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Abstract. This paper covers the theory of the uncovered set used in
the literatures on tournaments and spatial voting. I discern three main
extant definitions, and I introduce two new concepts that bound exist-
ing sets from above and below: the deep uncovered set and the shallow
uncovered set. In a general topological setting, I provide relationships to
other solutions and give results on existence and external stability for all
of the covering concepts, and I establish continuity properties of the two
new uncovered sets. Of note, I characterize each of the uncovered sets
in terms of a decomposition into choices from externally stable sets; I
define the minimal generalized covering solution, a nonempty refinement
of the deep uncovered set that employs both of the new relations; and I
define the acyclic Banks set, a nonempty generalization of the Banks set.
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In social choice theory, one must address the problem of constructing
collective choice sets when majority voting (or some other method of aggre-
gation) does not produce a maximal alternative. The abstract approach to
the institution-free analysis of politics and collective decision-making takes
as primitive a dominance relation, or social preference, over a set of al-
ternatives that incorporates the structure of power and the distribution of
preferences within a society. A maximal element of this relation is stable, in
the sense that there is no group with the power and inclination to overturn
it. If maximal elements do not exist, then this approach does not directly
yield a plausible choice. One solution is to explicitly impose more institu-
tional structure and to use non-cooperative game-theoretic analysis; another
is to consider methods other than maximality for the construction of choice
sets.

The notion of uncovered set is central to the latter approach. Given ar-
bitrary social preferences, a covering relation is a subrelation of weak pref-
erence defined in terms of nested upper sections. For example, following
Gillies’ (1959) analysis of transferable utility cooperative games, an alter-
native x Gillies covers y if x is strictly preferred to y and every alternative
strictly preferred to x is also strictly preferred to y. Regardless of the ini-
tial preferences, this covering relation is asymmetric and transitive, and its
maximal set, which I term the Gillies uncovered set, will be nonempty un-
der very general conditions. When the strict preference relation admits no
indifferences, as in the literature on tournaments (see Moulin (1986)), there
is no latitude in this definition: this and other notions of covering become
equivalent in that context. But in the general setting, distinctions between
different notions of covering arise, and the corresponding uncovered sets
possess differing properties of interest.

In this paper, I attempt to present a systematic and general treatment
of the theory of the uncovered set and to contribute to the theory by in-
troducing two new covering relations — deep covering and shallow covering
— that serve a useful role as benchmarks for the other covering relations
in that the corresponding deep and shallow uncovered sets provide upper
and lower bounds, respectively, on all other notions of the uncovered set.
In addition to these new sets, I focus on three definitions of covering in the
literature due to Gillies (1959), Bordes (1983), and McKelvey (1986). In
contrast to Gillies, an alternative x Bordes covers y if it is strictly preferred
to y and every alternative weakly preferred to x is also weakly preferred to
y; McKelvey covering the the conjunction of Gillies and Bordes. I conduct
the analysis at a general level, imposing topological conditions on prefer-
ences that generalize finite models of tournaments and weak tournaments
and subsume the spatial voting model, in which the alternatives form a
subset of multidimensional Euclidean space. Although nonemptiness of the
shallow uncovered set is problematic, the other uncovered sets are nonempty
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and externally stable with respect to covering under very general conditions
involving only compactness and continuity.

Other definitions of covering have appeared, notably in Fishburn (1977),
Miller (1980), and Richelson (1981), but the five highlighted above are dis-
tinguished from the latter three by an interesting decomposition into choices
from externally stable sets. A set of alternatives is externally stable with
respect to strict preference if for every alternative outside the set, there is a
strictly preferred alternative inside; external stability with respect to weak
preference is defined analogously. For each such set, we can consider the
subset (possibly empty) of alternatives maximal within the set. Then the
Gillies uncovered set is the union of maximal subsets in all sets that are
externally stable with respect to strict preference. The deep, shallow, and
Bordes uncovered sets are characterized similarly by varying the type of
external stability and the criterion for choice within a set. Such a character-
ization is also available for the McKelvey uncovered set, though it is more
involved. An advantage of the deep and shallow uncovered sets is that if
we view them as correspondences defined over preferences and feasible sets,
the deep uncovered set is upper hemicontinuous generally, while the shallow
uncovered set is lower hemicontinuous on a large domain. These continuity
properties have bearing on computation of the uncovered set in spatial vot-
ing models, where an infinite set of alternatives must be approximated by
finite grids.

Though not the main focus of this paper, I use the notions of deep and
shallow covering to define a hybrid version of the minimal covering set sat-
isfying internal stability with respect to deep covering and external stability
with respect to shallow covering. Uniqueness of these minimal generalized
covering sets does not hold, but the dual usage of the two covering relations
delivers existence of a minimal generalized covering set under very general
topological conditions. The union of these sets, the “minimal generalized
covering solution,” is therefore a well-defined choice set, it forms a subset of
the deep uncovered set, and it in fact survives iteration of the deep uncovered
set operation. Furthermore, as a byproduct of the analysis of the stability
structures of the uncovered sets, I provide four versions of the Banks set
(Banks (1985)) for general environments and relate them to the uncovered
sets, and I establish general nonemptiness of the acyclic Banks set.

The uncovered set has appeared in different forms in a number of analyses
of general tournaments. The Gillies uncovered set was studied in early work
on the spatial voting model by Shepsle and Weingast (1984) and Cox (1987),
and existence of Gillies uncovered alternatives was proved in general settings
by Bordes, Le Breton, and Salles (1992) and Banks, Duggan, and Le Breton



UNCOVERED SETS 3

(2002, 2006).1 Although what I call “McKelvey covering” appeared in Bor-
des (1983), McKelvey (1986) was the first to develop the idea and apply it
in the spatial setting. The McKelvey uncovered set was then used in later
analyses of weak tournaments by Duggan and Le Breton (1999, 2001), Dutta
and Laslier (1999), and Peris and Subiza (1999). A particular advantage of
the McKelvey uncovered set is that it contains the minimal covering set and
therefore the support of the maximal mixed strategy equilibrium, known as
the essential set, in the canonical model of Downsian competition. I give
a thorough account of the relationships between the various versions of the
uncovered set and many of the solutions considered in the literature.

The analysis of this paper takes place in the general topological frame-
work of Banks, Duggan, and Le Breton (2006), who focus on the McKelvey
uncovered set. Here, I take an arbitrary preference relation as primitive,
interpreted as a social preference generated by some unmodeled aggrega-
tion process, and I impose conditions directly on that relation. In contrast,
Banks, Duggan, and Le Breton provide a general voting model (allowing
for a finite or infinite set of voters) and give conditions on voter preferences
and the voting rule sufficient to induce the properties desired of the social
preference relation. Thus, I rely on that paper for foundations to generate
the conditions needed for the analysis, submerging voters and preference ag-
gregation except for a brief discussion of Pareto optimality in the discussion
section. Many of the results I present on nonemptiness and external stabil-
ity of the uncovered sets make use of the technical machinery developed in
the earlier paper.

1. Formalities

Take as primitive a topological space X, an asymmetric relation P , and a
complete relation R. Thus, for all x, y ∈ X, we cannot have xPy and yPx,
and we must have xRy or yRx. View X as a set of alternatives, P as a
strict preference relation, and R as a weak preference relation. Assume that
these relations are dual, i.e., for all x, y ∈ X, xRy if and only if not yPx;
equivalently, for all x, y ∈ X, xPy if and only if not yRx. Say (P,R) is a
tournament if X is finite and for all distinct x, y ∈ X, either xPy or yPx;
equivalently, for all x, y ∈ X, xRy and yRx implies x = y. The general
finite setting, where P and R are only assumed asymmetric and complete,
respectively, is sometimes referred to as a weak tournament. Whenever X
is finite, it is endowed with the discrete topology.

Given an arbitrary relation Q on X, let Q(x) = {y ∈ X | yQx} be the
upper section of alternatives that bear Q to x, and let Q−1(x) = {y ∈ X |

1Epstein (1998) analyzes the Gillies uncovered set in the divide-the-dollar model of dis-
tributive politics, while Penn (2006a) also considers the Bordes and McKelvey uncovered
sets.
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xQy} be the lower section of alternatives to which x bears Q. Define the
dual relation of Q, denoted Q∗, as follows: for all x, y ∈ X, xQ∗y if and only
if not yQx. Obviously, the dual operation is idempotent, i.e., Q∗∗ = Q, and
so we may speak of two relations being “dual to each other.” For example,
the strict and weak preference relations P and R are dual to one another,
and we refer to (P,R) as a dual pair. Say Q is antisymmetric if for all
x, y ∈ X, xQy and yQx together imply x = y, weakening asymmetry. And
Q is total if for all x, y ∈ X, x 6= y implies either xQy or yQx, weakening
completeness. Thus, (P,R) is a tournament if X is finite and P is total, or
equivalently, R is antisymmetric.

Preferences (P,R) are upper semicontinuous if R(x) is closed for all x ∈ X;
equivalently, P−1(x) is open for all x ∈ X. Note that upper semicontinuity
implies that the strict upper section correspondence P : X ⇉ X, defined
by P (x) = {y ∈ X | yPx}, is lower hemicontinuous. Preferences are lower

semicontinuous if P (x) is open for all x ∈ X; equivalently, R−1(x) is closed
for all x. A dual pair is continuous if it is upper and lower semicontinuous.
It is uniformly continuous if R is a closed subset of X×X; equivalently, P is
open. The dual pair (P,R) is discriminating if for all x ∈ X, we have R(x) ⊆
{x}∪closP (x), so that indifference curves are topologically thin. Preferences
satisfy full weak sections if for all x ∈ X, we have {x}∪intR(x) ⊆ {x}∪P (x),
or in words, the alternatives strictly preferred to x comprise the interior of
the set of alternatives weakly preferred to x. When X is finite, the latter
two conditions are separately equivalent to (P,R) being a tournament, but
they hold more generally in infinite models.2 Preferences are rich if for all
distinct x, y ∈ X, we have R(x) 6= R(y). This condition is satisfied when
R is antisymmetric. In general, it is restrictive if R is transitive, for it
then actually implies that R is antisymmetric, but the condition appears to
be a reasonable restriction on social preferences in multidimensional voting
models, where R is typically intransitive.

In addition to upper semicontinuity, I may assume that the weak upper
section R(x) is compact for some or all alternatives, and at times it is useful
to assume the weak image of every compact set is compact: say preferences
satisfy compact weak images if for all compact Y ⊆ X, the image R(Y ) =
⋃

{R(x) | x ∈ Y } is compact. When X is Hausdorff, this is a strengthening of
compact weak upper sections, but it should be viewed as a weak condition.3

The condition of compact weak images automatically holds, for example, if
X is compact and (P,R) is uniformly continuous, as the image of a compact

2See Proposition 12 in Banks, Duggan, and Le Breton (2006) for general conditions
on voter preferences under which R(x) is closed for every alternative in the social choice
model; see Proposition 17 for conditions under which social preferences are discriminating;
and see Proposition 19 for conditions delivering full weak sections.

3See Propositions 14 and 15 in Banks, Duggan, and Le Breton (2006) for general
conditions under which R(x) is compact for all alternatives; see Proposition 16 for general
conditions for compact weak images.
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set under a closed correspondence with compact range is always compact
(see Lemma 17.8 in Aliprantis and Border (2006)).

An additional condition used in the sequel is that the weak upper section
correspondence R : X ⇉ X, defined by R(x) = {y ∈ X | yRx}, is lower
hemicontinuous.4 A more than sufficient condition, as stated in the following
proposition, is that (P,R) is upper semicontinuous and discriminating.

Proposition 1: Assume (P,R) is upper semicontinuous and discriminat-
ing. Then R(·) is lower hemicontinuous.

Proof: Discriminating preferences and upper semicontinuity imply, respec-
tively, the inclusions R(x) ⊆ {x} ∪ closP (x) ⊆ R(x). Therefore, R(x) =
{x} ∪ closP (x). The correspondence x → {x} is obviously lower hemicon-
tinuous, and x → closP (x) takes the closure of values of a lower hemicon-
tinuous correspondence, so it is lower hemicontinuous as well. Then R(·),
as the union of lower hemicontinuous correspondences, is also lower hemi-
continuous.

One can define, in the abstract, three choice sets given a relation Q on
X. The maximal set of Q is the set M(Q) of alternatives that return Q to
any other alternatives, i.e.,

M(Q) = {x ∈ X | for all y ∈ X \ {x}, yQx implies xQy}.

The undominated set of Q is the set U(Q) of alternatives to which no other
bears Q, i.e.,

U(Q) = {x ∈ X | for all y ∈ X \ {x}, not yQx},

and the dominant set of Q is the set D(Q) of alternatives that bear Q to all
others, i.e.,

D(Q) = {x ∈ X | for all y ∈ X \ {x}, xQy}.

Obviously, the undominated and dominant sets of Q are subsets of the
maximal set, i.e., U(Q) ∪ D(Q) ⊆ M(Q). Moreover, maximality general-
izes the ideas of undominated and dominant sets, in the sense that if Q
is anti-asymmetric, then M(Q) = U(Q); furthermore, if Q is total, then
M(Q) = D(Q). In particular, the maximal and undominated sets of P co-
incide, as do the maximal and dominant sets of R. At times I will consider
choice sets from proper subsets of alternatives. Given Y ⊆ X, let

U(Q,Y ) = {x ∈ Y | for all y ∈ Y , not yQx }

denote the set of alternatives undominated in the set Y , and define the
choice sets D(Q,Y ) and M(Q,Y ) similarly.

4See Proposition 13 in Banks, Duggan, and Le Breton (2006) for much weaker condi-
tions on voter preferences under which R(·) is lower hemicontinuous.
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It is straightforward to show that the undominated set of a relation is the
dominant set of its dual, and visa versa.

Proposition 2: Let Q be a relation on X. Then U(Q) = D(Q∗) and
D(Q) = U(Q∗).

Thus, the undominated set of P , called the core, is equivalent to the
dominant set of R. In fact, from the above discussion it follows that the
choice determined by the dual pair (P,R) is unambiguous, i.e., U(P ) =
M(P ) = M(R) = D(R), as long as these sets are nonempty.

2. Covering Relations

The main situation of interest is that in which the core is empty, in
which case we confront the problem of constructing a choice set consisting
of reasonably plausible alternatives. One approach is to specify a “covering
relation” — a subrelation of weak preference defined by inclusion relation-
ships between upper sections — and to analyze the undominated elements
of those relations. I discern three primary definitions of covering in the
literature; all are subrelations of P and are, therefore, asymmetric.

Gillies covering x G y ⇔ xPy and P (x) ⊆ P (y)

Bordes covering x B y ⇔ xPy and R(x) ⊆ R(y)

McKelvey covering x M y ⇔ x G y and x B y.

The first of the above relations was introduced, in the context of TU
cooperative games by Gillies (1959).5 The second has often been attributed
to Miller (1980),6 but the formal definition used by the latter author is
slightly different. The specification I give was introduced by Bordes (1983).
In fact, that paper was also the first to present the McKelvey covering
relation, but McKelvey was the first to develop the idea at length and in a
spatial setting. The set of undominated elements of G, denoted U(G), is the
Gillies uncovered set, while U(B) is the Bordes uncovered set, and U(M) is
the McKelvey uncovered set.

I introduce two new notions of covering, which play special roles in the
analysis as benchmarks for the other notions. My initial definition of deep
covering contains a redundancy to bring out the parallel structure common

5This was the definition of choice in some work on spatial voting models, such as
Shepsle and Weingast (1984) and Cox (1987).

6For example, Bordes, Le Breton, and Salles (1992) and Banks, Duggan, and Le Breton
(2002) refer to this as “Miller covering.”
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to it and shallow covering.

deep covering x D y ⇔ xPy and R(x) ⊆ P (y)

shallow covering x S y ⇔ xRy and P (x) ⊆ R(y)

Of course, since R is reflexive, the definition of deep covering can be simpli-
fied, and henceforth I rely on the more efficient formulation:

x D y ⇔ R(x) ⊆ P (y).

The set of undominated elements of D, denoted U(D), is the deep uncovered

set, while the set of undominated elements of S, denoted U(S), is the shallow

uncovered set. Though deep covering is a subrelation of P , shallow covering
need not be, and indeed it is reflexive. In fact, shallow covering is not even
assured of being antisymmetric, distinguishing it from the other definitions
of covering above. Nevertheless, the connection between deep and shallow
covering is deeper than may at first appear. In fact, the relations can be
derived from a unified notion of covering. Given an arbitrary relation Q
on X, we can define an abstract covering relation of Q, denoted C(Q), as
follows: for all x, y ∈ X,

xC(Q)y ⇔ xQy and Q∗(x) ⊆ Q(y).

In these terms, it is easily seen that deep covering is the covering relation of
P , and shallow covering is the covering relation of R.

Proposition 3:

(i) D= C(P )
(ii) S= C(R).

