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Abstract
This paper analyzes collective choices in a society with strategic

voters and single-crossing preferences. It shows that, in addition to
single-peakedness, single-crossingness is another meaningful domain
which guarantees the existence of non-manipulable social choice func-
tions. A social choice function is shown to be anonymous, unanimous
and strategy-proof on single-crossing domains if and only if it is an
extended median rule with n − 1 parameters distributed on the end
points of the feasible set of alternatives. Such rules are known as posi-
tional dictators, and they include the median choice rule as a particular
case. As a by-product, the paper also provides an strategic foundation
for the so called “single-crossing version” of the Median Voter Theo-
rem, by showing that the median ideal point can be implemented in
dominant strategies through a simple mechanism in which each agent
honestly reveals his preferences.

JEL codes: D70, D71.

Keywords: Strategy-proofness; single-crossing; median voter; posi-
tional dictators.

1 Introduction

It is well known in economic theory that majority rule and other voting
rules may fail to produce acyclic social preferences if neither, the set of
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alternatives, nor individual preferences are suitably restricted. It is also
known that any voting method defined for all rational preferences over a
set of three or more alternatives may be subject to the misrepresentation of
individual preferences (Gibbard [17] and Satterthwaite [32]).

To study the validity of these results in more specific economic and
political environments, it is common in social choice theory to appropriately
restrict the set of individual preferences. If alternatives can be placed over
the real line, as for instance when different levels of a public good or different
tax rates are the subject of a collective choice, a natural preference restriction
is single-crossingness (SC). The other one is, of course, single-peakedness.

Single-crossingness makes sense in many political-economic settings. It
is technically useful, because it accommodates non-convexities that arise
in important applications of majority voting. And it has been extensively
used in the literature on political economy in areas such as income taxation
and redistribution (Roberts [26], Meltzer and Richard [21], Gans and Smart
[16]), local public goods and stratification (Westhoof [34], Epple et al. [12],
Epple and Platt [13], Epple et al. [14], Calabrese et al. [7]), coalition
stability (Demange [9], Kung [19]) and, more recently, to study policies in
the market for higher education (Epple et al. [15]) and the citizen candidate
model under uncertainty (Eguia [10]).

In words, a society possesses single-crossing preferences if, given any two
policies, one of them more to the right than the other, the more rightist the
individual is with respect to the other agents, the more he will be willing
to support the right-wing policy over the left-wing one. Thus, for example,
if alternatives represent income tax rates, and individuals are ordered ac-
cording to their incomes, this restriction simply means that, the richer the
individual is, the lower the tax rate he will be willing to support.

Like other domain conditions, single-crossingness establishes restrictions
across individual preferences, i.e. on the character of voters’ heterogeneity.
However, it does not impose any restriction on the shape of each individ-
ual preference relation. The main idea behind SC is that, in some cases,
individual preferences can be ordered in such a way that, for every pair of
alternatives, say x and y, whenever two preference orderings, say P ′ and
P ′′, coincide in raking x above y, so do all preferences in between, so that
the set of preference relations ranking one alternative above the other all lie
to one side of those who have the opposite ranking.

Technically, SC not only guarantees the existence of majority voting
equilibria, but it also provides a simple characterization of the core of the
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majority rule.1 In effect, the core is simply the ideal point of the median
agent, where the latter is defined over the ordering of individual preferences
which makes the profile single-crossing.2 Different versions of this result
appeared first in the seminal works of Roberts [26] and Grandmont [18]
and, more recently, in Rothstein [28], Gans and Smart [16] and Austen-
Smith and Banks [1]. It is sometimes referred to as the Representative Voter
Theorem (RVT) or, alternatively, as “the second version” of the Median
Voter Theorem (MVT).

The problem with this result is that, unlike the MVT over single-peaked
preferences, whose non-cooperative foundation was provided by Black [5],
first, and then by Moulin [22], the RVT is based on the assumption that
individuals honestly reveal their preferences. That is, it is derived assuming
sincere voting. Hence, a natural question about its legitimacy arises when
individual values are private information and voters can behave strategically.

This issue has been recently addressed by Saporiti and Tohmé [31]. In
that paper, we showed that SC is sufficient to ensure the existence of non-
manipulable social choice rules. In particular, this is true for the median
choice rule, which is strategy-proof and group strategy-proof over the full
set of alternatives and over every possible policy agenda.

Taking that work as the starting point, in this paper we characterize the
family of anonymous (A), unanimous (U) and strategy-proof (SP) social
choice functions on single-crossing domains. This family coincides with the
class of positional dictators, which are extended median rules with n − 1
parameters distributed on the end points of the feasible set of alternatives.
It includes the median choice rule as a particular case.

Although the word “dictator” may initially generate a negative feeling
toward our characterization, it is worth noting that the result is far from
being a negative one. Anonymity and unanimity are very weak conditions,
and strategy-proofness is a desirable incentive compatibility property that is
frequently demanded in social choice. On the other hand, as will be clear in
Section 2, a positional dictator is an anonymous social choice function that
only considers the ordering of the announced most preferred alternatives,
and always chooses one at a specified rank (e.g., the first ideal point, the
second, the median, etc.). The preselected position is a “dictator”. But,

1The core of a preference aggregation rule at any profile of individual preferences is the
set of top ranked alternatives of the social preference relation (Austen-Smith and Banks
[1], p. 99).

2Instead, under single-peakedness, the core of the majority rule is given by the median
ideal point over the ordering of the alternatives that makes the profile single-peaked.
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since in different profiles different individuals may locate at that position,
there is no such a thing as a dictator, as it is understood in social choice.

In our model, positional dictators refer to the simple majority rule and
other qualified majorities. Hence, the main message coming out from the
analysis is that single-crossing is another simple example, besides single-
peakedness, where majority voting works with “maximal” incentives prop-
erties. The article explains the root of this good property of single-crossing
domains, and how far we can go in changing the majority rule.

To summarize the contribution of this article and to compare it with
other important results over the real line, namely, with Moulin’s [22] seminal
work, we draw a diagram below that shows the family of A, U and SP
social choice functions on single-peaked and single-crossing domains.3 As
the figure illustrates, since SC allows any shape in individual preferences, it
leads to a smaller (but still large) family of strategy-proof social choice rules.
Incidentally, the picture also points out that the class of non-manipulable
rules in the intersection of these two domains (whenever nonempty) is still an
open question. To the best of the author’s knowledge, this subdomain, which
contains preferences such as the Euclidean one, has not received enough
attention, and a full characterization is still missing.

