefer to vote. Let |Nh| = nh and |Mh| = µh, h = 1, 2, 3, denote strategies and
participation costs of players in the respective sets by ph,πh, and ch,κh, h = 1, 2, 3, respectively,
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and denote the set of possible participation costs by eCh, eKh, h = 1, 2, 3. Finally, denote the set of
equilibria of game Γ (c,κ, w, bw) with the above properties by E ³{Nh,Mh}3h=1 , c,κ

´
, and the set

of all equilibria of Γ (c,κ, w, bw) by E (c,κ).
For equilibrium (p,π) ∈ E

³
{Nh,Mh}3h=1 , c,κ

´
we construct a function H : Rn+µ → Rn+µ

given by:

Hg (p,π) =

⎧⎪⎪⎨⎪⎪⎩
pg [Fg (p,π)− cg] for g ∈ N with pg < 1
πg [Φg (p,π)− κg] for g ∈M with πg < 1

(1− pg) [cg − Fg (p,π)] for g ∈ N with pg = 1
(1− πg) [κg −Φg (p,π)] for g ∈M with πg = 1

(6)

Obviously, if (p,π) ∈ E
³
{Nh,Mh}3h=1 , c,κ

´
, then this equilibrium satisfies H (p,π) = 0. Essen-

tially7 following the definition of van Damme, 1987, page 38-39, the Nash equilibrium (p,π) ∈
E
³
{Nh,Mh}3h=1 , c,κ

´
is regular if the Jacobian of H does not vanish at (p,π). The game

Γ (c,κ, w, bw) is regular if all of its Nash equilibria are regular.
The determinant of the Jacobian ofH, J (p,π), calculated at (p,π) ∈ E

³
{Nh,Mh}3h=1 , c,κ

´
is given as:

det [J (p,π)] = det
h eJ (p1,π1)i Y

i∈N2∪N3
(Fi (p,π)− ci)

Y
j∈M2∪M3

(Φj (p,π)− κj) (7)

where eJ (p,π) is the (n1 + µ1) × (n1 + µ1) matrix obtained by the rows and columns of J (p,π)
that correspond to the players in N1 ∪M1.

Lemma 2 and theorem 1 immediately yield:

Lemma 3 All equilibria (p,π) ∈ E
³
{Nh,Mh}3h=1 , c,κ

´
of game Γ (c,κ, w, bw) such that (p1,π1) ∈

(0, 1)n1+µ1 are regular for almost all (c,κ) ∈ eC × eK.
Proof. By assumption, the term

Q
i∈N2∪N3 (Fi (p,π)− ci)

Q
j∈M2∪M3

(Φj (p,π)− κj) in (7)

is different than zero. As a consequence, an equilibrium (p,π) ∈ E
³
{Nh,Mh}3h=1 , c,κ

´
is regular

if and only if det
h eJ (p,π)i 6= 0. The latter will be shown to hold because, by theorem 1, the

following function of (p1,π1)eH (p1,π1;p2,p3,π2,π3) ≡ F (p,π)−X
i∈N

pici +
X
j∈M

πjκj , (8)

with p2= 0, π2 = 0, and p3= 1, π3 = 1, is a Morse function for almost all (c1,κ1) ∈ eC1 × eK1.
Note that the set of critical points of this function eH is independent of the value of (c2, c3,κ2,κ3) ∈eC2 × eC3 × eK2 × eK3, which only shift eH by a constant. Thus, for almost all (c,κ) ∈ eC × eK,

