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Abstract

We address the so-called “roll-off” phenomenon: Selective abstention in multiple elec-
tions. We present a discuss a novel model of decision making by voters that explains
this as a result of differences in quality and quantity of information that the voters have
about each election. In doing so we use a spatial model that differs from the Euclidean
one, and is more naturally applied to modelling differences in information.

1 Introduction

The rational choice (or positive political theory) literature since Downs (1957) has had dif-
ficulty explaining why an instrumentally rational individual will decide to vote if there are
any costs to doing so — the so-called “Paradox of Voting.” In general, the solution to this
problem has been to make the expected (net) benefit of voting positive for at least a subset of
the electorate. This feat has been accomplished by explicitly associating some direct utility
gain (or citizen duty) to the act of voting (Riker & Ordeshook 1968).1 What has been little
∗We are grateful to Colin Camerer, Michel Le Breton and a seminar audience at the Department of Political

Science at University of California, San Diego for helpful comments and discussion.
1This is also true of the game-theoretic models that account for voting, such as Ledyard (1984) or Palfrey

& Rosenthal (1985), where in equilibrium in large elections the only citizens to vote are those with negative
costs to voting.
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recognized, however, is that these explanations fail to account for why a voter once in the
ballot booth would ever choose to abstain from voting in any elections on the ballot. This
selective abstention is often referred to as “roll-off” because voters are more likely to abstain
in races for smaller offices, such as local judge or school board, that are typically listed lower
on the ballot.2 Roll-off is at odds with the explanation mentioned above, since it is in small
elections that the individual’s vote is most likely to make a difference in the outcome, hence
making the expected benefit from voting highest. In this paper we present a formal, decision
theoretic model that explains this “Paradox of Abstention.”

So what explains this phenomenon? It cannot be the costs discussed above, since once in
the ballot booth the voter has already paid all “fixed costs” to voting (or had negative costs
to start with). Besides, such costs apply to all elections on the ballot equally, whereas to
explain roll-off we need something that varies over the races. What differentiates elections is
the amount and quality of information that the voter is likely to have about the alternatives
in each of them. These differences in information generate what we could call information
costs. The latter are the psychological costs that a voter faces in the event that he, not being
completely informed about the candidates, “mistakenly” votes for the wrong candidate.3 For
example, think of a voter is pro death penalty but votes for a candidate for judge who has
sworn never to impose the death penalty. The less informed the voter is, the greater the
possibility for making such a mistake, so that higher informational costs are associated with
the election. As voters acquire more information about an election, we think that they are
more likely to vote on it, since these informational costs are lower.

Our model is an attempt to formalize the logic of this information costs argument for
roll-off. The modelling exercise has two main components, each of which will be of some
independent interest to those wishing to model political phenomena. First, we posit a prefer-
ence structure of a voter under complete information, in order to be able to define a “mistake”
in voting. Although we use a spatial framework, it is not the one of the standard Euclidean
model (Enelow & Hinich 1984). We instead represent the policy space as a product of binary
issues on which the voter and the candidates have well-defined positions — e.g., pro choice
or pro life. As will be made clear below, this set-up is quite general and makes deriving com-
parative statics about levels of information easier. In particular, we do not have to require
that there are only two — or finitely many — types of voters in the election (informed and
uninformed), as is often done in voting models. Instead, a natural metric for how informed a
voter is follows naturally from the set-up. Furthermore, we think that this binary structure
provides a more plausible description of how voters actually view candidates.

The second feature of our modelling strategy is the introduction of a decision theoretic
model that allows the possibility that the “ambiguity” associated with events — which in-
formally depends on the quality and quantity of information at the disposal of the voter –
affect behavior, something that is ruled out in the standard decision model employed in po-

2Strictly speaking roll-off is not the correct term, since it implies that the ballot order matters. Our model
does not rely on ballot ordering nor does the empirical evidence suggest it matters much. See Cox & Munger
(1990) for a discussion.

