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A Theory of Voting in Large Elections

Richard D. McKelvey and John W. Patty

Abstract

We explore an application of the Quantal Response Equilibrium (QRE) to
spatial voting models. In this context, the QRE is a game theoretic formal-
ization of probabilistic voting. We study candidate competition over a �nite
dimensional policy space between an arbitrary number of candidates. We
assume that candidates maximize the margin of expected victory, and that
voters' utility functions are uniformly bounded. In this setting we prove that
for large enough electorates there exists a global equilibrium at the social
optimum (the point which maximizes the expected sum of utilities of the
voters). In two candidate contests, the equilibrium is unique.

1 Introduction

This paper investigates properties of the Quantal Response Equilibrium (see McKelvey
and Palfrey [14, 15]) in spatial voting games. The Quantal Response Equilibrium (QRE)
is a theory of behavior in games that assumes that individuals get privately observed
random payo� disturbances for each action available to them. The QRE is then just the
Bayesian equilibrium of this game of incomplete information. In a QRE, although voters
adopt pure strategies, from the point of view of an outside observer who does not know
the payo� disturbance, the players choose between strategies probabilistically, choosing
actions that yield higher utility with higher probability than actions that yield lower
utility. The probability that one action is chosen over another is based on the the utility
di�erence between the alternatives.

Much other literature has studied probabilistic voting (see Coughlin [3] for a review
of this literature). Hinich [9] showed that the median voter theorem does not always hold
in a setting with probabilistic voting, and he constructed examples in a one dimensional
space with equilibria at other locations. In particular, with quadratic utility functions,
he obtained an equilibrium in two candidate elections at the mean (which is the social
welfare optimum with those preferences). Coughlin and Nitzan [4, 5] (see also Coughlin
[3], p. 96, Theorem 4.2) proved if voters have likelihood of voting functions satisfying
the Luce axioms over subsets, there is a local equilibrium at a point maximizing the
social log likelihood. While this work was not explicitly rooted in a utility maximization
framework, subsequent work (see [3], p. 99-100, Corollaries 4.4 and 4.5, Theorem 4.2)



shows how it can be so interpreted. Coughlin [3] also gives various conditions on voter
likelihood functions or on preferences that result in a global equilibrium. If the likelihood
functions are concave, there is a global equilibrium. In a re-distributional model where
voters have logarithmic utility functions for income, and candidates use a logistic model to
estimate the probability that voters vote for each candidate, there is a global equilibrium
at the social utility maximum (p. 57, Theorem 3.7). All of the above results are for
two candidate competition. Recently, Lin, Enelow and Dorussen [12] show that one can
also obtain equilibrium for multi-candidate elections using probabilistic voting models.
They assume preferences based on distance, with a random utility shock, and obtain local
equilibria at the social utility maximum. Lin, et al. also �nd that if the utility shocks
have high enough variance, then the expected vote function for each candidate becomes
concave, implying the existence of a global equilibrium.

In all of the above cited probabilistic voting literature, game theoretic considerations
for the voter are not modeled. Voters are assumed to vote based on their preferences
for the candidate policy positions rather than based on the e�ect their vote will have on
the outcome of the election. Ledyard [11] develops a Bayesian model of two candidate
competition that does model the game theoretic considerations for the voter. In his
model, voters vote deterministically (there is no random utility shock to preferences),
but they can abstain as well as vote for one of the two candidates, and the cost of voting
is a random variable. Voter types consist of preferences as well as a cost of voting. He
shows that in large elections, if voting costs are non-negative, there is an equilibrium at
the social welfare optimum, which under certain restrictive conditions on the distribution
of costs, is a global equilibrium. Myerson [17] extends Ledyard's results in a model where
the number of voters is a Poisson random variable, unknown to the voters. He shows that
as long as the density function of the costs of voting is positive at zero, there is a global
equilibrium in Ledyard's model as the number of voters becomes large. The Ledyard
model, as well as Myerson's generalization of it require that no voters have negative costs
of voting.

In this paper, we work in a Bayesian framework, as in Ledyard, and take into account
the game theoretic considerations for the voters, but unlike Ledyard, we assume that
voters have privately observed payo� distrubances associated with each action. Our only
restrictions on preferences are that they are uniformly bounded. Further, we consider
multi candidate contests. But our results basically extend those of the earlier literature.
We �nd that for large enough electorates there is a convergent equilibrium at the al-
ternative that maximizes social welfare. For two candidate contests, the equilibrium is
unique. Our equilibrium is global, as in [12], but in our model, the conditions for a global
equilibrium are satis�ed by allowing the number of voters to grow large rather than by
assuming the utility shock becomes large.

The main contribution of this paper over the previous work is to obtain a global
candidate equilibrium in large electorates with very little in the way of assumptions
about voter preferences. The main di�erence between our approach and previous work
on probabilistic voting is the way in which we model the probabilistic voting. As in [11],
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by treating the voter decisions as a game, we explicitly include the pivot probability in
the voters' expected utility calculations. In large electorates, because the probability of
being pivotal goes to zero, the expected utility di�erence between any two candidates
also goes to zero. Thus, under the QRE assumptions, the voter's choice is determined
mainly by the candidate speci�c payo� disturbance. Hence, in aggregate, voters vote
less based on policy, and more based on candidate attributes as the size of the electorate
grows. However, even though individuals become less responsive to policy di�erences,
in large electorates, since the total number of voters is also getting large, there is still
enough policy voting at the aggregate level to force the candidates to the social optimum.