7Our formulation differs slightly from van Damme’s in that we omit the n+ µ linear equations that ensure that
probabilities of voting and abstaining for each player sum up to one. Instead, we substitute from these equations
directly into H (p,π) by representing the probability of abstention by 1− pi, 1− πj .
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the critical points of eH are not degenerate, i.e. det
h
D eH(p1,π1)i 6= 0 at all points (p1,π1) such

that eHg (p1,π1) = 0, g ∈ N1 ∪ M1. Furthermore, eHg (p1,π1) = 0, g ∈ N1 ∪ M1 are neces-

sary conditions for (p,π) ∈ E
³
{Nh,Mh}3h=1 , c,κ

´
, by lemma 2. We complete the proof by

observing that the determinant of the Hessian of eH is related with eJ (p,π) in (7) according to
det

h eJ (p,π)i = det hD eH(p1,π1)iQi∈N1 pi
Q
j∈M1

πj 6= 0.
Lemma 3 covers all possible Nash equilibria of game Γ (c,κ, w, bw), except those that involve

players using a pure strategy and are indifferent between participating and abstaining.8 Such
equilibria correspond to those among the critical points of function eH in (8) that lie on the boundary
of [0, 1]n1+µ1 . But such critical points can be ruled out for almost all costs of participation. Indeed,
we are ready to show:

Theorem 2 Except for a closed set of measure zero in eC × eK, game Γ (c,κ, w, bw) is regular.
Proof. That the set of participation costs for which game Γ (c,κ, w, bw) is not regular is

closed follows from standard arguments involving the upper-hemicontinuity of the equilibrium cor-
respondence with respect to c,κ, and the smoothness of the mapping H in (6) (see van Damme,
1987, page 42). Thus it remains to show that this set has measure zero.

The set of Nash equilibria of Γ (c,κ, w, bw) is obtained as
E (c,κ) =

[
{Nh,Mh}3h=1

E
³
{Nh,Mh}3h=1 , c,κ

´
.

There only exist a finite number of possible combinations of sets {Nh,Mh}3h=1. Thus, since finite
unions of sets of measure zero have measure zero, it will suffice to show that for almost all (c,κ) ∈eC × eK all the critical points (p1,π1) ∈ [0, 1]n1+µ1 of function (8) lie in the interior of [0, 1]n1+µ1 .
Then the theorem follows from lemma 3.

We proceed in the same fashion as above, by observing that there exist only a finite number
of possible combinations of the coordinates of (p1,π1) that can be equal to zero or one. Thus,
assume pi = πj = 0 for all i ∈ N 0

1, j ∈ M 0
1 and pi = πj = 1 for all i ∈ N 00

1 , j ∈ M 00
1 , where

N 0
1, N

00
1 ⊆ N1, M 0

1,M
00
1 ⊆M1, and |N 0

1|+ |M 0
1|+ |N 00

1 |+ |M 00
1 | = q ≤ n1 + µ1. We define a functionbH : Rn1+µ1 × eC1 × eK1 −→ Rn1+µ1+q, the first n1 coordinates of which are given by ci − Fi (p,π),

one for each i ∈ N1, and the next µ1 by κj − Φj (p,π), one for each j ∈ M1. The remaining q
coordinates, we set to either pi or πj corresponding to each i ∈ N 0

1, j ∈ M 0
1, or pi − 1 or πj − 1

corresponding to each i ∈ N 00
1 , j ∈ M 00

1 . We shall show that 0 is a regular value of the smooth
function bH. Indeed, by appropriate arrangement of its columns, the Jacobian of bH is obtained as:

D bH =

∙
∗ ∗ In1+µ1
0 Iq 0

¸
which has full rank, so that 0 is a regular value of bH.

8 i.e. it covers all quasi-strict equilibria.
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Hence, by the Preimage theorem (Guillemin and Pollack, 1974, page 21), bH−1 (0) is a sub-
manifold of Rn1+µ1× eC1× eK1 of dimension n1+µ1−q. Thus, if q ≥ 1, bH (p1,π1, c1,κ1) = 0 can be
true only for a subset of eC1× eK1 with measure zero. Outside that set, there cannot exist an equilib-
rium (p,π) ∈ E

³
{Nh,Mh}3h=1 , c,κ

´
with pi = πj = 0 for all i ∈ N 0

1, j ∈M 0
1 and pi = πj = 1 for all

i ∈ N 00
1 , j ∈M 00

1 . We conclude, as we set out to show, that the critical points (p1,π1) ∈ [0, 1]
n1+µ1

of the function eH in (8) lie on the interior of [0, 1]n1+µ1 for almost all (c1,κ1) ∈ eC1 × eK1. This
completes the proof.

