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Abstract

We develop and implement a collocation method to solve for an equilibrium in the
dynamic legislative bargaining game of Duggan and Kalandrakis (2008). We formulate
the collocation equations in a quasi-discrete version of the model, and we show that the
collocation equations are locally Lipchitz continuous and directionally differentiable.
In numerical experiments, we successfully implement a globally convergent variant of
Broyden’s method on a preconditioned version of the collocation equations, and the
method economizes on computation cost by more than 50% compared to the value
iteration method. We rely on a continuity property of the equilibrium set to obtain
increasingly precise approximations of solutions to the continuum model. We showcase
these techniques with an illustration of the dynamic core convergence theorem of Duggan
and Kalandrakis (2008) in a nine-player, two-dimensional model with negative quadratic
preferences.
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1 Introduction

To examine strategic incentives in ongoing collective choice problems, we consider a class
of dynamic bargaining games in which a sequence of proposals and votes generates pol-
icy outcomes over time. The status quo policy evolves endogenously, with today’s policy
determining tomorrow’s status quo and forward-looking players anticipating the future con-
sequences of their decisions. Specifically, we take up the legislative bargaining framework of
Duggan and Kalandrakis (2008). In the general model of that paper, players possess some
(perhaps small) degree of uncertainty about the future state of the game: there is noise in
the transition from today’s outcome to tomorrow’s status quo, and players’ preferences are
subject to transitory preference shocks each period. The analytic derivation of equilibrium
solutions is prohibitive in this framework, owing to the complexity of strategies (which are
conditioned on the realized status quo and preference shocks), but the ability to compute
equilibria is nevertheless essential for the development of our understanding of this type
of dynamic social interaction. Computed equilibria can provide possibility theorems, and
computational results, when used systematically, can also provide the germs of general the-
orems. Finally, in empirical work, the structural estimation of model parameters or the
calibration of a model to observed data, as the case may be, both rely on the ability to
compute equilibria.

We propose a method to compute equilibria in the dynamic bargaining framework.
We formulate stationary equilibria as solutions to a system of functional equations, the
unknowns of which are essentially the future expected utilities (or “dynamic utilities”) of
the players. We solve these functional equations using a collocation method, a method
for solving functional equations that belongs in the general family of projection methods
(Judd (1998), Chapter 11). In particular, we posit a finite-dimensional representation of
the unknown equilibrium dynamic utility functions as linear combinations of Chebyshev
polynomials, and we seek coefficients for these representations that solve the equilibrium
functional equations exactly at a finite number of points (that coincide with the roots
of the Chebyshev polynomials). This version of the collocation method is theoretically
justified by the Chebyshev Interpolation Theorem (Judd (1998); Rivlin (1990)) and by
the theoretical results of Duggan and Kalandrakis (2008), which guarantee smoothness
properties and a priori bounds for the equilibrium expected utilities and their derivatives:
we can approximate the unknown functions to an a priori specified, but arbitrary, level of
precision by adding higher degree Chebyshev polynomials to represent these functions.

Having transformed the original equilibrium functional equations to a system of a fi-
nite number of equations in an equal number of unknown coefficients, we face the practical
problem of solving this system of equations. Our computational analysis then focuses on
the “quasi-discrete” model, in which the uncertainty in the model is continuous (and so the
state space of the bargaining game is infinite), but given the status quo, only a finite number
of alternatives may be proposed. This allows us to exactly solve the optimization problem
of a proposer by an exhaustive grid search. Since the collocation equations are intermedi-
ated by the players’ best response behavior, and because they involve the integration over
future uncertainty in the model, those equations are nonlinear and potentially ill-behaved.
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We establish, however, that they are locally Lipschitz continuous and directionally differ-
entiable, i.e., they belong in a class of nonlinear equations for which various generalizations
of Newton’s method and the convergence properties thereof have been studied in recent
years (Ip and Kyparisis (1992); Martinez and Qi (1995); Pang (1990, 1991); Qi (1993); Xu
and Chang (1997)). Moreover, we show that we can obtain an equilibrium of the model
with a continuum of feasible alternatives by taking the limit of equilibria of a sequence of
quasi-discrete approximations.

We implement a version of Broyden’s method (Broyden (1965)) to solve for an equilib-
rium. Our version of Broyden’s method “preconditions” the collocation equations to obtain
faster rates of convergence, and we show that this algorithm outperforms two alternatives,
a pseudo-Newton method and simple value iteration, in a series of experiments. Finally,
we apply the method to illustrate the core convergence result of Duggan and Kalandrakis
(2008) by specifying configurations of ideal points approaching the canonical setting in
which one alternative belongs to the majority core; for each configuration, we compute the
invariant distribution (representing the long run distribution over alternatives) generated
by a stationary equilibrium; and we show that these invariant distributions pile mass near
the limiting core point. Interestingly, convergence appears to be faster when the players are
more patient.

Many situations of interest in political economy possess the structure of a dynamic bar-
gaining game: some player proposes an alternative, that proposal is considered by other
players and possibly agreed to, and the game possibly continues into future periods. One
branch of this literature considers environments in which bargaining ends once agreement
is reached, with play continuing into the future only if a proposal is rejected.1 We focus,
instead, on a class of models in which bargaining continues ad infinitum, whether there is
agreement in a period or not. Baron (1996) analyzes the one-dimensional version of the
model with single-peaked utilities, Kalandrakis (2004, 2007) studies the canonical divide-
the-dollar environment, Cho (2005) considers policy making in a stage game that emulates
aspects of parliamentary government, and Battaglini and Coate (2007) characterize station-
ary equilibria in a model of public good provision and taxation with identical legislators and
a stock of public goods that evolves over time. With general stage payoffs and feasible set of
alternatives, Duggan and Kalandrakis (2008) assume that stage payoffs and the transition
to next period’s status quo are subject to (arbitrarily small) shocks, adding uncertainty
about the future state of the game. In that paper, we establish existence and a number of
desirable technical properties of stationary equilibria; we also examine the ergodic proper-
ties of equilibria, and we provide a core convergence result for long run equilibrium policy
outcomes as the noise in the model goes to zero and the model becomes close to admitting
a core alternative.2

Little work has been done on computation of equilibrium in this class of bargaining
games. Baron and Herron (2003) give a numerical calculation of equilibrium in a three-

1See Rubinstein (1982), Binmore (1987), Baron and Ferejohn (1989), Banks and Duggan (2000, 2006),
and others.

2At a further distance from our paper is work on finite-state dynamic voting games, such as Acemoglu,
Egorov, and Sonin (2008) and Diermeier and Fong (2008).
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player, finite-horizon version of the model, and Penn (2009) provides numerical illustrations
of her model. Closest to the current paper is the work of Duggan, Kalandrakis, and Manju-
nath (2008), who consider a special case of the model of Duggan and Kalandrakis (2008) to
examine the effect of the presidential veto in a US-like political system. But the approach
of the current paper differs from the former in several respects. First, Duggan, Kalandrakis,
and Manjunath (2008) use function approximation instead of function interpolation, so that
in their case equilibrium is not obtained as a solution to a system of collocation equations.
Second, they work with a continuous proposal space for the legislators and use continu-
ous optimization methods to solve for legislators’ optimal proposals, whereas we implement
our techniques in a model where the space of possible proposals at each status quo is finite.
Third, those authors use a version of value iteration to obtain an equilibrium. In this paper,
we consider value iteration as one possible solution method, but we implement and provide
theoretical justification for the use of Newton and Newton-like methods. These differences,
especially the last two, amount to significant gains on computation time.

In what follows, we first present the model, define our equilibrium concept, and provide
background results on the model in Section 2. In Section 3, we formally describe the
collocation method and define the collocation equations. In Section 4, we provide theoretical
results for the quasi-discrete model, establishing smoothness properties of the collocation
equations and our approximation result for the continuum model. In Section 5, we describe
in detail our implementation of Broyden’s method for solving the collocation equations. In
Section 6, we provide the results of our numerical experiments and our illustration of core
convergence. Section 7 concludes, and the appendix contains the proof of our smoothness
result.

2 Dynamic Bargaining Framework

In this section, we first present the bargaining model, and we then define our equilibrium
concept, a refinement of stationary Markov perfect equilibrium, and review the known
foundational results for the model.

2.1 Bargaining Model

We consider a finite set N of players, i = 1, . . . , n, who determine policy over an infinite
horizon, with periods indexed t = 1, 2, . . .. Interaction proceeds as follows in each period.
A status quo policy q ∈ Rd and a vector θ = (θ1, . . . , θn) ∈ Rnd of preference parameters
are realized and publicly observed. A player i ∈ N is drawn at random, with probabilities
p1, . . . , pn, and proposes any policy y ∈ X∪{q}, where X ⊆ Rd represents the set of feasible
policies. The players vote simultaneously to accept y or reject it in favor of the status quo
q. The proposal passes if a coalition C ∈ D of players vote to accept, and it fails otherwise,
where D is a nonempty collection D ⊆ 2N \ {∅} of decisive coalitions satisfying only the
minimal monotonicity requirement that if one coalition is decisive, and we add players to
that coalition, then the larger coalition is also decisive. Formally, we assume that if C ∈ D
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and C ⊆ C ′ ⊆ N , then C ′ ∈ D . The policy outcome for period t, denoted xt, is y if the
proposal passes and is q otherwise. Each player j receives stage utility uj(xt)+θj ·xt, where
θj ∈ Rd is a utility shock for the player. Finally, the status quo q′ for period t+ 1 is drawn
from the density g(·|xt), a new vector θ′ = (θ′1, . . . , θ

′
n) of preference shocks is drawn from

the density f(·), and the above procedure is repeated in period t+1. Payoffs in the dynamic
game are given by the expected discounted sum of stage utilities, as is standard, and we
denote the discount factor of player i by δi ∈ [0, 1).

We impose a number of regularity conditions on the policy space. We assume that the
set of feasible policies, X, is cut out by a finite number of functions h` : Rd → R, indexed
by ` ∈ K. We partition K into inequality constraints, Kin, and equality constraints, Keq,
and we assume that

X = {x ∈ Rd : h`(x) ≥ 0, ` ∈ Kin, h`(x) = 0, ` ∈ Keq}.

We further assume that X is compact, and that h` is r-times continuously differentiable
for all ` ∈ K, where r ≥ max{2, d}.3 For technical reasons, we impose the weak condition
that for all x ∈ X, {Dh`(x) : ` ∈ K(x)} is linearly independent, where K(x) is the subset
of ` ∈ K, including equality constraints, such that h`(x) = 0. These assumptions allow us
to capture quite general manifolds. An important special case is the quasi-discrete model,
in which the policy space X ⊆ Rd is finite.4 Even if the space of interest is a continuum,
this special class of model plays an important role in our computational analysis, where we
make use of limits of equilibria of quasi-discrete models.

We assume ui : Rd → R is r-times continuously differentiable. The presence of preference
shocks in the model captures uncertainty about the players’ future policy preferences. For
example, in the important special case of negative quadratic stage utility, where ui(x) =
−||xj−xt||2 and xj is player i’s unperturbed ideal point, the preference shock θi is equivalent
to a perturbation of the player’s ideal point xi. We assume that the vector θ = (θ1, . . . , θn)
is distributed according to a density f with support contained in the set Θ = [θ, θ]nd ⊆ Rnd,
and we further assume a compact set X̃ = [x, x]d ⊆ Rd with X ⊆ X̃ and a bound bf such
that for all i ∈ N , all θ ∈ Θ, and all x ∈ X̃, we have |ui(x) + θi · x|f(θ) ≤ bf . The noise on
the status quo captures the idea that players are uncertain about the way policy decisions
today will be implemented in the future. We assume that the density g : Rd×Rd → R, with
values g(q|x), is jointly measurable in (q, x), and that for all x, the support of the density
g(·|x) lies in X̃. We do not assume that the support of g(·|x) lies in X, though of course we
allow it. Furthermore, we assume a bound bg such that for all q, we have: g(q|x) is r-times
continuously differentiable in x; if r <∞, then all derivatives of order 1, . . . , r are bounded
in norm by bf , and the r-th derivative of g(q|x) with respect to x is Lipschitz continuous
with modulus bf ; and if r = ∞, then derivatives of all orders 1, 2 . . . are bounded in norm
by bf .