2 The Model

We assume the existence of a �nite dimensional policy space, X � <m, where X is
bounded, and �nite sets N and K of voters and candidates, respectively. Write n = jN j
and k = jKj for the total number of each. We let 0 indicate abstention, and write
K0 = K [ f0g for the set of candidates plus abstention.

We assume that for each voter, i 2 N , there is a space Ti of possible characteristics,

or types of the voter. Write T = �i2NTi. We assume that Ti = T ��<K0

�T
is partitioned

into two parts, representing the policy and consumption based parts, respectively, and
that T is a complete separable metric space. Voters' preferences over the policy space
are described by a utility function, u : X � T ! <. Hence, the utility of voter i 2 N , of
type ti = (� i; �i(� i)) 2 Ti for the policy x 2 X is u(x; � i). We assume that u is uniformly
bounded with respect to N , i. e., there exists a D 2 R such that for all x 2 X and � 2 T ,
ju(x; �)� u(y; �)j < D. For example, uniform boundedness would follow from continuity
of u and compactness of X and T . Assume that the distribution of the voter i's types is
given by an atom-less probability measure of full support, �i, over the Borel sets of Ti,
and that the joint distribution is given by �. We assume that � is absolutely continuous
with respect to the product measure

Q
i2N �i. Note we allow for possible correlation

between the distribution of types for di�erent voters.
For notational simplicity, we will drop the argument of �i(� i), and just write �i when

there is no confusion. Also, �ij is used to represent the j
th component of �i(� i) . All of the

�ij for i 2 N , j 2 K0, and � i 2 T are assumed to be independently distributed absolutely
continuous random variables with full support, each with a cumulative density function
that is twice continuously di�erentiable. We assume that the �ij(� i) are identically
distributed for all i 2 N , j 2 K, and � i 2 T . However, we allow for �i0 to have a di�erent
distribution than �ij to allow for costs or bene�ts of voting. Any joint distribution � on
T satisfying all of the above conditions is said to be admissible. Let � be the common
mean of �ij for j 2 K, �0 be the mean of �i0, and c = � � �0. Then c is the expected
cost of voting.

We now de�ne a game, in which the candidates each simultaneously choose policy
positions in X, and then after observing the candidate policy positions, the voters vote
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for a candidate. Thus, the strategy set Yi for candidate i 2 K is Yi = X, and the set of
strategy pro�les for the candidates is Y = �i2KYi. The strategy set Si for voter i 2 N
is the set of functions si : Y � Ti ! K0; and the set of strategy pro�les for the voters is
S = �i2NSi: We will use the notation S�i = �j 6=iSj, and s�i 2 S�i to represent strategy
pro�les for all voters except voter i, with similar notation for candidates.

Given a strategy choice y = (y1; : : : ; yk) 2 Y of the candidates, and s = (s1; : : : ; sn) 2
S of the voters, de�ne for any j 2 K0 , and t 2 T n

Vj(y; s; t) =
1

n
jfi 2 N : si(y; ti) = jgj (2.1)

to be the proportion of the vote for j, and

W (y; s; t) = fj 2 K : j 2 argmax
l2K

(Vl(y; s; t))g (2.2)

to be the set of winners of the election. For any J � K, write

PJ(y; s; ti) = Pr[ft�i 2 T�i : W (y; s; t) = Jg]: (2.3)

to be the probability of a �rst place tie among the candidates J . We assume that a fair
lottery is used to select a winner when there is a tie, so that we can de�ne voter utilities
over subsets J � K by

vJ(y; � i) =
1

jJ j
X
j2J

u(yj; � i): (2.4)

The payo� to voter i 2 N of type ti = (� i; �i) from the strategy (y; s) 2 Y �S is de�ned
to be:

U(y; s; ti) =
X
J�K

PJ(y; s; ti) � vJ(y; � i) + �isi(y;ti) (2.5)

In other words, a voter voting for candidate j = si(y; ti) receives the expected utility of
the policy of the winning candidate, plus a payo� disturbance �ij that is associated with
the vote, j 2 K0 that the voter makes. We write U(j; y; s; ti) = U(y; (j; s�i); ti) for the
utility that voter i of type ti gets from voting for strategy j, given y, and s�i 2 S�i.
Since PJ(y; s; ti) is a function of ti only through si, it follows that PJ(y; (j; s�i); ti) is
independent of ti . So we write PJ(y; (j; s�i)) = PJ(y; (j; s�i); ti): Then, we can write for
all j 2 K0,

U(j; y; s; ti) = �U(j; y; s; � i) + �ij (2.6)

where

�U(j; y; s; � i) =
X
J�K

PJ(y; (j; s�i)) � vJ(y; � i) (2.7)
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is the expected utility to voter i of type� i of voting for candidate j, unconditioned on
the payo� disturbance, �ij.