Extended median rules (Moulin [22])

Single-peakedness

Positional dictators (Saporiti)

Single-crossingness ?

Figure 1:

The rest of the paper is organized as follows. Section 2 presents the
3Moulin’s [22] original characterization on single-peaked preferences over the real line

has been extended in several directions by many authors. Some important references
within this literature are Border and Jordan [6], Zhou [36], Barberà et al. [2], Barberà
and Jackson [3], Ching [8], Berga [4], Schummer and Vohra [33], and Ehlers et al. [11],
but this list is by no means exhaustive.
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model, the notation and the definitions. Section 3 contains all the results.
We start by proving that every positional dictator is group strategy-proof
(GSP) on single-crossingness (Proposition 1). Then, in Theorem 2, we state
that, although single-crossing does not satisfy Weymark’s [35] regularity, U
and SP imply tops-onliness (TO). Finally, using anonymity and unanim-
ity as auxiliary conditions, we prove that every strategy-proof social choice
function is a positional dictator (Theorem 1), with the natural corollary that
in our framework U, A and SP imply Pareto efficiency (Corollary 1). Final
remarks appear in Section 4.

2 Preliminaries

Consider a society I = {1, 2, . . . , n} with a finite number n ≥ 2 of agents,
who must choose an alternative from a finite set X = {x, y, . . .}, |X| > 2.4

A preference relation P over X is a complete, transitive and antisymmet-
ric binary relation on X. We say that a set SC of preference relations has the
single-crossing property if there exists a linear order º of the elements
of SC, and a linear order ≥ over the set of social alternatives X such that,
for all x, y ∈ X, and all P, P ′ ∈ SC, [y > x, P ′ Â P, & y P x] ⇒ y P ′ x,
and [y > x, P ′ Â P, & xP ′ y] ⇒ x P y.5 Figure 3 below illustrates the
concept.

yx

P P ′

yx

P P ′

Single-crossing Non single-crossing

Figure 2:

A preference profile P = (Pi)i∈I is single-crossing (SC) over X
if for all i ∈ I, Pi ∈ SC.6 We call SCn the set of all single-

4For every set A, |A| stands for the cardinality of the set.
5As usual, > is the strict part of ≥, and Â the strict part of º.
6Other domain restrictions related with single-crossing are hierarchical adherence, in-

termediateness, order-restriction and unidimensional alignment. For more details, see
Roberts [26], Grandmont [18], Rothstein [27] and [28], Gans and Smart [16], Myerson
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crossing preference profiles. As usual, for any profile P = (P1, . . . , Pn) ∈
SCn, P−i = (P1, . . . , Pi−1, Pi+1, . . . , Pn); for each P̂i ∈ SC, (P̂i, P−i) =
(P1, . . . , Pi−1, P̂i, Pi+1, . . . , Pn); and, for every set S ⊆ I, (PS , PS̄) =
({Pi}i∈S , {Pj}j∈S̄), where S̄ = I\S is the complement of S.

The next example, taken from Persson and Tabellini [25], illustrates how
our abstract setup may naturally emerge in political economy.

Example 1 Consider Roberts’ [26] model on redistributive linear tax
schemes. Suppose each agent i has preferences u(ci, li) = ci + v(li), where
ci denotes private consumption, li leisure time, and v(li) a continuous and
concave function. Let ci ≤ (1− t)hi + f be the individual budget constraint,
where t ∈ (0, 1) is an income tax rate, hi the individual labor supply, and
f = (

∑
i∈I t hi)/n a lump-sum transfer.7 Assume each agent is endowed

with productivity θi ∈ <, and let li + hi ≤ 1 − θi be his effective time con-
straint. If we solve the constrained maximization problem of each individual
and substitute the solution into his utility function, then the indirect util-
ity associated with a tax rate t is given by w(t, θi) = u(c∗i (t, θi), l∗i (t, θi)) =
h(t) + v[1 − h(t) − θ̄] − (1 − t)(θi − θ̄), where h(t) = 1 − θ̄ − v−1

l (1 − t) is
the average labor supply, vl the first derivative of v(li), and θ̄ the mean pro-
ductivity. Hence, the profile of induced preferences is single-crossing on the
interval (0, 1), because for any two policies t′, t′′ ∈ (0, 1), such that t′ > t′′,
the difference w(t′, θ)− w(t′′, θ) is strictly increasing in θ. 2

t
′′

t
′

θi θj

Figure 3:

The recent interest in single-crossingness is due to the fact that, like
single-peakedness, this domain restriction is sufficient to guarantee the ex-
istence of majority voting equilibria. However, apart from this, it should

[24], Austen-Smith and Banks [1], List [20] and Saporiti and Tohmé [31].
7The real wage is exogenous and normalized at 1.
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be clear that both conditions are totally independent, in the sense that nei-
ther property is logically implied by the other.8 Examples 2 and 3 below
illustrate this point.9

Example 2 Assume individual preferences are as in Table 1. This profile is
single-crossing on X = {x, y, z} with respect to z > y > x and P3 Â P2 Â P1.
However, for any ordering of the alternatives, it violates single-peakedness,
because every alternative is ranked bottom in one preference relation. 2

Example 3 Consider the profile displayed in Table 2. These preferences
are single-peaked with respect to z > y > x > w. On the contrary, for every
ordering of the binary relations, they violate single-crossing. Moreover, they
violate SC not only for z > y > x > w, but for every ordering of them. 2

Table 1: Single-crossingness

P1 : xyz
P2 : xzy
P3 : zyx

Table 2: Single-peakedness

P1 : xyzw
P2 : zyxw
P3 : yxwz

Since we are interested in social choice functions that are not manipulable
over SCn, in what follows we restrict our attention to maximal domains of
single-crossing preferences, in the sense that it would be impossible to add
another preference relation in SC such that every profile of the enlarged
domain SCn still satisfies SC. These domains contain the largest number
of possible deviations. Therefore, they are the appropriate framework to
analyze incentive compatibility.

