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Abstract

This paper analyzes the traditional unidimensional, two-party electoral competition game
when parties have mixed motivations, in the sense that they are interested in winning the elec-
tion, but also in the policy implemented after the contest. In spite of having discontinuous
payoffs, this game, refer to as the hybrid election game, is shown to be payoff secure and recip-
rocally upper semi-continuous. Conditional payoffs, however, are not quasi-concave. Hence, the
existence of a pure strategy Nash equilibrium (psne) is ensured only if parties have homogenous
interests in power. In that case, an equilibrium not only exists, but it is also unique. Instead, if
parties have heterogeneous motivations, depending upon the relationship between the electoral
uncertainty, the aggregate opportunism and its distribution across parties, a psne may or may
not exist. The mixed extension, however, is always better reply secure. Therefore, a mixed
strategy Nash equilibrium do indeed exist. These results generalize previous existence results
in unidimensional electoral competition.

JEL Code: C72, D72, D78.
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1 Introduction

Electoral competition between political parties is probably one of the most common and important

features of every representative democracy. A large body of literature has been concerned with this

process.1 This paper contributes to that literature by analyzing existence and uniqueness of Nash

equilibrium in the traditional unidimensional, two-party political competition game when parties

have mixed motivations, in the sense that they are interested in winning the election, but also in

the policy implemented after the contest.

∗I warmly thank the associate editor, two anonymous referees, Vincent Anesi, John Duggan, Jon Eguia, Paola
Manzini, Marco Mariotti, Horst Zank and seminar participants at the Universities of Exeter, Manchester, Queen
Mary (London), and Rochester, and at the meetings of the Association for Public Economic Theory (Marseille, 2005)
and the Society for Social Choice and Welfare (Istanbul, 2006) for useful comments. Any remaining error is my own
responsibility.

†Economics, University of Manchester, Arthur Lewis Building, Oxford Road, Manchester M13 9PL, United King-
dom. E-mail: alejandro.saporiti@manchester.ac.uk.

‡First Draft: April 2005.
1See, for instance, Roemer [27], Duggan [10] and Austen-Smith and Banks [3].
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Formal models of electoral competition originated in the famous location model of Hotelling [17].

In the simplest version of this model, two political parties or candidates simultaneously announce

a platform before the election, voters cast their votes, and the winner implements its announced

policy. The basic idea captured by this model is that, in a unidimensional (left-right) political

scale, each party can increase the number of votes by moving closer to the other party’s position.

Thus, if parties care only about the outcome of the election, which is the Downsian hypothesis,

and voters’ preferences admit the existence of a Condorcet winner, as it is the case when they

satisfy single-peakedness or single-crossing, then there is a unique Nash equilibrium in which both

parties propose the same policy (Hotelling [17], Downs [8]). The equilibrium platform is of course

the median of the distribution of voters’ most preferred policies (Hinich [15]). This result also holds

if there is uncertainty about individual preferences, provided that parties share a common prior

about the location of the median ideal point.2 However, in that case platforms converge to the

expected median (Calvert [6]).

Instead, if each party has an exogenous ideology, and cares only about how close the winning

policy is relative to its own ideological position, which is the Wittman’s [30] hypothesis, the con-

vergence to the median ideal policy holds only if there is no uncertainty about voters’ preferences

(Calvert [6], Roemer [25], Duggan and Fey [12]). Otherwise, under uncertainty, the game has a

pure strategy Nash equilibrium (psne), but equilibrium platforms do not converge (Roemer [26],

[27]).3 The reason for this is simple. As one party moves closer to the other, it becomes worse

off in the event that it wins, but at the same time it increases its chances of winning the contest.

Hence, parties face a trade-off between their ideology and winning the election, which results in an

equilibrium where their positions are different.

Surprisingly, the existence of Nash equilibria in the hybrid case, where parties have preferences

over policies, but also on the office itself, has not received much attention in the literature. This

assumption, referred to as the mixed motivation assumption (mma), is certainly more realistic than

the previous hypotheses about parties’ motivations. For example, the mma naturally arises if pro-

fessional politicians are parties’ leaders.4 Since politicians may namely be interested in their career

and, therefore, in winning the election, while regular party members may care more about policy

outcomes, it is natural to expect that both objectives will enter into the party payoff function with

some weight.5 Of course, these weights need not be the same across parties. Hence, heterogeneous

interests arise quite naturally as well.

To the best of my knowledge, Calvert [6] was the first to show that, if parties have mixed

motivations and there is no uncertainty about the median ideal point, then there exists a unique

psne in which platforms converge to the median position, provided that parties’ ideal policies are

not on the same side of the median. Otherwise, the ideal point that is closest to the median is a

Nash equilibrium.

Although Calvert [6] did not address the issue of equilibrium existence under uncertainty, he

showed that, if motivations are homogenous across parties, in the sense that they assign the same

relative weight on holding office, “small departures” from the office motivation and certainty model

2See Bernhardt et al. [5] for a model with private pooling, where candidates receive private signals about voters’
preferences before committing to their policy platforms.

3Morton [22] provided experimental evidence which supports the fact that uncertainty over voters’ preferences is
a major determinant of platform divergence when candidates are ideological.

4See Ortuño Ort́ın [23] for a model in this line.
5Using experimental evidence about the probabilistic ideological election game, Morton [22] found that subjects

in the laboratory placed a weight of approximately 68% on the expected payoffs from policies and 32% on winning.
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lead to “small changes” in the results. Thus, the conclusion that is possible to draw from his

analysis is that in the limit, when the game is arbitrarily close to the Downsian game, (represented

in Figure 1 below in the southwest corner), a psne always exists.
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Figure 1: Electoral competition with homogeneous motives

But, what about equilibrium existence in other cases? As Figure 1 illustrates, even if we

maintain the assumption that parties’ motives are homogeneous, there are still regions in the

two-dimensional “Motivation-Information Box” (shown as the dotted line) where the existence of

electoral equilibria remains an open question. Needless to say that this is also the case if we add a

third dimension into the analysis, differentiating party 1’s motivations from those of party 2.

More importantly, it is worth noting that answering such questions is by no means a trivial

exercise, because the hybrid election game is an infinite action game with discontinuous payoffs.

In effect, it is well known in the literature on political competition under uncertainty that the

probability of winning the election is discontinuous on the diagonal. This in turns may preclude

the existence of best replies and, therefore, the best reply correspondence need not be nonempty

valued, let alone upper hemi-continuous.

Such a problem does not affect the probabilistic Downsian electoral game (southeast corner of

the box), which always has a unique Nash equilibrium in pure strategies. Moreover, it does not

affect the probabilistic Wittman election game (northeast corner) either. As Roemer [26] showed,

purely ideological parties have continuous payoffs, in spite of the discontinuities of the probability

of winning function, so that best reply correspondences are always well defined. However, it could

be a problem for the hybrid game.

The first attempt to tackle this problem and find out the implications of the mma for the

existence of Nash equilibria in electoral games with uncertainty was done by Ball [4].6 This paper

was the first to correctly point out that the hybrid game may fail to possess a Nash equilibrium

in pure strategies. Moreover, it provided sufficient conditions for the existence of mixed strategy

6Before that, four papers studied candidates’ behavior with mixed motives. However, the first one, due to Mitchell
[21], has the disadvantage that the ideological component of the payoff function is given by the cost of departing from
the party’s ideological position, instead of by the expected utility over candidates’ proposals. The next two, due to
Wittman [30] and [31], wrongly assumed continuity of the probability of winning the election and quasi-concavity of
conditional payoffs, respectively, which are usually violated in the hybrid game. And, finally, Morton [22] analyzed
perfect Bayesian equilibria in a game where the type of each party is private information.
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Nash equilibria (msne). It has the disadvantage, however, that the probability of winning function

is exogenously given. That is, it is taken as a primitive, instead of being derived endogenously

from parties’ uncertainty about the median ideal point. Furthermore, the paper is also silent about

when a psne may exist, and how equilibria (either in pure or mixed strategies) may look like. It

doesn’t analyze uniqueness either.

In this paper, we reconsider the problem of existence and uniqueness of Nash equilibrium in

the hybrid election game with stochastic preferences. First, we show that, under the mma, parties’

payoffs are neither continuous nor semi-continuous. This implies that, unless both have homogenous

interests in power, the less ideological party may have incentives to undercut the other party’s

position, moving its own position to an alternative arbitrarily close to the platform of the other.

In cases like that, best reply correspondences are empty and, therefore, a psne does not exist. In

particular, this happens if one party is office motivated and the other entirely ideological.

Second, we prove that, in spite of having discontinuous payoffs, the hybrid game is payoff secure

and reciprocally upper semi-continuous. So, following Reny [24], we conclude that the blame for

the nonexistence of a Nash equilibrium in pure strategies for all parametric conditions can be

fully assigned to the violation of quasi-concavity. Moreover, we show that non-convexities matter

only if the relative interest in holding office is heterogeneous across parties.7 By contrast, in the

homogeneous case, regardless of whether the motivations are mixed or not, we prove that a unique

pure strategy Nash equilibrium always exists, obtaining as a particular case of that result the well

known Downsian and Wittman electoral equilibria.

Finally, in the case in which parties are distinctly concerned about winning the election, we

argue that the relatively more ideological party must take into account that the rival may be willing

to “copy” its platform. To avoid this, it must draw its proposal from a probability distribution.

This induces a similar behavior in the opposition. The paper proves that a pair of probability

measures that are best responses to each other always exists.8 Specifically, it shows that the mixed

extension of the hybrid election game is better reply secure. Therefore, invoking Reny [24], we

conclude that a mixed strategy Nash equilibrium do indeed exist.9 This extends Ball [4] to the case

where the function mapping candidates’ platforms to their probabilities of winning the election is

derived from primitives about electoral uncertainty, and it generalizes previous existence results in

unidimensional electoral competition.

2 The model

Consider a society with two political parties (candidates), noted 1 and 2, and a continuum of voters,

indexed by a type θ ∈ [0, 1]. Assume θ is distributed according with a continuous distribution

function F , with density f , and F (θm) = 1/2 for some θm ∈ (0, 1). Let [0, 1] denote the policy

space. Following Duggan and Fey [12], Bernhardt et al. [5] and many others in the literature,

suppose individual preferences are continuous, single-peaked and symmetric on [0, 1], and adopt

the usual utility representation given in A1:

Assumption (A1) u(x; θ) = −|x− θ|, where | · | is the absolute value on R.