It follows from McKelvey and Ordeshook [13] that the di�erence in the expected
utility of voting for j over abstaining can be written in the form:1

�U(j; y; s; � i)� �U(0; y; s; � i) =
X
k 6=j

Æjki (y; s) � [u(yj; � i)� u(yk; � i)] (2.8)

where Æjki (y; s) is the pivot probability for j over k:

Æjki (y; s) =
X

j;k2J�K

1

jJ j

 
q0J +

qjJ
jJ j � 1

!
(2.9)

where we use the shorthand qkJ = PJ(y; (k; s�i)). The pivot probability is the probability
that by voting for j rather than abstaining, voter i changes the outcome from a win for k
to a win for j . It then follows from equation (2.8) that the di�erence in expected utility
of voting for j over l is:

�U(j; y; s; � i)� �U(l; y; s; � i) =
�
Æjli (y; s) + Ælji (y; s)

�
� [u(yj; � i)� u(yl; � i)]

+
X
k 6=j;l

�
Æjki (y; s) � [u(yj; � i)� u(yk; � i)]

+Ælki (y; s) � [u(yk; � i)� u(yl; � i)]

�
(2.10)

which, for the case of two candidates, K = fj; lg, reduces to
�U(j; y; s; � i)� �U(l; y; s; � i) =

�
Æjli (y; s) + Ælji (y; s)

�
� [u(yj; � i)� u(yl; � i)] (2.11)

To de�ne the candidate payo� functions, we �rst de�ne Vj(y; s) to to be the expected
proportion of the votes for candidate j at the pro�le (y; s):

Vj(y; s) = Et [Vj(y; s; t)] =
1

n
Et [jfi 2 N : si(y; ti) = jgj] (2.12)

Then we de�ne the payo� to candidate j to be the margin of expected victory bVj, de�ned
by: bVj(y; s) = Vj(y; s)� max

l2N�fjg
Vl(y; s) (2.13)

Remark 1 Any voter with unbounded utility would be subject to the St. Petersburg
paradox: If xk is chosen to satisfy u(xk; � i) > 2k, for k = 1; 2; : : : ; the voter would not
trade the lottery that gives prize xk with probability 1

2k
for any x. Similarly, if the xk

satisfy u(xk; � i) < �2k, they would not accept the lottery for any x. Thus, bounded
utility for any one voter is implied if the voter is not subject to the St. Petersburg
paradox. The uniform boundedness condition requires further that there be a common
maximum and minimum bound across all voters.

1Equation (2.8) follows by reversing the order of summation in the expression for (Ej
� E0) of the

Theorem on p. 49 of [13].
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Remark 2 Note that our assumptions do not preclude atoms in the marginal distribu-
tion of � over T . The requirement that � be atomless is automatically satis�ed via the
assumptions that are imposed by admissibility on the distribution of the �i's. Thus, our
assumption of admissibility of � encompasses on the one hand the classical framework, in
which all voter ideal points are known and common knowledge, and on the other hand,
models such as that of Ledyard, in which all voter types are independent and drawn i:i:d
from a common distribution on voter types. The classical framework arises if we let the
marginal distribution of � on T be discrete.

Remark 3 The assumption that the distribution of the �ij are i:i:d with respect to voters
is an implicit normalization of utility functions. This is important in interpreting the
main theorem, since the weights that individuals are given in the social utility function
is determined by this normalization.

Remark 4 While we work with the objective function of \margin of expected victory"
in this paper, the mathematical trick we use is to show that as the size of the electorate
grows, the local equilibria that are guaranteed under this objective function expand to be
global equilibria. Recent work by Patty [19] shows an equivalence between local equilibria
under the objective function of expected vote and probability of winning. Thus, although
we do not formally prove it here, we conjecture that our results would also hold when
the candidate objective function is probability of winning.

3 Voter Equilibrium

In this section, we consider the voter equilibrium to the game de�ned by equation (2.6)
conditional on �xed candidate positions, y 2 Y . Since the candidate positions are �xed,
the strategy space for the voter reduces from Si (the set of functions si : Y � Ti ! K0)
to the set of functions of the form si(y; �) : Ti ! K0. We write Si(y) to designate
this conditional strategy space, and S(y) to designate the set of pro�les of conditional
strategies.

For any �xed y 2 Y , we de�ne a voter equilibrium for y to be a pure strategy Bayesian
Nash equilibrium (BNE) to the voter game de�ned by (2.6) over the strategy space S(y).
This is any pro�le, s 2 S(y), in which voters always choose an action that maximizes
expected utility conditional on their type. Thus, s is a voter equilibrium for y if for all
i 2 N , ti 2 Ti, and j 2 K0,

si(y; ti) = j , U(j; y; s; ti) = max
l2K0

U(l; y; s; ti)

, �U(j; y; s; � i) + �ij = max
l2K0

�
�U(l; y; s; � i) + �il

�
(3.1)

Note the structure of the payo�s is exactly the same as used in McKelvey and Pal-
frey [15] in de�ning the agent quantal response equilibrium (AQRE) for extensive form
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games. So as long as the distribution of the errors, �ij is admissible, a Bayes Nash equi-
librium to the voter game is exactly the same as an AQRE to the game. Note further
that in any voter equilibrium for y, except on a set of measure zero, the strategy si(y; ti)
depends on i only through ti. So we can drop the subscript on s without loss of generality.

Proposition 1 For any y 2 Y , there exists a voter equilibrium for y.

