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Abstract

Computation of exact equilibrium values for n-player divide-the-dollar legislative bargaining
games as in Baron and Ferejohn (1989) with general quota voting rules, recognition probabili-
ties, and discount factors, can be achieved by solving at most n bivariate square linear systems
of equations. The approach recovers Eraslan’s (2002) uniqueness result and relies on a charac-
terization of equilibria in terms of two variables that satisfy a pair of piecewise linear equations.
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1 Introduction

The bargaining model of Baron and Ferejohn (1989) is now a leading framework for the study
of legislative decision making. They model the process through which a legislature divides a fixed
surplus among its members as a sequential bargaining problem as introduced by Rubinstein (1982).
Whereas Rubinstein (1982) assumes players alternate offering proposals, Baron and Ferejohn (1989)
assume random recognition of proposers as in Binmore (1987). The legislator recognized in each
period offers a proposal and if a majority of the legislators vote to approve it, then the division
is implemented and the game ends; otherwise, interaction continues in the next period with a
new round of proposal-making and voting. Variants of this model have been used in numerous
applications ranging from bicameralism, executive-legislative relations, government and coalition
formation, legislative organization, voting and proposal power, etc., and the framework has been
extended and generalized in several directions.1

While much of the literature spawned by this work has been theoretical in nature, the goal
of this paper is to address a more practical problem, namely that of computation of equilibrium. I
pursue this question motivated by the belief that computation of equilibrium can prove instrumental
for more applied studies aimed at confronting data (observational or experimental). I consider a

∗Thanks to Hulya Eraslan for helpful comments. I am solely responsible for all errors.
†Department of Political Science and Economics, University of Rochester. E-mail: kalandrakis@rochester.edu.
1Papers using the divide-the-dollar framework alone include Ansolabehere, Snyder and Ting (2003); Diermeier and

Myerson (1999); Diermeier and Feddersen (1998); Kalandrakis (2004, 2006b); McCarty (2000a,b); Montero (2006);
Okada (1996); Ray (2007); Snyder, Ting and Ansolabehere (2005); Winter (1996). This is a partial list, and Baron
and Ferejohn (1989) has been cited over 1, 750 times according to Google scholar. A recent more complete literature
review can be found in Eraslan and McLennan (2013).
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divide-the-dollar model more general than that originally studied by Baron and Ferejohn, with
general quota voting rules, discount factors, and recognition probabilities, admitting the same level
of generality as found in Eraslan (2002). This setting is a reasonable starting point to address
the computational complexity of bargaining games, given the nascent state of literature specific to
computation for this class of games. It is well known that subgame perfect Nash equilibrium admits
a severe form of indeterminacy of equilibrium behavior (e.g., Baron and Ferejohn (1989)) and, as
is standard in this literature, I focus instead on subgame perfect Nash equilibria in stationary
strategies. I establish a surprisingly positive result: for any legislature of size n computation
of exact stationary equilibrium values, that is, legislators’ expected payoffs at the beginning of
each period, can be achieved by solving at most n bivariate square linear systems of equations,
corresponding to the pieces of linearity of a piecewise linear system. Thus, ignoring the cost of
evaluating the coefficients of each bivariate system of equations,2 this problem can be solved at
cost that is linear in the size of the legislature. Considerable speed-up is achieved when candidate
solutions are prioritized according to a (modified) Newton’s method, and in numerical experiments
with legislatures of size up to n = 100, 000, a solution is obtained in no more than four iterations
and a tenth of a second on a desktop machine.

As is well known, the computation of Nash equilibria is generally considered a hard prob-
lem.3 There are at least two reasons to expect similar complexity in the bargaining setting studied
in this paper. The primary source of concern is the combinatorial explosion in the number of
possible optimal (minimum winning) coalitions as the size of the legislature increases, and the
concomitant increase in the potential support of proposer mixed strategies. A second and re-
lated issue is that equilibrium conditions in this model are not well posed: non-degenerate mixed
strategy equilibria are typically consistent with a continuum of equilibrium strategy profiles. The
work of Eraslan (2002) partly offsets this latter concern by establishing that equilibrium values are
unique. Taking a cue from this uniqueness result, I focus on the computation of equilibrium values
and completely avoid the computation of probabilities with which proposers mix among optimal
coalitions. Key to the efficiency of the approach is a characterization of equilibrium values as a
function of two summary statistics of the equilibrium: the marginal reservation value, that is, the
largest reservation value in the least costly coalition; and the maximum proposer surplus extracted
from the least costly coalition. These two quantities fully determine equilibrium values (Lemma 1)
by (conditionally) sorting legislators from least to most expensive. This ordering of legislators is
central to the main result and is not obviously attainable in such settings where legislators differ
in more than one attributes. In particular, because higher recognition probabilities and discount
factors each render legislators more expensive, ceteris paribus, it is a priori hard to rank legislators
with high discount factor and low recognition probability over legislators with low discount factor
and high recognition probability, or vice versa.

Armed with this characterization, equilibrium values can be computed if the marginal reser-
vation value and maximum proposer surplus are available. Treating these quantities as a pair of
unknowns, I specify an equal number of equations that are necessary in any equilibrium, are con-
tinuous and piecewise linear, and admit a unique solution. As a consequence, computation of
equilibrium values is reduced to solving this bivariate piecewise linear system of equations. The

2In turn, evaluation of the coefficients of each linear system can be achieved at linear cost, so that the overall cost
is at most quadratic in the size of the legislature in the worst case scenario.