In order to make social choices, individual preferences must be aggre-
gated. The aggregation process is represented by a social choice function.
A social choice function is a single-valued mapping f : SCn → X that as-
sociates to each profile P ∈ SCn a unique outcome f(P ) ∈ X. Denote by
rf = {x ∈ X : ∃P ∈ SCn such that f(P ) = x} the range of f . We are
interested in social choice functions that satisfy the following properties on

8As Gans and Smart [16] showed, single-crossingness is equivalent to Rothstein’s
[27] and [28] order-restriction (OR), and OR (on triples) is strictly weaker than single-
peakedness and single-cavedness, but strictly stronger than Sen’s value-restriction, (see
Theorems 2 and 3 in Rothstein [27]).

9The interesting difference between single-crossing and single-peakness is that the latter
is a unique domain once alternatives are ordered, whereas there are still many different SC
domains compatible with a given ordering of X. On the other hand, unlike single-peaked
preferences, their union covers all preferences on X.
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SCn. The main one is that agents, acting individually or in groups, never
have incentives to misrepresent their preferences.

Definition 1 (SP) A social choice function f is strategy-proof on SCn if
∀ i ∈ I, and ∀ (Pi, P−i) ∈ SCn, 6 ∃P̂i ∈ SC such that f(P̂i, P−i) Pi f(Pi, P−i).

In words, a social choice function f is SP on SCn if for any possible
report P−i ∈ SCn−1 that the rest of the agents could make, no individual
i ∈ I would find profitable to make a declaration P̂i ∈ SC different from his
own ordering Pi. On the contrary, if f is not strategy-proof, then there must
exist at least one agent who would be strictly better off misrepresenting his
preferences. Therefore, we say that f is manipulable by this individual.

Proceeding in a similar way, we can also define group strategy-proofness,
to study the possibility of group deviations.

Definition 2 (GSP) A social choice function f is group strategy-proof
on SCn if ∀S ⊆ I, and ∀ (PS , PS̄) ∈ SCn, 6 ∃ P̂S ∈ SC|S| such that ∀i ∈ S,
f(P̂S , PS̄) Pi f(PS , PS̄).

Another property that we may seek in a social choice function is unanim-
ity. This property ensures that, if all agents have the same most preferred
alternative, then that alternative is socially selected. For any P ∈ SC, let
τ(P ) ≡ arg maxX P .

Definition 3 (U) A social choice function f is unanimous on SCn if
∀x ∈ X, and ∀P ∈ SCn such that τ(Pi) = x ∀i ∈ I, f(P ) = x.

Let σ : I → I be a permutation of the set of individuals. A profile P ∈
SCn is a σ-permutation of another profile P ∗ ∈ SCn if for every individual
i ∈ I, Pi = P ∗

σ(i). That is, P is a σ-permutation of P ∗ if the lists of
preferences under P and P ∗ are identical up to a renaming of agents. We
refer to such a pair (P, P ∗) as a σ-permutation.

Definition 4 (A) A social choice function f is anonymous on SCn if for
each σ-permutation (P, P ∗), f(P ) = f(P ∗).

In words, a social choice function is anonymous if the names of the
individuals holding particular preferences are immaterial in deriving social
choices.

One last property that a social choice function may satisfy is tops-
onliness. We say that f is tops-only on SCn if for any preference profile,
the social choice is exclusively determined by individuals’ most preferred
alternatives on the range of the social choice function.
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Definition 5 (TO) A social choice function f is tops-only on SCn if,
∀P, P̂ ∈ SCn such that τ |rf

(Pi) = τ |rf
(P̂i) ∀ i ∈ I, f(P ) = f(P̂ ).

Tops-onliness dramatically constrains the scope for manipulation. No
agent can expect to be able to affect the social outcome without modifying
the peak on rf of his reported ordering. However, as we show later in
Theorem 2, this condition is closely related to SP, in the sense that every U
and SP social choice function on single-crossing domains is also TO.

Now we define a class of social choice functions that plays a crucial
role in the characterization given in Section 3. To do that we introduce
the following notation. For any odd positive integer k, we say that mk :
Xk → X is the k-median function on Xk if for each x = (x1, . . . , xk) ∈ Xk,
|{xi : mk(x) ≥ xi}| ≥ (k+1)

2 , and |{xj : xj ≥ mk(x)}| ≥ (k+1)
2 . Since k is

odd, mk(x) is always well defined.

Definition 6 (EMR) A social choice function f is an extended median
rule on SCn if there exist n + 1 parameters αi ∈ X, i = 1, 2, . . . , n + 1,
also called fixed ballots or phantom voters, such that ∀P ∈ SCn, f(P ) =
m2n+1(τ(P1), . . . , τ(Pn), α1, . . . , αn+1).

We denote by fe a social choice function that satisfies Definition 6, and
by EMR = {fe : (α1, . . . , αn+1) ∈ Xn+1} the family of all such functions,
obtained by reallocating the parameters α1, . . . , αn+1 in Xn+1. A particular
case of interest within this family is the well known median choice rule,
noted fm, which is obtained from fe by assigning (n + 1)/2 fixed ballots
at X ≡ minX and the rest at X ≡ maxX, if n is odd, and n/2 at X and
n/2 + 1 at X if n is even.

Proceeding in a similar way, we can derive other rules from EMR, by
restricting each αi to a particular value of X. For example, if αi = α for
all i = 1, 2, . . . , n + 1, then fe is completely insensitive to the preferences
reported by the individuals. We might want to exclude such undesirable
rules and, in particular, require Pareto efficiency.10 To do that, we eliminate
the possibility of inefficiency by setting αn = X and αn+1 = X. Then,
we obtain a social choice rule, noted f∗, with the property that for all
P ∈ SCn, f∗(P ) = m2n−1(τ(P1), . . . , τ(Pn), α1, . . . , αn−1). This rule is
called the efficient extended median rule, and it is characterized by
n− 1 parameters distributed on Xn−1. The set of all such rules is denoted
EMR∗ = {f∗ : (α1, . . . , αn−1) ∈ Xn−1}.

10A social choice function f is Pareto efficient on SCn if for all P ∈ SCn, 6 ∃ y ∈ X
such that y Pi f(P ) for all i ∈ I.

9



Finally, we can also restrict each αi to take its value at either X or X,
so that each phantom voter is either a leftist or a rightist. The family of
social choice functions obtained in that way was first introduced by Moulin
[23], and it is known as positional dictators.