Proof : This is a game of incomplete information, with action spaces Ai = K0 and type
space Ti for each i 2 N . The action spaces are �nite, and the distribution of types is
independent across individuals. Thus, we can apply Theorem 1 of Milgrom and Weber
[16] to conclude that there exists an equilibrium in distributional strategies. Further, since
the distribution of player i's types, �i, is assumed atomless, it follows from Theorem 4 in
the same paper that the equilibrium can be puri�ed to be in pure strategies.

Of particular interest is the average behavior of a voter i of type ti, after integrating
out �i. For any si(y; �) 2 Si(y), de�ne �si(y; �) : T ! �K0 , as the marginal distribution of
si with respect to �i: for any � i 2 T and j 2 K0,

�si(y; � i)(j) = Pr[�i : si(y; (� i; �i)) = j]: (3.2)

We have assumed that the �ij are independently distributed, for all i, j and � i, and
identically distributed for all j 2 K. Let H(�) be the cumulative distribution function
of �i, i. e., H(w) = Pr[�ij � wj for all j 2 K0] for w 2 <K0. And let Gj(�) be the
cumulative distribution function of � 2 <K , where � l = �il � �ij for l 2 K � fjg, and
zj = �i0 � �ij. Thus,

Gj(z) = Pr[�i0 � �ij � zj and �il � �ij � zl for all l 6= j] (3.3)

for any z 2 <K . Under the assumptions we have made on the �ij, for all j 2 K,
both H(w) and Gj(z) are twice continuously di�erentiable and strictly increasing in all
arguments, and everywhere positive. Thus, if s is a Bayes Nash equilibrium, applying
equation (3.1), for j 2 K,

�si(y; � i)(j) = Pr[ �U(j; y; s; � i) + �ij = max
l2K0

�
�U(l; y; s; � i) + �il

�
]

= Pr[�il � �ij � �U(j; y; s; � i)� �U(l; y; s; � i) for all l 2 K0 � fjg]
= Gj(�U

j(y; s; � i)): (3.4)

where �Uj(y; s; � i) is a vector in <K with components �U
j
l (y; s; � i) = �U(j; y; s; � i) �

�U(l; y; s; � i) for l 6= j, and �U
j
j(y; s; � i) =

�U(j; y; s; � i)� �U(0; y; s; � i).

Example: One example of the above is the logit AQRE, where the density functions
of w0 = �i0 + c and wj = �ij for j 2 K follow a type one extreme value distribution,
Hj(wj) = exp[� exp[��wj]]. Thus, with independence, we have H(w) =

Q
j Hj(wj).
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This leads to the logistic formula Gj(z) =
1

1+exp �(c+zj)+
P

l6=j exp(�zl)
. In this case, for �xed

�, we get:

�si(y; � i)(j) = Gj(�U
j(y; s; � i))

=
1

1 + exp
�
� � �c+ �U(0; y; s; � i)� �Ui(j; y; s; � i)

��
+
P

l 6=j
�
exp

�
� � � �U(l; y; s; � i)� �U(j; y; s; � i)

��� ;

and in the case of two candidates, where K = fj; lg,

�si(y; � i)(j) =
1

1 + exp
�
� � �c+ Æjl(y; s) � [u(yj; � i)� u(yl; � i)]

��
+exp

�
� � (Æjl(y; s) + Ælj(y; s)) � [u(yj; � i)� u(yl; � i)]

� :

We now show that for �xed candidate positions at y 2 Y , and for any voter equi-
librium, that all pivot probabilities go to zero and the probability of voting for any two
candidates in K becomes equal as n!1. The reason for this result is simple: one's vote
only matters when it is pivotal.2 Thus, one's vote only matters when the other voters are
either evenly split between the two top candidates or when the vote di�erence between
the two top candidates di�ers by one vote. As n grows large, this becomes a very low
probability event. Thus, in general, one's vote doesn't make a di�erence very often. This
implies that voters e�ectively become indi�erent with respect to which candidate they
vote for as n!1. We formalize the above in the following proposition:

Proposition 2 Assume u is uniformly bounded. Fix y 2 Y , and for each integer n,
let �n be any admissible joint distribution over �n

i=1Ti, and let sn be any AQRE for the
voters. Then for any j; l 2 K and i; k > 0,

(a) limn!1 Æjli (y; s
n) = 0 and

(b) limn!1 Æjli (y; s
n)=Æjlk (y; s

n) = 1

(c) limn!1 Æjli (y; s
n)=Ælji (y; s

n) = 1

(d) limn!1[�sni (y; � i)(j)� �sni (y; � i)(l)] = 0.

Further, in all cases, the convergence is uniform. I. e., for any " > 0, there is an n"

such that for all i; k; j; l; y; �n; sn if n > n", Æ
jl
i (y; s

n) < ";
���Æjli (y; sn)=Æjlk (y; sn)� 1

��� < ",���Æjli (y; sn)=Ælji (y; sn)� 1
��� < " and j�sni (y; � i)(j)� �sni (y; � i)(l)j < ".

To prove the proposition, we need a Lemma.

2The logic of pivotal voting is explained in the voting literature. See eg. Myerson and Weber [18]
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Lemma 1 Fix "� > 0, and let Zn be the set of sequences Z = (Z1; : : : ; Zn) of indepen-
dent random vectors Zi 2 <K of the form

Zi = �j w. p. pij

where �j is the j
th unit basis vector in <K, and p 2 ��K0

�n
satis�es pij � "� for all i; j.