3For example, see Daskalakis, Goldberg and Papadimitriou (2009) for a definitive result for strategic form games,
or the recent review by Roughgarden (2010).
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advertised efficiency of this approach is due to the fact that a solution must be contained in one
of at most n of its pieces of linearity, while a candidate solution within each piece solves a linear
system of two equations. There is an extensive literature on solving piecewise linear systems of
equations in operations research and economics, with leading algorithms being essentially homotopy
continuation methods that systematically search over different pieces of linearity of the system until
the piece that contains a solution is visited (e.g., see Eaves and Scarf (1976) for such treatment of
the general problem, and the recent review of related methods applied to the problem of computing
Nash equilibria by Herings and Peeters (2010)). Due to the special structure of the present problem
I instead opt for the speed of a Newton’s method that is also guaranteed to converge in this case
as it admits a straightforward globalization strategy.

A byproduct of the present approach is an alternative proof of uniqueness of equilibrium
values. Eraslan’s (2002) proof of uniqueness is by reductio ad absurdum whereas I obtain uniqueness
by applying a non-smooth generalization of Gale and Nikaido’s (1965) theorem due to Kojima and
Saigal (1979). At its heart, Kojima and Saigal’s (1979) condition is a degree theoretic argument
involving the coherent orientation4 of the Jacobian of the system of equations. In the literature
on bargaining games, I state a uniqueness condition relying on a similar argument (Kalandrakis,
2006a, Theorem 6, p. 326). A more challenging application of the topological degree appears in
Eraslan and McLennan (2013), who considerably strengthen and generalize Eraslan’s (2002) result,
by showing that for general voting rules there is a unique connected component of equilibria all
sharing the same unique continuation values. Finally, uniqueness of equilibrium in such bargaining
games is also studied by Cho and Duggan (2003) and Cardona and Ponsati (2011) in the context
of one-dimensional agreements spaces.

In what follows, I start with a description of the bargaining model. I then proceed to
formulate the bivariate system of equations used for computation and establish it admits a unique
solution in section 3. The analysis culminates in section 4, which is devoted to computation of
equilibrium. All proofs are relegated to an Appendix.

2 Model and Equilibrium

Consider a legislature comprising n members in set N = {1, . . . , n}, n ≥ 2. They bargain
to divide a budget of size one, so that the set of possible agreements takes the form X = {x ∈ Rn+ :∑

i∈N xi = 1}. Bargaining takes place sequentially, potentially over a countable infinity of periods
t = 1, 2, . . . . If no agreement has been reached at the beginning of period t, legislator i is recognized
with probability pi ∈ [0, 1] to offer a proposal. Recognition probabilities are constant across periods
and sum up to one,

∑
i∈N pi = 1. Having observed the proposal, legislators vote in favor or against

it, and if at least q, 1 ≤ q ≤ n, legislators approve the proposal, then it is implemented and the
game ends. Otherwise, the game moves to the next period with a new round of proposal making
and voting. Legislator i discounts the future by a factor δi ∈ [0, 1), so that if agreement x is reached
in period t, i’s payoff is δt−1i xi.

As is standard in this literature, I focus on subgame perfect equilibria in stationary strate-
gies. A stationary strategy for i is a pair consisting of a (mixed) proposal strategy that takes
the form of a probability measure πi over proposals in X, and a (measurable) voting strategy
αi : X → {1, 0} so that i approves proposal x if αi(x) = 1 and αi(x) = 0 otherwise. Denote a

4A piecewise linear map is coherently oriented if the determinant of the Jacobian of all of its pieces of linearity
has the same non-zero sign.
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profile of strategies by σ = ((π1, α1), . . . , (πn, αn)) and define for each x the collective acceptance

function α(x;σ) = I{q,...,n}
(∑

j∈N αj(x)
)

, which takes the value 1 if proposal x receives the re-

quired quota of approvals when legislators use strategy profile σ, and zero otherwise. With such a
strategy profile σ fixed, we can recursively define player i’s continuation value vi(σ), that is, her
expected payoff at the beginning of the next period if an agreement is not reached in the current
period, specifically:

(1) vi(σ) =
∑
j∈N

pj

∫
(α(x;σ)xi + (1− α(x;σ))δivi(σ))πj(dx).

A stationary subgame perfect equilibrium with stage undominated (see Baron and Kalai (1993))
strategies (henceforth an equilibrium) is a strategy profile σ such that proposal strategies are
optimal, i.e., for all y ∈ X∫

(α(x;σ)xi + (1− α(x;σ))δivi(σ))πi(dx) ≥ α(y;σ)yi + (1− α(y;σ))δivi(σ),

and voting strategies satisfy

αi(x) =

{
1 if xi > δivi(σ)
0 if xi < δivi(σ).

The following theorem summarizes well known (e.g., Banks and Duggan (2000); Baron and
Ferejohn (1989); Eraslan (2002)) properties of equilibrium and is stated without proof.

Theorem 1. An equilibrium exists. If σ is an equilibrium, then

1. There is no delay, i.e.,
∫
α(x;σ)πi(dx) = 1 for all i.

2. If i’s realized proposal is x, then
∑

j∈N I(0,1](xj) ≤ q.