A strategy in the game consists of two components, one giving the proposals of a player
when recognized to propose and the other giving the votes of the player after a proposal

3Of course, we allow r =∞.
4We obtain a finite X using suitably “oscillating” equality constraints. We can, for example, isolate a

grid on [0, 1]d by using trigonometric functions, as in {x ∈ Rd : sin(2πxiα) = 0, i = 1, . . . , d}, for appropriate
α.
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is made. While these choices can in principle depend arbitrarily on histories, we seek
subgame perfect equilibria in which players use stationary Markov strategies, which we
denote σi = (πi, αi). Our main focus will be on pure strategies.5 Thus, player i’s proposal
strategy is a measurable mapping πi : Rd × Θ → Rd, where πi(q, θ) is the policy proposed
by i given status quo q and utility shocks θ; and player i’s voting strategy is a measurable
mapping αi : Rd×Rd×Θ→ {0, 1}, where αi(y, q, θ) = 1 if i accepts proposal y given status
quo q and utility shocks θ and αi(y, q, θ) = 0 if i rejects. We let σ = (σ1, . . . , σn) denote
a stationary strategy profile. We may equivalently represent voting strategies by the set
of feasible proposals a player would vote to accept. We define this acceptance set for i as
Ai(q, θ;σ) = {y ∈ X ∪ {q} : αi(y, q, θi) = 1}. Letting C denote a coalition of players, we
then define

AC(q, θ;σ) =
⋂
i∈C

Ai(q, θ;σ) and A(q, θ;σ) =
⋃
C∈D

AC(q, θ;σ)

as the coalitional acceptance set for C and the collective acceptance set, respectively. The
latter consists of all policies that would receive the votes of all members of at least one
decisive coalition and would, therefore, pass if proposed.

Given strategy profile σ, we define vi(x;σ) as player i’s discounted continuation value
at the beginning of period t + 1 from policy outcome x in period t. We then define i’s
“policy-specific” dynamic payoff as

Ui(x;σ) = ui(x) + δivi(x;σ). (1)

Then the discounted payoff to player i from implementing policy x in the current period
given preference shock θi is Ui(x;σ) + θi · x. We focus on voting strategies that are “def-
erential,” i.e., players vote to accept when indifferent between a proposed policy and the
status quo, which allows us to then consider only no-delay equilibria, meaning no player ever
proposes a policy that is rejected. (In lieu of that, the player can just as well propose the
status quo.) Our measurability assumptions on strategies imply that continuation values
are also measurable, and therefore they satisfy

vi(x;σ) =
∫
q

∫
θ

∑
j

pj [Ui(πj(q, θ);σ) + θi · πj(q, θ)]f(θ)g(q|x)dθdq (2)

for all policies x.6 Note that we can restrict the domain of Ui to the compact set X̃ ⊂ Rd,
as players are restricted to propose in X ∪ {q} ⊆ X̃ in any period with status quo q, and
the distribution of the status quo has support restricted to X̃.

5Duggan and Kalandrakis’s (2008) Theorem 2 establishes that this is without loss of generality, as any
equilibrium in stationary mixed strategies is essentially equivalent to some equilibrium in pure strategies.
See Subsection 2.2 for further explanation.

6Note that continuation values vi are “ex ante,” in the sense that they are calculated by integrating over
q and θ. The dynamic utilities Ui differ from those of Duggan and Kalandrakis (2008) by subtracting out
the current period’s preference shock. Also note that we do not normalize dynamic payoffs by (1− δi) as we
do in our earlier paper.
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2.2 Stationary Bargaining Equilibrium

With this formalism established, we can now define a class of stationary Markov perfect
equilibria of special interest. Intuitively, we require that players always propose optimally
and that they always vote in their best interest. It is well-known that the latter require-
ment is unrestrictive in simultaneous voting games, however, as arbitrary outcomes can be
supported by Nash equilibria in which no voter is pivotal. To address this difficulty, we
follow the standard approach of refining the set of Nash equilibria in voting subgames by
requiring that players delete votes that are dominated in the stage game. Thus, we say a
strategy profile σ is a stationary bargaining equilibrium if the following conditions hold:

• for every status quo q, every shock θ, and every player i, πi(q, θ) solves

max
y
Ui(y;σ) + θi · y (3)

s.t. y ∈ A(q, θ;σ),

• for every status quo q, every shock θ, every proposal y, and every player i,

αi(y, q, θi) =
{

1 if Ui(y;σ) + θi · y ≥ Ui(q;σ) + θi · q
0 else.

(4)

Thus, as required by subgame perfection, proposers choose optimally after all histories and
the votes of players are, furthermore, consistent with the usual dominance criterion and
deferential voting.

Duggan and Kalandrakis (2008) provide foundational results on stationary bargaining
equilibria. Chief among those results is the following theorem, which establishes existence
and a number of desirable regularity properties of equilibria.7

Theorem 1 There exists a stationary bargaining equilibrium, σ, possessing the following
properties.

1. Continuation values are differentiable: for every player i, vi(x;σ) is r-times continu-
ously differentiable as a function of x.

2. Proposals are almost always strictly best: for every status quo q, almost all shocks θ,
every player i, and every y ∈ A(q, θ;σ) distinct from the proposal πi(q, θ), we have
Ui(πi(q, θ);σ) + θi · πi(q, θ) > Ui(y;σ) + θi · y.

3. Proposal strategies are almost always continuously differentiable: for every status quo
q, almost all shocks θ, and every player i such that πi(q, θ) 6= q, πi(q, θ) is continuously
differentiable in an open set around (q, θ).

7Duggan and Kalandrakis (2008) use the term “pure stationary legislative equilibrium” for the concept
we consider here. They state only continuity of equilibrium proposal strategies, rather than the condition of
continuous differentiability stated in part 3. See the working paper version, Duggan and Kalandrakis (2007),
for the statement and proof of the stronger result we give here.
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4. Binding voters, if any, are almost never redundant: for every status quo q, almost all
shocks θ, and every player i, if πi(q, θ) 6= q and there exists j such that Uj(πi(q, θ);σ)+
θj · πi(q, θ) = Uj(q;σ) + θj · q, then

{` ∈ N : U`(πi(q, θ);σ) + θ` · πi(q, θ) ≥ U`(q;σ) + θ` · q} \ {j} /∈ D .

Part 1 of Theorem 1 implies that dynamic utilities, Ui(x;σ) = ui(x)+δivi(x;σ), are also
r-times differentiable, allowing us in principle to employ first order conditions to character-
ize optimal proposals. Optimal proposals are essentially strict, by part 2, and equilibrium
proposal strategies are continuously differentiable almost everywhere, by part 3, permit-
ting, in principle, the application of calculus techniques in computing comparative statics.
Finally, part 4 of the theorem informs us that, generically, if a voter is indifferent between a
proposal and the status quo, then the player is pivotal, in the sense that the remaining play-
ers willing to vote for the proposal are not decisive, i.e., the coalition of players who accept
the proposal is minimally decisive. While Theorem 1 holds in the general model, its implica-
tions for the quasi-discrete model, in which the set X of alternatives is finite, take a simple
form. There, dynamic utilities are almost always injective: for every status quo q, almost
all shocks θ, every player i, and all x, y ∈ X ∪{q}, we have Ui(x;σ)+θi ·x 6= Ui(y;σ)+θi ·y.
Thus, the conditions in parts 2 and 4 are trivially satisfied. Finally, part 3 can be strength-
ened: equilibrium proposal strategies are such that for every q, almost all θ, and all i with
πi(q, θ) 6= q, πi is in fact constant in an open set around (q, θ).

Theorem 2 of Duggan and Kalandrakis (2008) considers the possibility that proposers
mix over optimal proposals and that voters mix when indifferent between a proposal and
the status quo. The result establishes that when we broaden our definition of equilibrium
in this way, we do not introduce new equilibrium behavior in any meaningful sense: every
mixed strategy equilibrium is equivalent (up to a measure-zero set of status quos and pref-
erence shocks) to a stationary bargaining equilibrium as defined above. Moreover, every
stationary bargaining equilibrium satisfies the properties in parts 1–4 of Theorem 1. This
allows us to focus on pure strategies without loss of generality and increases the scope for
computation of equilibrium. In the earlier paper, we also show that the correspondence
of stationary bargaining equilibria has closed graph, a desirable continuity property that
facilitates our analysis of quasi-discrete approximations of the continuum model in Subsec-
tion 4.2; and we provide general conditions under which equilibrium strategies induce an
invariant distribution over the policy space that represents the long run policy outcomes of
the system.

Finally, Duggan and Kalandrakis (2008) prove a core convergence theorem for models
“close” to the canonical social choice model, in which players have quadratic stage utilities,
the voting rule is strong (if a coalition is not decisive, then its complement is), there is a
unique core policy, and the player located at the core has positive probability of proposing.
Theorem 6 of that paper establishes that in this case, the equilibrium invariant distribu-
tions collapse to the point mass on the limiting core policy. We take up this result in
Section 6.3, where we demonstrate the numerical methods developed in this paper and de-
pict convergence to the core in a two-dimensional, majority-rule version of the bargaining
model.

7



3 The Collocation Method

In this section, we develop a collocation method to solve for an equilibrium of the bargaining
game. In particular, in Subsection 3.1, we formulate the problem of finding an equilibrium
as the solution of a system of functional equations. In Subsection 3.2, we describe how we
approximate these functional equations with a finite-dimensional system of equations, the
collocation equations. Before we attempt to solve the collocation equations, we must be
able to numerically evaluate them, and we discuss issues related to the numerical evaluation
of the collocation equations in Subsection 3.3.

3.1 Equilibrium Functional Equations

We start with the observation that an equilibrium is fully characterized by the corresponding
policy-specific dynamic payoffs U1, . . . , Un of the n players. Indeed, given U = (U1, . . . , Un),
define

A(q, θ;U) =
⋃
C∈D

[ ⋂
i∈C

Ai(q, θ;Ui)
]
,

where

Ai(q, θ;Ui) = {y ∈ X ∪ {q} : Ui(y) + θi · y ≥ Ui(q) + θi · q} (5)

gives the acceptance set of player i after eliminating stage-dominated voting strategies given
dynamic payoffs Ui. Furthermore, define the policy πi(q, θ;U) to be the player’s optimal
proposal given dynamic payoff Ui and voting behavior in (5), i.e., it solves

max
y
Ui(y) + θi · y (6)

s.t. y ∈ A(q, θ;U).

By an application of Theorem I.3.1 in Mas-Colell (1985), the above optimization problem
has a unique solution for almost all shocks θi, pinning down the optimal proposals πi(q, θ;U)
almost everywhere. Then we can express equilibrium dynamic payoffs as solutions to the
functional equation

Ui(x) = ui(x) + δi

∫
q

∫
θ

∑
h∈N

ph
[
Ui(πh(q, θ;U)) + θi · πh(q, θ;U)

]
f(θ)g(q|x)dθdq, (7)

and we can focus our search for an equilibrium on computing equilibrium dynamic payoff
functions U = (U1, . . . , Un) solving the functional equations (7).

Note that since both the stage utility functions ui and, by property 1 of Theorem 1,
the continuation values vi are r-times continuously differentiable with derivatives that are
uniformly bounded in X̃, we conclude that any solution U to the functional equations
(7) must belong in the space of r-times continuously differentiable functions Cr(X̃,Rn).
Furthermore, Lemma 5 of Duggan and Kalandrakis (2008) establishes that the solutions
to (7) must lie in an a priori specified compact space with derivatives satisfying a uniform
bound across X̃.
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3.2 Collocation Equations

The numerical solution of the functional equations (7) on a computer must necessarily in-
volve a representation of the infinite-dimensional objects U in finite dimensions. A standard
approach is to proceed by choosing a finite-dimensional subspace of the function space of
the candidate solutions U , and then restricting the search for approximate solutions to this
subspace. Our choice of basis is a finite set of m Chebyshev polynomials,

{T1, . . . , Tm}.

Specifically, we specify a number m` of the univariate Chebyshev polynomials of degree 0
through m`−1 for each dimension ` = 1, . . . , d, and then we obtain the basis {T1, . . . , Tm}
of m =

∏d
`=1m` polynomials using tensor products of these univariate polynomials. Once

the basis {T1, . . . , Tm} is fixed, we seek solutions for the expected payoff functions Ui that
take the form

U(x; ci) =
m∑
j=1

ci,jTj(x), (8)

where ci = (ci,1,, . . . , ci,m) ∈ Rm is a vector of collocation coefficients corresponding to
player i. We write c = (c1, . . . , cn) ∈ Rnm for a vector specifying the coefficients of all
players.