For any J � K, de�ne

BJ = fz 2 �K : zj = zk > zl for all j; k 2 J, l =2 Jg:
Write �Z =

P
iZi, and de�ne

Æn�J = max
Z2Zn

Pr[ �Z 2 BJ ] (3.5)

Then for any J � K with jJ j � 2

(a) limn!1 Æn�J = 0

(b) limn!1 Æn�J ` =Æ
n�
J = 0 for any J ( J `

Proof : An element Z = (Z1; : : : ; Zn) 2 Zn consists of independent, but not identically
distributed random vectors, and is characterized by a vector p = (p1; : : : ; pn), where
pi = (pi0; pi1; : : : ; piK) 2 �K0 . The mean of Zi is �i = (pi1; : : : ; piK) which consists of
all but the �rst component of p. Pick Zn = (Zn

1 ; : : : ; Z
n
n) 2 Zn to attain the maximum

in equation (3.5). Since Pr[ �Z 2 BJ ] is continuous as a function of p, which ranges over
a compact set, it follows that such a Æn�J and Zn exist. De�ne Vni to be the variance
covariance matrix of Zn

i , and Xn
i = Zn

i � �i. Set Vn = 1
n

P
i Vni and T 2

n = V �1
n . From

our assumption that pij > "� for all j 2 K0, it follows that Vn is strictly positive de�nite
and hence invertible. Then

Æn� = Pr[ �Zn 2 BJ ]

= Pr

� P
i Z

n
ij �

P
i Z

n
ik = 0 for j; k 2 J , andP

i Z
n
ij �

P
i Z

n
il > 0 for j 2 J; l =2 J

�
= Pr

� P
i

�
Xn

ij �Xn
ik

�
=
P

i (pik � pij) for j; k 2 J , andP
i

�
Xn

ij �Xn
il

�
>
P

i (pil � pij) for j 2 J; l =2 J

�
= Pr

"
1p
n
Tn
P

i

�
Xn

ij �Xn
ik

�
= 1p

n
Tn
P

i (pik � pij) for j; k 2 J , and
1p
n
Tn
P

i

�
Xn

ij �Xn
il

�
> 1p

n
Tn
P

i
(pil � pij) for j 2 J; l =2 J

#
(3.6)

But now the Xn
i form a triangular array where each random variable Xn

i has zero mean,
and for each n, the Xn

i are independent. Further, writing Qn
i for the cumulative density

function ofXn
i , the random vectors satisfy the following multivariate Lindeberg condition:

For every � > 0,

lim
n!1

1

n

X
i

Z
kTnXik>�

p
n

kTnXik2 dQn
i (X) = 0 (3.7)
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To see this, note that Zn
i is in the simplex �K . Hence, kXn

i k � 2. The probability that
Zn
ij = 1 is pij � "�. Further, the variances and covariance of Vni are all uniformly bounded

away from zero and one, since pij � "� for all i; j. Thus, the same will be true of Vn. So
Vn will be invertible, and for any �, we can pick large enough n so that kTnXik < �

p
n. So

each term in the summation of equation (3.7) goes to zero with n, which establishes (3.7).
It follows by the multivariate version of the central limit theorem for triangular arrays (see
Bhattacharya and Rao, [2], Corollary 18.2, p 183) that the distribution of 1p

n
Tn
P

iX
n
i

converges weakly to a multivariate unit normal distribution. Hence the probability it
falls in a subset of any lower dimensional subspace goes to zero. Thus, when jJ j � 2, the
right hand side of equation (3.6) converges to 0 with n. I. e., limn!1 Æn� = 0 , proving
(a). To prove (b), we note that BJ ` describes a lower dimensional subspace than BJ .
Hence, an argument similar to above shows that for all sequences, the Pr[ �Z 2 BJ `] goes
to zero faster than Pr[ �Z 2 BJ ] establishing the result.

We now proceed to a proof of the proposition.

Proof : To prove (a), de�ne D = 2 � (jKj � 1) � supx;y;� [u(x; �)� u(y; �)], and "� =
minj2K Gj(�1 � D), where 1 = (1; : : : ; 1) is the unit vector of length jKj. By the as-
sumptions we have made on the �ij, "

� > 0. Then from equation (2.8), using the fact

that Æjli � 1 for all i; j; k,we have �D � �U(j; y; s; � i)� �U(l; y; s; � i) � D for all j; l 2 K,
which implies that �si(y; � i)(j) = Gj(�U

j(y; s; � i)) � Gj(�1 �D) � "�.
Now, given any sequence � = (� 1; : : : ; �n) with � i 2 T for all i > 0, de�ne the random

variable

Zni(� i) = �j if s
n
i (y; (� i; �i)) = j

So Zni(� i) 2 Zn, with pij = �sn�(y; ��)(j).
Then, letting (0; sn�i) be the pro�le where the voter i abstains, and (j; sn�i) be the

pro�le where voter i votes for candidate j, we have, from equation (2.9):

Æjli (y; s
n) =

X
j;k2J�K

1

jJ j

 
q0J +

qjJ
jJ j � 1

!
(3.8)