3. If agreement x is reached after a proposal from i and xj > 0, j 6= i, then xj = δjvj(σ).

Existence and the no-delay property of equilibrium have been established in a more general
setting by Banks and Duggan (2000, Theorem 1, p. 78). Part 2 of Theorem 1 asserts that the largest
possible coalitions (as measured by the number of legislators receiving funds) that can prevail in
equilibrium are minimum winning coalitions, since no optimal proposal allocates funds to more
than q voters. Lastly, by part 3 of Theorem 1, if j is included in i’s winning coalition, then she
receives an amount exactly equal to her reservation value, i.e., her discounted continuation value.
Neither of the last two properties reflect restrictions on strategy profiles legislators may use, but
follow from legislators’ equilibrium (optimal) behavior.

3 A bivariate characterization

In this section, I shift focus from strategy profiles σ by gently removing mixing probabilities
from the analysis and by introducing in their stead two quantities that characterize equilibrium
continuation values. The first quantity that summarizes equilibrium is the marginal reservation
value, that is, the cost of the most expensive legislator in the least expensive coalition. For a
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strategy profile σ we can formally define the marginal reservation value as

r(σ) = min
i
{δivi(σ) : #{j : δjvj(σ) ≤ δivi(σ)} ≥ q},

which amounts to the q-th lowest reservation value, δivi(σ). The second quantity is the maximum
proposer surplus that can be extracted by any proposal that builds the least costly winning coalition,
compensating all members of the coalition (including the proposer) with their reservation value.
Formally, the maximum proposer surplus can be defined as

(2) S(σ) = 1−
∑

i:δivi(σ)<r(σ)

(δivi(σ)− r(σ))− qr(σ).

Note that surplus here is defined as the excess allocation to the proposer over and above her own
reservation value. As a result, if a proposer’s own reservation value is less or equal to the marginal
reservation value, then she extracts a surplus exactly equal to S(σ), building a coalition with q
members (including herself) with the lowest reservation values. On the other hand, a proposer i
with reservation value strictly larger than the marginal reservation value, δivi(σ) > r(σ), extracts
a surplus equal to S(σ) + r(σ) − δivi(σ) < S(σ). In particular, such proposers build a coalition
with q − 1 other least expensive players.

As shown in Lemma 1, knowledge of these two quantities, r(σ) and S(σ), suffices in order to
recover the full vector of equilibrium continuation values. This result establishes a certain converse
to Eraslan’s Theorem 4 (Eraslan, 2002, Theorem 4, page 20).

Lemma 1. If σ is an equilibrium, then

1. If δipi
1−δipiS(σ) ≥ r(σ) then δivi(σ) ≥ r(σ) and vi(σ) = pi(S(σ) + r(σ)).

2. If δipi
1−δiS(σ) ≥ r(σ) > δipi

1−δipiS(σ) then δivi(σ) = r(σ) and vi(σ) = δ−1i r(σ).

3. If δipi
1−δiS(σ) < r(σ) then δivi(σ) < r(σ) and vi(σ) = pi

1−δiS(σ).

In view of Lemma 1, I will henceforth treat the maximum proposer surplus and the marginal
reservation value as a pair of unknowns (S, r),5 and seek an equal number of necessary equilibrium
equations. For that purpose, define a trio of index sets that partition the legislature according to
the conditional statements in the three parts of Lemma 1 for each pair (S, r). Specifically, let

H(S, r) = {i :
δipi

1− δipi
S ≥ r},

M(S, r) = {i :
δipi

1− δi
S ≥ r > δipi

1− δipi
S},

L(S, r) = {i :
δipi

1− δi
S < r}.

Except for ties at the boundary, these sets identify legislators whose reservation value must be
higher, equal, or lower, respectively, than the marginal reservation value r when the maximum

5In what follows I treat (S, r) as a column vector. Also, whenever the dimension is implied, 1 and 0 represent the
2 × 1 unit and zero vectors, respectively.
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proposer surplus is S. Now define for each i a function v̂i : R2 → R

(3) v̂i(S, r) =


pi(S + r) if i ∈ H(S, r)

δ−1i r if i ∈M(S, r)
pi

1−δiS if i ∈ L(S, r),

which assigns a continuation value to i for each pair S, r according to Lemma 1.
Equation (2) already provides one condition that the pair S, r must satisfy. The no-delay

property of equilibrium implies that equilibrium values must also sum up to unity, thus providing
a second equation. Combining these two equations, define the function F : R2 → R2 as

(4) F (S, r) =

(∑
i∈L(S,r)(δiv̂i(S, r)− r) + qr − 1 + S∑

i∈N v̂i(S, r)− 1

)
.

As shown in Lemma 2, F (and v̂i) is piecewise linear. Additional notation makes this structure
more transparent on the relevant portion of F ’s domain. First, let θ be the q-th lowest ratio δipi

1−δi ,
that is,

θ = min
i
{ δipi

1− δi
: #{j :

δjpj
1− δj

≤ δipi
1− δi

} ≥ q}.

