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Abstract

I establish a folk theorem for a model of repeated elections with ad-
verse selection: when citizens are sufficiently patient, arbitrary policy
paths through arbitrarily large regions of the policy space can be sup-
ported by a refinement of perfect Bayesian equilibrium. Politicians are
policy-motivated (so office benefits cannot be used to incentivize policy
choices), the policy space is one-dimensional (limiting the dimensionality
of the set of utility imputations), and politicians’ preferences are private
information (so punishments cannot be targeted to a specific type). The
equilibrium construction relies critically on differentiability and strict con-
cavity of citizens’ utility functions. An extension of the arguments allows
policy paths to depend on the office holder’s type, subject to incentive
compatibility constraints.

1 Introduction

Dynamic models of elections have increasingly become an important focus of
political economy and formal political science. An advantage of these models
over static models is that they allow, in principle, the possibility of policy dy-
namics. They enable analysis of the interplay between dynamic incentives and
information on the part of voters and politicians, and they permit the analysis
of essentially dynamic issues such as incumbency advantage, the consequences
of term limits, and the effects of re-election incentives on policy choices. And
to the extent that equilibrium policies resemble the ideal policy of the median
voter, these models can provide non-cooperative underpinnings for the classical
median voter theorem. This paper considers a framework for repeated elec-
tions, analyzed in Duggan (2000), in which politicians’ preferences are private
information, and voters update their prior beliefs about an office holder’s type

∗This paper was presented at the Second Warwick Political Economy Conference in Venice,
2013. I am grateful for discussions with Paulo Barelli and Adam Meirowitz.

1



on the basis of her past policy choices; thus, the model is one of pure adverse
selection. In equilibrium, therefore, an office holder’s policy choice reflects her
short-term preference to implement desirable policy for the current period and
long-term considerations of the impact on her chances for re-election; and each
voter compares a relatively familiar incumbent with the prospect of an untried
challenger.

The subject of analysis has naturally been on equilibria that have a sta-
tionary structure: the policy choice of a politician is a constant function of her
type, and voters condition only on an office holder’s current policy choice. This
structure often implies that equilibria have a partitional form, with centrist
politicians choosing their ideal policies and being re-elected, extremist politi-
cians choosing their ideal policies and being removed from office, and moderate
politicians pooling at a policy close to the median in order to gain re-election.
The analysis of these equilibria reveals the possibility of incumbency advantage,
as voter risk aversion creates some scope for a centrist politician to gain re-
election by choosing a policy close (but not equal) to the median, and moderate
politicians compromise in order to gain re-election. Banks and Duggan (2008)
show that when citizens become arbitrarily patient, politicians almost always
compromise by choosing policies arbitrarily close to the median ideal policy,
delivering a version of the median voter theorem based on a model of dynamic
elections with private information. Adding a term limit, an office holder simply
chooses her ideal policy in her last term of office, and the partition in general
depends on the incumbent’s tenure in office. See Duggan (2000) and Banks and
Duggan (2008) for analysis of the model without term limits, and see Bernhardt
et al. (2004) for the model with term limits. Further applications include the
analysis of public goods with privately observed budget constraints (Meirowitz
(2007)), parties (Bernhardt et al. (2009)), valence (Bernhardt et al. (2011)), and
taxation (Camara (2012)).

Although the focus on stationary equilibria is a natural starting point, and
can be viewed as an identifying assumption to generate testable implications of
the model, it is important from a theoretical perspective to understand the re-
strictions on behavior implicit in this refinement. To this end, I formulate a more
permissive equilibrium concept, called “perfect Bayesian electoral equilibrium,”
that allows politicians and voters to condition on past policy and election out-
comes. I establish a folk theorem for the electoral model: when politicians and
voters are sufficiently patient, arbitrary paths through an arbitrarily large region
of the policy space can be supported as outcomes of perfect Bayesian electoral
equilibria. In fact, the theorem extends to support any incentive compatible as-
signment of policy paths to types. The results do not follow from extant results
on the folk theorem in the context of repeated games. For one reason, the game
is not a repeated game, as voters alternate moves with politicians, and the iden-
tity of the office holder may change over time. More importantly, a politician’s
type is private information, so voters and future politicians cannot condition
their choices on the current office holder’s type; thus, the equilibrium concept
must specify beliefs as well as strategies, and the appropriate concept should be
consistent with the spirit of perfect Bayesian equilibrium. In fact, among other
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things, the refinement I propose excludes the possibility of targeting individ-
ual voters for their votes, and it imposes a stage-game dominance condition on
voting strategies, so a voter votes for the incumbent if the expected discounted
payoff from re-electing the incumbent is at least equal to that from electing an
untried challenger.

Several more comments on the strength of this result are in order.

• I assume politicians are purely policy-motivated. This assumption means
that a politician cannot be punished simply by removing her from office,
and it significantly complicates the problem of incentivizing desired policy
choices.

• I assume the policy space is the unit interval. This assumption precludes
the use of punishments involving arbitrarily bad policy choices, and it
restricts the dimensionality of the space of payoff imputations and pre-
cludes the possibility of targeting punishments to particular office holder
types—even if the politicians’ types were observed.

• Reinforcing the latter remark, because voters cannot observe the type of
an office holder, punishment strategies in principle cannot be type-specific,
so they must “thread the needle” by responding to deviations in a way
that avoids rewarding one type while punishing another.

• Nevertheless, the folk theorem establishes that arbitrary policy paths can
be supported in a strong sense: in each period, all types of office holder
choose the same pre-specified policy.

• I do not exploit impatience of politicians by using an initial finite number
of periods to elicit an office holder’s type; instead, I construct equilibria
that generate arbitrary histories from the beginning of the game.

The equilibrium construction is delicate. For a policy path that takes a con-
stant value near one extreme of the policy space, the construction must induce
an office holder from the other side of the ideological spectrum to choose that
policy (which is arbitrarily close to the worst possible) over an infinite horizon.
And paths that are not constant are supported by punishments that “splice”
these extremal equilibria together and alternate between the two extremes with
appropriate frequency. The construction relies critically on differentiability of
utility functions to address the former issue, and on strict concavity of utilities
to address the second, in contrast to other folk theorem results that do not
require such fine structure.

The conclusion of the analysis is that the restriction to stationary equilib-
ria in existing work on models of repeated elections with adverse selection is
substantial. Without some limitation on the extent of conditioning on past
policy choices and electoral outcomes (or an a priori bound on the rate of dis-
count), almost any policy path is consistent with equilibrium, and the model
loses all predictive power. This is reminiscent of the cycling results of Plott
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(1967), McKelvey (1976, 1979), and Schofield (1978, 1983) in the multidimen-
sional model with an empty majority core, but the current analysis holds in
one dimension, and it is based on a non-cooperative equilibrium analysis that
explicitly addresses the strategic incentives of politicians and voters. Closest to
the current paper is Duggan and Fey (2006), who analyze repeated Downsian
elections, in which two office-motivated parties compete in an infinite sequence
of elections. In each period, the two parties simultaneously announce policy
platforms, and the winning party is bound to its promise. That paper considers
the general multidimensional model, and Theorem 1 of the paper establishes
that when voters are relatively patient (discount factors greater than one half),
every policy path can be generated by a subgame perfect equilibrium. Whereas
the latter result holds generally, Duggan and Fey’s (2006) Theorem 2 applies
when the majority core is nonempty and is perhaps most comparable to the
folk theorem of this paper: it establishes that when parties are relatively pa-
tient (and voters’ discount factors are positive), every policy path is generated
by a subgame perfect equilibrium.

Of course, folk theorems have been proved for abstract dynamic games.
Fudenberg and Maskin (1986) state the folk theorem for subgame perfect equi-
libria of discounted repeated games, and this is extended to repeated games
with imperfect public monitoring by Fudenberg et al. (1994). Because voters
and office holders alternate moves, however, the repeated elections model is not
the simple repetition of a fixed stage game. Wen (2002) proves a folk theorem
in repeated “sequential games,” which assumes that in each period, players play
an extensive form game such that players are partitioned into groups, groups
move sequentially, players within a group choose simultaneously, and their fea-
sible action sets are independent of others’ choices. The timing of moves in this
framework has some similarity to the electoral model, with an office holder first
choosing policy and then voters simultaneously casting ballots, but it differs in
the respect that the electoral model assumes a countably infinite set of candi-
dates, and the identity of the office holder can conceivably change every period.
Dutta (1995) establishes a folk theorem for stochastic games, which general-
ize sequential games, and Horner et al. (2011) and Fudenberg and Yamamoto
(2011) extend the result to games with imperfect public monitoriing, but again
this work assumes a finite number of players. In addition, the above papers
assume finite action sets, whereas the electoral model allows office holders to
choose from a convex policy space. More importantly, the above papers as-
sume that payoff functions are complete information, precluding the possibility
of adverse selection and the difficult problems it entails.1

As perfect Bayesian equilibria refine the standard concept of perfect Bayesian
equilibrium, it stands that voter beliefs are updated via Bayes rule along the
path of play, and the construction I describe in fact delivers more: even off the

1Chapter 5 of Aumann and Maschler (1995) considers infinitely repeated, two-player, finite-
action games in which player 1 has two possible types. Their Theorem 6.1 gives a partial char-
acterization of equilibrium payoffs under the assumptions that the informed player can make
a cheap talk announcement prior to the game, that the players can use correlated strategies
in stage games, and that deviations are evaluated according to the overtaking criterion.
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path of play from the initial history, voter beliefs about the type of a challenger
are given by a fixed, common prior, and voters apply Bayes rule separately
along the personal path of play of every office holder. And along the path of
play from the initial history, all politician types choose the same policy (which
may vary across periods), the first office holder is re-elected in every period, and
voters do not revise their beliefs. But I do exploit some flexibility in specifying
beliefs off the path of play: following an out of equilibrium policy choice, I
specify that voters believe that with probability one the politician is an extreme
type. An additional refinement that further restricts beliefs might preclude
the construction provided here and entail some limits on policies chosen in
equilibrium. I leave open the question of the effect of stronger refinements on
policies supported by equilibrium strategies and beliefs.

The model analyzed in this paper is one of pure adverse selection. An al-
ternative form of incomplete information is moral hazard, where voters do not
observe the action of an office holder but only some noisy signal of the action;
see Ferejohn (1986) for a model of pure moral hazard and Banks and Sundaram
(1993, 1998) for models that combine adverse selection and moral hazard. In
such a model, punishments are necessarily conditioned on the noisy signal and
equilibria take a much different form, and the possibilities for a folk theorem
result would appear limited. The characterization of all perfect Bayesian equi-
libria (or bounds on equilibria) in moral hazard models is one that deserves
attention in future research but is outside the scope of the current paper.

2 Electoral Model

Let X = [0, 1] denote the one-dimensional policy space, let N denote the set
of voters, and let M denote the countably infinite set of potential candidates.
It may be that M ⊆ N , in which case N must be infinite, but this assump-
tion is not needed for the analysis; in general, the electorate N may be finite,
countably infinite, or a continuum. The set M ∪ N of citizens is partitioned
into a finite set T of types, denoted τ0, τ1, . . . , τn. Let q = (q0, q1, . . . , qn) de-
note the proportions of types within the set of voters. Note that the policy
space is assumed to be compact, which precludes the possibility of equilibria
using punishment strategies that involve policy choices at arbitrarily large (and
increasing) distances from the center of the space.