These rules select the j-th peak among the tops of the reported preference
orderings, for some j ∈ {1, . . . , n}. For example, if j = 1, we have the leftist
rule, which always chooses the smallest reported peak. The median choice
rule fm is also a particular case. We denote by f j the positional dictator
that selects, for all P ∈ SCn, the alternative of the sequence τ(P1), . . . , τ(Pn)
placed at the j-th position according with the order of X. This rule is
obtained from f∗ by distributing n− j fixed ballots at X and the remaining
j− 1 at X. The family of all such rules is denoted PD = {f j ; j = 1, . . . , n}.

3 Characterization

In this section, we prove that positional dictators is the only family of social
choice functions that satisfies U, A and SP on single-crossing domains. At
the end, we also show that this is a tight characterization, in the sense
that relaxing any of the previous axioms enlarges the family of social choice
functions.

We start by proving that every positional dictator is GSP.

Proposition 1 Each positional dictator f j is group strategy-proof on SCn.

Proof: Fix f j ∈ PD. Suppose, by contradiction, there exist a coalition
S ⊆ I, a profile (PS , PS̄) ∈ SCn, and a joint deviation P̂S ∈ SC|S| for
S such that f j(P̂S , PS̄) Pi f

j(PS , PS̄) for all i ∈ S. To simplify, denote
f j(PS , PS̄) ≡ τ and f j(P̂S , PS̄) ≡ τ̂ , and let τ̂ > τ .

Note that f j ∈ PD ⇒ αi ∈ {X,X} for all i = 1, 2, . . . , n − 1. Hence,
τ and τ̂ must coincide with the tops reported by two real voters. Denote
these agents k and k′, and their preferences Pk and Pk′ , respectively. Then,
for all i ∈ S, τ(Pi) > τ . Suppose not. That is, assume τ ≥ τ(Pi) for
some agent i ∈ S. If τ(Pi) = τ , then τ Pi τ̂ , which contradicts our initial
hypothesis. Instead, suppose τ > τ(Pi). Since τ̂ Pi τ and (PS , PS̄) ∈ SCn,
we have that τ̂ P τ for all P Â Pi. Then, Pi Â Pk. Otherwise, τ̂ > τ , Pk Â Pi

and τ̂ Pi τ would imply τ̂ Pk τ , contradicting that τ = τ(Pk). And, again,
since (PS , PS̄) ∈ SCn, τ Pk τ(Pi) implies τ Pi τ(Pi): contradiction. Hence,
τ(Pi) > τ for all i ∈ S.

By definition, τ = m2n−1({τ(Pi)}i∈S , {τ(Pj)}j∈S̄ , α1, . . . , αn−1) and τ̂ =
m2n−1({τ(P̂i)}i∈S , {τ(Pj)}j∈S̄ , α1, . . . , αn−1). Thus, there must exist i ∈ S
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such that τ > τ(P̂i). Otherwise, if τ(P̂i) ≥ τ for all i ∈ S, we would have
that τ̂ = τ . Therefore, if we rename ({τ(P̂i)}i∈S , {τ(Pj)}j∈S̄ , α1, . . . , αn−1)
as (y1, . . . , y2n−1), it follows that | {j ∈ {1, . . . , (2n− 1)} : τ ≥ yj} | ≥ n. But
then τ ≥ m2n−1(y1, . . . , y2n−1). That is, f j(PS , PS̄) ≥ f j(P̂S , PS̄), contra-
dicting that τ̂ > τ . Hence, f j is GSP on SCn. 2

Falling short of Moulin’s [22] results, Proposition 1 shows that every
extended median rule is GSP (and, consequently, SP) on single-crossing
domains, provided that each fixed ballot is placed at the end points of X,
(i.e., at either X or X). Instead, all other extended median rules, which
allow the collective outcome to be the top of a fictitious voter, are not
guaranteed to be SP on SCn.

To see this, consider the profile of Table 1, and a rule f ∈ EMR∗,
such that α1 = y and α2 = z. Note that α1 coincides with neither voters’
most preferred alternatives nor the end points of X = {x, y, z}, (recall that
X = x and X = z). Furthermore, f(P ) = m5(x, x, z, α1, α2) = y. But, since
y is agent 2’s worst outcome on X, he could report P̂2 : zyx, and generate
the outcome m5(x, z, z, α1, α2) = z. Agent 2’s deviation would be profitable,
because z P2 y. Hence, individual manipulation cannot be excluded.11

As the example illustrates, SP is not ensured for extended median rules
other than positional dictators because the latter are the only one within the
class of anonymous social choice functions which guarantee that the social
choice always coincides with a voter’s most preferred alternative. However,
as we showed in the proof of Proposition 1, without this information manipu-
lation on single-crossing domains cannot be ruled out, because the argument
exploits precisely the correlation among individual preferences together with
the fact that the outcome is the ideal point reported by a real voter.

The point is that SC does not restrict the shape of individual prefer-
ences. Instead, it allows orderings that do not decrease monotonically to
both sides of the ideal point. In fact, this is one of the main reasons why SC
is an attractive restriction in certain problems of political economy (such as
majority voting over income taxation). The price for this flexibility, how-
ever, is that in general it is impossible to ensure that no agent could be
better off misrepresenting his values.

In Figure 4, for instance, f(P̂i, P−i)Pi f(Pi, P−i), so that in principle
agent i would like to manipulate f at (Pi, P−i) via P̂i. However, this is not
possible if f is a positional dictator. In that case, SC is sufficient to rule out

11Interestingly, in the example, agent 2 would prefer to misrepresent his ordering even
if the other agents report their true preferences. That means extended median rules other
than positional dictators not only fail to be SP over SCn, but also Nash implementable.
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any attempt of individual and group manipulation. For example, suppose
that f(Pi, P−i) is j’s most preferred alternative. If f(P̂i, P−i) Pi f(Pi, P−i),
like in Figure 4, SC would imply f(P̂i, P−i) Pk f(Pi, P−i) for all Pk Â Pi.
Thus, f(Pi, P−i) = τ(Pj) ⇒ Pi Â Pj . But then agent i’s preferences cannot
be like in the figure. Otherwise, (Pi, P−i) ∈ SCn, f(Pi, P−i) Pj τ(Pi) and
Pi Â Pj would imply f(Pi, P−i) Pi τ(Pi), contradicting that τ(Pi) is agent
i’s ideal point.

τ (Pi) f(P ) f(P̂i, P−i)

Pi

Pj Pi

Figure 4:

Thus, when the choice rule associates to each preference profile an indi-
vidual’s peak, like in the case of positional dictators, the ordering of that
agent together with the relation among preferences in single-crossing do-
mains is sufficient to reject any incentive for manipulation. Remarkably, no
additional information about the shape of each preference relation is needed.