The choice of the Chebyshev polynomial basis is appealing for a number of reasons,
including the fact, noted above, that any solutions U to (7) are continuously differentiable
with bounded derivatives. Nevertheless, it is unlikely that the actual solutions reside in
the subspace spanned by this basis for any finite m. Thus, instead of satisfying equations
(7) for all x ∈ X̃, the collocation method ensures that these equations are satisfied finitely
many times, specifically at a finite number of judiciously chosen points in the domain of Ui.
Thus, we choose m collocation nodes

{x̃1, . . . , x̃m} ⊂ X̃,

and we seek to find collocation coefficients c = (c1, . . . , cn) ∈ Rnm for the n players so that
for every player i = 1, . . . , n, the following collocation equations are satisfied at each of the
m collocation nodes x̃k, k = 1, . . . ,m:

U(x̃k; ci) = ui(x̃k) + δi

∫
q

∫
θ

∑
h∈N

ph
[
U(πh(q, θ; c); ci) + θi · πh(q, θ; c)

]
f(θ)g(q|x̃k)dθdq. (9)

The function πh(q, θ; c) in (9) is identical to the solution πh(q, θ;U) of the optimization
problem in (6) when U = (U(·; c1), . . . , U(·; cn)). Given our choice of the Chebyshev poly-
nomial basis, there is an elegant theory that dictates the location of the collocation nodes
x̃k at the roots of the Chebyshev polynomials.8 Since any solution U belongs in Cr(X̃,Rn),
and since we have an a priori established bound on the derivatives of U , the Chebyshev

8We obtain these nodes by tensor products of the roots of the univariate bases. Judd (1998) refers to this
version of the collocation method in which the collocation nodes x̃k coincide with the roots of the polynomial
basis as orthogonal collocation.
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Interpolation Theorem guarantees that we can approximate the function U up to arbitrary
precision, using the combination of the Chebyshev polynomial basis and the roots of the
corresponding Chebyshev polynomials as collocation nodes (Judd (1998)), by increasing the
degree of approximation and the corresponding number of collocation nodes.

We have thus reduced the problem of solving the functional equations (7) for equilibrium
expected payoffs U to solving the nm collocation equations in (9) for the nm collocation
coefficients c ∈ Rnm. More compactly, we seek a solution to the equations F (c) = 0, where
F : Rnm → Rnm is a function defined from the collocation equations (9) as

Fi,k(c) = U(x̃k; ci)−
[
ui(x̃k)+δi

∫
q

∫
θ

∑
h∈N

ph
[
U(πh(q, θ; c); ci)

+ θi · πh(q, θ; c)
]
f(θ)g(q|x̃k)dθdq

]
, (10)

and where the index i, k corresponds to the k-th collocation node, x̃k, and player i. In the
next subsection, we turn to the practical question of evaluating this collocation function.

3.3 Collocation Function Evaluation

The evaluation of the collocation function F requires us to tackle two computational is-
sues. First, we must be able to evaluate the integrals with respect to the status quo q and
the preference shocks θ. The integral with respect to the status quo q is d-dimensional.
Thus, when the dimension of the policy space d is of small or moderate size, we can extend
unidimensional quadrature techniques to perform this integration. In particular, in the
applications we consider, we assume that each coordinate of the status quo is drawn inde-
pendently, so that the density g(q|x) is a product of densities. Thus, we can use Gaussian
quadrature along each dimension with weight function given by the density of the coordinate
of the status quo that corresponds to this dimension. The required d-dimensional nodes
and weights are easily obtained from the unidimensional ones using tensor products (Judd
(1998), Miranda and Fackler (2002)). In practice, for each collocation node x̃k, we specify
a total of α quadrature nodes qk,j ∈ Qk and corresponding weights ωk,j , j = 1, . . . , α, using
g(q|x̃k) as the weight function, and then we compute∫

q
Φ(q, c)g(q|x̃k)dq ≈

∑
qk,j∈Qk

Φ(qk,j , c)ωk,j ,

where Φ(q, c) =
∫
θ

∑
h∈N ph

[
U(πh(q, θ; c); ci) + θi · πh(q, θ; c)

]
f(θ)dθ.

Integration with respect to the preference shocks θ is more challenging, as the associated
integral is nd-dimensional. The Guassian quadrature approach we described above would be
impractical in this case, as the required number of quadrature nodes becomes prohibitive.
Instead, we switch to a quasi-Monte Carlo integration method using a Sobol sequence of
β quasi-random numbers (Press et al. (1992)), θ` ∈ Θ, ` = 1, . . . , β, so that for every
quadrature node qk,j , we compute∫

θ
φ(θ, qk,j , c)dθ ≈ β−1

β∑
`=1

φ(θ`, qk,j , c),
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where φ(θ, q, c) =
∑

h∈N ph
[
U(πh(q, θ; c); ci) + θi · πh(q, θ; c)

]
f(θ).

In addition to the above integrations, the second major numerical issue involved in
evaluating the collocation function F is the computation of the optimal proposals πh(q, θ; c).
This entails solving the optimization problem of player h for each collocation node x̃k, each
quadrature node qk,j , and each θ` in the Sobol sequence, i.e., we must solve a total of
n×m× α× β optimization problems in order to evaluate the collocation function F once.
Note that for arbitrary values of the collocation coefficients c, the players’ expected utility
functions need not be concave, nor is there any guarantee that these functions would be
concave in equilibrium. Even if these functions were concave, the feasible set of proposals
available to player h is not convex, as is obvious from (5), since it is the union of sets
of proposals acceptable to each coalition. Thus, these optimization problems are quite
challenging and entail the possibility of significant numerical error in the evaluation of F if,
for example, a local maximum is computed instead of a global maximum. When the space
of policy proposals X is a continuum, Duggan, Kalandrakis, and Manjunath (2008) employ
a Nelder-Mead maximization algorithm to compute πh(q, θ; c) after initially approximating
the solution via a grid search to safeguard against the possibility of locating a local, as
opposed to global, maximizer. In this paper, we take an alternative approach by assuming
that the set of feasible proposals X is finite, i.e., we work in the quasi-discrete model, where
we can compute optimal proposals without error by straightforward exhaustive search.
Furthermore, the computation times reported in Section 6.2 suggest we can perform the
players’ maximization relatively efficiently, even when the feasible set X comprises a large
number of points.

In the next section, we show that our use of the quasi-discrete model is justified on
at least two more grounds. First, the collocation function in the quasi-discrete model is
sufficiently smooth to allow us to use Newton-like methods in order to compute equilibria.
Second, we show that we can recover equilibria of the continuous model by computing
equilibria for a sequence of quasi-discrete models.

4 The Quasi-Discrete Model

In this section, we specialize the collocation method to the quasi-discrete model. In par-
ticular, we assume that the set of feasible proposals is a finite set, |X| <∞, and we index
a typical element as xp. As discussed in the previous subsection, the main advantage of
this formulation is that we are able to accurately evaluate the optimization problem of
proposers, thus providing a realistic setting for the numerical evaluation of the collocation
equations. It is key for the tractability of this problem, however, that the collocation equa-
tions be reasonably smooth. This precondition is no mere formality, for the definition of
the collocation equations in (10) involves integration over optimal policy choices, πh(q, θ; c),
which are not differentiable in c. Nevertheless, we establish a sufficient level of smoothness
for the applicability of Newton-like or inexact Newton methods: in particular, the collo-
cation functions are locally Lipschitz and directionally differentiable. We then show that
the solution of the quasi-discrete model allows us to compute equilibria of the continuous
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model as the limit of equilibria of a sequence of quasi-discrete approximations.

4.1 Smoothness of the Collocation Equations

Before proceeding to the result of this subsection, we provide some elementary definitions
and facts used in the proof. We say that a function g : Rn → Rn is locally Lipschitz
continuous if for every x ∈ Rn, there exist ε > 0 and a constant M ∈ R such that for all
y, z ∈ Bε(x),

||g(y)− g(z)|| ≤ M ||y − z||.

A locally Lipschitz function g is differentiable almost everywhere (by Rademacher’s theo-
rem). The directional derivative of g in direction s is

g′(x|s) = lim
α→0+

g(x+ αs)− g(x)
α

,

provided this limit is well-defined. The smoothness properties of the collocation function
rely on the properties of functions that can be represented as a continuous splicing of a
finite number of continuously differentiable functions. A function g : Rn → Rn is piecewise
smooth if it is continuous and there exists a finite collection of continuously differentiable
functions {g1, . . . , gm} such that each gj is defined on an open domain and for all x ∈ Rn,
there is a j = 1, . . . ,m such that g(x) = gj(x).9 It is known that piecewise smooth functions
are locally Lipschitz and have directional derivatives (Kuntz and Scholtes (1994)).

The following theorem establishes that the collocation function F is sufficiently smooth
in c in order to allow us to pursue Newton-like methods for the solution of nonlinear systems
of equations. If further properties hold in a neighborhood of a solution to the equations,
then convergence will also be fast.10

Theorem 2 Assume X is finite and f is C1. The collocation function F : Rnm → Rnm

is locally Lipschitz continuous and directionally differentiable.

The proof, located in the appendix, establishes that the collocation equations are in-
tegrals of piecewise smooth functions and that the properties of these piecewise smooth
functions carry over to F . Specifically, given any status quo q, we break the integral∫

θ

∑
h∈N

ph[U(πh(q, θ; c); ci) + θi · πh(q, θ; c)]f(θ)dθ (11)

into a finite number of integrals over polyhedral subsets of preference shocks. Each subset
Θ(q, y, h,A−h; c) corresponds to the set of preference shocks θ = (θ1, . . . , θn) such that
player h’s optimal proposal is y and the acceptance sets of the other players are given by

9Here, we use the generalized definition of piecewise smoothness suggested by Kuntz and Scholtes (1995).
10If c∗ solves F (c) = 0 and F has continuous directional derivatives in an open set around c∗ with non-

singular Jacobian, J∗, at c∗, it then follows from Theorem 4.1 of Ip and Kyparisis (1992) that Broyden’s
method (see Subsection 5.1) converges super-linearly to a solution in a neighborhood of (c∗, J∗).
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Θ(q, y, h, A−h; c) Θ(q, y, h, A−h; c′) Θ(q, y, h, A−h; c′′)

Figure 1: Non-differentiability in collocation coefficients.

A−h when the status quo is q. As such, each “cell” is defined by a finite number of linear
inequalities in which the collocation coefficients c enter the righthand side. The integral∫

Θ(q,y,h,A−h;c)
[U(y; ci) + θi · y]f(θ)dθ (12)

over a particular cell is clearly continuous, but non-differentiabilities may arise because as
we vary c, different sets of inequalities may become binding. In Figure 1, we depict a change
from c to c′ to c′′, supposing for simplicity that this variation only affects the upper most
linear constraint. This change has a smooth effect on (12) until c′, where the upper most
constraint becomes binding, and the effect is smooth thereafter.

While our decomposition of (11) suppresses the dependence of optimal proposals on the
collocation coefficients (through the term πh(q, θ; c)), we cannot avoid non-differentiabilities
that may be inherent in the structure of equilibrium. Nevertheless, we show that the integral
(12) over any cell is piecewise smooth, so that (11), rewritten as the sum∑

h

ph
∑
A−h

∑
y∈X∪{q}

∫
Θ(q,y,h,A−h;c)

[U(y; ci) + θi · y]f(θ)dθ

over all possible proposers h, acceptance sets of other players A−h, and possible proposals
y, is also piecewise smooth. Piecewise smoothness of (11) implies that for a given status
quo q, it is locally Lipschitz in c, but in order to integrate this term over q, we need some
bound on its behavior across status quos. The final hurdle in the proof is to construct, for
every c, a local Lipschitz constant for (11) that is uniform over q, allowing us to conclude
that the integral of (11) over status quos q, and therefore the collocation equations F , is
locally Lipschitz and directionally differentiable.

4.2 Quasi-Discrete Approximation

In this subsection, we show that while the quasi-discrete model affords computational
tractability, it also provides a means for computation of equilibrium in the continuum
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model. In particular, we can recover an equilibrium of the continuum model via a sequence
of computed equilibria for quasi-discrete models. Given a model with a continuum X of
feasible policies, we consider an algorithm for computing stationary bargaining equilibria by
means of an increasing sequence of finite grids on the policy space. To be concrete, let {X`}
be a sequence of finite approximations converging to X in the Hausdorff metric. For each `,
define a corresponding “quasi-discrete” model that is identical to the original model except
for the fact that feasible proposals (but not the status quo) are now constrained to lie in
X`. The quasi-discrete model is a special case of our bargaining model, for as mentioned
above, we can obtain the finite set X` of feasible policies by appropriately specifying equal-
ity constraints. Therefore, Theorem 1 yields at least one stationary bargaining equilibrium,
with policy-specific dynamic payoff U ` = (U `1 , . . . , U

`
n), in each quasi-discrete model.

We now establish that the sequence {U `} necessarily admits a convergent subsequence,
and that the limit of any such subsequence corresponds to a stationary bargaining equi-
librium of the continuum model. The notion of convergence we use is the topology of
Cr-uniform convergence on compacta, a fairly strong topology (which entails a correspond-
ingly strong convergence result).11

Theorem 3 Given a model with set X of alternatives, let {X`} be a sequence of
quasi-discrete models X` ⊆ X̃ converging to X in the Hausdorff metric. Then in each
quasi-discrete model X`, there exists a stationary bargaining equilibrium with policy-specific
dynamic payoffs U ` = (U `1 , . . . , U

`
n); and for every sequence {U `} of equilibrium dynamic

payoffs of quasi-discrete models, there is an accumulation point U of {U `} and a stationary
bargaining equilibrium of the model with set X alternatives with dynamic payoffs U .