7The necessity of this feature for nonexistence of psne was not addressed before, and it considerably sharpens
Ball’s [4] results. I thank the referee for this remark.

8Saporiti [28] offers more details about how equilibria may look like in a tractable version of the model.
9For other applications of mixed strategies in electoral competition, see Kramer [18], Laslier [20], Aragones and

Palfrey [2], Duggan and Jackson [11] and Bernhardt et al. [5].
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Let Ai = [0, 1] denote party i’s strategy set, with generic action (platform) xi, and A = A1×A2

the set of all strategy profiles. We refer to D(A) = {(x1, x2) ∈ A : x1 = x2} as the diagonal of

the product of the strategy sets; or, for conciseness, just as “the diagonal”. Like in the ordinary

electoral competition game, assume each party simultaneously announces a platform xi in [0, 1].

Then, given a proposal (x1, x2) ∈ A, each voter votes for the policy he likes the most, where

S(x1, x2) = {θ ∈ [0, 1] : u(x1; θ) > u(x2; θ)} denotes the set of types that support x1. The party

whose platform obtains more than half of the votes wins the election, and its policy is implemented.

Ties are broken by a random draw, so that each party wins with probability one half if all voters

are indifferent between the two platforms.

In addition to the uncertainty due to the possibility of a tie, parties are also uncertain about

voters’ preferences. Following Roemer [27], we assume parties perceive the fraction of types that

supports their platform with a certain noise. Formally, let ξ be an error term, distributed according

with a continuous distribution function H on [−β, β], β > 0, with density h, and H(0) = 1/2.

Assumption (A2) For each pair (x1, x2) 6∈ D(A), parties believe that the fraction of types sup-

porting x1 is F (S(x1, x2)) + ξ, and 1/2 if the strategy profile (x1, x2) ∈ D(A).10

Thus, given (x1, x2) ∈ A, the probability that party 1 attaches to winning the election is

p(x1, x2) =

{

1 −H
(

1/2 − F (S(x1, x2))
)

if (x1, x2) 6∈ D(A)

1/2 if (x1, x2) ∈ D(A),
(1)

where it is understood that H(y) = 0 if y ≤ −β and H(y) = 1 if y ≥ β. The probability that party

2 attaches to winning the contest takes an analogous form, and is given by 1 − p(x1, x2).

It is immediate from (1) that p(x1, x2) is discontinuous at every point on D(A), except at

(θm, θm), where θm is the median ideal point. As it happens in other applications, notably in price

competition, these discontinuities are created by the tie-breaking rule implicit in (1), according to

which, if parties coincide in their platforms at a certain point on the diagonal, indifferent voters

split equally among them, regardless of their distribution in a neighboring point arbitrarily close

to that location.

This “equally sharing” rule is the standard tie-breaking rule used in the literature on electoral

competition under uncertainty. And, except for a very recent article by Duggan and Jackson

[11] on multidimensional electoral competition, which assumes indifferent voters play symmetric

voting strategies, I am aware of no systematic analysis of political competition with endogenous

sharing rules or other tie-breaking rules.11 This is particularly true in the unidimensional two-

party election game since, with the exception of the hybrid game analyzed here, and Bernhardt et

al.’s [5] probabilistic Downsian game with private pooling, the rest always admit under reasonable

conditions the existence of a psne.

Let χi ≥ 0 be the intrinsic value that party i places on being in office, and θi the preferences

on [0, 1] that it represents. Define the function ψ(x, y; θ) = u(x; θ) − u(y; θ). Parties’ objective

functions are defined as follows:

Assumption (A3) For each strategy profile (x1, x2) ∈ A, party 1’s payoff function is given

by π1(x1, x2) = p(x1, x2)
(

ψ(x1, x2; θ
1) + χ1

)

. Similarly, party 2’s payoff is π2(x1, x2) = (1 −
p(x1, x2))

(

ψ(x2, x1; θ
2) + χ2

)

.

10Recall that, by A1, for each (x1, x2) 6∈ D(A), F (I(x1, x2)) = 0, where I(x1, x2) = {θ : u(x1; θ) = u(x2; θ)}.
11In price competition, this issue has been recently addressed by Hoernig [16].
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In words, A3 says that in our model political parties have preferences over the implemented

policy, but also on the office itself. Moreover, the payoffs are separable in these arguments. Of

course, this need not be the case, and one can imagine situations where parties care more about

policy if they win the election than if they lose. In addition, there might be other motivations to

consider. For example, a party may have preferences over its margin of victory (vote share), apart

from policies and winning the election. However, A3 seems the simplest case to begin with.

It is easy to see that the payoff functions of the traditional models of electoral competition are

particular instances of A3. In effect, if χi = 0, then πi(x) represents the objective function of the

Wittman game, where parties seek the best policy outcome from the election. On the other hand,

if χi → +∞, then each party maximizes the probability of winning the contest, without caring

at all about policies, which is the classical assumption of the Downsian game.12 The hybrid case,

where ∀i, χi > 0, and χ1 is not necessarily equal to χ2, is somewhere between these two extreme

and symmetric cases.

Regarding the specification of the mma adopted in A3, note that we follow Wittman [30], Ball

[4], Duggan [9] and Austen-Smith and Banks [3]; and, more generally, Ferejohn’s [13] idea that

policymakers enjoy some rents from being in power. But there is an alternative way to express

the mixed motivations. Following Calvert [6], Aragones and Palfrey [1] and Groseclose [14] assume

that the objective function of each party is a linear combination of the probability of winning the

election and a second component corresponding to its policy preferences. Specifically, using π̂j to

denote this alternative formulation of parties’ payoffs, we have that

π̂1(x1, x2) = λ1p(x1, x2) + (1 − λ1)p(x1, x2)ψ(x1, x2; θ
1),

π̂2(x1, x2) = λ2(1 − p(x1, x2)) + (1 − λ2)(1 − p(x1, x2))ψ(x2, x1; θ
2),

where λj is the weight that party j assigns on holding office. Simple algebraic manipulation shows

that, for the main purpose of our analysis, these two formulations are equivalent. In effect, denoting

χj =
λj

1−λj
, it follows that

π̂1(x1, x2) = (1 − λ1)p(x1, x2)
(

ψ(x1, x2; θ
1) + χ1

)

,

= (1 − λ1)π1(x1, x2),

π̂2(x1, x2) = (1 − λ2)(1 − p(x1, x2))
(

ψ(x2, x1; θ
2) + χ2

)

,

= (1 − λ2)π2(x1, x2).

Thus, since λj ∈ (0, 1), the equations above show that, for all j = 1, 2, π̂j is a strictly increasing

linear transformation of πj. Hence, the results about equilibrium existence and uniqueness derived

in Sections 3 and 4, for pure and mixed strategies, respectively, extend directly to this alternative

way to express the mma.

Finally, with respect to the technical consequences of A3, note that together with (1) it implies

that parties’ payoffs are discontinuous on D(A), except at (θm, θm). Furthermore, as Example 1

and Lemma 1 below show, πi is neither upper semi-continuous nor lower semi-continuous on A,13

12Notice that π̃i(x) = 1/χi πi(x) represents the same preferences than πi(x), and that limχ1→∞ π̃1(x) = p(x) and
limχ2→∞ π̃2(x) = 1 − p(x).

13A function f : Y → R on a nonempty and compact subset Y ⊂ R
k is upper semi-continuous (u.s.c.) at y if for

any sequence {yn} ⊆ Y such that yn → y, lim supn→∞ f(yn) ≤ f(y). On the other hand, f is lower semi-continuous

(l.s.c) at y if −f is u.s.c. at y.
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and except for the case where χ1 = χ2, the sum of the payoffs Π = π1 + π2 is also discontinuous

on D(A). The reason for this is the discontinuities in the probability of winning function entail

discontinuous shifts of the electorate from one party’s platform to the other. Therefore, if platforms

are not equally profitable for parties, total payoff also changes discontinuously.

Example 1 Suppose ξ and θ are uniformly distributed, and assume that θ1 < θm < θ2. Take

a point xδ = (θm + δ, θm + δ) ∈ D(A), δ > 0, and a sequence (xn
1 , x

n
2 ) = (θm + δ − 1

n , θm + δ),

that converges to xδ from the left as n → ∞. Since xn
1 < xn

2 , π1(x
n
1 , x

n
2 ) =

(

δ
2β − 1

4βn + 1
2

)

(χ1 +

1
n). Then, limn→∞ π1(x

n
1 , x

n
2 ) = χ1

2 + δχ1

2β > χ1

2 = π1(xδ). Similarly, consider now a sequence

(x̂n
1 , x̂

n
2 ) = (θm + δ + 1

n , θm + δ) that converges to xδ from the right. Since x̂n
1 > x̂n

2 , π1(x̂
n
1 , x̂

n
2 ) =

(

1
2 − δ

2β − 1
4βn

)

(χ1 −
1
n). Then, limn→∞ π1(x̂

n
1 , x̂

n
2 ) = χ1

2 − δχ1

2β < χ1

2 = π1(xδ). Hence, π1 is neither

l.s.c. nor u.s.c. at xδ. �

Lemma 1 Π = π1 + π2 is continuous on A if only if χ1 = χ2.