Instead, if social choices are not individual tops, we might think that
individuals’ preferences can still be inferred from the correlation with other
agents’ rankings. However, there are profiles on single-crossingness where
the way in which one agent orders alternatives bears no relation with other
orderings. In those cases, it is impossible to guarantee that all individuals
will have the right incentives, (i.e., no one will hold an ordering like Figure
4). So, manipulation cannot be excluded.

This conjecture stands in sharp contrast with the main result on single-
peaked domains, where extended median rules have been shown to be
strategy-proof without any restriction on the distribution of phantom voters.
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Moreover, it suggests that the family of SP social choice functions on SCn

is strictly smaller than the corresponding class on single-peakedness. This
is now formally stated in Theorem 1 and proved in the rest of this section.

Theorem 1 A social choice function f is unanimous, anonymous, and
strategy-proof on SCn if and only if f is a positional dictator.

Corollary 1 If a social choice function f is unanimous, anonymous and
strategy-proof on SCn, then it is Pareto efficient.

Proof: Suppose, by contradiction, that there exists a social choice function
f that satisfies all the hypotheses of Corollary 1, but that f is not Pareto
efficient on SCn. Then, there must exist P ∈ SCn, and a pair x, y ∈ X,
x 6= y, such that f(P ) = x, while y Pi x for all i ∈ I. Thus, for all
i = 1, . . . n, f(P ) 6= τ(Pi), contradicting that, by Theorem 1, f ∈ PD. 2

The proof of Theorem 1 rests on three main results. The first one,
summarized in Theorem 2 below, shows that on single-crossing domains
tops-onlyness is implied by strategy-proofness and unanimity. This result
is consistent with other results in the literature on strategy-proofness, and
captures the intuitive idea that social choice functions that use too much
information from society are easier to manipulate.

Theorem 2 A social choice function f is unanimous and strategy-proof on
SCn only if f is tops-only on SCn.

Proof: See Saporiti [30]. 2

Apart from Theorem 2, the proof of Theorem 1 also invokes two addi-
tional results, which are summarized in Lemma 1 and 2, respectively. The
first of these lemmas points out that, if a social choice function is SP and U
(and therefore TO), then no individual must be able to profit by reporting
extreme ideal points, unless such extreme preferences constitute the indi-
vidual’s true ordering. This “median property” at the individual level must
simultaneously hold for every agent.

To present this more formally, in the sequel we use P i (respectively, P i)
to denote agent i’s most leftist (respectively, rightist) preference relation on
X according with º and ≥, so that for all x, y ∈ X, xP i y (respectively,
y P i x) if and only if y > x. Clearly, τ(P i) = X and τ(P i) = X. Moreover,
it is easy to check that these rankings always belong to SC.

13



Lemma 1 A social choice function f is unanimous and strategy-proof on
SCn only if, for all i ∈ I, and all P ∈ SCn,

f(Pi, P−i) = m3(τ(Pi), f(P i, P−i), f(P i, P−i)).

Proof: Let f be U and SP on SC.12 By Theorem 2, f is TO on SCn.
Fix a profile P ∈ SCn and an agent i ∈ I. If f(P i, P−i) > f(P i, P−i), then
f(P i, P−i) P i f(P i, P−i). Thus, i would like to manipulate f at (P i, P−i) via
P i: contradiction. Hence, f(P i, P−i) ≥ f(P i, P−i). Two cases are possible:

Case 1: f(P i, P−i) > τ(Pi) > f(P i, P−i). Then,
m3(τ(Pi), f(P i, P−i), f(P i, P−i)) = τ(Pi). Assume, by contradiction,
f(P ) 6= τ(Pi). Without loss of generality, suppose τ(Pi) > f(P )
⇒ f(P i, P−i) > f(P ). By SP, f(Pi, P−i) Pi f(P i, P−i) and
f(P i, P−i) P i f(Pi, P−i). Define a preference relation P ′

i such that (i)
τ(P ′

i ) = τ(Pi), and (ii) f(P i, P−i) P ′
i f(Pi, P−i) (see Figure 5 below).

Since P ′
i is between Pi and P i, P ′

i ∈ SC and P i Â P ′
i Â Pi. By TO,

f(P ′
i , P−i) = f(Pi, P−i). Thus, f(P i, P−i) P ′

i f(P ′
i , P−i): contradiction.

τ (Pi)f(P ) f(P i, P−i)

P ′

i

Pi P ′

i P i

Pi

P i

Figure 5:

Case 2: f(P i, P−i) ≥ τ(Pi).13 Then, m3(τ(Pi), f(P i, P−i), f(P i, P−i)) =
f(P i, P−i). Assume, by contradiction, f(P ) 6= f(P i, P−i). First, suppose

12Note that U implies rf = X; hence, for all i ∈ I, and all Pi ∈ SC, τ(Pi) = τ |rf (Pi).
13The remaining case where τ(Pi) ≥ f(P i, P−i) is similar.
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that f(P i, P−i) > f(P ). Then, P i Â Pi. Otherwise, if Pi Â P i, SC would
imply that f(P i, P−i) Pi f(Pi, P−i), which contradicts SP. However, since
P i is agent i’s most leftist preference relation, P i Â Pi implies τ(Pi) =
τ(P i) = X. Hence, by TO, f(Pi, P−i) = f(P i, P−i): contradiction. Thus,
f(P ) > f(P i, P−i) ⇒ f(Pi, P−i) > τ(Pi). Note that τ(Pi) 6= f(P i, P−i).
Otherwise, if τ(Pi) = f(P i, P−i), then f(Pi, P−i) 6= f(P i, P−i) would imply
that i would like to manipulate f at (Pi, P−i) via P i. On the other hand, SP
⇒ f(Pi, P−i) Pi f(P i, P−i). And, f(P i, P−i) 6= τ(P i), because f(P i, P−i) >
τ(Pi) ≥ τ(P i) = X.