Since it is impossible to have more than q−1 legislators with reservation value strictly below r(σ) in
equilibrium, θ serves as a logical upper bound on the ratio between the marginal reservation value
and maximum proposer surplus in equilibrium, that is, θS(σ) ≥ r(σ) for all equilibria σ (otherwise,
if θS(σ) < r(σ) then #L(S(σ), r(σ)) ≥ q). A similar lower bound can be deduced as the q-th lowest
ratio δipi

1−δipi , that is,

θ = min
i
{ δipi

1− δipi
: #{j :

δjpj
1− δjpj

≤ δipi
1− δipi

} ≥ q},

is such that r(σ) ≥ θS(σ) for any equilibrium σ, for otherwise more than n − q legislators have
reservation value above r(σ) (i.e., if θS(σ) > r(σ) then #H(S(σ), r(σ)) > n− q). Because δipi

1−δi ≥
δipi

1−δipi for all i, we have θ ≥ θ. Using these bounds construct the set

Θ = {θ ∈ (θ, θ̄) : θ = δipi
1−δipi for some i} ∪ {θ ∈ (θ, θ̄) : θ = δipi

1−δi for some i}.

Let the cardinality of Θ be #Θ = K − 1, enumerate the elements of Θ so that θ1 < . . . < θK−1,
and set θ0 = θ and θK = θ. Note that by the definition of θ, θ, it follows that K ≤ n. For each
k = 1, . . . ,K define the cone Ek = {(S, r) ∈ R2

+ : θkS ≥ r ≥ θk−1S}, k = 1, . . . ,K, and define the
set E = {(S, r) ∈ R2

+ : θS ≤ r ≤ θS} = ∪Kk=1Ek. With this notation in place we can establish:

Lemma 2. The function F is continuous, it is linear on Ek, k = 1, . . . ,K, and if σ is an equilib-
rium, then (S(σ), r(σ)) ∈ E and F (S(σ), r(σ)) = 0.

By Lemma 2, the marginal reservation value and maximum proposer surplus must solve a
pair of piecewise linear equations within cone E, delineated by the logical bounds θ, θ. By Lemma 1
these bounds imply that any legislator i with ratio δipi

1−δi < θ must have lower reservation value than

r(σ) (i.e., i ∈ L(S(σ), r(σ))) in every equilibrium σ and, similarly, any legislator i with δipi
1−δipi > θ

6



must have higher reservation value than r(σ) (i.e., i ∈ H(S(σ), r(σ))) in every equilibrium σ. The
partition of the remaining legislators depends on the piece of linearity, Ek, the pair (S(σ), r(σ))
belongs to. Legislators that cannot be consistently classified within the low or high reservation
value groups end up with reservation values exactly equal to the marginal reservation value: these
legislators become more expensive than the marginal legislator if they are included in all winning
coalitions with probability one, and they become less expensive than the marginal legislator if they
are excluded from any winning coalition they do not propose. The source of this equilibrium tension
is manifest in the expression for continuation values in Lemma 1, as the (linear) coefficient on S(σ)
is larger for the low reservation value legislators compared to high reservation value legislators
(because pi

1−δi > pi for all i), and underpins the uniqueness proof by contradiction in Eraslan
(2002). Of course, this tension is resolved in equilibrium via the use of mixed strategies, which are
lurking in the background in this discussion. By invoking a condition of Kojima and Saigal (1979)
that generalizes Gale and Nikaido’s (1965) univalence theorem, we can produce an alternative proof
of the fact that there is a unique resolution of these equilibrating forces, thus recovering Eraslan’s
(2002) uniqueness result.

Theorem 2. There exists a unique vector of equilibrium continuation values.

Theorem 2 is proved by showing that a function F̂ that agrees with F on E, as illustrated
in Figure 1(a), has a Jacobian that is a P -matrix for all its pieces of linearity. As a consequence,
F̂ satisfies the uniqueness condition of Kojima and Saigal (1979) which in turn implies that F̂ is
a homeomorphism of R2, that is, it is a bijection with a continuous inverse. By the existence of
equilibrium (Theorem 1) and Lemma 2 it follows that the unique zero of F̂ coincides with the only
zero of F in E. Lemma 1 then dictates the unique equilibrium continuation values that correspond
to this unique pair of equilibrium marginal reservation value and maximum proposer surplus.

4 Computation of equilibrium values

Using Lemmas 1 and 2, the problem of computing a vector of equilibrium continuation values
has been reduced to that of solving the pair of equations F (S, r) = 0 for (S, r) ∈ E. Focusing on
the hard case θ 6= θ,6 denote the Jacobian of F at points of differentiability of (S, r) ∈ Ek by Ak,
so that F (S, r) = Ak · (S, r) − 1 on Ek, k = 1, . . . ,K. Since a pair (S, r) ∈ Ek solves F (S, r) = 0
if and only if (S, r) = A−1k · 1 ∈ Ek and there are at most K candidate solutions, we can compute
equilibrium values via an exhaustive search of all K possible solutions, that is, solving at most
K ≤ n bivariate linear systems of equations.