The policy preferences of a type τ citizen are represented by a utility function
uτ : X → ℜ that is continuous and strictly concave with unique maximizer xτ ,
the ideal policy of the type τ citizen. Assume without loss of generality that ideal
policies are ordered by type indices, i.e., xτ0

≤ xτ1
≤ · · · ≤ xτn

. For simplicity,
assume that the extreme types are located at the extreme points of the policy
space and are uniquely defined by their ideal policies, i.e., 0 = xτ0

< xτ1
and

xτn−1
< xτn

= 1. Assume that the median voter type is not extremist, i.e.,
max{q0, qn} < 1

2 . Finally, assume that the utility functions of extreme types
are differentiable at their ideal policies, i.e., uτ0

is differentiable at x = 0 and
uτn

is differentiable at x = 1, and that the first order condition holds at these
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ideal policies, i.e., u′
τ0

(0) = u′
τn

(1) = 0.
Elections proceed as follows. Enumerating politicians as M = {c1, c2, . . .},

politician c1 holds a public office and selects a policy x1 ∈ X in the first period.
Each period t = 2, 3, . . . begins with an incumbent office holder, denoted it, and
this politician selects a policy. Voters observe the policy choice, and an election
is held between the incumbent and challenger ct in a majority rule election.
Voters simultaneously select ballots from {it, ct}, and if the proportion of voters
who vote for it is at least one half, then the incumbent wins the election and
becomes the incumbent in period t+1, i.e., it+1 = it. Otherwise, the challenger
wins the election and becomes the incumbent in period t + 1, i.e., it+1 = ct.

I assume that a politician’s type is private information and is not observed
by voters, whereas past policy choices are observable. Thus, the environment
is one of pure adverse selection, and in equilibrium voters must condition their
beliefs about an office holder’s type based on her past performance in office.
Assume that voters’ prior beliefs are that politician types are independently
and identically distributed according to the distribution p = (p0, . . . , pn). Thus,
in the period t election, when voters compare the incumbent it to the challenger
ct, they condition their beliefs about it on past policy choices, and they believe
ct is type τk with probability pk. Assume that the extreme politician types
are possible, i.e., min{p0, pn} > 0. Note that it may be that p 6= q, so the
distribution of politician types may differ from the distribution of types in the
electorate; and in particular, it may be that p0 + pn = 1, so that policies are
always chosen by extreme liberal or conservative politicians.

Let x = (x1, x2, . . .) ∈ [0, 1]∞ denote a path of policies over time. Assume
that citizens’ preferences over policy paths are given by the discounted sum of
utility,

∞∑

t=1

δt−1uτ (xt),

where δ ∈ [0, 1) is a common discount factor. Furthermore, assume these pref-
erences extend to distributions over policy paths via expected utility. Note that
politicians are purely policy-motivated and do not receive a benefit from holding
office, consistent with the citizen-candidate approach to elections (Osborne and
Slivinski (1996), Besley and Coate (1997)). The problem of supporting policy
paths in equilibrium with patient players would be much simpler if politicans’
preferences include a fixed, positive office benefit term, so the current paper
addresses the more difficult case of pure policy motivation.

A complete public history of length t describes the publicly observed events
in the first t periods, namely, the vote tallies from previous elections and the
policies selected by office holders. A partial public history of length t is a com-
plete history of length t − 1 together with the policy choice xt of the current
office holder. The initial history, denoted ∅, describes the electoral game at
the beginning of period 1. A policy strategy for politician ct is a mapping that
assigns a policy choice to every complete history of length t′ ≥ t+1 such that ct

is the office holder in period t′, i.e., ct = it+1 = · · · = it′ . A voting strategy for
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a voter assigns a ballot, it or ct, to every partial public history of length t.2 A
strategy profile, which specifies a policy strategy for every politician and a vot-
ing strategy for every voter, determines a distribution over finite (complete and
partial) public histories, and therefore over infinite policy paths, beginning at
the initial history. Because this is a dynamic game of incomplete information, a
description of strategically relevant details must include not only the strategies
used by all citizens but also a belief assessment that specifies the beliefs of all
citizens at each finite (complete or partial) history. Given such a belief assess-
ment and an arbitrary public history, a distribution over longer public histories,
and therefore over paths of policies in future periods, is determined. Note that
I consider only pure strategy equilibria in this paper.

The most permissive equilibrium concept consistent with dynamic incentives
of citizens is that of perfect Bayesian equilibrium. This is a specification of pol-
icy strategies, voting strategies, and a belief assessment for all citizens such that
(i) for every finite complete public history, the policy choice of the office holder
maximizes her expected discounted payoff, (ii) for every finite partial public his-
tory, the ballot of each voter maximizes her expected discounted payoff, and (iii)
for every finite (complete or partial) public history on the path of play from the
initial node, citizens’ beliefs are determined by Bayes rule given the policy strate-
gies used by office holders and the private information (if any) held by the citizen.

In fact, the proof of the folk theorem employs an equilibrium construction
that satisfies a number of additional refinements that preclude equilibrium be-
havior that appears especially untenable.

(a) outcome measurability: politicians and voters condition their actions only
on the history of previous policy choices and election winners.

(b) Bayesian independence: at a finite partial public history, voter beliefs
about an untried challenger are given by the prior, and voters update their
prior beliefs about an office holder’s type conditioning only on observed
policy choices of that politician.

(c) Bayesian consistency: at a finite partial public history that is off an office
holder’s personal path of play, and given voters’ beliefs at that history,
voters update these beliefs on the basis of future policy choices using
Bayes rule when possible.

(d) common beliefs: beliefs about an office holder’s type off her personal path
of play are the same for all voters.

(e) type symmetry: for every partial history, all voters of the same type cast
the same ballot.

(f) weak dominance: given a partial history at which the expected discounted
payoff of a voter from re-electing the incumbent is not equal to that from

2In case N is infinite, we generally must add the assumption of measurability, so that the
proportion of voter types casting a given ballot can be calculated. Since I will later restrict
attention to type-symmetric strategies, this technical issue is moot.
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electing an untried challenger, the voter votes for the candidate offering
the higher payoff.

(g) deferential voting: given a partial history at which the expected discounted
payoff of a voter from re-electing the incumbent equals that from electing
an untried challenger, the voter votes for the incumbent.

I refer to a perfect Bayesian equilibrium satisfying the above conditions as a
perfect Bayesian electoral equilibrium.

Some discussion of these restrictions may be warranted. I refer to the policy
choice and election winner in period t as the “electoral outcome” in the period,
and condition (a) requires that politicians and voters condition only on past elec-
toral outcomes. This means, in particular, that a single voter (or voter type)
cannot be targeted for punishments for voting the wrong way at some partial
history. Conditions (b) and (c) impose further restrictions on the specification
of voter beliefs off the equilibrium path from the initial history. Condition (b)
means that even at a history such that a deviation has occurred (either an out of
equilibrium policy choice or election winner), voters’ beliefs about a challenger
are always given by the prior. I term the policy choices that an office holder has
taken while in office the politician’s “personal history,” and if these choices are
consistent with the politician’s strategy for some type with positive prior prob-
ability in every period along the personal history, then it is on the politician’s
“personal path of play.” Condition (b) furthermore implies that once a politi-
cian is elected, voters condition their beliefs only on the politician’s personal
history when it is on her path of play. In particular, if an office holder chooses
a policy consistent with voter beliefs, and if voters’ strategies determine that
the incumbent is removed from office, but the incumbent is instead re-elected
(contrary to the specification of voting strategies), then voters still update their
beliefs about the office holder’s type according to Bayes rule. Condition (c)
means that at a personal history that is off an office holder’s personal path of
play, voter beliefs are thereafter updated via Bayes rule (if possible) from that
point on. In particular, once voter beliefs are specified at a partial history that
is off an office holder’s personal path of play, if the office holder is re-elected and
then chooses policy that is consistent with those beliefs, then voter beliefs are
updated via Bayes rule. Condition (d) is self-explanatory, and it reinforces con-
dition (e), which relies on the fact that in equilibrium, calculations of expected
payoffs are the same for voters of the same type. Condition (f) is a standard
restriction in voting games, requiring that each voter vote as though she were
pivotal in the election. When the electorate is finite, this can be formulated as
a stage-game dominance refinement, and it simply precludes implausible voting
behavior due to no one voter being pivotal. When the electorate is a continuum,
each voter has mass zero and can never affect the election, and (f) is a standard
condition imposed to generate plausible voting behavior. Finally, condition (g)
requires that all voters vote for the incumbent when indifferent, a condition that
typically arises from the common stationarity refinement used in the literature.
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3 Main Theorem

In this section, I establish a folk theorem for perfect Bayesian electoral equi-
libria. Because the proof is rather involved, I give a detailed and less formal
discussion of the approach following the statement of the theorem, deferring
the formal proof until later in the paper. Let x = (x1, x2, . . .) ∈ [0, 1]∞ de-
note a path of policies over time, and for future use, given policy a ∈ X , let
xa = (a, a, . . .) denote the path that is constant at a. Given discount factor
δ < 1, let P (δ) consist of every path that is supportable by a perfect Bayesian
electoral equilibrium, i.e., x belongs to P (δ) if and only if there is a perfect
Bayesian electoral equilibrium such that along the path of play from the initial
history, in every period t, all types of office holder choose policy xt.

Theorem: For all a, b ∈ X with 0 < a < b < 1, there exists δ < 1 such that

for all δ ∈ (δ, 1), we have [a, b]∞ ⊆ P (δ).

The proof of the theorem consists of four steps. Steps 1 and 2 exploit differ-
entiability to construct equilibria that support policy paths that are constant at
a policy a near zero and constant at a policy b near one; the steps are symmetric,
so I focus on the former. In Step 3, I define a “splicing” procedure that allows
me to construct equilibria that generate policy paths that alternate between a
and b with essentially arbitrary frequency. Then Step 4 exploits strict concavity
and uses these alternating equilibria to punish deviations from arbitrary policy
paths.

In Step 1, the path xa is supported using a punishment strategy that re-
places a deviating incumbent with an untried challenger and then generates a
policy path that depends on the newly elected office holder’s type: if she is type
τ 6= τ0, it generates a string of m choices of x = 0 followed by m choices of
x = xτ1

; and if she is type τ0, it generates a string of 2m choices of x = 0. Here,
m is a carefully chosen natural number that will be appropriately large, and as
such policy choices beyond 2m periods have a second-order effect. The problem
is to specify a and m so that office holders of all types are incentivized to choose
a along the path of play, rather than trigger the punishments. Punishing a de-
viation by moving to a centrally located policy would deter type τ0 politicians
from deviating, but it creates opportunities for manipulation by type τ 6= τ0

politicians, who could prefer the punishment to remaining at a. Punishments
that involve policies x = 0 must be used, but in a nuanced way that continues
to deter type τ0 politicians.

To gain some geometric insight into the problem, consider the politicians’
payoffs from a string of length m of policy x followed by a string of length m of
policy y, namely,

(1 − δ)[uτ (x) + · · · + δm−1uτ (x) + δmuτ (y) + · · · + δ2m−1uτ (y)]

= (1 − δm)uτ (x) + δm(1 − δm)uτ (y).
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Figure 1: Indifference curves over sequences

In Figure 1, I depict indifference curves over sequences

(x, x, . . . , x
︸ ︷︷ ︸

m periods

, y, y, . . . , y)
︸ ︷︷ ︸

m periods

,

with the horizontal axis representing x and the vertical representing y, for a
type τ0 citizen and a type τ 6= τ0 citizen. Note that the indifference curve of
the type τ0 citizen is flat at (0, xτ1

), reflecting the fact that u′
τ0

(0) = 0, and the
indifference curve of the type τ 6= τ0 has finite slope at (0, xτ1

), reflecting the
fact that u′

τ (0) > 0.
Given the above description of punishments, any deviation by an office holder

is followed by a lottery over strings

(0, 0, . . . , 0
︸ ︷︷ ︸

m periods

, xτ1
, xτ1

, . . . , xτ1
︸ ︷︷ ︸

m periods

) and (0, 0, . . . , 0
︸ ︷︷ ︸

m periods

, 0, 0, . . . , 0,
︸ ︷︷ ︸

m periods

)

with probability p0 on the latter and 1 − p0 on the former. These strings are
indicated in Figure 1, and the indifference curves corresponding to the expected
payoff from this punishment lottery are indicated by the heavy level sets in the
figure for type τ0 and type τ 6= τ0 politicians. To reconcile the incentives of
office holders, the policy a must belong to the lens formed by the indifference
curves of the type τ0 and all τ 6= τ0 politicians. In Figure 2, we see that for the
given setting of m, there is no policy a belonging to the lens of incentives that
is also within ǫ of zero.