In fact, as it can be inferred from Figure 6 below, f(P i, P−i) 6= τ(Pj)
for all j 6= i. Otherwise, if f(P i, P−i) = τ(Pj) for some j ∈ I,
j 6= i, then Pj Â Pi, because f(P i, P−i) > τ(Pi). However, by SC,
Pj Â Pi, f(Pi, P−i) > f(P i, P−i), and f(P i, P−i) Pj f(Pi, P−i) would im-
ply f(P i, P−i) Pi f(Pi, P−i): contradiction. Hence, there exists an ordering
P ′

i ∈ SC such that (i) τ(P ′
i ) = τ(Pi), and (ii) f(P i, P−i) P ′

i f(Pi, P−i). By
TO, f(P ′

i , P−i) = f(Pi, P−i). Therefore, f(P i, P−i) P ′
i f(P ′

i , P−i): contradic-
tion. Thus, since P ∈ SCn and i ∈ I were arbitrarily chosen, Cases 1 and 2
prove the claim. 2

τ (Pi) f(P i, P−i) f(Pi, P−i)

Pi

P ′

i Pi Pj

P ′

i

Figure 6:

Finally, before proving Theorem 1, we show below in Lemma 2 that
a U and SP social choice function must also satisfy top-monotonicity on
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SCn. Roughly speaking, this property ensures that collective choices do not
respond perversely to changes in individuals’ ideal points.

Definition 7 (TM) A social choice function f is top-monotonic on SCn

if for all i ∈ I, all (Pi, P−i) ∈ SCn, and all P ′
i ∈ SC such that τ |rf

(P ′
i ) ≥

τ |rf
(Pi), f(P ′

i , P−i) ≥ f(Pi, P−i).

Like before, let us assume that P i (respectively, P i) denote agent i’s
most leftist (respectively, rightist) preference relation on X.

Lemma 2 If a social choice function f is unanimous and strategy-proof on
SCn, then f is top-monotonic.

Proof: Let f be U and SP on SCn. Consider any individual i ∈ I, any
profile (Pi, P−i) ∈ SCn and any admissible deviation P ′

i ∈ SC, such that
τ(P ′

i ) ≥ τ(Pi). We want to show that f(P ′
i , P−i) ≥ f(Pi, P−i). Three cases

are possible:

Case 1: If τ(Pi) ≥ f(P i, P−i) ⇒ m3(τ(Pi), f(P i, P−i), f(P i, P−i)) =
m3(τ(P ′

i ), f(P i, P−i), f(P i, P−i)), because SP implies that f(P i, P−i) ≥
f(P i, P−i), and τ(P ′

i ) ≥ τ(Pi) by hypothesis. Therefore, by Lemma 1,
f(P ′

i , P−i) = f(Pi, P−i).

Case 2: If f(P i, P−i) > τ(Pi) > f(P i, P−i), then
m3(τ(Pi), f(P i, P−i), f(P i, P−i)) = τ(Pi) and, given that τ(P ′

i ) ≥ τ(Pi),
m3(τ(P ′

i ), f(P i, P−i), f(P i, P−i)) ≥ τ(Pi). Therefore, by Lemma 1,
f(P ′

i , P−i) ≥ f(Pi, P−i).

Case 3: Finally, if f(P i, P−i) ≥ τ(Pi), then
m3(τ(P ′

i ), f(P i, P−i), f(P i, P−i)) ≥ m3(τ(Pi), f(P i, P−i), f(P i, P−i)) =
f(P i, P−i). Hence, by Lemma 1, f(P ′

i , P−i) ≥ f(Pi, P−i). 2

We are now ready to prove Theorem 1.

Proof of Theorem 1: (Sufficiency) Immediate from Proposition 1 and
the definition of positional dictators.

(Necessity) Suppose f is U, A and SP on SCn. We want to show that
f ∈ PD. By Theorem 2, f is TO on SCn. Consider first the case where
|I| = 2. Fix a profile P ∈ SCn. Without loss of generality, assume τ(P2) ≥
τ(P1). By Lemma 1, f(P1, P2) = m3(τ(P1), f(P 1, P2), f(P 1, P2)). Apply-
ing Lemma 1 once again, f(P 1, P2) = m3(τ(P2), f(P 1, P 2), f(P 1, P 2)), and
f(P 1, P2) = m3(τ(P2), f(P 1, P 2), f(P 1, P 2)). By unanimity, f(P 1, P 2) = X
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and f(P 1, P 2) = X. By anonymity, f(P 1, P 2) = f(P 1, P 2). Furthermore,
by SP, f(P 1, P 2), f(P 1, P 2) ∈ {X, X}. Suppose not. That is, assume for
instance that f(P 1, P 2) = z ∈ X\{X,X}.

X z X

P
′

1

P 1 P
′

1 P 2

P 1

P 2

Figure 7:

Then, as we show in Figure 7 above, there must exist an ordering
P ′

1 ∈ SC such that τ(P ′
1) = τ(P 1), and X p(P ′

1) z. By TO, f(P ′
1, P 2) =

f(P 1, P 2) = z ⇒ agent 1 would manipulate f at (P ′
1, P 2) via P 1: contra-

diction. Thus, f(P 1, P 2), f(P 1, P 2) ∈ {X, X}. Furthermore, if f(P 1, P 2) =
f(P 1, P 2) = X, f(P 1, P2) = m3(τ(P2), X,X) = X, and f(P 1, P2) =
m3(τ(P2), X,X) = τ(P2). Thus, f(P1, P2) = m3(τ(P1), X, τ(P2)) = τ(P1).
Instead, if f(P 1, P 2) = f(P 1, P 2) = X, then a similar argument shows that
f(P1, P2) = m3(τ(P1), τ(P2), X) = τ(P2).

Thus, if |I| = 2 and f satisfies the hypotheses of Theorem 1, (i.e.
f is U, A and SP), the previous paragraphs show that there exists a
parameter (or fixed ballot) α ∈ {X,X} such that, for all P ∈ SCn,
f(P ) = m3(τ(P1), τ(P2), α). Hence, f ∈ PD.