In fact, we can speed up this search by using the current candidate solution (S, r) = A−1k · 1
in order to determine the next candidate solution if (S, r) /∈ Ek. In particular, if (S, r) ∈ Ek′ , k′ 6= k,
then we may set the new candidate solution at (S′, r′) = A−1k′ · 1. This rule for selection of the new
candidate piece of linearity Ek′ of F that contains the solution may appear arbitrary at first, but
it is actually an implementation of Newton’s method as becomes obvious by executing the Newton
step (assuming differentiability at the current iterate (S, r) ∈ Ek′):

(S′, r′) = (S, r)− [DF (S, r)]−1 · F (S, r) = (S, r)−A−1k′ · (Ak′ · (S, r)− 1) = A−1k′ · 1.
6Equation (9) provides a closed form solution for the case θ = θ.
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Figure 1: (a) Pieces of linearity of the piecewise linear function F̂ : R2 → R2 that agrees with
F on E and satisfies the homeomorphism condition of Kojima and Saigal (1979). The set E is
highlighted in gray. The Jacobian of each piece of linearity of F̂ is indicated by the 2 × 2 matrix
Ak, k = 0, . . . ,K, where A0 is constructed from the columns of A1 and AK to ensure continuity
of F̂ . (b) An illustration of the zeros of F on E for Example 1 (aspect ratio is 1:8). The solid
lines represent the zeros of each of the two coordinates of F . The unique (joint) zero of F is at
the intersection of the two solid lines, (S2, r2) in E2. The zeros of the linear functions of F in E1

and E3 are extended outside the corresponding piece of linearity and are shown with dashed lines.
Newton’s method initiated from E1 or E3 oscillates between iterates (S1, r1) and (S3, r3).

Indeed, Newton’s method is theoretically justified (e.g., Qi (1993); Qi and Sun (1993)) in this setting
even if the current iterate is not a point of differentiability of F , since Ak′ is a generalized derivative
of F (S, r). While such generalized Newton’s methods for non-smooth equations recover convergence
properties of the method in the smooth setting, global convergence is not guaranteed (as in the
smooth setting) and globalization strategies are typically needed to ensure it. In Example 1 I
present a legislature of size n = 7 with simple majority rule for which Newton’s method exhibits
non-convergence, as illustrated in Figure 1(b). But such non-convergence can be easily detected in
the piecewise linear case, as it takes the form of a cycle over the pieces of linearity of F . We can
thus guarantee convergence by moving to a yet not visited piece of linearity Ek′′ when the current
Newton iterate completes a cycle k1 → k2 → . . . → k′ = k1 revisiting Ek′ , (or when the iterate
A−1k′ · 1 /∈ E). While there are well documented globalization strategies for Newton’s method in
general, a simple and efficient rule in our setting is to visit a new piece of linearity Ek′′ that is
closest (in a suitable metric) to the unadjusted Newton step. Algorithm 1 executes this globalized
Newton method and is guaranteed to terminate successfully.

Theorem 3. Algorithm 1 converges with an exact solution in at most K ≤ n iterations.

8



Input: q, δ1, . . . , δn, p1, . . . , pn;
Output: Equilibrium values v1, . . . , vn;

if θ = θ(= θ∗) then

S ←
1−
∑
i∈L(1,θ∗)

δipi
1−δi

1+(q−#L(1,θ∗))θ∗ ; r ←
θ∗
(
1−
∑
i∈L(1,θ∗)

δipi
1−δi

)
1+(q−#L(1,θ∗))θ∗ ;

else
K ← {1, . . . ,K};
k ← dK2 e;
(S, r)← A−1k · 1;
while (S, r) /∈ Ek do
K ← K \ {k};
if (S, r) ∈ ∪k∈KEk then

k ← mink′∈K{k′ : Sθk′−1 ≤ r ≤ Sθk′};
else

k ← min{k′ : k′ ∈ arg mink′′∈K ||r −
θk′′+θk′′−1

2 S||};
end

(S, r)← A−1k · 1;

end

end
for i=1 to n do

vi ← v̂i(S, r);
end

Algorithm 1: Computation of equilibrium values.

As demonstrated in Example 1, the bound on the number of iterations of Algorithm 1
established in Theorem 3 is tight, in the sense that there exists an initial piece of linearity from
which Algorithm 1 is executed that requires the maximum number of K = 3 < 7 = n iterations to
converge (including an adjusted/globalized Newton step). Nevertheless, this bound is unlikely to
be binding as the legislature size n increases. Numerical experiments with random legislatures of
sizes up to n = 100, 000 exhibit fast convergence in no more than four iterations.

Example 1. Consider a legislature with n = 7, simple majority rule (q = 4), and parameters pi, δi
as given in the first two rows of Table 1. We compute θ = θ3 = δ4p4

1−δ4 = 3
20 , θ2 = δ5p5

1−δ5 = 23
308 , θ1 =

δ4p4
1−δ4p4 = 23

377 , θ = θ0 = δ3p3
1−δ3p3 = 19

381 . The solution of F (S, r) = 0 is (S2, r2) = (24,975,86030,059,109 ,
556,738

10,019,703)
and lies in E2. If the non-globalized version of Newton’s method is initiated from the first or third
piece of linearity of F , then the algorithm cycles between points (S1, r1) = (1,9242,397 ,

1,976
27,965) ∈ E1 and

(S3, r3) = (1,076,0751,288,577 ,
57,057

1,288,577) ∈ E3. This is illustrated in Figure 1(b). The computed equilibrium
and reservation values are displayed in the third and fourth row of Table 1. The equilibrium involves
mixed proposal strategies that render legislators 3, 4, and 5 equally expensive coalition partners. Ex
ante probabilities of inclusion in the winning coalition (over all, µi(σ) + pi, and by players j 6= i,
µi(σ)) are computed according to equation (5) in the last two rows of Table 1.

