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Abstract

We analyze a stochastic bargaining game in which a new dollar is divided among committee

members in each of an infinity of periods. In each period, a committee member is recognized

and offers a proposal for the division of the dollar. The proposal is implemented if it is approved

by a majority. If the proposal is rejected, then last period’s allocation is implemented. We show

existence of equilibrium in Markovian strategies. It is such that irrespective of the initial status

quo, the discount factor, or the probabilities of recognition, the proposer extracts the entire dollar

in all periods but the initial two. We also derive a fully strategic version of McKelvey’s (1976),

(1979) dictatorial agenda setting, so that a player with exclusive access to the formulation of

proposals can extract the entire dollar in all periods except the first. The equilibrium collapses

when within period payoffs are sufficiently concave. Winning coalitions may comprise players

with high instead of low recognition probabilities, ceteris paribus.

JEL Classification Numbers: C73, C78, D72.

1 Introduction

Social choice theory has had a profound impact on our thinking about political interaction due to

the counter-intuitive nature of its conclusions. When it comes to majority rule, prominent in the
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Status-Quo: The Distributive Case” was presented at the 2002 MPSA and APSA annual meetings and seminars at

the Universities of Northwestern, Rochester, Princeton, Columbia, and Yale. I thank John Duggan, Nolan McCarty,

Adam Meirowitz, Thomas Palfrey, Maggie Penn, and Thomas Romer, for their comments. I am the sole responsible
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parade of paradoxical results of this literature are those by Plott (1967), and McKelvey (1976, 1979).

The former convincingly demonstrates that stable policies (that beat every other by majority vote)

in a continuous space of social alternatives are generically non-existent in more than one policy

dimensions. The latter, assuming the non-existence of stable policies, establishes that the entire set

of alternatives are entangled in a majority preference cycle. These results are suggestive but not

conclusive about the stability and/or predictability (or lack thereof) of collective decision making

under majority rule. In particular, neither precludes the existence of non-cooperative equilibrium

a la Nash. Building on that observation and the sequential bargaining model of Rubinstein (1982),

a non-cooperative literature on collective decision making has flourished in the last two decades.1

While this literature fills one lacuna in the theory of collective choice by providing a palpable

solution concept, it is ill-suited to address the dynamic implications of social preference intransitiv-

ity engendered by individual preference aggregation via majority rule. For that purpose we need to

specify game forms that trace collective choice over time, yet most of the existing literature assumes

that interaction ceases once the committee has reached a decision. The goal of this paper is to

further our understanding of equilibrium dynamics in a committee setting in which policies drawn

from a multidimensional policy space can be revised ad infinitum. Specifically we study a stochastic

game with an odd number of five2 or more players who decide on the division of a fixed budget (a

dollar) under majority rule. In each period, one of the committee members is recognized with some

fixed probability and makes a proposal. If the proposal is approved by a majority then the dollar

is divided in that period accordingly. Otherwise, the status quo allocation (which is defined as last

period’s division) is implemented. The above setup constitutes a natural framework for the study

of dynamic political interaction. Independently of variation in the process of agenda formation, all

existing constitutional democracies require that new legislation must be pitted against the status

quo in a final vote before its promulgation. Thus, as in the current analysis, the status quo policy

remains in effect and accrues payoffs to players, until it is beaten via majority vote by the policy

that replaces it.

A first issue we have to confront in this environment is that of existence of equilibrium. We

focus our analysis on simple equilibria such that players’ behavior in each period is only conditioned

on payoff relevant information (Tirole and Maskin (2001)), but our assumptions specify a stochastic
1E.g., Baron and Ferejohn (1989), Merlo and Wilson (1995), Banks and Duggan (2000), (2006), etc.
2The case of three-member committees is special, as we discuss shortly, and is covered under more restrictive

assumptions in Kalandrakis (2004).
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game with continuous action and state spaces, for which such equilibria need not exist.3 We are

able to overcome this difficulty and establish and characterize a (refined) Markov Perfect Nash

equilibrium via a combination of direct methods and abstract arguments. The existence proof is

based on two steps. First (Proposition 1), we obtain a closed form solution for equilibirum strategies

in a subset of the state space that is absorbing given these strategies. In the second step (Lemma

1), we apply a fixed point theorem in order to show that, given the above strategies, there exist

extensions of these strategies to the entire state space that move the game (with probability one)

in the absorbing set characterized in the first step. In Proposition 2 we show that these extended

strategies constitute an equilibrium.

With existence of equilibrium established, the important questions revolve around the nature

of equilibrium policy dynamics. Intuition offers an abundance of forces to induce policy moderation

in our framework. This follows from reasoning about the incentives of players both in their role

as voters as well as as proposers. By adopting an extreme (but desirable) division in the current

period, players face the risk that future proposers and coalitions will achieve passage of undesirable

divisions because they will legislate with a status quo division that disadvantages many committee

members. Thus, optimal divisions of the dollar should balance a trade-off between immediate gains

and a potentially averse stream of future decisions. In sharp contrast to the above intuition, the

equilibrium we characterize is such that the proposer extracts the entire dollar in every period

except (possibly) the initial two. This is true for all initial status quo divisions of the dollar

and independent of the discount factor. In effect, despite the fact that players are strategic and

farsighted, the long-run behavior of the system is identical to the one that would prevail in the

same model with myopic behavior (or impatient players).

A similar equilibrium is obtained by Kalandrakis (2004) in the special case of a committee with

three players. Although equilibrium behavior is identical in the long-run (the proposer extracts

the entire dollar in each period), with n = 3 players there exist initial status quo such that, with

positive probability, absorption to the set of long-run equilibrium divisions may not occur for any

finite period t. This is because there is positive probability that the excluded member from last

period’s winning coalition is recognized, and this player is unable to extract the entire dollar when

the other two players have a positive status quo allocation. As we demonstrate in section 3, when

n ≥ 5 there always exist a bare majority of members with zero status quo allocation for any
3For a detailed discussion of the equilibrium existence problem in these settings, see Duggan and Kalandrakis

(2007).
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proposer recognized in period t = 3. Thus absorption to the long-run equilibrium set of policies

occurs with probability one in period t = 3 in the present study. Besides the substantive difference

in equilibrium dynamics, this discrepancy implies that the case with n = 3 players cannot be

subsumed in the present study using the same line of proof (or vice versa). Kalandrakis (2004)

obtains an equilibrium using direct methods and exploiting the symmetry of the game stemming

from the assumption that players have equal recognition probabilities. Also, Kalandrakis (2004)

requires linear stage payoffs.

In the present study, we consider the case stage payoffs exhibit diminishing returns, and relax

the assumption of equal recognition probabilities. The fact that we consider general recognition

probabilities imposes a significant additional burden on the analysis, as the extra heterogeneity

across committee members makes it hard to determine analytically the composition of optimal

coalitions for any given proposer and status quo allocation. This is because, in any given period,

possible coalition partners are now characterized by two features: their status quo allocation and

their recognition probability. It is, of course, much easier to sort out the least expensive players for

inclusion in the proposer’s optimal coalition when players differ in one as opposed to two dimen-

sions. Thus, unlike Kalandrakis (2004), our approach does not involve the analytical derivation

of equilibrium proposal strategies but we are able to establish an equilibrium with general prob-

abilities of recognition. An immediate payoff from this generality is that we tackle an important

question that was originally posed by McKelvey in his seminal papers (1976), (1979). In particular,

McKelvey discusses how a dictatorial agenda setter (a person that formulates the proposal with

probability one in each period) can eventually pass her ideal point via an appropriate sequence of

binary votes between the status quo and a new alternative. McKelvey’s construction is a direct

consequence of his intransitivity result but relies on the unrealistic assumption (as McKelvey ex-

plicitly points out) that players vote on each pair of alternatives myopically, without anticipating

the eventual perils from their immediate gratification. Can McKelvey’s dictatorial agenda setting

result be obtained when voters are farsighted? Our analysis gives a conclusive answer for the case

the space of agreements is the division of a dollar (Proposition 3). If a committee member is rec-

ognized with probability one in every period, she can extract the entire dollar in all but the very

first period, for all initial status quo and every discount factor.

In addition, we show that the characterized equilibrium collapses when utility from the share

of the dollar displays significant diminishing returns, for fixed committee size, or – for fixed level
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of diminishing returns – if the legislature is small (Proposition 5). Thus, concavity seems to play a

different role in this model compared to the models where the legislature adjourns once a decision

is reached, since in such settings risk aversion allows the proposer to extract more of the surplus

(Harrington (1990)). Finally, also contrary to the comparative statics in the Baron and Ferejohn

model established by Eraslan (2002), we find that players that have high probability of becoming

the proposer are less expensive coalition partners, ceteris paribus (Proposition 4). In particular,

we show that there exist equilibria such that for certain status quo players with higher recognition

probabilities (but equal status quo allocation) are included in the winning coalition with higher

probability.

Before we move to the detailed presentation and analysis of the model, we further discuss

related contributions. Closely related to the present model is that analyzed by Epple and Riordan

(1987). They study subgame perfect equilibria of a divide-the-dollar game in which three players

alternate making proposals and establish that at least two radically different sequences of divisions

of the dollar can be supported in equilibrium. This result can be interpreted as a justification

for the focus on Markovian equilibria, as it suggests that a folk-theorem may obtain for these

games. The first study of Markov Perfect equilibria with the game form we consider in the present

study is by Baron (1996), who analyzes the case of a one-dimensional policy space and shows that

policies converge to the median in the long run. Baron and Herron (2003) numerically analyze

a finitely repeated version of the same game with two policy dimensions and three legislators.