3Throughout, we use male pronouns for voters and female pronouns for candidates.
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litical science. The model we use is an extension of Gilboa & Schmeidler (1988)’s “maximin
expected utility” with multiple priors.4

These two components allow us to derive general conditions under which we expect an
instrumentally rational voter to abstain. Abstention occurs when the voter is least informed,
for example in elections for small offices in which the press is not interested in covering the
campaign. It is important to note that since we present a decision theoretic model, our results
on abstention specify a map from beliefs to behavior. They could therefore be extended to
a game-theoretic model in which voters condition their action on other voters’ (expected)
actions (formally: strategies).5 The added game structure would just impose restrictions on
the voters’ beliefs as a result of equilibrium reasoning, but itwould not change the predictions
given the beliefs.To place our work in the context of the literature on voting, we should
mention that while most of the formal theoretic literature on voting has sought to explain
why anyone votes (see Aldrich (1993) for a recent review), there have been two recent papers
that have attempted to model abstention. Matsusaka (1995) develops a decision theoretic
model of abstention. The key assumption in his model is that more informed voters get
a higher expected return for voting for the correct candidate then do their less informed
counterparts. If we make voting costless within his framework, then all voters, informed and
uniformed, will vote. Feddersen & Pesendorfer (1996b) assume no (fixed) costs to voting, as
we do, but they generate abstention in a game-theoretic model by inducing a certain type of
correlation in voters’ beliefs about the election. We discuss their approach in more detail in
section 6.

The paper proceeds as follow. We first describe more formally what we mean by ambiguity
and how to model decision making when a voters are ambiguity adverse. The following three
sections contain the theoretical development: In section 3 we present our model of voter
behavior. Section 4 contains the main result describing how a voter decides to vote or
abstain in a given election. The comparative statics are then derived in section 5. The last
section discusses our results and how they might be extended and modified.

2 Information, Ambiguity Aversion and Multiple Priors

Information, or lack thereof, plays a crucial role in understanding voting behavior. Typically
when a voter enters the polling booth on election day he is not completely informed about
all of the policy stances of the candidates or the consequences of every proposition on the
ballot. How does he decide what to do?

The standard approach in formal political models is to assume that the voter maximizes
subjective expected utility (SEU), as described in Savage (1954)’s classical work. The decision
maker chooses among actions, which have consequences that depend on which of several
uncertain “states of the world” occurs. In the case of voting, for example, the set of actions

4See Ghirardato & Katz (1997) for the axiomatic underpinnings of our model. The model has some
similarity to “minimax” regret model, used by Ferejohn & Fiorina (1974) to explain the opposite phenomenon
of why people vote.

5An extension that we plan to pursue in future work.
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available to the voter are: In each election, to vote for one of the candidates on the ballot
or to abstain. The unknown states might be the policy positions of the candidates and how
others are going to vote in the election. Although the exact state of the world is not known at
the time of decision, the SEU decision maker forms beliefs on each state’s relative likelihood,
that are represented by a probability measure. These beliefs are subjective, so for instance it
is legitimate for two different voters to have very different beliefs about the same candidates
in an election.

More formally, we let F be the set of possible actions, Ω the state space, and X the
set of possible consequences of actions (so that actions are functions mapping states into
consequences). The voter’s preferences over outcomes are characterized by a function, u :
X → R, called the utility function. A voter who maximizes SEU chooses the action f ∈ F
which maximizes

U(f) ≡
∫

Ω
u(f(ω))P (dω), (1)

the expectation of the utility payoff with respect to a belief P ∈ ∆(Ω).6 The measure P is
obtained by observing the decision maker’s preferences among bets on events (subsets of Ω),
so that it is correct to assert that P quantifies his confidence (willingness to bet) on each
event happening.

As innocuous (and elegant) as SEU maximization seems, there is some reason to question
the extent to which it actually describes choices under uncertainty. One central problem for
our purposes is that it is very rare that the decision maker’s preferences be well-specified
enough to be represented by a probability measure P . In fact, this is less likely to happen the
more “ambiguous” the structure of the uncertainty is: There is by now a wealth of empirical
evidence (Camerer & Weber 1992) showing that the presence of such ambiguity has relevant
consequences on decision maker’s willingness to bet on events. The classical example of this
phenomenon is the so-called Ellsberg paradox (Ellsberg 1961).7

2.1 The Ellsberg Paradox

Ellsberg (1961) presented a number of subjects with an urn containing 90 balls, of which 30
are red while the other 60 are black and yellow in unknown proportion. He then asked them
to consider the following four bets on the urn:

1. $100 if one red ball is extracted, $0 otherwise;

2. $100 if one black ball is extracted, $0 otherwise;
6For a set X, ∆(X) denotes the set of all the finitely additive probability measures on the space (X, 2X),

where 2X is the power set of X. We could make weaker measurability assumptions but it would add small
generality at the cost of additional notation.