The five concepts of covering defined above are the main focus of the
analysis, but other formulations have been used. Given a relation Q, define
the umbra of Q, denoted Q•, as follows: for all x, y ∈ X, xQ•y if and only if
Q(x) ⊆ Q(Y ). Three other definitions appearing in the literature are based
on the concept of an umbra; I use the term “shading” relation, rather than
“covering” relation, to distinguish relations of this type.7

Fishburn shading x GF y ⇔ xRy and P (x) ⊆ P (y)

Miller shading x BM y ⇔ xRy and R(x) ⊆ R(y)

Richelson shading x MR y ⇔ x GF y and x BM y.

Thus, Fishburn shading is the umbra of P , and Miller shading is the umbra of
R, while Richelson shading is the intersection of umbras: GF = P •, BM= R•,
and MR= P • ∩ R•. Each of the shading relations is a subrelation of R and

7Bordes (1983) provides yet another relation, which x bears to y if and only if P (x) (
P (y) and R(x) ( R(y).
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can be converted to a covering relation by conjoining it with strict preference:
evidently,

G = P ∩ GF

B = P ∩ BM

M = P ∩ MR .

The shading relations weaken the corresponding definitions of covering by
no longer requiring the relation to be a subrelation of P , and each of the
preceding three relations is reflexive and may fail to be antisymmetric.

Fishburn shading was introduced by Fishburn (1977); Miller shading was
defined by Miller (1980); and Bordes (1983) attributes Richelson shading to
unpublished work by Richelson (Richelson, 1981). The latter is essentially
the weak dominance relation defined by McKelvey (1986),8 and the maximal
elements of Richelson shading comprise the weakly undominated set, as
defined by McKelvey.

Obviously, the undominated set of Fishburn shading is a subset of the
Gillies uncovered set, and similarly for Miller shading and Bordes covering
and for Richelson shading and McKelvey covering. The next proposition
establishes that the inclusions hold even when we consider the maximal
elements of the shading relations.

Proposition 4:

(i) M(GF ) ⊆ U(G)
(ii) M(BM ) ⊆ U(B)
(iii) M(MR) ⊆ U(M)

Proof: For (i), take any x ∈ M(GF ), and suppose there exists y ∈ X
such that y G x, i.e., yPx and P (y) ⊆ P (x). In particular, y GF x, so by
maximality we have x GF y, which implies P (y) = P (x). Then we have
y ∈ P (x) = P (y), contradicting irreflexivity of P . Therefore, x ∈ U(G). For
(ii), take any x ∈ M(BM ), and suppose there exists y ∈ X such that y B x,
i.e., yPx and R(y) ⊆ R(x). In particular, y BM x, so by maximality we
have x BM y, which implies R(y) = R(x). Then we have x ∈ R(x) = R(y),
contradicting yPx. Therefore, x ∈ U(B). For (iii), take any x ∈ M(MR),
and suppose there exists y ∈ X such that y M x, i.e., yPx, P (y) ⊆ P (x), and
R(y) ⊆ R(x). In particular, y MR x, so by maximality, we have x MR y,
which implies P (x) = P (y) and R(x) = R(y), which similarly leads to a
contradiction. Therefore, x ∈ U(M).

It may seem arbitrary to focus on five covering relations while neglecting
the three shading relations, but in Section 8, I give foundations for the first

8McKelvey (1986) actually defines weak dominance as the asymmetric part of the
Richelson shading relation, but this does not affect the maximal set.
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five uncovered sets (the McKelvey uncovered set to a lesser extent) in terms
of a decomposition into stable sets. While the choice sets generated by
the shading relations may also have characterizations in terms of stability
properties, those characterizations would lack the simple form I give for
the Gillies, Bordes, deep, and shallow (and McKelvey to a lesser degree)
uncovered sets.

The next proposition establishes several obvious relationships between the
above notions of covering and shading and the uncovered sets. Accordingly,
the new variants of the uncovered set provide upper and lower bounds on all
of those previously considered: the deep uncovered set is the largest choice
set of those defined, while the shallow uncovered set is the smallest. Each of
the covering relations, save shallow covering, is asymmetric and transitive,
i.e., a strict partial order, with the important implication that when X
is finite, the Gillies and Bordes uncovered sets are non-empty, as are the
McKelvey and deep uncovered sets. That the shallow covering relation can
violate transitivity is seen in the following example. Suppose X = {a, b, c, d}
and P = {(a, b), (b, c), (c, d), (d, a)}. Then S = P is actually asymmetric,
but it is nevertheless intransitive. Indeed, the shallow uncovered set in
this example is empty: U(S) = ∅. Because shallow covering is not always
antisymmetric, the shallow uncovered set may not coincide with its maximal
set, so I include the latter in the comparisons for now.

Proposition 5:

(i) The covering relations G, B, M , and D are asymmetric and transi-
tive, and the shading relations GF , BM , and MR are reflexive and
transitive.

(ii) The covering relations are nested as follows:

D ⊆ M = (G ∩ B) ⊆ (G ∪ B) ⊆ S .

(iii) The shading and shallow covering relations are nested as follows:

(GF ∩ BM) = MR ⊆ (GF ∪ BM) ⊆ S .

(iv) The uncovered sets are nested as follows:

U(S) ⊆ M(S) ⊆ (U(G) ∩ U(B)) ⊆ (U(G) ∪ U(B)) ⊆ U(M) ⊆ U(D).

Proof: Part (i) is fairly clear, but I prove transitivity of B to illustrate.
Take any x, y, z ∈ X such that x B y B z. If not xPz, then zRx. But then
z ∈ R(x) ⊆ R(y), contradicting yPz. Thus, xPz. Then R(x) ⊆ R(y) ⊆
R(z) implies R(x) ⊆ R(z), and we conclude that x B z. Parts (ii) and (iii)
follow directly from definitions. Part (iv) is implied directly by definition
of undominated set and part (ii), except the second inclusion. To verify it,
take x ∈ M(S) and suppose y G x or y B x for some y ∈ X. Then yPx
and y S x. By maximality, we have x S y, which implies xRy, contradicting
yPx, as required.
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x

y

z

a

b

c

U(G) U(B)

Figure 1. Inconsistency of Gillies and Bordes

Of the covering relations defined, Proposition 5 delineates clear logical
relationships between all of the uncovered sets but Gillies and Bordes. It
turns out that not only are the two uncovered sets logically nonnested, but
they can actually be inconsistent: it is possible that their intersection is
empty. For an example, consider Figure 1, which also appears in Figure 1
of Brandt and Fischer (2008) and Figure 3 of Bordes (1983). Here, x G a,
y G b, and z G c, while a B y, b B z, and c B x, and the uncovered sets are
U(G) = {x, y, z} and U(B) = {a, b, c}, which are disjoint.

Under the assumptions of upper semicontinuity and discriminating pref-
erences, we lose some diversity of the covering relations: Gillies covering
and McKelvey covering typically coincide, as do the corresponding shading
relations, and shallow covering is equivalent to Bordes shading. Then Gillies
covering implies Bordes covering, and the two uncovered sets are nested with
Bordes contained in Gillies, precluding the inconsistency demonstrated in
Figure 1.

Proposition 6: Assume (P,R) is upper semicontinuous and discriminat-
ing. Then GF = MR ⊆ BM = S, and G = M ⊆ B.

Proof: Equivalence of Gillies and McKelvey covering under upper semi-
continuity and discriminating preferences is established in Proposition 5 of
Banks, Duggan, and Le Breton (2006). To see equivalence of Fishburn and
Richelson shading, note that MR ⊆ GF , and the opposite inclusion follows
from Lemma 1 of Banks, Duggan, and Le Breton (2006). Then equivalence
of Gillies and McKelvey covering follows from G = P ∩GF = P ∩MR = M .
For equivalence of shallow covering and Miller shading, note that BM ⊆ S.
Now take any x, y ∈ Y such that x S y, so xRy and P (x) ⊆ R(y). Then
by discriminating preferences and upper semicontinuity, we have R(x) ⊆
{x} ∪ closP (x) ⊆ {y} ∪ closR(y) ⊆ {y} ∪ R(y). With yRy, this implies
R(x) ⊆ R(y), and we conclude that x BM y, so S ⊆ BM , as required.
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It is not the case that Bordes and McKelvey covering coincide under the
same conditions because of technicalities illustrated in Figure 1 of Banks,
Duggan, and Le Breton (2006), where two alternatives satisfy R(c) ⊆ R(a)
but P (c) * P (a). The problem is that an alternative b is indifferent to
a, but is it isolated from the alternatives to which a is strictly preferred.
Replacing discriminating preferences with full weak sections in Proposition
6 precludes this problem and delivers corresponding conditions under which
Bordes and McKelvey covering coincide.

Proposition 7: Assume (P,R) is lower semicontinuous and satisfies full
weak sections. Then BM = MR ⊆ GF = S, and B = M ⊆ G.

Proof: Equivalence of Bordes and McKelvey covering under full weak
sections follows directly from Lemma 1 of Banks, Duggan, and Le Bre-
ton (2006). To see equivalence of Bordes and Richelson shading, note that
MR ⊆ BM , and the opposite inclusion follows from Lemma 1 of Banks,
Duggan, and Le Breton (2006). Then equivalence of Bordes and McKelvey
covering follows from B= P∩BM = P∩MR =M . For equivalence of shallow
covering and Gillies shading, note that GM ⊆ S. Now take any x, y ∈ Y such
that x S y, so xRy and P (x) ⊆ R(y). Then by lower semicontinuity and full
weak sections, we have P (x) ⊆ intR(y) ⊆ {y}∪ intR(y) ⊆ {y}∪P (y). With
xRy, this implies P (x) ⊆ P (y), and we conclude that x BM y, so S ⊆ BM ,
as required.

Combining the previous propositions, we have the following corollary on
the equivalence of Gillies and Miller covering.

Corollary 8: Assume (P,R) is continuous, discriminating, and satisfies
full weak sections. Then GF = BM = MR = S, and G = B = M .

The latter result gives conditions under which the three extant covering
relations — Gillies, Bordes, and McKelvey — coincide, so that the five ini-
tially defined covering relations reduce to three. Moreover, shallow covering
coincides with the shading relations, giving us equivalence of their maximal
sets. But the shallow covering relation can violate antisymmetry, so as noted
above, its maximal set need not coincide with its undominated set. The next
result uses richness, with the assumption of discriminating preferences, to
derive antisymmetry of shallow covering and, therefore, equivalence of the
shallow uncovered set with its maximal set.

Proposition 9: Assume (P,R) is discriminating and rich. Then S is anti-
symmetric, and therefore M(S) = U(S).

Proof: Take any x, y ∈ X such that x S y and y S x. By discriminating
preferences, we have R(y) ⊆ {y} ∪ P (y) ⊆ R(x) and R(x) ⊆ {x} ∪ P (x) ⊆
R(y), and we conclude that R(x) = R(y). Then richness implies x = y.



12 J. DUGGAN

Combining all of the assumptions of this section — upper semicontinu-
ity, discriminating preferences, and richness — the distinctions between the
maximal and undominated sets of shallow covering and the shading rela-
tions disappear. Thus, although I technically focus on just the five covering
relations, there appear to be reasonable conditions under which the choice
sets based on shading relations are captured via the shallow uncovered set.

Corollary 10: Assume (P,R) is upper semicontinuous, discriminating,
rich, and satisfies full weak sections. Then U(S) = M(MR), and therefore
the shallow uncovered set is equal to the maximal and undominated sets of
all shading relations.

Finally, when preferences admit no indifferences, as in the literature on
tournaments when X is finite, all distinctions between the uncovered sets
and maximal sets of shading relations disappear, and we can essentially talk
of a single “covering relation.” Note that shallow covering is not technically
equivalent to the other covering relations because it is reflexive, but this does
not affect the equivalence of the undominated sets of the covering relations.
In the context of tournaments, I can therefore refer to simply the “uncovered
set” without ambiguity.

Proposition 11: Assume P is total.

(i) All of the covering relations, save shallow covering, are equivalent:

D = M = G = B .

(ii) All of the shading relations, with shallow covering, are equivalent:

MR = GF = BM = S .

(iii) All of the uncovered sets and maximal and undominated sets of
shading relations are equivalent.

3. Two-Step Principles

Corresponding to each notion of covering from the previous section is a
dual relation, which is easily characterized. The straightforward exercise of
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calculating duals of the shading relations is omitted.

shallow covering* x S∗ y ⇔ xPy or ∃z ∈ X : xPzPy

Gillies covering* x G∗ y ⇔ xRy or ∃z ∈ X : xRzPy

Bordes covering* x B∗ y ⇔ xRy or ∃z ∈ X : xPzRy

McKelvey covering* x M∗ y ⇔ xRy or ∃z ∈ X : xPzRy
or ∃z ∈ X : xRzPy

deep covering* x D∗ y ⇔ ∃z ∈ X : xRzRy.

The duals of shallow and deep covering appear to have the simplest forms,
as each step involves only strict (for shallow) or weak (for deep) preference.

With these dual covering relations defined, alternative characterizations
of the corresponding uncovered sets are easily generated. Recall the duality
between undominated and dominant sets: U(Q) = D(Q∗). In particular,
U(D) = D(D∗), so we see that an alternative is in the deep uncovered set
if and only if for all other alternatives y ∈ X, there exists z ∈ X such that
xRzRy. For another example, U(S) = D(S∗) implies that an alternative is
in the shallow uncovered set if and only if for all other alternatives y ∈ X,
either xPy or there exists z ∈ X such that xPzPy. These variations on
what is known in the literature on tournaments as the “two step principle”
are gathered together in the next proposition.9

Proposition 12: For all x ∈ X,

(i) x ∈ U(S) ⇔ ∀y ∈ X \ {x} : xPy or ∃z ∈ X : xPzPy

(ii) x ∈ U(G) ⇔ ∀y ∈ X \ {x} : xRy or ∃z ∈ X : xRzPy

(iii) x ∈ U(B) ⇔ ∀y ∈ X \ {x} : xRy or ∃z ∈ X : xPzRy

(iv) x ∈ U(M) ⇔ ∀y ∈ X \ {x} : xRy or ∃z ∈ X : xRzPy
or ∃z ∈ X : xPzRy

(v) x ∈ U(D) ⇔ ∀y ∈ X \ {x} : ∃z ∈ X : xRzRy.

Furthermore, the duals of the deep and shallow covering relations can be
derived from a unified notion of “dual covering.” In general, define the dual

covering relation of Q, denoted C∗(Q), as follows: for all x, y ∈ X,

xC∗(Q)y ⇔ xQ∗y or Q∗(y) * Q(x).

9Viewed from this dual perspective, the deep and shallow uncovered sets also appear in
McKelvey’s Proposition 4.1, though the intersection representing the shallow uncovered
set should be over sets P (y) ∪ {y}.
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Clearly, dual covering is the dual of covering: C∗(Q) = C(Q)∗. Given Propo-
sition 3, this immediately yields the following result.

Proposition 13:

(i) D∗= C∗(P )
(ii) S∗= C∗(R).

4. Related Choice Sets

The choice set of chief interest is of course the core, U(P ), but this set
is often empty in the social choice framework. Many solutions have been
proposed to address that problem, and this section (and the appendix) traces
the logical relationships between the uncovered sets and a number of those
solutions commonly applied to weak tournaments: the essential set, the
minimal covering set, the ultimate uncovered set, the strong top cycle, and
the weak top cycle. Of note, examples are provided in which the Gillies and
Bordes uncovered sets are disjoint from the essential set. In Appendix A,
I include several other solutions — the mixed saddle, the uncaptured set,
and the untrapped set — in the analysis and provide a broad overview of
the interconnections among these theories.

Before proceeding, the next proposition records the simple facts that the
core forms a subset of all of the uncovered sets except the shallow uncovered
set, and if preferences are also discriminating, then all of our solutions agree
with the core when it is nonempty. For trivial example in which the core
contains an alternative that does not belong to the shallow uncovered set,
let X = {x, y} and P = ∅, and note that both alternatives belong to the
core, but they bear shallow covering to each other, so U(S) = ∅. The core is,
however, always contained in the dominant set, and therefore the maximal
set, of shallow covering. Interestingly, the core is always a subset of the
maximal set of Fishburn shading, i.e., U(P ) ⊆ M(GF ), but it need not be
contained in the maximal set of Miller shading, letting X = {x, y, z} and
P = {(y, z)}, we have U(P ) = {x, y}, y BM x, but not x BM y, so the core
alternative x is not maximal with respect to Miller shading.

Proposition 14:

(i) The core is contained in the dominant set of shallow covering, and
therefore in all versions of the uncovered set except the shallow un-
covered set:

U(P ) ⊆ D(S) ⊆ M(S) ⊆ (U(G) ∩ U(B)) ⊆ U(M) ⊆ U(D).