They find that equilibrium decisions tend to be more centrally located with a higher discount

factor and a longer time horizon. Thus, both Baron (1996) and Baron and Herron (2003) obtain

qualitatively different long-run equilibrium outcomes compared to the present analysis, suggesting

that the discrepancy may originate from the different policy spaces. While the above studies are

concerned with applications in special policy spaces, Duggan and Kalandrakis (2007) study a general

model with only smoothness conditions imposed on players’ preferences and minimal restrictions

on the policy space. Among other results, they establish existence and continuity properties of

pure strategy Markovian equilibria, show that all such equilibria are essentially pure, and obtain

sufficient conditions for the policy process to have a unique invariant distribution. Despite their

generality, these results do not apply in the model considered in this study, because Duggan and

Kalandrakis assume stochastic shocks on preferences and the status quo which are not captured in

the present model.
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Related to the setup of Baron (1996), Kalandrakis (2004), and the present study is the model

with a one-dimensional state space of Cho (2005a) who studies a multi-party parliamentary democ-

racy with both bargaining and elections. Cho (2005b) and Fong (2005) both study two-dimensional

models with transferable utility but different bargaining protocols from those considered presently,

the former focusing on cabinet dissolution and the vote of confidence institution. Transferable

utility is also assumed by Gomez and Jehiel (2005) who study efficiency properties of equilibrium

in a dynamic coalitional game with a finite state space. Battaglini and Coate (2007) characterize

stationary equilibria in a model of public good provision, particularistic spending, and taxation

when interaction within periods takes the form of a finite Baron and Ferejohn (1989) protocol, and

the dynamic link across periods is determined by the stock of the public good. Bernheim, Rangel,

and Rayo (2006) analyze interaction for the determination of a policy in a single legislative period

assuming a sequence of votes on proposals such that each victorious proposal moves to the next

voting round (without being implemented), with the winning proposal in the last voting round

being the implemented policy, and derive conditions so that this implemented policy coincides with

the ideal policy of the last proposer. In section 6 of their study they discuss an extension to a

dynamic model such that implemented agreements can be revised a finite number of periods. Due

to the special institution assumed by the authors for legislative interaction within periods this mul-

tiperiod model does not generate strategic links between implemented agreements across periods

(as a consequence of their Corollary 1, page 1167). In a general setting applying social choice the-

oretic equilibrium notions, Roger Lagunoff (2005a), (2005b) studies the dynamics of institutional

stability and reform. Penn (2005) analyzes a dynamic model in which proposals arise exogenously

and voting by the committee on these proposals is probabilistic. Random proposals and myopic

voting are analyzed by Ferejohn, McKelvey, and Packel (1984).

In what follows we present the model in detail and define the equilibrium solution concept.

We establish existence of equilibrium in sections 3 and 4. In section 5 we discuss properties of

equilibrium and extensions. We conclude in section 6.

2 Model & Preliminaries

Consider a set N = {1, ..., n} of n = 2κ + 1 committee members, κ ≥ 2. They convene in each

period t = 1, 2, ... to reach an agreement xt drawn from a set X. Our ultimate goal is to analyze the
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case when X represents all possible divisions of a fixed budget (a dollar) among the n players. In

this case we set X = ∆, where ∆ = {x ∈ Rn
+ :
∑n

i=1 xi = 1}. In section 3, it will prove convenient

to solve an auxiliary game in which the space of possible agreements, X, is restricted to a proper

subset of ∆. The game proceeds as follows. At the beginning of each period t = 1, 2, ... player

i ∈ N is recognized with probability pi ≥ 0,
∑n

i=1 pi = 1, to make a proposal z ∈ X. Having

observed the proposal players vote yes or no. If a majority of κ + 1 or more players vote yes then

the proposed agreement is implemented, i.e., xt = z. Otherwise, if z does not receive the approval

of a majority, then period t’s status quo policy st ∈ X is implemented (i.e., xt = st). The game

then moves to the next period t + 1, with a status quo now being period t’s agreement, st+1 = xt,

and a new round of proposal making and voting.

Players derive stage utility ui : X → R, i ∈ N , from the implemented agreement, xt. We

assume players’ utility depends only on their share of the dollar, so that ui(x) = u(xi) for all

i ∈ N , for a utility function u : [0, 1] → R with u′ > 0. We normalize payoffs so that u(0) = 0

and u(1) = 1. For analytical tractability, we state some of the more general results under the

restriction that u′′ = 0 and payoffs are linear with u(xi) = xi. As we explicitly discuss in section

5, our conclusions are qualified in some important respects in the presence of diminishing returns,

so we admit u′′ ≤ 0 unless otherwise stated. Players discount the future with a common factor

δ ∈ (0, 1), and their payoff in the game is given by the discounted sum of stage payoffs.

We focus the analysis on Markov Perfect equilibria.4 Existence of such equilibria requires

mixing at the proposal stage of the game, so we represent a (mixed) Markov proposal strategy for

player i as a function πi : X → P [X], where P [X] is the space of Borel probability measures over

X.5 We use the somewhat abusive notation πi[· | s] ∈ P [X] to denote player i’s randomization

over proposals when recognized with status quo s. A Markov voting strategy is a function αi :

X × X → {yes, no}, so that αi(s, z) = yes indicates player i votes yes on proposal z when

the status quo is s. In the sequel, we opt to work with the equivalent representation of voting
4There are well developed arguments in the literature (e.g., Maskin and Tirole, 2001, and the references therein)

that justify this focus on Markov strategies.
5In general, additional measurability conditions on proposal strategies are necessary in order for players’ expected

payoffs to be well defined. For the sake of simplicity, we omit such explicit restrictions and secure measurability of
continuation payoffs in the relevant subset of the state space by solving analytically for continuation value functions vi

(as in (5)) in an absorbing subset of the policy space X. Alternatively, we could start with the restriction that proposal
strategies πi are Markov transitions (Aliprantis and Border (1999), definition 18.8, page 594) so that the functional
equation (5) maps the space of bounded measurable functions into itself (Aliprantis & Border (1999), theorem 18.7,
page 593), and use additional arguments, which are available upon request, to show that this restriction can be met
by proposal strategies in the equilibrium characterized in the present study.
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strategy αi by a correspondence Ai : X ⇒ X, that maps each status quo s to an acceptance set

Ai (s) = {z ∈ X : αi(s, z) = yes}. Given Markov voting strategies Ai, i ∈ N , we can compute the

win set of s:

W (s) =

{
y ∈ X |

n∑
i=1

IAi(s) (y) ≥ κ + 1

}
, (1)

where IA (y) is the indicator function. The win set W (s) ⊆ X contains the agreements that defeat

status quo s by majority rule.

Our equilibrium notion is that of Markov Perfect Nash (Maskin and Tirole (2001)) with a

standard refinement on voting strategies:

Definition 1 An equilibrium is a set of proposal and voting strategies π∗
i , A∗

i , such that for all

i ∈ N , and for all status quo s ∈ X:

y ∈ A∗
i (s) ⇔ Ui (y) ≥ Ui (s) , and (2)

π∗
i [arg max {Ui (x) | x ∈ W (s)} | s] = 1, (3)

where Ui : X → R represents i’s expected payoff from implemented agreements

Ui

(
xt
)

= (1− δ)ui

(
xt
)

+ δv∗i
(
xt
)
, (4)

and the continuation value v∗i : X → R in equation (4) satisfies

v∗i (s) =
n∑

j=1

pj

∫
X

[(1− δ)ui (x) + δv∗i (x)]πj [dx | s] . (5)

Equilibrium condition (2) amounts to the requirement that players vote yes to proposals if and

only if they weakly prefer them over the status quo s. Thus, we eliminate a – rather large – class

of uninteresting equilibria that involve majorities approving proposals not preferred over the status

quo (or vice versa) solely because individual players are not pivotal and, hence, are indifferent

between their voting actions. Equilibrium condition (3) requires that committee members choose

proposals optimally when recognized. Observe that proposers are restricted to choose among the

set of alternatives that defeat the status quo, W (s). Since proposals y /∈W (s) effectively preserve

the status quo policy, and since the status quo s ∈W (s) for all s ∈X (by equilibrium condition (2)),
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this restriction does not impair the optimality of players’ proposal strategies.

We can now proceed to the analysis of the game. Our first goal is to establish existence

of equilibrium. We accomplish this in sections 3 and 4. At the same time, we will obtain a

characterization of equilibrium outcomes. To pave the way for this analysis, we introduce necessary

notation. Partition the space of possible divisions of the budget into subsets ∆θ ⊂ ∆, where θ,

0 ≤ θ ≤ n − 1, indicates the number of players receiving zero share of the dollar, i.e., ∆θ ={
x ∈ ∆ |

∑n
i=1 I{0} (xi) = θ

}
. Further, for β > α, α, β ∈ {0, 1, .., n− 1}, define

∆β
α =

β⋃
θ=α

∆θ.

∆β
α is the set of all allocations of the dollar with α, or α + 1, ..., or β players receiving zero.

The solution of the game we characterize is built from the intuition that equilibrium proposals

involve ‘minimum winning coalitions’ (Riker (1962)), such that at most κ + 1 players receive a

positive fraction of the dollar in each period. As a result, we conjecture that ∆n−1
κ is an absorbing

set, one that is reached in at most one period from any initial status quo allocation. Capitalizing

on the above conjecture, we execute our proof strategy in two steps. First, we derive equilibrium

strategies in closed form for an auxiliary game in which the space of possible agreements X = ∆n−1
κ .

In the second step, we extend the specified equilibrium strategies to the entire space of agreements

X = ∆. We execute the first step in section 3, the second in section 4. In section 5 we discuss

properties of the equilibrium and additional results.

3 Equilibrium, X = ∆n−1
κ

Throughout this section, we will assume a status quo s ∈ ∆n−1
κ such that si+1 ≥ si, i = 1, ..., n− 1.

This is without loss of generality. Our goal is to derive an equilibrium when the space of possible

agreements is restricted to X = ∆n−1
κ . This equilibrium is obtained via a ‘conjecture and verify’

approach. The conjecture is that players with zero status quo allocation accept proposals in ∆n−1
κ+1

that allocate them zero.6 If this is the case, then any proposer i is able to obtain the approval of

κ other players in order to extract the whole dollar when the status quo s ∈ ∆n−1
κ+1 , or when the

6Indeed, we will show that players with zero status quo allocation may even strictly prefer such proposals in
equilibrium.
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status quo s ∈ ∆κ and si > 0. Observe that, with these proposal strategies, players’ continuation

value for any status quo s ∈ ∆n−1
κ+1 is given by

vi (s) = pi, i ∈ N , s ∈ ∆n−1
κ+1. (6)

With proposals specified as above, it remains to determine proposals when the status quo

s ∈ ∆κ and the proposer’s allocation is zero (i.e., proposer is i ∈ {1, ..., κ}). In these cases, the

proposer must allocate a positive amount to one among players j ∈ {κ + 1, ..., n} with sj > 0.

Of course, the proposer wishes to coalesce with the least expensive player which, intuitively, is

the player with the lowest positive status quo allocation, i.e., player j = κ + 1. We shall now

demonstrate that, depending on the exact value of the status quo, s ∈ ∆κ, it is not an equilibrium

strategy for the proposer i ∈ {1, ..., κ} to allocate a positive amount to j = κ + 1 with probability

one. To see this is true, suppose that player κ + 1 is allocated an amount z whenever player

i ∈ {1, ..., κ} is the proposer, with i retaining the rest of the dollar. The corresponding allocation

z is an element of ∆n−2, so that by equation (6) player κ + 1’s expected utility from the proposal

is Uκ+1(z) = (1 − δ)u(z) + δpκ+1. On the other hand, the expected utility from maintaining the

status quo s ∈ ∆κ is (given assumed proposal strategies)

Uκ+1(s) = (1− δ)u(sκ+1) + δ((1− δ)(
κ∑

i=1

piu(z) + pκ+1u(1) +
n∑

i=κ+2

piu(0)) + δpκ+1)

= (1− δ)u(sκ+1) + δ(
κ∑

i=1

pi(1− δ)u(z) + pκ+1).