Proof For each quasi-discrete model X`, existence of a stationary bargaining equilib-
rium σ` follows directly from Theorem 2, and we let U ` be the policy-specific dynamic payoff
generated by σ` as in (1) and (2). Now consider any such sequence {U `} of equilibrium
dynamic payoffs corresponding to the sequence {X`} of quasi-discrete models. For each m,
let v` be as in (1) and (2). Letting bh denote the Lebesgue measure of X̃, Duggan and
Kalandrakis (2008) define a subset V ⊆ Cr(Rd,Rn) that consists of v : Rd → Rn satisfying
the following: (i) if r <∞, then the derivatives of v of order 0, 1, 2, . . . are bounded in norm
by
√
nbfbgbh, and the rth derivative of v is Lipschitz continuous with modulus

√
nbfbgbh;

and (ii) if r =∞, then the derivatives of v of all orders are bounded in norm by
√
nbfbgbh.

Their Lemma 5 establishes that V is nonempty and compact in the topology of Cr-uniform
convergence on compacta, and it shows that the equilibrium continuation values v` belong
to V for all m. Thus, there is a convergent subsequence, still indexed by m for simplicity,
such that v` → v with limit v ∈ V. Theorem 3 of Duggan and Kalandrakis (2008) estab-
lishes closed graph of the stationary bargaining equilibrium correspondence, and it follows
that there is a stationary bargaining equilibrium, say σ, with continuation value v(·;σ) = v.

11To describe this topology, let r̂ be a natural number and Y ⊆ Rd, and define the norm ||f ||r̂,Y on
C r̂(Rd,Rn) as sup{||∂f(x)|| : x ∈ Y }, where ∂f is the r̂th derivative of f . Then a sequence {fm} of
functions converges to f in Cr(Rd,Rn) if and only if for every r̂ = 0, 1, . . . , r and every compact set Y ⊆ Rd,
we have ||fm − f ||r̂,Y → 0. We say fm → f in C∞(Rd,Rn) if and only if it converges in Cr(Rd,Rn) for all
r = 0, 1, 2, . . .
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Defining U by Ui(x;σ) = ui(x) + δivi(x), we have

U `i = ui + δiv
`
i → ui + δivi = Ui,

as required.

We have framed Theorem 3 in relatively simple terms for computational purposes, fixing
stage utilities, discount factors, and other parameters as the policy space becomes finer.
Because the upper hemicontinuity result of Duggan and Kalandrakis (2008) is general in
these respects, however, it is straightforward to extend the proof of the above result to allow
these other parameters to vary.

5 Solving the Collocation Equations

The collocation equations F (c) = 0 are non-linear in the unknown collocation coefficients
c, and hence a natural strategy to solve these equations is to apply a variant of Newton’s
method. Due to the smoothness properties of the collocation function established in Theo-
rem 2, several generalizations of Newton’s method are in principle applicable in our problem.
In Subsection 5.1, we discuss one such method, Broyden’s method, that offers several advan-
tages compared to other alternatives. In Subsection 5.2, we discuss implementation issues
and present a transformation of the collocation equations that significantly improves the
performance of the resulting algorithm. In Subsection 5.3, we briefly discuss two additional
algorithms for the solution of the collocation equations.

5.1 Broyden’s Method

Recall that in Newton’s method we start with an initial candidate c0 for the solution and
then at the (τ+1)-th iteration, we obtain a new candidate solution according to the formula

cτ+1 = cτ − [F ′(cτ )]−1F (cτ ),

where F ′(cτ ) is the Jacobian of F evaluated at the current iterate cτ . Recently, a num-
ber of authors have studied modifications of Newton’s method when F is not everywhere
differentiable but satisfies weaker smoothness properties such as local Lipschitz continuity
and directional differentiability, as is the case in our problem. One class of these methods
directly generalizes Newton’s method by using a generalized Jacobian in lieu of F ′(cτ ) when
F is not differentiable at cτ (e.g., Pang (1990), Qi and Sun (1993)). A second alternative
falls within the broad class of inexact or quasi-Newton methods (e.g., Ip and Kyparisis
(1992), Martinez and Qi (1995), Qi (1997)). Primarily motivated by the observation that
the evaluation of the Jacobian is typically very costly (even when it exists), these methods
operate by providing an initial estimate of the Jacobian and then ensuring an inexact (but
easy to compute) update to the Jacobian with each iteration. These methods behave quite
well as long as the sequence of the updated Jacobians stays within a certain distance from
the Jacobian at the solution. Any method that circumvents the need to compute the Jaco-
bian is particularly appealing in our problem as the Jacobian of the collocation equations is
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very costly to compute analytically or numerically. We choose to work with a particularly
robust version in the class of inexact Newton methods, namely Broyden’s method (Broyden
(1965)).

Broyden’s method requires an initial guess of the solution c0, just as Newton’s method
does. In addition, at the beginning of the algorithm we must also supply an initial guess,
B0, of the Jacobian at the solution. At the τ -th iteration, we obtain a new update of the
unknown collocation coefficients as in Newton’s method,

cτ+1 = cτ − [Bτ ]−1F (cτ ), (13)

and a new update of the Jacobian according to the formula

Bτ+1 = Bτ +
(F (cτ+1)− F (cτ )−Bτ (cτ+1 − cτ ))(cτ+1 − cτ )T

(cτ+1 − cτ )T (cτ+1 − cτ )

= Bτ +
F (cτ+1)(cτ+1 − cτ )T

(cτ+1 − cτ )T (cτ+1 − cτ )
, (14)

where (cτ+1 − cτ )T denotes the transpose of cτ+1 − cτ . The conditions for fast convergence
of Broyden’s method, described following Theorem 2, are analogous to those needed for
convergence of Newton’s method, but in addition to requiring that the initial guess c0

must be sufficiently close to the solution, Broyden’s method also requires that the initial
approximation to the Jacobian, B0, is sufficiently close to the Jacobian at the solution. We
address the non-trivial problem of supplying an accurate initial approximation B0 for our
implementation of Broyden’s method in the next subsection.

In practice, both Newton and quasi-Newton algorithms are modified to prevent oscilla-
tory behavior or divergence of the iteration sequence. A focal point of intervention in these
algorithms is a modification of the Newton step in cases when that step does not lead to a
decrease in the residual, ||F (cτ+1)|| ≤ ||F (cτ )||. If the default (quasi-) Newton step does not
produce a sufficient decrease in the residual norm, then the step is adjusted by performing
a line search along the originally suggested direction until a decrease is achieved. A popular
globalization strategy of this form is the Armijo rule (Armijo (1966)), which we use in our
implementation. In the particular version we use, the required line search along the direction
suggested by (13) is performed using optimization techniques on a parabolic approximation
of the residual function. Details of the Armijo rule and the particular implementation can
be found in Kelley (2003).

5.2 Implementation and Preconditioning

As we already discussed, Broyden’s method requires the analyst to supply an initial esti-
mate B0 of the Jacobian, and the performance or even eventual convergence of the algorithm
hinges on the quality of this initial estimate. Assuming the initial iterate c0 is close to the
solution, a good initial value for B0 can be obtained by computing the actual Jacobian at
c0.12 In principle, this can be done numerically, but aside from the possibility of numerical

12Recall that the collocation function F of the quasi-discrete model is differentiable almost everywhere by
Theorem 2.
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error, the numerical evaluation of the Jacobian is impractical in our case as it requires
multiple evaluations of F , which are very expensive to perform. A superior alternative is
the analytic evaluation of the Jacobian, but this is also prohibitively costly in our prob-
lem. In particular, in order to compute the partial derivative ∂Fi,k(c)

∂cj,`
, we must account for

the indirect effect of a change in the collocation coefficient cj,` on the proposal strategies
πh(θ, q; c).

Nevertheless, a strategy for a second-best approximation to the Jacobian is available
analytically. This approximation evaluates the derivative by ignoring any effect of changes
in the collocation coefficients that is channeled through changes in proposal strategies.
Evaluating only the direct effects, it is immediate from (8) and (10) that the pseudo-
derivative resulting from this approach, denoted ψ(i,k),(j,`)(c) ≈

∂Fi,k(c)
∂cj,`

, takes the form

ψ(i,k),(j,`)(c) =
{
T`(x̃k)− δi

∫
q

∫
θ

∑
h∈N phT`(πh(q, θ; c))f(θ)dθg(q|x̃k)dq if i = j

0 if i 6= j.

Let Ψ(c) denote the mn×mn matrix with entries corresponding to the pseudo-derivatives
computed above and evaluated at c, so Ψ(c) is a block-diagonal matrix with the size of each
block equal to m×m. As a consequence, the evaluation of the inverse of Ψ(c) is relatively
inexpensive.13 Thus, we can choose c0, set B0 = Ψ(c0), and apply Broyden’s method
to the collocation function F . As discussed by Kelley (2003), this is equivalent to setting
B0 = Inm, where Inm is the nm×nm identity matrix, and then solving a left-preconditioned
version of the collocation equations using the function

ΨF (c) = [Ψ(c0)]−1F (c)

instead of the function F .

While the above left-preconditioned version of Broyden’s method offers one feasible route
for the implementation of the method, the availability of a relatively cheap approximation
to the Jacobian Ψ(c) of F for every c suggests an even more appealing alternative. Observe
that if Ψ(c) is indeed a good approximation of the Jacobian of F and is invertible, then
the Jacobian of the function [Ψ(c)]−1F (c) is close to the identity matrix Inm. The low-cost
of computing [Ψ(c)]−1 suggests that we can consider applying Broyden’s algorithm to a
modified function F̂ given by

F̂ (c) = [Ψ(c)]−1F (c) = c− [Ψ(c)]−1S(c), (15)

where S(c) is a nm× 1 column vector whose entry corresponding to i’s coefficient on Tk is

Si,k(c) = ui(x̃k) + δi

∫
q

∫
θ

∑
h∈N

ph(θi · πh(q, θ; c))f(θ)dθg(q|x̃k)dq. (16)

Assuming Ψ(c∗) is non-singular,14 the collocation coefficients c∗ solve the collocation equa-
tions (i.e., F (c∗) = 0) if and only if they solve F̂ (c∗) = 0. As a result, we have transformed

13In fact, in the case in which players share the same discount factor, the blocks forming the block diagonal
matrix Ψ(c) are identical for each of the n players, and computation of the inverse of Ψ(c) reduces to the
computation of the inverse of one m×m matrix.

14It is straightforward to show that for all c, Ψ(c) can be singular for at most a finite number (possibly
zero) of discount factors (δ1, . . . , δn).
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the system of equations F (c) = 0 to a system F̂ (c) = 0 that has a lower condition number
(see Judd (1998), pages 67–70 and Section 5.7) and is much closer to being linear. We thus
proceed to apply Broyden’s method to the function F̂ instead of the collocation function
F , using initial iterate c0 and initial approximate Jacobian B0 = Inm. It turns out that
this implementation of Broyden’s method yields far superior performance in the numerical
experiments we consider.

5.3 Two Alternative Solution Methods

In this subsection, we describe two additional methods that can be used as alternatives
to Broyden’s method in order to solve the collocation equations. Outside the class of
Newton-like methods for solving non-linear equations, a standard approach for the solution
of the collocation equations is a form of value iteration. This method starts with an initial
guess c0, and in the τ -th iteration it generates a new set of collocation coefficients cτ+1 by
performing Chebyshev function interpolation on the expected utility functions evaluated at
the collocation nodes, where the values of these functions are computed using the collocation
coefficients, cτ . Specifically, at the τ -th iteration, the collocation coefficients cτ imply a
vector Û τ = (Û τ1 , . . . , Û

τ
n) of nm values for the n players’ expected utilities at each of the

m collocation nodes according to

Û τi (x̃k) = ui(x̃k) + δi

∫
q

∫
θ

∑
h∈N

ph
[
U(πh(q, θ; cτ ); cτi ) + θi · πh(q, θ; cτ )

]
f(θ)dθg(q|x̃k)dq,

which updates Û τ by computing “best response” proposals, πh(q, θ; cτ ). We then use the
values Û τi (x̃k) to obtain cτ+1 by performing interpolation, i.e., by solving the linear system
of equations

Û τi (x̃k) =
m∑
`=1

cτ+1
i,` T`(x̃k), (17)

i = 1, . . . , n, k = 1, . . . ,m, for the unknown cτ+1. A form of value iteration is used by
Duggan, Kalandrakis, and Manjunath (2008) to solve a variant of the model that we study.
They also use a Chebyshev polynomial representation of the unknown functions to be solved
for, but in their solution method the corresponding equations (17) are not solved exactly,
as they use more nodes at which to evaluate the unknown functions than coefficients, i.e.,
they perform function approximation instead of interpolation.