Note that the marginal rate of substitution between policy in the first m
periods and in the next m periods is

(1 − δm)u′
τ (0)

δm(1 − δm)u′
τ (xτ1

)
=

u′
τ (0)

δmu′
τ (xτ1

)
.

Choosing m higher, so δm becomes smaller, citizens put greater weight on the
first m periods than the next m, making the indifference curves in Figure 1
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ǫ

Figure 2: Lens of incentives

steeper. The bulk of Step 1 consists of showing that when a is small, we can
choose δm in a critical range such that (a, a) is preferred to the punishment
lottery by all citizen types; geometrically, the lens of incentives intersects the 45
degree line sufficiently close to the origin, as depicted in Figure 3. Once this is
established, we can perform the construction for discount factors close to one:
when δ is close to one, we can choose m so that δm belongs to the critical range.
This entails that the punishment lottery is worse than the constant policy a for
2m periods for all types, and in addition we then specify that δ is close enough
to one that the potential gain from any one-shot deviation is more than offset
by the cost of entering the punishment phase.

The punishment strategy used in Step 1 is in fact somewhat more complex
than the simple description above, because we must specify policies beyond the
2m periods following a deviation, and because we must address the possibility of
deviations from the punishment strategies. Of particular importance, we must
ensure that voters have incentives to re-elect the incumbent if, m + 1 periods
following a deviation, she chooses x = 0. This choice reveals that the politician
is type τ0, and voters then update that the office holder will continue to choose
x = 0 in the next m− 1 periods if re-elected. The alternative is to elect a chal-
lenger and restart the punishment phase, but by construction of the punishment
strategies, the challenger, if elected, will also choose x = 0 for m periods, regard-
less of her type. A disadvantage of electing a challenger to a type τ 6= τ0 voter
is that with probability p0, the challenger is type τ0 and will choose x = 0 for an
additional m periods. The advantage of electing a challenger to such a voter is
that with probability 1− p0, the politician may choose preferable policies m+1
periods hence. Figure 4 depicts the distribution over policy paths following a
deviation. We specify that after the first 2m periods following a deviation, a
type τ 6= τ0 office holder choose x = xτ1

, while a type τ0 office holder alternately
choose x = xτ1

for k periods and x = 0 for one period. When k is large, there-
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Figure 3: Choosing a and δm

xτ1
, xτ1

, . . . , xτ1
︸ ︷︷ ︸

m periods

xτ1
, xτ1

, . . . , xτ1
︸ ︷︷ ︸

k + 1 periods

,

0, 0, . . . , 0
︸ ︷︷ ︸

m periods

0, 0, . . . , 0
︸ ︷︷ ︸

m periods

0, 0, . . . , 0
︸ ︷︷ ︸

m periods

xτ1
, . . . , xτ1

, 0
︸ ︷︷ ︸

k + 1 periods

, · · ·

· · ·

p0

1 − p0

Figure 4: Punishment paths

fore, the benefit of electing a challenger to a type τ 6= τ0 voter is outweighed by
the cost, and a majority of voters indeed prefer to re-elect the incumbent.

Step 3 provides a procedure for splicing equilibria that support the extreme
policies from Steps 1 and 2. For example, consider two equilibria supporting xa

and xb. To construct an equilibrium supporting the path (a, b, a, b, . . .), I specify,
roughly, that the equilibrium construction from Step 1 be applied to histories
consisting of odd periods, and that the construction from Step 2 be applied
to histories consisting of even periods. Thus, a deviation in an odd period t
is punished in future odd periods; and moreover, in future even periods, we
simulate punishments as though an analogous deviation had occurred in the
previous even period t− 1. If an office holder chooses x 6= a in period three, for
example, then play in future even periods proceeds as though she had chosen
x 6= b in period two, so the incumbent is removed from office, and we commence
with the punishments in Figure 4 in all future even and odd periods. This
means that the newly elected office holder chooses x = 0 for the next m odd
periods and x = 1 for the next m even periods. After that, play depends on the
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politician’s type: if she is type τ0, for example, then she chooses x = xτn−1
in all

subsequent even periods; and she chooses x = 0 in an additional m odd periods,
then alternately chooses x = xτ1

for k odd periods and x = 0 for one odd period.
Because punishments in odd periods now alternate with even periods, payoffs
in odd periods are now effectively discounted by δ2 (and similarly for payoffs
in even periods), so the construction requires a discount factor greater than
the cutoffs from Steps 1 and 2; if xa is supported for discount factors above δ′

and xb is supported for discount factors about δ′′, then the splicing procedure
requires a discount factor above

√

max{δ′, δ′′}. Further details related to the
transmission of information across odd and even periods arise as well. When an
office holder chooses x = xτ1

after m odd punishment periods, for example, she
reveals that she is not type τ0, and the updated probability that she is type τn

increases; this means that she is more likely to choose x = 1 for an additional
m even periods, and we must confirm that a majority of voters still have an
incentive to re-elect the incumbent. These details are straightforward and are
addressed in the proof.

With the splicing procedure defined, it can be used recursively to generate
policy paths that alternate between a and b at nearly arbitrary frequencies. For
example, we can splice equilibria supporting (a, a, a, a, . . .) and (a, b, a, b, . . .) to
produce a perfect Bayesian electoral equilibrium that supports policy choice a
with frequency .75.

a a a a a a a a . . .
a b a b a b a b . . .
a a a b a a a b . . .

And we can splice equilibria supporting a with frequency .5 and .75 to produce
an equilibrium supporting a with frequency .625.

a b a b a b a b a b a b a b a b . . .
a a a b a a a b a a a b a a a b . . .
a a a b a a b b a a a b a a b b . . .

Thus, using this logic, we can apply the splicing procedure a finite number of
times to approximate an arbitrary frequency to within any given level of pre-
cision. Each application imposes a higher cutoff for the discount factor, but
because only a finite number of iterations are required for a given level of preci-
sion, we can take the maximum required for each application of the procedure.

Step 4 uses the alternating equilibria from Step 3 to punish deviations from
arbitrary paths of policies. Choose policies a, b ∈ X as in the theorem. Then
use Steps 1 and 2 to choose a′ ∈ (0, a

2 ) and b′ ∈ ( b+1
2 , 1) such that for discount

factors sufficiently close to one, there exist perfect Bayesian electoral equilibria
supporting xa′

and xb′ . Consider any path x ∈ [a, b]∞ in the interval [a, b].
Note that for a type τ citizen, the discounted utility from the path starting in
period t + 1, i.e., (xt+1, xt+2, . . .), can be written as the integral

Eλt+1
[uτ (x)] =

∫

uτ (x)λt+1(dx) = (1 − δ)
∞∑

t′=t+1

δt′−t−1uτ (xt′)

13



with respect to a probability measure λt+1 on [a, b], where I normalize payoffs
by 1 − δ. In the space of utility imputations, depicted in Figure 5 for the case
of n = 1, λt+1 induces a probability measure on the thick portion of the utility
frontier, and the vector of expected utilities lies in the shaded region below the
frontier. Moreover, each x in the support of λt+1 can be written as a strict
convex combination of a′ and b′ with weight α(x) on a′ and 1 − α(x) on b′. By
strict concavity, the convex combination

α(x)uτ (a′) + (1 − α(x))uτ (b′)

is less than uτ (x) by an increment η > 0 that is uniform across x ∈ [a, b]. Thus,

Eλt+1
[uτ (x)] ≥

∫

[α(x)uτ (a′) + (1 − α(x))uτ (b′)]dλt+1

= Eλt+1
[α(x)]uτ (a′) + (1 − Eλt+1

[α(x)])uτ (b′) + η.

We can use the splicing procedure to approximate the weights Eλt+1
[α(x)] and

1 − Eλt+1
[α(x)] by k

2ℓ and 2ℓ−k
2ℓ so that the corresponding convex convex com-

bination is uniformly η
2 less than λt+1. Choosing δ sufficiently close to one,

the maximum gain (normalized by 1 − δ) from a one-shot deviation in period
t is less than δη

2(1−δ) , and it follows that we can specify punishment strategies

to deter any deviation in period t. Finally, the above discussion has fixed a
period t + 1 and the corresponding probability measure λt+1, but the set of
probability measures with support in [a, b] is compact in the weak* topology,

and the approximation k
2ℓ and 2ℓ−k

2ℓ holds for an open set around λt+1, so the
open covering generated by choice of k and ℓ must have a finite subcover. Thus,
we can choose δ sufficiently close to one such that for all t, Step 3 can be ap-
plied to specify an effective punishment strategy to deter a deviation in period
t, delivering the required perfect Bayesian electoral equilibrium.

4 Type-dependent Paths

In this section, I give an informal argument for a corollary of the above theorem
that extends the result to allow for policy paths to depend on the office holder’s
type. Let ξ: T → [0, 1]∞ be a path assignment that associates to each type τ a
path ξ(τ) = (ξ1(τ), ξ2(τ), . . .) of policies. Say the path assignment ξ is incentive

compatible if the path associated with any type is no worse for that type than
any other assigned path, i.e., for all τ and τ ′,

∞∑

t=1

δt−1uτ (ξt(τ)) ≥
∞∑

t=1

δt−1uτ (ξt(τ
′)).

Of course, if ξ is constant, so that the policy specified is independent of the
office holder’s type (the case considered in the theorem), then it is incentive
compatible. A path assignment ξ is supportable given δ < 1 if there is a perfect
Bayesian equilibrium such that along the path of play from the initial history,
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Eλt+1
[(uτ0

(x), uτ1
(x))]

Figure 5: Extreme punishments

in every period t, the type τ office holder chooses policy ξt(τ). Clearly, incentive
compatibility is necessary for supportability; the following corollary establishes
that when citizen’s are patient, it is essentially sufficient as well.

Corollary: For all a, b ∈ X with 0 < a < b < 1, there exists δ < 1 such that

for all δ ∈ (δ, 1) and all path assignments ξ with ξ(T ) ⊆ [a, b]∞, if ξ is incentive

compatible, then it is supportable given δ.