Proof. By A3, Π(x1, x2) = φ(x1, x2; θ
1, θ2) + ψ(x2, x1; θ

2) + χ2, where φ(x1, x2; θ
1, θ2) =

p(x1, x2)[ψ(x1, x2; θ
1) − ψ(x2, x1; θ

2) + (χ1 − χ2)]. Since u(· ; θ2) is continuous in x and χ2 is a

constant, ψ(· , · ; θ2)+χ2 is continuous on A. On the other hand, for any x̄1 6= x̄2, p(·) is continuous

at x̄ = (x̄1, x̄2), because H and F are continuous functions. Hence, by A1, φ(· , · ; θ1, θ2) is also con-

tinuous. On the contrary, if x̄1 = x̄2, then p(x̄1, x̄2) = 1/2. Consider a sequence xn = (xn
1 , x

n
2 ) ⊆ A,

such that (xn
1 , x

n
2 ) → (x̄1, x̄2). Note that φ(x̄1, x̄2; θ

1, θ2) = (χ1 − χ2)/2. Thus, if χ1 = χ2,

φ(x̄1, x̄2; θ
1, θ2) = 0. Taking the limit of φ(xn

1 , x
n
2 ; θ1, θ2) with (xn

1 , x
n
2 ) → (x̄1, x̄2), we have that

limxn→x̄ φ(xn
1 , x

n
2 ; θ1, θ2) = limxn→x̄ p(x

n
1 , x

n
2 )[ψ(xn

1 , x
n
2 ; θ1) − ψ(xn

2 , x
n
1 ; θ2)] = 0, since p(xn

1 , x
n
2 ) is

bounded and ψ(xn
1 , x

n
2 ; θ1)−ψ(xn

2 , x
n
1 ; θ2) converges to zero as xn → x̄. Therefore, Π is continuous

on A.

Instead, if χ1 6= χ2, then the term p(xn
1 , x

n
2 )(χ1 − χ2) does not converge to (χ1 − χ2)/2 as

xn → x̄, except at (x̄1, x̄2) = (θm, θm). Hence, the discontinuities of the probability of winning the

election create discontinuities not only in each payoff, but also in the sum. �

Note that Example 1 and Lemma 1 stand in sharp contrast with Roemer [26], where it is shown

that, in spite of the discontinuities of the probability of winning function, purely ideological parties

have continuous payoffs. More importantly, it suggests that even if only one party assigns an

arbitrarily small weight on winning the election, this completely invalidates Roemer’s [26] and [27]

equilibrium analysis, leaving the question of existence without answer. This disturbing observation

constitutes one of the main motivations of the current research.

Let G = [(Ai, πi); i = 1, 2] be the two-party hybrid electoral competition game under uncertainty,

where each party payoff function πi satisfies A1-A3.

Definition 1 A pure strategy Nash equilibrium of G is a strategy profile (x∗1, x
∗
2) ∈ A such that,

∀(x1, x2) ∈ A, π1(x
∗
1, x

∗
2) ≥ π1(x1, x

∗
2) and π2(x

∗
1, x

∗
2) ≥ π2(x

∗
1, x2).

We denote NE(G) the set of all psne of G. For the particular case where χ1 = χ2 = ∞, that

is, for the Downsian game, and for χ1 = χ2 = 0, which represents the Wittman game, it is well

known that this set is nonempty. We will not go further into the details of these results, except to

mention that the interested reader can find a comprehensive analysis in Roemer [27].
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On the other hand, in the hybrid case, where ∀i = 1, 2, χi > 0, the discontinuities of the

payoff functions do not allow to apply the traditional analysis of equilibrium existence, based

on the direct application of a fixed point theorem. However, it is possible to circumvent this

difficulty by invoking recent sufficient conditions given by Reny [24]. To do that, we introduce the

following notation and definitions. Let d : R
k → R+ be the usual distance function on R

k, and

Bδ(y) = {x ∈ R
k : d(x, y) < δ} the open ball about y with radius δ > 0.

Definition 2 Party 1 can secure a payoff α ∈ R at (x1, x2) ∈ A if there exists x̃1 ∈ A1 and δ > 0

such that, ∀x′2 ∈ Bδ(x2), π1(x̃1, x
′
2) ≥ α.

This definition can be extended in the obvious way to party 2. In words, party i can secure

a payoff α at x if it has a strategy that guarantees at least that payoff even if the other slightly

deviates from x.

Definition 3 G is payoff secure if ∀x ∈ A and ∀ǫ > 0, each party i can secure a payoff of πi(x)− ǫ
at x.

Payoff security requires that for every profile x ∈ A, each party has a strategy that virtually

guarantees the payoff he receives at x even if the other slightly deviates from x.

Let π : A → R
2 be the vector payoff function of G, defined as, ∀x ∈ A, π(x) = (π1(x), π2(x)).

The graph of π is a subset of A × R
2. That is, gr(π) = {(x, π) ∈ A × R

2 : ∀i, πi(x) = πi}. Let

cl(gr(π)) be the closure of the graph of the vector payoff function.14

Definition 4 G is reciprocally upper semi-continuous if ∀(x̂, π̂) ∈ cl(gr(π)) such that ∀i, πi(x̂) ≤
π̂i, it follows that ∀i, πi(x̂) = π̂i.

Reciprocally upper semi-continuity (r.u.s.c.) generalizes the condition introduced by Dasgupta

and Maskin [7] that the sum of the players’ payoffs be upper semi-continuous. In effect, suppose Π is

u.s.c. on A, and assume, by contradiction, there exists (x̄, π̄) ∈ cl(gr(π)) such that ∀i, πi(x̄) ≤ π̄i,

and π(x̄) 6= π̄. Then, π1(x̄) + π2(x̄) < π̄1 + π̄2. Consider a sequence (xn
1 , x

n
2 ) ⊆ A such that

(xn
1 , x

n
2 ) → (x̄1, x̄2) and ∀i, lim supxn→x̄ πi(x

n
1 , x

n
2 ) = π̄i. Since (x̄, π̄) ∈ cl(gr(π)), this sequence

always exists. Then, lim supxn→x̄ Π(xn) = π̄1 + π̄2. On the other hand, lim supxn→x̄ Π(xn) ≤
π1(x̄) + π2(x̄), because Π is u.s.c. on A. Hence, π̄1 + π̄2 ≤ π1(x̄) + π2(x̄), a contradiction. Thus, if

Π is u.s.c., the game must be r.u.s.c. Now, we turn to the equilibrium analysis.

3 Pure strategy analysis

This section contains three main results. First of all, we prove in Section 3.1 that the hybrid election

game is payoff secure and reciprocally upper semi-continuous. Then, in Section 3.2, we present an

example which illustrates the fact that, with mixed motives, the unidimensional two-party electoral

competition game does not always possess a Nash equilibrium in pure strategies. As we said in the

Introduction, this problem has been already pointed out in Ball [4]. However, here we argue that,

because Reny’s conditions are satisfied, the nonexistence of a psne for all parametric conditions

is a direct consequence of the violation of quasi-concavity. Finally, in Section 3.3 we show that

non-convexities matter only if the relative interest in holding office is heterogeneous across parties

(i.e. only if χ1 6= χ2). Otherwise, a pure strategy Nash equilibrium not only exists, but it is also

unique (Section 3.4).

14Recall that (x∗, π∗) ∈ cl(gr(π)) if and only if ∀ ǫ > 0, Bǫ(x
∗, π∗) ∩ gr(π) 6= ∅.
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3.1 Reny’s conditions

Let’s start showing that G satisfies payoff security and r.u.s.c. These properties will be useful not

only to understand why a psne does not always exist, but also to show in Section 4 that the mixed

extension is better reply secure (yet to be defined).

Lemma 2 G is payoff secure.

Proof. Suppose, by contradiction, ∃ x̄ = (x̄1, x̄2) ∈ A and ǭ > 0 such that for some i the payoff

πi(x̄) − ǭ cannot be secured at x̄. Without loss of generality, assume i = 1. The fact that party

1 cannot secure π1(x̄) − ǭ at x̄ implies that ∀x̃1 ∈ A1, and ∀δ > 0, ∃ x′2 ∈ Bδ(x̄2) such that

π1(x̃1, x
′
2) < π1(x̄1, x̄2) − ǭ. If (x̄1, x̄2) 6∈ D(A), then π1 is continuous at x̄. Therefore, ∃δ̄ > 0 such

that ∀x′2 ∈ Bδ̄(x̄2), π1(x̄1, x
′
2) > π1(x̄1, x̄2) − ǭ. That is, if x̄1 6= x̄2, we have a strategy for party

1, x̄1, and an interval for x2, determined by δ̄ > 0, which contradict our initial hypothesis. Hence,

(x̄1, x̄2) ∈ D(A), and π1(x̄) = χ1/2. If χ1 = 0, then π1 is continuous on A, (see Roemer [26],

Lemma 1), so that the previous argument goes through as before. Instead, if χ1 > 0, three cases

are possible, depending on the position of x̄1 and θ1 over [0, 1].15

Case 1: θ1 < x̄1 < θm. Consider an alternative x̃1 ∈ A1, x̃1 > x̄1, close enough to x̄1. Define

δ̄ = d(x̃1, x̄1) and Bδ̄(x̄2). We choose x̃1 so that θ1 < x̄1 − δ̄ and x̄1 + δ̄ < θm. Since θ1 < x̄1 < θm,

this number always exists. By A1, ∀x′2 ∈ Bδ̄(x̄2), π1(x̃1, x
′
2) = p(x̃1, x

′
2)
(

χ1 − (1 − α)δ̄
)

, where

α ∈ (−1, 1). Notice that p is discontinuous at x̄, so p(x̃1, x
′
2) is well above 1/2. On the other

hand, p is bounded. Therefore, ∃ δ̄ > 0 small enough such that ∀x′2 ∈ Bδ̄(x̄2) and ∀ǫ > 0,

π(x̃1, x
′
2) > χ1/2 − ǫ, a contradiction.16

x1θ
10

B
δ
(x2)

θm

(

(

x̃1

x
′
2

x1 θ
10

B
δ
(x2)

θm

(

(

x̃1

x
′
2

Case 1 Case 2

Figure 2: Payoff security

Case 2: x̄1 < θ1 < θm. Like in the previous case, consider x̃1 > x̄1 and δ̄ = d(x̃1, x̄1), such that

x̄1 + δ̄ < θ1. By A1, for all x′2 ∈ Bδ̄(x̄2), π1(x̃1, x
′
2) = p(x̃1, x

′
2)
(

(1 − α)δ̄ + χ1

)

, α ∈ (−1, 1). Again,

p(x̃1, x
′
2) > 1/2. Moreover, (1 − α)δ̄ > 0. Hence, ∀x′2 ∈ Bδ̄(x̄2) and ∀ǫ > 0, π(x̃1, x

′
2) > χ1/2 − ǫ:

contradiction.

Case 3: θ1 < x̄1 = θm. Since the probability of winning p(x1, x2) is continuous at (θm, θm),

π1(θm, · ) is continuous in x2. Therefore, applying the argument based on continuity, we get the

desired result. �

15It is easy to check that the remaining situations are variations of these three cases.