Thus, the optimal allocation z can be obtained by solving Uκ+1(z) = Uκ+1(s) to get

u(z) =
u(sκ+1)

1− δ
∑κ

i=1 pi
.

But, with these proposal strategies, players h = κ + 2, ..., n, have expected payoff

Uh(s) = (1− δ) u(sh) + δph. As a consequence, proposer i ∈ {1, ..., κ} can allocate an amount sh

to player h = κ + 2, ..., n, in order to obtain h’s vote, and retain the rest of the dollar. Thus, for

some status quo s ∈ ∆κ such that

u(sκ+1)
1− δ

∑κ
i=1 pi

> u(sκ+2), (7)
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the assumed proposal strategies are not part of an equilibrium. Player κ+1 becomes too expensive

because she expects a positive allocation with probability
∑κ

i=1 pi while players h = κ + 2, ..., n

expect zero from i ∈ {1, ..., κ}, instead.

To reconcile these incentives with the underlying equilibrium conditions, we consider mixed

proposal strategies by proposers i ∈ {1, ..., κ} for status quo s ∈ ∆κ. Specifically, players i ∈

{1, ..., κ}mix by allocating an amount we denote by zb(s) to one among b players j ∈ {κ+1, ..., κ+b}.

By a similar method to that used above, we show this amount zb(s) must be such that

u(zb(s)) =

∑κ+b
j=κ+1 u(sj)

b− δ
∑κ

i=1 pi
. (8)

Furthermore, the integer b ∈ {1, ..., κ + 1} is uniquely7 determined by two equilibrium conditions:

u(zb(s)) < u(sκ+b+1), if b = 1, ..., κ, and (9)

u(zb(s)) ≥ u(sj), j = κ + 1, ..., κ + b. (10)

Condition (9) is a generalization of condition (7) and requires that the utility received by each of

the b players κ + 1, ..., κ + b is smaller than that demanded by player κ + b + 1. Thus, (9) ensures

proposers do not have an incentive to coalesce with any of players κ+b+1, ..., n, instead of choosing

one among players κ + 1, ..., κ + b. Condition (10) implies that players κ + 1, ..., κ + b receive (and

demand) a larger amount than their status quo allocation sj , j ∈ {κ + 1, ..., κ + b}, in order to

approve a proposal. On the one hand, these players’ utility stream in the event they become the

proposer in future periods is identical under the two alternatives, that is, these players can extract

the whole dollar in the future whether they accept the equilibrium proposal or retain the status

quo. On the other hand, upon accepting an equilibrium proposal, players j ∈ {κ + 1, ..., κ + b}

receive zero by all proposers h 6= j in future periods, whereas, by maintaining the status quo, these

players expect to receive a positive amount as coalition partners with positive probability. Thus,

the proposed allocation must be larger than the status quo allocation in order for these players to

vote against the status quo.

Observe that we have so far proceeded to characterize proposal strategies under the intuitive

assumption that players wish to maximize their own allocation when proposing. Although this is
7As we establish in Lemma 2 in the Appendix, for every status quo s ∈ ∆κ, conditions (9) and (10) jointly

determine a unique number of players, b, that are potential recipients of positive allocations in equilibrium.
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indeed the case when stage payoffs are linear in individual allocations, it turns out not to be true,

in general, when stage utilities exhibit diminishing returns, i.e., when u′′ < 0. In particular, the

equilibrium we have characterized with X = ∆n−1
κ requires certain restrictions on the concavity of

players’ stage preferences. Thus we defer a detailed discussion of the effect of strict concavity until

section 5, and state the equilibrium under the restriction that stage payoffs are linear in individual

allocations:

Proposition 1 Assume X = ∆n−1
κ and u(x) = x. Consider allocations s ∈ ∆n−1

κ such that

si+1 ≥ si, i = 1, ..., n− 1. There exists an equilibrium such that:

1. The proposer i extracts the whole dollar for all status quo s ∈ ∆n−1
κ+1, i ∈ N , or for all status

quo s ∈ ∆κ if i = κ + 1, ..., n,

2. For all status quo s ∈ ∆κ, and all i ∈ {1, ..., κ}, i proposes zij ∈ ∆n−2, with probability

µj
i =

u(zb(s))− u(sj)
δu(zb(s))

∑κ
i=1 pi

, j = κ + 1, ..., κ + b. Proposal zij is such that zij
j = zb(s) and

zij
h = 0, h 6= i, j, and b satisfies (9) and (10).

3. The equilibrium expected utility, Ui(s), s ∈ ∆n−1
κ , is continuous and given by:

Ui(s) =


(1− δ)u(si) + δpi if i = κ + b + 1, ..., n,

(1− δ)u(zb(s)) + δpi if i = κ + 1, ..., κ + b,

δ(pi(1− δ)u(1− zb(s)) + δpi) if i = 1, ..., κ.

(11)

Proof. See the appendix.

The proof of Proposition 1 is straightforward except, perhaps, in ascertaining the optimality

of players’ proposals, as the awkward shape of the objective function of the proposer implied by

(11) makes it hard to verify equilibrium condition (3). Nevertheless, when stage payoffs are linear

(u(x) = x) we can show (Lemma 3 in the Appendix) that the preferences represented by (11) have

similar properties with conventional preferences over a divide-the-dollar space, which ensures that

the proposals in Proposition 1 are optimal. We put these results to use in the following section,

where we focus the analysis on the linear case, u(x) = x, and we use Proposition 1 in order to

establish the existence of an equilibrium for the game with unrestricted agreement space X = ∆.
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4 Equilibrium, X = ∆

Throughout this section, assume linear payoffs, i.e., u(x) = x. Suppose the game is played in the

manner we have characterized in Proposition 1 for all status quo s ∈ ∆n−1
κ . Since these strategies

render ∆n−1
κ ⊂ ∆ an absorbing set, in order to establish an equilibrium for the entire game we

must extend the proposal strategies of Proposition 1 to status quo s ∈ ∆κ−1
0 and ensure that the

resultant strategies defined over all s ∈ ∆ are mutual best responses. It turns out that this is

possible by, at the same time, imposing considerable structure on these strategies. We develop

these arguments in detail in what follows.

First, we require that for each status quo s ∈ ∆κ−1
0 , the support of player i’s randomization

over proposals is contained in a set ∆(i) ⊂ ∆n−1
κ . Denote this randomization by π̂i ∈ P[∆(i)]. Set

∆(i) = ∪C⊂N\{i}:|C|=κ{x ∈ ∆ : xi = 0, i ∈ C}, which is compact as the union of compact sets. In

words, ∆(i) contains allocations such that a bare majority of players including player i receive a

strictly positive amount, or allocations such that the set of players that receive a positive amount is

a minority. We can afford this restriction8 on i’s proposals since (by (11)) if player i can implement

a proposal in ∆(i), then no allocation in ∆n−1
κ \ ∆(i) can improve on i’s utility. Assume that π̂i

is such that all proposals in its support are approved and implemented. Then, if we denote the

vector of such randomizations by all players as π̂ ∈ ×i∈NP[∆(i)], players’ expected utility when

the status quo is s ∈ ∆κ−1
0 can be computed as:

Ûi(π̂, s) = (1− δ)si + δ
n∑

h=1

ph

∫
Ui(z)π̂h[dz], i ∈ N, (12)

where Ui(z) is given in equation (11) of Proposition 1. We emphasize that (12) is derived under

the assumption that players play according to the strategies in Proposition 1 for s ∈ ∆n−1
κ .

Using this expected utility, Ûi(π̂, s), we obtain the proposals in ∆n−1
κ that are accepted by

player i ∈ N when the status quo is s ∈ ∆κ−1
0 and players use randomizations π̂ ∈ ×h∈NP[∆(h)]

as:

Âi(π̂, s) = {x ∈ ∆n−1
κ | Ui(x) ≥ Ûi(π̂, s)}.

Define for each player i ∈ N , status quo s ∈ ∆κ−1
0 , and proposal lotteries π̂ ∈ ×h∈NP[∆(h)], the

8Indeed, we need it in order to obtain Lemma 4 in the Appendix, since non-emptiness of cWi(bπ, s) does not generally
obtain if we allow proposers to (provisionally) randomize among all alternatives in ∆n−1

κ .
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set

Ŵi(π̂, s) = {y ∈ ∆(i) |
∑
h 6=i

I bAh(bπ,s)
(y) ≥ κ}. (13)

Given our construction, Ŵi(π̂, s) contains those among proposals available to player i that are

approved by at least κ other players when the status quo is s ∈ ∆κ−1
0 , players use lotteries over

proposals given by π̂, and the game is played according to Proposition 1 for status quo s ∈ ∆n−1
κ . In

Lemma 4 in the Appendix, we show that Ŵi is a non-empty, upper-hemicontinuous correspondence

of π̂, and that player i can always find a proposal in Ŵi(π̂, s) such that i’s allocation is strictly

positive.

For each player i, we now define the correspondence of best response proposals

Mi(π̂, s) = arg max{Ui(x) | x ∈ Ŵi(π̂, s)}. (14)

Suppose that for any initial or provisional randomizations π̂, we pick new randomizations π̂′ by

restricting players to choose optimal proposals (i.e., those in Mi(π̂, s)). Thus, we define the corre-

spondence Bi(π̂, s) = P[Mi(π̂, s)], and require π̂′
i ∈ Bi(π̂, s). A significant step in proving existence

of equilibrium is to establish the following Lemma:

Lemma 1 Assume u(x) = x and consider any allocation s ∈ ∆κ−1
0 . The correspondence B :

×i∈NP[∆(i)] ⇒ ×i∈NP[∆(i)] defined by B(π̂, s) = ×n
h=1Bh(π̂, s) has a fixed point π̂∗ ∈ B(π̂∗, s).

Proof. See the Appendix.

Lemma 1 states that for any status quo s ∈ ∆κ−1
0 we can restrict players to propose in

∆n−1
κ in a consistent manner. In particular, players’ expectation about lotteries over proposals

are correct. Given these expectations, the proposals in the support of these lotteries are both

acceptable by κ players other than the proposer and maximize the proposer’s expected utility.