We have shown that non-regular games Γ (c,κ, w, bw) are exceptional. One implication of this
conclusion obtains from theorem 1 in Harsanyi, 1973b: for almost all participation costs c,κ, game
Γ (c,κ, w, bw) has an odd (finite) number of equilibria. As an illustration, consider the following
example:

Example 1 Assume n = 2, µ = 1, w = 0, and bw = 1
2 . Let c1 < c2 <

1
2 .

If 12 > κ1 >
c2−c1
1−2c1 , this game has three equilibria:

1. p1 = 1 > p2 = 1− 2κ1, and π1 = 2c2,

2. p1 = 1− 2κ1 < p2 = 1, and π1 = 2c1, and

3. p1 =
q

(1−2κ2)2(1−2c2)
1−2c1(1−κ1)−2κ1(1−c1) < p2 =

q
1−2c1(1−κ1)−2κ1(1−c1)

1−2c2 , and π1 = 1−
q

(1−2c2)3
1−2c1(1−κ1)−2κ1(1−c1) .

If κ1 < c2−c1
1−2c1 , then only the first equilibrium survives.

Finally, if κ1 = c2−c1
1−2c1 then only the first and the second equilibrium obtain, and the latter is

not regular.

The only equilibrium that is not regular in example 1 is not quasi-strict. Thus, we also give
an example of a quasi-strict equilibrium that is not regular:

Example 2 Assume n = 4, µ = 2, w = 0, and bw = 1
2 . Let ci =

3
8 , i ∈ N , and κj <

5
16 , j ∈ M .

Then, pi = 1
2 , i ∈ N , and πj = 1, j ∈M is a quasi-strict equilibrium that is not regular. It follows

that pi = 1
2 , i ∈ N is an irregular equilibrium for the public goods game with n = 4, µ = 0, ci = 3

8 ,
i ∈ N , w = 2, and bw = 1

2 .

A second implication of theorem 2 also follows from Harsanyi’s work (namely his purifica-
tion theorem in Harsanyi, 1973a). For almost all participation costs c,κ, the equilibria of game
Γ (c,κ, w, bw) can be purified, i.e. can be obtained as (essentially) pure strategy Bayesian Nash
equilibria of nearby games of incomplete information. We further discuss the implications of this
fact in the concluding section. In the penultimate section that follows, we address a couple of
extant questions raised by our analysis.

5. MONOTONE EQUILIBRIA

The minmax programming problem in (3) of lemma 2, suggests the possibility of a connection
between the Nash equilibria of game Γ (c,κ, w, bw) and the pure strategy Nash equilibria of an
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artificial two-player zero-sum game where the strategy of (fictitious) player 1 is p ∈ [0, 1]n, that of
(fictitious) player 2 is π ∈ [0, 1]µ, and the payoff of player 1 (respectively 2) is the (negative of the)
objective function in (3).

Example 1 refutes the existence of such a connection. In particular, the third (totally mixed)
equilibrium in this example makes it plain that the fictitious player 1 of the above described zero-
sum game is not playing a best response at a Nash equilibrium of game Γ (c,κ, w, bw). This is
because p1 < p2 in the third equilibrium of the example, while c1 < c2 requires p1 ≥ p2 at an
optimum for this fictitious player.9

Motivated by this discussion and example 1, we define the following refinement of the Nash
equilibria of game Γ (c,κ, w, bw):
Definition 1 A Nash equilibrium (p,q) of game Γ (c,κ, w, bw) is monotone if

ci > ch =⇒ pi ≤ ph, all i, h ∈ N , and
κj > κh =⇒ πj ≤ πh, all j, h ∈M .

In a monotone equilibrium, within groups, players with higher participation cost abstain
with (weakly) higher probability. Note that a monotone equilibrium exists for all cost parameters
in example 1. In the last result of our analysis we show this is not an accident.