16Concretely, this is true for any δ̄ <
(p(x̃1,x′

2
)−1/2) χ1

p(x̃1,x′

2
)(1−α)

.
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Lemma 3 For all χ1, χ2 ∈ R++, G is reciprocally upper semi-continuous.

Proof. Suppose, by contradiction, there exists (x̄, π̄) ∈ cl(gr(π)) such that ∀i, π̄i ≥ πi(x̄), and

(π1(x̄), π2(x̄)) 6= (π̄1, π̄2). Then, (x̄1, x̄2) ∈ D(A). By hypothesis, there exists i such that π̄i >

πi(x̄). Without loss of generality, suppose i = 1. Consider a sequence (xn
1 , x

n
2 ) ⊆ A such that

(xn
1 , x

n
2 ) → (x̄1, x̄2) and ∀i, lim supxn→x̄ πi(x

n
1 , x

n
2 ) = π̄i. Since (x̄, π̄) ∈ cl(gr(π)), this sequence

always exists. Notice that π̄1 = p(xn
1 , x

n
2 )χ1. On the other hand, π1(x̄1, x̄2) = 1/2χ1. Therefore,

[1 − p(xn
1 , x

n
2 )]χ2 < 1/2χ2. But this implies that π̄2 < π2(x̄): contradiction. Hence, G is r.u.s.c. �

By Lemma 1, G is also reciprocally upper semi-continuous if either χ1 = χ2 = 0, or χ1 = χ2 = ∞,

because Π is continuous on A. On the contrary, it violates r.u.s.c. if, for example, one party is

office motivated, and the other entirely ideological; i.e., if for some i 6= j, χi = 0 and χj = +∞.

Intuitively, this happens because when a point on the diagonal is reached, parties’ payoffs all jump

in the same direction, except of course at the median ideal policy.17 Interestingly enough, our next

proposition also indicates that, under the previous assumption, that is, if parties’ relative interest

in power is completely opposite, the hybrid election game not only violates r.u.s.c, but also a psne

does not exist.

Assumption (A4) Party 1 is policy motivated (i.e., χ1 = 0), and represents a type θ1 6= θm.

Party 2 is office motivated (i.e., χ2 → +∞).

Proposition 1 If G satisfies A1-A4, then NE(G) = ∅.

Proof. Fix the strategy profile (θm, θm) ∈ A, and consider party 1’s deviation x1 6= θm. By A1,

F (S(x1, θm)) < 1/2. Then, p(x1, θm) = 1−H[1/2−F (S(x1, θm))] < 1/2 = p(θm, θm). By continuity

of F and H, ∃ δ > 0 such that ∀x1 ∈ Bδ(θm), p(x1, θm) > 0. And again, by A1, for ǫ = d(θm, θ
1)

and ∀x1 ∈ Bǫ(θ
1), ψ(x1, θm; θ1) > 0. Hence, ∀x1 ∈ Bǫ(θ

1) ∩ Bδ(θm), π1(x1, θm) > 0 = π1(θm, θm),

implying that (θm, θm) 6∈ NE(G).

Next, consider any (x, x) ∈ D(A), x 6= θm. Let δ = d(x, θm). By A1, ∀x̃ ∈ Bδ(θm), F (S(x, x̃)) <

1/2 and, therefore, π2(x, x̃) = 1−p(x, x̃) > 1/2 = π2(x, x). Thus, (x, x) 6∈ NE(G). Finally, suppose

there exists (x1, x2) ∈ A − D(A) such that (x1, x2) ∈ NE(G). Without loss of generality, let

θ1 > θm. Then, x1 ≥ θm. Suppose not. If x2 > x1, party 1 can deviate to x̃1 = θm, and increase

both ψ(· , x2, θ
1) and p(· , x2). On the other hand, if x2 < x1, the deviation x′2 = x1 increases party

2’s payoff. Therefore, x1 ≥ θm. Moreover, if x1 = θm, then (θm, x2) 6∈ NE(G), since 2 can deviate

to θm and increase its probability of being in power. Thus, x1 > θm. But then, for any x2 ∈ [0, 1],

x2 6= x1, there exists δ > 0 such that ∀x̃2 ∈ (x1 − δ, x1), p(x1, x̃2) < p(x1, x2), contradicting that

(x1, x2) ∈ NE(G).18 �

Proposition 1 reveals a displeasing feature of unidimensional electoral competition. However,

since the result is obtained under A4, which is an extreme hypothesis about parties’ motives,

one could initially think that the problem is created by that assumption. Unfortunately, this is

not the case. To see this in more detail, in the next section we discuss the uniform distribution

17For instance, let χ1 = 0 and χ2 → +∞, and consider xn = (xn
1 , x

n
2 ) = (x̄, x̄ − 1

n
) ⊆ A, where n > 0 and

θm < x̄ < θ1. Then, party 1’s payoff, p(xn
1 , x

n
2 )ψ(xn

1 , x
n
2 ; θ1), is positive and converges to 0 as n → ∞, while party

2’s payoff, 1 − p(xn
1 , x

n
2 ), increases first above 1/2, and then it drops down to 1/2 when (x̄, x̄) is reached.

18That is, if x1 > θm, party 2 would like to choose the largest platform that is just below x1. However, since the
policy space is a continuum, this value is not well defined.
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version of the hybrid election game. The example confirms that the message coming out from

Proposition 1 is not an artifact of A4, but a more general feature of electoral competition. In

particular, it points out that, if parties have heterogeneous interests in power, (i.e., if χ1 6= χ2),

though not necessarily opposite, then the existence of a psne depends upon the relationship between

the electoral uncertainty, the aggregate level of opportunism and its distribution among political

parties.

3.2 Uniform distribution

Suppose ξ is uniformly distributed on [−β, β]. Let θ1 < θm < θ2 and χi > 0 for all i. Consider

an equilibrium candidate (x∗1, x
∗
2) for this version of the hybrid game, with the property that

θ1 < x∗1 < x∗2 < θ2. Near the equilibrium, parties’ payoffs can be rewritten as

π1(x1, x2) = p(x1, x2) (x2 − x1 + χ1) ,

π2(x1, x2) = (1 − p(x1, x2)) (x2 − x1 + χ2) ,

where p(x1, x2) = 1
2β [F (S(x1, x2)) −

1
2 + β] if x1 6= x2, and p(x1, x2) = 1/2 otherwise. Taking the

first order conditions, we have

f(x̂) (x2 − x1 + χ1) − 2β = 2F

(

x1 + x2

2

)

− 1, (2)

−f(x̂) (x2 − x1 + χ2) + 2β = 2F

(

x1 + x2

2

)

− 1.

Assuming that θ is also uniformly distributed on [0, 1] and solving (2), it follows that x∗1 =

1/2 − β + χ1/2 and x∗2 = 1/2 + β − χ2/2. It is easy to verify that, if 2β − 1 < χi < 2β, then the

pair of platforms

(x∗1, x
∗
2) =

(

1

2
− β +

χ1

2
,

1

2
+ β −

χ2

2

)

constitutes indeed a Nash equilibrium of the game. The first condition, 2β − 1 < χi, ensures that

x∗1 > 0 and x∗2 < 1. On the other hand, in order to guarantee that x∗1 < x∗2, we need

χ1 + χ2 < 4β, (3)

which is fulfilled if χi < 2β for all i. In fact, this implies that x∗1 < θm < x∗2.
19

Contrary, if (3) is not satisfied, that is, if the aggregate level of opportunism, measured by

χ1 + χ2, is relatively high compared with the electoral uncertainty, represented by β, then (x∗1, x
∗
2)

is not an equilibrium. Is there any other candidate? Since θ1 < θm < θ2, it is clear that x1 > x2

cannot be a Nash equilibrium either. Hence, the only remaining possibility is x1 = x2.

Assume that χ1 + χ2 ≥ 4β. Consider first the case where parties have homogeneous motiva-

tions, i.e. χ1 = χ2 = χ. Take the pair (x1, x2) = (θm, θm) as the equilibrium candidate. Then

∀i, πi(θm, θm) = χ/2. Consider party 1’s deviation to x′1 = θm − δ, δ > 0. (Recall that deviations

to the right of θm or below θ1 are not profitable for 1). Then,

π1(x
′
1, θm) =

−δ2

4β
+

(

1

2
−
χ1

4β

)

δ +
χ1

2
.

19Second order conditions also hold, because ∀i, ∂2πi/∂x
2
i = −2 < 0.
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This deviation is profitable, that is, π1(x
′
1, θm) > π1(θm, θm), if and only if δ < 2β − χ. But, since

χ ≥ 2β, this requires δ < 0, a contradiction.

In the same way, consider party 2’s deviation to x′2 = θm + δ, δ > 0. Following the same

reasoning, π2(θm, x
′
2) > π2(θm, θm) if and only if δ < 2β − χ, which contradicts again the initial

hypothesis. Therefore, since 2 cannot improve its payoff by deviating to the left of θm or above θ2,

it follows that (θm, θm) is indeed a pure strategy Nash equilibrium of G.20

What about the other case in which χ1 6= χ2? Is (θm, θm) a psne? As before, a deviation

is profitable for party i only if δ < 2β − χi. Suppose χ1 = 3β/2 and χ2 = 5β/2. Note that we

still have χ1 + χ2 ≥ 4β. Therefore, there is no psne with x1 < x2. Moreover, for β > 1/2 and

δ < 1/4, any deviation x′1 = θm − δ is such that π1(x
′
1, θm) > π1(θm, θm). So, (θm, θm) is not a

Nash equilibrium either. Finally, since x1 > x2 and x1 = x2 6= θm cannot be equilibrium strategies,

it follows that, for these values of χ1, χ2 and β, the hybrid election game does not possess a psne.

3.3 Equilibrium existence

The previous section offers interesting insights about electoral competition. First, it shows that,

although χi > 0 creates discontinuities in parties’ payoffs, this does not necessarily preclude the

existence of a psne. At least in the uniform distribution case, no matter how different are χ1 and

χ2, if the aggregate level of opportunism is low relative to the electoral uncertainty, then a psne

always exists. In the example, sufficient conditions are 2β − 1 < χi < 2β for all i = 1, 2. Moreover,

in that case the equilibrium is such that x∗1 < x∗2. That is, equilibrium platforms do not converge,

though x∗i → θm as χi → 2β.