Define the correspondence B∗ : ∆κ−1
0 ⇒ ×i∈NP[∆(i)] that maps status quo s ∈ ∆κ−1

0 to the fixed

points π̂∗ ∈ ×i∈NP[∆(i)] of B(π̂, s). Combining a selector from B∗ with the proposal strategies of

Proposition 1, we obtain proposal strategies π∗
i : ∆ → P[∆], for each player i ∈ N . In Proposition

2 we show that these proposal strategies form part of an equilibrium.

Proposition 2 Suppose X = ∆, and u(x) = x. Combine any selector from B∗ with the proposal

strategies from Proposition 1. The resultant proposal strategies π∗
i : ∆ → P [∆], i ∈ N , form part
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of an equilibrium. Thus, at least one equilibrium exists.

Proof. See the Appendix.

We have established a very counter-intuitive equilibrium such that proposers are able to even-

tually extract the whole dollar in the long-run. In order to understand the forces behind this

counter-intuitive result, it is useful to decompose players’ incentives generated by a given alloca-

tion into two effects. The first effect arises from players’ utility stream as coalition partners to other

proposers: a small allocation reduces a player’s immediate utility, as well as the demands of that

player as a voter in future periods. The second effect stems from players’ expected utility stream

from their role as proposers. In this regard, holding a player’s own allocation fixed, there is an

incentive to favor allocations that are least equitable: the less equitable the status quo, the easier it

is for the proposer to extract more of the dollar (e.g., Romer and Rosenthal, 1978). In equilibrium,

the second effect dominates. Because of majority rule, some players in the minority are excluded

from equilibrium allocations. Once a player receives an allocation equal to zero, there is no future

loss or gain to be had for this player in her capacity as a coalition partner. Thus, the only active

incentive for that player is that of a proposer, and this incentive sustains the inequitable allocations.

Proposition 2 guarantees the existence of an equilibrium, but equilibria with the stated properties

need not be unique, although all such equilibria are essentially identical in that they involve the

same expected payoffs for allocations in the absorbing set ∆n−1
κ . Note that Proposition 2 does not

rule out the existence of other equilibria that are not payoff equivalent.

5 Equilibrium Properties & Discussion

In this section we discuss properties of the equilibrium established in Proposition 2 and derive

certain implications and additional results. We start with a discussion of equilibrium dynamics.

5.1 Equilibrium Dynamics

In combination with Proposition 1, Proposition 2 provides a sharp description of the equilibrium.

The Markov process over policy outcomes induced by this equilibrium is depicted graphically in

Figure 1. Note that if a decision x ∈ ∆κ prevails in period t = 1, then there is probability

p̃ =
∑n

i=1 I{0}(xi)pi that a decision in ∆n−2 is reached in period t = 2. Thus, within a maximum

15



Figure 1: From any initial status quo allocation, equilibrium decisions are absorbed in ∆n−1 in
at most three periods. p̃ is the sum of recognition probabilities of players with zero status quo
allocation when the status quo s ∈ ∆κ.

of three periods all proposers extract the entire dollar, i.e., all equilibrium allocations are drawn

from ∆n−1. Note the difference with the corresponding distribution in the version of this game

with n = 3 players analyzed by Kalandrakis (2004). With three players, it is possible that decisions

are drawn outside the absorbing set ∆n−1 with positive probability for any finite period t. This is

because for certain status quo such that a single player, say i, receives zero in period t, i cannot

extract the whole dollar. Hence, if i is recognized in period t, the status quo in period t + 1 must

also involve a single player, say j, receiving zero. The same is possible in t + 2, if j is recognized

in period t + 1, etc. On the contrary, when n ≥ 5, there always exists a bare minority of κ players

other than the proposer that have zero status quo allocation in period t = 3.

Figure 1 allows for the possibility that the equilibrium Markov process can be absorbed in

∆n−1 even from status quo s ∈ ∆κ−1
0 . In fact, this is possible even if all players receive a positive

status quo allocation. We illustrate this in the following example:

Example 1 Assume u(x) = x, κ = 2 (n = 5), pi = 1
5 , i ∈ N , and initial status quo s =

(ε, ε, 1
6 , 5

12 − ε, 5
12 − ε) ∈ ∆0. For small ε > 0, equilibrium proposals are identical to those that

prevail for status quo s′ = (0, 0, 1
6 , 5

12 , 5
12) ∈ ∆2 in Proposition 1. Specifically, players j = 3, 4, 5

extract the whole dollar, while players i = 1, 2 optimize by allocating z3 =
1
6

1−δ
2
5

= 5
6(5−2δ) to player
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3 and retaining the rest of the dollar. Indeed, player i’s, i = 1, 2, expected utility from the status

quo with the above proposal strategies is given by

Ui(s) = (1− δ)ε + δ( (1−δ)
5 (1− 5

6(5−2δ)) + δpi) = (1− δ)ε− δ(1−δ)
6(5−2δ) + δpi,

so that Ui(s) < δpi for sufficiently small ε.

In example 1 all successful proposals have at most two players receiving a positive fraction of the

dollar, even though all status quo allocations are positive, i.e., si > 0 for all i ∈ N . Furthermore,

players 1 and 2 strictly prefer a proposal that allocates the whole dollar to j = 3, 4, 5 over the

status quo s. This is because replacing the status quo s ∈ ∆0 produces the externality of reducing

the future coalition building costs for players 1 and 2.

5.2 Proposer Power & McKelvey’s Dictatorial Agenda Setter

Proposition 2 holds for all possible values of recognition probabilities, pi, i ∈ N . Thus, with linear

payoffs u(x) = x, players’ long-run equilibrium expected payoff can be any fraction of the available

‘pie’, depending on recognition probabilities pi, i ∈ N . If we take the perspective that a player’s

expected payoff represents her power in this setting, then Proposition 2 yields a partial extension

of the result of Kalandrakis (2006) on the relation between recognition probabilities and political

power: for any level of power x ∈ ∆ and any discount factor, there exists an assignment of proposal

probabilities, so that players’ equilibrium level of power in the long-run coincides with x.9

The case when pi = 1 for some player i is theoretically significant as it yields an equilibrium

derivation of dictatorial agenda setting under the institution assumed by McKelvey (1976), (1979).

McKelvey’s dictator uses a sequence of binary votes between the status quo and appropriate pro-

posals. Each proposal is implemented and becomes the status quo in the next round of proposal

making until the proposer eventually implements her ideal point. In his analysis, voters approve

these proposals to their eventual detriment, because they are assumed to be myopic (δ = 0). In the

present setup, this type of dictatorial agenda setting is obtained as part of a Nash equilibrium, in

fact a Markov Perfect equilibrium, under the assumption that voters are farsighted, and for every

value of the discount factor δ < 1. Remarkably, it only takes two periods for player i to extract the
9This is a partial extension because Kalandrakis (2006) considers all possible voting rules and all assymmetric

discount factors. Furthermore, his analysis is obtained under a restriction to stationary equilibria in pure strategies.
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whole dollar, while in general it may take three periods for absorption in ∆n−1 in the equilibrium

of Proposition 2. In particular, we obtain the following result:

Proposition 3 (Smooth Dictator) Assume X = ∆, pi = 1, u (x) = x and any initial status

quo s ∈ X. There exists an equilibrium such that i extracts the whole dollar in every period t ≥ 2.

Proof. Consider any equilibrium among those shown to exist in Proposition 2. By construction,

the proposer i with pi = 1 implements some x ∈ ∆(i) in period t = 1. Now in period t = 2, we have

st = x, and at least κ players other than i with zero status quo allocation. Thus, according to the

proposal strategies in Proposition 1, the proposer i can extract the whole dollar with probability

one in period t = 2.

In order to illustrate how the agenda setting established in Proposition 3 can be achieved,

consider the following five-player example.

Example 2 Assume u(x) = x, κ = 2, p1 = 1, ph = 0, h = 2, ..., 5, and an initial status quo

s = (0, 1
4 , 1

4 , 1
4 , 1

4). Player 1 needs two votes in addition to her own in order to have a proposal

approved. Consider a proposal strategy such that player 1 allocates an amount zi = zj = z = 1
2(2−δ)

to two randomly chosen players i, j ∈ {2, ..., 5} and retains z1 = 1−δ
2−δ . From (11) and the fact that

ph = 0, h ∈ {2, ..., 5} we calculate expected payoffs from such proposals z ∈ ∆2 as Uh(z) = (1−δ)zh,

h ∈ {2, ..., 5}. On the other hand, the expected payoff of players h ∈ {2, ..., 5} from the status quo,

s, is given by Uh(s) = (1− δ)sh + δvh(s). With the above proposal strategy for player 1, and since

each player h ∈ {2, ..., 5} has probability 1
2 of receiving an allocation z, we get vh(s) = 1

2z(1− δ), so

Uh(s) = (1−δ)
2(2−δ) , h ∈ {2, ..., 5}. Thus, in period t = 1 the specified proposals z ∈∆2 are optimal and

receive majority approval. Henceforth, player 1 can extract the whole dollar in all periods t = 2, ....

Note that the proposer in example 2 receives 1−δ
2−δ in the first period, an amount that tends to zero

when players are patient (δ → 1). Since players 2 to 5 are recognized with probability zero in future

periods, they require a higher compensation to overturn the status quo. On the other hand, player

1 is content with a low allocation in period 1 since that allocation will allow player 1 to extract

the dollar in all future periods. In fact, player 1 strictly prefers any allocation z that excludes two

other players over the status quo s (even if z1 = 0).
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5.3 Composition of Equilibrium Coalitions

This discussion points to a more general pattern concerning the effect of probabilities of recognition.

Players with high probability of being recognized are more willing to accept a ‘bad’ proposal in the

current period, since it allows them to extract more of the dollar in the following period, ceteris

paribus. In fact, it is possible that such players are included in the winning coalition with higher

probability for certain status quo, as we show in example 3. Before we state this example we define

a proxy of the ‘cost’ or demand of a player:

Definition 2 Consider an equilibrium from Proposition 2 with equilibrium expected payoffs U∗
h(s),

h ∈ N . The demand of player h ∈ N is defined as dh (s) = (1− δ)−1 max {0, U∗
h (s)− δph)}.

In effect, the demand of player h is the allocation necessary for h to accept a proposal in ∆n−1
κ+1.