Theorem 3 Every game Γ (c,κ, w, bw) has at least one monotone Nash equilibrium.
Proof. Assume (without loss of generality) that players’ costs within groups are ranked so

that:

ci ≤ ci+1, i = 1, ..., n− 1, and
κj ≤ κj+1, j = n+ 1, ..., n+ µ− 1.

Consider the sets
SN = {p ∈ [0, 1]n : pi+1 ≤ pi, i = 1, ..., n− 1} , and

SM = {π ∈ [0, 1]µ : πj+1 ≤ πj , j = 1, ..., µ− 1}

Let the continuous function []+ : R → R+ be defined as [x]
+ ≡ max {x, 0}. Consider the

mapping G : SN × SM → SN × SM where the 1-st and (n+ 1)-th coordinates of G are given by

G1 (p,q) ≡
p1 + [F1 (p,π)− c1]+

1 + |F1 (p,π)− c1|

Gn+1 (p,q) ≡
πn+1 + [Φn+1 (p,π)− κn+1]

+

1 + |Φn+1 (p,π)− κn+1|
9 In fact, the three Nash equilibria of example 1 are not even local Nash equilibria of the associated 2-player

zero-sum game implied by (3).
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while the remaining coordinates are inductively defined as:

Gi (p,π) ≡ min

½
pi + [Fi (p,π)− ci]+

1 + |Fi (p,π)− ci|
, Gi−1 (p,π)

¾
, i = 2, ..., n,

Gj (p,π) ≡ min

(
πj + [Φj (p,π)− κj ]

+

1 + |Φj (p,π)− κj |
, Gj−1 (p,π)

)
, j = n+ 2, ..., n+ µ

Clearly, G is continuous in p,π. G maps the convex compact set SN × SM into itself. Thus, it has
a fixed point by Brouwer’s theorem. We now claim that if G (p∗,π∗) = (p∗,π∗) then p∗,π∗ is a
(monotone) Nash equilibrium of Γ (c,κ, w, bw).

We use the following lemma:

Lemma 4 Consider p,π ∈ [0, 1]n+m with pi = ph, i, h ∈ N (or πj = πh, j, h ∈ M). Then
Fi (p,π) = Fh (p,π) (Φj (p,π) = Φh (p,π)).

Proof. Obvious since we have f (p, l, i) = f (p, l, h) (or φ (π,λ, j) = φ (π,λ, h)) for all l, λ.

We will successively consider coordinates of the fixed point (p∗,π∗) such that p∗i = 0,
p∗i = 1, or p∗i ∈ (0, 1) and verify that the corresponding players play best responses. Let h =
min {i ∈ N : p∗i = 0}. Then, p∗i = 0, i = h, ..., n. Also, if h ≥ 2 we have p∗h−1 > 0. Hence
Gh (p

∗,π∗) = 0 =⇒ [Fh (p
∗,π∗)− ch]+ = 0 =⇒ Fh (p

∗,π∗) ≤ ch. But, by lemma 4 and the fact
that ci+1 ≥ ci, we have Fi (p∗,π∗) ≤ ci for all i = h+1, ..., n. Similarly, we conclude Φj (p∗,π∗) ≤ κj
for all j ∈M such that π∗j = 0.

Next, consider i ∈ N such that p∗i = 1. SinceGi (p
∗,π∗) = 1, we must have 1+[Fi(p

∗,π∗)−ci]+
1+|Fi(p∗,π∗)−ci| =

1 =⇒ [Fi (p
∗,π∗)− ci]+ = |Fi (p∗,π∗)− ci| =⇒ Fi (p

∗,π∗) ≥ ci. By the same argument we deduce
π∗j = 1 =⇒ Φj (p∗,π∗) ≥ κj .

Finally, consider i ∈ N such that p∗i ∈ (0, 1). We shall prove by induction that Fi (p∗,π∗) = ci
for all i such that p∗i ∈ (0, 1).