(ii) Assume (P,R) is discriminating. If the core is non-empty, then it is
a singleton and it coincides with all of the uncovered sets and the
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dominant set of P :

U(P ) = U(D) = U(M) = U(G) = U(B) = U(S) = D(P ).

Proof: I prove only that when preferences are discriminating, the core is
the dominant set of P . Take any x ∈ U(P ) and any y ∈ X. If not xPy, then
y ∈ R(x) = {x} ∪ closP (x). But P (x) = ∅, so x = y, as required.

Next, I establish some simple inclusion relationships with two versions
of the top cycle. For an arbitrary relation Q, let Q1 = Q, and recursively
define Qk as follows: for all x, y ∈ X, xQky if and only if there exists z ∈ X
such that xQzQk−1y. Then Q∞ =

⋃∞
k=1 Qk is the transitive closure of Q.

Then define the weak top cycle as the maximal elements of the transitive
closure of weak preference: WTC = M(R∞). The strong top cycle consists
of the maximal elements of the transitive closure of strict preference: STC =
M(P∞). Of course, STC ⊆ WTC, and since R∞ is complete, we can write
WTC = M(R∞) = D(R∞).10 If P is total, then it is easily seen that
STC = WTC, and I can simply refer to the “top cycle” without ambiguity,
but in general the inclusion may be proper. An obvious property of the
strong top cycle, and one used in the sequel, is that if xPy for some y ∈ STC,
then x ∈ STC.

The next proposition, a trivial implication of the two-step principle, es-
tablishes that the weak top cycle encompasses the deep uncovered set and,
therefore, all of the other choice sets defined above. The two choice sets are
indeed distinct, for it is known in that in tournaments, the uncovered set
may be a proper subset of the top cycle.

Proposition 15: U(D) ⊆ WTC.

Proof: Take any x ∈ U(D) and any y ∈ X \ {x}. By Proposition 12,
either xRy or there exists z ∈ X such that xRzRy, both implying xR∞y.
Therefore, x ∈ WTC.

Before considering the strong top cycle, the next proposition generalizes
Proposition 1 of Duggan (2007a) by weakening compactness of X to com-
pactness of a single weak upper section, and in fact the proof given here
relies on that earlier result.11 The result establishes that the strong top
cycle, and with it the weak top cycle, is nonempty under very general topo-
logical conditions. Moreover, we can locate elements of the strong top cycle
in any compact weak upper section.

10Schwartz (1986) refers to the weak and strong top cycles, respectively, as GETCHA
and GOTCHA.

11Although Duggan (2007a) assumes that X is a metric space, the proof of Proposition
1 in that paper does not rely on this assumption and goes through unchanged in the
general topological setting.
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Proposition 16: Assume R(x) is compact for some x ∈ X and (P,R) is
upper semicontinuous. Then STC ∩ R(x) 6= ∅.

Proof: Assume R(x) is compact. If x ∈ STC, then we are done, so
assume there exists y ∈ X such that yP∞x and not xP∞y. Note that
P∞(y) ⊆ R(x), for otherwise we would have z ∈ X such that xPzP∞y,
implying xP∞y, a contradiction. Let Y = closP∞(y), a compact subset
of R(x), let P |Y = P ∩ (Y × Y ) denote the restriction of P to Y , let
R|Y = R∩(Y ×Y ) denote the restriction of R to Y , and note that (P |Y , R|Y )
is upper semicontinuous in the relative topology on R(x). Let P |∞Y denote
the transitive closure of P |Y . By Proposition 1 of Duggan (2007a), there
exists z ∈ M(P |∞Y , Y ). I claim that z ∈ STC. Consider any w ∈ X such
that wP∞z, so there exist w1, . . . , wm ∈ X such that w = w1P · · ·wmPz. In
particular, z ∈ P−1(wm). By upper semicontinuity, P−1(wm) is open, and
therefore there exists v ∈ P∞(y) such that v ∈ P−1(wm), i.e., wmPv, and we
conclude that wm ∈ P∞(y). An induction argument based on these observa-
tions yields wi ∈ P∞(y) for each i = 1, . . . ,m, which implies wP |∞Y z. Since
z ∈ M(P |∞Y , Y ), we then have zP |∞Y w, which implies zP∞w, as required.

Another trivial consequence of the two-step principle is the inclusion of
the shallow uncovered set within the strong top cycle. In fact, the proof
shows that the shallow uncovered set is included in the potentially smaller
dominant set of P∞.

Proposition 17: U(S) ⊆ STC.

Proof: Take x ∈ U(S). Then Proposition 12 implies that for all y ∈ X\{x},
we have xPy or there exists z ∈ X such that xPzPy, both implying xP∞y.
Thus, x ∈ STC.

The logical nesting stated in the preceding proposition does not hold gen-
erally for the larger uncovered sets. When preferences form a tournament,
the strong and weak top cycles are equivalent, and it is well-known that the
uncovered set can be a proper subset of the top cycle of a tournament. When
preferences admit nontrivial indifferences, however, the opposite inclusion
can hold strictly, as when X = {x, y, z, w} and P = {(x, y), (y, z), (z,w)}.
Here, x bears P∞ to all other alternatives, but none bears the relation to
x, so STC = {x}. But we have zRxPy, so not y G z, and we have zPwRy,
so not y B z, and in fact, U(G) = {x,w, z} and U(B) = {x, y, z}. Thus, the
strong top cycle is not nested with the uncovered sets, but the analysis of
external stability of these sets, in Section 6, will show that these uncovered
sets do have nonempty intersection with the strong top cycle under quite
general conditions.

The logic underlying the uncovered set can be used to locate smaller sets
of some interest. An initial reduction of the uncovered set can be achieved
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by iterating the removal of covered alternatives, a procedure that necessar-
ily terminates with a nonempty set when X is finite. Following Dutta and
Laslier (1999), I define this choice set, called the ultimate uncovered set,

using the notion of McKelvey covering, though other concepts of covering
would in general produce different versions of the ultimate uncovered set.
Given a subset Y ⊆ X and alternatives x, y ∈ Y , say x M -covers y in Y ,
written xMY y, if xPy, P (x) ∩ Y ⊆ P (y) ∩ Y , and R(x) ∩ Y ⊆ R(y) ∩ Y .
Letting Y 1 = U(M) and letting Y k be the kth power of the McKelvey un-
covered set, define Y k+1 = U(MY k , Y k). Then the ultimate uncovered set
is UC∞ =

⋂∞
k=1 Y k. Propositions 18 and 19, below, imply that the Gillies

and Bordes uncovered sets have nonempty intersection with the ultimate
uncovered set. It is known in the tournament setting that the ultimate un-
covered set may be a proper subset of the uncovered set, and the discussion
prior to Proposition 18 shows that the opposite inclusion may hold, so there
is no general logical relationship between the two uncovered sets and the
ultimate uncovered set. The shallow uncovered set can be empty and can
therefore have empty intersection with the ultimate uncovered set. In fact,
an example in the appendix shows that the two sets can be disjoint, even
when the shallow uncovered set is nonempty.

A further refinement of the uncovered set is the minimal covering set,

denoted MC. To define this solution, say Y is a M -covering set if (i)
no x ∈ Y is M -covered in Y , and (ii) for all y ∈ X \ Y , there is some
z ∈ Y that M -covers y in Y ∪ {y}. (It follows that an M -covering set is
nonempty.) Then a minimal covering set is an M -covering set that includes
no other M -covering sets.12 Dutta (1988) proves that in a tournament, there
is exactly one minimal covering set, and Dutta and Laslier (1999) and Peris
and Subiza (1999) prove that uniqueness of the minimal covering set carries
over to the general finite case. It is straightforward to verify (and it follows
from Proposition 31 on external stability) that when X is finite, U(M) is
itself is a covering set, so the minimal covering set that it is contained in
the McKelvey uncovered set.

A more subtle question is the relationship between the minimal covering
set and the Gillies and Bordes uncovered sets. It is well-known that when X
is finite and preferences form a tournament, the minimal covering set may
be a proper subset of the Gillies and Bordes uncovered sets, which coincide.
In fact, the opposite inclusions may hold: in Example 7 of Duggan and Le
Breton (1999), the minimal covering set is the entire set X of alternatives,
yet x6 G x2, so U(G) ( MC; and in the same example, x5 B x7, so we have
U(B) ( MC. Thus, the solutions are logically nonnested. Of course, the

12See Brandt and Fischer (2008) for minimal covering sets defined in terms of Gillies and
Bordes covering. The authors show that a weak tournament can admit multiple minimal
Gillies covering sets and multiple Bordes covering sets, and the latter can actually fail to
exist.
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same example shows that the two uncovered sets may be proper subsets of
the ultimate uncovered set. The next proposition establishes, however, that
the Gillies uncovered set always has nonempty intersection with the minimal
covering set, and therefore with the ultimate uncovered set.

Proposition 18: Assume X is finite. Then U(G) ∩ MC 6= ∅.

Proof: Let Y = MC, let P |Y = P ∩ (Y × Y ) be the restriction of P ,
and define Gillies covering in Y , denoted GY , as follows: for all x, y ∈ Y ,
x GY y if and only if xPy and P (x) ∩ Y ⊆ P (y) ∩ Y . Let x be any element
of the Gillies uncovered set in Y , i.e., x ∈ U(GY , Y ). Suppose that y G x
for some y ∈ X. If y ∈ Y , then this implies y GY x, a contradiction. Thus,
y ∈ X \ Y , so there exists z ∈ Y such that z M -covers y in Y , implying
zPy and P (z)∩ Y ⊆ P (y)∩ Y ⊆ P (x)∩ Y . But then z GY x, contradicting
x ∈ U(GY , Y ). We conclude that x ∈ U(G) ∩ MC, as required.

Essentially the same argument (couched in terms of Bordes covering
rather than Gillies covering) establishes nonempty intersection of the Bordes
uncovered set and the minimal covering set. Because the shallow uncovered
set, even when nonempty, can be disjoint from the ultimate uncovered set,
as shown in the appendix, the same holds true for the shallow uncovered set
in relation to the minimal covering set.

Proposition 19: Assume X is finite. Then U(B) ∩ MC 6= ∅.

A related class of solutions is based on equilibrium concepts applied to
a particular two-player, symmetric, zero-sum noncooperative game derived
from the preferences (P,R). Let the pure strategy sets of the players be X,
finite for the remainder of this section, and let Π be the payoff function for
player 1 defined by

Π(x, y) =







1 if xPy,
−1 if yPx,
0 else.

Let σ and σ′ denote probability distributions on X representing mixed
strategies of the players, and let Π(σ, σ′) denote the expected payoff to
player 1 from σ when player 2 uses strategy σ′. For a mixed strategy degen-
erate on a single alternative, I simply insert that alternative in the argument
of Π.

Laffond, Laslier, and Le Breton (1993) prove that in a tournament, there
is a unique mixed strategy equilibrium (necessarily symmetric) of the above
game, and they refer to the support of the unique equilibrium mixed strategy
as the bipartisan set. In general, uniqueness is lost when P fails to be total,
but Dutta and Laslier (1999) establish that there is a unique mixed strategy
equilibrium (necessarily symmetric) with maximal support, and they refer
to this support set as the essential set, denoted ES. The authors show
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Figure 2. Gillies contained in essential set

the essential set is contained in the minimal covering set, and therefore
in the McKelvey uncovered set. In the tournament setting, we may have
ES ( U(G) = U(B). For the opposite inclusion, consider the example
in Figure 2. Here, a G x, b G y, and c G z, but letting σ be the uniform
distribution on X, the pair (σ, σ) is a mixed strategy equilibrium. Therefore,
U(G) = {a, b, c} ( X = ES. To obtain a corresponding example for the
Bordes uncovered set, replace the (z, a) arc with (a, y), replace (x, b) with
(b, z), and replace (y, c) with (c, x).

In fact, the relationship between these uncovered sets and the essential
set is more tenuous than suggested so far: the Gillies and Bordes uncovered
sets can actually have empty intersection with the essential set. To illustrate
this, I extend the previous example in Figure 3. Note that a G x, b G y,
c G z, d G w, and e G v, and in particular, U(G) = {a, b, c, d, e}. I claim,
however, that there is no mixed strategy equilibrium that places positive
probability on this set. Suppose, for example, that there is an equilibrium
mixed strategy σ+0 such that

(σ+0(a), σ+0(b), σ+0(c), σ+0(d), σ+0(e)) = (p1, p2, p3, p4, p5)

(σ+0(x), σ+0(y), σ+0(z), σ+0(w), σ+0(v)) = (q1, q2, q3, q4, q5)

with p1 > 0. The graph in Figure 3 is rotationally symmetric, so it follows
that the mixed strategy σ+1 defined by

(σ+1(a), σ+1(b), σ+1(c), σ+1(d), σ+1(e)) = (p5, p1, p2, p3, p4)

(σ+1(x), σ+1(y), σ+1(z), σ+1(w), σ+1(v)) = (q5, q1, q2, q3, q4)

is also played in equilibrium. By rotational symmetry, we can define an
equilibrium mixed strategy σ+2 by applying this permutation again, as well
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Figure 3. Gillies disjoint from essential set

as σ+3 and σ+4. Because the set of equilibrium mixed strategies of a two-
player, zero-sum game is convex, it follows that the mixed strategy

σ =
1

5
(σ+0 + σ+1 + σ+2 + σ+3 + σ+4)

is also played in equilibrium. Furthermore, note that

σ(a) = σ(b) = σ(c) = σ(d) = σ(e) =
p1 + p2 + p3 + p4 + p5

5
= p > 0

σ(x) = σ(y) = σ(z) = σ(w) = σ(v) =
q1 + q2 + q3 + q4 + q5

5
= q.

But then

Π(x, σ) = p + p + q + q − p − q − q = p > 0,

a contradiction. We conclude that the probability of alternative a in the
initial equilibrium must be zero, as claimed, and by symmetry it follows
that no equilibrium strategy puts positive probability on {a, b, c, d, e}. In
fact, ES = {x, y, z, w, v}, and we have ES ∩ U(G) = ∅.

A related example, in Figure 4, illustrates the possibility that the Bordes
uncovered set and essential set have empty intersection. Now a B x, b B y,
c B z, d B w, and e B v, so again U(B) = {a, b, c, d, e}. By a similar
argument using rotational symmetry and convexity of the equilibrium set,
if a belongs to the essential set, then there is an equilibrium mixed strategy
σ that puts probability p > 0 on a, b, c, d, and e and probability q on x, y,
z, w, and v. But then

Π(x, σ) = p + p − p = p > 0,
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Figure 4. Bordes disjoint from essential set

a contradiction. Thus, by symmetry, no equilibrium strategy puts positive
probability on the set {a, b, c, d, e}, and in fact, ES = {x, y, z, w, v}, so we
have ES ∩ U(B) = ∅.

5. Existence Results

A central question is whether the various uncovered sets are generally non-
empty. We have noted that all of the uncovered sets, except for the shallow
uncovered set, are non-empty whenever the set of alternatives is finite. When
X is infinite, additional structure is required to ensure nonemptiness of
these sets, and in fact it is sufficient to impose minimal compactness and
continuity conditions to obtain nonemptiness of the Gillies uncovered set
and the larger deep uncovered set. Further reasonable structure is imposed
to obtain a result for the Bordes set, but stronger conditions are needed for
the shallow uncovered set. Before proceeding to the analysis, next result,
which follows follows directly from Proposition A4 of Banks, Duggan, and
Le Breton (2006), provides a useful technical tool by showing that upper
semicontinuity of (P,R) carries over to Fishburn shading.

Proposition 20: Assume (P,R) is upper semicontinuous. Then GF is
upper semicontinuous.

For deep covering, the best technically behaved covering relation among
those considered, we can actually obtain not only nonemptiness but com-
pactness of the uncovered set quite generally, as the next proposition shows.
Compactness of the set of alternatives and uniformly continuous preferences
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are sufficient for this result, but compactness can be relaxed substantially
to local compactness, as long as we have compact weak images.

Proposition 21: Assume X is locally compact and (P,R) is uniformly
continuous and satisfies compact weak images. Then D is open and U(D)
is nonempty and compact.

Proof: Take any net {(xα, yα)} in the dual D∗ of D, i.e., for each α there
exists zα ∈ X such that xαRzαRyα, and suppose this net converges to (x, y).
Since X is locally compact, there is an open set V containing y and with
compact closure, V = closV . By compact weak images, R(V ) is compact,
and there exists β such that for all α ≥ β, yα ∈ V . Then for such α, we have
zα ∈ R(V ), and we may therefore consider a subnet of {zα}, still indexed
by α for simplicity, that converges to some z ∈ R(V ). Since R is closed, we
have xRzRy, i.e., (x, y) ∈D∗. Thus, the dual D∗ is closed, and it follows
that D is open. For existence of an undominated element of D, consider any
w ∈ X and any open set V containing w with compact closure V , so R(V )
is compact. By Proposition 20, GF is upper semicontinuous. Furthermore,
GF (w) ⊆ R(w) ⊆ R(V ), so GF (w) is compact, and Proposition A1 of
Banks, Duggan, and Le Breton (2006) implies M(GF ) 6= ∅, and therefore,
by Propositions 4 and 5, the deep uncovered set is nonempty. Closedness is
evident from

X \ U(D) =
⋃

y∈X

D−1(y),

which shows that complement of the deep uncovered set is the union of open
sets and is, therefore, open. To prove compactness, note that by the two-
step principle, U(D) ⊆ R2(w) ⊆ R(R(V )), which is compact. Thus, as a
closed subset of a compact set, the deep uncovered set is compact.