Now consider the following:

Example 3 Assume u (x) = x, κ = 3, δ = 9
10 , pl = 4

15 , l = 1, 2, p3 = 1
5 , pl = 1

15 , l = 4, ..., 7, and

an initial status quo s =
(
0, 0, 1

14 , 1
14 , 2

7 , 2
7 , 2

7

)
. Note that s3 = s4 but p3 > p4. Consider proposal

strategies such that players l = 4, ..., 7, allocate z3 = d3 (s), and retain zl = 1 − d3 (s), player 3

allocates z4 = d4 (s) and retains z3 = 1− d4 (s), while players l = 1, 2 allocate zh = dh (s) , h = 3, 4,

and retain zl = 1 − d3 (s) − d4 (s). With these proposal strategies, demands dh (s) , h ∈ N , are

obtained using (11) as solutions to:

d3 (s) = 1
14 + δ

(
1
5 (1− d4 (s)) + 4

5d3 (s)
)
− δ

5 ,

d4 (s) = 1
14 + δ

(
1
15 (1− d3 (s)) + 11

15d4 (s)
)
− δ

15 ,

dl (s) = 2
7 + δ

(
1
15 (1− d3 (s))

)
− δ

15 , l = 5, ..., 7,

dl (s) = max
{
δ
(

4
15 (1− d3 (s)− d4 (s))

)
− 4δ

15 , 0
}

, l = 1, 2.

It is straightforward to verify that d1 (s) = d1 (s) = 0 < d3 (s) = 200
1477 < d4 (s) = 275

1477 < dl (s) = 410
1477 ,

l = 5, ..., 7. Thus, the above described proposals are optimal and player 3 is included in the winning

coalition with higher probability than player 4 even while p3 = 1
5 > p4 = 1

15 and s3 = s4.

In the model of Baron and Ferejohn (1989), a higher recognition probability implies both a

higher cost of inclusion in the coalition (higher demand), and a smaller probability of inclusion
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in the winning coalition (see Eraslan (2002)). Let µl
h(s) ≤ ph be the probability that player h

makes proposals z such that U∗
l (z) ≥ U∗

l (s), i.e., such that player l 6= h is included in the winning

coalition. Contrary to the effect of probabilities of recognition on a players’ likelihood of inclusion

in the winning coalition in the Baron and Ferejohn model, we have just shown:

Proposition 4 There exist probabilities of recognition satisfying pi > pj for two players i, j ∈ N ,

and an equilibrium (as in Proposition 2) for the associated game, such that for some status quo

s ∈ ∆ with si = sj we have dj (s) > di (s) and
∑

h 6=i,j µj
h(s) <

∑
h 6=i,j µi

h(s).

In fact, when it comes to equilibrium demands we can show a stronger result, i.e., that dj (s) ≥

di (s) for all players i 6= j with pi > pj and all status quo s ∈ ∆ such that si = sj .10 We emphasize

that both in the present study and in the Baron and Ferejohn model players are better off with

higher recognition probabilities. Put otherwise, in our analysis recognition probabilities have (a) a

positive effect on players’ long-run expected payoff (Proposition 1, Proposition 2); and, (b) under

certain conditions, a negative effect on players demand and a positive effect on players’ probability

of being included in the winning coalition. Thus, it is the relation between recognition probabilities

and the composition of equilibrium coalitions (not equilibrium expected payoffs) that is different

between Baron and Ferejohn type of bargaining and the fully dynamic model we analyze in this

study.

5.4 Diminishing Returns

The equilibrium established in section 4 requires linear payoffs, (u (x) = x). Thus, the equilibrium is

Pareto optimal, so that equilibrium allocations, and any plan of division of the dollar for that matter,

are efficient from an economic perspective even though they may imply a politically disturbing

inequality of payoffs. This conclusion is no longer valid if players’ stage utility, u, is strictly concave.

Under this assumption, the equilibrium is obviously inefficient. Since u(pi) > pi, pi ∈ (0, 1), every

player i ∈ N strictly prefers a constant share pi of the dollar after period t = 3 rather than receiving

the whole dollar with probability pi ∈ (0, 1). Thus, strict concavity generates incentives for more

equitable allocations, and one may question whether the equilibrium in Proposition 2 survives in
10The proof is lengthy and tedious because of the complications that arise by the non-standard form of players’

expected utility (11) when players propose allocations z ∈∆κ (see Kalandrakis, 2003). For the same reason, it is not
necessarily true that a player with lower demand is included in the winning coalition with higher probability, exactly
due to the shape of equilibrium expected utility for allocations z ∈∆κ.
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the presence of these incentives. Consistent with this intuition, we will show that the proposal

strategies prescribed in Proposition 1 are not optimal if players’ stage preferences are sufficiently

concave.

We will provide two examples in order to substantiate this claim. In the first of the two

examples, the proposer prefers to deviate from proposals prescribed in Proposition 1 (assuming

players subsequently adhere to the strategies prescribed in that equilibrium) in the following way:

instead of buying the vote of a single player among those with a positive allocation by exclusively

giving a positive amount to that player, the proposer is better off allocating an equal amount to

κ + 1 players including herself.

Example 4 Assume pi = 1
n for all i ∈ N and an initial status quo s = (0, ..., 0, 1

κ+1 , ..., 1
κ+1) ∈ ∆κ.

Note that b = κ+1 satisfies conditions (9) and (10) for s. Thus, according to the proposal strategies

in Proposition 1, player i ∈ {1, ..., κ} allocates zb(s) = u−1(
(κ+1)u(

1
κ+1)

κ+1−δ κ
n

) to one of players κ+1, ..., n,

and retains 1− zb(s). Player i’s utility from this proposal is given by (1− δ)u(1− zb(s)) + δ
n . Now

suppose stage utility function u satisfies

(κ + 1)u( 1
κ+1)

κ + 1− δ κ
n

> u(1
2).

Then we deduce
(κ+1)u(

1
κ+1)

κ+1−δ
κ
n

> u(1
2) ⇔ u(zb(s)) > u(1

2) ⇔ u(zb(s)) > u(1 − zb(s)) , the first step

obtained by substituting from (8). Thus, player i can improve her utility by proposing x ∈ ∆κ with

xi = 1
κ+1 and xh = 1

κ+1 to κ more players. From (11), the expected payoff from this proposal is

Ui(x) =
(1−δ)(κ+1)u( 1

κ+1
)

κ+1−δ κ
n

+ δ
n , if the game is subsequently played according to the proposal strategies

specified in Proposition 1, which is larger than (1− δ)u(1− zb(s)) + δ
n .

Thus, for the proposal strategies in Proposition 1 to form an equilibrium when u′′ < 0 and

recognition probabilities are equal, we must have:

(κ + 1)u( 1
κ+1)

κ + 1− δ κ
n

≤ u(
1
2
). (15)

Figure 2 depicts a situation where condition (15) is violated when κ = 2.

Now consider a different example:
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Figure 2: Stage utility function, u, violates condition (15) when κ = 2, since 3u( 1
3
)

3−δ 2
5

> u(1
2).

Example 5 Assume pi = 1
n , i ∈ N , and an initial status quo s = (0, ..., 0, s, ..., s, 1 − κs) ∈ ∆κ,

where s is such that κu(s)

κ−δ
κ
n

< u(1−κs). Now b = κ satisfies conditions (9) and (10). Thus, according

to the proposal strategies in Proposition 1, player i ∈ {1, ..., κ} allocates zb(s) = u−1( κ
κ−δ

κ
n

u(s)) to

one of players κ + 1, ..., n− 1, and retains 1− zb(s). Now suppose that u is such that

u(κs) <
κu(s)
κ− δ κ

n

.

Then we have u(κs) < κu(s)

κ−δ
κ
n
⇔ κs < zb(s) ⇔ u(1 − κs) > u(1 − zb(s)). Thus, if the game

is subsequently played according to the strategies in Proposition 1, the prescribed proposal is not

optimal since player i ∈ {1, ..., κ} can propose x ∈ ∆κ with xi = 1 − κs and xh = s to κ more

players and get higher utility.

In a manner similar to example 4, in example 5 the proposer can improve her expected utility

by allocating an equal amount to κ other players rather than allocating a positive amount to a single

player. Thus, we obtain another necessary condition for the proposal strategies in Proposition 1 to
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be part of an equilibrium in the presence of diminishing returns, namely:

κu(s)
κ− δ κ

n

≤ u(κs), if s is such that
κu(s)
κ− δ κ

n

< u(1− κs). (16)

Note that both conditions (15) and (16) effectively impose a bound on the steepness of stage utility

u(x) at small fractions of the dollar. When either condition is violated, the immediate gain from

extracting larger shares of the dollar diminishes so much, so that such a gain is not preferred over

the option of receiving a smaller amount in the current period with a prospect of also receiving

a positive fraction in the future as a coalition partner. Note that for fixed utility function, u,

conditions (15) and (16) are easier met when the committee is larger (larger κ). Both conditions

(15) and (16) are always satisfied in the case of risk neutrality, u(x) = x. In fact, we can show that

these conditions are sufficient for the strategies described in Proposition 1 to form an equilibrium,

assuming recognition probabilities are equal.

Proposition 5 Assume X = ∆n−1
κ , pi = 1

n for all i ∈ N , and u′′ < 0. The proposal strategies

in Proposition 1 form part of an equilibrium under these assumptions if and only if u satisfies

conditions (15) and (16).

Proof. See the appendix.

Proposition 5 points to another instance of the discrepancy between models without recurring

policy decisions and the model we analyze. In particular, in a model with the same institutions

as in Baron and Ferejohn (1989), Harrington (1990), shows that higher degrees of risk aversion

increase the power of the proposer. In contrast, we have shown that an equilibrium that is quite

favorable for the proposer collapses when risk aversion is high.

6 Conclusions

We have analyzed a dynamic majority rule bargaining game over a distributive policy space with

an endogenous status quo policy. Although such an equilibrium may fail to exist for games in the

class we analyze, we established existence of a (refined) Markov Perfect Nash equilibrium. The

equilibrium produces a number of novel and in many instances counter-intuitive findings. First, we

have shown that dynamic bargaining over a distributive policy space does not guarantee sufficient
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strategic incentives for players to converge to equitable allocations both within and across periods.

In fact, the long-term dynamics induced in the equilibrium we characterized are identical to the

dynamics that would prevail in a world were players are myopic or non-strategic. Second, in

Proposition 3 we obtained the grim consequences of McKelvey’s (1976), (1979), dictatorial agenda

setting construction despite the fact that voters are farsighted.

In some regards, the results of our analysis leave a more upbeat note than many interpretations

of the conclusions of social choice theory. Instead of encompassing the entire space of alternatives,

the long-run absorbing set of possible divisions in the characterized equilibrium is a finite set. Thus,

instead of chaos, there are at most n possible policy outcomes after period 3. In addition, there is

ex ante positive probability equal to
∑n

i=1 p2
i that the same decision prevails between consecutive

periods, so that we don’t observe perpetual instability of decisions in equilibrium. We emphasize

that these results do not depend on the restriction to Markov equilibria. The equilibrium we

characterize, and many more, exists a fortiori if we consider weaker equilibrium notions such as

subgame perfect or simple Nash equilibrium. Also, these results do not depend on the way we

resolve voter indifference at the critical voting period when alternatives that allocate zero to more

than a majority of players prevail for the first time. As illustrated in example 1, players that vote

yes in these cases and receive zero may strictly prefer the proposal over the status quo, despite the

fact that they receive a smaller allocation.