To establish the corollary, let ξ be an incentive compatible path assignment
such that for all τ , ξ(τ) ∈ [a, b]∞. To support this assignment, we specify that
after a public history of length t− 1 such that a type τ politician has held office
and chosen “correct” policies (x1, . . . , xt−1) = (ξ1(τ), . . . , ξt−1(τ)), the office
holder chooses xt = ξt(τ) and is re-elected. Punishments are as follows. If past
policy choices x1, . . . , xt−1 of an office holder are consistent with ξ, i.e., the set

T (x1, . . . , xt−1|ξ) = {τ ∈ T | (ξ1(τ), . . . , ξt−1(τ)) = (x1, . . . , xt−1)}

is nonempty, but is xt is not consistent with these choices, then select any
τ̃ ∈ T (x1, . . . , xt−1|ξ), and use the punishments constructed in the proof of the
theorem for a deviation from ξt(τ̃ ). If xt is consistent with ξ but the office
holder is not re-elected, then given that voter beliefs may not place probability
one on the office holder’s true type, i.e., T (x1, . . . , xt−1, xt|ξ) may not be single-
ton, we must specify punishments in a more nuanced way. Let p(x1, . . . , xt|ξ)
represent the voters’ posterior beliefs about the office holder’s type, so that if
the incumbent is re-elected, then a type τ voter’s expected discounted utility is

∑

τ ′

pτ ′(x1, . . . , xt|ξ)
∞∑

t′=t+1

δt′−t−1uτ (ξt′(τ
′)),
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which is the expected utility with respect to a particular lottery λ(x1, . . . , xt|ξ).
By the arguments of Step 4, we may specify that if the incumbent is not re-
elected, then punishment strategies alternate between a′ and b′ at a frequency
that yields a lower discounted utility for all voter types.

Choosing δ sufficiently close to one to offset the one-period gains from
any deviation, the above punishment strategies support the path assignment
ξ. In particular, consider the optimization problem of a type τ office holder
in period t, assuming that she has chosen the correct policies (x1, . . . , xt−1) =
(ξ1(τ), . . . , ξt−1(τ)) in all previous periods. The strategies above specify that she
choose xt = ξt(τ) in period t and continue to follow the path ξt+1(τ), ξt+2(τ), . . .
thereafter. I claim that the politician cannot gain from deviating to the poli-
cies assigned to some other type τ ′ ∈ T (x1, . . . , xt−1|ξ). Indeed, consider any
τ ′ ∈ T (x1, . . . , xt−1|ξ), and let ξ(τ) = (x1, x2, . . .) and ξ(τ ′) = (x′

1, x
′
2, . . .) de-

note the policies assigned to types τ and τ ′. Note that

∞∑

t′=t

δt′−tuτ (xt′) ≥
∞∑

t′=t

δt′−tuτ (x′
t′ )

holds, in light of the fact that (x′
1, . . . , x

′
t−1) = (x1, . . . , xt−1), if and only if

∞∑

t′=1

δt′−tuτ (xt′ ) ≥
∞∑

t′=1

δt′−tuτ (x′
t′),

which holds by incentive compatibility, establishing the claim. Moreover, it can-
not be profitable to follow the policies assigned to τ ′ ∈ T (x1, . . . , xt−1|ξ) and
deviate at a later point t′, as the punishment for deviating from ξt′(τ

′) is worse
than following ξ(τ ′) for all types. Recall that if the office holder deviates to a
policy x′

t that is inconsistent with ξ, then the strategies above invoke punish-
ments for deviating from the policies of an arbitrary type τ̃ ∈ T (x1, . . . , xt−1|ξ).
Since it is not profitable to follow the policies assigned to τ̃ , and since the pun-
ishment for deviating from ξt(τ̃ ) is worse than following ξ(τ̃ ) for all types, it
cannot be profitable to deviate to policies that are inconsistent with ξ. We
conclude that the office holder’s expected discounted utility is maximized by
following the path assignment.

5 Proof of Theorem

The proof proceeds in four steps.

Step 1: For all ǫ > 0, there exist a ∈ (0, ǫ) and δ̂ ∈ (0, 1) such that for all

δ ∈ (δ̂, 1), we have xa ∈ P (δ).

Fix ǫ > 0. I begin by choosing parameters a, δ, β ∈ (0, 1) with a < ǫ and
a natural number k ≥ 1 to satisfy three inequalities that are critical for the
equilibrium construction, namely (5)–(7), below. Following these choices, I will
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specify δ̂ to satisfy three further inequalities, namely (12)–(14). First, choose k
sufficiently large that for all τ 6= τ0, we have

2(1 − p0)

[

uτ (xτ1
) −

kuτ (xτ1
) + uτ (0)

k + 1

]

< p0

[
kuτ(xτ1

) + uτ (0)

k + 1
− uτ (0)

]

. (1)

For each τ , define

Wτ =
1

1 − δk+1
[(1 − δk)uτ (xτ1

) + δk(1 − δ)uτ (0)],

which implicitly depends on k and δ. This is the discounted utility (normalized
by 1 − δ) of alternating sequences of x = xτ1

for k periods and x = 0 for one
period. Note that by l’Hospital’s rule, we have for all τ ,

lim
δ↑1

Wτ =
kuτ (xτ1

) + uτ (0)

k + 1
, (2)

and in addition that

lim
β↓0

(1 − p0)β(1 − β)

(1 − p0)β + p0β2
= 1. (3)

Using (1)–(3), there exists β ∈ (0, 1) such that for all β ∈ (0, β), we have

(1 − p0)β(1 − β)

1 + p0(β − β2) − β
>

1

2
·

(1 − p0)β + p0β
2

1 + p0(β − β2) − β
, (4)

and such that there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1) and all β ∈ (0, β),
we have for all τ 6= τ0,

(1 − p0)[β(1 − β)(uτ (xτ1
) − Wτ ) + β(uτ (xτ1

) − Wτ )]

< p0β(1 − β)(Wτ − uτ (0)). (5)

Inequality (4) is used in the selection of a, below, and (5) is used to give voters
proper incentives in the equilibrium construction.

Given δ ∈ (δ, 1) and β ∈ (0, β), the next inequality is used to address
incentives of type τ0 office holders along the path of play:

(1 − δ)(uτ0
(0) − uτ0

(a))

≤ δ

[

p0[(1 − β2)(uτ0
(a) − uτ0

(0)) + β2(uτ0
(a) − Wτ0

)] (6)

+(1 − p0)[(1 − β)(uτ0
(a) − uτ0

(0)) + β(uτ0
(a) − uτ0

(xτ1
))]

]

.
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The following inequality addresses incentives for type τ 6= τ0 office holders along
the path of play: for all τ 6= τ0,

(1 − δ)∆

≤ δ

[

p0[(1 − β2)(uτ (a) − uτ (0)) + β2(uτ (a) − Wτ )] (7)

+(1 − p0)[(1 − β)(uτ (a) − uτ (0)) + β(uτ (a) − uτ (xτ1
))

]

,

where ∆ = maxτ,x,y[uτ (x) − uτ (y)]. To see that inequalities (6) and (7) are
compatible for some δ ∈ (δ, 1) and some β ∈ (0, β) and for sufficiently small
a ∈ (0, ǫ), define

Aτ = uτ (a) − uτ (0)

A∗
τ = uτ (xτ1

) − uτ (a),

where the latter two quantities implicitly depend on a. It will be convenient
to define A = minτ 6=τ0

Aτ and A∗ = maxτ 6=τ0
A∗

τ . Of course, A → 0 and
A∗ → maxτ 6=τ0

[uτ (xτ1
) − uτ (0)] > 0 as a → 0. Assuming without loss of

generality that a < xτ1
, the right-hand side of (6) is positive if

(1 − p0)β

1 + p0(β − β2) − β
>

uτ0
(0) − uτ0

(a)

uτ0
(a) − uτ0

(xτ1
)
, (8)

and using uτ (xτ1
) ≥ Wτ , the right-hand side of (7) is positive if for all τ 6= τ0,

uτ (a) − uτ (0)

uτ (xτ1
) − uτ (a)

>
(1 − p0)β + p0β

2

1 + p0(β − β2) − β
. (9)

Note that

lim
a↓0

(
uτ0

(0) − uτ0
(a)

uτ0
(a) − uτ0

(xτ1
)

)(
A∗

A

)

≤ lim
a↓0

(
uτ0

(0)−uτ0
(a)

a

uτ0
(a) − uτ0

(xτ1
)

)(

maxτ 6=τ0
uτ (xτ1

) − uτ (a)

minτ 6=τ0

uτ (a)−uτ (0)
a

)

=
u′

τ0
(0)

uτ0
(0) − uτ0

(xτ1
)

(
maxτ 6=τ0

uτ (xτ1
) − uτ (0)

minτ 6=τ0
u′

τ (0)

)

= 0.

Therefore, we can choose a ∈ (0, ǫ) and β ∈ (0, β) such that

(1 − p0)β

1 + p0(β − β2) − β
>

uτ0
(0) − uτ0

(a)

uτ0
(a) − uτ0

(xτ1
)

>
1

2
·

(1 − p0)β

1 + p0(β − β2) − β
, (10)

automatically fulfilling (8), and such that

uτ0
(0) − uτ0

(a)

uτ0
(a) − uτ0

(xτ1
)

<
1

4
·

uτ (a) − uτ (0)

uτ (xτ1
) − uτ (a)

. (11)
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Combining (10) and (11) and using (4), we have

uτ (a) − uτ (0)

uτ (xτ1
) − uτ (a)

> 4

(
uτ0

(0) − uτ0
(a)

uτ0
(a) − uτ0

(xτ1
)

)

> 2

(
(1 − p0)β(1 − β)

1 + p0(β − β2) − β

)

>
(1 − p0)β + p0β

2

1 + p0(β − β2) − β
,

fulfilling (9), as required. It follows that for these choices of a and β, the right-
hand sides of (6) and (7) are positive, and we can therefore choose δ ∈ (δ, 1)
sufficiently close to one to satisfy (6) and (7).

Fixing a as above, note that there is some latitude in the choice of β, as
(8) and (9) involve strict inequalities. Next, I exploit this flexibility to choose

δ̂ close to one as in the statement of Step 1. Let β1, β2 ∈ (0, β) be such that
β1 < β2 and for all β ∈ [β1, β2], inequalities (8) and (9) hold. Then choose

δ̂ ∈ (δ, 1) sufficiently high that for all δ ∈ (δ̂, 1) and all β ∈ [β1, β2], inequalities
(6) and (7) hold, and so that we have for all τ 6= τ0,

(1 − δ)∆ < δp0[β(1 − β)(uτ (xτ1
) − uτ (0)) + β2(uτ (xτ1

) − Wτ )] (12)

(1 − δ)∆ < δp0(uτ (xτ1
) − Wτ ) (13)

(1 − δ)∆ < δ(1 − p0)(Wτ0
− uτ0

(xτ1
)), (14)

and so that δ̂β2 > β1. Inequalities (12) and (13) are used to address incentives
of type τ 6= τ0 office holders, and (14) to address type τ0 office holders, in

the punishment phases. Using the inequality δ̂β2 > β1, I claim that for each
δ > δ̂, there exists a natural number m such that δm ∈ (β1, β2). Indeed, we
have δ > β1 by assumption, and δm < β for sufficiently high m. The claim
holds with m = 1 if δ < β2. Otherwise, δ ≥ β2, and we can let m − 1 be the
smallest natural number such that δm−1 ≥ β2. Then we have δm < β2 and
δm = δδm−1 ≥ δβ2 > β1, i.e., δm ∈ (β1, β2), as claimed.

Next, given discount factor δ > δ̂, I specify strategies and beliefs that sup-
port the constant path xa = (a, a, . . .). Note that by the preceding argument, we
can choose m so that (6) and (7) are satisfied by specifying β = δm ∈ (β1, β2).
In the construction, I assume that voter beliefs about an untried challenger are
given by the prior p, and that beliefs along an office holder’s personal path of
play are derived from Bayesian updating, and that off the politician’s personal
path of play, voters believe that with probability one the incumbent is type
τ0. Strategies and beliefs are specified by assigning each history to one of five
phases below, three of which are parameterized by a natural number j, and one
of those is partitioned into three sub-phases, depending on voter beliefs. Phases
2–4 are used to punish deviations along the path of play, which takes place in
Phase 1, and Phase 5 is used to punish deviations in the punishment phases.