7We should note that Ellsberg (1961) did these surveys under (in his words) “absolutely non-experimental
conditions,” so there could be a question as to whether the behavior to be described below is consistently
observed in actual choices. So it seems: A large number of later experiments in both psychology and economics
have given strong support to Ellsberg’s findings (see Camerer & Weber 1992).
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3. $100 if either a red or a yellow ball is extracted, $0 otherwise;

4. $100 if either a black or a yellow ball is extracted, $0 otherwise;

Typically subjects expressed the following preferences:

1 � 2, 4 � 3,

That is (assuming that each subject preferred $ 100 to $ 0), a typical subject was more
confident on the extraction of a red ball than of a black ball, and on the extraction of a red or
yellow ball than of a black or yellow ball. Yet this is not consistent with the assumption that
the subject maximizes SEU, and that his confidence can be measured by some probability
function P over states of nature. To see this, let P (r), P (b), and P (y) be respectively the
probabilities of the event that the ball extracted is red, black, or yellow. Then 1 � 2 implies:

P (r) > P (b),

but 4 � 3 implies (by the additivity of P ):

P (r ∪ y) < P (b ∪ y)
P (r) + P (y) < P (b) + P (y)

P (r) < P (b).

As both inequalities cannot hold, we find a contradiction: SEU cannot rationalize these
choices.

The reason for such choices by subjects in Ellsberg’s surveys is obvious: People tend to
prefer situations in which there is less ambiguity, that is situations in which the structure of
uncertainty is more deeply known. In a sense it is as if the subject’s willingness to bet on
an event is a composition of a pure “likelihood” judgement, and a modifying factor, which
accounts for the quality and quantity of the information that the subject has about the event.
The requisite that the willingness to bet on an event be represented by a probability, a single
number, is what makes the SEU model ill equipped to deal with situations like Ellsberg’s
urn, where there are significant differences in the ambiguity associated with different events.
A SEU maximizer, by construction, does not mind ambiguity.

One might conjecture that ambiguity could be captured even in a SEU framework, by
allowing the decision maker to be uncertain about his beliefs, i.e., to have possibly multiple
conjectures (called first order beliefs), and then to have a belief as to which conjectures are
more correct (a second order belief). This does not quite work, however, for such decision
maker behaves as if he has a precise belief (the average, according to the second order belief,
of his first order beliefs), and so once again does not care about ambiguity.

We should emphasize that the confidence in beliefs, or perception of ambiguity, that we
just discussed is distinct from the spread or risk associated with a particular belief P . A
decision maker could be very certain of his beliefs, but they could still imply a high degree
of risk. An example of such a situation is betting on a particular number to come up on a
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roulette wheel. Clearly this is a risky bet, but assuming that the decision maker thinks the
casino is honest he would be fairly confident of his judgment of the probability of winning.
Bets 1 and 2 in Ellsberg’s paradox are both equally risky, but they are (at least by a majority
of people) associated with different levels of ambiguity.

2.2 Modelling Ambiguity

The task at hand then is to generate a plausible model of behavior when a voter is likely to
have scarce information, and thus perceive ambiguity about the events which are relevant for
his choice. That is, we need a decision theoretic model that can makes for the possibility that
the voter cares about ambiguity. The formal approach we adopt here is based on Gilboa &
Schmeidler (1988)’s model of “maximin expected utility” with multiple priors. The voter’s
beliefs, instead of being characterized by a single probability distribution, are given by a set of
probability distributions C. For every possible action, the voter calculates its expected utility
for every probability in C, and then chooses the action which obtains the largest minimum of
these expectations. When C is a singleton, this is just a SEU decision maker. The larger the
set C, the more ambiguity there is in the decision problem — i.e., the scarcer he considers
his information about the election.

It is easiest to see this property by considering a simple dichotomous event, say whether
or not it will rain tomorrow. A SEU decision maker would summarize his (subjective) beliefs
by the probability that it will rain tomorrow, say 0.5. A decision maker described by the
model just outlined could instead summarize his beliefs by an interval, say by assessing
that the probability of rain tomorrow is between 0.4 and 0.6. The larger the interval, the
less confidence he displays in his judgement. In the limit his belief set could even be the
whole interval [0, 1], and then we would define him to be “completely ignorant” about the
plausibility of that event. Intuitively, such a decision maker has no idea as what his beliefs
should be, so that his set C is just the set of all possible probabilities on Ω.