Under certain restrictions, the inequality of long-run equilibrium allocations persists even in

the presence of diminishing returns on players’ stage preferences, in which case the equilibrium is

inefficient. On the other hand, we also show players’ incentives for sharing the budget do manifest

themselves in the presence of sufficient concavity in stage preferences, since the characterized inef-

ficient equilibrium does not survive when such concavity is marked. Besides the counter-intuitive

nature of the equilibrium, the significance of our findings also stems from the fact that in many

respects they differ from results in other studies that impose similar equilibrium restrictions. For

example, if we consider similar institutions and ideological policy spaces (e.g., Baron (1996), Baron

and Herron (2003)), we obtain long-run policy dynamics concentrated at the center of the policy

space. If, instead, we maintain the distributive space of our analysis but substitute the institutional

arrangements with the Baron and Ferejohn (1989) closed rule, we get a different composition of

winning coalitions in regards to probabilities of recognition (Proposition 4 vs. Eraslan, (2002)) or

the effect of risk aversion (Proposition 5 vs. Harrington (1990)). The first comparison suggests that
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at least some aspects of our theories of legislative politics cannot be independent of the underlying

policy space. The second comparison highlights the significance (at least theoretically) of modeling

choices that trade between analytical tractability and realism by assuming legislative interaction

that ceases after a decision is reached or incorporate dynamic interaction with endogenous status

quo.

APPENDIX

In this appendix we first state and prove two Lemmas (Lemmas 2 and 3), which are used in the

proofs of Proposition 1, Lemma 1, and Proposition 2. We start with Lemma 2:

Lemma 2 Consider any s ∈ ∆n−1
κ , any stage utility function u with u

′′ ≤ 0, and assume without

loss of generality that si+1 ≥ si, i = 1, ..., n− 1.

(i) There exists unique b, 1 ≤ b ≤ κ + 1, that satisfies (9) and (10).

(ii) If b satisfies (9) and (10), then

u(zb(s)) ≤
(κ + 1)u( 1

κ+1)
κ + 1− δ

∑κ
i=1 pi

.

Proof. We start by showing the following equivalence:

[u(zb(s)) < u(sκ+b+1) ⇔ u(zb+1(s)) < u(sκ+b+1)], b = 1, ..., κ. (17)

Indeed, making use of (8) we write u(zb(s)) < u(sκ+b+1) ⇔
∑κ+b

j=κ+1 u(sj) < (b−δ
∑κ

i=1 pi)u(sκ+b+1)

⇔
∑κ+b+1

j=κ+1 u(sj) < (b + 1− δ
∑κ

i=1 pi)u(sκ+b+1) ⇔ u(zb+1(s)) < u(sκ+b+1).

The contra-positive of (17) also gives us

[u(zb(s)) ≥ u(sκ+b+1) ⇔ u(zb+1(s)) ≥ u(sκ+b+1)], b = 1, ..., κ. (18)

Now, to show existence of b satisfying (9) and (10) consider the algorithm:

1. Start with b = 1; if u(z1(s)) < u(sκ+2) then b = 1.

2. If u(zb(s)) ≥ u(sκ+b+1), consider b′ = b + 1. (18) ensures that b′ satisfies (10). If b′ also satisfies

(9) then stop.
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3. Otherwise, if u(zb′(s)) ≥ u(sκ+b′+1) proceed as in 2 until u(zb(s)) < u(sκ+b+1) for some b ≤ κ.

4. If condition (9), u(zb(s)) < u(sκ+b+1) fails for all b ≤ κ, then u(zκ(s)) ≥ u(sn), and b = κ + 1.

Thus b exists.

To show uniqueness, suppose there exist distinct, b, b′ with b < b′ that satisfy (9) and (10) to get

a contradiction. Then, we have u(zb(s)) < u(sκ+b+1) from (9) and certainly u(zb′(s)) ≥ u(sκ+b+λ),

λ = 1, ..., (b′ − b) from (10). From the last (b′ − b) inequalities we deduce

(b′ − b)u(zb′(s)) ≥
(b′−b)∑
λ=1

u(sκ+b+λ) ⇔

(b′ − b)
∑κ+b

h=κ+1 u(sh) +
∑(b′−b)

λ=1 u(sκ+b+λ)
b + (b′ − b)− δ

∑κ
i=1 pi

≥
(b′−b)∑
λ=1

u(sκ+b+λ) ⇔

∑κ+b
h=κ+1 u(sh)

b− δ
∑κ

i=1 pi
≥
∑(b′−b)

λ=1 u(sκ+b+λ)
b′ − b

⇔

u(zb(s)) ≥
∑(b′−b)

λ=1 u(sκ+b+λ)
b′ − b

≥ u(sκ+b+1),

which contradicts condition (9) for b. This concludes the proof of part (i).

To show part (ii), we will first show that u(zb(s)) ≤ u(zκ+1(s)). This is trivial if b = κ + 1, so

consider the case b ≤ κ. Then, by condition (9) and the fact that si+1 ≥ si, i = 1, ..., n− 1 we have

u(zb (s)) < u(sκ+b+1), which implies that

∑κ+b
i=κ+1 u(si)

b− δ
∑κ

h=1 ph
<

∑n
i=κ+b+1 u(si)
κ + 1− b

⇔

(κ + 1− b)
κ+b∑

i=κ+1

u(si) < (b− δ
κ∑

h=1

ph)
n∑

i=κ+b+1

u(si) ⇔

(κ + 1)
κ+b∑

i=κ+1

u(si) < b

n∑
i=κ+1

u(si)− δ

κ∑
h=1

ph

n∑
i=κ+b+1

u(si) ⇔

(κ + 1− δ

κ∑
h=1

ph)
κ+b∑

i=κ+1

u(si) < (b− δ

κ∑
h=1

ph)
n∑

i=κ+1

u(si) ⇔

u(zb(s)) =
∑κ+b

i=κ+1 u(si)
b− δ

∑κ
h=1 ph

<

∑n
i=κ+1 u(si)

κ + 1− δ
∑κ

h=1 ph
= u(zκ+1(s)).
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Thus, we conclude that u(zb(s)) ≤ u(zκ+1(s)) when b = 1, ..., κ + 1 satisfies (9) and (10), as we

wished to show. Now, concavity of u implies that

u(zκ+1(s)) ≤
(κ + 1)u( 1

κ+1)
κ + 1− δ

∑κ
i=1 pi

,

which completes the proof of part (ii) and the Lemma.

We continue by showing Lemma 3 which ensures that, starting with any allocation in ∆n−1
κ ,

the preferences represented by (11) are such so that we can incrementally reduce the allocation of

one player in order to increase the payoff of a bare minority that contains all players receiving a

positive amount in the original allocation:

Lemma 3 Assume u(x) = x and preferences over ∆n−1
κ given by (11). Consider allocation x ∈

∆n−1
κ and let C = {h ∈ N : xh > 0}. For every ε > 0, every coalition K ⊂ N with |K| = κ + 1

and C ⊆ K, and every i ∈ C, there exists y ∈ ∆n−1
κ such that Uj(y) > Uj(x), j ∈ K \ {i}, and

|Ui(y)− Ui(x)| < ε.

Proof. If x ∈ ∆n−1
κ+1, then Uh(x) = (1− δ)xh + δph for all h ∈ N , and the proof is straightfor-

ward: set yi = xi − κη, where κη > 0, and η is as small as is necessary for |Ui(y) − Ui(x)| < ε to

hold, and set yj = xj + η for all j ∈ K \ {i}, and set yh = xh = 0 for all h /∈ K.

Thus, it remains to consider x ∈ ∆κ. Assume without loss of generality that xh+1 ≥ xh,

h = 1, ..., n − 1, so that C = K = {κ + 1, ..., n}, and assume b satisfies (9) and (10) for x. There

are two cases:

Case 1, i > κ + b: Set yi = xi − η(κ + 1 − b) > 0, and η > 0. Set yj =
(
Pκ+b

j=κ+1 xj)+η

b ,

j = κ + 1, ..., κ + b, and yj = xj + η, for j ∈ {κ + b + 1, ..., n} \ {i}. For sufficiently small η,

|Ui(y)− Ui(x)| < ε and we have

Uj(y) =
(1− δ)(

∑κ+b
j=κ+1 xj + η)

b− δ
∑

h/∈K ph
+ δpj >

(1− δ)
∑κ+b

j=κ+1 xj

b− δ
∑

h/∈K ph
+ δpj = Uj(x), j = κ + 1, ..., κ + b,

while Uj(y) = Uj(x) + η, for j ∈ {κ + b + 1, ..., n} \ {i}.

Case 2, i ≤ κ + b: We have zb(x) =
Pκ+b

j=κ+1 xj

b−δ
P

h/∈K ph
. Note that γ = (

∑κ+b
j=κ+1 xj)− (b− 1)zb(x) =

(1−δ
P

h/∈K ph)(
Pκ+b

j=κ+1 xj)

b−δ
P

h/∈K ph
> 0. Thus it is feasible to set yi = γ−κη, with η > 0 and sufficiently small,

yj = zb(x) + η, j ∈ {κ + 1, ..., κ + b} \ {i}, and yj = xj + η , for j ∈ {κ + b + 1, ..., n}. Now we have
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Ui(y) = (1−δ)yi

b−δ
P

h/∈K ph
+ δpi = (1− δ)(zb(x)− κη

1−δ
P

h/∈K ph
) + δpi, versus Ui(x) = (1− δ)zb(x) + δpi,

while Uj(y) = Uj(x) + η, j ∈ K − {i}.

Next, we prove Propositions 1 and 5. Many arguments in the two proofs are identical, so we

economize on space by presenting both proofs at the same time. We explicitly identify cases when

either of the two propositions requires special arguments.