Phase 1 All types of office holder choose x = a. If the incumbent chooses
x = a, then all voters’ beliefs are given by the prior p, and all voters vote
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for the incumbent; and if the incumbent chooses x 6= a, then all voters
believe that with probability one the incumbent is type τ0, and all type
τ ≥ τ1 voters vote for the challenger, and type τ0 voters vote for the
incumbent.

Phase 2(j) All types of office holder choose x = 0. If the incumbent chooses
x = 0, then all voters’ beliefs are given by the prior p, and all type τ ≥ τ1

voters vote for the incumbent and type τ0 voters vote for the challenger;
and if the incumbent chooses x 6= 0, then all voters believe that with
probability one the incumbent is type τ0, and all type τ ≥ τ1 voters vote
for the challenger, and type τ0 voters vote for the incumbent.

Phase 3(j) The type τ0 office holder chooses x = 0, and all type τ 6= τ0 office
holders choose x = xτ1

. If the incumbent chooses x = 0, then all voters
believe that with probability one the incumbent is type τ0, and all type
τ ≥ τ1 voters vote for the incumbent, and type τ0 voters vote for the
challenger; if x = xτ1

, then all voters’ beliefs are given by p̂, the updated
prior conditional on the politician’s type being not equal to τ0; and all
type τ ≥ τ1 voters vote for the incumbent, and type τ0 voters vote for the
challenger; and otherwise, if x /∈ {0, xτ1

}, then all voters believe that with
probability one the incumbent is type τ0, and all type τ ≥ τ1 voters vote
for the challenger, and type τ0 voters vote for the incumbent.

Phase 4.0(j) Type τ0 office holders choose x = xτ1
if j ∈ {1, . . . , k} and x = 0

if j = k + 1, and type τ 6= τ0 office holders choose x = xτ1
for all j =

1, . . . , k + 1. All voters believe that with probability one the incumbent is
type τ0. If j ∈ {1, . . . , k} and the incumbent chooses x = xτ1

, or if j = k+1
and x ∈ {0, xτ1

}, then all type τ ≥ τ1 voters vote for the incumbent, and
type τ0 voters vote for the challenger; and otherwise, type τ ≥ τ1 voters
vote for the challenger, and type τ0 voters vote for the incumbent.

Phase 4.1 Type τ 6= τ0 office holders choose x = xτ1
and type τ0 office holders

choose x = 0. If the incumbent chooses x = xτ1
, then all voters’ beliefs are

given by p̂, the updated prior conditional on the politician’s type being
not equal to τ0, and all type τ ≥ τ1 voters vote for the incumbent and
type τ0 voters vote for the challenger; and otherwise, if x 6= xτ1

, then all
voters believe that with probability one the incumbent is type τ0, and all
type τ ≥ τ1 voters vote for the challenger, and type τ0 voters vote for the
incumbent.

Phase 4.2 Type τ 6= τ0 office holders choose x = xτ1
and type τ0 office holders

choose x = 0. If the incumbent chooses x = xτ1
, then all voters’ beliefs are

given by p̂, the updated prior conditional on the politician’s type being
not equal to τ0, and all type τ ≥ τ1 voters vote for the incumbent and
type τ0 voters vote for the challenger; and if the incumbent chooses x = 0,
then all voters believe that with probability one the politician is type τ0,
and all type τ ≥ τ1 voters vote for the incumbent and type τ0 voters vote
for the challenger; and if the incumbent chooses x /∈ {0, xτ1

}, then voters
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believe that with probability one the politician is type τ0, all type τ ≥ τ1

voters vote for the challenger, and type τ0 voters vote for the incumbent.

Phase 5 All types of office holder choose their ideal policies. All voters believe
that with probability one the incumbent is type τ0, and all type τ ≥ τ1

voters vote for the challenger, and all type τ0 voters vote for the incumbent.

The specification is completed by assigning the initial history ∅ to Phase 1,
and by defining the rule for transitioning between the phases.

• In Phase 1, if the office holder chooses x = a, then remain in Phase 1; if
the office holder chooses x 6= a and is re-elected, then move to Phase 5;
and if the office holder chooses x 6= a and is not re-elected, then move to
Phase 2(1).

• In Phase 2(j), if the office holder chooses x = 0 and is re-elected, or if
x 6= 0 and the incumbent is not re-elected, then move to Phase 2(j + 1) if
j < m and to Phase 3(1) if j = m; if the office holder chooses x = 0 and
is not re-elected, then move to Phase 2(1); and if the office holder chooses
x 6= 0 and is re-elected, then move to Phase 5.

• In Phase 3(j), if the office holder chooses x = 0 and is re-elected, then move
to Phase 3(j+1) if j < m and to Phase 4.0(1) if j = m; if the office holder
chooses x = xτ1

and is re-elected, then move to Phase 3(j + 1) if j < m
and to Phase 4.1 if j = m; if the office holder chooses x /∈ {0, xτ1

} and is
re-elected, then move to Phase 5; if the office holder chooses x ∈ {0, xτ1

}
and is not re-elected, then move to Phase 2(1); and if the office holder
chooses x /∈ {0, xτ1

} and is not re-elected, then move to Phase 4.2.

• In Phase 4.0(j), first suppose the incumbent is re-elected. If j ∈ {1, . . . , k}
and the incumbent chooses x = xτ1

, then move to Phase 4.0(j + 1); if
j ∈ {1, . . . , k} and the incumbent chooses x 6= xτ1

, then move to Phase 5;
if j = k + 1 and x ∈ {0, xτ1

}, then move to Phase 4.0(1); and if j = k + 1
and x /∈ {0, xτ1

}, then move to Phase 5. Supposing the incumbent is
not re-elected, if j ∈ {1, . . . , k} and the incumbent chooses x = xτ1

, or if
j = k +1 and x = {0, xτ1

}, then move to Phase 2(1); and otherwise, move
to Phase 4.2.

• In Phase 4.1, if the office holder chooses x = xτ1
and is re-elected, then

remain in Phase 4.1; if the office holder chooses x 6= xτ1
and is re-elected,

then move to Phase 5; if the office holder chooses x = xτ1
and is not re-

elected, then move to Phase 2(1); and if the office holder chooses x 6= xτ1

and is not re-elected, then move to Phase 4.2.

• In Phase 4.2, if the office holder chooses x = 0 and is re-elected, then move
to Phase 4.0(1); if the office holder chooses x = xτ1

and is re-elected, then
move to Phase 4.1; if the office holder chooses x /∈ {0, xτ1

} and is re-
elected, then move to Phase 5; if the office holder chooses x ∈ {0, xτ1

} and
is not re-elected, then move to Phase 2(1); and if the office holder chooses
x /∈ {0, xτ1

} and is not re-elected, then remain in Phase 4.2.
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• In Phase 5, if the office holder is re-elected, then remain in Phase 5; and
otherwise, if the incumbent is not re-elected, then move to Phase 2(1).

This assignment of histories to phases entails a specification of strategies and
beliefs. In order to verify that they form a perfect Bayesian equilibrium, I
will focus on the most critical best response conditions, addressing the more
straightforward conditions with less formal arguments. I do not consider the
votes of type τ0 voters, as they do not affect electoral outcomes.

It is useful to describe the paths of play at the beginning of Phases 1–5.
Of course, the path of play beginning in Phase 1 is simply policy choice a and
re-election, ad infinitum. Beginning in Phase 2(1), policy x = 0 is chosen for m
periods and the incumbent is re-elected. Beginning in Phase 3(1), if the office
holder is type τ0, then she chooses x = 0 and is re-elected for m periods; and
otherwise, if the office holder is type τ 6= τ0, she chooses xτ1

and is re-elected
for m periods. We then move to Phase 4.0 or 4.1, depending on whether the
office holder is type τ0 or τ 6= τ0. In the latter case, the office holder chooses
x = xτ1

and is re-elected ad infinitum; and in the former case, the office holder
alternately chooses x = xτ1

for k periods and x = 0 for one period, and is
re-elected ad infinitum.

Next, I calculate the (normalized) continuation value of each citizen type at
the beginning of Phase 2(1) after electing an untried challenger:

Vτ = p0[(1 − δ2m)uτ (0) + δ2mWτ ] + (1 − p0)[(1 − δm)uτ (0) + δmuτ (xτ1
)].

This reflects the fact that with probability p0 the office holder is type τ0 and
chooses x = 0 for 2m periods and then alternately chooses x = xτ1

for k periods
and x = 0 for one period; and with probability 1 − p0 the office holder is type
τ 6= τ0 and chooses x = 0 for m periods and chooses x = xτ1

thereafter. I
employ the one-shot deviation principle to confirm that no office holders of any
type can gain by deviating, and that all voter types (in particular, types τ ≥ τ1

in Phases 2 and 3) vote as though pivotal.
Phase 1: First, consider the choice of a type τ0 office holder. Following

the above strategy, the politician chooses x = a and is continually re-elected.
Following any deviation, the politician is removed from office, so the best one-
shot deviation is to choose x = 0 and to receive Vτ0

in expectation after that.
The one-shot deviation is unprofitable if

uτ0
(a) ≥ (1 − δ)uτ0

(0) + δVτ0
,

or equivalently,

(1 − δ)(uτ0
(0) − uτ0

(a))

≤ δ

[

p0[(1 − δ2m)(uτ0
(a) − uτ0

(0)) + δ2m(uτ0
(a) − Wτ0

)]

+(1 − p0)[(1 − δm)(uτ0
(a) − uτ0

(0)) + δm(uτ0
(a) − uτ0

(xτ1
))]

]

,

22



which after substituting β = δm is equivalent to (6). Next, consider a type
τ 6= τ0 office holder. The best one-shot deviation is to choose x = xτ followed
by Vτ . The one-shot deviation is unprofitable if

uτ (a) ≥ (1 − δ)uτ (xτ ) + δVτ ,

which is implied by

(1 − δ)∆ ≤ δ

[

p0[(1 − δ2m)(uτ (a) − uτ (0)) + δ2m(uτ (a) − Wτ )]

+(1 − p0)[(1 − δm)(uτ (a) − uτ (0)) + δm(uτ (a) − uτ (xτ1
))]

]

.

which after substituting β = δm is equivalent to (7). Now consider a voter of any
type. In case the incumbent chooses x = a, if the incumbent is re-elected, then
she will continue to choose a and be re-elected. If a challenger is elected, then
we remain in Phase 1, and the newly elected office holder continues to choose
a. Thus, all voters are indifferent between the incumbent and a challenger, and
voting for the incumbent is consistent with being pivotal. In case the incumbent
chooses x 6= a, then all voters believe that with probability one the politician
is type τ0. If the incumbent is re-elected, then we move to Phase 5, and voters
expect that the office holder will choose x = xτ0

= 0, and then an untried
challenger is elected, and we move to Phase 2(1). If the challenger is elected,
then we move directly to Phase 2(1). Thus, the expected discounted payoff
from electing a challenger exceeds that from re-electing the incumbent for a
type τ ≥ τ1 voter if