On the other hand, when the aggregate level of opportunism is high, (that is, when (3) does

not hold), and it is relatively more concentrated in one party, then a psne may not exist. In the

example, this occurs if (i) χ1 + χ2 ≥ 4β, and (ii) χ1 < 2β. This result is driven by two forces. On

one hand, the relatively more opportunistic party precludes equilibria with policy differentiation.

On the other, the relatively more ideological party blocks, due to its excessive policy orientation, a

Nash equilibrium at the median position.

Remarkably, in our model the nonexistence of a psne is not related with the dimensionality of

the policy space, nor the heterogeneity of interests in the electorate, which are usually viewed in

the literature as the main causes behind existence problems.21 In this regard, notice that the model

satisfies two extremely nice properties, frequently invoked to guarantee equilibria: (i) the policy

space is unidimensional; and (ii) voters’ preferences are single-peaked and symmetric, so that they

admit the existence of a unique Condorcet winner.

Moreover, contrary to Ball [4], we argue that it is not directly related with neither, the discon-

tinuities of the probability of winning function, nor the mixed motivations. As Lemmas 2 and 3

already showed, G is payoff secure and r.u.s.c. for all χ1, χ2 ∈ R++. Thus, following Reny’s [24]

Corollary 3.3, our game should always possess a psne, provided that each party’s payoff function

is quasi-concave in its own strategy. This shows that the real blame for the failure of the hy-

brid electoral competition game to possess a Nash equilibrium in pure strategies for all parametric

20That is, provided that parties’ benefits of holding office are sufficiently high relative to the uncertainty, the
convergence to the median ideal policy still holds under mixed motivations. This is consistent with Calvert [6], who
showed that “small departures” from the classic assumptions (i.e., office motivation and certainty) lead to only “small
departures” from convergence.

21As we immediately show, it is due to the heterogeneity of interests among parties!
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conditions can be fully assigned to the violation of quasi-concavity.22 Example 2 below further

illustrates this point.

Example 2 Consider the uniform case studied before. Fix β = 1/2 and x2 = 49
100 . Assume χ1 = 3

4
and θ1 = 1

4 . Under these conditions, party 1’s conditional payoff can be written as

π1(x1, x2) =



























1
2

(

x1 + 49
100

) (

x1 + 37
50

)

if 0 ≤ x1 <
1
4 ,

1
2

(

x1 + 49
100

) (

31
25 − x1

)

if 1
4 ≤ x1 <

49
100 ,

3
8 if x1 = 49

100 ,

1
2

(

151
100 − x1

) (

31
25 − x1

)

if 49
100 < x1 ≤ 1.

Notice that π1(3/8, 49/100) = 0.3741125, limx1→−49/100 π1(x1, x2) = 0.3675 and

limx1→+49/100 π1(x1, x2) = 0.3825. Therefore, π1(· , x2) is not quasi-concave in x1, since we can

take for instance the convex combination xλ
1 = (1 − λ)3

8 + λ 491
1000 and get π1(x

λ
1 , 49/100) <

min{π1(3/8, 49/100), π1(491/1000, 49/100)} for all λ ∈ (0, 1). �

Regarding equilibrium existence, however, note that the non-convexities of the conditional pay-

offs are important only if the relative interest in power is heterogeneous across parties. In effect,

if parties have heterogeneous motivations, then there is no reason to believe they will locate at the

median, or on their own ideological side. Contrary, in order to undercut the rival’s proposal, they

may find profitable to move their platforms to the other party’s ideological arena. So, in principle,

the game could reach a point on the diagonal where the discontinuities and non-convexities play

an active role against existence. In fact, this is not just a possibility. As we saw, it happens indeed

under certain parameters’ values.

By contrast, if motivations are homogeneous, (i.e., if χ1 = χ2), parties never find it profitable

to behave in the way depicted above. Therefore, under the conditions specified below, the uni-

dimensional, two-party electoral competition game always possesses a Nash equilibrium in pure

strategies. For the uniform distribution, this was already illustrated in Section 3.2, since χ1 = χ2

led to an equilibrium where both parties converge to the median ideal policy, or to an equilibrium

where each candidate plays a pure strategy in its own ideological side. Now, we generalize the

result for any probability distribution.

To do that, we introduce the following two additional assumptions.

Assumption (A5) θ1 < θm < θ2.

In words, A5 simply says that party 1 is left-oriented and party 2 right-oriented. As Calvert [6]

reckoned, this case where parties’ policy goals are opposed to one another relative to the electorate

seems the important case to focus on.

Assumption (A6) log(p(x1, x2)) and log(1 − p(x1, x2)) are concave in x1 and x2, respectively.

The last assumption is certainly not nice. However, it is standard in the literature on electoral

competition with ideological parties. The point is that, as it happens in the probabilistic version

of the Wittman game, no simple conditions are known to ensure the concavity of the probability

of winning function. For more on this, see the discussion in Roemer [27].

Now we state and prove our first theorem.

22Wittman [30] showed that conditional payoffs are concave. However, the argument rested on the assumption that
the probability of winning the election is continuous, which is obviously not true.
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Theorem 1 If G verifies A1-A3, A5 and A6 and χ1 = χ2, then NE(G) 6= ∅.

Proof. Consider the following restricted game Ĝ = [(Âi, log(πi|Â)); i = 1, 2], where Â1 = [0, θm],

Â2 = [θm, 1], and πi|Â represents the restriction of πi over Â = Â1× Â2. Note that, Âi is nonempty,

compact and convex, and log(πi|Â) is continuous, because p(x1, x2) is continuous on Â. Moreover,

log(π1|Â(x1, x2)) = log(p(x1, x2)) + log(ψ(x1, x2; θ
1) + χ1),

log(π2|Â(x1, x2)) = log(1 − p(x1, x2)) + log(ψ(x2, x1; θ
2) + χ2).

Hence, for each fixed value of xj , log(πi|Â), i 6= j, is concave on xi. And using Kakutani’s fixed

point theorem, it follows that there exists a strategy profile (x∗1, x
∗
2) ∈ Â such that ∀ (x1, x2) ∈ Â,

π1|Â(x∗1, x
∗
2) ≥ π1|Â(x1, x

∗
2) and π2|Â(x∗1, x

∗
2) ≥ π2|Â(x∗1, x2). Thus, (x∗1, x

∗
2) is a psne of Ĝ.

Next, we show that (x∗1, x
∗
2) is also a psne of the original game G = [(Ai, πi); i = 1, 2]. To do

that, we expand the set of strategies of both parties, and we study the incentives for unilateral

deviations from the equilibrium candidate. For brevity, with carry out the analysis for party 1, but

a similar argument also applies to the other party. There are two cases to consider, depending on

the features of the equilibrium in Ĝ.

Case 1. If x∗1 = x∗2 = θm, then it is immediate to see that there is no deviation x̃1 > θm such that

π1(x̃1, θm) > π1(θm, θm) = χ1/2. In effect, this would require (p(x̃1, θm)− 1/2)χ1 + p(x̃1, θm)(θm −
x̃1) > 0. However, p(x̃1, θm) < 1/2, θm < x̃1, and χ1 ≥ 0. Therefore, such alternative x̃1 does not

exist, and (θm, θm) ∈ NE(G).

Case 2. If x∗1 < x∗2, then three cases are possible. Suppose first x∗1 < θm = x∗2. Then, party 1’s

conditional payoff log(π1(x1, θm)) is continuous and concave on A1, and

arg max
A1

π1(x1, x
∗
2) = x∗1. (∗)

That is, party 1’s best response to θm does not change in going from Â1 = [0, θm] to A1 = [0, 1].

Similarly, if x∗1 < θm < x∗2, then (∗) holds, because log(π1(x1, x
∗
2)) is continuous everywhere except

at x∗2, and it drops down to the right of x∗2. Party 1’s conditional payoff is not longer concave, but

it is strictly quasi-concave, so that its unique maximum on A1 coincides again with its restricted

maximum on Â1.

Finally, assume x∗1 = θm < x∗2. In this case, we cannot conclude that (∗) holds, because x∗1
is a corner solution in the restricted game. Therefore, π1(x1, x

∗
2) could increase to the right of

θm. However, we claim that such a pair of strategies cannot be a psne of Ĝ. Instead, suppose

(x∗1, x
∗
2) ∈ NE(Ĝ), where NE(Ĝ) is the set of psne of Ĝ. Differentiating πi with respect to xi and

evaluating it at (x∗1, x
∗
2), we have that

1

2
(x∗2 − x∗1 + χ) h

(

1

2
− F

(

x∗1 + x∗2
2

))

f

(

x∗1 + x∗2
2

)

≥ p(x∗1, x
∗
2),

and
1

2
(x∗2 − x∗1 + χ) h

(

1

2
− F

(

x∗1 + x∗2
2

))

f

(

x∗1 + x∗2
2

)

= 1 − p(x∗1, x
∗
2).

But p(x∗1, x
∗
2) > 1/2. Hence, these conditions cannot be simultaneously satisfied. This complete

the proof. �

14



The result above generalizes the well known existence results corresponding to the Downsian

and the Wittman electoral game. It clearly shows that the failure of the hybrid election game

to always possess a psne does not lie behind the discontinuities of the payoff functions nor the

mixed motivation assumption, but on parties’ heterogeneous interests in power. Instead, in the

homogeneous case, if parties locate on the diagonal, it must be at the median ideal policy. Hence,

the discontinuities and non-convexities of the payoffs do not play a major role. This explain why

“positive results” predominate all around Figure 1, where parties’ (homogeneous) motivations are

represented in the width of the rectangle.

As Section 3.2 suggests, however, things become much more complicated when we add a third

dimension into the analysis, differentiating party 1’s motivation from those of party 2. To deal

with these cases, in Section 4 we analyze whether the mixed extension of the hybrid election game

possesses a Nash equilibrium. Before that, however, we close this section examining the number of

psne in the homogeneous case.

3.4 Uniqueness

Having shown that the homogeneous version of the hybrid electoral competition game always has

a psne, we can now ask about the cardinality of NE(G). To do that, we assume until the end of

this section that the hypotheses of Theorem 1 hold.