A few additional remarks are in order concerning Algorithm 1. First, termination of the
algorithm does not involve a numerical criterion that must be satisfied approximately at some
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i 1 2 3 4 5 6 7

pi 0.05 0.1 0.05 0.05 0.25 0.25 0.25
δi 0.35 0.30 0.95 0.75 0.23 0.70 0.80

vi(σ) 0.0639 0.1187 0.0585 0.0741 0.2416 0.2216 0.2216
δivi(σ) 0.0224 0.0356 0.0556 0.0556 0.0556 0.1551 0.1773
µi(σ) 0.95 0.9 0.2549 0.5356 0.3594 0 0

µi(σ)+pi 1 1 0.3049 0.5856 0.6094 0.25 0.25

Table 1: Equilibrium continuation values and probabilities of inclusion in the winning coalition in
Example 1. Probability µi(σ) is computed using equation (5) and the output of Algorithm 1. All
computed quantities are rounded to the fourth decimal digit.

prespecified tolerance level. If the inclusion condition (S, r) = A−1k · 1 ∈ Ek is satisfied, then
(S, r) is an exact solution. Second, the globalization strategy of adjusting the Newton step to
the nearest piece of linearity minimizes the distance of the unadjusted Newton step from the ray
that splits cone Ek in half. Alternative metrics are certainly possible, but are not likely to have
appreciable effect on the speed of the algorithm. Third, the cost per iteration of Algorithm 1
increases with n only up to the formulation of the matrix Ak; the size of the linear system to be
solved is constant at two for all iterations and independent of n. It is easily verified that evaluation
of Ak can be performed at cost linear in n, while an initial sorting of the ratios δipi

1−δipi and δipi
1−δi

is achieved at cost of order n log n. As a consequence, factoring these costs in, the overall cost of
computation in the worst case scenario is at most quadratic in the size of the legislature. Fourth,
I have focused discussion on computation of equilibrium values, but other equilibrium quantities
are easily obtained once these values are available. For example, probabilities of inclusion in the
winning coalition µi(σ) are directly available from equation (5), as illustrated in Example 1. It is
less trivial, to recover a complete equilibrium profile, σ. On the one hand, all equilibrium proposal
mixed strategies consistent with values vi(σ) and probabilities µi(σ) are characterized by a system
of linear equalities and inequalities which can be solved by linear programming techniques. On the
other hand, the size of this linear system may increase dramatically with n because the number of ex
post (i.e., once equilibrium values are known) optimal coalitions may also increase. Nevertheless,
the present approach is likely to economize considerably over a naive alternative that attempts
to solve for an equilibrium profile σ directly. Besides the fact that the marginal probabilities
µi(σ) are fixed and known once continuation values are at hand, further economization stems from
a (potentially significant) reduction in the number of possible optimal coalitions: at a solution
(S∗, r∗) all proposers include legislators in L(S∗, r∗) in the winning coalition, while any legislator
i ∈ H(S∗, r∗) is excluded from all coalitions proposed by j 6= i.

5 Conclusion

I have developed an algorithm to compute equilibrium values in the model of Baron and
Ferejohn (1989) with general quota voting rules. The approach bypasses the main stumbling block
to efficient computation of a solution for this problem, that is, the combinatorial explosion in the
number of possible winning coalitions as the size of the legislature increases. The characterization
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used recovers the uniqueness result of Eraslan (2002). The cost of finding an equilibrium, in terms
of the number of Newton’s iterations needed in the worst case scenario is bounded by the size of the
legislature, and the computation cost of each iteration amounts to that of evaluating and solving
a square bivariate linear system, independent of the size of the legislature. It is an open question
whether a generalization of this approach can be fruitfully applied to the study of legislatures with
more general voting rules.

Appendix

Lemma 1 (Restated). If σ is an equilibrium, then

1. If δipi
1−δipiS(σ) ≥ r(σ) then δivi(σ) ≥ r(σ) and vi(σ) = pi(S(σ) + r(σ)).

2. If δipi
1−δiS(σ) ≥ r(σ) > δipi

1−δipiS(σ) then δivi(σ) = r(σ) and vi(σ) = δ−1i r(σ).

3. If δipi
1−δiS(σ) < r(σ) then δivi(σ) < r(σ) and vi(σ) = pi

1−δiS(σ).

Proof. For the sake of completeness, I start with certain equilibrium properties that are also es-
tablished by Eraslan (2002). In particular, except for variations in definition and notation, my
equations (5), (6), (7), and (8) match her equations (8), (10), (9), and (11). By equation (1) and
the equilibrium properties of Theorem 1, the continuation value of i in any equilibrium σ can be
expressed as

(5) vi(σ) = pi(1− min
C⊆N\{i}:|C|=q−1

∑
j∈C

δjvj(σ)) + µi(σ)δivi(σ),

where µi(σ) =
∑

j 6=i pj
∫
xi>0 πj(dx) ∈ [0, 1 − pi] is the probability i receives a strictly positive

allocation (by necessity her reservation value, δivi(σ)) by players other than i. Note that

(6) 1− min
C⊆N\{i}:|C|=q−1

∑
j∈C

δjvj(σ) =

{
S(σ) + r(σ) if δivi(σ) > r(σ)
S(σ) + δivi(σ) if δivi(σ) ≤ r(σ),

and that optimality of proposals by j 6= i implies

(7) µi(σ) =

{
0 if δivi(σ) > r(σ)

1− pi if δivi(σ) < r(σ).