Vτ ≥ (1 − δ)uτ (0) + δVτ ,

which indeed holds.
Phase 2(j): First, consider the choice of a type τ0 office holder. Following the

above strategy, the politician chooses x = 0 and is re-elected for m− j periods,
after which we move to Phase 3(1) and she chooses x = 0 for m more periods,
after which we move to Phase 4.0(1) and she alternately chooses x = xτ1

for
k periods and x = 0 for one period. Following any deviation, the politician is
removed from office, we continue to Phase 2(j + 1) if j < m or to Phase 3(1) if
j = m, and clearly the office holder receives a higher payoff by choosing her ideal
policy and avoiding the election of a type τ 6= τ0 challenger. Next, consider the
choice of a type τ 6= τ0 office holder. Following the above strategy, the politician
chooses x = 0 and is re-elected for m − j periods, and then chooses x = xτ1

and is continually re-elected. The best one-shot deviation is to choose x = xτ ,
after which the politician is removed from office, and we move to Phase 2(j +1)
or 3(1) with a new office holder. The incentives to deviate are maximal when
j = 1, as then the cost of deviating is realized with probability p0 after m − 1
periods. The one-shot deviation is unprofitable if

(1 − δ)uτ (0) + δ

[

(1 − δm−1)uτ (0) + δm−1uτ (xτ1
)

]
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≥ (1 − δ)uτ (xτ ) + δ

[

p0[(1 − δ2m−1)uτ (0) + δ2m−1Wτ ]

+(1 − p0)[(1 − δm−1)uτ (0) + δm−1uτ (xτ1
)]

]

,

which is implied by

(1 − δ)∆ ≤ δp0

[

δm−1(1 − δm)(uτ (xτ1
) − uτ (0)) + δ2m−1(uτ (xτ1

) − Wτ )

]

,

which after substituting β = δm is implied by (12).
Now consider a type τ ≥ τ1 voter. In case the incumbent chooses x = 0,

then the voters’ beliefs about the incumbent’s type are given by the prior p. If
the incumbent is re-elected, then she will choose x = 0 for m− 1 more periods,
and we move to Phase 3(1). If the challenger is elected, then we move back to
Phase 2(1). Thus, the expected discounted payoff to the type τ ≥ τ1 voter from
re-electing the incumbent is greater than from electing a challenger. In case the
incumbent chooses x 6= 0, then the voters believe that with probability one the
politician is type τ0. If the incumbent is re-elected, then we move to Phase 5,
and she chooses x = 0, is removed from office, and we move to Phase 2(1). If the
challenger is elected, then we remain in Phase 2 for m−1 more periods, and we
move to Phase 3(1). Thus, the expected discounted payoff of electing the chal-
lenger is greater for the type τ 6= τ0 voter than that of re-electing the incumbent.

Phase 3(j): First, consider the choice of a type τ0 office holder. Following the
above strategy, the politician chooses x = 0 and is re-elected for m−j more peri-
ods, after which we move to Phase 4.0(1) and she alternately chooses x = xτ1

for
k periods and x = 0 for one period. Following any deviation x′ /∈ {0, xτ1

}, the
politician is removed from office, and we move to Phase 4.2, where a challenger
is elected and chooses policy. If the newly elected office holder is type τ0, then
she chooses x = 0, and we move to Phase 4.0(1); and if she is type τ 6= τ0, then
she chooses x = xτ1

, and we move to Phase 4.1. The gains from the one-shot de-
viation are highest when j = m, and the deviation is unprofitable in this case if

Wτ0
> p0[(1 − δ)uτ0

(0) + δWτ0
] + (1 − p0)uτ0

(xτ1
),

which is implied by

(1 − δ)uτ0
(xτ1

) + δWτ0
> (1 − δ)uτ0

(0) + δ[p0Wτ0
+ (1 − p0)uτ0

(xτ1
)],

which is implied by (14). Following the deviation x′ = xτ1
, the office holder is

re-elected, and we move to Phase 3(j + 1) if j < m and to Phase 4.1 if j = m.
In the latter case, the office holder then chooses x = 0, is removed from office,
and we move to Phase 4.2, where a type τ 6= τ0 challenger always leads to
Phase 4.1, and a type τ0 leads to Phase 4.0(1). The office holder’s expected
discounted payoff is greater following the initial strategy and choosing her ideal
policy x = 0 before entering Phase 4.0(1). In the former case, after moving to
Phase 3(j + 1), the office holder continues to choose x = 0 for m − j periods
before moving to Phase 4.0(1), and she does not gain from the deviation.
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Next, consider a type τ 6= τ0 office holder. Following the above strategy, the
politician chooses x = xτ1

and is re-elected for m− j more periods, after which
we move to Phase 4.1, and she continues to choose x = xτ1

and be re-elected.
The best one-shot deviation is to choose x = xτ , after which the politician
is removed from office, and we move to Phase 4.2. The one-shot deviation is
unprofitable if

uτ (xτ1
) > (1 − δ)uτ (xτ ) + δ

[

p0[(1 − δ)uτ (0) + δWτ ] + (1 − p0)uτ (xτ1
)

]

,

which is implied by

uτ (xτ1
) > (1 − δ)uτ (xτ ) + δ

[

p0Wτ + (1 − p0)uτ (xτ1
)

]

,

which is implied by (13).
Now consider a type τ ≥ τ1 voter. In case the office holder chooses x = xτ1

,
then the voters’ posterior puts probability zero on type τ0. If the incumbent
is re-elected, then we move either to Phase 3(j + 1) or to Phase 4.1, and the
politician continues to choose x = xτ1

and be re-elected. If the incumbent is
removed from office, then we move to Phase 2(1), leading to a lower expected
discounted payoff.3 In case the office holder chooses x = 0, then the voters’
believe that with probability one the incumbent is type τ0. If the incumbent
is re-elected, then we move either to Phase 3(j + 1) or to Phase 4.0(1). If
the incumbent is removed from office, then we move to Phase 2(1). Thus, the
expected discounted payoff from re-electing the incumbent exceeds that from
electing the challenger for a type τ 6= τ0 voter if

(1 − δm−j)uτ (0) + δm−jWτ > Vτ . (15)

This inequality is most restrictive when j = 1, in which case it is implied by (5)
after substituting β = δm.4 In case the office holder chooses x 6= xτ1

, then all
voters believe that with probability one the incumbent is type τ0. If the incum-
bent is re-elected, then we move to Phase 5, she chooses x = 0, is removed from
office, and we move to Phase 2(1). If the challenger is elected, then we move
to Phase 4.2, and if the newly elected office holder is type τ0, then she chooses
x = 0, and we move to Phase 4.0(1); and if she is type τ 6= τ0, then she chooses
x = xτ1

, and we move to Phase 4.1. Since re-electing the incumbent leads to
policy x = 0 in the subsequent period, whereas the election of a challenger leads
to x ∈ {0, xτ1

}, it suffices to compare the stream of payoffs beginning two peri-
ods hence. The expected discounted payoff from electing the challenger exceeds

3For this argument, it is not crucial that voter beliefs are given by the posterior p̂ condi-
tional on the office holder’s type belonging to {τ1, . . . , τn}. What is required is merely that
beliefs put probability zero on τ0.

4Note that (5) is actually sufficient for the stronger conclusion with j = 0, so that the voter’s
payoff would decrease even if the incumbent were removed immediately prior to choosing x = 0
in Phase 3(1) and we moved instead directly to Phase 2(1).

25



that from re-electing the incumbent for a type τ ≥ τ1 voter if

p0Wτ + (1 − p0)uτ (xτ1
) > (1 − δm)uτ (0) + δm

[

p0[(1 − δm)uτ (0) + δmWτ ]

+(1 − p0)[uτ (xτ1
)]

]

,

where we use the fact that in Phase 2(1), all types of office holder choose x = 0
for the first m periods. The above inequality holds if

Wτ > (1 − δ)uτ (0) + δ

[

p0[(1 − δm)uτ (0) + δmWτ ]

+(1 − p0)uτ (xτ1
)

]

,

which is implied by setting j = 1 and deleting the first m − 1 realizations of
x = 0 from both sides of (15).

Phase 4.0(j): First, consider the choice of a type τ0 office holder. Following
the above strategy, the politician alternately chooses x = xτ1

for k periods and
x = 0 for one period and is continually re-elected. The gains from deviating are
highest when j = 1, and the best one-shot deviation is to choose x′ = 0, after
which the incumbent is replaced by a challenger and we move to Phase 4.2. The
one-shot deviation is unprofitable if

Wτ0
> (1 − δ)uτ0

(0) + δ[p0Wτ0
+ (1 − p0)uτ0

(xτ1
)],

which is implied by

(1 − δ)uτ0
(xτ1

) + δWτ0
> (1 − δ)uτ0

(0) + δ[p0Wτ0
+ (1 − p0)uτ0

(xτ1
)],

which is implied by (14). Next, consider a type τ 6= τ0 office holder. Following
the above strategy, the politician chooses x = xτ1

and is re-elected in every
period. The gains from deviating are the same as in Phase 3, and it follows
from (13) and the above arguments that one-shot deviations are unprofitable.

Now consider a type τ ≥ τ1 voter. All voters believe that with probability
one the incumbent is type τ0. In case j ∈ {1, . . . , k} and the incumbent chooses
x = xτ1

, or in case j = k + 1 and x ∈ {0, xτ1
}, if the incumbent is re-elected,

then we remain in Phase 4.0, and the office holder alternately chooses x = xτ1

for k periods and x = 0 for one period. If the incumbent is removed from office,
then we move to Phase 2(1). The expected discounted payoff from re-electing
the incumbent is greater than in Phase 3(1), whereas the expected discounted
payoff from electing the challenger is the same as in Phase 3(1), so (5) and the
arguments above imply that voting for the incumbent is consistent with the voter
being pivotal. In the complementary case, if the incumbent is re-elected, then
we move to Phase 5, the office holder chooses x = 0 and is removed from office,
and we move to Phase 2(1). If the challenger is elected, then we move to Phase
4.2, where the new office holder chooses x = 0 and we move to Phase 4.0(1) if
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she is type τ0, and she chooses x = xτ1
ad infinitum otherwise. The expected

discounted payoff from electing the challenger exceeds that from re-electing the
incumbent, because we have

p0[(1 − δ)uτ (0) + δWτ ] + (1 − p0)uτ (xτ1
)

> (1 − δ)uτ (0) + δWτ

> p0[(1 − δ2m)uτ (0) + δ2mWτ ]

+(1 − p0)[(1 − δm)uτ (0) + δmuτ (xτ1
),

where the second inequality above follows by setting j = m − 1 in (15).
Phase 4.1: First, consider the choice of a type τ0 office holder. Following

the above strategy, the politician chooses x = 0, is removed from office, and
we move to Phase 4.2. Deviating to x′ /∈ {0, xτ1

} again leads to election of a
challenger and Phase 4.2, so this cannot be profitable. If the politician deviates
to x′ = xτ1

, then she is re-elected and we remain in Phase 4.1, she then chooses
x = 0, is removed from office, and we move to Phase 4.2. The office holder’s
expected discounted payoff is higher following the initial strategy and obtain-
ing her ideal policy immediately before moving to Phase 4.2. Next, consider a
type τ 6= τ0 office holder. Following the above strategy, the politician chooses
x = xτ1

and is re-elected in every period. The gains from deviating are the same
as in Phase 3, and it follows from (13) and the above arguments that one-shot
deviations are unprofitable.

Now consider a type τ ≥ τ0 voter. In case the incumbent chooses x = xτ1
,

then all voters’ beliefs are given by p̂. If the incumbent is re-elected, then she
continues to choose x = xτ1

and be re-elected. If the incumbent is removed from
office, then we move to Phase 2(1). The expected discounted payoff from re-
electing the incumbent exceeds that from electing a challenger if uτ (xτ1

) > Vτ ,
which is implied by (15). In case the incumbent chooses x 6= xτ1

, then all voters
believe that with probability one the incumbent is type τ0. If the incumbent is
re-elected, then we move to Phase 5, she chooses x = 0 and is removed from
office, and we move to Phase 4.2. If the challenger is elected, then we move to
Phase 4.2. Thus, the expected discounted payoff from electing the challenger
exceeds that from re-electing the incumbent.