Proposition 2 Suppose the hybrid election game G satisfies A1-A3, A5 and A6, and let χ1 = χ2 =

χ. Then, NE(G) is a singleton.

The proof of Proposition 2 rests on three results. The first one says that, if the hybrid game

has a psne on the diagonal, it must be at the median ideal policy, so that parties’ payoffs around

the equilibrium are always continuous and differentiable.

Lemma 4 If there exists (x∗1, x
∗
2) ∈ NE(G) such that x∗1 = x∗2, then (x∗1, x

∗
2) = (θm, θm).

Proof. Without loss of generality, suppose there exists (x∗1, x
∗
2) ∈ NE(G) such that x∗1 = x∗2 < θm.

Then, π2(x
∗
1, x

∗
2) = 1/2χ. Consider x′2 = x∗2 + ǫ, where ǫ > 0 and x∗2 < x′2 < θm. It is easy

to see that π2(x
∗
1, x

′
2) = (1 − p(x∗1, x

′
2)) (χ + ǫ). Moreover, since 1 − p(x∗1, x

′
2) > 1/2 and ǫ > 0,

π2(x
∗
1, x

′
2) > π2(x

∗
1, x

∗
2), contradicting that (x∗1, x

∗
2) ∈ NE(G). �

Consider again the restricted game Ĝ = [(Âi, log(πi|Â)); i = 1, 2] introduced in the proof of

Theorem 1, and denote NE(Ĝ) the set of psne of Ĝ. Our second result says that every psne of the

hybrid game is also a Nash equilibrium of Ĝ.

Lemma 5 NE(G) ⊆ NE(Ĝ).

Proof. Assume, by contradiction, ∃ (x∗1, x
∗
2) ∈ NE(G) such that (x∗1, x

∗
2) 6∈ NE(Ĝ). Then, either

x∗1 ∈ (θm, 1], or x∗2 ∈ [0, θm) or both. Without loss of generality, suppose x∗1 > θm. By Lemma 4,

two cases are possible.

Case 1: x∗2 < x∗1. Then, x∗2 ≥ θm, and π1(x
∗
1, x

∗
2) = p(x∗1, x

∗
2)(x

∗
2 − x∗1 + χ). Moreover, since

p(x∗1, x
∗
2) < 1/2 and x∗2 < x∗1, it follows that [p(x∗1, x

∗
2) − 1/2]χ + p(x∗1, x

∗
2)[x

∗
2 − x∗1] < 0. That is,

π1(x
∗
1, x

∗
2) < 1/2χ. Therefore, party 1 can profitably deviate to x′1 = x∗2, a contradiction.
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Case 2: x∗2 > x∗1. First, note that x∗2 ≤ θ2. Therefore, around the equilibrium, π1(x1, x2) =

p(x1, x2)(x2 − x1 + χ) and π2(x1, x2) = (1− p(x1, x2))(x2 − x1 + χ). Differentiating πi(x1, x2) with

respect to xi, and taking its value at (x∗1, x
∗
2), we have that

1

2
(x∗2 − x∗1 + χ) h

(

1

2
− F

(

x∗1 + x∗2
2

))

f

(

x∗1 + x∗2
2

)

− p(x∗1, x
∗
2) = 0 (4)

−
1

2
(x∗2 − x∗1 + χ) h

(

1

2
− F

(

x∗1 + x∗2
2

))

f

(

x∗1 + x∗2
2

)

− (1 − p(x∗1, x
∗
2)) = 0, (5)

where the right hand side of (4), (respectively, (5)) follows from the first order conditions, because

x∗i is an interior maximum of πi(·, x
∗
j ). However, assuming that (4) holds, note that (5) cannot be

true. If p(x∗1, x
∗
2) < 1, then the left hand side of (5) is negative. On the other hand, if p(x∗1, x

∗
2) = 1,

then H
(

1
2 − F

(

x∗
1+x∗

2
2

))

= 0 ⇒ h
(

1
2 − F

(

x∗
1+x∗

2
2

))

= 0, because 1
2 − F

(

x∗
1+x∗

2
2

)

< −β. So,

substituting this into (4), we have that −1 = 0, a contradiction. �

Finally, let’s show that Ĝ has a unique psne. As we will immediately see, the proof exploits

that this game is continuous and concave, with unidimensional strategy sets, which makes relatively

simple to prove that the best reply correspondence is a contraction mapping.

Lemma 6 #NE(Ĝ) = 1.

Proof. For all i 6= j, and xj ∈ Âj , let ri(xj) = {x̃i ∈ Âi : x̃i ∈ arg maxxi∈Âi
log(πi|Â(xi, xj))}

denote party i’s best replies to platform xj . The properties of Ĝ ensures that ri(xj) is a singleton.

Abusing a bit the notation, let us refer to ri(·) as the best reply function of i, and to r(·) =

(r1(·), r2(·)) as the best reply mapping of Ĝ, understanding that, for each (x1, x2) ∈ Â, r(x1, x2) =

r1(x2) × r2(x1).

We want to prove that r(·) is a contraction mapping. That is, we want to show that r(·) has

a unique fixed point, which is also the unique psne of Ĝ. Since Âi is a closed and convex subset

of real line, a sufficient condition for r(·) to be a contraction is, (Vives [29], pp. 47), ∀i 6= j, and

∀(xi, xj) ∈ Â,
∂2 log(πi|Â(xi, xj))

∂x2
i

+
∣

∣

∣

∂2 log(πi|Â(xi, xj))

∂xi∂xj

∣

∣

∣
< 0. (6)

Moreover, since for every pair (x1, x2) ∈ Â, we have that r1(x2) ≥ θ1 and r2(x1) ≤ θ2, we can

restrict our attention to the subset of strategy profiles in [θ1, θm] × [θm, θ
2].

Let us now check that log(π1|Â) satisfies (6).23 Note first that

∂2 log(π1|Â(x1, x2))

∂x2
1

=
∂2 log(p(x1, x2))

∂x2
1

−
1

[ψ(x1, x2; θ1) + χ]2
, (7)

and
∂2 log(π1|Â(x1, x2))

∂x1∂x2
=
∂2 log(p(x1, x2))

∂x1∂x2
+

1

[ψ(x1, x2; θ1) + χ]2
. (8)

Moreover, it is easy to prove that ∂2 log(p(x1,x2))
∂x2

1
= ∂2 log(p(x1,x2))

∂x1∂x2
. Hence, if (8) is negative,

(6) becomes −2/[ψ(x1, x2; θ
1) + χ]2, which is obviously smaller than zero. Alternatively, if (8)

23The argument for log(π2|Â) is similar.
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is nonnegative, then (6) is simply 2 ∂2 log(p(x1,x2))
∂x2

1
, which is also negative by A6. Repeating the

reasoning for party 2’s payoff, it follows that r(·) is a contraction. Therefore, it has a unique fixed

point. �

Proof of Proposition 2. Immediate from Lemmas 5 and 6. �

4 Mixed strategy analysis

Assume now parties are allowed to randomize over campaign platforms. For each party i = 1, 2,

let ∆(Ai) be the space of all (Borel) probability measures on Ai = [0, 1], and denote ∆(A) =

∆(A1) × ∆(A2). A mixed strategy for i is a probability measure µi ∈ ∆(Ai). As usual, we say

that µi has support supp(µi) ⊆ Ai if party i assigns probability one over the set supp(µi) under µi,

and we indicate by A(µi) = {x ∈ [0, 1] : µi({x}) > 0} the set of atoms of µi. In what follows, we

endow ∆(Ai) with the topology of weak convergence. That is, we say that a sequence of measures

{µn
i } ⊆ ∆(Ai) converges to µi ∈ ∆(Ai) if for every real valued and continuous function g defined

on Ai,
∫

Ai
g(xi)dµ

n
i →

∫

Ai
g(xi)dµi.

Since the discontinuities of parties’ payoffs is the major obstacle to prove the existence of a

psne in G, before continuing it is necessary to show that each πi is a Borel measurable function

on A, so that it makes sense to talk about mixed strategies and the expected value of πi under

µ = (µ1, µ2) ∈ ∆(A). Observe that this cannot be guaranteed by invoking neither continuity nor

semi-continuity of the payoffs. As we showed in Example 1, both conditions are violated in the

hybrid election game.

Let (A,B(A), µ) be a Borel probability space, where B(A) is a Borel σ-algebra on A and µ :

B(A) → R+ a probability measure on B(A). A real valued function z : A → R is measurable with

respect to B(A) if, for all α ∈ R, {x ∈ A : z(x) < α} ∈ B(A).

Lemma 7 For each i = 1, 2, πi : A→ R is Borel measurable on A.

Proof. We prove the lemma for π1. The argument for π2 is identical. For all (x1, x2) ∈ A, let

π∗1(x1, x2) = [1−H(1/2 −F (S(x1, x2))] (ψ(x1, x2; θ
1) + χ1). By continuity, π∗1 is measurable on A.

Let D(A) = {(x1, x2) ∈ A : x1 = x2 6= θm}. Clearly, {(x1, x2) ∈ A : π1(x1, x2) 6= π∗1(x1, x2)} =

D(A). Hence, since µ(D(A)) = 0, π1 and π∗1 are equivalent with respect to µ; and, therefore, π1 is

Borel measurable on A, because a function equivalent to a measurable function is itself measurable

(Kolmogorov and Fomin [19], pp. 289). �

Now we complete the description of the mixed extension, extending parties’ payoffs to the

domain of mixed strategies. That is, for each i = 1, 2, we define the expected payoff on ∆(A) as

Ui(µ1, µ2) =
∫

A πi(x) d(µ1, µ2), where ∀i, µi ∈ ∆(Ai). Observe that Ui : ∆(A) → R is well defined,

because any Borel measurable function on A is measurable in the associated product measure

space.24

Definition 5 A mixed strategy Nash equilibrium of G = [(Ai, πi); i = 1, 2] is a pair of probabil-

ity measures (µ∗1, µ
∗
2) ∈ ∆(A) such that, for all (µ1, µ2) ∈ ∆(A), U1(µ

∗
1, µ

∗
2) ≥ U1(µ1, µ

∗
2) and

U2(µ
∗
1, µ

∗
2) ≥ U2(µ

∗
1, µ2).