An immediate implication is that the deep uncovered set can be iterated.
Given a subset Y ⊆ X and alternatives x, y ∈ Y , say x D-covers y in Y ,
written xDY y, if R(x)∩Y ⊆ P (y)∩Y . Proposition 21 implies that when Y
is compact and P is open, the relation DY is open in the relative topology
on Y × Y , and therefore the deep uncovered set relative to Y , U(DY , Y ), is
nonempty and compact. Let Y 1 = U(D), let Y k be the kth power of the deep
uncovered set, and define Y k+1 = U(DY k , Y k). Of course, if X is compact
and (P,R) is uniformly continuous, then it follows that Y k is nonempty and
compact for all k. Vartiainen (2011) uses these observations to define the
ultimate deep uncovered set, UD∞ =

⋂∞
k=1 Y k. The next corollary, which

follows directly from Proposition 21, establishes that the ultimate undomi-
nated set is nonempty and compact in very general topological settings.

Corollary 22: Assume X is locally compact and (P,R) is uniformly con-
tinuous and satisfies compact weak images. Then UD∞ is nonempty and
compact.
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The next result establishes that under even weaker continuity and com-
pactness conditions, the maximal set of Fishburn shading is nonempty: it
is sufficient that preferences are upper semicontinuous and that at least one
weak upper section is compact. Moreover, we can locate a maximal element
within any compact section. With Proposition 20, it follows immediately
from Proposition A1 of Banks, Duggan, and Le Breton (2006).13

Proposition 23: Assume (P,R) is upper semicontinuous and R(x) is com-
pact for some x ∈ X. Then M(GF ) ∩ GF (x) 6= ∅.

Recall that Proposition 4 shows that any alternative x maximal with
respect to GF belongs to the Gillies uncovered set. Thus, a corollary is
non-emptiness of the Gillies uncovered set, as proved in Banks, Duggan,
and Le Breton (2006).14 Obviously, nonemptiness of the McKelvey follows,
and we now also have nonemptiness of the deep uncovered set without the
assumptions of local compactness, lower semicontinuity, or the full force of
compact weak images. Note, however, that we no longer obtain compactness
of the deep uncovered set.

Corollary 24: Assume (P,R) is upper semicontinuous and R(x) is com-
pact for some x ∈ X. Then U(G) 6= ∅, and therefore U(M) 6= ∅ and
U(D) 6= ∅.

For the corresponding result for Bordes shading, I impose the condition
that the weak upper section correspondence R(·) is lower hemicontinuous.
The next result follows from Proposition A3 of Banks, Duggan, and Le
Breton (2006).

Proposition 25: Assume (P,R) is upper semicontinuous and R(·) is lower
hemicontinuous. Then BM is upper semicontinuous.

With lower hemicontinuity of weak upper sections, we obtain correspond-
ing conditions under which the maximal set of BM is non-empty. With
Proposition 25, the proof again follows from Proposition A1 of Banks, Dug-
gan, and Le Breton (2006).

Proposition 26: Assume that (P,R) is upper semicontinuous, that R(x)
is compact for some x ∈ X, and that R(·) is lower hemicontinuous. Then
M(BM ) ∩ BM (x) 6= ∅.

13A proof of this result assuming compactness of the set of alternatives can also found
in the proof of Theorem 3 of Banks, Duggan, and Le Breton (2002).

14This is also in Theorem 2 of Bordes, Le Breton, and Salles (1992) and Theorem 3
of Banks, Duggan, and Le Breton (2002). The results of those paper are less general in
that the set X of alternatives is assumed compact, rather than the weaker compactness
condition used here; but the setting of Banks, Duggan, and Le Breton is a more general
model of two-player, zero-sum games.
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With Proposition 4, a corollary is non-emptiness of the Bordes uncovered
set.

Corollary 27: Assume that (P,R) is upper semicontinuous, that R(x) is
compact for some x ∈ X, and that R(·) is lower hemicontinuous. Then
U(B) 6= ∅.

As an aside, Proposition 3 of Banks, Duggan, and Le Breton (2006) estab-
lishes non-emptiness of the maximal set of MR, i.e., the weakly undominated
set, under the same conditions.

Proposition 28: Assume that (P,R) is upper semicontinuous, that R(x)
is compact for some x ∈ X, and that R(·) is lower hemicontinuous. Then
M(MR) ∩ BM(x) 6= ∅.

Nonemptiness of the shallow uncovered set is a more difficult issue. It is
trivial to construct examples in which the shallow uncovered set is empty,
as when X = {a, b} and P = ∅, for then both alternatives are in the core,
yet each bears S to the other. In such cases, we should instead consider the
maximal set of shallow covering, but the example preceding Proposition 5
shows that the shallow uncovered set may be empty even when S is anti-
symmetric. Note that preferences are not discriminating in that example.
The next result verifies that upper semicontinuity of (P,R) carries over to
shallow covering without any additional assumptions, an important — but
not sufficient — condition for existence of an uncovered alternative.

Proposition 29: Assume (P,R) is upper semicontinuous. Then S is upper
semicontinuous.

Proof: Take any x ∈ X and any net {yα} in S(x) converging to y. For
each α, we have yα ∈ R(x) and P (yα) ⊆ R(x). By upper semicontinuity,
R(x) is closed, and we conclude that y ∈ R(x). If not P (y) ⊆ R(x), then
there exists w ∈ X such that xPwPy. By upper semicontinuity, P−1(w)
is open, so we can choose high enough α such that yα ∈ P−1(w), but then
w ∈ P (yα) ⊆ R(x), contradicting xPw. Therefore, y S z, as required.

To obtain existence, examples such as that preceding Proposition 5 must
be precluded, and to do so I add the assumption that preferences are dis-
criminating. Then Proposition 26 yields maximal elements of Miller shading,
and by Proposition 6, Miller shading is equivalent to shallow covering, eas-
ily delivering maximal elements of shallow covering. To strengthen this to
nonemptiness of the shallow uncovered set, I impose the assumption that
preferences are rich. This implies that Miller shading is antisymmetric, and
therefore the maximal set is equivalent to the undominated set.

Corollary 30: Assume that R(x) is compact for some x ∈ X, and that
(P,R) is upper semicontinuous, discriminating, and rich. Then U(S) 6= ∅.
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6. External Stability

A subset is Q-externally stable if for all y ∈ X \Y , there exists x ∈ Y such
that xQy. Let E(Q) denote the collection of all Q-externally stable subsets
of alternatives. Propositions 23 and 26 directly imply external stability
of the maximal sets of Fishburn and Miller shading, while Proposition 4
of Banks, Duggan, and Le Breton (2006) provides conditions under which
the McKelvey uncovered set and the maximal set of Richelson shading are
externally stable. The next proposition adds external stability of the Bordes
and deep uncovered sets.

Proposition 31: Assume R(x) is compact for all x ∈ X and R(·) is lower
hemicontinuous.

(i) U(B) is B-externally stable.
(ii) U(M) is M -externally stable.
(iii) U(D) is D-externally stable.

Proof: For part (i), suppose x /∈ U(B), so there exists y ∈ X such that
y B x, i.e., yPx and R(y) ⊆ R(x). Propositon 26, with Proposition 4,
yields z ∈ U(B) ∩ BM (y). Clearly, z BM y implies R(z) ⊆ R(y) ⊆ R(x).
Furthermore, zPx, for otherwise we have x ∈ R(z) ⊆ R(y), contradicting
yPx. Therefore, z ∈ U(B) and z B x, as required. Part (ii) is given by
Proposition 4 of Banks, Duggan, and Le Breton (2006). To prove part (iii),
suppose x /∈ U(D), so there exists y ∈ X such that y D x, i.e., R(y) ⊆ P (x).
If y ∈ U(B), then because U(B) ⊆ U(D), we are done. Otherwise, by part (i),
there exists z ∈ U(B) such that z B y, which implies R(z) ⊆ R(y) ⊆ P (x).
Then we have z ∈ U(D) and z D x, as required.

External stability of the Gillies uncovered set is more difficult to obtain.
It holds, of course, if the set of alternatives is finite: since G is a strict
partial order, standard results in the theory of binary relations deliver the
result. In the infinite setting, however, it seems that stronger conditions
must be imposed. The approach in Proposition 31 does not appear to be
effective. Indeed, suppose x /∈ U(G), so there exists y ∈ X such that y G x.
Proposition 23, with Proposition 4, yields z ∈ U(G) ∩ GF (y), and clearly
P (z) ⊆ P (x). This implies zRx, but the problem is in deducing that zPx.
This is illustrated in Figure 5, where z is Gillies uncovered, I(z) = R(z) ∩
R−1(z) is the set of alternatives indifferent to z (shaded), and x ∈ I(z).

To preclude this possibility, I add the assumption of discriminating pref-
erences. Then Proposition 6 implies that Gillies covering coincides with
McKelvey covering, i.e., G = K, and external stability of the Gillies uncov-
ered set follows from Proposition 31. This is to some extent unsatisfactory,
because discriminating preferences rule out indifferences when X is finite, an
unneeded restriction in that case. Thus, the following result does not state
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Figure 5. External stability difficulties for Gillies

a simple sufficient condition that generalizes the finite case to the infinite
one. Note that upper semicontinuity and discriminating preferences imply
lower hemicontinuity of weak upper sections, by Proposition 1, so I omit the
explicit statement of that condition.

Corollary 32: Assume R(x) is compact for all x ∈ X. If either X is finite
or (P,R) is discriminating, then U(G) is G-externally stable.

Finally, augmenting the above conditions with the assumption that pref-
erences are rich, the external stability of the shallow uncovered set follows.

Proposition 33: Assume that R(x) is compact for all x ∈ X and that
(P,R) is discriminating and rich. Then U(S) is S-externally stable.

Proof: Lower hemicontinuity of R(·) follows from Proposition 1, so Propo-
sition 26 implies that M(BM ) is BM -externally stable. Corollary 8 implies
BM=S, and Proposition 9 implies M(S) = U(S). Combining these obser-
vations, U(S) is S-externally stable.

The above external stability results reveal general connections to the
strong top cycle for the uncovered sets other than the shallow uncovered
set. The next result, a corollary of Proposition 31, relies on external stabil-
ity of the Bordes uncovered set to establish nonempty intersection with the
strong top cycle. An obvious implication is that the strong top cycle has
nonempty intersection with the McKelvey and deep uncovered sets.

Corollary 34: Assume that R(x) is compact for all x ∈ X and R(·) is
lower hemicontinuous. Then U(B)∩STC 6= ∅, and therefore U(M)∩STC 6=
∅ and U(D) ∩ STC 6= ∅.
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Proof: By Proposition 16, there exists x ∈ STC. If x ∈ U(B), then we
are done. Otherwise, Proposition 31 yields y ∈ U(B) such that y B x. In
particular, yPx, and therefore y ∈ STC ∩ U(B).

A corollary of Corollary 32, by a similar argument, is that the strong
top cycle has nonempty intersection with the Gillies uncovered set when
preferences are upper hemicontinuous and discriminating.

Corollary 35: Assume that R(x) is compact for all x ∈ X. If either X
is finite or (P,R) is upper semicontinuous and discriminating, then we have
U(G) ∩ STC 6= ∅.

7. Implications for Minimal Covering Sets

The definition given above for the minimal covering set follows standard
lines in using McKelvey covering, providing a well-defined solution for weak
tournaments, but one that is not apparently tractable in infinite settings.
Because of the continuity properties of deep and shallow covering, it is of
interest to consider a formulation of the minimal covering set that takes
advantage of those properties to deliver existence of a form of minimal cov-
ering set. Care must be taken in the definition of covering set in the abstract
setting, as it is important that the notion of covering used for internal sta-
bility of a covering set have open lower sections and that the notion used for
external stability has closed upper sections. This leads to a hybrid concept
of covering set in which no element of the set deeply covers another, and
each alternative outside the set is shallow covered by an element of the set.
Moreover, an issue that is trivial in weak tournaments, but important here,
is that a covering set be required to be compact. I show that there is very
generally at least one generalized minimal covering set, so-defined. There
may in fact be multiple such sets, but I show that their union, the “minimal
generalized covering solution,” is a subset of the ultimate deep uncovered
set.

Following above conventions, given a set Y of alternatives and x, y ∈ Y ,
say x S-covers y in Y , written xSY y if xRy and P (x) ∩ Y ⊆ R(y) ∩ Y .
Given a subset Y ⊆ X, say Y is a generalized covering set if (i) no x ∈ Y
is D-covered in Y , (ii) for all y ∈ X \ Y , there is some x ∈ Y that S-
covers y in Y ∪ {y}, and (iii) Y is compact. (It follows that a generalized
covering set is nonempty.) Then a minimal generalized covering set is a
generalized covering set that includes no other generalized covering set. The
next proposition provides general conditions under which there is at least one
minimal generalized covering set. In fact, the proposition proves somewhat
more than that: within any compact set satisfying external stability with
respect to shallow covering, there is a minimal generalized covering set.
Formally, a set Y of alternatives is an outer S-covering set if Y is compact
and for all x ∈ X \ Y , there exists y ∈ Y such that y S-covers x in Y ∪ {x}.
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This generality is useful in the following analysis of the location of minimal
generalized covering sets in relation to the ultimate deep uncovered set. Of
course, when X is compact, it is itself an outer S-covering set, and more
generally, if the deep uncovered set is compact and externally stable, then
it is an outer S-covering set. Note, as well, that if there is an alternative x
such that the closure of P∞(x) is compact, then closP∞(x).

Proposition 36: Assume (P,R) is uniformly continuous, and let W be an
outer S-covering set. Then there exists a minimal generalized covering set
Y ⊆ W .

Proof: Let Y denote the collection of all outer S-covering sets contained
in W , and note W ∈ Y, so the collection is nonempty. Let C be any chain in
Y, so that any two sets belonging to the chain are related by set inclusion.
Index the chain as C = {Yα}, and define the direction ≥ on indices so that
α ≥ β if and only if Yα ⊆ Yβ. The collection C has the finite intersection
property, so compactness of W implies that the intersection Y =

⋂

C is a
nonempty, compact subset of W . The first step in the proof is to show that
Y ∈ Y. To this end, consider any y ∈ X \ Y . Then there is some β such
that for all α ≥ β, y /∈ Yα. For each such α, there exists xα ∈ Yα such
that xα S-covers y in Yα ∪{y}. By compactness, the net {xα} has a subnet,
still indexed by α, that converges to some x ∈ Y . For each α ≥ β, we have
xα ∈ R(y) and P (xα) ∩ Yα ⊆ R(y) ∩ Yα. By continuity, R(y) is closed, and
therefore x ∈ R(y), so xRy. If not P (x)∩ (Y ∪{y}) ⊆ R(y)∩ (Y ∪{y}), then
there exists z ∈ Y ∪ {y} such that yPzPx. Then xRy implies z ∈ Y . Since
x ∈ P−1(z), an open set by uniform continuity, we can choose high enough α
such that xα ∈ P−1(z), but then z ∈ P (xα)∩Yα ⊆ R(y)∩ Yα, contradicting
yPz. Therefore, x S-covers y in Y ∪ {y}. It follows that Y ∈ Y, and since
the chain C was arbitrary, Zorn’s lemma implies that Y contains a minimal
element, say Z.

The second, and last, part of the proof is to show that Z is a minimal
generalized covering set. To this end, consider any x, y ∈ Z, and suppose
that xDZy. Note that preferences restricted to Z, namely (P |Z , R|Z), are
uniformly continuous in the relative topology on Z, and therefore, by Propo-
sition 21, the relation DZ is open in the relative topology on Z×Z. It follows
that there is an open set V ⊆ X such that D−1

Z (x) = Z ∩ V . Then the set

Y = Z \ D−1
Z (x) = Z \ V is compact and contains x, and I claim it is an

outer S-covering set. Indeed, consider any w ∈ X \ Y . If w ∈ Z, then
w ∈ V , so x D-covers w in Z, and therefore it S-covers w in Y ∪ {w}. If
w /∈ Z, then there exists s ∈ Z such that s S-covers w in Z ∪ {w}, and in
particular sRw. In case s ∈ Y , then we have s ∈ Y such that s S-covers
w in Y ∪ {w}. Otherwise, s ∈ V , so xDZs. To see that x S-covers w in
Y ∪{w}, first note that since x D-covers s in Z and s S-covers w in Y ∪{w},
we have x ∈ P (s) ∩ (Y ∪ {w}) ⊆ R(w) ∩ (Y ∪ {w}), so xRw. Now consider
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any t ∈ Y ∪ {w} such that tPx, which implies t 6= w. Then t ∈ Y , so xDZs
implies tPs, and then the fact that s S-covers w in Z ∪ {w} implies tRw.
Thus, Y is an outer S-covering set such that Y ( Z, contradicting minimal-
ity of Y . Therefore, Z is a generalized covering set, and since any smaller
generalized covering set would be an outer S-covering set, Z is indeed a
minimal generalized covering set.