While the preferences just described embody a heavy dose of pessimism (since the decision
maker acts as if the worst belief is always the right one), it is this pessimism that generates
the ambiguity aversion we need to explain behavior in situations like the Ellsberg paradox.
Subjects do not like the second Ellsberg bet, for example, because there is some possibility
that there are no black balls in the urn, or that there are only a few black balls. Similarly,
they do not like the third bet because there might be few or no yellow balls in the urn either.
The model described above can capture this, as it allows the decision maker to use different
beliefs in evaluating different actions. We should note that this extreme form of pessimism
is not necessary to generate ambiguity averse behavior, and we do not need the full strength
of it for our results, however we postpone detailed discussion of possible relaxations until
Section 6.

A last point on modeling ambiguity aversion: There is an alternative approach suggested
by Schmeidler (1989) that uses a single non-additive probability to characterize beliefs instead
of a set of probabilities. A non-additive probability, P , is between 0 and 1 and is “monotonic”
— i.e., P (E) ≤ P (F ) if E and F are events with E ⊆ F — but not necessarily additive.
That is, possibly P (E ∪ F ) 6= P (E) + P (F )− P (E ∩ F ). The more non-additive the belief,
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the less confident the decision maker is about his beliefs. In many situations these two
approaches yield the same behavioral predictions. However calculating expected utilities
using non-additive probabilities requires using a non-standard notion of integral introduced
by Choquet (1953–54). We chose to use the multiple priors model mostly because of its more
immediate mathematical representation.

3 The Model

We imagine a voter in the ballot booth holding a blank ballot in his hands. Thus all “fixed
costs” of voting are already sunk, and the only cost that the voter is facing is that of making
up his mind on each item on the ballot (but see the discussion in Section 6). In general we
are interested in describing his behavior if the ballot requires him vote on, say, M different
elections. Which elections is he going to vote on, and which ones is he going to abstain on?
To do so, we start by considering his behavior in a single election, given his knowledge on
the issues and candidates at the moment in which he is looking at the blank ballot. We will
then (in Section 5) make a comparison of his behavior in different elections, in which he has
significantly different information. A limitation of this way of proceeding, worth pointing
out from the outset, is that it implicitly assumes that the voter’s choices in one election do
not affect his behavior in another election. We think however that it provides a sufficiently
realistic description of behavior in many circumstances.

So fix one election with two candidates A and B.8 A voter is uncertain about the following
facts: The policy position that either candidate would take if elected in office, and the outcome
of the election in the absence of his vote. We start by delineating a voter’s preferences under
certainty: How he would rank the candidates if she knew exactly their policy position and
could choose to put either of them in office.

3.1 The Voter’s Preferences under Certainty

The policy space is modeled as a product of binary sets Y ≡
∏
i∈N Yi, where each Yi =

{0, 1} and N is the set of the natural numbers. Each i ∈ N is a policy issue on which
the candidate can have either a “yes” or a “no” position.9 As will become clear from what
follows, the discreteness of the space could be relaxed (at the cost of more complexity) without
affecting the nature of our results.10 We assume that the voter has an ideal point in policy
space, which we take without loss of generality to be the 0 vector (so that yi = 1 means
that the candidate’s position on issue i is different from the voter’s). However he does not

8While we will stick to the standard case of two candidates in order to keep notation to a minimum (and
to draw pictures on a two-dimensional page), nothing in the analysis to be presented depends on having two
candidates. All results immediately generalize to the case of more than two candidates.

9We are not excluding that there are only finitely many issues, as will become clear presently when we
discuss the voter’s preference structure: In the notation to be introduced below, then we allow that possibility
by letting wi = 0 but for finitely many i’s for every voter.