Now, suppose |I| = 3. Take any profile P ∈ SCn. Without loss of
generality, relabel I if necessary so that τ(P3) ≥ τ(P2) ≥ τ(P1). Using
Lemma 1, it is easy to see that,

f(P ) = m3
[
τ(P1), m3

(
τ(P2), m3(τ(P3), a3, a2), m3(τ(P3), a2, a1)

)
,

m3
(
τ(P2), m3(τ(P3), a2, a1), m3(τ(P3), a1, a0)

)]
, (2)
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where a3 = f(P 1, P 2, P 3), a0 = f(P 1, P 2, P 3), and

a2 = f(P 1, P 2, P 3) = f(P 1, P 2, P 3) = f(P 1, P 2, P 3), (3)

and
a1 = f(P 1, P 2, P 3) = f(P 1, P 2, P 3) = f(P 1, P 2, P 3), (4)

where the equalities in (3) and in (4), respectively, follow from the fact that
f is A on SCn. By U and TM, we have that X = a0 ≥ a1 ≥ a2 ≥ a3 = X.
By SP, a1, a2 ∈ {X,X}. Otherwise, if for example f(P 1, P 2, P 3) = z ∈
X\{X, X}, we can find an ordering P ′

1 ∈ SC such that τ(P ′
1) = τ(P ) = X

and X p(P ′
1) z. By TO, f(P ′

1, P 2, P 3) = f(P 1, P 2, P 3) ⇒ agent 1 would like
to manipulate f at (P ′

1, P 2, P 3) via P 1. Then,

(i) If τ(P1) ≥ a0, then ∀ i = 1, 2, 3, τ(Pi) = X. Thus, independently of
the distribution of a1 and a2, it follows from (2) that f(P ) = X;

(ii) Similarly, if a3 ≥ τ(P3), then ∀ i = 1, 2, 3, τ(Pi) = X, and f(P ) = X;

(iii) If a1 = X, then a2 = X, because, by TM, a1 ≥ a2. Therefore, (2) can
be rewritten as f(P ) = m3(τ(P1), X, τ(P2)) = τ(P1);

(iv) Similarly, if a2 = X, then a1 = X, and f(P ) = m3(τ(P1), τ(P3),X) =
τ(P3);

(v) Finally, if a1 = X and a2 = X, then (2) can be rewritten as f(P ) =
m3(τ(P1), τ(P2), τ(P3)) = τ(P2).

Thus, since P was arbitrarily chosen, (i)-(v) imply that, if |I| = 3 and f
is A, U and SP, then there exists α1, α2 ∈ {X,X} such that, for all P ∈ SCn,
f(P ) = m5(τ(P1), τ(P2), τ(P3), α1, α2). Hence, f ∈ PD.

Now let us extend the proof to |I| = n > 3. For all K ⊆ I, let
a|K| = f(PK , P K̄), where K̄ = I\K. By unanimity, K = ∅ implies a0 =
f(P 1, . . . , Pn) = X. Similarly, if K = I, then an = f(P 1, . . . , Pn) = X. By
anonymity,

a1 = f(P i, P−i), ∀ {i} ⊂ I,

a2 = f(P {i,j}, P−{i,j}), ∀ {i, j} ⊆ I,

...
...

an−1 = f(P−j , P j), ∀ {j} ⊂ I.

Thus, by top-monotonicity, a0 ≥ a1 ≥ a2 ≥ . . . ≥ an−1 ≥ an. More-
over, for all k = 0, 1, . . . , n, ak ∈ {X, X}. In effect, if either k = 0
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or k = n, then the result follows immediately from U. So, assume that
ak ∈ {X, X} for some k = 0, 1, . . . , n − 2, and let us prove the claim
for ak+1. On the contrary, suppose ak+1 6∈ {X, X}. Specifically, assume
ak+1 = f(P 1, . . . , P k+1, P k+2, . . . , Pn) = z ∈ X\{X, X}. Without loss of
generality, let ak = f(P 1, . . . , P k, P k+1, . . . , Pn) = X. Consider P ′

k+1 ∈ SC
such that τ(P ′

k+1) = τ(P k+1) and X P ′
k+1 z (recall Figure 7 above). By

TO, f(P 1, . . . , P k, P
′
k+1, P k+2, . . . , Pn) = z ⇒ agent k + 1 would like to

manipulate f at (P 1, . . . , P k, P
′
k+1, P k+2, . . . , Pn) via P k+1: contradiction.

Now, fix any profile P ∈ SC, and relabel I if necessary, so that τ(Pn) ≥
τ(Pn−1) ≥ . . . ≥ τ(P1). By repeated application of Lemma 1, it follows that:

(i) If τ(P1) ≥ a0, then ∀ i = 1, . . . , n, τ(Pi) = X, and f(P ) =
m3(τ(P1), a1, a0) = X;

(ii) If an ≥ τ(Pn), then ∀ i = 1, . . . , n, τ(Pi) = X, and we have that
f(P ) = m3(τ(P1), an, an−1) = X;

(iii) If ak = X for all k = 1, . . . , n− 1, then f(P ) = m3(τ(P1), τ(Pn),X) =
τ(Pn);

(iv) If ak = X for all k = 1, . . . , n− 1, then f(P ) = m3(τ(P1), X, τ(P2)) =
τ(P1);

(v) Finally, if for some k = 1, 2, . . . , n− 2, a1 = . . . = ak = X and ak+1 =
. . . = an−1 = X, then f(P ) = m3(τ(P1), τ(Pk+1), τ(Pk+2)) = τ(Pk+1).

Therefore, since P ∈ SCn was arbitrarily chosen and, for every k =
0, 1 . . . , n, ak is independent of P , if f is A, U and SP, then items (i)-(v)
imply that there exist n − 1 parameters α1, α2, . . . , αn−1 on {X, X} such
that, for all P ∈ SCn, f(P ) = m2n−1(τ(P1), τ(P2), . . . , τ(Pn), α1, . . . , αn−1).
Hence, f ∈ PD. 2

We close this section showing the independence of the axioms used in
Theorem 1. First, consider the consequence of relaxing SP. As we explained
before, any efficient extended median rule that it is not a positional dicta-
tor may be subject to individual manipulation on single-crossing domains.
However, all of them are U and A. Thus, the family that satisfies U and A
on SCn is larger than PD.

Next consider the consequences of relaxing U. Define a social choice
function f in such a way that, for each P ∈ SCn, f(P ) = a ∈ X. It is clear
that f is A and SP; however, f violates U, since rf = {a}. Hence, f 6∈ PD.
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Finally, regarding A, for any coalition S ⊂ I, define a social
choice function f in such a way that, for all P ∈ SCn, f(P ) =
m2|S|−1({τ(Pi)}i∈S , α1, . . . , α|S|−1). It is immediate to see that f is U. More-
over, following a reasoning analogous to the proof of Proposition 1, it is also
easy to prove that f is SP on SCn, provided that for all i = 1, . . . , |S| − 1,
αi ∈ {X,X}. However, f violates A, since the preferences of all agents in
the set S̄ = I\S are ignored to make social choices.