A second alternative is motivated by the form of the transformed collocation function F̂
in (15). In particular, it is apparent from the definition of the function F̂ that collocation
coefficients solving the equations F̂ (c) = 0 constitute a fixed point of the function

ˆ̂
F (c) = −[Ψ(c)]−1S(c),

where S(c) is defined in (16). Thus, when viewed as a fixed point c = ˆ̂
F (c), a solution to

the original collocation equations F (c) = 0 can then be obtained by fixed point iteration on
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the auxiliary function ˆ̂
F , so that at the τ -th iteration we obtain

cτ+1 = ˆ̂
F (cτ ). (18)

An alternative way to motivate this iterative method is to construe it as a pseudo-Newton
method. Again guided by (15), we note that the updating step described in (18) is equivalent
to a Newton step for the collocation function F , since

cτ+1 = ˆ̂
F (cτ ) = cτ − [Ψ(cτ )]−1F (cτ ),

where instead of the Jacobian F ′(cτ ) used in the conventional Newton method, we have
substituted the approximation Ψ(cτ ). Viewed as a pseudo-Newton method, the iteration
(18) then admits all the globalization strategies employed for correcting Newton iterations.
In particular, if at the τ -th iteration the step suggested by the pseudo Jacobian Ψ(cτ ) does
not lead to a sufficient decrease in the norm of the residual ||F (cτ+1)|| compared to the
residual ||F (cτ )||, then we can adjust the length of the step along the same direction. In the
numerical experiments we report, we implement both Broyden’s method and this pseudo-
Newton method using the same Armijo rule and a parabolic line search for the optimal step
size at each iteration.

6 Numerical Experiments & Core Convergence

In this section, we conduct a number of numerical experiments designed to evaluate the
performance of the collocation method and the techniques for solving the collocation equa-
tions for dynamic bargaining games we developed in Sections 3–5. We begin in Subsection
6.1 with a description of the numerical specification of the model parameters and other nu-
merical specifications required to implement the algorithms. In Subsection 6.2, we discuss
and compare the performance of the three methods for solving the collocation equations,
and we provide an application of Theorem 3 for the purposes of approximating equilibria
in a model with a continuous space of policies. As an application of these techniques, we
conclude in Subsection 6.3 with an illustration of the core convergence result of Duggan
and Kalandrakis (2008).

6.1 Specifications

Throughout this section, we specify models with a two-dimensional policy space (d = 2),15

and we assume that the set of feasible policies is a finite grid contained in the square

X̃ = [−1, 1]2.

Given x = (x1, x2), we set the support of the density of the status quo, g(q|x), to

[ 9
10x1 − 1

10 ,
9
10x1 + 1

10 ]× [ 9
10x2 − 1

10 ,
9
10x2 + 1

10 ] ⊂ X̃.
15We have written software that allows us (at increasing cost) to solve for equilibria in models with

higher-dimensional policy spaces.
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Each coordinate qi, i = 1, 2, of the status quo is independently Beta distributed in [ 9
10xi −

1
10 ,

9
10xi + 1

10 ] with parameters a = b = 5.16 This specification ensures that g(q|x) is twice
continuously differentiable with respect to x with Lipschitz bounded second derivative, as
assumed in Subsection 2.1. We fix the distribution of the preference shocks, f(θ), to be
uniform in (− 1

20 ,
1
20)2n. We solve models with n = 9 players and simple majority rule, so

that the set of winning coalitions is given by

D = {C ∈ N : |C| ≥ 5}.

We specify uniform recognition probabilities across players, so that pi = 1
9 , and set common

discount factors δi = δ. With the exception of one set of computations in the core conver-
gence subsection, we use a value of δ = 0.7 for the discount factor. The stage utilities of all
players are negative quadratic with the ideal point of player i denoted x̂i, so that

ui(x) = −(x1 − x̂i,1)2 − (x2 − x̂i,2)2.

We specify a number m = 31×31 = 961 of collocation nodes x̃k, which are located at the
roots of the Chebyshev polynomials as described in Section 3. Based on experimentation
with alternative numbers of collocation nodes, this choice seems to strike a good compromise
between achieving sufficient precision in the approximation of the expected utility functions
U and computational cost. We borrow routines from the MATLAB compecon toolbox of
Miranda and Fackler (2002) to generate the collocation nodes as well as the values of the
Chebyshev polynomials at these nodes. For each collocation node x̃k, we specify α = 25
Gaussian quadrature nodes in order to perform the integration with respect to the status
quo q. These nodes and the corresponding weights are specified using the MATLAB routine
qnwbeta from the compecon toolbox of Miranda and Fackler (2002). We use a Sobol sequence
of β = 128 quasi-random numbers as implemented by Burkardt (2007) in the MATLAB
environment. We vary the size of the policy grid X, which is in all cases uniform in [−1, 1]2

with sizes ranging from 7 × 7 = 49 to 51 × 51 = 2,601 points, although most of the
computations are performed with a grid of size 35 × 35 = 1,225. Given the above, each
function evaluation requires us to solve n×m×α×β = 27,676,800 optimization problems.

We have written MATLAB routines to perform these optimizations and the integrations
required in order to evaluate the collocation functions F and F̂ or ˆ̂

F . These routines take
advantage of MATLAB’s Parallel Computing Toolbox, so that the players’ optimization
problems are executed in parallel in four processors.17 We used Kelley (2003)’s MATLAB
routine brsola to implement the Broyden-Armijo method with a parabolic line search to
adjust the Newton step. We adapted the same code in order to implement the same line
search procedure for the pseudo-Newton method described in Section 5.3.

16Thus, g(q|x) takes the form

g(q|x) =

( Q2
i=1

(qi− 9
10 xi+

1
10 )4( 1

10+ 9
10 xi−qi)

4

B(5,5)( 2
10 )9

if qi ∈ [ 9
10
xi − 1

10
, 9

10
xi + 1

10
], i = 1, 2,

0 otherwise.

17All computations reported in this paper were executed on a 3.2 GHz dual Quad-Core Intel Xeon Mac-
Pro machine with 8GB of memory operating under Microsoft’s 64-bit Windows Vista Professional operating
system.
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Broyden
Pseudo-
Newton

Value
Iteration

Number that converged
to 10−5 10 8 10

Median function
evaluations needed

8.5 9.5 19

Average function
evaluations needed

10.4 8.875 18.8

Min function
evaluations needed

6 6 17

Max function
evaluations needed

22 12 21

Number that converged
to 5× 10−5 10 10 10

Median function
evaluations needed

5 5 14

Average function
evaluations needed

5.7 5 13.5

Min function
evaluations needed

5 4 12

Max function
evaluations needed

9 6 14

Table 1: Performance of three solution methods.

6.2 Numerical Experiments

To compare the performance of the three solution methods discussed in Section 5, we
randomly drew ten sets of ideal points x̂i for the nine players from the uniform distribution
in [−1, 1]2. We then applied each of the three procedures (Broyden’s method, the pseudo-
Newton method, and value iteration) to compute an equilibrium for each of the models
specified by the ten sets of ideal points. In these computations, the size of the policy grid
is given by 35 × 35 = 1, 225 points. All iterations were initiated with a value c0 = 0 for
the collocation coefficients. We monitored convergence using the averaged L2 norm of the
residual of the transformed collocation function, i.e., ||F̂ (c)||2√

nm
. The function F̂ is evaluated in

our implementation of Broyden’s method, and for the purposes of comparison we evaluate
the residual of that function for both the value iteration and the pseudo-Newton methods.18

We required a residual of 10−5 for convergence of the iterations. In Table 1, we report on
the performance of the three methods.

18These extra computations constitute a negligible fraction of the overall computation. Note that the cost
of a function evaluation in Broyden’s method is identical to the cost of evaluating the expected payoff values
Û in value iteration, so it is appropriate to gauge the cost of these methods in terms of function evaluations.
The bulk of this computational cost arises from solving the optimization problems of the proposers.
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Figure 2: Convergence paths for three solution methods.

As is evident from the first row of Table 1, both Broyden’s method and value iteration
converged to the target tolerance level in all cases, while the pseudo-Newton method failed
to converge in two cases.19 This occurred when the line search procedure failed to find a
step size that produced a sufficient reduction in the norm of the residual. According to
Table 1, our implementation of Broyden’s method outperforms value iteration in terms of
the required function evaluations, as it required only 10.4 function evaluations on average
compared to 18.8 for value iteration, thus economizing on function evaluations by at least
50%. Furthermore, in the typical case, Broyden’s method converged in 8 to 9 function
evaluations, while value iteration consistently required roughly double that number in the
range from 17 to 21 function evaluations. Table 1 also reveals that our pseudo-Newton
method is quite competitive in the initial iterations. In particular, the pseudo-Newton
method outperforms the other two methods when the required tolerance level is relaxed to
5× 10−5, in which case it converged in all ten specifications.

In Figure 2, we display the convergence path of the three algorithms in one of the
ten specifications in which the performance of the three methods (measured in terms of
the number of function evaluations required for convergence) is roughly at the medians
reported in Table 1. This figure is representative of the performance of the three methods.
As expected, value iteration exhibits a consistent linear decrease in the residual norm. On
the other hand, the other two methods exhibit super-linear convergence initially, but then
slow down near the tolerance level. Although Newton-like methods perform better near the
solution in the absence of numerical error in function evaluation, the slower convergence
exhibited in the later iterations of Broyden’s method in Figure 2 is not surprising given

19We discarded those two cases in calculating average function evaluations needed by pseudo-Newton.
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the numerical precision that we have built into the problem. Interestingly, it is exactly
near that tolerance level that the pseudo-Newton method loses its initial advantage over
Broyden’s method. The advantage of Broyden’s method at these later iterations is due to
the fact that it accumulates information across iterations that results in a more accurate
representation of the Jacobian of the function F̂ in later iterations. Our pseudo-Newton
method, on the other hand, relies on the pseudo-Jacobian Ψ(cτ ) at each iteration, and that
contains no information on the indirect effect of changes in the collocation coefficients cτ

on the likelihood of different values for the optimal proposals πh(q, θ; cτ ).

We performed a number of checks to test the quality of the solution produced at these
tolerance levels. Given solution c∗ obtained with either of the above methods, we evaluated
the expected payoff of players at a large number of 50 × 50 test points on a uniform grid
in X̃ that do not coincide with the 31 × 31 collocation nodes. We then computed the
residual difference between these function values and those obtained from the collocation
coefficients; namely, for each test point z ∈ X̃ and each player, we computed

Ri(z) = U(z; c∗i )−
[
ui(z)+δi

∫
q

∫
θ

∑
h∈N

ph
[
U(πh(q, θ; c∗); c∗i )

+ θi · πh(q, θ; c∗)
]
f(θ)g(q|z)dθdq

]
.

The average L2 norm of these residuals is roughly 7× 10−5, and it is less than 5× 10−4 in
the L∞ norm. These numbers are consistent with the tolerance level of 10−5 used to gauge
convergence of the algorithms.

It should be noted that we also attempted alternative implementations of Broyden’s
method, using the unconditioned function F or the left-preconditioned version ΨF discussed
in Subsection 5.2, instead of the dynamically preconditioned version F̂ , but these versions
of Broyden’s method did not perform as well compared to either of the alternatives that we
present. The conclusion we reach from this discussion and from Table 1 is that Broyden’s
method constitutes a viable solution method that can lead to a significant economization
in computing time over value iteration when solving the quasi-discrete dynamic bargaining
games that we study. Translated in terms of computer time, value iteration, with a median
number of 19 function evaluations, required roughly in excess of 54 minutes to solve a typical
instance of our nine player model, while the corresponding cost for Broyden’s method drops
to just 23 minutes. If only a rough approximation of the solution is required, then our
pseudo-Newton method is a competitive alternative.

We conclude this section with an illustration of Theorem 3, which allows us to obtain
an increasingly precise approximation of the equilibrium of the continuum model from a
sequence of equilibrium computations of quasi-discrete models. In particular, we chose
the typical specification of ideal points among the ten used to produce Table 1, on which
we reported in Figure 2, and we used Broyden’s method to compute an equilibrium for a
sequence of six quasi-discrete models with grid sizes ranging from 7× 7 to 51× 51, roughly
doubling the number of points in the policy grid X with each successive model. In order
to ensure independence of the solutions for each model, we started Broyden’s method from
c0 = 0 for each of the six models in the sequence.20 For each of the six models, we attained

20This is not the approach we would use if our goal were to economize on computation time. In that case,

23



æ

æ

æ
æ

æ

7�7
to

11�11

11�11
to

17�17

17�17
to

25�25

25�25
to

35�35

35�35
to

51�51

10-4

5�10-5

10-5

Figure 3: Change in solution with finer policy grids.

convergence to within the tolerance level of 10−5.21 In Figure 3, we depict the change in the
L2 norm of the solution obtained for each successive pair of models. As is evident from the
decreasing line in Figure 3, these solutions grow successively closer to each other with each
increase on the size of the policy grid. In fact, the equilibrium of the model with 35 × 35
grid differs from that obtained for the 51 × 51 grid by roughly 10−5, suggesting that (at
least for the specifications we use) we reasonably approximate equilibria of the continuum
model by looking at these grid sizes.