The preceding result permits the definition of the minimal generalized

covering solution, denoted MGC, as the union of minimal generalized cov-
ering sets. Recall that when X is compact, it is itself an outer S-covering set,
and Proposition 36 can be applied. More generally, however, the proposi-
tion only requires an outer S-covering set, which exist much more generally.
The next proposition exploits the Fishburn shading relation to obtain such
a set. It uses the very weak assumption that X is Hausdorff, an assumption
that can be replaced by upper semicontinuity if desired. This result is not
only useful in establishing nonemptiness of the minimal generalized covering
solution, but also, later, in connecting it to the Gillies uncovered set.

Proposition 37: Assume that X is Hausdorff and that (P,R) satisfies
compact weak images. Then closM(GF ) is an outer S-covering set.

Proof: To see that M(GF ) is S-externally stable, consider any y /∈ M(GF ).
Since X is Hausdorff, compact weak images implies that (P,R) is upper
semicontinuous and that R(y) is compact, so Proposition 23 yields x ∈
M(GF ) ∩ GF (y). In particular, xGF y implies x S y, as required. The next
step is to bound M(GF ) within a compact set. Consider any y ∈ X, and
note that by compact weak images, R2(y) = R(R(y)) is compact. Take
any x ∈ M(GF ). If yGF x, then xGF y, which implies xRy, so x ∈ R2(y).
Otherwise, if not yGF x, there exists z ∈ X such that xRzPy, and again x ∈
R2(y). Then M(GF ) ⊆ R2(y), and it follows that closM(GF ) is compact,
and therefore, it is an outer S-covering set.

A direct implication of the preceding proposition, with Proposition 36, is
a general result on the existence of minimal generalized covering sets.

Corollary 38: Assume that X is Hausdorff and that (P,R) satisfies com-
pact weak images. Then MGC 6= ∅.

Note that the framework allows for the possibility that a minimal general-
ized covering set contains a proper subset satisfying conditions (i) and (ii) in
the definition of generalized covering set. If there is one, however, it cannot
be compact. It is easy to see that there can be multiple minimal general-
ized covering sets, even in weak tournaments: letting X = {a, b, c, x, y, z},
and letting P be the union of a cycle through {a, b, c} and a cycle through
{x, y, z}, both sets are minimal generalized covering sets. In tournaments,
of course, deep and shallow covering coincide with the usual notion, so there
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is a unique minimal generalized covering set, which coincides with the stan-
dard minimal covering set. Despite losing uniqueness, the minimal gener-
alized covering solution is relatively small, being a refinement of the deep
uncovered set and even the ultimate deep uncovered set.

Proposition 39: Assume X is Hausdorff and (P,R) is uniformly continu-
ous. Then MGC ⊆ UD∞.

Proof: Let Y 0 = X, and let Y k be the kth power of the deep uncovered set
in the definition of the ultimate deep uncovered set. Consider any minimal
generalized covering set Z. Clearly, Z ⊆ Y 0, so it suffices to assume Z ⊆ Y k

and show Z ⊆ Y k+1. To deduce a contradiction, suppose otherwise, so there
exists y ∈ Z and x ∈ Y k such that xDY ky, i.e., R(x) ∩ Y k ⊆ P (y) ∩ Y k.
Note that x /∈ Z, for otherwise x would S-cover y in Z, contradicting (i)
in the definition of generalized covering set. Therefore, there exists z ∈ Z
that S-covers x in Z ∪ {x}, and in particular zRx. To ease notation, define
Z ′ = Z ∪{x}, and note that since X is Hausdorff, Z ′ is compact. Moreover,
restricted preferences (P |Z′ , R|Z′) are uniformly continuous in the relative
topology on Z ′, so Proposition 21 implies that DZ′ is relatively open in
Z ′ × Z ′, so there is an open set V ⊆ X such that y ∈ D−1

Z′ (x) = Z ′ ∩ V .

Then W = Z \ D−1
Z′ (x) = Z \ V is compact, and moreover z ∈ W , for

otherwise we have z ∈ V , but then xDZ′z implies xPz, which contradicts
zRx.

I claim W is an outer S-covering set. Consider any v ∈ X \W . If v ∈ Z,
then v ∈ V , so xDZ′v. To see that z S-covers v in W ∪ {v}, first note
that zRx, with xDZ′v, implies zRv. Now consider any t ∈ W ∪ {v} such
that tPz, which implies t ∈ W . Then since z S-covers x in Z ′, we have
t ∈ P (z) ∩ Z ′ ⊆ R(x) ∩ Z ′, so tRx. With xDZ′v, this implies tRv. Thus,
z S-covers v in W ∪ {v}. If v /∈ Z, then there exists w ∈ Z such that w
S-covers v in Z ∪ {v} and therefore in W ∪ {v}. In case w ∈ W , then we
have an alternative w ∈ W that S-covers v in W ∪ {v}. In case w ∈ Z \W ,
then w ∈ V , so xDZ′w. To see that z S-covers v in W ∪ {v}, first note
that zRx, with xDZ′w, implies zPw, and since w S-covers v in W ∪{v}, we
have z ∈ P (w) ∩ (W ∪ {v}) ⊆ R(v) ∩ (W ∪ {v}), so zRv. Now consider any
t ∈ W ∪ {v} such that tPz, which implies t ∈ W . Then since z S-covers x
in Z ′, we have t ∈ P (z)∩Z ′ ⊆ R(x)∩Z ′, so tRx. With xDZ′w, this implies
tPw, and since w S-covers v in W ∪ {v}, this implies tRv. Thus, z indeed
S-covers v in W ∪ {v}. We conclude that W is an outer S-covering set, as
claimed. But then Proposition 36 implies that there is a minimal generalized
covering set that is contained in W and that is, therefore, a proper subset
of Z, contradicting minimality of Z. Finally, we conclude that Z ⊆ Y k+1,
as required.

The analysis of the external stability of the uncovered sets gives a partial
result on their juxtaposition relative to the minimal generalized covering
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solution. In short, if either the Gillies or Bordes uncovered sets is externally
stable and has compact closure, then it will contain a minimal general-
ized covering set in its closure. For the Bordes uncovered set, connections
to the minimal generalized covering solution hold under conditions slightly
stronger than Proposition 31, strengthening compact weak upper sections to
the requirements that X is Hausdorff and preferences satisfy compact weak
images.

Proposition 40: Assume that X is Hausdorff, that (P,R) satisfies compact
weak images, and that R(·) is lower hemicontinuous. Then there exists a
minimal generalized covering set Y ⊆ closU(B).

Proof: Consider any z ∈ X. Since X is Hausdorff, compact weak images
implies R2(z) = R(R(z)) is compact. Note that U(B) ⊆ R2(z), for otherwise
there exists y ∈ U(B) \ R2(z), but then z D y, which implies z B y, a con-
tradiction. Furthermore, Proposition 31 implies that U(B) is S-externally
stable. Therefore, closU(B) is an outer S-covering set, and Proposition 36
implies there is a minimal generalized covering set Y ⊆ closU(B).

In fact, because it is enough that the closure of the Gillies uncovered set
be an outer S-covering set, we obtain connections with the minimal general-
ized covering solution uncovered set under weaker conditions than in Corol-
lary 32, dropping the condition of discriminating preferences. Compared to
the Bordes uncovered set, we omit the lower hemicontinuity condition. Of
course, these observations hold also for the larger McKelvey uncovered set.

Proposition 41: Assume that X is Hausdorff and that (P,R) satisfies
compact weak images. Then there exists a minimal generalized covering set
Y ⊆ closU(G).

Proof: Consider any z ∈ X. Since X is Hausdorff, compact weak images
implies R2(z) = R(R(z)) is compact. Note that U(G) ⊆ R2(z), for other-
wise there exists y ∈ U(G) \ R2(z), but then z D y, which implies z G y,
a contradiction. Now consider any y ∈ X \ U(G). Proposition 23, with
Proposition 4, yields x ∈ U(G) ∩ GF (y). Since xGF y, it follows that xRy
and P (x) ⊆ P (y) ⊆ R(y), so x S y. Then closU(G) is an outer S-covering
set, and Proposition 36 implies there is a minimal generalized covering set
Y ⊆ closU(G).

Similar observations hold for the shallow uncovered set, the proof follow-
ing the same lines but relying on Proposition 33.

Proposition 42: Assume that X is Hausdorff, that (P,R) satisfies compact
weak images and is discriminating and rich. Then there exists a minimal
generalized covering set Y ⊆ closU(S).
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As a final remark on the location of the minimal generalized covering
solution, the next result establishes that it intersects the closure of the strong
top cycle under the general conditions of Proposition 41.

Proposition 43: Assume that X is Hausdorff and that (P,R) satisfies
compact weak images. Then MGC ∩ closSTC 6= ∅.

Proof: Consider any y ∈ X. Since X is Hausdorff, compact weak images
implies that (P,R) is upper semicontinuous and Y = R(R(y)) is compact.
By Proposition 16, STC 6= ∅, and note that STC is S-externally stable.
If STC ⊆ Y , then closSTC is an outer S-covering set, and Proposition 36
implies there is a minimal covering set Z ⊆ closSTC, so MGC ∩ STC 6= ∅.
Assume, then, that STC \ Y 6= ∅. Note that the restricted preferences
(P |Y , R|Y ) are upper semicontinuous, and Proposition 16 implies that the
restricted strong top cycle, W = M(P |∞Y , Y ), is nonempty. I claim that
closW is an outer S-covering set. Indeed, take any z ∈ X \ W . If z ∈ Y ,
then xRz for all x ∈ W , and therefore x S-covers z in W ∪ {z} for all
x ∈ W . If z ∈ X \ Y , then y D z. In case y ∈ W , this implies y S-covers
z in W ∪ {z}. Otherwise, there exists w ∈ W such that w S-covers y in
W ∪ {y}. Then wRy, and with y D z, this implies wRz. Now consider
any v ∈ W ∪ {z} such that vPw. This implies v 6= z, so v ∈ W , and
v ∈ P (w) ∩ (W ∪ {y}) ⊆ R(y) ∩ (W ∪ {y}). Then vRy, which with y D z
implies vRz. Therefore, w S-covers z in W ∪ {z}, and W is S-externally
stable. Since Y is compact, it follows that closW is an outer S-covering
set. By Proposition 36, there exists a minimal generalized covering set
Z ⊆ closW . To see that Z ∩ STC 6= ∅, take any x ∈ STC \ Y , assumed
nonempty, so that y D x. If y ∈ Z, then yPx and x ∈ STC imply y ∈ STC.
Otherwise, there is some z ∈ Z that S-covers y in Z. In particular, zRy,
which with y D x implies zPx, and z ∈ STC, as required.

An unresolved question is whether condition (ii) in the definition of gener-
alized covering set can be modified to require external stability with respect
to D-covering. The corresponding solution would be a “minimal deep cov-
ering” set. It seems that the technical issue confronting such a solution is
the possibility that external stability of the deep uncovered set is lost when
applied to a subset of alternatives. That is, although Proposition 31 es-
tablishes external stability of U(D) when R(·) is lower hemicontinuous, this
property is not inherited by the weak upper sections of the restriction of R
to an arbitrary compact Y , so R|Y (·) need not be lower hemicontinuous, and
U(DY , Y ) may violate external stability. These technical issues are moot in
the setting of weak tournaments, where minimal deep covering sets obvi-
ously exist and can be shown to be unique by standard arguments as in,
e.g., Dutta and Laslier (1999).
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8. Stability Structure

In this section, I provide exact characterizations of the five main versions
of the uncovered set in terms of choices from externally stable sets, each
being obtained by an appropriate specification of a choice criterion and form
of external stability. Beginning with the deep uncovered set, the next result
establishes that it is the union of undominated sets of P in R-externally
stable sets.

Proposition 44:

U(D) =
⋃

Y ∈E(R)

U(P, Y ).

Proof: Take any x ∈ U(D), and note that x ∈ U(P,R−1(x)). To see that
R−1(x) is R-externally stable, take any y ∈ X \ R−1(x). By the two-step
principle, there exists z ∈ X such that xRzRy. Thus, z ∈ R−1(x) and zRy,
as required. Therefore, x ∈

⋃

Y ∈E(R) U(P, Y ). Now take any Y ∈ E(R) and

any x ∈ U(P, Y ). Suppose there exists y ∈ X \ {x} such that y D x, i.e.,
R(y) ⊆ P (x). Since yPx, it follows that y ∈ X \Y , and R-external stability
yields z ∈ Y such that zRy. But then z ∈ R(y) ⊆ P (x), implying zPx,
which contradicts x ∈ U(P, Y ). Therefore, x ∈ U(D), as required.

The shallow uncovered set is the union of dominant sets of P in P -
externally stable sets. With Corollary 30, an immediate implication is that,
under standard compactness and continuity conditions and the restriction
that preferences are rich and discriminating, there exists at least one P -
externally stable set that admits dominant alternatives.

Proposition 45:

U(S) =
⋃

Y ∈E(P )

D(P, Y ).

Proof: Take any x ∈ U(S), define Y = {x} ∪ P−1(x), and note that
x ∈ D(P,Z). To see that Z is P -externally stable, take any y ∈ X \ Z, so
yRx. By the two-step principle, either xPy or there exists z ∈ X such that
xPzPy. The former is precluded by yRx, so we have z ∈ P−1(x) ⊆ Y with
zPy, as required. Therefore, x ∈

⋃

Y ∈E(P ) D(P, Y ). Now take any Y ∈ E(P )

and any x ∈ D(P, Y ). Suppose there exists y ∈ X \{x} such that y S x, i.e.,
yRx and P (y) ⊆ R(x). Since y 6= x and yRx, it follows that y ∈ X \Y , and
P -external stability yields z ∈ Y such that zPy, which further implies z 6= x.
But then z ∈ P (y) ⊆ R(x), implying zRx, which contradicts x ∈ D(P, Y ).
Therefore, x ∈ U(S), as required.
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The Gillies uncovered set is the union of undominated sets of P in P -
externally stable sets.15 Compared to Proposition 44, here the union is over
the sets satisfying the stronger requirement of P -external stability rather
than R-external stability, producing a potentially smaller choice set. Com-
pared to Proposition 45, we take the union of undominated sets of P , rather
than dominant sets of P , producing a potentially larger choice set. With
Corollary 24, an immediate implication is that, under standard compactness
and continuity conditions, there exists at least one P -externally stable set
that admits undominated alternatives.

Proposition 46:

U(G) =
⋃

Y ∈E(P )

U(P, Y ).

Proof: Take any x ∈ U(G), and note that x ∈ U(P,R−1(x)). To see
that R−1(x) is P -externally stable, take any y ∈ X \ R−1(x), so yPx. By
the two-step principle, either xRy or there exists z ∈ X such that xRzPy.
The former is precluded by yPx, so we have z ∈ R−1(x) with zPy, as
required. Therefore, x ∈

⋃

Y ∈E(P ) U(P, Y ). Now take any Y ∈ E(P ) and any

x ∈ U(P, Y ). Suppose there exists y ∈ X \ {x} such that y G x, i.e., yPx
and P (y) ⊆ P (x). Since yPx, it follows that y ∈ X \ Y , and P -external
stability yields z ∈ Y such that zPy. But then z ∈ P (y) ⊆ P (x), implying
zPx, which contradicts x ∈ U(P, Y ). Therefore, x ∈ U(G), as required.

A set Y is a von Neumann-Morgenstern stable set if it is P -externally
stable and U(P, Y ) = Y . An easy corollary is that every stable set is con-
tained in the Gillies uncovered set, generalizing McKelvey’s (1986) result
that every stable set is contained in the McKelvey uncovered set. In the
framework of Brandt and Fischer (2008), a von Neumann-Morgenstern sta-
ble set is actually a minimal Gillies covering set, so the result extends their
Theorem 2 to the general setting.

Corollary 47: If Y is a von Neumann-Morgenstern stable set, then Y ⊆
U(G).

The Bordes uncovered set is the union of dominant sets of P in R-
externally stable sets. Compared to Proposition 44, we take the union
of dominant sets of P rather than undominated sets, producing a poten-
tially smaller choice set. Compared to Proposition 45, the union is over sets
satisfying R-external stability rather than P -external stability, producing a
potentially larger choice set. With Corollary 27, an immediate implication is
that, under general conditions involving lower hemicontinuity of R(·), there
exists at least one R-externally stable set that admits dominant alternatives.