Phase 4.2: First, consider the choice of a type τ0 office holder. Following
the above strategy, the politician chooses x = 0, is re-elected, and we move to
Phase 4.0(1), where she alternately chooses x = xτ1

for k periods and x = 0 for
one period. If the politician deviates to x = xτ1

, then she is re-elected, we move
to Phase 4.1, she then chooses x = 0 and is removed from office, and we move
to Phase 4.2. The one-shot deviation is unprofitable if

(1 − δ)uτ0
(0) + δWτ0

> (1 − δ)uτ0
(xτ1

) + (1 − δ)δuτ0
(0)

+δ2

[

p0[(1 − δ)uτ0
(0) + δWτ0

] + (1 − p0)uτ0
(xτ1

)

]

,

which is implied by

(1 − δ)uτ0
(0) + (1 − δ)δuτ0

(xτ1
) + δ2Wτ0
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> (1 − δ)uτ0
(xτ1

) + (1 − δ)δuτ0
(0)

+δ2

[

p0[(1 − δ)uτ0
(0) + δWτ0

] + (1 − p0)uτ0
(xτ1

)

]

,

which is implied by

Wτ0
> p0[(1 − δ)uτ0

(0) + δWτ0
] + (1 − p0)uτ0

(xτ1
),

and finally, following arguments in Phase 3, this is implied by implied by (14).
Phase 5: Since the incumbent is always removed from office, it is optimal for

office holder’s of all types to choose their ideal policies. Now consider a type τ ≥
τ1 voter. All voters believe that with probability one the incumbent is type τ0.
If the incumbent is re-elected, then we remain in Phase 5, the politician chooses
x = 0, is removed from office, and we move to Phase 2(1). If the challenger is
elected, then we move directly to Phase 2(1). Thus, the expected discounted
payoff from electing the challenger exceeds that from re-electing the incumbent.

To conclude, for all ǫ > 0, we can choose a ∈ (0, ǫ), natural number k, and

δ̂ ∈ (0, 1) such that for all δ ∈ (δ̂, 1), there exists m such that (5)–(7) and (12)–
(14) are satisfied by a, δ, and β = δm. Given these parameters, I have specified
strategies and beliefs such that the policy a is chosen along the path of play by
all types of office holder, voter beliefs satisfy Bayes rule along each office holder’s
personal path of play, and no politician has a profitable one-shot deviation, and
such that all voter types vote as though pivotal. This completes Step 1.

An argument symmetric to that for Step 1 yields the next step of the proof.

Step 2: For all ǫ > 0, there exist b ∈ (1 − ǫ, 1) and δ̂ ∈ (0, 1) such that for

all δ ∈ (δ̂, 1), we have xb ∈ P (δ).

Given the argument of Step 1, I do not provide the (redundant) details of
Step 2. But it will be important to note that a and b can be chosen close enough
to zero and one, respectively, to allow the same choice of k and m in both steps.
To be more explicit, choose k such that for all τ 6= τ0, (1) holds, and such that
for all τ 6= τn, the corresponding inequality for Step 2 holds. Choose β such
that for all β ∈ (0, β), (4) and the corresponding inequality for Step 2 hold, and
such that there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1) and all β ∈ (0, β),
we have (5) for all τ 6= τ0 and the corresponding inequality for Step 2 for all
τ 6= τn. Furthermore, define

Bτ = uτ (b) − uτ (1)

B∗
τ = uτ (xτn−1

) − uτ (b)

B = min
τ 6=τn

Bτ

B∗ = max
τ 6=τn

B∗
τ ,

and note that by the arguments in Step 1, we have

lim
b↑0

(
uτn

(1) − uτn
(b)

uτn
(b) − uτn

(xτn−1
)

)(
B∗

B

)

= 0.
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Thus, we can choose a ∈ (0, ǫ), b ∈ (1 − ǫ, 1), and β ∈ (0, β) such that (10)
and (11) hold, along with the corresponding inequalities for Step 2. Then the

arguments in Step 1 allow us to specify δ̂ ∈ (δ, 1) so that for all δ ∈ (δ̂, 1), there
exists m such that (12)–(14) hold, along with the corresponding inequalities for
Step 2. This permits the equilibrium construction from Step 1 to be applied in
Step 2 with the same choice of k and m.

Next, I define a procedure for splicing the equilibria from Steps 1 and 2
to produce a path of policies that alternates between a and b, and I use the
construction recursively to generate paths that cycle between the alternatives
to approximate any empirical frequency.

Step 3: For all ǫ > 0, there exist a ∈ (0, ǫ) and b ∈ (1 − ǫ, 1) such that for

all natural numbers ℓ and all k with k = 0, 1, . . . , 2ℓ, there exists δ̃ ∈ (0, 1) such

that for all δ ∈ (δ̃, 1), there exists x ∈ P (δ) such that in consecutive runs of 2ℓ

periods, the path x visits a for k periods and b for 2ℓ − k periods, i.e., for all

m = 0, 1, 2, . . .,

#
{
t | m2ℓ + 1 ≤ t ≤ (m + 1)2ℓ and xt = a

}
= k

#
{
t | m2ℓ + 1 ≤ t ≤ (m + 1)2ℓ and xt = b

}
= 2ℓ − k.

The proof is by induction. Fix ǫ > 0. By Step 1, there exist a ∈ (0, ǫ)
and δ′ < 1 such that for all δ ∈ (δ′, 1), we have xa ∈ P (δ). Similarly, by Step
2, there exist b ∈ (1 − ǫ, 1) and δ′′ < 1 such that for all δ ∈ (δ′′, 1), we have
xb ∈ P (δ). For the basis step, consider ℓ = 1. For k = 0 and k = 2, the
desired result follows from Steps 2 and 1, respectively. Consider k = 1, so either
x = (a, b, a, b, . . .) or x = (b, a, b, a, . . .). I focus on the former case without loss
of generality. Set δ̃ =

√

max{δ′, δ′′}, choose δ ∈ (δ′, 1), and define strategies
and beliefs by “splicing” the specifications in Steps 1 and 2. That is, we specify
actions and beliefs according to the equilibrium from Step 1 in odd periods and
using the equilibrium from Step 2 in even periods.

To be more precise, we begin in Phase 1 in both odd and even periods,
so that the path of play from the initial history is the sequence (a, b, a, b, . . .).
Following any deviation in an odd period t, for example, we specify that the
transition between phases in subsequent odd periods follow the protocol from
Step 1 (applied to odd periods). And we specify that the phase in subsequent
even periods follow the same transition, so that the phase in each odd period
t′ > t and the next even period t′ + 1 are synchronized, with the exception that
when entering Phase 4.0 in an odd period, we enter Phase 4.1 in the next even
period, and when entering Phase 4.1 in an odd period, we enter Phase 4.0 in
the next even period. Policy and voting choices are given by the strategies from
Steps 1 and 2, although now we must take care in specifying voter beliefs when
we enter Phase 5 and when information is revealed in Phases 3(1) and 4.2. First,
note that Phase 5 is entered only off a politician’s personal path of play and
only when she is re-elected, so that voter beliefs may be specified arbitrarily.
Let x ∈ {0, 1} be the policy that is weakly preferred among {0, 1} by a majority
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of voters, and let x ∈ {0, 1} be the remaining policy, so that

∑{
qj | uτj

(x) ≥ uτj
(x)
}

≥
1

2
.

Thus, by concavity, the policy x is the worst possible policy for a majority of
voters. Let τ ∈ {τ0, τn} be the type such that xτ = x. In Phase 5, whether
in an odd or even period, we specify that voters believe with probability one
that the office holder is type τ . This ensures that a majority of voters prefer to
replace the incumbent with a challenger, as dictated in Steps 1 and 2.

Second, after entering Phase 3(1) in an odd period t, if the office holder
chooses x = 0, then voters believe that with probability one the office holder is
type τ0, and if she is re-elected, then we move to Phase 3(1) in the following
even period t+1. As noted in footnote 2, the information revealed by this choice
does not affect the incentives of type τ 6= τn voters to re-elect the incumbent
prior to period t + 1. If the office holder chooses x = xτ1

, then voters beliefs
are given by the posterior p̂ conditional on the office holder’s type belonging
to {τ1, . . . , τn}, and if she is re-elected, then we move to Phase 3(1) in the
following even period. As noted in footnote 3, this revelation of information
does not affect the incentives voters to re-elect the incumbent. If the office
holder chooses x /∈ {0, xτ1

}, then voters believe she is type τ , and if she is
re-elected, then we move to Phase 5; thus, the office holder will be removed
from office, as required. Supposing the incumbent is re-elected in period t,
voter beliefs are updated in period t + 1 and phases transition as follows. If
voter beliefs are that the incumbent is type τ0 and she chooses x = xτn−1

, then
beliefs are unchanged, and if she is re-elected, then we move to Phase 3(2) in
the following odd period; again footnote 3 implies that the incumbent will be
re-elected. If voter beliefs are that the incumbent is type τ0 and she chooses
x 6= xτn−1

, then voters believe she is type τ , and if she is re-elected, then we
move to Phase 5, and she is removed from office. If voter beliefs are p̂ and
she chooses x = xτn−1

, then voter beliefs are given by the posterior conditional
on the office holder’s type belonging to {τ1, . . . , τn−1}, and if she is re-elected,
then we move to Phase 3(2) in the next odd period t + 2. If voter beliefs are p̂
and she chooses x = 1, then voters believe that with probability one the office
holder is type τn, and if she is re-elected, then we move to Phase 3(2); again
footnote 2 implies that the incumbent will be re-elected. And if the office holder
chooses x /∈ {xτn−1

, 1}, then voters believe she is type τ , and we move to Phase
5. Supposing the incumbent is re-elected in t + 1, voter beliefs are again given
by Bayes rule, with deviations punished by Phase 5.

Third, after entering Phase 4.2 in an odd period t, if the office holder chooses
x = 0, then voters believe that with probability one the office holder is type τ0,
and if she is re-elected, then we move to Phase 4.1 in the following even period
period. If the office holder chooses x = xτ1

, then voter beliefs are given by p̂,
and if she is re-elected, then we move to Phase 4.2 in the following even period.
Supposing the incumbent is re-elected in period t, voter beliefs are updated in
period t + 1 and phases transition as follows. In Phase 4.1, voters believe that
the office holder is type τ0. If she chooses x = xτn−1

, then beliefs are unchanged,
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and if she is re-elected, then we move to Phase 4.0(1) in the next period. If she
chooses x 6= xτn−1

, then voters believe she is type τ , and if she is re-elected,
then we move to Phase 5. In Phase 4.2, voters’ beliefs about the office holder’s
type are given by p̂. If the office holder chooses chooses x = 1, then voters
believe that with probability one the office holder is type τn, and if she is re-
elected, then we move to Phase 4.1. If the office holder chooses x = xτn−1

, then
beliefs are given by the posterior conditional on the politician’s type belonging
to {τ1, . . . , τn−1}, and if she is re-elected, then we move to Phase 4.1. And if
the office holder chooses x /∈ {xτn−1

, 1}, then voters believe she is type τ , and if
she is re-elected, then we move to Phase 5. Because removal of the incumbent
following her specified choice of policy leads to Phase 2(1) in the next odd and
even periods, a majority of voters prefer to re-elect the incumbent, as dictated
in Steps 1 and 2. Supposing the incumbent is re-elected in t + 1, voter beliefs
are again updated via Bayes rule.