6.3 Core Convergence

Every equilibrium of the dynamic bargaining game we consider admits an invariant distri-
bution (at least one) over implemented policies, an implication of Theorem 4 of Duggan
and Kalandrakis (2008). In Theorem 6 of that paper, we also show that when the noise on
the status quo and the preference shocks are small, and when the stage utilities are close to
quadratic and are close to admitting a core policy, and the player located at the core has
positive probability of recognition, then the invariant distributions generated by equilibria
of the model must be close (in the sense of weak convergence) to the unit mass on the
limiting core policy. In this subsection, we implement the Broyden collocation method in

we would use the solution output (and possibly the approximated Jacobian) from application of Broyden’s
method in each lower grid size model in order to provide a ‘hot’ starting point for the next model with finer
policy grid, thus significantly economizing on the number of function evaluations needed for the models with
finer policy grids.

21Convergence to this tolerance level is generally harder in the models with coarser policy spaces, and
Broyden’s method converged to within 2 × 10−5 in the model with an 11 × 11 policy grid. We then ran a
small number of value iterations to get the solution of that model to within the required tolerance level.
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x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8

x̂i,1 –0.8 0.3 –0.2 0.9 0.1 –0.15 0.3 –0.9
x̂i,2 0 0 0.2 –0.9 0.6 –0.9 0.2 –0.6

Table 2: Location of ideal points of players 1–8 in core convergence experiment.

the two-dimensional, nine-player model specified in Subsection 6.1 to provide a numerical
illustration of this convergence result.

As a first step, we address the requirements of Duggan and Kalandrakis’s (2008) dynamic
core theorem. The specification we have chosen meets the requirements regarding the
curvature of the players’ stage utilities, as we assume they are quadratic. Duggan and
Kalandrakis’s (2008) theorem assumes a sequence of models that exhibit increasingly smaller
levels of noise on preferences and the status quo. In our specification, we have assumed a
relatively small level of noise, which we keep fixed in the computations that follow. These
computations demonstrate that the equilibrium forces that yield the theorem take effect
well before the noise on preferences and the status quo become negligible, i.e., even if fixed
at the levels we have already specified. In addition to these requirements, the theorem
assumes a configuration of stage preferences that becomes closer to admitting a core. For
that purpose, we fix the ideal points of players 1 through 8 at the values reported in Table
2. It is straightforward to verify that, given negative quadratic stage utilities and absent
preference shocks, these ideal points satisfy Plott’s (1967) pairwise-symmetry conditions
for the existence of a core point at the origin of the space (0, 0). With the ideal points of
the remaining players thus fixed, we can move the ideal point of player 9 from an arbitrary
position toward the origin and monitor the effect of this move on the invariant distribution
over policies induced in equilibrium.

In our numerical experiments, we varied the ideal point of player 9 from the location
x̂9 = (−0.4,−0.4), at which a core point does not exist, to an intermediate location x̂9 =
(−0.2,−0.2), and finally to the point x̂9 = (0, 0), at which player 9 is located at the core
(absent preference shocks). We considered two possible values for the common discount
factor, a low value of δ = 0.3 and the value δ = 0.7 used for the computations we have
already reported. We computed equilibria for each of these six configurations of ideal points
and discount factors using a space of policies X given by a 51× 51 uniform grid in [−1, 1]2.
To compute an equilibrium for that grid size, we first computed equilibria using coarser
grids at a much lower computation cost, and then we gradually increased the size of the
grid, using the solutions from smaller grids in order to initiate Broyden’s algorithm for
finer grids. At the 51 × 51 grid size, we required a more stringent convergence tolerance
of 5 × 10−6 for termination of the algorithm, and convergence typically required only one
or two iterations at this grid level, as the initial values were already quite close to the
solution.22

Upon obtaining an equilibrium in this fashion, we simulated a long sequence of equi-
22Thus, consistent with Theorem 3 and the conclusion drawn from Figure 3, we can view the computed

equilibria at this grid size as a good approximation of equilibrium in the continuous model.
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Figure 4: Core convergence.

Models with δ = .3 appear on the left, those with δ = .7 on the right. Long-term policies when
x̂9 6= (0, 0) tend to be more moderate when players are more patient. Long-term policies pile mass
at the core point when x̂9 = (0, 0).
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librium play over 20, 000 periods, retaining the policy implemented in each period, and
then used the last 15, 000 periods as a sample from an invariant distribution induced by
the equilibrium. We used this sample in order to depict this invariant distribution over
policies in Figure 4 using a kernel density estimator. The first column of Figure 4 displays
the invariant distribution over policies for the three locations for the ideal point of player 9
and a low discount factor δ = 0.3, and the second column corresponds to a discount factor
δ = 0.7. The last row of these graphs corresponds to the case where player 9’s location is at
the core point (0, 0). Moving from the first row to the last row of these graphs, we find that
the equilibrium invariant distribution piles more mass near the core point for both discount
factors. In the last row, the invariant distribution is obviously concentrated near the origin
with virtually no policies occurring away from the limiting core point in accordance with
Theorem 6 of Duggan and Kalandrakis (2008).

Observe that the invariant distribution when δ = 0.3 and x̂9 6= (0, 0) is markedly
more dispersed than the corresponding distribution when δ = 0.7. Evidently, the strategic
incentives of the players induce them to be more moderate and seek policies closer to the
center of the policy space when the discount factor is larger. Such moderate policies insulate
players from the risk of a large change in policy when a player with whom they disagree
significantly is the proposer and can leverage the policy outcome in her favor due to the
fact that a status quo is located too far away from the remaining players’ preferences. The
moderating effect of players’ patience was also identified in the computations of Baron and
Herron (2003) in a two-dimensional setting with three players symmetrically located in an
equilateral triangle. Our analysis suggests that the observations of those authors are robust
to the horizon of the game, and they raise the question of whether a theoretical explanation
for this regularity is possible — a question we leave open.

In order to illustrate the players’ voting and proposal strategies, we depict the collective
acceptance set and optimal proposals for various status quo in Figure 5. The three figures
on the right column of Figure 5 correspond to the equilibrium for the specification of ideal
points that is the furthest from satisfying Plott’s conditions so that the ideal points of
players 1 to 8 are as specified in Table 2, that of player 9 is located at (−0.4,−0.4), and
the discount factor is set to δ = 0.7. For the purposes of comparison we also depict the
corresponding acceptance sets and proposal strategies when players are impatient (δ = 0) in
the left column of Figure 5. A number of observations emerge from this comparison. First,
the collective acceptance sets when players are patient tend to include more alternatives in
the center of the policy space and fewer at the extremes. Second, many players strategically
compromise their proposals by offering a moderate proposal instead of choosing the feasible
policy that is closest to their ideal point, even in cases when it is feasible. Third, the
collective acceptance set grow small as the status quo moves to a more central location at
q = (−0.1,−0.1).

In Figure 6, we display the equilibrium preferences of one of the players in each of the
three models with discount factor δ = 0.7 to elucidate the nature of the equilibrium and the
strategic incentives of the players. The first row of Figure 6 depicts the continuation value
of player 7 and is in some sense a representation of the effect of future equilibrium play on
that player’s incentives. Note that for all three models (player 9 located at (−0.4,−0.4),
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Figure 5: Social acceptance sets and proposal strategies.

Collectively acceptable alternatives are displayed in black, stage ideal points in blue, optimal pro-
posals in red. Arrows originate from ideal points and point to the proposals of the corresponding
player. Individual preference shocks θi are set to zero for all i.
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Figure 6: Continuation value and dynamic utility.

Continuation value v7(x) (first row) and dynamic utility U7(x) (second row) of player 7, for the
models with player 9’s stage utility ideal point located at (−0.4,−0.4), (−0.2,−0.2), and (0, 0),
respectively. The red point indicates player 7’s stage ideal point. Darker areas indicate higher
utility.

(−0.2,−0.2), and (0, 0), respectively), the policy outcomes that engender the best future
distribution of policies for player 7 are those that are close to the center of the policy
space, near the ideal policy of player 9. This area of the policy space concentrates most
of the mass of the equilibrium invariant distribution, as is evident by the second column
of Figure 4, and player 7’s continuation value is maximized when the current policy is
near that area of the policy space. Nevertheless, player 7 has a stage ideal point fixed at
x̂7 = (0.3, 0.2), which is removed from the policies that generate higher future utility for
that player. The net effect of these two incentives, i.e., those concerning player 7’s future
expected utility versus the utility derived from present policy, is that the policy generating
the highest expected discounted payoff for player 7 is a compromise between her stage ideal
point and the policies that are near the center of the policy space. This is evident from the
second row of Figure 6. This row displays player 7’s dynamic utility U7(x), which in all
cases appears to have a maximizer closer to the origin compared to the stage ideal point of
the player. The dynamic utility also appears to be non-concave in the equilibrium of the
model with x̂9 = (−0.4,−0.4), although this non-concavity is not very pronounced, despite
the fact that player 7’s stage utility is strictly concave. Of course, the dynamic utility
U7 is derived endogenously as the convex combination of the stage utility and player 7’s
continuation value function, so the non-concavity is not surprising given the fact that player
7’s continuation value is shaped by the complicated nature of future equilibrium play.
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7 Conclusion

We have proposed one approach to computation of equilibrium in a general class of dynamic
bargaining games, and we have provided theoretical support for this approach. Despite the
fact that proposals are endogenous in our model, we have proven that we can approximate
equilibrium dynamic utilities as the solution to a sufficiently smooth system of collocation
equations. We have shown that a preconditioned version of Broyden’s method constitutes
a viable solution method for the quasi-discrete model, and that it can lead to a significant
economization in computing time over value iteration. Furthermore, taking the limit of
equilibria of a sequence of increasingly finer quasi-discrete models, we can compute equilibria
of the continuum model. We employ these techniques in an illustration of core convergence
in the model. Our computational results suggest that greater patience on the part of
the players may induce greater policy moderation, opening the question of a theoretical
explanation for this regularity. These contributions, taken together, should complement
the future analysis of such theoretical questions as the effect of proposal power or the
distribution of voting rights on equilibrium policy outcomes, and they may facilitate the
empirical estimation of unobservable parameters, such as proposal probabilities or discount
factors, in dynamic bargaining games.

A Proof of Theorem 2

Theorem 2 Assume X is finite and f is C1. The collocation function F : Rnm → Rnm is
locally Lipschitz continuous and directionally differentiable with directional derivatives.

Proof To any c ∈ Rnm we can associate policy-specific dynamic payoffs U(y; ci) as in
(9), and we can consider the optimality conditions (5) and (6). We define Θ(q, y, h, a−h; c)
as the closure of the subset of preference shocks θ ∈ Rnd for which the acceptance sets
of the players other than h satisfying (5) are summarized by the vector a−h ∈ A =
{0, 1}(n−1)|X|, and the proposal y ∈ X ∪ {q} solves (6) for proposer h. Here, a−h =
(a1, . . . , ah−1, ah+1, . . . , an), and aj,p = 1 indicates that j will vote to accept xp if pro-
posed, and aj,p = 0 indicates rejection. To be more precise, the shocks θ ∈ Θ(q, y, h, a−h; c)
are characterized by two sets of inequalities. The first set of inequalities relates to the voting
incentives of players other than h. For all xp ∈ X and all j ∈ N \ {h}, θ must satisfy

U(q; cj) + θj · q ≤ U(xp; cj) + θj · xp (19)

if aj,p = 1, and it must satisfy

U(q; cj) + θj · q ≥ U(xp; cj) + θj · xp (20)

if aj,p = 0. The second set of inequalities concerns the optimality of proposing y for player
h. Let C(xp, h, a−h) = {i ∈ N \ {h} : ai,p = 1} be the coalition of players other than h
who accept proposal xp when acceptance sets of players other than h are given by a−h.
Given a status quo q and potential proposal y ∈ X ∪ {q}, let Y (y, h, a−h) = ({xp ∈ X :
C(xp, h, a−h)∪{h} ∈ D}∪{q})\{y} be the subset of policies other than y that can pass by
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the vote of h and those of other players, given acceptance sets a−h. For proposing y ∈ X∪{q}
to be optimal for player h given a−h, θ must be such that for all z ∈ Y (y, h, a−h),

U(z; ch) + θh · z ≤ U(y; ch) + θh · y. (21)

Thus, the closure of the subset of preference shocks such that h proposes y when the
status quo is q and the acceptance sets of other players are summarized by a−h is defined
as follows:

Θ(q, y, h, a−h; c) = {θ ∈ Θ : (19), (20), and (21) hold}.

It follows that Θ(y, q, h, a−h; c) is a convex polytope defined by a finite number of inequalities
that are linear in θ. Note that when xp 6= q, the inequalities (19)–(21) are satisfied with
equality only for a lower dimensional set of θ’s, and furthermore, the intersection

Θ(q, y, h, a−h; c) ∩Θ(q, y′, h, a−h; c)

is a measure-zero subset of Rnd for all distinct y, y′ ∈ X̃. Hence, the probability that player
h proposes y when the status quo is q is given by∑

a−h∈A

∫
Θ(q,y,h,a−h;c)

f(θ)dθ.