15This result is cited in Lemma 1 of Penn (2006b) from an earlier version of this paper.
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Proposition 48:

U(B) =
⋃

Y ∈E(R)

D(P, Y ).

Proof: Take any x ∈ U(B), define Y = {x} ∪ P−1(x), and note that
x ∈ D(P, Y ). To see that Y is R-externally stable, take any y ∈ X \ Y ,
so yRx. By the two-step principle, either xRy or there exists z ∈ X such
that xPzRy. In the former case, we are done, and otherwise we have z ∈
P−1(x) ⊆ Y with zRy, as required. Therefore, x ∈

⋃

Y ∈E(R) D(P, Y ). Now

take any Y ∈ E(R) and any x ∈ D(P, Y ). Suppose there exists y ∈ X \ {x}
such that y B x, i.e., yPx and R(y) ⊆ R(x). Since yPx, it follows that
y ∈ X \ Y , and R-external stability yields z ∈ Y such that zRy, which
further implies z 6= x. But then z ∈ R(y) ⊆ R(x), implying zRx, which
contracts x ∈ D(P, Y ). Therefore, x ∈ U(B), as required.

A form of stability result for the McKelvey uncovered set is possible, but
it takes a less elegant form, as we have to consider stability with respect to
pairs of alternatives. Define the relation PR on the product set X × X so
that (x, y) PR (w, z) if and only if either x ∈ P (w)∪P (z) or y ∈ R(w)∪R(z).
That is, (x, y) PR (w, z) either if x is strictly preferred to w or z, or if y is
weakly preferred to at least one of those two alternatives.

Proposition 49:

U(M) =
⋃

(A×B)∈E(PR)

(U(P,A) ∩ D(P,B)).

Proof: Take any x ∈ U(M), define A = R−1(x) and B = {x} ∪ P−1(x).
Clearly, we have x ∈ U(P,A)∩D(P,B). To see that A×B is PR-externally
stable, take any (y, z) ∈ (X × X) \ (A × B), so either y /∈ A or z /∈ B.
In the first case, we have yPx. By the two-step principle, either (i) xRy
or (ii) there exists w ∈ X such that xRwPy or (iii) there exists v ∈ X
such that xPvRy. Of course, (i) is precluded by yPx. If (ii) holds, then
(w, x) ∈ A × B, and we have (w, x) PR (y, z). And if (iii) holds, then
(x, v) ∈ A × B, and we have (x, v) PR (y, z). In the second case, we have
zRx, and the two-step principle yields (i) xRz or (ii) there exists w ∈ X
such that xRwPz, or (iii) there exists v ∈ X such that xPvRz. If (i)
holds, then we have (x, x) PR (y, z). If (ii) holds, then (w, x) ∈ A × B,
and we have (w, x) PR (y, z). And if (iii) holds, then (x, v) ∈ A × B,
and we have (x, v) PR (y, z). Now take any A × B ∈ E(PR) and any
x ∈ U(P,A) ∩ D(P,B). Suppose there exists y ∈ X \ {x} such that y M x,
i.e., yPx and P (y) ⊆ P (x) and R(y) ⊆ R(x). Note that yPx implies y /∈ A,
so PR-external stability yields (w, z) ∈ A×B such that (w, z) PR (y, y), so
either wPy or zRy. In the latter case, z ∈ R(y) ⊆ R(x) implies zRx, and
with yPx this implies z 6= x, but then we contradict x ∈ D(B,P ); and in the
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former case, w ∈ P (y) ⊆ P (x) implies wPx, which contradicts x ∈ U(P,A).
Therefore, x ∈ U(M), as required.

9. Implications for Banks Sets

The stability structure of the Gillies and Bordes uncovered sets has in-
teresting implications for the Banks set, which was first presented in Banks
(1985) by way of characterizing the sophisticated voting outcomes of amend-
ment agendas. Defined in the context of a tournament, the Banks set con-
sists of the maximal elements of maximal chains of P . Recall that a chain

of P is a subset Y such that the restriction P |Y is transitive and total, i.e.,
a linear order. When preferences form a tournament, P |Y is a linear order
if and only if it is acyclic, so there is little latitude in defining the Banks set.
In general, however, there are at least four possible approaches, depending
on the transitivity properties imposed on subsets of alternatives.

Define four collections of subsets, which differ with respect to the transi-
tivity properties of the restriction of the strict preference relation P :

Y1 = {Y ⊆ X | P |Y is total and transitive }

Y2 = {Y ⊆ X | P |Y is negatively transitive }

Y3 = {Y ⊆ X | P |Y is transitive }

Y4 = {Y ⊆ X | P |Y is acyclic }.

Let Y∗
i consist of the sets in Yi that are maximal with respect to set-inclusion,

i.e., Y ∈ Y∗
i if and only if there is no Z ∈ Yi such that Y ( Z. To each

transitivity condition corresponds a Banks set defined as

BSi =
⋃

Y ∈Y∗

i

U(P, Y ),

i = 1, 2, 3, 4, or in words defined to consist of the undominated alternatives
from all maximal subsets in Yi.

16 In Figure 1, for example, alternative
a is undominated in the set {a, y, b}, P restricted to this set is total and
transitive, and the set is maximal with respect to this property. Similarly, b
is maximal in {b, z, c} and c is maximal in {c, x, a}, both sets being maximal
in Y1, and in fact, BS1 = {a, b, c}. Indeed, x does not belong to this set,
because it is strictly preferred only to a, but c is preferred to both x and a.
On the other hand, x is maximal in {x, a, y, b, z}, which is maximal in Y4,
and in fact, BS4 = {x, y, z}. Indeed, a does not belong to this set, because
it is maximal in {a, y, b, z}, but {x, a, y, b, z} is a strictly larger set on which
P is acyclic and in which a is not maximal.

The different versions of the Banks set can be connected to the uncovered
sets via their stability structure. It cannot always be the case that BS1

coincides with the Bordes uncovered set or that BS4 coincides with the

16Penn (2006b) uses BS1, which is strictly closest to the definition given by Banks.
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Gillies uncovered set: in tournaments, BS1 and BS4 coincide with the Banks
set, which can be a proper subset of the uncovered set. But one inclusion
follows easily from Propositions 46 and 48. Evidently, every element Y ∈ Y∗

1

is R-externally stable: if there exists x ∈ X \Y such that xPy for all y ∈ Y ,
then Y ∪ {x} is a strictly larger set on which P is total and transitive. And
since P |Y is total, we have U(P, Y ) = D(P, Y ), establishing the inclusion
of BS1 within the Bordes uncovered set. The following result, which states
this inclusion, is related to Theorem 3 of Brandt and Fischer (2008), which
establishes in the setting of weak tournaments that every Bordes covering
set has nonempty intersection with BS1.

Proposition 50: BS1 ⊆ U(B).

As well, every element Y ∈ Y∗
4 is R-externally stable: for each x ∈ X \ Y ,

P is acyclic on Y but not on Y ∪ {x}, so there is a cycle including x. Thus,
BS4 is a subset of the Gillies uncovered set.

Proposition 51: BS4 ⊆ U(G).

Finally, every element Y ∈ Y∗
2∪Y∗

3 is R-externally stable, so BS2 and BS3

are contained in the deep uncovered set.

Proposition 52: BS2 ∪ BS3 ⊆ U(D).

The set BS4, the acyclic Banks set, has the advantage that nonemptiness
is relatively straightforward to establish under general topological condi-
tions. The next proposition establishes, specifically, that under standard
continuity conditions, there is a maximal set on which the restriction of P is
acyclic, and that every such set is closed. When X is compact, it then follows
from standard results that P has maximal elements in every maximal acyclic
set, and therefore the acyclic Banks set is nonempty. This implication is left
unstated here, as a more powerful result is given in the subsequent propo-
sition. The proof approach for the result at hand does not appear to apply
to the other versions of the Banks set, as they all exclude weak preferences
in some way, creating difficulties for establishing compactness.

Proposition 53: Assume (P,R) is uniformly continuous. Then Y∗
4 6= ∅,

and for all Y ∈ Y∗
4, Y is closed.

Proof: Of course, {x} acyclic for all x, so the collection Y4 is nonempty.
Consider any chain C in Y4 such that all pairs of sets in C are related by
set inclusion, and let Y =

⋃

C. Since the condition of acyclicity is closed
upward (see Duggan (1999)), it follows that P |Y =

⋃

Z∈CP |Z . Then by
Zorn’s lemma, there exists Y ∈ Y4 that is maximal with respect to set
inclusion. I claim that Y is closed, and for this it suffices to show that
closY ∈ Y4. Suppose otherwise, in order to deduce a contradiction, so that
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there exist y1, . . . , yk ∈ closY such that y1Py2P · · · ykPy1, i.e., (yk, y1) ∈ P
and (yi−1, yi) ∈ P for all i = 2, . . . , k. Since P is open, by uniform continuity,
there exist x1, . . . , xk ∈ Y such that (xk, x1) ∈ P and (xi−1, xi) ∈ P for all
i = 2, . . . , k, i.e., x1Px2P · · · xkPx1, contradicting Y ∈ Y4. Therefore, Y is
closed, as required.

A last advantage of the acyclic Banks set is that it intersects the closure
of the strong top cycle under the continuity condition of the previous propo-
sition and the additional assumption of compact weak upper sections. That
it may not be a subset of the strong top cycle is easily demonstrated by a fi-
nite example, where STC is trivially closed. Indeed, letting X = {x, y, z, w}
and P = {(y, z), (z,w), (w, y), (w, x)}, the set {x, y, z} is a maximal acyclic
set, and x ∈ U(P, {x, y, z}), so x ∈ B4; nevertheless, STC = {w, y, z}. None
of the other Banks sets are generally subsets of the strong top cycle either:
consider X = {x, y, z} and P = {(z, y), (y, x)}, and note that {x, y} is maxi-
mal among the sets on which P is transitive or negatively transitive or both
total and transitive, so y ∈ BS1 ∩ BS2 ∩ BS3; nevertheless, the strong top
cycle consists of z alone. Clearly, the next result implies nonemptiness of
the acyclic Banks set, and when X is finite, it implies that BS4 ∩STC 6= ∅.

Proposition 54: Assume that R(x) is compact for all x ∈ X and that
(P,R) is uniformly continuous. Then BS4 ∩ closSTC 6= ∅.

Proof: By Proposition 16, there exists x ∈ STC. The result clearly holds
if P (x) = ∅, so assume P (x) 6= ∅. Note that X̂ = R(x) is compact, and

preferences restricted to X̂, denoted (P̂ , R̂) = (P |
X̂

, R|
X̂

), are uniformly

continuous in the relative topology on X̂ . Let Ŷ4 consist of subsets Y ⊆ X̂
such that P̂ |Y is acyclic, and let Ŷ∗

4 be the sets in Ŷ4 that are maximal with

respect to set inclusion. By Proposition 53, there exists Y ∈ Ŷ∗
4, and Y is

relatively closed in X̂ and, therefore, compact. Since X̂ = R(x), it must

be that x ∈ Y , for otherwise we have Y ∪ {x} ∈ Ŷ4 and Y ( Y ∪ {x},
contradicting maximality of Y .

Next, I identify a particular element, denoted z∗, of U(P̂ , Y ). If P̂ (x) ∩

Y = ∅, so that x ∈ U(P̂ , Y ), then specify z∗ = x. Otherwise, define the

collection Z to consist of every set Z ⊆ Y such that (i) Z ⊆ P̂ |∞Y (x), (ii)

P̂ |∞Y ∩ (Z × Z) is total, and (iii) D(P̂ |∞Y , Z) 6= ∅. Note that the transitive

closure of P̂ |∞Y restricted to Z is a necessarily asymmetric, by acyclicity of

P̂ |Y , and is of course transitive, so the transitive closure of P̂ |∞Y restricted

to Z is a linear order. Furthermore, Z 6= ∅ since zP̂x for some z ∈ Y ,
and then {z} ∈ Z. Giving Z the partial order of set inclusion, the Hausdorff
maximality principle implies that the collection Z possesses a maximal chain;

I select one such chain, denoted Ĉ, and I index it as Ĉ = {Zα}. For each α,

let {zα} = D(P̂ |∞Y , Zα), and view {zα} as a net in Y with direction ≥ defined
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so that α ≥ β if and only if Zα ⊇ Zβ . Note that for each α, we have zαP̂ |∞Y x,
which implies zα ∈ STC. Since Y is compact, the net possesses a convergent
subnet; for later use, I select one such subnet and continue to index it by α,
for simplicity. Let zα → z ∈ Y . Since zα ∈ STC for all α, it follows that
z ∈ closSTC. I claim that z ∈ U(P̂ , Y ). If not, then there exists w ∈ Y

such that wP̂z, i.e., z ∈ P̂−1(w). Since P̂−1(w) is relatively open in X̂ , it

follows that zα ∈ P̂−1(w) for sufficiently high α. I consider two cases. First,

w ∈
⋃

Ĉ, which implies w ∈ Zβ for some β. Then for high enough α > β,

transitivity of P̂ |∞Y implies zαP̂ |∞Y zβ = wP̂ zα, contradicting acyclicity of

P̂ |Y . Second, w /∈
⋃

Ĉ. Define W = {w} ∪
⋃

Ĉ. Then transitivity of P̂ |∞Y
implies that D(P̂ ,W ) = {w}, which in turn implies W ∈ Z. But then

C′ = Ĉ ∪ {W} is a chain in Z such that Ĉ ( C′, contradicting maximality

of Ĉ. Therefore, z ∈ U(P̂ , Y ), as claimed, and I specify z∗ = z. Note that
whichever case in the definition of z∗ holds, we have z∗ ∈ closSTC.

Finally, I claim that z∗ ∈ BS4. Let W ⊆ Y4 denote the collection con-
sisting of every set W such that Y ⊆ W and P |W is acyclic, and note that
{Y } ∈ W, so the collection is nonempty. Let C be any chain in W, and
note that

⋃

C ∈ W, and therefore Zorn’s lemma yields a set W ∈ W that
is maximal with respect to set inclusion. Accordingly, W ∈ Y∗

4, and it then
suffices to show that z∗ ∈ U(P,W ). Suppose not, in order to deduce a con-
tradiction. Then there exists w ∈ W such that wPz∗. It follows that w /∈ Y ,

since z∗ is undominated in Y , and that w /∈ X̂ \Y , by maximality of Y in Ŷ4.

Thus, w ∈ X \ X̂ = P−1(x), so xPw, so z∗ = z, where z is defined above.
Since z ∈ P−1(w), an open set, it follows that for the net {zα} converging
to z, above, we have wPzα for high enough α. Since Y ⊆ W , we have
{w, x, zα} ⊆ W , but then wPzαP∞xPw for high enough α, contradicting
W ∈ Y4. Thus, z∗ ∈ U(P,W ), and we conclude that z∗ ∈ BS4 ∩ closSTC.

Of course, Propositions 50–52, with Proposition 15, immediately imply
that all of the Banks sets are contained in the weak top cycle.

Corollary 55: BS1 ∪ BS2 ∪ BS3 ∪ BS4 ⊆ WTC.

10. Continuity Properties

In this section, I analyze the continuity properties of the two benchmark
sets, the deep and shallow uncovered sets. In contrast to the Gillies and
Bordes uncovered sets, which suffer from discontinuity problems discussed
by Bordes, Le Breton, and Salles (1992), these two correspondences possess
nice continuity properties: they are upper and lower hemicontinuous, respec-
tively, as a function of preferences and feasible sets.17 Thus, they provide

17Although Bordes, Le Breton, and Salles (1992) do not give examples for the McK-
elvey uncovered set, the same difficulties are expected. In fact, Banks, Duggan, and Le
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robust upper and lower bounds on the other uncovered sets. Because I allow
for the approximation of the set of alternatives by a sequence of finite grids,
the result has particular bearing on efforts to compute the uncovered set in
spatial voting models using numerical methods, such as Bianco, Jeliazkov,
and Sened (2004). A straightforward further implication of upper hemicon-
tinuity is that when preferences are discriminating and the core is nonempty,
the deep uncovered set, along with the smaller sets, is continuous.

To conduct the analysis, let X denote the collection of all closed subsets of
X, and let R denote the space of all complete, closed relations on X. Given
such a relation R, we may define the dual R∗, which is asymmetric, and
we may then consider the various notions of covering generated by these
relations. Define the corresponding deep covering relation on Y , denoted
D(R,Y ), as follows: for all x, y ∈ Y ,

x D(R,Y ) y ⇔ R(x) ∩ Y ⊆ R∗(y) ∩ Y.