In effect, this splicing of strategies punishes a deviation in an odd period
t by following the punishments from Step 1 in all future odd periods, and by
following Step 2 in all future even periods, simulating punishments as though an
analogous deviation had occurred in the previous even period t − 1. A similar
construction is used following a deviation in an even period. This establishes
a perfect Bayesian electoral equilibrium with path of play (a, b, a, b, . . .) and
provides a splicing procedure that can be iterated generally.

For the induction step, assume the claim is true for ℓ − 1, choose any k =
0, 1, . . . , 2ℓ, and write k = k′ + k′′, where k′, k′′ ≤ 2ℓ−1. By the induction
hypothesis, there exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1), there exists
y ∈ P (δ) such that for all m = 0, 1, 2, . . .,

#
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1 and yt = a

}
= k′

#
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1 and yt = b

}
= 2ℓ − k′.

And there exists δ′′ ∈ (0, 1) such that for all δ ∈ (δ′′, 1), there exists z ∈ P (δ)
such that for all m = 0, 1, 2, . . .,

#
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1 and zt = a

}
= k′′

#
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1 and zt = b

}
= 2ℓ − k′′.

We then set δ̃ =
√

max{δ′, δ′′}, and for every δ > δ̃, we splice the equilibria
supporting paths x and y according to the above procedure. This yields a
perfect Bayesian electoral equilibrium that generates the path x = (x1, x2, . . .) =
(y1, z1, y2, z2, . . .) from the initial history. Formally, we define x by

xt =

{

y t+1

2

if t is odd,

z t
2

if t is even.

Then for all m = 0, 1, 2, . . ., we have

#
{
t | m2ℓ + 1 ≤ t ≤ (m + 1)2ℓ and xt = a

}
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= #
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1, t odd, and yt = a

}

+#
{
t | m2ℓ−1 + 1 ≤ t ≤ (m + 1)2ℓ−1, t even, and zt = a

}

= k′ + k′′

= k,

where the first equality follows by noting that when t (odd) ranges from m2ℓ +1
to (m + 1)2ℓ − 1, the ratio t+1

2 ranges from m2ℓ−1 + 1 to (m + 1)2ℓ−1, and
similarly, when t (even) ranges from m2ℓ + 2 to (m + 1)2ℓ, the ratio t

2 ranges
from m2ℓ−1 + 1 to (m + 1)2ℓ−1. This establishes the desired perfect Bayesian
equilibrium.

The final step of the proof uses the equilibria from Step 3 to punish devi-
ations from arbitrary paths through a region of the policy space that becomes
arbitrarily large as citizens become patient.

Step 4: For all a, b ∈ X, with 0 < a < b < 1, there exists δ ∈ (0, 1) such

that for all δ ∈ (δ, 1), we have [a, b]∞ ⊆ P (δ).

Consider a, b ∈ X with 0 < a < b < 1. Fix ǫ = 1
2 min{a, 1 − b}, and let

a′ ∈ (0, ǫ) and b′ ∈ (1 − ǫ, 1) be as in Step 3. For each x ∈ [a, b], we can write
x = α(x)a′ + (1 − α(x))b′, where

α(x) =
b′ − x

b′ − a′
,

and then we have

0 <
b′ − b

b′ − a′
≤ α(x) ≤

b′ − a

b′ − a′
< 1.

Since each uτ is strictly concave, it follows that for all x ∈ [a, b], we have
uτ (x) > α(x)uτ (a′) + (1 − α(x))uτ (b′). More generally, let Λ denote the set of
probability measures λ with support contained in [a, b], and note that for all
λ ∈ Λ, we have

∫

uτ (x)λ(dx) >

∫

[α(x)uτ (a′) + (1 − α(x))uτ (b′)]λ(dx)

= α(E[λ])uτ (a′) + (1 − α(E[λ]))uτ (b′).

Therefore, since uτ is continuous and Λ is compact in the weak* topology, we
have

min
λ∈Λ

[∫

uτ (x)λ(dx) − α(E[λ])uτ (a′) − (1 − α(E[λ]))uτ (b′)

]

≡ η > 0.

For all λ ∈ Λ, we can approximate α(E[λ]) by k
2ℓ through choice of the natural

numbers ℓ and k = 0, 1, . . . , 2ℓ. Thus, there exist k and ℓ such that
∫

uτ (x)λ(dx) >

(
k

2ℓ

)

uτ (a′) +

(

1 −
k

2ℓ

)

uτ (b′) +
η

2
. (16)
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Define Λk,ℓ as the set of probability measures λ such that (16) holds. It
follows that {Λk,ℓ}k,ℓ is an open covering of Λ, and since the latter set is compact,
it possesses a finite subcover. Let F be a finite set of (k, ℓ) pairs, with ℓ a natural
number and k ∈ {0, 1, 2, . . . , 2ℓ}, such that Λ ⊆

⋃

(k,ℓ)∈F Λk,ℓ. By repeated

application of Step 3, we can choose δ̃ ∈ (0, 1) such that for all δ ∈ (δ̃, 1) and
all (k, ℓ) ∈ F , there exists xk,ℓ ∈ P (δ) such that for all m = 0, 1, 2, . . .,

#
{
t | m2ℓ + 1 ≤ t ≤ (m + 1)2ℓ and xt = a′

}
= k

#
{
t | m2ℓ + 1 ≤ t ≤ (m + 1)2ℓ and xt = b′

}
= 2ℓ − k.

Given any pair (k, ℓ), discount factor δ < 1, and type τ , the discounted sum of
utility from xk,ℓ, denoted Uk,ℓ

τ , satisfies

Uk,ℓ
τ =

2ℓ

∑

t=1

δt−1[Ia′(xk,ℓ
t )uτ (a′) + Ib′(x

k,ℓ
t )uτ (b′)] + δ2ℓ

Uk,ℓ
τ ,

and therefore, after normalizing by (1 − δ), we have

(1 − δ)Uk,ℓ
τ =

1 − δ

1 − δ2ℓ

2ℓ

∑

t=1

δt−1[Ia′ (xk,ℓ
t )uτ (a′) + Ib′ (x

k,ℓ
t )uτ (b′)],

where Ia′ and Ib′ are the indicator functions for a′ and b′. Taking the limit as
δ goes to one and applying l’Hospital’s rule, we have

lim
δ↑1

(1 − δ)Uk,ℓ
τ =

1

2ℓ

2ℓ

∑

t=1

[Ia′(xk,ℓ
t )uτ (a′) + Ib′(x

k,ℓ
t )uτ (b′)]

=

(
k

2ℓ

)

uτ (a′) +

(

1 −
k

2ℓ

)

uτ (b′).

Now let Λδ consist of all probability measures λ ∈ Λ such that for some
(k, ℓ) ∈ F , we have

∫

uτ (x)λ(dx) > (1 − δ)Uk,ℓ
τ +

η

4
. (17)

Since Λ ⊆
⋃

(k,ℓ)∈F Λk,ℓ and (1−δ)Uk,ℓ
τ →

(
k
2ℓ

)
uτ (a′)+

(
1 − k

2ℓ

)
uτ (b′), it follows

from (16) that for each λ ∈ Λ, we have λ ∈ Λδ for δ sufficiently close to one. That
is, {Λδ | δ ∈ (0, 1)} is an open covering of Λ. Again, since Λ is compact, this col-
lection possesses a finite subcover, indexed by a finite set D ⊆ (0, 1). Therefore,
setting δ′ = max D < 1, it follows that for all δ ∈ (δ′, 1) and all λ ∈ Λ, there
exists (k, ℓ) ∈ F such that (17) holds. Furthermore, choose δ ∈ (δ′, 1) such that

∆ ≤

(
δ

1 − δ

)(η

4

)

. (18)
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Finally, consider any δ ∈ (δ, 1) and any x ∈ [a, b]∞. I specify a perfect
Bayesian equilibrium that generates x from the initial history. Note that for each
t, we can write the discounted utility of a type τ citizen from (xt, xt+1, xt+2, . . .)
as the integral with respect to a probability measure λt, i.e.,

∞∑

t′=t

δt′−tuτ (xt′) =
1

1 − δ

∫

uτ (x)λ(dx), (19)

where λt is defined by

λt(Y ) = (1 − δ)
∑

t′:xt′∈Y

δt′−t

for all measurable Y ⊆ [0, 1]. In period t of Phase 0, all types of office holder
choose xt, and for all policy choices, voters’ beliefs are given by the prior p,
and all voter types vote to re-elect the incumbent. In Phase t, for t = 1, 2, . . .,
let (k, ℓ) ∈ F satisfy (17) with λ = λt+1, and use Step 4 to specify strategies
and beliefs so that they form a perfect Bayesian equilibrium that generates the
path xk,ℓ beginning in period t + 1, i.e., the path beginning in period t + 1 is
(xk,ℓ

1 , xk,ℓ
2 , . . .). The initial history is labelled Phase 0, and in period t of Phase

0, if it is not the case that the office holder chooses xt and is re-elected, then
transition to the punishment Phase t + 1 in the next period t + 1.

To verify that this specification constitutes a perfect Bayesian electoral equi-
librium, note that the discounted payoff to a type τ citizen from a one-shot
deviation in period t of Phase 0 is bounded above by maxx∈X uτ (x) + δUk,ℓ

τ .
Furthermore,

max
x∈X

uτ (x) + δUk,ℓ
τ

≤ min
x∈X

uτ (x) +

(
δ

1 − δ

)(η

4

)

+ δUk,ℓ
τ

= min
x∈X

uτ (x) +
δ

1 − δ

[η

4
+ (1 − δ)Uk,ℓ

τ

]

< min
x∈X

uτ (x) +
δ

1 − δ

∫

uτ (x)λt+1(dx)

≤
1

1 − δ

∞∑

t′=t

δt′−tuτ (xt′ ),

where the inequalities follow from (18), (17), and (19), respectively. Therefore,
one-shot deviations are unprofitable, and we conclude that there exists a perfect
Bayesian equilibrium that generates the path x from the initial history.

6 Conclusion

When citizens are sufficiently patient, arbitrary policy paths through arbitrarily
large regions of the policy space can be generated as the result of equilibrium
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play. Interestingly, Duggan and Fey (2006) conclude as a result of their anal-
ysis of repeated Downsian elections that the background assumptions of the
Downsian model must be re-examined.

As in the electoral accountability approach, alternatives [to the Down-
sian model] may involve policy motivations for candidates, drop-
ping the commitment assumption (as in the literature on citizen-
candidates), allowing for imperfect information about voter prefer-
ences (as in the literature on probabilistic voting), or some combi-
nation of these directions. (p.56)

The current paper has combined two of the three alternatives listed above, with
the finding that the indeterminacy of equilibrium policy paths continues to
hold—even when politician types are private information. Because voters only
remove the incumbent when they have a strict preference for a challenger, and
because they are indifferent only when all types of office holder are expected to
choose the same policies, the folk theorem result would persist if the model were
modified so that in each period, the distribution of ideal policies in the electorate
were subject to small idiosyncratic shocks. (This could be modeled by adding
noise to the distribution q each period, or by perturbing the ideal policy xτ for
each voter type.) Thus, it appears that the indeterminacy is fundamental.

As mentioned in the Introduction, the addition of moral hazard to the model
would significantly alter the equilibrium analysis and limit the scope for pun-
ishment of politicians, so this modeling approach may yet entail substantial re-
strictions on equilibrium behavior. In lieu of this, or another departure from the
pure adverse selection framework, the application of dynamic electoral models
will rely on equilibrium refinements (e.g., the common restriction to stationary
equilibria) beyond the concept of perfect Bayesian electoral equilibrium consid-
ered in this paper.
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