But, from equation (2.3), for any J � K,

q0J = PJ(y; (0; s�i)) = Pr[ft�i 2 T�i : W (y; s; t) = Jg] (3.9)

= Et�i

�
W (y; (0; sn�i); t�i) = J

�
= Et�i

"X
l 6=i

Znl(� l) 2 BJ

#
(3.10)

= E��i
E��i

"X
l 6=i

Znl(� l) 2 BJ

#
� E��i

[Æn�J ] = Æn�J ; (3.11)

where the inequality follows from the de�nition of Æn�J in Lemma 1. A similar argument
shows the second term in equation (3.8) is less than or equal to Æn�J . Thus, Æjli (y; s

n) �

10



P
j;k2J�K

�
1

jJj�1

�
Æn�J �

�P
j;k2J�K

1
jJj�1

�
Æn�, where Æn� = maxJ�K Æn�J By Lemma 1,

limn!1 Æn� = 0, which proves (a). Since Æn� is independent of i; j; l; y, the convergence
is uniform in all arguments.

To show (b), for each J � K, we can write PJ(y; (0; s�i)) = Et�i

hP
l 6=iZnl(� l) 2 BJ

i
the corresponding expression for voter j is PJ(y; (0; s�j)) = Et�j

hP
l 6=j Znl(� l) 2 BJ

i
.

But the RHS of these two expressions di�er only by the i and jth terms, and hence, by
Lemma 1, both converge weakly to the same multivariate normal distribution. Hence,
in the limit, the ratio of the two must approach one. The same argument applies to
all terms in the sum in (3.8). Thus, the result follows. A similar argument suÆces to
establish (c).

To show (d), we have from equation (3.2) that

�sni (y; � i)(j) = Pr[max
l 6=j

�U(l; y; sn; � i) + �il � �U(j; y; sn; � i) + �ij]:

Now, in the �rst part of the proposition we showed all pivot probabilities go to zero
uniformly as n gets large. Hence, using equation (2.10) we get that as n ! 1, for
j; l 2 K, �U(l; y; sn; � i)� �U(j; y; sn; � i)! 0 uniformly in i; j; l; y; � . But then we get

lim
n!1

[�sni (y; � i)(j)� �sni (y; � i)(l)] = Pr[max
� 6=j

�ia � �ij � 0]� Pr[max
a6=l

�ia � �il � 0]

= Gj(0)�Gl(0) = 0: (3.12)

Since the convergence of �U(l; y; sn; � i) � �U(j; y; sn; � i) is uniform in all arguments, it
follows that the convergence in equation (3.12) is also.

Based on Proposition 2 (b), it follows that for large n, we can ignore the voter
subscript on Æ, and write Æjli (y; s

n) = Æjl(y; sn) = Ælj(y; sn). Further, from Lemma 1, it
follows that in any voter equilibrium, all ties involving three or more candidates will be
small in relation to the two candidate ties. Recall the notation qkJ = PJ(y; (k; s�i)). Then
for J  J

0

,

lim
n!1

qkJ=q
k

J
0 = lim

n!1
PJ(y; (k; s�i))=PJ

0 (y; (k; s�i)) = 0

Hence, for large electorates, formula (2.9) for the pivot probability has the following
approximation:

Æjki (y; s) =
X

j;k2J�K

1

jJ j

 
q0J +

qjJ
jJ j � 1

!
�= 1

2

�
q0fj;kg + qjfj;kg

�
Remark 5 Note that the requirement that voters adopt a Bayesian equilibrium means
that voters vote strategically in multi candidate elections, Thus, a voter may rank
u(yj; �) > u(yl; �), and yet (even if the realization of the payo� disturbances is zero)
vote for their second ranked alternative l over their �rst ranked alternative j if the pivot
probability for the �rst ranked alternative is suÆciently low in relation to that for the
second ranked alternative so that we have �U(l; y; sn; � i)� �U(j; y; sn; � i) > 0.
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4 Candidate Equilibrium

This section examines the incentives of candidates competing for votes in a world popu-
lated by voters who play quantal response equilibrium strategies. We establish that for
a large enough electorate, N , all candidates adopting the social optimum constitutes a
global equilibrium. In the case of two candidates, the global equilibrium is unique. Our
results hold regardless of the how the measure � changes as the size of the electorate
increases, as long as the admissibility condition is met. More speci�cally, recall that
admissibility required that the �ij are i:i:d: with full support. We also assume that the
distribution of the �ij is independent of the size n of N .

For a �xed electorate, N , and measure � on T =
Q

i2N Ti, let s be any strategy pro�le
for the voters3 such that for any candidate positions, y 2 Y , s(y; �) is a quantal response
equilibrium for the voters, as described in the previous section. We use the notation

Vj(y) = Vj(y; s(y; �)) = Et [Vj(y; s(y; t); t)] (4.1)

to represent the expected vote for the candidates j, assuming that the voters follow the
strategy s in response. Then,

Vj(y) =
1

n
Et [jfi 2 N : si(y; ti) = jgj]

=
1

n
E� [E� [jfi 2 N : si(y; � i; �i) = jgj]]

=
1

n
E�

"X
i2N

�si(y; � i)(j)

#
=

1

n

X
i2N

E� i [�si(y; � i)(j)] : (4.2)

We assume that candidates seek to maximize the margin of expected victory. So the
payo� of candidate j 2 K at the pro�le (y; s) is given by:bVj(y) = bVj(y; s) = Vj(y)� max

l2N�fjg
Vl(y): (4.3)

Let

x�� = argmax
x2X

X
i2N

E� i [u (x; � i)] (4.4)

denote the expected social optimum. We assume for each N and �, that such a point
exists and is unique.