Based on the above, we rewrite the collocation equations as follows:

Fi,k(c) = U(x̂k; ci)−
[
ui(x̂k) + δi

∑
h∈N

ph
∑

a−h∈A∫
q

∑
y∈X∪{q}

∫
Θ(q,y,h,a−h;c)

[
U(y; ci) + θi · y

]
f(θ)dθg(q|x̂k)dq

]
.

Note that in the above integral, the status quo q ranges over Rd, and the probability that
the realized status quo lies in the finite set X is zero; thus, we can neglect the measure-zero
event that q ∈ X̃ \X.

For all i ∈ N , all q ∈ X̃, all y ∈ X ∪ {q}, all h ∈ N , and all a−h ∈ A, we define a
function Gi(·; q, y, h, a−h) : Rnm → R by

Gi(c; q, y, h, a−h) =
∫

Θ(q,y,h,a−h;c)

[
U(y; ci) + θi · y

]
f(θ)dθ,

so that Fi,k can be expressed equivalently as

Fi,k(c) =U(x̂k; ci)−
[
ui(x̂k) + δi

∑
h∈N

ph
∑

a−h∈A

∫
q

∑
y∈X∪{q}

Gi(c; q, y, h, a−h)g(q|x̂k)dq
]
. (22)

The properties of F of interest will follow from the properties of G.

We prove the theorem in three steps.
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Step 1. For all i ∈ N , all q ∈ X̃ \X, all y ∈ X ∪ {q}, all h ∈ N , and all a−h ∈ A, there
exist functions Ĝj : Cj → R, j = 0, . . . ,K, such that {Cj}Kj=0 is an open covering of Rnm;
for all j = 0, . . . ,K, Ĝj is continuously differentiable; and Gi(·; q, y, h, a−h) is piecewise
smooth with representation {Ĝ0, Ĝ1, . . . , ĜK}.

Fix i ∈ N , q ∈ X̃ \ X, y ∈ X ∪ {q}, h ∈ N , and a−h ∈ A. To conserve notation, we
will suppress the parameters i, y, h, a−h in our construction of the representation; given q,
these parameters range over a finite set, and so this convenience is harmless. Because q
ranges over the infinite set X̃, however, we will make the dependence of K, Cj , and Ĝj
on q explicit. Define Ĝ0 ≡ 0, with C0 = Rnm independently of q. If Θ(q, y, h, a−h; c) has
measure zero in Rnm for all c, then we let K(q) = 0, which completes the step. Otherwise,
let C∗(q) ⊆ Rnm denote the open set of c ∈ Rnm such that Θ(q, y, h, a−h; c) has positive
measure. We then rewrite (19)–(21) as follows: for all xp ∈ X, all j ∈ N \ {h}, and all
z ∈ Y (y, h, a−h),

θj · (q − xp) ≤ U(xp; cj)− U(q; cj) if aj,p = 1 (23)
θj · (xp − q) ≤ U(q; cj)− U(xp; cj) if aj,p = 0 (24)
θh · (z − y) ≤ U(y; ch)− U(z; ch). (25)

We can write these inequalities in the form α(q)θ ≤ β(c; q), where the first (n− 1)|X| rows
of the matrix α(q) and the column vector β(c; q) correspond to inequalities (23) or (24) (as
appropriate), and the last |Y (y, h, a−h)| rows correspond to inequalities (25). Note that the
rows of α(q) are non-zero, as q /∈ X. Of course, the constraint that θ belongs to Θ can
also be formalized in terms of linear inequalities: for all h = 1, . . . , n and all ` = 1, . . . , d,
θh,` ≤ θ and θh,` ≤ −θ. Because these inequalities are fixed, we do not include them in the
matrix representation of Θ(q, y, h, a−h; c).

Given any [(n − 1)|X| + |Y (y, h, a−h)|] × nd matrix A and any column vector b of
dimension (n− 1)|X|+ |Y (y, h, a−h)|, define

Θ(A, b) = {θ ∈ Θ : Aθ ≤ b},

and note that the identity Θ(q, y, h, a−h; c) ≡ Θ(α(q), β(c; q)) holds on C∗(q). Letting R
index a subset of rows of A, we define ΘR(A, b) as the polyhedral set of θ’s satisfying the
inequalities of R and the constraint that θ belong to Θ, so that

ΘR(A, b) = {θ ∈ Θ : for all r ∈ R, Arθ ≤ br},

where Ar is the rth row of the matrix A and br is the rth row of b. We say a set R is “minimal
at (A, b)” if there is no set R′ such that R′ is a proper subset of R and ΘR(A, b) = ΘR′(A, b).
We let R(q) denote the collection of all sets of inequalities that are minimal at (α(q), β(c; q))
for some c ∈ C∗(q), i.e.,

R(q) = {R : there exists c ∈ C∗(q) such that R is minimal at (α(q), β(c; q))},

and we set K(q) = |R(q)| and enumerate this collection as R1, . . . , RK(q). The domain of
the function Ĝj(·; q) to be defined will be

Cj(q) = {c ∈ C∗(q) : Rj is minimal at (α(q), β(c; q))},
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an open set. For each j = 1, . . . ,K(q), we define the functions Γj and ∆j by

Γj(A, b) =
∫

Θj(A,b)
f(θ)dθ and ∆j(A, b) =

∫
Θj(A,b)

(θi · y)f(θ)dθ

for all (A, b), where we use Θj(A, b) for ΘRj (A, b). Finally, for each j = 1, . . . ,K(q), we
define the function Ĝj(·; q) by

Ĝj(c; q) = U(y; ci)Γj(α(q), β(c; q)) + ∆j(α(q), β(c; q))

for all c ∈ Cj(q).

Next, we claim that the functions Ĝj(·; q), j = 1, 2, . . . ,K(q), are continuously differen-
tiable at each c ∈ Cj(q). Given r ∈ Rj , define

Θj
r(A, b) = {θ ∈ Θj(A, b) : Arθ = br}

as the (nd − 1)-dimensional face of Θj(A, b) determined by the hyperplane Arθ = br. We
claim that when Θj(A, b) has positive measure in Rnd and Rj is minimal at (A, b), the
solution set Θj

r(A, b) has positive volume in the (nd − 1)-dimensional hyperplane spanned
by Θj

r(A, b). To see this, note that since Θj(A, b) contains an open set, there is some θ̃
that satisfies the inequalities corresponding to Rj strictly. Since Rj is minimal, the rth
inequality is not redundant: there exists θ̂ ∈ ΘRj\{r}(A, b) such that Arθ̂ > br. Then there
exists α ∈ (0, 1) such that Arθ′ = br, where θ′ = (1 − α)θ̂ + αθ̃ satisfies the inequalities in
Rj \ {r} strictly. Letting θ̃ vary while satisfying the inequalities of Rj , this implies that
Θj
r(A, b) has positive (nd−1)-dimensional volume, as claimed. Therefore, Lasserre’s (1998)

Lemma 2.2 establishes that Γj(A, b) and ∆j(A, b) are continuously differentiable at such
(A, b) with partial derivatives of the form

∂Γj
∂br

(A, b) =
1
||Ar||

∫
Θj

r(A,b)
f(θ)dθ and

∂∆j

∂br
(A, b) =

1
||Ar||

∫
Θj

r(A,b)
(θi · y)f(θ)dθ, (26)

where || · || denotes the Euclidean norm and integrals are with respect to Lebesgue measure
in (nd − 1)-dimensional space.23 Given c ∈ Cj(q), note that Θ(α(q), β(c; q)) has positive
measure in Rnd by construction, and therefore Θj(α(q), β(c; q)) ⊇ Θ(α(q), β(c; q)) does as
well; furthermore, Rj is minimal at (α(q), β(c; q)). Thus, Γj and ∆j are continuously differ-
entiable in b at (α(q), β(c; q)), and the chain rule implies Ĝj is continuously differentiable
in c with partials

∂Ĝj
∂ci,k

(c; q) =
∂U

∂ci,k
(y; ci)Γj(α(q), β(c; q))

+
∑
r∈Rj

[
U(y; ci)

∂Γj
∂br

(α(q), β(c; q))
∂βr
∂ci,k

(c; q) +
∂∆j

∂br
(α(q), β(c; q))

∂βr
∂ci,k

(c; q)
]
,

(27)

23Lasserre implicitly assumes that no rows of A are equal to zero. This is true for α(q) because we only
consider q /∈ X.
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as claimed.

To show thatGi(·; q, y, h, a−h) is piecewise smooth with representation {Ĝ0, Ĝ1, . . . , ĜK},
note that Gi(c; q, y, h, a−h) takes values in the set {Ĝ0(c; q), Ĝ1(c; q), . . . , ĜK(c; q)}. Indeed,
if c /∈ C∗(q), then Gi(c; q, y, h, a−h) = 0 = G0(c; q). Otherwise, consider any c ∈ C∗(q),
and let Rj be any set of inequalities that is minimal at (α(q), β(c; q)) and such that
Θj(α(q), β(c; q)) = Θ(q, y, h, a−h; c); then Gi(c; q, y, h, a−h) = Ĝj(c; q), as claimed. Fi-
nally, we must show that Gi(c; q, y, h, a−h) is continuous in c. Indeed, consider a sequence
c` → c ∈ Rnm. For each `, there exists Rj` such that c` ∈ Cj`(q) and Θj`(α(q), β(c`, q)) =
Θ(q, y, h, a−h; c`), which implies Gi(c`, q; y, h, a−h) = Ĝj`(c

`, q). Without loss of generality
(since the collection of subsets of inequalities is finite), we may suppose that j` is constant in
`, i.e., j` = j. By continuity, we have Θj(α(q), β(c; q)) = Θ(q, y, h, a−h; c), though Rj may
not be minimal at (α(q), β(c; q)). It may be that c lies outside Cj(q), but we nevertheless
have

Gi(c`, q; y, h, a−h) = Ĝj(c`, q) = Γj(α(q), β(c`, q))→ Γj(α(q), β(c; q)) = Gi(c; q, y, h, ah),

where the limit follows from a straightforward dominated convergence argument. Indeed,
we define φ`(θ) to be [U(y; c`i) + θi · y]f(θ) times the indicator function of Θj(α(q), β(c`, q)),
and we define φ(θ) as [U(y; ci) + θi · y]f(θ) times the indicator function of Θj(α(q), β(c; q)).
The sequence {φ`} is dominated by an integrable function and converges pointwise almost
everywhere to φ, verifying the limit. This establishes continuity, and we conclude that
Gi(c; q, y, h, a−h) is piecewise smooth in c.

Step 2. For all i ∈ N , all q ∈ X̃ \X, all y ∈ X ∪ {q}, all h ∈ N , and all a−h ∈ A, the
function Gi(·; q, y, h, a−h) is directionally differentiable in c; furthermore, Gi(·; q, y, h, a−h)
is locally Lipschitz continuous with uniform Lipschitz constant, i.e., for all c ∈ Rnm, there
is a constant M and an open set C̃ containing c such that for all q ∈ X̃ \X, all y ∈ X∪{q},
all h ∈ N , all a−h ∈ A, and all c′, c′′ ∈ C̃,

|Gi(c′′; q, y, h, a−h)−Gi(c′; q, y, h, a−h)| ≤ M ||c′′ − c′||.

Fix i ∈ N , q ∈ X̃ \ X, y ∈ X ∪ {q}, h ∈ N , and a−h ∈ A. Since Gi(·; q, y, h, a−h) is
piecewise smooth with representation {Ĝ0(·; q), . . . , ĜK(q)(·; q)}, by Step 1, Proposition 2.1
of Kuntz and Scholtes (1994) establishes that Gi(·; q, y, h, a−h) has directional derivatives at
all c ∈ Rnm, completing the first part of the step. To prove local Lipschitz continuity with
a uniform Lipschitz constant, consider any c ∈ Rnm, and let C̃ be any open ball of finite
radius containing c. We first claim that for every subset R ⊆ {1, . . . , (n− 1)|X|+ |X| − 1}
(corresponding to possible inequalities in (23)–(25)), there exists a bound MR such that
for all q ∈ X̃ \ X, all y ∈ X ∪ {q}, all h ∈ N , all a−h ∈ A, all j with Rj = R, and all
c̃ ∈ C̃ ∩ Cj(q), we have ∣∣∣∣∣ ∂Ĝj∂ci,k

(c̃; q)

∣∣∣∣∣ ≤ MR.

Referring to (27), the term ∂U
∂ci,k

(y; c̃i)Γj(α(q), β(c̃; q)) is bounded over such q, y, h, a−h, j,
and c̃. The summand includes the term U(y; c̃i), which is also bounded over such q, y, h,
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a−h, j, and c̃, and the terms

∂Γj
∂br

(α(q), β(c̃; q))
∂βr
∂ci,k

(c̃; q) and
∂∆j

∂br
(α(q), β(c̃; q))

∂βr
∂ci,k

(c̃; q).