4 Final remarks

This paper analyzes collective choices in a society with strategic voters and
single-crossing preferences. While this preference domain ensures that the
core of the majority rule is nonempty, this result has been derived assuming
sincere voting. This naturally raises the issue of potential individual and
group manipulation, motivating the current research.

The main contributions of the paper are the following. First of all, it
shows that, in addition to single-peakedness, single-crossingness is another
meaningful domain which guarantees the existence of strategy-proof social
choice functions. More precisely, it proves that each positional dictator is
group strategy-proof on single-crossing domains. Conversely, every social
choice function that satisfies anonymity, unanimity and strategy-proofness
is shown to be a member of this family, with the natural consequence that
A, U and SP imply Pareto efficiency and tops-onliness.

As we argue in the text, strategy-proofness over single-crossing prefer-
ences requires that the social choice be always an individual’s most preferred
alternative. This is necessary to rule out orderings that might produce incen-
tives for manipulation, because the argument exploits (i) that the outcome is
an individual’s ideal point, (ii) the ordering of that agent, and (iii) the corre-
lation among individual preferences in single-crossing domains. Remarkably,
no additional information about the shape of each preference relation is nec-
essary to guarantee strategy-proofness.

To put it in other terms, the results of this paper show that, in the
case of public goods, convexity of individual preferences is not necessary
to prevent manipulation, provided that a “certain amount of correlation”
among preferences is simultaneously imposed. Unfortunately, this is no
longer true when the collective choice problem refers to the allocation of
a private good among a finite number of agents. In that case, Saporiti [29]
have shown that intermediateness, a preference restriction essentially equiv-
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alent to single-crossingness, is not sufficient to ensure the existence of Pareto
efficient, anonymous and strategy-proof allocation rules.

Furthermore, even in the case of public goods relaxing convexity is costly,
because any extended median rule is A, U and SP on single-peaked prefer-
ences, without any restriction on the distribution of fixed ballots. However,
in our framework, the family characterized by A, U and SP coincides with
the class of positional dictators, which is a subset of extended median rules.

Finally, the paper also shows that the Representative Voter Theorem,
i.e. “the single-crossing version” of the Median Voter Theorem, has a well
defined strategic foundation, in the sense that its prediction can be imple-
mented in dominant strategies. However, this result only holds on a subdo-
main of single-crossing preferences, the rectangular one. So, relaxing sincere
voting is not free either.
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[3] Barberà, S., and M. Jackson, (1994), A characterization of social choice func-
tions for economies with pure public goods, Social Choice and Welfare 11,
241-52.

[4] Berga, D., (1998), Strategy-proofness and single-plateaued preferences, Math-
ematical Social Sciences 35, 105-20.

[5] Black, D., (1948), On the rationale of group decision making, Journal of Po-
litical Economy 56, 23-34.

[6] Border, K., and J. Jordan, (1983), Straightforward elections, unanimity and
phantom voters, Review of Economic Studies 50, 153-70.

[7] Calabrese, S., Epple, D., Romer, T., and H. Sieg, (2006), Local public good
provision: voting, peer effects, and mobility, Journal of Public Economics 90,
959-81.

[8] Ching, S., (1997), Strategy-proofness and “median voters”, International
Journal of Game Theory 26, 473-90.

[9] Demange, G., (1994), Intermediate preferences and stable coalition structures,
Journal of Mathematical Economics 23, 45-58.

21



[10] Eguia, J., (2007), Citizen candidates under uncertainty, Social Choice and
Welfare 29, 317-31.

[11] Ehlers, L., Peters, H., and T. Storcken, (2002), Strategy-proof probabilis-
tic decision schemes for one-dimensional single-peaked preferences, Journal of
Economic Theory 105, 408-34.

[12] Epple, D., Filimon, R., and T. Romer, (1993), Existence of voting and housing
equilibrium in a system of communities with property taxes, Regional Science
and Urban Economics 23, 585-610.

[13] Epple, D., and G. Platt, (1998), Equilibrium among jurisdictions when house-
holds differ by preferences and income, Journal of Urban Economics 43, 23-51.

[14] Epple, D., Romer, T., and H. Sieg, (2001), Interjurisdictional sorting and
majority rule: an empirical analysis, Econometrica 69, 1437-65.

[15] Epple, D., Romano, R., and H. Sieg, (2006), Admission, tuition and financial
aid policies in the market for higher education, Econometrica 74, 885-928.

[16] Gans, J., and M. Smart, (1996), Majority voting with single-crossing prefer-
ences, Journal of Public Economics 59, 219-37.

[17] Gibbard, A., (1973), Manipulation of voting schemes: a general result, Econo-
metrica 41, 587-601.

[18] Grandmont, J., (1978), Intermediate preferences and the majority rule, Econo-
metrica 46, 317-30.

[19] Kung, F., (2006), An algorithm for stable and equitable coalition structures
with public goods, Journal of Public Economic Theory 8, 345-55.

[20] List, C., (2001), A possibility theorem on aggregation over multiple intercon-
nected propositions, Mathematical Social Sciences 45, 1-13.

[21] Meltzer, A., and S. Richard, (1981), A rational theory of the size of govern-
ment, Journal of Political Economy 89, 914-27.

[22] Moulin, H., (1980), On strategy-proofness and single-peakedness, Public
Choice 35, 437-55.

[23] Moulin, H., (1988), Axioms of Cooperative Decision Making, Cambridge:
Cambridge University Press.

[24] Myerson, R., (1996), Fundamentals of social choice theory, Discussion Paper
No 1162, Math Center, Northwestern University.

[25] Persson, T., and G. Tabellini, (2000), Political Economics: Explaining Eco-
nomic Policy, Cambridge, MA: MIT Press.

22



[26] Roberts, K., (1977), Voting over income tax schedules, Journal of Public Eco-
nomics 8, 329-40.

[27] Rothstein, P., (1990), Order-restricted preferences and majority rule, Social
Choice and Welfare 7, 331-42.

[28] Rothstein, P., (1991), Representative voter theorems, Public Choice 72, 193-
212.

[29] Saporiti, A., (2005), Allocation rules on intermediate preference domains,
manuscript.

[30] Saporiti, A., (2007), Strategic voting on single-crossing domains, Discus-
sion Paper EDP-0617, Economics, University of Manchester. (Available on-
line at http://www.socialsciences.manchester.ac.uk/ disciplines/economics/
research/discussionpapers/pdf/EDP-0617.pdf.)
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