24Recall that πi(·) is bounded, because p(·) and ψ(· ; θi) are bounded on A. Therefore, by Lemma 7, πi(·) is
µ-integrable and its expected value is well defined.
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That is, a mixed strategy Nash equilibrium of G is a Nash equilibrium of the mixed extension

G = [(∆(Ai), Ui); i = 1, 2]. We denote ME(G) the set of all such equilibria. To prove that ME(G)

is nonempty is not a trivial matter, because G is an infinite action game with discontinuous payoffs.

To solve this problem, we use Reny [24], according to which a (compact and Hausdorff) game

possesses a mixed strategy Nash equilibrium if its mixed extension satisfies a condition called better

reply security. This condition is defined as follows. Let U : ∆(A) → R
2 be the mixed extension’s

vector payoff function, so that for all µ ∈ ∆(A), U(µ) = (U1(µ), U2(µ)):25

Definition 6 G = [(∆(Ai), Ui); i = 1, 2] is better reply secure if for any (µ∗, U∗) ∈ cl(gr(U)) such

that µ∗ 6∈ME(G), there exists a party, say i, who can secure a payoff strictly above U∗
i at µ∗.26

Proposition 3 G is better reply secure.

Proof. Assume, by contradiction, that there exists (µ∗, U∗) ∈ cl(gr(U)) such that µ∗ 6∈ ME(G)

and no party i = 1, 2 can secure a payoff strictly above U∗
i at µ∗. This is equivalent to say that, for

all i, all µi ∈ ∆(Ai), and all δ > 0, ∃ µ−i(δ) such that ‖µ−i(δ)− µ∗−i‖ < δ and Ui(µi, µ−i(δ)) ≤ U∗
i ,

where ‖ · ‖ denotes the norm in ∆(A). We disprove this claim as follows:

Step 1. There is a party, say 1, and a strategy µ̂1 ∈ ∆(A1), such that U1(µ̂1, µ
∗
2) > U1(µ

∗
1, µ

∗
2);

Step 2. There exists a proposal x1 ∈ A1 either, in the support of µ̂1, or “close enough” to a

platform in supp(µ̂1), such that x1 is not an atom of µ∗2 and U1(x1, µ
∗
2) > U1(µ

∗
1, µ

∗
2);

Step 3. By continuity of U1(x1, · ) in µ2 at µ∗2, party 1 can secure a payoff U1(x1, µ
∗
2) strictly

greater than U1(µ
∗
1, µ

∗
2);

Step 4. Repeating the argument behind Step 2 and 3, party 2 can secure a payoff U2(µ
∗
1, x2)

greater than or equal to U2(µ
∗
1, µ

∗
2);

Step 5. By Steps 3 and 4, U∗
1 + U∗

2 > U1(µ
∗
1, µ

∗
2) + U2(µ

∗
1, µ

∗
2);

Step 6. Finally, despite of the discontinuities of Π = π1 + π2 on D(A), for every sequence

{µn} ⊂ ∆(A) that converges to µ∗, limµn→µ∗

∫

A Π(x) dµn converges to
∫

A Π(x) dµ∗, which stands

in contradiction with Step 5.

Now we offer more details for each of the previous steps. As it will become immediately clear,

the crucial one is Step 2. Together with Step 3, it roughly says that party 1’s profitable deviation

from (µ∗1, µ
∗
2) cannot be undercut by party 2, by displacing a slightly amount of probability mass.

The structure of the game ensures that party 1 can always protect his deviation payoff from this

undermining behavior.

Step 1. Trivial. Since the strategy profile µ∗ is not a mixed strategy equilibrium, without loss

of generality we can assume that ∃ µ̂1 ∈ ∆(A1) such that

U1(µ̂1, µ
∗
2) > U1(µ

∗
1, µ

∗
2). (9)

Step 2. Consider a platform x̂1 ∈ supp(µ̂1) such that U1(x̂1, µ
∗
2) > U1(µ

∗
1, µ

∗
2). That proposal

always exists. On the contrary, suppose that ∀x1 ∈ supp(µ̂1), U1(x1, µ
∗
2) ≤ U1(µ

∗
1, µ

∗
2). Integrating

25The graph of U and its closure are defined as before.
26As before, party i can secure a payoff α ∈ R at µ ∈ ∆(A) if there exists µ̄i ∈ ∆(Ai) such that, for all µ′

−i in some

open neighborhood of µ−i, Ui(µ̄i, µ
′
−i) ≥ α.
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with respect to µ̂1, we have that
∫

A1
U1(x1, µ

∗
2) dµ̂1 = U1(µ̂1, µ

∗
2) ≤ U1(µ

∗
1, µ

∗
2) =

∫

A1
U1(µ

∗
1, µ

∗
2) dµ̂1,

which contradicts (9). Therefore, if x̂1 6∈ A(µ∗2), we are done. Otherwise, we proceed as follows.

Without loss of generality, suppose θ1 < θm. Consider a platform x1 ∈ A1 close enough to x̂1,

such that x1 6∈ A(µ∗2) and

U1(x1, µ
∗
2) ≥ U1(x̂1, µ

∗
2). (10)

Since µ∗2 is a probability measure and it has at most countably many atoms, we show next that

such a x1 always exists. To fix the notation, let x̂2 = x̂1. By the argument behind Lemma 2, for

δ > 0 sufficiently small, there exists x1 = x̂1+δ such that ∀x′2 ∈ Bδ(x̂2), π1(x1, x
′
2) > π1(x̂1, x̂2). In-

tegrating with respect to µ∗2 over Bδ(x̂2), we have
∫

Bδ(x̂2) π1(x1, x2) dµ
∗
2 >

χ1

2

∫

Bδ(x̂2) dµ
∗
2. Moreover,

since χ1

2

∫

Bδ(x̂2) dµ
∗
2 ≥ χ1

2 µ∗2(x̂2), it follows that

∫

Bδ(x̂2)
π1(x1, x2) dµ

∗
2 >

χ1

2
µ∗2(x̂2).

x̂1 − δ x1 = x̂1 + δx̂1 1

1

x̂2 − δ

x̂2

x′2

x̂2 + δ

Bδ(x̂2)

∫

Bδ(x̂2)
π1(x1, x2) dµ

∗
2

∫

Bδ(x̂2)
π1(x̂1, x2) dµ

∗
2

Figure 3: What’s going on over Bδ(x̂2)?

Note that

∫

Bδ(x̂2)
π1(x̂1, x2) dµ

∗
2 =

1

2
χ1 µ

∗
2(x̂2) +

∫ x̂2

x̂2−δ

[

1 −H

(

1

2
− F

(

1 −
x2 + x̂1

2

))]

· (11)

·
(

ψ(x̂1, x2; θ
1) + χ1

)

dµ∗2 +

∫ x̂2+δ

x̂2

[

1 −H

(

1

2
− F

(

x2 + x̂1

2

))]

·
(

ψ(x̂1, x2; θ
1) + χ1

)

dµ∗2.

Therefore, as δ → 0,
∫

Bδ(x̂2)
π1(x̂1, x2) dµ

∗
2 → 1

2 χ1 µ
∗
2(x̂2), because the last two terms in the

right hand side of (11) are areas behind two continuous functions, computed over an interval that

becomes arbitrarily small as δ → 0 (see Figure 3 above). Thus, for δ small enough, we have that
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∫

Bδ(x̂2)
π1(x1, x2) dµ

∗
2 ≥

∫

Bδ(x̂2)
π1(x̂1, x2) dµ

∗
2. (12)

Let’s see now what happens with these integrals over Bc
δ(x̂2) = A2 − Bδ(x̂2). In order to

guarantee that (10) holds, we want to prove that

∫

Bc
δ(x̂2)

π1(x1, x2) dµ
∗
2 ≥

∫

Bc
δ(x̂2)

π1(x̂1, x2) dµ
∗
2. (13)

x̂1 − δ x1 = x̂1 + δx̂1 1

1

x̂2 − δ

x̂2

x̂2 + δ

Bδ(x̂2)

x1

x2

Figure 4: What’s going on over Bc
δ(x̂2)?

The argument behind (13) is as follows. First, note that for every x2 ∈ Bc
δ(x̂2), π1( · , x2) is

continuous in x1 at x̂1. In other words, given a x2 ∈ Bc
δ(x̂2), ∀ ǫ > 0, ∃λǫ(x2) > 0 such that,

∀x1 ∈ Bλǫ(x2)(x̂1), π1(x1, x2) > π1(x̂1, x2) − ǫ. Fix ǫ > 0 and let λǫ = inf{λǫ(x2) : x2 ∈ Bc
δ(x̂2)}.

Then, for all x1 ∈ Bλǫ
(x̂1), and all x2 ∈ Bc

δ(x̂2), π1(x1, x2) > π1(x̂1, x2) − ǫ. Taking any x1 ∈
Bλǫ

(x̂1) and integrating with respect to µ∗2 over Bc
δ(x̂2), we have that

∫

Bc
δ(x̂2) π1(x1, x2) dµ

∗
2 >

∫

Bc
δ(x̂2) (π1(x̂1, x2) − ǫ) dµ∗2. However, for ǫ sufficiently small,

∫

Bc
δ(x̂2) ǫ dµ

∗
2 is negligible. Hence,

∫

Bc
δ(x̂2)

π1(x1, x2) dµ
∗
2 ≥

∫

Bc
δ(x̂2)

π1(x̂1, x2) dµ
∗
2. (14)

If δ ≤ λǫ, we are done, because (14) holds for any x1 ∈ Bλǫ
(x̂1). In particular, for x1 = x̂1 +δ.27

Therefore, (12) and (13) would imply (10). Otherwise, if δ > λǫ, then we take as we illustrate in

Figure 5 a proposal x′1 in the interval (x̂1, x̂1 + λǫ), with the proviso that x′1 6∈ A(µ∗2). Again, since

µ∗2 has at most countably many atoms, this alternative exists. Let δ′ = d(x′1, x̂1). Using the same

argument behind (12), it follows that

27Recall that x̂2 + δ ∈ Bc
δ(x̂2), so that π1(x̄1, ·) may jump at x̂2 + δ. However, x1 6∈ A(µ∗

2); i.e., µ∗
2 assigns zero

probability mass over x̂2 + δ. Thus, the (potential) discontinuity of π1(x̄1, ·) at x̂2 + δ is irrelevant for the analysis.
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∫

Bδ′(x̂2)
π1(x

′
1, x2) dµ

∗
2 ≥

∫

Bδ′ (x̂2)
π1(x̂1, x2) dµ

∗
2. (15)

Moreover, by (14),

∫

Bc
δ(x̂2)

π1(x
′
1, x2) dµ

∗
2 ≥

∫

Bc
δ(x̂2)

π1(x̂1, x2) dµ
∗
2. (16)

Thus, it remains to see what happens in the region Γ = (x̂2−δ, x̂2−δ
′]∪ [x̂2 +δ′, x̂2 +δ). Notice

that
∫

Γ π1(x
′
1, x2) dµ

∗
2 =

∫ x̂2−δ′

x̂2−δ π1(x
′
1, x2) dµ

∗
2 +

∫ x̂2+δ
x̂2+δ′ π1(x

′
1, x2) dµ

∗
2 + χ1

2 µ∗2(x̂2 + δ′).

x̂1
1

1

x̂2 − δ

x̂2

x̂2 + δ

Bδ(x̂2)

x̂1 + λǫ

x1x′1

x̂2 + δ′

x̂2 − δ′

(

(

[

[

Γ

Figure 5: What’s going on over Γ?