10 For example we could assume Yi = [0, 1], which allows us to interpret yji as the probability that candidate
j disagrees with the voter on issue i.
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necessarily care about, nor is he necessarily indifferent among, all the issues: His preferences
are (additively) separable across issues as follows. There is a sequence w = [w1, w2, . . . ] of
real numbers with the property that wi ≥ 0 and

∑
i∈Nwi = 1. That is, wi represents the

subjective weight that the voter assigns to issue i in making his choice; for instance if wi = 1
then he only cares about the candidates’ position on issue i. If certain of the candidates’
position, he will vote for the candidate j ∈ {A,B} who is closer (according to the metric
given by w) to his ideal point. That is, he will vote for, say, candidate A if

−
∑
i∈N

wiy
A
i ≥ −

∑
i∈N

wiy
B
i , (2)

where yj is candidate j’s real position. For j ∈ {A,B}, we let πj =
∑

i∈Nwiy
j
i , the “disutil-

ity” of having candidate j in office if her position is given by yj .
It follows immediately from the structure of voter’s preferences that πj ∈ [0, 1], so that we

can always map the pair (πA, πB) in the square [0, 1]× [0, 1]. Actually more is true: Suppose
that the candidates’ positions are given by the pair (yA, yB), and that the voter can correctly
observe the first n coordinates of each vector. That is, he knows yj(n) ≡ [yj1, . . . , y

j
n] for both

j’s. Then it is clear to him that for every j, πj must lie in the interval I(j, n) = [l(j, n), r(j, n)],
where

l(j, n) ≡
n∑
i=1

wiy
j
i and r(j, n) ≡ l(j, n) +

∞∑
i=n+1

wi.

So, when endowed with this information, he will know that the pair (πA, πB) lies in the square
S(n) ≡ I(A,n) × I(B,n), the sides of which are both equal to the residual sum of weights∑∞

n+1wi. Figure 1 depicts all the relevant sets.
Clearly, as n increases, the square shrinks, eventually collapsing on the real values (πA, πB).

Summing up, we have

Lemma 1 For a voter whose preferences on Y are additively separable and given by the
vector of weights w (where wi ≥ 0, i = 1, . . . , n, and

∑∞
i=1wi = 1), the set S(n) ⊆ [0, 1]

decreases monotonically in n. That is, for m < n,

S(n) ⊆ S(m).

The inclusion will be strict if wi > 0 for some i = m,m+ 1, . . . , n. Moreover

lim
n→∞

S(n) = (πA, πB).

Two other implications of the preference structure are worth pointing out. The first is the
trivial observation that in this model the event that two candidates are indifferent is far from
being exceptional. Consider for simplicity the case of the voter discussed above for whom
wi = 1: Two politicians who have the same position on issue i will be indifferent to this
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Figure 1: The set of possible pairs (πA, πB) and the square S(n)

voter. While this case is somewhat extreme, the fact that indifference is not rare conforms
to our intuition.

The second implication is that quite generally the voter will not need to be perfectly
informed about the candidates’ positions in order to decide which one he likes best: Suppose
that πA 6= πB, that is, the two candidates have different true policy positions, and the
differences matter to the voter. Then there is (finite) n large enough so that either the
interval I(A,n) is all to the right of the interval I(B,n) or vice versa (in the square [0, 1]2

that happens respectively when S(n) is properly below or above the diagonal, see Figure 1).
In the former case, say, the voter knows that he definitely prefers B, whatever he will later
know about her policy position on other issues.

The next step in the construction of the model is to outline the voter’s decision problem:
His possible choices, the state space describing the relevant uncertainty, and the possible
outcomes.

3.2 The Voter’s Decision Problem

The only nontrivial aspect of the exercise here is the description of the space of states of the
world that the voter is facing for the election. One part of the uncertainty is clearly given
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ρ1 ρ2 ρ3 ρ4 ρ5

a A A A T B
b A T B B B
φ A A T B B

Table 1: Election Outcomes

by the results of the election in the absence of the voter’s participation. That is, let Vj be
the number of votes cast by all other voters in favor of candidate j (abstentions are of course
allowed, i.e., we do not require that VA + VB be equal to the number of eligible voters minus
1). Then the set of possible election results is given by R = {ρ1, ρ2, ρ3, ρ4, ρ5}, where ρ1 is
the event that VA > VB + 1, ρ2 is VA = VB + 1, ρ3 is VA = VB, ρ4 is VA = VB − 1, and ρ5

is VA < VB − 1. Thus the event that this particular voter is pivotal in the election is given
by (ρ2 ∪ ρ3 ∪ ρ4). Table 1 summarizes the considerations made so far by plotting election
outcomes (entries correspond to the winner and T stands for a tie) as a result of ρ and the of
the voter’s choice of voting for A (denoted by a), B (denoted by b), or abstaining (denoted
by φ).