Theorem 1 Let u be uniformly bounded. There exists an integer n� such that for any set
of voters N with jN j = n > n�, and any admissible � on T =

Q
i2N Ti, y

� = (x��; : : : ; x
�
�)

constitutes a global equilibrium under the margin of expected victory: for any j 2 K and
yj 2 X, V̂j(y) = V̂j(yj; y

�
�j) � V̂j(y

�), with the weak inequality becoming strict whenever
yj 6= x�:

3To be technically correct, since we are considering N and � to be variables, we should subscript
voter and candidate strategies on these variables. To simplify notation, we leave o� these parameters.
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Proof : For any set of voters N , and admissible �, let y = (yj; y
�
�j), where y

�
l = x�� for all

l 6= j and yj 6= x��. We �rst show that for large enough n, Vj(y) = Vj(yj; y
�
�j) � Vj(y

�).
For z 2 <K, write Q(z) = Gj(z), where Gj is as de�ned in equation (3.3). Given

an individual i 2 N , and using equations (2.8) and (2.10), the probability of a vote for
candidate j is given by

si(y; � i)(j) = Pr

�
max

l2K0�fjg
[U(l; y; s; ti)� U(j; y; s; ti)] � 0

�
= Pr

�
�ik � �ij � �k

i (y; s) � [u(yj; � i)� u(x��; � i)]for k 2 K � fjg
and �i0 � �ij � �j

i (y; s) � [u(yj; � i)� u(x��; � i)]

�
= Q(�i(y; s) � [u(yj; � i)� u(x��; � i)]) (4.5)

where �i(y; s) = (�1
i (y; s); : : : ;�

k
i (y; s)), �

l
i(y; s) = 2Ælji (y; s) +

P
� 6=j;l Æ

�j
i (y; s), for all

l 2 K � fjg, and �j
i (y; s) =

P
� 6=j Æ

j�
i (y; s).

Using equation (4.2) we can express the vote for candidate j as

Vj(y) =
1

n

X
i2N

E� i [�si(y; � i)(j)] (4.6)

Then, from equation (4.5), we have that

Vj(y) =
1

n

X
i2N

E� i

�
Q(�i(y; s) � [u(yj; � i)� u(x��; � i)])

�
Without loss of generality, we can assume utility functions are normalized with u(x�; � i) =
0 for all i 2 N and � i 2 T . Write ui = u(yj; � i), and �i = �i(y; s). Then, the above can
be written as:

Vj(y) =
1

n

X
i2N

E� i [Q(�i(y; s) � u(yj; � i))] = 1

n

X
i2N

E� i [Q(�i � ui)] (4.7)

Using parts (b) and (c) of Proposition 2, normalize the �i by �1 in the following
manner. For i 2 N , let

�i =

�
�1

i

�1
1

; : : : ;
�k

i

�k
1

�T

;

and

D =

264 �1
1 0 0

0
. . . 0

0 0 �k
1

375 :
It is easily shown that �j

i > 0 for all i 2 N and j 2 K, so that �i is well de�ned. By
parts (b) and (c) of Proposition 2, and using the fact that all terms are positive, it can be
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shown that limn!1 �ji = 1 for all i 2 N , j 2 K, where the convergence is uniform with
respect to y, �,and s. So for any �, we can �nd a large enough n� such that if n > n�,
then j�ji � 1j � �, and simultaneously, �j

i � � Then, we can write

Vj(y)� Vj(y
�) =

1

n

X
i2N

fE� i [Q (D � �i � ui)]� E� i [Q (0)]g

� 1

n

X
i2N

E� i

�
Q0 (0)D � �i � ui +

1

2
(�i � ui)TQ00 (0) (�i � ui)

�
=

1

n
Q0 (0) �D �

X
i2N

E� i [1 � ui + (�i � 1) � ui]

+
1

2n

X
i2N

E� i

�
�T

i �Q00 (0) ��i � u2i
�

� k

n
(1� �)�Q�X

i2N
E� i [ui] +

k2

2n
�2Q��X

i2N
E� i

�
u2i
�

(4.8)

where Q0(0) is a k dimensional vector consisting of the gradient of Q evaluated at 0,
Q00(0) is a k � k symmetric matrix of second partial derivatives of Q evaluated at 0,
Q� is the smallest element of Q0(0), Q�� is the greatest element of Q00(0), and 0 and 1

represent k dimensional vectors of zeros and ones, respectively. So for small enough �, the
�rst term in the above summation is negative, since Q� > 0 and

P
i2N E� i [ui] < 0, and

the second term is small in absolute value in relation to the �rst if � is small enough. It
follows that for large enough n, the above expression is negative. Thus, for any yj 2 Yj,
Vj(y) = Vj(yj; y

�
�j) � Vj(y

�) with strict inequality whenever yj 6= x��.
Next, we show that for some l 6= j, Vl(yj; y