This is just the standard definition of deep covering, applied to the restric-
tion R|Y . Denote the corresponding deep uncovered set by UD(R,Y ) =
U(D(R,Y ), Y ). The shallow covering relation, denoted S(R,Y ), is defined
as follows: for all x, y ∈ Y ,

x S(R,Y ) y ⇔ xRy and R∗(x) ∩ Y ⊆ R(y) ∩ Y,

and the corresponding shallow uncovered set is US(R,Y ) = U(S(R,Y ), Y ).

Assume X is a compact metric space, with metric d, and endow the space
X with the Hausdorff metric, ξ, which is defined by

ξ(Y,Z) = max

{

max
y∈Y

min
z∈Z

d(y, z),max
z∈Z

min
y∈Y

d(y, z)

}

.

It is well-known that Ym → Y in the Hausdorff metric if and only if both of
the following conditions hold:

(i) for every sequence {ym} converging to limit y with ym ∈ Ym for all
m, we have y ∈ Y ,

(ii) for every y ∈ Y , there is a subsequence {Ymk
} and a sequence {yk}

such that yk ∈ Ymk
for all k and yk → y.

Give the space X × X the product metric, still denoted d and defined by
d((x, y), (w, z)) = d(x,w) + d(y, z), and endow the space R with the Haus-
dorff metric, ρ, which is defined by

ρ(R,R′) = max

{

max
(x,y)∈R

min
(w,z)∈R′

d((x, y), (w, z)),

max
(w,z)∈R′

min
(x,y)∈R

d((x, y), (w, z))

}

.

Breton (2002) prove analyticity of the McKelvey uncovered set, but even measurability is
unknown.
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If {Rm} is a sequence in R and R ∈ R, then the following conditions in
conjunction are necessary and sufficient for Rm → R in the Hausdorff metric:

(iii) for every sequence {(xm, ym)} converging to some (x, y) with xmRmym

for all m, we have xRy,
(iv) for all x, y ∈ X with xRy, there is a subsequence {Rmk

} and a
sequence {(xk, yk)} such that xkRmk

yk for all k and (xk, yk) → (x, y).

With these metrics, X and R are compact metric spaces.

It is now a simple matter to establish upper hemicontinuity of the deep
uncovered set. Note that the proof of the next proposition only uses proper-
ties (i) and (iii) of Hausdorff convergence, so that an even stronger continuity
property could be stated.

Proposition 56: Assume X is a compact metric space. Then UD : R×X ⇉

X is upper hemicontinuous with closed values.

Proof: It suffices to show that the correspondence has closed graph. Take
any sequence {(Rm, Ym, xm)} in R×X×X and any triple (R,Y, x) such that
xm ∈ UD(Rm, Ym) for all m and (Rm, Ym, xm) → (R,Y, x). Given arbitrary
y ∈ Y , Hausdorff convergence of {Ym} yields a sequence {ym} such that
ym ∈ Ym for all m and ym → y. The two-step principle yields for each
m an alternative zm ∈ Ym such that xmRmzmRmym. Since X is compact,
there is a subsequence {zm}, still indexed by m, that converges to some
alternative z ∈ X. By Hausdorff convergence of {Ym}, we have z ∈ Y . And
by property (i) of Hausdorff convergence of {Rm}, we have xRzRy. Since y
was an arbitrary alternative belonging to Y , the two-step principle implies
x ∈ UD(R,Y ), as required.

To draw implications for computation, fix the weak preference R. A nu-
merical approach to calculating the uncovered set will take a sequence {Ym}
of finite approximations of X and for each m, compute a version of the
uncovered set, say Zm, for the preferences restricted to Ym. As the grid
is refined, we take the limit Zm → Z (assuming one exists) to obtain an
approximation of the uncovered set in X. For each m, the deep uncov-
ered set encompasses the computed set, i.e., Zm ⊆ UD(R,Ym), regardless of
the definition of covering used. By upper hemicontinuity, from Proposition
56, we then have Z ⊆ UD(R,X). It is theoretically possible that the ap-
proximation of the uncovered set obtained by numerical methods may omit
some elements of the actual uncovered set, but it is bounded above by the
deep uncovered set: the approximation will not contain any deeply covered
alternatives.

A further consequence of Proposition 56 is that when preferences are dis-
criminating and the core is nonempty, the deep uncovered set (and all of
the other uncovered sets) is fully continuous. This observation is a simple
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implication of Proposition 14, which states that the core is a singleton and
coincides with the deep uncovered set, and the fact that an upper hemi-
continuous correspondence is continuous whenever it is single-valued. Given
weak preference R and feasible set Y , we say (R,R∗) is discriminating in Y if
the restricted preference relations are discriminating in the relative topology
on Y : for all x ∈ Y , R(x) ∩ Y ⊆ {x} ∪ clos(R∗(x) ∩ Y ).

Corollary 57: Assume X is a compact metric space, and let (R,Y ) ∈
R×X be such that (R,R∗) is discriminating in Y . Then UD is continuous
at (R,Y ).

In contrast, I prove the lower hemicontinuity of the shallow uncovered set,
when restricted to a subdomain of weak preference relations and feasible sets:
let

Θ =







(R,Y ) ∈ R× X |
either Y = X and (R∗, R) is rich

and discriminating or
Y is finite and R|Y is antisymmetric







denote the domain of pairs (R,Y ) such that either the feasible set is the
entire set of alternatives and preferences are discriminating and rich, or the
feasible set is finite and there are no ties between feasible alternatives. We
give Θ the relative topology in R×X, essentially allowing us to approximate
the original set of alternatives with a sequence of tournaments.

Proposition 58: Assume X is a compact metric space. Then US : Θ ⇉ X
is lower hemicontinuous.

Proof: Take any (R,Y ) ∈ Θ, and let Z ⊆ X be an open set such that
Z ∩ US(R) 6= ∅. I must establish an open set around (R,Y ) such that
US(R′, Y ′) ∩ Z 6= ∅ for every element (R′, Y ′) of that open set. If there is
no such open set, then there is a sequence {(Rm, Ym)} converging to (R,Y )
such that for all m, US(Rm, Ym) ∩ Z = ∅. Choose any x ∈ Z ∩ US(R,Y ).
Since Ym → Y , there is a sequence {xm} such that xm ∈ Ym for all m
and xm → x. For sufficiently high m, we have xm ∈ Z, and therefore
xm /∈ US(Rm, Ym). Then there exists ym ∈ Ym such that ym S(Rm, Ym) xm

for all m, i.e., ymRmxm and R∗
m(ym) ∩ Ym ⊆ Rm(xm) ∩ Ym. Note that

discriminating preferences and upper semicontinuity imply that, in fact,
Rm(ym) ∩ Y ⊆ Rm(xm) ∩ Y . Then external stability, from Proposition 33,
implies we may further specify that ym ∈ US(Rm, Ym) for all m. I claim that
ym → x. Otherwise, by compactness of X, we may consider a subsequence
of {ym}, still indexed by m for simplicity, that converges to an alternative
y 6= x. Since Rm(ym) ∩ Ym ⊆ Rm(xm) ∩ Ym for all m, property (i) of
Hausdorff convergence implies yRx and R(y)∩Y ⊆ R(x)∩Y , which implies
y S(R,Y ) x, contradicting x ∈ US(R,Y ).
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The requirements for lower hemicontinuity of the shallow uncovered set
are more stringent the Proposition 56. Returning to the problem of com-
puting the uncovered set, the finite sets Ym now must be chosen so that the
restriction of R to the set is antisymmetric — assuming majority rule and
an odd number of voters with continuous, strictly convex preferences, this
is satisfied by almost all finite subsets. Since preferences restricted to Ym

form a tournament, the definition of the uncovered set used to construct Zm

is immaterial. By lower hemicontinuity, from Proposition 58, we conclude
US(R,X) ⊆ Z. It is possible that the approximation of the uncovered set
contains alternatives outside the actual shallow uncovered set, but the latter
provides a lower bound of the calculated set: the approximation will include
the shallow uncovered set. If we know, through other means, that the actual
deep and shallow uncovered sets coincide — or are very close to one another
— then the computed set can approximate the true uncovered set to any
desired degree of precision.

11. Discussion

I have attempted in this paper to systematically develop the theory of
the uncovered set and to motivate two new solutions, the deep and shallow
uncovered sets, that arguably deserve attention in their role as benchmarks
for the other uncovered sets. I discern three existing definitions of covering,
in addition to the deep and shallow covering relations, as primary. Under-
lying this distinction is an analysis of the stability structure of the main
uncovered sets: the deep, shallow, Gillies, and Bordes (and McKelvey to a
lesser extent) uncovered sets can be characterized as the union of choice from
externally stable sets. These four (or five) uncovered sets are achieved by
varying the type of external stability and the choice criterion, and the char-
acterizations have some interesting implications for the Banks set in general
environments. I provide general results on nonemptiness of the uncovered
sets, the most stringent for the shallow uncovered set, and on their exter-
nal stability. I compare the uncovered sets to a number of other solutions
considered in the literature, and in particular I define the minimal general-
ized covering solution and the acyclic Banks set and examine connections
between them and the uncovered sets. Finally, I establish that the deep and
shallow uncovered sets vary upper and lower hemicontinuously, respectively,
as a function of parameters. Thus, the bounds they provide are robust to
perturbations of the underlying model.

Several topics deserve further mention.

Downsian Competition: Laffond, Laslier, and Le Breton (1993) prove
in the context of tournaments that the support of the unique mixed strategy
equilibrium of the canonical Downsian model, called the bipartisan set, is
contained in the uncovered set. Dutta and Laslier (1999), in their analysis
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of the essential set of a weak tournament, extend this result by showing
that the equilibrium outcomes of Downsian competition are contained in
the McKelvey uncovered set. A conjecture by McKelvey (1986) is that the
uncovered set, under his definition, provides an upper bound on the equi-
librium outcomes of Downsian competition in the multidimensional spatial
voting model. Banks, Duggan, and Le Breton (2002) confirm this conjecture
by showing that each equilibrium mixed strategy puts probability one on a
measurable subset of the McKelvey uncovered set in a general topological
setting.18 It is not known, however, whether mixed strategy equilibria gen-
erally exist in the canonical Downsian model, which presents discontinuities
in the parties’ payoffs of a particularly difficult form.19

Duggan and Jackson (2006) move from the canonical setting, in which
voters’ behavior is predetermined (as a function of their preferences), to a
game-theoretic setting, in which voters are strategic and assumed to play
undominated Nash equilibrium strategies. By specifying the behavior of
indifferent voters appropriately, the authors prove that the Downsian game
does admit a mixed strategy equilibrium, but they give an example in which
the parties put positive probability on platforms outside the McKelvey un-
covered set. Thus, the McKelvey uncovered set no longer provides a bound
on equilibrium behavior of parties. An advantage of the deep uncovered set,
however, is that it does provide an upper bound on equilibrium platforms.
The deep uncovered set can, moreover, be shown to bound outcomes of a
class of equilibria in amendment agenda games, providing further support
for this solution.

Pareto Optimality: The analysis to this point has been abstract, tak-
ing social preferences as primitive rather than explicitly modeling voter pref-
erences and an aggregation mechanism. It is worth, nonetheless, briefly
touching on the efficiency properties of the uncovered sets. We now take
as given a set N = {1, . . . , n} of voters, a profile ((P1, R1), . . . , (Pn, Rn))
of voter preference relations, a collection W of winning coalitions, and a
collection B of blocking coalitions. Assume:

• each (Pi, Ri) is a weak order, so Pi is asymmetric and negatively
transitive and Ri is complete and transitive

• W is nonempty proper, i.e., C ∈ W implies N \ C /∈ W

• W is monotonic, i.e., C ∈ W and C ⊆ C ′ imply C ′ ∈ W

• W and B are dual in the sense that C ∈ W if and only if N \C /∈ B.

18The measurable subset may depend on the equilibrium; the necessity of this tech-
nicality is that the McKelvey uncovered set is potentially non-measurable. Please note
the typo in Theorem 4 of Banks, Duggan, and Le Breton (2002), in which the inclusion

Û ⊇ U should be reversed to Û ⊆ U !
19See Duggan (2007b) for discussion and results on this point.
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We then define social preferences as follows:

P =
⋃

C∈W

⋂

i∈C

Pi and R =
⋃

C∈B

⋂

i∈C

Ri.

It can be checked that W ⊆ B, that B is strong, i.e., C /∈ W implies
N \ C ∈ W, and that (P,R) is a dual pair. Furthermore, if W is itself
strong, then W = B.20

Given voter preferences, we define two notions of Pareto optimality. The
narrower concept is the set of strongly Pareto optimal alternatives, denoted
POs(P1, . . . , Pn), which consists of any alternative x ∈ X such that there
does not exist y ∈ X satisfying (i) for all i ∈ N , yRix and (ii) for some j ∈ N ,
yPjx. The more encompassing concept is the set of weakly Pareto optimal

alternatives, denoted POw(P1, . . . , Pn), which consists of any alternative
x ∈ X such that there does not exist y ∈ X with yPix for all i ∈ N . It is
well-known, and formalized for example in Proposition 24 of Banks, Duggan,
and Le Breton (2006), that the McKelvey uncovered set is a subset of the
weak Pareto optimals; of course, this result carries over to all of the smaller
uncovered sets.

Proposition 59: U(M) ⊆ POw(P1, . . . , Pn).

Although the deep uncovered set has a comparative advantage in encom-
passing supports of equilibrium strategies in the game-theoretic Downsian
model, a drawback of this solution is that it may contain alternatives that
are not even weakly Pareto optimal. Consider the following profile of linear
orders for n = 4 voters.

1 2 3 4
x x z z
y y x x
z z y y

When voting is by majority rule, so W consists of all groups of three or
more voters, y ∈ U(D) \POw(P1, . . . , Pn). In particular, each voter strictly
prefers x to y, and so y is not weakly Pareto optimal, but y is weakly
majority preferred to z, and so belongs to the deep uncovered set.

The collection W of winning coalitions is not strong in the above example,
and this is no coincidence. If W is strong, as is the case with majority rule
and n odd, then the deep uncovered set is contained in the weakly Pareto
optimals.

Proposition 60: Assume W is strong. Then U(D) ⊆ POw(P1, . . . , Pn).

20See Banks, Duggan, and Le Breton (2006) for a more general formulation of simple
voting games with a measure space of voters.
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Proof: Take any x, y ∈ X such that yPix for all i ∈ N . It suffices to show
that y D x. Take any z ∈ X such that zRy, which implies C = {i ∈ N |
zRiy} ∈ B. Since W is strong, this implies C ∈ W. For each i ∈ C, we
then have zRiyPix, which implies zPix. Thus, {i ∈ N | zPix} ∈ W, and we
conclude that zPx, as required.

The more stringent requirement of strong Pareto optimality is satisfied by
the shallow uncovered set but is problematic for the larger uncovered sets.
For example, suppose X = {x, y} and consider any profile such that voters
1, . . . , n − 1 are indifferent between the two alternatives and voter n ≥ 2
strictly prefers x to y; under majority voting, we have yRx, so y belongs
to the Gillies, Bordes, McKelvey, and deep uncovered sets. Of course, the
latter example holds when n is odd, so W being strong is no recourse.

Proposition 61: U(S) ⊆ POs(P1, . . . , Pn).

Proof: Take any x, y ∈ X such that (i) for all i ∈ N , yRix and (ii) for
some j ∈ N , yPjx. To see that y S x, first note that N = {i ∈ N | yRix}, so
yRx. Next, take any z ∈ X such that zRy. Then C = {i ∈ N | zRiy} ∈ B,
and for all i ∈ C, we have zRiyRix, which implies zRix, and therefore zRx.
Taking any z ∈ X such that zPy, a similar argument in terms of winning
coalitions shows zPx, as required.

Evaluation: It is interesting to consider the strength and weaknesses
of the various uncovered sets defined in this paper. The most significant
dimensions of comparison seem to be: existence, external stability, bounds
for equilibria in Downsian competition, and Pareto optimality. Consider the
four uncovered sets with the strongest stability structure.

• The deep uncovered set fares best in terms of existence and is even
compact quite generally; it is the only solution that provides an
upper bound on equilibria in the game-theoretic Downsian model;
and it is among the best in terms of external stability. The main
drawback to this solution is that it admits Pareto inefficient choices,
at least in voting games that are not strong.

• The shallow uncovered set fares best with respect to Pareto opti-
mality and is the only strongly Pareto optimal solution, but it can
be disjoint from outcomes of electoral competition and even the ul-
timate uncovered set. Moreover, it is the weakest of the solutions
with respect to existence and external stability.

• The Gillies uncovered set has excellent existence properties and fares
well with respect to Pareto optimality, but it can be disjoint from
equilibrium outcomes of electoral competition, and its external sta-
bility properties appear weaker than the deep and Bordes uncovered
sets.
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• The Bordes uncovered set is among the best with respect to external
stability, it fares well with respect to Pareto optimality and existence,
but it too can be disjoint from equilibrium outcomes of electoral
competition.