1. Fi (p∗,π∗) = ci if i = min {h ∈ N : p∗h ∈ (0, 1)}. Either i = 1, or p∗i < Gi−1 (p∗,π∗) = p∗i−1 =
1. In either case we must have Gi (p∗,π∗) =

pi+[Fi(p
∗,π∗)−ci]+

1+|Fi(p∗,π∗)−ci| = p
∗
i =⇒ Fi (p

∗,π∗) = ci.

Based on the inductive hypothesis that Fh (p∗,π
∗) = ch, p∗h ∈ (0, 1), we shall show:

2. if p∗h+1 ∈ (0, 1), Fh+1 (p∗,π∗) = ch+1. We have two possibilities: (a) p∗h+1 = p∗h, in which case
Fh+1 (p

∗,π∗) = Fh (p∗,π
∗) by lemma 4. Since ch+1 ≥ ch, and Fh+1 (p∗,π∗) = Fh (p∗,π∗) =

ch, we have [Fh+1 (p∗,π
∗)− ch+1]+ = 0. Thence, we deduce from the fact thatGh+1 (p∗,π∗) =

min
n

p∗h+1
1+|Fh+1(p∗,π∗)−ch+1| , p

∗
h

o
= p∗h+1 that |Fh+1 (p∗,π∗)− ch+1| = 0 ⇐⇒ Fh+1 (p

∗,π∗) =

ch+1, as desired. The second possibility is (b) p∗h+1 < p∗h. Then, since Gh+1 (p∗,π∗) =

min

½
p∗h+1+[Fh+1(p

∗,π∗)−ch+1]+
1+|Fh+1(p∗,π∗)−ch+1| , p∗h

¾
we deduce

p∗h+1+[Fh+1(p
∗,π∗)−ch+1]+

1+|Fh+1(p∗,π∗)−ch+1| = p∗h+1 ⇐⇒

[Fh+1 (p
∗,π∗)− ch+1]+ = |Fh+1 (p∗,π∗)− ch+1| p∗h+1, from which we conclude that Fh+1 (p∗,π∗) =

ch+1 as desired. This completes the induction proof.
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The same induction argument applies for the case j ∈ M with π∗j ∈ (0, 1). In summary, we
have shown that if p∗,π∗ is a fixed point of G, then it satisfies conditions (4) and (5) for a Nash
equilibrium, which concludes the proof.

6. CONCLUSIONS

We have analyzed participation games with heterogeneous participation costs in the context
of two-candidate elections as well as the provision of a discrete public good. We characterized the
equilibria of these games as stationary points of a non-linear programming problem. We showed
that, outside a closed set of measure zero of participation costs, these games are regular. Finally,
we established the existence of monotone equilibria.

In this concluding section, we take the opportunity to relate our analysis in section 4 with
the literature on the possibility of rational turnout when voting is costly. The possibility of high
turnout in large electorates with costly voting has been established by Palfrey and Rosenthal,
1983, in games of complete information with equal participation costs. On the other hand, Palfrey
and Rosenthal, 1985, show that if players have incomplete information about each others’ costs,
equilibrium turnout rate approaches zero in large electorates. Palfrey and Rosenthal, 1985, fix the
level of uncertainty regarding players’ participation cost, and perform a limit calculation as the
number of players increases. Thus, if the level of uncertainty is large relative to the size of the
electorate, only low turnout equilibria prevail.

The latter qualification is often omitted in the literature, where a prevalent rendition of
these results is that incomplete information eliminates high turnout equilibria. Our analysis shows
that this omission is not warranted since, for regular participation games with arbitrarily large
electorates, equilibria are robust to the introduction of (mild) incomplete information. As a con-
sequence, if a regular complete information game admits equilibria with high turnout, then these
high turnout equilibria also survive in nearby games of incomplete information.