�
�j) � Vl(y

�). We pick l 2 K � fjg for

which Æjl(y; s) is maximized. For z 2 <K, write Q(z) = Gl(z), where Gl is as de�ned in
equation (3.3). Then we have

si(y; � i)(l) = Pr

24 U (0; y; s; � i)� U(l; y; s; � i) � 0; and
U(j; y; s; � i)� U (l; y; s; � i) � 0; and

maxk2K�fl;jg [U(k; y; s; � i)� U(l; y; s; � i)] � 0;

35
= Pr

24 �i0 � �il � �l
i(y; s) � [u(x��; � i)� u(y�; � i)]; and

�ij � �il � �j
i (y; s) � [u(x��; � i)� u(yj; � i)]; and

�ik � �il � maxk2K�fl;jg
�
�k

i (y; s) � [u(x��; � i)� u(yj; � i)
�
]

35
= Q(�i(y; s) � [u(x��; � i)� u(yj; � i)])

where �i(y; s) = (�1
i (y; s); : : : ,�

k
i (y; s)), with �l

i(y; s) =
P

� 6=l Æ
l�
i (y; s), �

j
i (y; s) =

2Ælji (y; s) +
P

�6=j;l Æ
j�
i (y; s), and �k

i (y; s) = Æjli (y; s)� Ækji (y; s) for all k 2 K � fl; jg.
Using equation (4.2) we can express the vote for candidate l as

Vl(y) =
1

n

X
i2N

E� i [si(y; � i)(l)] =
1

n

X
i2N

E� i

�
Q(�i(y; s) � [u(x��; � i)� u(yj; � i)])

�
(4.9)
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As above, we can assume utility functions are normalized with u(x�; � i) = 0 for all i 2 N
and � i 2 T . As before, write ui = u(yj; � i), and �i = �i(y; s). Then, the above can be
written as:

Vl(y) =
1

n

X
i2N

E� i [Q(��i(y; s) � u(yj; � i))] = 1

n

X
i2N

E� i [Q(��iui)] (4.10)

Note that the above takes exactly the same form as equation (4.6) above, with the
exception of the negative sign. Consequently, an analagous argument to that in (4.8)
establishes that we can �nd large enough n so that Vl(y)� Vl(y

�) is positive. Thus, for
any yj 2 Yj, Vl(y) = Vl(yj; y

�
�j) � Vl(y

�) with strict inequality whenever yj 6= x��: We

have shown that Vj(yj; y
�
�j) � Vl(y

�) and Vl(yj; y
�
�j) � Vl(y

�). So V̂j(yj; y
�
�j) � V̂j(y

�).
So y� is a global equilibrium for the objective function V̂ .

For the case of two candidates, the above theorem can be strengthened:

Corollary 1 If k = 2, then the equilibrium found in Theorem 1 is unique.

Proof : Suppose there is another equilibrium, y. Then for at least one candidate j,
yj 6= x�. Assume W.L.O.G. that j = 2. By Theorem 1, V̂1(y1; y2) � V̂1(x

�; y2) > 0: Hence,

V̂2(y1; y2) < 0: But this cannot be an equilibrium for candidate 2, Since V̂2(y1; x
�) � 0 >

V̂2(y1; y2): This yields a contradiction. Hence the equilibrium is unique.

Note that in the equilibrium de�ned by Theorem 1, that y�j = y�l = x�� for all j; l 2 K.
Hence, we have u(y�j ; � i) = u(y�l ; � i) for all j; l 2 K. Thus, the level of abstention in
equilibrium is determined by V0(y

�; s) = 1
n

P
i2N E� i [si(y

�; � i)(0)]. But

�si(y
�; � i)(0) = Pr

�
max
l2K

�
�U(l; y�; s; ti)� �U(0; y�; s; ti) + �il � �i0

� � 0

�
= Pr

"
max
l2K

"X
� 6=l

Æl�(y; s) � [u(y�l ; � i)� u(y��; � i)] + �il � �i0

#
� 0

#

= Pr

�
�i0 � max

l2K
[�il]

�
:

For example, if ci = 0 for all i 2 N , then under the assumptions we have made, all of the
�il for l 2 K0 are i. i. d. Hence the above evaluates to

1
K+1

. It follows that

V0(y
�) =

1

n

X
i2N

E� i [si(y
�; � i)(0)] =

1

K + 1
:

So that in a two candidate election, one would obtain equilibrium turnout of about two
thirds of the electorate. Of course, the above calculation would be very sensitive to the
assumed distribution of costs of voting.

Thus, asymptotically we �nd that the social optimum is a global equilibrium so long as
preferences are uniformly bounded. Note that this result does not give us any indication
as to how big n� must be.
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5 Conclusions and Extensions

In this paper we have provided a general framework for probabilistic spatial voting models
in large electorates. In particular, we have extended equilibrium results of Coughlin,
Ledyard, and other researchers to spaces of arbitrary �nite dimensionality and elections
with both abstention and arbitrary numbers of candidates. In addition, our model allows
for strategic behavior by the voters.

As an aside, our model is agnostic as to the cause of probabilistic choice. The prob-
abilistic choice in a QRE model can be assumed to arise either as the result of rational
behavior under payo� disturbances (as we have modeled it here), or as the result of
boundedly rational behavior.
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