The entries of the matrix are however not the ultimate consequences of the decision
problem, which are given by the voter’s utility of having the winner j in office, −πj , as
described in the previous subsection. Here we introduce the second aspect of uncertainty for
the voter: The policy position of the candidates. So in the absence of information on the
candidates’ policy positions, the voter considers the product R × (Y × Y) to be the state
space for his problem. As is tradition in the literature on voting, we assume that the voter
acts instrumentally, that is, he eventually only cares about the election outcome. In the
context of this model this translates into the following state independence assumption: The
voter’s preferences under certainty (i.e., the vector w) are not affected by the result ρ and by
the real policy position pair (yA, yB). This assumption implies that we can without loss of
generality take the voter’s state space to be the set Ω ≡ R× [0, 1]2, so that a state is a triple
ω = (ρ, πA, πB).

3.3 The Voter’s Preferences under Uncertainty

We can now describe the voter’s preferences in the case in which he knows only the first n
coordinates of the candidates’ positions (where n is possibly 0).

To capture our intuition that there is a cost to deciding to vote for either candidate,
which abstaining does not entail, we assume that the voter looks at a problem in which the
payoffs to every action f ∈ {a, b, φ} are renormalized as follows: For every state ω, the payoff
to action f is given by f(ω)− φ(ω). This is what we call a model of choice with abstention
as a reference choice. It corresponds to a form of focused “regret”: A vote for candidate is
ex post (that is, if the real state ω is known) considered a mistake if it yields a worse result
than would be obtained by abstaining.11 Notice that abstention is still potentially a mistake,

11It is different from the standard form of regret known in the literature (see Ferejohn & Fiorina 1974), as
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if it turns out that by voting for an ex post better candidate the voter could have put her in
office. However the renormalization by itself is not sufficient to obtain the result we need, as
the following remark shows.

Remark 1 If the voter is a subjective expected utility (SEU) maximizer he forms a belief
P ∈ ∆(Ω), and chooses the action f which maximizes

U(f) ≡
∫

Ω
(f(ω)− φ(ω))P (dω),

the expectation of the payoff f(·)− φ(·) with respect to P . In this case the renormalization
of the payoffs does not affect his preferences, for it is immediate to use the linearity of the
integral to show that for any two actions f and g, U(f) ≥ U(g) is equivalent to∫

Ω
f(ω)P (dω) ≥

∫
Ω
g(ω)P (dω).

We thus conclude that the existence of a reference choice does not affect the preferences of
a voter who is a SEU maximizer. Later we will show (Proposition 1) that for this reason
the SEU voter does not abstain in an election unless a certain type of correlation between
election results and candidates’ expected values obtains. �

An additional feature is therefore required to obtain the type of behavior that conforms to
our intuition: We need the voter to care proportionally more about losses (with respect to
the yardstick set by abstention) than about gains.

To capture this we also assume that the voter is ambiguity averse, as formalized in the
“multiple priors” model of Gilboa & Schmeidler (1988) that we discussed in Section 2.12

Observe first that we can describe the voter as facing a dynamic choice situation, where
the dynamic aspect is due to the possible different levels of information that might have.
Regarding the process by which he gets information (to be discussed in greater detail below),
we make here the following two key assumptions of truthful and symmetric information: The
voter is given information about the position of both candidates on, say, the first n issues, and
he believes this information to be truthful. We do not think that either assumption is crucial
to our results,13 but dispensing of them would certainly make the analysis more complicated.
The first assumption implies that, for a fixed pair of policy positions (yA, yB), the information
that the voter might obtain is given by the two n-dimensional vectors yj(n) ≡ [yj1, . . . , y

j
n],

for j = A,B, for some n. As a consequence, the complete description of the voter requires a
specification of his preferences for every pair of n-dimensional truncations of (yA, yB).

the latter judges a mistake any action which is not ex post optimal, not only those that fare better than the
reference.

12Gilboa & Schmeidler (1988) provides an axiomatization of the preferences discussed here, but without the
reference choice property. It is simple to see how the latter property can be obtained by strengthening one of
their axioms (see Ghirardato & Katz 1997).