Substituting from (6) and (7) into (5) and solving for vi(σ) we obtain

(8) vi(σ) =


pi(S(σ) + r(σ)) if δivi(σ) > r(σ)

pi
1−δi(pi+µi(σ))S(σ) if δivi(σ) = r(σ)

pi
1−δiS(σ) if δivi(σ) < r(σ).

We can now show the three parts of the Lemma:
Part 1. We first show δivi(σ) ≥ r(σ) by showing that δivi(σ) < r(σ) leads to a contradiction.

Indeed, from (8), we conclude that δivi(σ) = δipi
1−δiS(σ) < r(σ) ≤ δipi

1−δipiS(σ), a contradiction. It
follows that δivi(σ) ≥ r(σ). By (8), vi(σ) = pi(S(σ) + r(σ)) if δivi(σ) > r(σ), so it remains to show
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that vi(σ) = pi(S(σ)+r(σ)) also when δivi(σ) = r(σ). To that end, first observe that (8) in this case
yields δivi(σ) = δipi

1−δi(pi+µi(σ))S(σ) = r(σ), which implies r(σ) = δipi(S(σ) + r(σ)) + δiµi(σ)r(σ).

Furthermore, r(σ) ≤ δipi
1−δipiS(σ) implies r(σ) ≤ δipi(S(σ) + r(σ)). Since δiµi(σ)r(σ) ≥ 0, it follows

that δivi(σ) = r(σ) = δipi(S(σ) + r(σ)). If δi > 0, then vi(σ) = pi(S(σ) + r(σ)) as we wished to
show. If δi = 0, then r(σ) = 0 and, once more invoking (8), vi(σ) = piS(σ) = pi(S(σ) + r(σ)), as
we wished to show.

Part 2. We first argue that it cannot be that δivi(σ) 6= r(σ). If δivi(σ) > r(σ), then
substituting for vi(σ) from (8) we obtain δipi(S(σ)+ r(σ)) > r(σ) which implies δipi

1−δipiS(σ) > r(σ),
a contradiction. If instead δivi(σ) < r(σ), then once more substituting for vi(σ) from (8) we
obtain δipi

1−δiS(σ) < r(σ), also a contradiction. Thus δivi(σ) = r(σ) and, since δipi
1−δiS(σ) ≥ r(σ) >

δipi
1−δipiS(σ) implies δi > 0, we conclude vi(σ) = δ−1i r(σ).

Part 3. By (8) it suffices to show that δivi(σ) < r(σ). Suppose δivi(σ) ≥ r(σ) instead, to
get a contradiction. If δivi(σ) > r(σ) then, after substituting from (8) we obtain

δivi(σ) = δipi(S(σ) + r(σ)) > r(σ)⇒ δipi
1− δipi

S(σ) > r(σ),

which is impossible since r(σ) > δipi
1−δiS(σ) ≥ δipi

1−δipiS(σ). If δivi(σ) = r(σ), we conclude using (8)
that

δivi(σ) =
δipi

1− δi(pi + µi(σ))
S(σ) = r(σ) >

δipi
1− δi

S(σ)⇒ pi + µi(σ) > 1,

another contradiction. Thus, δivi(σ) < r(σ).

Lemma 2 (Restated). Function F is continuous, it is linear on Ek, k = 1, . . . ,K, and if σ is an
equilibrium, then (S(σ), r(σ)) ∈ E and F (S(σ), r(σ)) = 0.

Proof. To establish continuity of F it suffices to show that v̂i is continuous, by considering in turn
the two possible cases for discontinuity. First, let (S`, r`) → (S, r) such that δipi

1−δiS` < r` for all `,

and δipi
1−δiS = r. If r > δipi

1−δipiS then it follows that δi > 0 and v̂i(S`, r`) = pi
1−δiS` → δ−1i r = v̂i(S, r).

If r = δipi
1−δipiS instead, then v̂i(S`, r`) → pi

1−δiS = piS + δipi
1−δiS = piS + r. Now further distinguish

two subcases. If r = 0, then v̂i(S`, r`) → piS = v̂i(S, r). If r > 0, then δi > 0 and pi = 1,
hence v̂i(S`, r`) → S + r = v̂i(S, r). Second, consider a sequence (S`, r`) → (S, r) such that
δipi
1−δiS` ≥ r` >

δipi
1−δipiS` for all `, and δipi

1−δipiS = r ⇔ r = δipi(S + r). Then v̂i(S`, r`) = δ−1i r` →
δ−1i r = pi(S + r) = v̂i(S, r). This completes the proof of continuity. Linearity of F on Ek follows
from the fact that the partition {L(S, r),M(S, r), H(S, r)} is constant in the interior of Ek and by
the linearity of v̂i. By Lemma 1, v̂i(S(σ), r(σ)) = vi(σ) for any equilibrium σ and all i, so necessity
of F (S(σ), r(σ)) = 0 for equilibrium σ follows by definition (2) for the first of the two equations,
and the fact that no equilibrium admits delay for the second equation. To show (S(σ), r(σ)) ∈ E,
we first show that it cannot be that θS(σ) < r(σ), for in that case we obtain the contradiction

q ≤ #{i :
δipi

1− δi
≤ θ} ≤ #{i :

δipi
1− δi

S(σ) < r(σ)} = #{i : δivi(σ) < r(σ)} < q.