An additional caveat for the comparison between the games analyzed by Palfrey and Rosen-
thal, 1983, 1985, is that it is unclear whether the complete information games with equal partici-
pation costs from which the incomplete information versions depart are regular for all sizes of the
electorate. An obvious direction for further research, which is the subject of our current investiga-
tion, is to establish (or refute) the possibility of large equilibrium turnout in complete information
games with heterogeneous participation costs.
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APPENDIX: PROOF OF LEMMA 1

We use the fact that f (p, l, ∅) = pif (p, l − 1, i) + (1− pi) f (p, l, i) in order to re-write
F (p,π) as:

F (p,π) =

µX
λ=0

nX
l=λ+w+1

(pif (p, l − 1, i) + (1− pi) f (p, l, i))φ (π,λ, ∅) (9)

+ bw µX
λ=0

(pif (p,λ+ w − 1, i) + (1− pi) f (p,λ+w, i))φ (π,λ, ∅)

Now, differentiation with respect to pi gives us:

Fi (p,π) =

µX
λ=0

nX
l=λ+w+1

f (p, l − 1, i)φ (π,λ, ∅)−
µX

λ=0

nX
l=λ+w+1

f (p, l, i)φ (π,λ, ∅)

+ bw µX
λ=0

f (p,λ+ w − 1, i)φ (π,λ, ∅)− bw µX
λ=0

f (p,λ+ w, i)φ (π,λ, ∅)

=

µX
λ=0

f (p,λ+ w, i)φ (π,λ, ∅)

− bw µX
λ=0

f (p,λ+ w, i)φ (π,λ, ∅) + bw µX
λ=0

f (p,λ+ w − 1, i)φ (π,λ, ∅)

= (1− bw) µX
λ=0

f (p,λ+ w, i)φ (π,λ, ∅) + bw µX
λ=1

f (p,λ+ w − 1, i)φ (π,λ, ∅)

By substituting in (9) for pi = 1 and pi = 0, respectively, we also obtain

F
¡¡
p−i, 1

¢
,π
¢
=

µX
λ=0

nX
l=λ+w+1

f (p, l − 1, i)φ (π,λ, ∅) + bw µX
λ=0

f (p,λ+w − 1, i)φ (π,λ, ∅)

and

F
¡¡
p−i, 0

¢
,π
¢
=

µX
λ=0

nX
l=λ+w+1

f (p, l, i)φ (π,λ, ∅) + bw µX
λ=0

f (p,λ+ w, i)φ (π,λ, ∅) .

Subtracting the second expression from the first we get

Fi (p,π) = F
¡¡
p−i, 1

¢
,π
¢
− F

¡¡
p−i, 0

¢
,π
¢

as desired.
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Similarly, we use the fact that φ (π,λ, ∅) = πjφ (π,λ− 1, j) + (1− πj)φ (π,λ, j) in order to
re-write F (p,π) as:

F (p,π) =

µX
λ=0

nX
l=λ+w+1

f (p, l, ∅) (πjφ (π,λ− 1, j) + (1− πj)φ (π,λ, j)) (10)

+ bw µX
λ=0

f (p,λ+ w, ∅) (πjφ (π,λ− 1, j) + (1− πj)φ (π,λ, j))

Now, differentiation with respect to πj gives us:

Fj (p,π) =

µX
λ=0

nX
l=λ+w+1

f (p, l, ∅) (φ (π,λ− 1, j)− φ (π,λ, j))

+ bw µX
λ=0

f (p,λ+ w, ∅) (φ (π,λ− 1, j)− φ (π,λ, j))

= −
µX

λ=1

f (p,λ+w, ∅)φ (π,λ− 1, j) + bw µX
λ=0

f (p,λ+ w, ∅) (φ (π,λ− 1, j)− φ (π,λ, j))

= − (1− bw) µX
λ=1

f (p,λ+w, ∅)φ (π,λ− 1, j)− bw µ−1X
λ=0

f (p,λ+ w, ∅)φ (π,λ, j)

In identical manner, by substituting in (10) for πj = 1 and πj = 0, respectively, we also obtain

Φj (p,π) = Φ
¡
p,
¡
π−j , 1

¢¢
− Φ

¡
p,
¡
π−j , 0

¢¢
.

This completes the proof of the lemma.
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