Bringing the McKelvey uncovered set into the comparisons, it is nonempty
if the Gillies set is, it shares the external stability and Pareto optimality of
the Bordes set, and it bounds the outcomes of electoral competition in the
canonical setting. But the latter property does not persist when voters are
modeled game-theoretically, and its stability structure is weaker than the
other solutions.

Open Questions: The analysis in this paper raises (at least) five open
questions. The first regards general conditions on voter preferences under
which social preferences (P,R) are rich. I conjecture that in a multidimen-
sional spatial setting, assuming continuity and convexity of voter preferences
and W is strong, richness is generic in some meaningful sense. The second
question is whether external stability of the Gillies uncovered set can be ob-
tained under topological conditions weaker than discriminating preferences
— conditions that generalize the assumption of finite X, which delivers
external stability even if preferences are not discriminating. The third is
whether minimal deep covering sets, defined using deep covering for both
internal and external stability, can be shown to exist and even be unique.
The fourth question is the status of the Banks sets, and in particular the
acyclic Banks set, relative to other solutions for weak tournaments. The fifth
evolves from McKelvey’s (1986) Proposition 4.1, where he states, essentially,
that the deep uncovered set is contained in the closure of the shallow un-
covered set. His proof contains an error,21 however, so the question remains
whether the relationship holds under reasonable conditions on primitives. I
conjecture that McKelvey’s claim holds under reasonable conditions. If so,
in line with the discussion at the end of Section 10, the result would greatly
facilitate computational approaches to the uncovered set.

Appendix A. Further Connections

The first task of this appendix is to provide an example, in Figure 6,
showing that the shallow uncovered set can be disjoint from the ultimate
uncovered set, even when the former is nonempty. Using the two-step prin-
ciple, it can be checked that the shallow uncovered set consists of v alone:
every alternative can be reached from v in either one or two strict preference
steps, while that is true of no other alternative; in particular, x cannot reach
w in one or two steps, y cannot reach x, and so on. On the other hand,
the McKelvey uncovered set is {x, y, z, w, v}; in particular, a is McKelvey
covered by x, b is McKelvey covered by y, and so on. But then x McKelvey

21This was originally pointed out by Banks, Duggan, and Le Breton (2006).
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x y
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b
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d
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v

a

Figure 6. Shallow uncovered set disjoint from ultimate un-
covered set

covers v in {x, y, z, w, v}, and the ultimate uncovered set is {x, y, z, w}, which
is disjoint from the shallow uncovered set.

Now return to the two-player, zero-sum game induced by the preferences
(P,R), assuming X is finite. A subset Y ⊆ X is a mixed generalized saddle

point (MGSP) if for all x ∈ X \ Y , there exists a probability distribution
σ with support in Y such that for all y ∈ Y , Π(σ, y) > Π(x, y). That is,
Y is a MGSP if every alternative outside the set is strictly dominated by a
mixed strategy on Y for player 1, if we vary player 2’s strategies only within
Y . We say a MGSP is a mixed saddle if it is minimal among MGSP’s with
respect to set-inclusion. Duggan and Le Breton (1997, 1999, 2001) show
that there is a unique mixed saddle, denoted MS. Moreover, the mixed
saddle coincides with the unique minimal rationalizable set, meaning that it
contains all best responses to mixed strategies with support within the set,
and it is contained in every other set with this property, with the implication
that it is a superset of the strong top cycle and the essential set.

Those authors show that the mixed saddle is nested between the strong
and weak top cycles, and so in the tournament context, it is equivalent to
the top cycle and is known to be a superset of the uncovered set. For the
opposite inclusion, Duggan and Le Breton’s (1999) Example 8 provides a
weak tournament in which the mixed saddle is MS = {x1, x2, x3}, while the
Gillies and Bordes uncovered sets contain the entire set X of six alterna-
tives. That the Gillies and Bordes uncovered sets generally have nonempty
intersection with the mixed saddle follows from nonempty intersection with
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the strong top cycle, from Corollaries 34 and 35, and STC ⊆ MS. Thus,
unlike the essential set, the mixed saddle always intersects the Gillies and
Bordes uncovered sets.

Allowing for a general metric space of alternatives, Duggan (2007a) defines
the uncaptured set, denoted UC+, as the union of maximal sets of transitive
subrelations of P and shows that an alternative x belongs to UC+ if and
only if for all y ∈ X, at least one of the following four conditions holds:

(i) xRy
(ii) there exists w ∈ X such that xPwRy
(iii) there exists z ∈ X such that xRzPy
(iv) there exist s, t ∈ X such that xPsRtPy.

Clearly, by the two-step principle, the McKelvey uncovered set, along with
the smaller Gillies, Bordes, and shallow uncovered sets, are contained in the
uncaptured set. Thus, as long as the Gillies or Bordes sets are nonempty,
we have U(D) ∩ UC+ 6= ∅. In general, however, there is no logical nesting
between the deep uncovered set and the uncaptured set. To see that the
deep uncovered set may be a proper subset of the uncaptured set, let X =
{x, y, z, w} and P = {(x, y), (x, z), (y, z), (y,w), (z,w)}, and note that y M z
yet xPwRxPy. In particular, UC+ = X and U(D) = {x, y,w}. For the
opposite inclusion, let X = {x, y, z, w} and P = {(y, z)}. Then z is not
deeply covered, but there is no chain of preferences as in (i)–(iv) from z to
y. In particular, UC+ = {x, y,w} and U(D) = X.

Duggan (2007a) also defines the untrapped set, denoted UT , as the union
of maximal elements of acyclic subrelations of P . This set is characterized
as the maximal elements of the trapping relation, T , defined as follows: for
all x, y ∈ X, x T y if and only if xPy and not yP∞x. The untrapped
set is nested between the strong top cycle and the mixed saddle, so it co-
incides with the top cycle in a tournament, and it is well-known that the
uncovered set is a subset of the top cycle in tournaments. Since the shallow
uncovered set is generally a subset of the strong top cycle, it follows that
U(S) ⊆ UT always holds, but this inclusion does not hold for the larger
uncovered sets. To see this, let X = {x, y, z} and P = {(x, y), (y, z)}, and
note that UT = {x}, but U(G) = {x, z} and U(B) = {x, y}. That the Gillies
and Bordes uncovered sets generally have nonempty intersection with the
untrapped set follows from nonempty intersection with the strong top cycle,
from Corollaries 34 and 35, and STC ⊆ UT .

Table 1 summarizes the relationships studied in Section 4 and in this ap-
pendix. Here, ∅ indicates that two solutions can be disjoint, even when both
are nonempty, and that each solution can be a proper subset of the other; ∩
indicates that two solutions have nonempty intersection when X is finite (or
perhaps under more general topological conditions) and that each solution
can be a proper subset of the other; and ⊂ means that the row solution is
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U(S) U(G) U(B) MC UC∞ STC UT MS U(M) UC+ U(D) WTC

ES ∅1 ∅2 ∅3 ⊂ ⊂4 ⊂ ⊂5 ⊂ ⊂ ⊂6 ⊂7 ⊂

U(S) ⊂8 ⊂9 ∅10 ∅11 ⊂12 ⊂13 ⊂14 ⊂15 ⊂16 ⊂17 ⊂18

U(G) ∅19 ∩20 ∩21 ∩22 ∩23 ∩24 ⊂25 ⊂26 ⊂27 ⊂28

U(B) ∩29 ∩30 ∩31 ∩32 ∩33 ⊂34 ⊂35 ⊂36 ⊂37

MC ⊂38 ∩ ∩39 ⊂ ⊂ ⊂40 ⊂41 ⊂

UC∞ ∩42 ∩43 ∩44 ⊂45 ⊂46 ⊂47 ⊂48

STC ⊂49 ⊂ ∩ ∩50 ∩51 ⊂

UT ⊂52 ∩53 ∩54 ∩55 ⊂56

MS ∩ ∩57 ∩58 ⊂

U(M) ⊂59 ⊂60 ⊂

UC+ ∩61 ⊂62

U(D) ⊂63

Table 1. Logical connections

generally a subset of column. Superscripts point to brief explanations, be-
low, of the entries in Table 1, where entries without a superscript are found
Table 1 of Duggan and Le Breton (1999).

In the remainder of the appendix, I verify the numbered entries of Table 1.

1. The possibility of empty intersection follows from ES ⊆ UC∞ and
the example in Figure 6. It is well-known that in tournaments, the
essential set can be a proper subset of the uncovered set. For the
opposite inclusion, recall from the example preceding Proposition 5
that the shallow uncovered set can be empty, while the essential set
is always nonempty.

2. The possibility of empty intersection follows from the example in
Figure 3. It is well-known that in tournaments, the essential set can
be a proper subset of the uncovered set. For the opposite inclusion,
see the example in Figure 2.

3. The possibility of empty intersection follows from the example in
Figure 4. It is well-known that in tournaments, the essential set
can be a proper subset of the uncovered set. The opposite inclusion
follows from a simple modification of the example in Figure 2.

4. The inclusion is established in Theorem 4.3 of Dutta and Laslier
(1999). It is well-known that in tournaments, the essential set (or
bipartisan set) may be a proper subset of the minimal covering set.

5. From 49 and ES ⊆ STC.
6. From 59 and ES ⊆ U(M).
7. From 60 and ES ⊆ U(M).
8. From Proposition 5.
9. From Proposition 5.

10. The possibility of empty intersection follows from 4 and the example
in Figure 6. It is well-known that in tournaments, the minimal
covering set can be a proper subset of the uncovered set. For the
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opposite inclusion, recall from the example preceding Proposition
5 that the shallow uncovered set can be empty, while the minimal
covering set is always nonempty.

11. The possibility of empty intersection follows from the example in
Figure 6. It is well-known that in tournaments, the ultimate un-
covered set can be a proper subset of the uncovered set. For the
opposite inclusion, recall from the example preceding Proposition
5 that the shallow uncovered set can be empty, while the ultimate
uncovered set is always nonempty.

12. From Proposition 17.
13. From 12 and 49.
14. From 13 and 52.
15. From Proposition 5.
16. From 15 and 59.
17. From 15 and 60.
18. From 15 and U(M) ⊆ WTC.
19. The possibility of empty intersection follows from the example in Fig-

ure 1. For U(G) ( U(B), let X = {x, y, z, w} and P = {(x, y), (y, z),
(z,w), (w, y)}, so that U(B) = X but x G y. For U(B) ( U(G),
redefine P = {(x, y), (x, z), (z,w), (w, x)}, so that U(G) = X but
x B y.

20. Nonempty intersection follows from Proposition 18. It is well-known
that in tournaments, the minimal covering set may be a proper sub-
set of the uncovered set. For the opposite inclusion, see Example 7
in Duggan and Le Breton (1999), where MC = X but x6 G x2.

21. Nonempty intersection follows from 20 and 38. For nonnestedness, it
is well-known that in tournaments, the ultimate uncovered set may
be a proper subset of the uncovered set. For the opposite inclusion,
see Example 7 in Duggan and Le Breton (1999), where UD∞ = X
but x6 G x2.

22. Nonempty intersection follows from Corollary 35. For nonnested-
ness, see the examples following Proposition 17.

23. Nonempty intersection follows from 22 and 49. For nonnestedness,
it is well-known that in tournaments, the uncovered set may be a
proper subset of the top cycle, which coincides with the untrapped
set. For the opposite inclusion, see the discussion after the definition
of the untrapped set.

24. Nonempty intersection follows from 22 and STC ⊆ MS. For nonnest-
edness, it is well-known that in tournaments, the uncovered set
may be a proper subset of the top cycle. For the opposite in-
clusion, see Example 8 of Duggan and Le Breton (1999), where
MS = {x1, x2, x3}, while U(G) = X ) MS.

25. From Proposition 5.
26. From 25 and 59.
27. From 25 and 60.
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28. From 25 and U(M) ⊆ WTC.
29. Nonempty intersection follows from Proposition 19. It is well-known

that in tournaments, the minimal covering set may be a proper sub-
set of the uncovered set. For the opposite inclusion, see Example 7
in Duggan and Le Breton (1999), where MC = X but x5 B x7.

30. Nonempty intersection follows from 29 and 38. For nonnestedness,
it is well-known that in tournaments, the uncovered set may be a
proper subset of the ultimate uncovered set. For the opposite in-
clusion, see Example 7 in Duggan and Le Breton (1999), where
UD∞ = X but x5 B x7.

31. Nonempty intersection follows from 29 and MC ⊆ STC. For nonnest-
edness, see the examples following Proposition 17.

32. Nonempty intersection follows from 31 and 49. For nonnestedness,
see the discussion after the definition of the untrapped set.

33. Nonempty intersection follows from 31 and STC ⊆ MS. For nonnest-
edness, it is well-known that in tournaments, the uncovered set may
be a proper subset of the top cycle, which coincides with the mixed
saddle. For the opposite inclusion, see Example 8 of Duggan and Le
Breton (1999), where MS = {x1, x2, x3}, while U(B) = X ) MS.

34. From Proposition 5.
35. From 34 and 59.
36. From 34 and 60.
37. From 34 and U(M) ⊆ WTC.
38. The inclusion is proved in Theorem 2 of Peris and Subiza (1999),

and it is well-known that in tournaments, the minimal covering set
may be a proper subset of the ultimate uncovered set.

39. Nonempty intersection follows from 49 and STC ∩ MC 6= ∅. For
nonnestedness, it is well-known that in tournaments, the minimal
covering may be a proper subset of the top cycle. For the opposite
inclusion, see the example following Corollary 2 of Duggan (2007a),
where MC = X = {a, b, c} yet STC = {a}. From MC ⊆ STC and
49.

40. From MC ⊆ U(M) and 59.
41. From MC ⊆ U(M) and 60.
42. Nonempty intersection follows from 4 and ES ⊆ STC. For nonnest-

edness, it is well-known that in tournaments, the ultimate uncov-
ered set may be a proper subset of the top cycle. For the opposite
inclusion, see Example 8 of Duggan and Le Breton (1999), where
STC = {x1, x2, x3 and UC∞ = X ) STC.

43. Nonempty intersection follows from 4 and 5. For nonnestedness, it is
well-known that in tournaments, the ultimate uncovered set may be
a proper subset of the top cycle, which coincides with the untrapped
set. For the opposite inclusion, see Example 8 of Duggan and Le
Breton (1999), where UT = {x1, x2, x3 and UC∞ = X ) UT .
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44. Nonempty intersection follows from 4 and ES ⊆ MS. For nonnest-
edness, it is well-known that in tournaments, the ultimate uncov-
ered set may be a proper subset of the top cycle, which coincides
with the mixed saddle. For the opposite inclusion, see Example
8 of Duggan and Le Breton (1999), where MS = {x1, x2, x3 and
UC∞ = X ) MS.

45. The inclusion follows from definition of the ultimate uncovered set,
and the possibility of strict inclusion is well-known in tournaments.

46. From 45 and 59.
47. From 45 and 60.
48. From 45 and U(M) ⊆ WTC.
49. From Theorem 3 of Duggan (2007a) and surrounding discussion.
50. Nonempty intersection follows from STC ∩ U(M) 6= ∅ and 59. For

nonnestedness, see the examples after Theorem 1 of Duggan (2007a).
51. Nonempty intersection follows from STC ∩ U(M) 6= ∅ and 60. For

nonnestedness, see the discussion after the definition of the uncap-
tured set.

52. From Theorem 5 of Duggan (2007a) and surrounding discussion.
53. Nonempty intersection follows from 49 and STC ∩ U(M) 6= ∅. For

nonnestedness, see the examples following Corollary 2 of Duggan
(2007a).

54. Nonempty intersection follows from 53 and 59. For nonnestedness,
see the examples following Corollary 2 of Duggan (2007a).

55. Nonempty intersection follows from 53 and 60. For nonnestedness,
see the discussion after the definition of the untrapped set.

56. From Theorem 3 of Duggan (2007a) and surrounding discussion.
57. Nonempty intersection follows from MS∩U(M) 6= ∅ and 59. An ex-

ample after Theorem 1 of Duggan (2007a) shows that the uncaptured
set may be a proper subset of the strong top cycle, and therefore of
the mixed saddle. For the other inclusion, see Example 8 of Duggan
and Le Breton (1999), where MS ( X = U(M) = UC+.

58. Nonempty intersection follows from MS ∩ U(M) 6= ∅ and 60. It is
well-known that the uncovered set may be a proper subset of the
top cycle, which coincides with the mixed saddle. For the other
inclusion, see Example 8 of Duggan and Le Breton (1999), where
MS ( X = U(M) = U(D).

59. From Theorem 1 of Duggan (2007a) and surrounding discussion.
60. From Proposition 5.
61. Nonempty intersection follows from 59 and 60. For nonnestedness,

see the discussion after the definition of the uncaptured set.
62. From Theorem 1 of Duggan (2007a) and surrounding discussion.
63. From Proposition 15. It is well-known that in tournaments, the

uncovered set may be a proper subset of the top cycle.
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