Proof of Propositions 1 and 5. To ensure that the associated proposals are well defined,

note that by part (i) of Lemma 2, b exists and is unique. Also, part (ii) of Lemma 2 ensures

that zb(s) < 1
2 . In particular, in the case of Proposition 1 with u(x) = x we have from part (ii)

of Lemma 2 that zb(s) ≤ 1
κ+1−δ < 1

2 , while in the case of Proposition 5 condition (15) similarly

ensures zκ+1(s) ≤
(κ+1)u( 1

κ+1
)

κ+1−δ κ
n

≤ 1
2 when u′′ < 0 and pi = 1

n for all i ∈ N . Thus it is feasible

to construct proposals zij ∈ ∆n−2 with zij
j = zb(s). Lastly, to show that mixing probabilities lie

between zero and one and sum up to one, it suffices to show that
∑κ+b

j=κ+1 µj
i = 1 and that µj

i ≥ 0

for all j. The latter is equivalent to u(zb(s)) ≥ u(sj), j = κ + 1, ..., κ + b which is true by (10). We

also have
∑κ+b

j=κ+1 µj
i =

bu(zb(s))−
Pκ+b

j=κ+1 u(sj)

δu(zb(s))
Pκ

i=1 pi
= 1, after substitution from (8).

Continuity of Ui(s) follows easily either by direct arguments or by the fact that proposal

probabilities and proposals are continuous functions of s. Next we show that the expected utilities

in (11) are derived from the described proposal strategies and are such that all proposals are

accepted when players play stage-undominated voting strategies. As already argued in stating (6),

we have vi(s) = pi for all s ∈ ∆κ+b, b = 1, ..., κ+1. Further note that for such status quo, b satisfies

(9) and (10), zb(s) = sκ+b = 0 and the expected payoff in (11) reduces to Ui(s) = (1− δ)u(si) + δpi

as required by (4). Now consider s ∈ ∆κ. Since proposals offered for such status quo, zij , belong in

∆n−1
κ+1, we can write players’ continuation value as vi(s) =

∑n
h=1 ph

∑κ+b
j=κ+1 µj

h((1− δ)u(zhj
i ) + δpi).

After substitution for µj
h and a bit of algebra we obtain for each s ∈ ∆n−1

κ :

vi (s) =


pi if i = κ + b + 1, ..., n,

(1− δ)δ−1(u(zb(s))− u(si)) + pi if i = κ + 1, ..., κ + b,

(1− δ)piu(1− zb(s)) + δpi if i = 1, ..., κ.

Direct application of the definition in equation (4) using the above yields equation (11) as desired.

Note that with the expected payoffs in (11) all players i ∈ {1, ..., κ} accept any proposal z ∈ ∆n−1
κ+1

with zi = 0 for every s ∈ ∆n−1
κ , while the same is true for players j ∈ {κ + 1, ..., κ + b} as long as
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zj = zb(s). Thus proposals are approved by majorities.

To complete the proof of the proposition, it remains to show optimality of proposals. We pursue

a proof that covers both cases (Proposition 1 and 5). Note that (1 − δ)u(1) + δpi = max{Ui(x) :

x ∈ ∆n−1
κ }. Thus, since extracting the entire dollar is a global maximum, we only need consider

cases when the proposer does not extract the entire dollar. This occurs for status quo s ∈ ∆κ and

proposer i with si = 0. So assume:

• a status quo s ∈ ∆κ,

• a proposer i with si = 0, and

• an integer b that uniquely satisfies (9) and (10) for s.

Prescribed equilibrium proposals zih∈ ∆n−2, h = κ + 1, ..., κ + b for proposer i are optima among

feasible alternatives in ∆n−1
κ+1, because maximization for the proposer among alternatives in ∆n−1

κ+1

clearly amounts to maximizing her stage allocation. Thus, we need to show that there exists no

y ∈ arg max{Ui(z) : z ∈ W (s)
⋂

∆κ}, with Ui(y) > Ui(zih). So further assume, in order to get a

contradiction, that there exists y ∈ W (s) ∩ ∆κ such that Ui(y) > Ui(zih). From the assumption

that Ui (y) > Ui

(
zih
)

and the fact that zb(s) ≤ 1
2 by part (ii) of Lemma 2, we have

yi > zih
i ≥ 1

2 ≥ zih
h = zb(s). (19)

Without loss of generality relabel players so that yl+1 ≥ yl, l = 1, ..., n−1, and let integer b′ uniquely

satisfy (9) and (10) for y. After relabeling, we have i = n from (19) and the fact that zb′(y) ≤ 1
2 ,

the latter again from part (ii) of Lemma 2 and (15). We must also have Uj (y) ≥ Uj (s) > δpj for

at least one player j with sj > 0 else y /∈ W (s). Since sj > 0, (11) and (9) imply that

(1− δ)−1(Uj(y)− δpj) ≥ u(zb(s)) > 0, (20)

so yj > 0 and, again after relabeling players, j ∈ {κ + 1, ..., n− 1}. We now have three cases all of

which lead to a contradiction emanating from the assumption that Ui(y) > Ui(zih).

Case 1 (j > κ + b′): Then from (11) we have Uj (y) = (1− δ)u (yj) + δpj ≥ Uj (s). Thus, from

(19) and (20) we deduce yj ≥ zb(s) = zih
h . But then from (19) we have 1− zih

h = zih
i < yi < 1− yj ,

which yields zih
h > yj , a contradiction.
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Case 2 (j ≤ κ + b′, b′ = κ): Then from (11) and (8) we have Uj (y) =
(1−δ)

Pn−1
l=κ+1 u(yl)

κ−δ
Pκ

l=1 pl
+ δpj .

From (20) we have
Pn−1

l=κ+1 u(yl)

κ−δ
Pκ

l=1 pl
≥ u (zb (s)). This last inequality implies that if u is linear then∑n−1

l=κ+1 yl > zb(s), while if u is strictly concave with pl = 1
n for all l ∈ N , we have from concavity

and (16) that u (zb (s)) ≤
Pn−1

l=κ+1 u(yl)

κ−δ κ
n

< κu(y)

κ−δ
κ
n
≤ u (κy), where y =

Pn−1
l=κ+1 yl

κ . From (19) we

have yi > zih
i ≥ zih

h = 1 − zih
i > 1 − yi =

∑n−1
l=κ+1 yl. But then we have u(zb(s)) = u(zih

h ) >

u(
∑n−1

h=κ+1 yh) > u(zb(s)), a contradiction.

Case 3 (j ≤ κ + b′, b′ < κ): Then Uj (y) =
(1−δ)

Pκ+b′
l=κ+1 u(yl)

b′−δ
Pκ

l=1 pl
+ δpj . From (9), (19), and (20) we

have u (yκ+b′+1) >
Pκ+b′

l=κ+1 u(yl)

b′−δ
Pκ

l=1 pl
≥ u (zb (s)) = u(zih

h ), which implies zih
i = 1 − zih

h > 1 − yκ+b′+1 >

yi ⇒ Ui(y) < Ui(zih), which is the final contradiction.

We continue with Lemma 4 that is used in the proof of Lemma 1. The two Lemmas in

combination yield the proof of Proposition 2.

Lemma 4 Assume u(x) = x. Consider any player i ∈ N and any allocation s ∈ ∆κ−1
0 . Ŵi(π̂, s)

defined in (13) is non-empty and upper-hemicontinuous as a correspondence of π̂. Furthermore,

for all π̂ ∈ ×i∈NP[∆(i)], there exists x ∈ Ŵi(π̂, s) such that xi > 0.

Proof. The proof consists of four steps. First, we establish a lower bound on Ûi (π̂, s). Then, we

use this bound to show that the sum of the demands of an appropriate set of players is less than

unity. In steps 3 and 4 we use these results to prove the Lemma.

Claim 1: For all i ∈ N ,

Ûi (π̂, s) >
−δ2(1− δ)pi (1− pi)

κ
+ δ2pi. (21)

From (11) we have

min {Ui (x) : x ∈∆ (i)} = δpi. (22)

Also from (11) we determine the minimum possible payoff that can be received by player i when

other players propose, i.e.,

min
{
Ui (x) : x ∈∆n−1

κ

}
= δ(pi(1− δ)(1− zb(x)) + δpi) = −δpi(1− δ)zb(x) + δpi,
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for some x ∈∆κ \∆ (i) that results in zb (x) (b satisfying (9) and (10)) that is as large as possible.

By part (ii) of Lemma 2 we must have zb (x) <
1
κ

so that

min
{
Ui (x) : x ∈∆n−1

κ

}
> −δpi(1− δ)

1
κ

+ δpi. (23)

We can now obtain the desired bound on Ûi (π̂, s) by combining (22) and (23). In particular, since

i is the proposer with probability pi we have from (12):

Ûi (π̂, s) > (1− δ)si + δ

(
pi (δpi) + (1− pi)

(
−δpi(1− δ)

1
κ

+ δpi

))
.

But the right hand side is larger or equal to δ

(
−δpi(1− δ) (1− pi)

κ
+ δpi

)
. Hence we have

Ûi (π̂, s) >
−δ2(1− δ)pi (1− pi)

κ
+ δ2pi, all i ∈ N ,

as we wished to show.

For the next step we define d̂j = (1− δ)−1 max
{

0, Ûi (π̂, s)− δpi

}
. We show:

Claim 2: Assume without loss of generality that d̂h+1 ≥ d̂h, h = 1, ..., n− 1. Then

κ+1∑
h=2

d̂h < 1.

Let l = min
{

i ∈ N : d̂i > 0
}

. Obviously, if l > κ + 1 then
∑κ+1

h=2 d̂h = 0, so we only need

consider cases with l ≤ κ + 1. Note that
∑n

h=l d̂h = (1− δ)−1∑n
h=l

(
Ûh (π̂, s)− δpi

)
and that

(1− δ)−1∑n
h=1

(
Ûh (π̂, s)− δpi

)
= 1. Thus,

∑κ+1
h=2 d̂h < 1 follows trivially if l = 1. It remains to

consider the case κ + 1 ≥ l > 1, whence

n∑
h=l

d̂h = 1− (1− δ)−1
l−1∑
h=1

(
Ûh (π̂, s)− δph

)
.

We now invoke (21) to deduce that

n∑
h=l

d̂h < 1 +
δ2

κ

l−1∑
h=1

ph (1− ph) + δ

l−1∑
h=1

ph.
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We also have
Pκ+1

h=l
bdh

κ+2−l ≤
Pn

h=l
bdh

2κ+2−l , because d̂h+1 ≥ d̂h. Combining the two inequalities we obtain:

κ+1∑
h=l

d̂h <
κ + 2− l

2κ + 2− l

(
1 +

δ2

κ

l−1∑
h=1

ph (1− ph) + δ

l−1∑
h=1

ph

)
, l = 2, ..., κ + 1.

Further note that
∑l−1

h=1 ph (1− ph) ≤ (l − 1)(
1

l − 1
)(1 − 1

l − 1
) =

l − 2
l − 1

. Thus, since δ < 1, the

following inequality holds:

κ+1∑
h=l

d̂h <
κ + 2− l

2κ + 2− l

(
2 +

1
κ

(
l − 2
l − 1

))
, l = 2, ..., κ + 1.