We focus on the former, as the argument for the latter is similar, and rewrite it as

∂Γj
∂br

(α(q), β(c̃; q))
∂βr
∂ci,k

(c̃; q) =

(∫
Θj

r(α(q),β(c̃;q))
f(θ)dθ

)(
1

||αr(q)||
∂βr
∂ci,k

(c̃; q)
)
.

The first term in the product is clearly bounded across such q, y, h, a−h, j, and c̃; but
the analysis of the second term in the product is complicated by the fact that ||αr(q)|| can
approach zero for some status quos q ∈ X̃ \X.

In the expression 1
||αr(q)||

∂βr

∂ci,k
(c̃; q), row r corresponds to one of two cases: either to an

inequality in (23) or (24) with alternative xpr and voter jr 6= h, or to an inequality in (25)
with alternative zr and proposer ir = h. In the first case, the norm of αr(q) = q − xpr

becomes arbitrarily small when ||q−xpr || is small. The partial derivative ∂βr

∂cj,k
(c̃; q) is equal

to zero if jr 6= j, and it is equal to ±Tk(q)− Tk(xpr) otherwise. When jr = j, note that as
q approaches xpr , we have

lim
q→xpr

∣∣∣∣ 1
||αr(q)||

∂βr
∂ci,k

(c̃; q)
∣∣∣∣ = lim

q→xpr

|Tk(q)− Tk(xpr)|
||q − xpr ||

= |T ′k(xp|s)| <∞,

where s = 1
||q−xpr ||

(q − xpr). This limit holds independently of q ∈ X̃, y ∈ X ∪ {q}, and

c̃ ∈ C̃, and since h, a−h, and j belong to finite sets, we conclude that the expression
1

||αr(q)||
∂βr

∂ci,k
(c̃; q) is uniformly bounded. In the second case, we have αr(q) = zr− y, which is

constant in q unless y ∈ X and zr = q. Then the norm of αr(q) = q−y becomes small when
||q − y|| is small, and an analogous argument shows that the expression is again uniformly

bounded. We conclude that the partial derivative ∂Ĝj

∂ci,k
(c̃; q) is bounded over q ∈ X̃ \ X,

y ∈ X ∪ {q}, h ∈ N , a−h ∈ A, j with Rj = R, and c̃ ∈ C̃ ∩Cj(q). If there do not exist such
q, y, h, a−h, j, and c̃, we set MR = 0, delivering the claim. Using the claim, we conclude
that the directional derivatives Ĝ′j(·; q|s) are also bounded over directions s with ||s|| = 1,
q ∈ X̃ \X, y ∈ X ∪ {q}, h ∈ N , a−h ∈ A, j with Rj = R, and c̃ ∈ C̃ ∩ Cj(q). Let M̃R be
such a bound.

Finally, we deduce that Gi(q, y, h, a−h; ·) is Lipschitz on C̃ with uniform constant M =∑
R M̃R, the sum being over all subsets of possible inequalities. Consider any c′, c′′ ∈ C̃,

and let q ∈ X̃ \X, y ∈ X ∪{q}, h ∈ N , and a−h ∈ A be arbitrary. Let [c′, c′′] be the convex
hull of {c′, c′′}. For each c̃ ∈ [c′, c′′], let J(c̃) = {j : c̃ ∈ Cj(q)} index the functions Ĝj(·; q)
that contain c̃ in their domain, and let B(c̃) be any open ball in Rnm around c̃ such that
for all j ∈ J(c̃), we have B(c̃) ⊆ Cj(q). We can cover [c′, c′′] with such open balls, and by
compactness there is a finite subcover. We focus on one such ball, say B̃, and we show that
Gi(q, y, h, a−h; ·) is Lipschitz on [c′, c′′]∩ B̃ with uniform constant M . To this end, consider
any c̃′, c̃′′ ∈ [c′, c′′]∩ B̃, and let J̃ be the set of j such that B̃ ⊆ Cj(q) and such that for some
c̃ ∈ [c̃′, c̃′′], we have Gi(c̃; q, y, h, a−h) = Ĝj(c̃, q). For each j ∈ J̃ , let Ij = Ĝj([c̃′, c̃′′]; q), and
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note that since [c̃′, c̃′′] is compact and convex and Ĝj(·; q) is continuous, the image of this set
is a closed interval, say Ij = [sj , tj ]. The image Gi([c̃′, c̃′′]; q, y, h, a−h) is also a closed interval
contained in the union

⋃
j∈J̃ Ij , and by construction we have Gi([c̃′, c̃′′]; q, y, h, a−h)∩ Ij 6= ∅

for all j ∈ J̃ . We therefore have

|Gi(c̃′′; q, y, h, a−h)−Gi(c̃′; q, y, h, a−h)| ≤ (max
j∈J̃

tj)− (min
j∈J̃

sj)

≤
∑
j∈J̃

M̃Rj ||c̃′′ − c̃′||

≤ M ||c̃′′ − c̃′||.

Since M is independent of the ball B̃, this completes the step.

Step 3. The collocation function F is locally Lipschitz continuous and directionally
differentiable.

We consider each coordinate function Fi,k, the result then following by a straightforward
argument. Referring to (22), the term of interest is the integral∫

q

∑
y∈X∪{q}

Gi(c; q, y, h, a−h)g(q|x̂k)dq. (28)

For each q, we have shown that Gi(c; q, y, h, a−h) is locally Lipschitz continuous and direc-
tionally differentiable, and that as a consequence, the integrand in (28) is locally Lipschitz
continuous and directionally differentiable. In fact, we showed in Step 2 that for all c ∈ Rnm,
there is an open set C̃ containing c such that Gi(·; q, y, h, ah) is Lipschitz continuous on C̃
with uniform constant. Then Proposition 1 of Qi, Shapiro, and Ling (2005) establishes that
the expression in (28), and therefore Fi,k, is directionally differentiable and locally Lipschitz
continuous.

References

Acemoglu, D., G. Egorov, and K. Sonin. 2008. “Dynamics and Stability of Constitutions,
Coalitions, and Clubs.” Unpublished manuscript.

Armijo, L. 1966. “Minimization of functions having Lipschitz-continuous first patial deriva-
tives.” Pacific Journal of Mathematics 16: 1-3.

Banks, J., and J. Duggan. 2000. “A Bargaining Model of Collective Choice.” American
Political Science Review 94: 73–88.

Banks, J., and J. Duggan. 2006. “A General Bargaining Model of Legislative Policy-
making.” Quarterly Journal of Political Science 1: 49–85.

Baron, D. 1996. “A Dynamic Theory of Collective Goods Programs.” American Political
Science Review 90: 316–330.

36



Baron, D., and J. Ferejohn. 1989. “Bargaining in Legislatures.” American Political Science
Review 83: 1181–1206.

Baron, D., and M. Herron. 2003. “A Dynamic Model of Multidimensional Collective
Choice.” In Computational Models in Political Economy, ed. K. Kollman, J. Miller, and
S. Page. Cambridge, MIT Press.

Battaglini, M., and S. Coate. 2007. “Inefficiency in Legislative Policy-Making: A Dynamic
Analysis.” American Economic Review 97: 118—149.

Binmore, K. 1987. “Perfect Equilibria in Bargaining Models.” In The Economics of Bar-
gaining, ed. Ken Binmore and Partha Dasgupta. New York, Basil Blackwell.

Broyden, C. G. 1965. “A class of methods for solving nonlinear simultaneous equations.”
Mathematics of Computation 19: 577-593.

Burkardt, John. 2007. “The Sobol Quasirandom Sequence.” Website. http://people.sc.
fsu.edu/~burkardt/m_src/sobol/sobol.html.

Cho, S.-J. 2005. “A Dynamic Model of Parliamentary Democracy.” Unpublished manuscript.

Diermeier, D., and P. Fong. 2008. “Endogenous Limits on Proposal Power.” Unpublished
manuscript.

Duggan, J., and T. Kalandrakis. 2007. “Dynamic Legislative Bargaining.” W. Allen Wallis
Institute Working Paper Series 45.

Duggan, John, and Tasos Kalandrakis. 2008. “Dynamic Legislative Policy Making.” Un-
published manuscript.

Duggan, John, Tasos Kalandrakis, and Vikram Manjunath. 2008. “Dynamics of the Pres-
idential Veto: A Computational Analysis.” Mathematical and Computer Modeling 48:
1570-1589.

Ip, Chi-Ming, and Jerzy Kyparisis. 1992. “Local Convergence of Quasi-newton Methods for
B-differentiable Equations.” Mathematical Programming 56: 71-89.

Judd, Kenneth L. 1998. Numerical Methods in Economics. First ed. The MIT Press.

Kalandrakis, T. 2004. “A Three-Player Dynamic Majoritarian Bargaining Game.” Journal
of Economic Theory 116: 294–322.

Kalandrakis, T. 2007. “Dynamics of Majority Rule with Endogenous Status Quo.” Wallis
Working Paper no. 46.

Kelley, Tim. 2003. Solving nonlinear equations with Newton’s method. SIAM.

Kuntz, L., and S. Scholtes. 1994. “Structural Analysis of Nonsmooth Mappings, Inverse
Functions, and Metric Projections.” Journal of Mathematical Analysis and Applications
188: 346–386.

37

http://people.sc.fsu.edu/~burkardt/m_src/sobol/sobol.html
http://people.sc.fsu.edu/~burkardt/m_src/sobol/sobol.html


Kuntz, L., and S. Scholtes. 1995. “Qualitative Aspects of the Local Approximation of a
Piecewise Differentiable Function.” Nonlinear Analysis, Theory, Methods and Applica-
tions 25: 197–215.

Lasserre, Jean B. 1998. “Integration on a Convex Polytope.” Proceedings of the American
Mathematical Society 126 (8): 2433-2441.

Martinez, Jose Mario, and Liqun Qi. 1995. “Inexact Newton methods for solving nonsmooth
equations.” Journal of Computational and Applied Mathematics 60: 127-145.

Mas-Colell, A. 1985. The Theory of General Economic Equilibrium: A Differentiable Ap-
proach. Econometric Society Monographs, no. 9 Cambridge, Cambridge University Press.

Miranda, Mario J., and Paul L. Fackler. 2002. Applied Computational Economics and
Finance. The MIT Press.

Pang, Jong-Shi. 1990. “Newton’s Method for B-Differentiable Equations.” Mathematics of
Operations Research 15 (2): 311-341.

Pang, Jong-Shi. 1991. “A B-differentiable equation-based, globally and locally quadratically
convergent algorithm for nonlinear programs, complementarity and variational inequality
problems.” Mathematical Programming 51: 101-131.

Penn, Elizabeth Maggie. 2009. “A Model of Farsighted Voting.” American Journal of
Political Science 53 (1): 36-54.

Plott, C. R. 1967. “A notion of equilibrium and its possibility under majority rule.” Amer-
ican Economic Review 57: 787-806.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 1992.
Numerical Recipes In C: The Art Of Scientific Computing. Second ed. Cambridge Uni-
versity Press.

Qi, Liqun. 1993. “Convergence Analysis of Some Algorithms for Solving Nonsmooth Equa-
tions.” Mathematics of Operations Research 18 (1): 227-244.

Qi, Liqun. 1997. “On superlinear convergence of quasi-Newton methods for nonsmooth
equations.” Operations Research Letters 20: 223-228.

Qi, Liqun, Alexander Shapiro, and Chen Ling. 2005. “Differentiability and semismooth-
ness properties of integral functions and their applications.” Mathematical Programming,
Series A 102: 223-248.

Qi, Liqun, and J. Sun. 1993. “A Nonsmooth Version of Newton’s Method.” Mathematical
Programming 58 (3): 353-367.

Rivlin, T. J. 1990. Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory. NewYork: Wiley Interscience.

Rubinstein, A. 1982. “Perfect Equilibrium in a Bargaining Model.” Econometrica 50: 97–
110.

38



Xu, H., and X. W. Chang. 1997. “Approximate Newton Methods for Nonsmooth Equa-
tions.” Journal of optimization theory and applications 93 (2): 373-394.

39


	Introduction
	Dynamic Bargaining Framework
	Bargaining Model
	Stationary Bargaining Equilibrium

	The Collocation Method
	Equilibrium Functional Equations
	Collocation Equations
	Collocation Function Evaluation

	The Quasi-Discrete Model
	Smoothness of the Collocation Equations
	Quasi-Discrete Approximation

	Solving the Collocation Equations
	Broyden's Method
	Implementation and Preconditioning
	Two Alternative Solution Methods

	Numerical Experiments & Core Convergence
	Specifications
	Numerical Experiments
	Core Convergence

	Conclusion
	Proof of Theorem 2