However, as δ → 0, δ and δ′ become arbitrarily close to each other. Therefore, since x′1 6∈
A(µ∗2) (i.e. µ∗2(x̂2 + δ′) = 0) and π1(x

′
1, · ) is continuous in x2 over (x̂2 − δ, x̂2 − δ′] and over

(x̂2 + δ′, x̂2 + δ), respectively, the area behind π1(x
′
1, x2) on Γ is negligible. A similar argument

implies that
∫

Γ π1(x̂1, x2) dµ
∗
2 can also be ignored. Therefore, for δ sufficiently small, (15) and (16)

imply that U1(x
′
1, µ

∗
2) ≥ U1(x̂1, µ

∗
2).

In short, by proposing x̂1 itself or, if x̂1 ∈ A(µ∗2), by moving closer to x̂1 and choosing either x1

or x′1, the previous analysis shows that party 1 has a platform in his strategy set that it is not an

atom of µ∗2, and that offers him an expected payoff strictly greater than U1(µ
∗
1, µ

∗
2). Next we prove

that this payoff can also be secured.

Step 3. To simplify the exposition, let us generically refer to the platform of Step 2 as x1,

understanding that this is the proposal which offers to party 1 a payoff strictly above U1(µ
∗
1, µ

∗
2)

and x1 6∈ A(µ∗2). Then, U1(x1, · ) is continuous in µ2 at µ∗2. That is, for all ǫ > 0, there exists

δǫ > 0 such that U1(x1, µ̃2) > U1(x1, µ
∗
2) − ǫ for all µ̃2 such that ‖µ̃2 − µ∗2‖ < δǫ. Therefore, for ǫ

small enough, party 1 can secure U1(x1, µ
∗
2). That is, there is a strategy, x1, and δ > 0, such that

U1(x1, µ̃2) ≥ U1(x1, µ
∗
2) for all µ̃2 such that ‖µ̃2 − µ∗2‖ < δ.
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Step 4. Consider a platform x2 ∈ supp(µ∗2) such that U2(µ
∗
1, x2) ≥ U2(µ

∗
1, µ

∗
2). Clearly, x2

always exists. Moreover, using the same argument behind Step 2, it follows that either x2 6∈ A(µ∗1)

or, if x2 ∈ A(µ∗1), then there exists a proposal x2 ∈ A2 close enough to x2 such that U2(µ
∗
1, x2) ≥

U2(µ
∗
1, x2) and x2 6∈ A(µ∗1). Hence, invoking continuity of U2( · , x2) in µ1 at µ∗1, (as we did in Step 3

for party 1), we have that party 2 can secure a payoff U2(µ
∗
1, x2) greater than or equal to U2(µ

∗
1, µ

∗
2).

Step 5. By Step 3, U1(µ
∗
1, µ

∗
2) < U∗

1 . Otherwise, if U∗
1 ≤ U1(µ

∗
1, µ

∗
2), then party 1 would be

able to secure a payoff strictly greater than U∗
1 , contradicting the initial hypothesis. Similarly, by

Step 4, U2(µ
∗
1, µ

∗
2) ≤ U∗

2 . Hence, U∗
1 + U∗

2 > U1(µ
∗
1, µ

∗
2) + U2(µ

∗
1, µ

∗
2).

Step 6. Since we have assumed that (µ∗, U∗) ∈ cl(gr(U)), there exists a sequence {µn} ⊂ ∆(A)

such that µn → µ∗, and limµn→µ∗

(∫

A (π1(x1, x2) + π2(x1, x2)) dµ
n
)

= U∗
1 +U∗

2 .28 Using Π = π1+π2

to simplify the notation, by Step 5 it follows that

lim
µn→µ∗

(
∫

A
Π(x1, x2) dµ

n

)

>

∫

A
Π(x1, x2) dµ

∗. (17)

Note that (17) can be rewritten as

lim
µn→µ∗

∫

A−D(A)
Π(x) dµn −

∫

A−D(A)
Π(x) dµ∗ >

χ1 + χ2

2

(

∫

D(A)
dµ∗ − lim

µn→µ∗

∫

D(A)
dµn

)

. (18)

However, Π is continuous on A − D(A) and, for all i = 1, 2, χi ∈ R+. Hence, by weak

convergence, both the lhs and the rhs of (18) tends to zero, a contradiction. Therefore, G is better

reply secure. �

Now, we present the main result of the paper:

Theorem 2 The two-party hybrid electoral competition game has a mixed strategy Nash equilib-

rium; i.e., ME(G) 6= ∅.

Proof. Immediate from Proposition 3 and Corollary 5.2 in Reny [24]. �

Comparing our result in Theorem 2 with Ball [4], there are two main differences to point out.

First, in our model the probability of winning the election is endogenously derived, from parties’

uncertainty about voters’ preferences, instead of being given by an exogenous function. This is

important because the properties required to ensure the existence of a msne are not imposed on

that function, but on more fundamental primitives of the model. In addition, by explicitly modeling

the electoral uncertainty, it is also possible to get a better understanding of the election game, which

allowed us for example to prove in Section 3.3 the existence and uniqueness of a psne when parties’

motivations are homogeneous.

On the other hand, our existence analysis is based on Reny’s better reply security. Instead,

Ball [4] relies on Dasgupta and Maskin [7], (namely, on Theorem 5b). In this regard, it is worth

noting that better reply security is virtually an ordinal property, (Reny [24], pp. 1034), in the sense

that, if gi : R → R is continuous and strictly increasing for every i, then [(∆(Ai), Ui); i = 1, 2] is

better reply secure if and only if [(∆(Ai), gi ◦ Ui); i = 1, 2] is. So, the results in Proposition 3 and

Theorem 2 hold for every continuous and strictly monotone transformation of parties’ payoffs. In

particular, they can be extended to the alternative specification of the mma discussed in Section 2.

28Since Ai is compact and πi is bounded, the sequence {
∫

A
Π(x)dµn} always converges when µn → µ∗. Thus,

without loss of generality, we assume that the limit, limµn→µ∗

(∫

A
Π(x)dµn

)

, always exists.
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5 Final remarks

This paper analyzes a traditional unidimensional, two-party electoral competition game with elec-

toral uncertainty. The novelty is that, instead of assuming that parties have a single and homo-

geneous motive, as it is usually the case in the existent literature, we suppose that they may be

distinctly concerned with both, winning the election, and the policy implemented after the contest.

The main results obtained from this departure are as follows.

Firstly, in contrast with the standard election game with ideological parties, the payoff functions

of the hybrid game are shown to be neither continuous nor semi-continuous on the strategy space

(Example 1). Moreover, conditional payoffs might also violate quasi-concavity (Example 2). Thus,

in spite of being payoff secure (Lemma 2) and reciprocally upper semi-continuous (Lemma 3), the

hybrid election game does not always possess a pure strategy Nash equilibrium. In fact, its existence

is guaranteed only if political parties have homogenous interest in power (Theorem 1), in which

case the equilibrium is also unique (Proposition 2).

Secondly, to deal with the case of heterogeneous motives, we prove that the mixed extension of

the hybrid electoral competition game satisfies better reply security for all parametric conditions

(Proposition 3). Thus, using Reny [24], we show that a Nash equilibrium always exists (Theorem

2), though it may be one in mixed strategies. This result extends Ball [4] to the case where

the probability of winning function is endogenously derived. And, together with Theorem 1, it

generalizes previous existence results in unidimensional electoral competition.

Finally, the analysis of the uniform distribution case carried out in Section 3.2 also suggests

that, when parties have mixed and probably heterogeneous interests in power, the interaction of

four variables shape equilibrium outcomes. These variables are the electoral uncertainty, parties’

ideology, the aggregate opportunism and its distribution across parties. Depending on the values

of these parameters, we might have a psne or a msne. Moreover, Saporiti [28] has showed that

we might end up with both parties proposing platforms at the median position (i.e., with full

convergence); with each one playing in its own ideological arena (i.e., with policy divergence); or

with both on the same side of the political spectrum.29

In particular, when the opportunism is large compared with the electoral uncertainty, and

asymmetrically distributed, the support of each msne is a closed interval located on one side of

the median voter’s ideal point, and is the same for both candidates. Probability distributions are

atomless in the interior of this set, and concentrate on the support’s end points as uncertainty

increases. Equilibria in mixed strategies vanish above a critical level of uncertainty, beyond which

each party plays a pure strategy in its ideological side (Saporiti [28]).

Of course, these results stand in sharp contrast with the standard prediction of the Downsian

game where, regardless of the level of electoral uncertainty, both parties locate at the median

ideal policy. They substantially differ from Wittman equilibria too, because in that case parties’

ideologies constitute the main driven force of electoral outcomes. It is left for a future work to

explore the validity of these findings in more general models of electoral competition.

29Some of these predictions resemble Mitchell [21].
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