From left to right, the first inequality above follows from the definition of θ, the second by the
implication δipi

1−δi ≤ θ ⇒ δipi
1−δiS(σ) ≤ θS(σ) < r(σ) when θS(σ) < r(σ) is true, the equality holds

by Lemma 1, and the final inequality by the definition of r(σ) as the q-th lowest reservation value.
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Similarly, if θS(σ) > r(σ) then we deduce another contradiction

n− q < #{i :
δipi

1− δipi
≥ θ} ≤ #{i :

δipi
1− δipi

S(σ) > r(σ)} = #{i : δivi(σ) > r(σ)} ≤ n− q.

This time, the first inequality follows because #{i : δipi
1−δipi ≥ θ} + #{i : δipi

1−δipi < θ} = n and

q > #{i : δipi
1−δipi < θ} from the definition of θ as the q-th lowest ratio δipi

1−δipi , the second inequality

because δipi
1−δipi ≥ θ ⇒ δipi

1−δipiS(σ) ≥ θS(σ) > r(σ) when θS(σ) > r(σ), the equality holds by

Lemma 1 and the fact that δipi
1−δipiS(σ) > r(σ) ⇔ δipi(S(σ) + r(σ)) > r(σ) and, finally, the last

inequality holds because #{i : δivi(σ) ≤ r(σ)} ≥ q.

Theorem 2 (Restated). There exists a unique vector of equilibrium continuation values.

Proof. Since an equilibrium exists (Theorem 1), by Lemma 2 it suffices to show that there is at
most one (S, r) ∈ E that solves F (S, r) = 0. We distinguish two cases:

Case 1: θ = θ = θ∗. In this case any solution must satisfy r = θ∗S. This equation along
with the first of the two equations F (S, θ∗S) = 0 yield the unique solution

(9) S =
1−

∑
i∈L(1,θ∗)

δipi
1−δi

1 + (q −#L(1, θ∗)) θ∗
r =

θ∗
(

1−
∑

i∈L(1,θ∗)
δipi
1−δi

)
1 + (q −#L(1, θ∗)) θ∗

.

Case 2: θ > θ. Let θ∗k =
θk+θk+1

2 and set Ak = DF (1, θ∗k), which coincides with the Jacobian

of F in the interior of every piece of linearity Ek, k = 1, . . . ,K. Denote Ak =

(
ak11 ak12
ak21 ak22

)
and

define A0 =

(
aK11 a112
aK21 a122

)
. We now define another continuous piecewise linear function F̂ : R2 → R2

such that F̂ (S, r) = F (S, r) for all (S, r) ∈ E (Figure 1(a) illustrates), specifically

F̂ (S, r) =


AK · (S, r)− 1 if r > θS ≥ 0 or r ≥ 0, S ≤ 0
Ak · (S, r)− 1 if (S, r) ∈ Ek, k = 1, . . . ,K
A1 · (S, r)− 1 if 0 ≤ r < θS or r ≤ 0, S ≥ 0
A0 · (S, r)− 1 if r ≤ 0, S ≤ 0.

We will show that F̂ is a homeomorphism of R2 (hence F̂ (S, r) = 0 has a unique solution) by
verifying the condition of Theorem 5.1 of Kojima and Saigal (1979). In particular, we will show
that Ak is a P -matrix for all k = 0, 1, . . . ,K, which implies that Det[λAk + (1 − λ)I2] > 0 for all
λ ∈ [0, 1], by Lemma 3.1.1 of Saigal (1976). Before we proceed, note that M(1, θ∗k) 6= ∅ for all k
since θ∗k ∈ (θ, θ), and #L(1, θ∗k) < q since θ∗k < θ. To show Ak, k = 0, 1, . . . ,K, is a P -matrix we

first show that ak11 = 1 +
∑

i∈L(1,θ∗k)
δipi
1−δi > 0 and ak22 =

∑
i∈M(1,θ∗k)

δ−1i +
∑

i∈H(1,θ∗k)
pi > 0 for all

k = 1, . . . ,K. Furthermore, we will show that Det[Ak] > 0 for all k = 0, 1, . . . ,K (including A0

which shares its first column with A1 and its second column with AK) by showing that ak11 > ak21 ≥ 0
and ak22 > ak12 ≥ 0 for all k = 1, . . . ,K. Indeed, ak21 =

∑
i∈L(1,θ∗k)

pi
1−δi +

∑
i∈H(1,θ∗k)

pi ≥ 0 and

ak11 > ak21 ⇔ 1 +
∑

i∈L(1,θ∗k)

δipi
1− δi

>
∑

i∈L(1,θ∗k)

pi
1− δi

+
∑

i∈H(1,θ∗k)

pi ⇔ 1 >
∑

i∈L(1,θ∗k)∪H(1,θ∗k)

pi,
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which is true since pi > 0 for all i ∈ M(1, θ∗k) 6= ∅ (else 0 ≥ θ∗k > 0). Furthermore, ak12 =
q −#L(1, θ∗k) > 0 and

ak22 > ak12 ⇔ #L(1, θ∗k) +
∑

i∈M(1,θ∗k)

δ−1i +
∑

i∈H(1,θ∗k)

pi > q,

which once more is true because M(1, θ∗k) 6= ∅ and #L(1, θ∗k) + #M(1, θ∗k) ≥ q since θ∗k > θ. To
summarize, for all k = 0, 1, . . . ,K, all the principal minors of Ak are positive, establishing that Ak
is a P -matrix, as we wished to show.
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