The right hand side of this inequality is equal to 1 when l = 2, and decreases with l. Since∑κ+1
h=l d̂h =

∑κ+1
h=2 d̂h (because d̂h = 0, h < l, and l > 1) we have shown that

∑κ+1
h=2 d̂h < 1, as

desired.

Claim 3: Ŵi (π̂, s) is non-empty and contains x ∈∆ (i) such that xi > 0. By Claim 2, (still

assuming d̂h+1 ≥ d̂h) we can construct proposal x ∈∆ (i) with xh = d̂h, h ∈ {1, ..., κ + 1} \ {i} if

i ∈ {1, ..., κ}, or xh = d̂h, h ∈ {1, ..., κ} if i ∈ {κ + 1, ..., n}. Since
∑κ+1

h=2 d̂h < 1, this is possible,

and i can retain xi > 0. By (11) and the definition of d̂h we easily infer that Uh(x) ≥ Ûh (π̂, s) so

that x ∈ Ŵi (π̂, s).

We complete the proof with a last step.

Claim 4: Ŵi (π̂, s) is upper-hemicontinuous as a correspondence of π̂. To establish upper-

hemicontinuity, notice that Ui (x), Ûi (π̂, s) are continuous in x, π̂ respectively, thus Âi (π̂, s) has

closed graph for all i ∈ N . By extension, Ŵi (π̂, s) has closed graph, since finite unions and in-

tersections of closed sets are closed. Thus, since it also has compact Hausdorff range, Ŵi (π̂, s)

is upper-hemicontinuous, by the Closed Graph Theorem (Aliprantis and Border (1999), 16.12, p.

529).

Armed with Lemma 4, we prove Lemma 1.

Proof of Lemma 1. The proof is by application of Glicksberg’s (1952) fixed point theorem.

To ensure the conditions of the theorem are met, it suffices to show that Mi(π̂, s) is a non-empty,

upper-hemicontinous correspondence with respect to π̂. If this is true, then, since Bi(π̂, s) =

P[Mi(π̂, s)], Bi and B are non-empty, upper-hemicontinuous, and convex valued by theorem 16.14

of Aliprantis and Border (1999), page 530, so that a fixed point exists.
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Since Ŵi(π̂, s) is non-empty and compact, Mi(π̂, s) is non-empty. Thus, it remains to show

that Mi(π̂, s) is upper-hemicontinuous. Because Ŵi(π̂, s) need not be lower-hemicontinuous,11 we

prove upper-hemicontinuity directly instead of following the typical line of proof that invokes the

Theorem of the Maximum. In particular, since Mi has compact Hausdorff range it suffices for our

purposes to show that Mi(π̂, s) has closed graph (by the Closed Graph Theorem, Aliprantis and

Border (1999), 16.12, p. 529). Suppose Mi(π̂, s) does not have closed graph to get a contradiction.

Then there exists a sequence

(π̂k,xk) ∈ GrMi = {(π̂,x) ∈ ×i∈NP[∆(i)]×∆n−1
κ : x ∈ Mi(π̂, s)},

such that (π̂k,xk) → (π̂,x) /∈ GrMi. By Lemma 4, x ∈ Ŵi(π̂, s), i.e., x is feasible. Thus, since

(π̂,x) /∈ GrMi, there exists y ∈ arg max{Ui(z) | z ∈ Ŵi(π̂, s)} such that Ui(y) > Ui(x). Note that

by Lemma 4 we must have yi > 0. Otherwise, Lemma 4 guarantees the existence of z ∈ Ŵi (π̂, s)

such that zi > 0, hence Ui(z) > δpi ≥ Ui(y) if yi = 0, a contradiction. Thus, yi > 0. Then by the

continuity of Ûh, Uh, all h ∈ N , and by Lemma 3, there is appropriate y′ ∈ Ŵi(π̂k, s) such that

Ûi(y′) > Ûi(xk), for large enough k. But this contradicts (π̂k,xk) ∈ GrMi. Thus, we have arrived

at a contradiction that emanates from the working hypothesis that GrMi is not closed. Hence, Mi

is upper-hemicontinuous and the proof of the Lemma is complete.

We are now ready to prove Proposition 2.

Proof of Proposition 2. Consider a selector π̂∗ : ∆κ−1
0 → ×i∈NP[∆(i)] from B∗. The

restriction of π̂∗ to π̂∗
i : ∆κ−1

0 → P[∆(i)], determines randomizations over proposals for player i

and status quo s ∈ ∆κ−1
0 . Thus, by combining the above selector with the proposal strategies from

Proposition 1, we obtain proposal strategies π∗
i : ∆ → P[∆] for each i ∈ N . From these proposal

strategies we calculate expected payoffs U∗
i (x), x ∈ ∆, in accordance with equations (4) and (5)

for each i ∈ N . In particular U∗
i (x) coincides with Ui(x) defined in (11) for all x ∈ ∆n−1

κ , so

that we can trivially compute v∗i (x) and U∗
i (x) for x ∈ ∆κ−1

0 . Using these expected payoffs U∗
i we

obtain voting strategies A∗
i , i ∈ N , that satisfy condition (2). To show that these strategies form

11Failure of lower-hemicontinuity occurs at certain suboptimal but feasible proposals that allocate zero to the
proposer. Because of the last part of Lemma 4, this does not influence the continuity properties of Mi.
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an equilibrium it suffices to show the following:

For all x ∈ ∆κ−1
0 , and all coalitions C ⊂ N with |C| = κ + 1,

there exists y ∈ ∆n−1
κ such that U∗

j (y) ≥ U∗
j (x) for all j ∈ C.

(*)

Indeed, by construction, proposal strategies π∗
i : ∆ → P[∆] are such that any proposer i ∈ N ,

optimizes over acceptable proposals in ∆n−1
κ . In addition (*) ensures that for any proposal x ∈ ∆κ−1

0

available to proposer i, there exists an acceptable proposal y ∈ ∆n−1
κ that is at least as good. Thus,

π∗
i : ∆ → P[∆] satisfy equilibrium condition (3), and we have an equilibrium as desired.

Thus, to prove the Proposition we need show (*) is true. Consider any x ∈ ∆κ−1
0 and define

d∗j (x) = (1 − δ)−1 max{U∗
j (x) − δpj , 0}, j ∈ N . Without loss of generality, assume players are

ranked so that j > i ⇒ dj(x) ≥ di(x). Now choose any majority coalition C ⊂ N with |C| = κ+1,

and let h = min{i ∈ C}. To prove (*) we shall show that
∑

i∈C d∗i (x)− δ(
∑

i/∈C pi)d∗h(x) ≤ 1. Then

(*) follows since for y ∈ ∆κ with

yj =


d∗j (x) if j ∈ C \ {h},

1−
∑

i∈C\{h} d∗i (x) if j = h,

0 otherwise,

we have yh = 1 −
∑

i∈C\{h} d∗i (x) ≥ (1 − δ
∑

i/∈C pi)d∗h(x) and it is immediate from (11), (8), and

the definition of d∗j that U∗
j (y) ≥ U∗

j (x) for all j ∈ C.

We thus need to prove that
∑

i∈C d∗i (x) − δ(
∑

i/∈C pi)d∗h(x) ≤ 1. Let l ∈ N be such that

l = min{i ∈ N : di(x) > 0}. We start by constructing a lower bound on U∗
i (x) for players with

d∗i (x) = 0:

U∗
i (x) ≥ (1− δ)xi + δ(pi(1− δ)(1−D) + δpi), i = 1, ..., l − 1, (24)

where D =
∑κ+1

i=1 di(x) < 1 by Claim 2 of Lemma 4. To see why (24) holds, first note that all

players other than i propose alternatives in ∆n−1
κ+1. This is because Lemma 3 ensures that a proposer

other than i who contemplates a proposal such that κ + 1 players receive a positive allocation, can

profitably reduce the allocation of one player (possibly i) to zero still obtaining majority support.

By implication, i receives zero in all proposals by other players, so that i obtains utility δpi with

probability (1− pi). Also, i can secure utility of at least (1− δ)(1−D) + δpi when proposing with

probability pi, simply by allocating dj(x) to all j ∈ {1, ..., κ + 1}\{i}.
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We have
∑n

i=1(U
∗
i (x) − δpi) = 1 − δ, thus, if l = 1 we must have

∑
i∈C d∗i (x) ≤ 1. Hence, to

show
∑

i∈C d∗i (x) − δ
∑

i/∈C pid
∗
h(x) < 1 (and (*)) it remains to consider l > 1. By summing both

sides of (24) for i = 1, ..., l − 1 and rearranging terms we get

l−1∑
i=1

(U∗
i (x)− δpi) ≥ (1− δ)

l−1∑
i=1

xi − δ(1− δ)D
l−1∑
i=1

pi. (25)

Since j > i ⇒ dj(x) ≥ di(x), we also have for coalition C with |C| = κ + 1 that

d∗h(x) +
∑
i/∈C

d∗i (x) ≥ D =
κ+1∑
i=1

di(x). (26)

If h = min{i ∈ C} ≥ l, we have
∑l−1

i=1 pi ≤
∑

i/∈C pi, while if h < l, d∗h(x) = 0. In either case we

deduce from (26) that ∑
i/∈C

pid
∗
h(x) +

∑
i/∈C

d∗i (x) ≥
l−1∑
i=1

piD.

Since 0 < δ < 1, and
∑l−1

i=1 xi ≥ 0 the above implies

l−1∑
i=1

xi + δ
∑
i/∈C

pid
∗
h(x) +

∑
i/∈C

d∗i (x) ≥ δD

l−1∑
i=1

pi.

Adding
∑

i∈C d∗i (x) on both sides and re-arranging terms this is equivalent to

l−1∑
i=1

xi − δD

l−1∑
i=1

pi +
n∑

i=1

d∗i (x) ≥
∑
i∈C

d∗i (x)− δ
∑
i/∈C

pid
∗
h(x).

Since we have that
∑l−1

i=1 d∗i (x) = 0 , and from (25), we deduce

(1− δ)−1
l−1∑
i=1

(U∗
i (x)− δpi) +

n∑
i=l

d∗i (x) ≥
∑
i∈C

d∗i (x)− δ
∑
i/∈C

pid
∗
h(x).

But the left-hand side is equal to 1, by the fact that d∗i (x) = (1 − δ)−1(U∗
i (x) − δpi) for

i = l, ..., n, and since (1 − δ)−1
∑n

i=1(U
∗
i (x) − δpi) = 1. Thus,

∑
i∈C d∗i (x) − δ(

∑
i/∈C pi)d∗h(x) ≤ 1

and the proof of (*) and of the Proposition is complete.
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