13The first could be relaxed quite easily, while the second could be relaxed by letting policy coordinates be
represented by [0, 1], as discussed in footnote 10.
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In line with the multiple priors model, we assume that his preferences at information
n are represented as follows: There is a non-empty closed and convex set of probabilities
C(n) ⊆ ∆(Ω) such that he chooses according to the mathematical functional U associating
action f with the number

U(f) ≡ min
P∈C(n)

∫
Ω

(f(ω)− φ(ω))P (dω). (3)

Clearly a SEU voter is one for whom C(n) is a singleton. We can now formalize the assumption
of truthful information that we stated above, using what we call consequentialist beliefs:
Each P ∈ C(n) has a support contained in R × S(n). That is, all the measures in the
belief set C(n) assign probability zero to the pairs of payoffs which are impossible given
his information. There is a special case of these preferences which will provide us with an
interesting benchmark:

Example 1 Suppose that the voter is completely ignorant, in the sense that his set of beliefs
is C(n) = ∆(R×S(n)): Any probability satisfying the consequentialist beliefs assumption is in
the voter’s set of possible beliefs. In particular this implies that, for every state ω ∈ R×S(n),
there is a P ∈ C(n) such that P (ω) = 1. Thus, when applying Eq. (3) to an action f , we find

U(f) =
∫

Ω
(f(ω)− φ(ω)) P̂ (dω),

where P̂ is the probability which assigns weight 1 to a state ω which minimizes (f(ω)−φ(ω)).
In other words, the completely ignorant voter behaves in a “maximin” fashion. 4

In general there is no reason to exclude the possibility that the voter’s beliefs entail
stochastic dependence of the result of the election ρ and the candidates’ values (πA, πB). For
instance in recent work Feddersen & Pesendorfer (1996b) (see also Feddersen & Pesendorfer
1996a) show that this will be the case in a game-theoretic model in which all the voters have
SEU preferences and they are aligned in a certain way. In order to simplify the analysis,
in this paper we rule this out by imposing a stochastic independence assumption. This
obviously limits the generality of the model, but it helps putting the specific causes for the
abstention we obtain here in sharper focus. In Ghirardato & Katz (1997) we discuss the
general version of the model, and show that the intuition developed here carries on to the
case where dependence is allowed. We shall therefore assume that the voter’s beliefs satisfy
the stochastic independence assumption: For every n the set C(n) is a “product” of a set
of beliefs on election results, D(n) ⊆ ∆(R), with a set of beliefs on candidates’ values,
E(n) ⊆ ∆(S(n)). Precisely:

C(n) ≡ Conv({P ×Q : P ∈ D(n), Q ∈ E(n)}),

where Conv(X) is the convex hull of X, the smallest convex set containing X. This is
intuitively a generalization of the usual property of stochastic independence to the case in
which there is a set of probabilities, rather than a singleton. We show in Appendix A that
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in the context of this model, stochastic independence implies that the functional U can be
written as

U(f) = min
P∈D(n)

∫
R
F (ρ, E(n))P (dρ). (4)

where

F (ρ, E(n)) = min
Q∈E(n)

∫
S(n)

(f(ρ, πA, πB)− φ(ρ, πA, πB))Q(d(πA, πB)). (5)

This shows that, as it is natural to expect under independence, the set E(n) of beliefs on
the product policy space S(n) does not depend on ρ. It will make the analysis of the model
simpler, as it will allow us to obtain conditions for abstention which do not depend on the
specific election outcome ρ.

We conclude this Section by recapitulating the assumptions that we make about the voter
(which, unless otherwise noted, we shall assume to hold throughout the rest of the paper). We
assume that the voter faces no fixed (i.e., independent of the action and of his information)
costs of voting, and that he has symmetric information about the candidates, i.e., he knows
both candidates’ position on the first n issues, with n ≥ 0. The voter’s preferences under
certainty are determined by the vector of weights w, as represented by Eq. (2), and they are
state-independent, in the sense that the vector w does not depend on the election outcome,
and the candidates’ real position (and also on the voter’s choice). His preferences under
uncertainty are given by the “maximin” functional with a set of priors C(n) where abstention
is a reference choice, as represented in Eq. (3). Moreover his set of beliefs C(n) reflects
stochastic independence of election results ρ ∈ R with the candidates’ (values of) policy
positions (πA, πB) ∈ S(n).

4 To Cast or Not to Cast: Abstention in a Single Election

Having set up the model, we are now ready to ask the main question, which is under what
conditions the voter will strictly prefer abstaining over voting for a candidate. As before,
we are assuming that the voter is in the ballot booth, and we are fixing his information at
the first n coordinates of the candidates’ positions. Also, we assume that the tie-breaking
rule for the election is a coin toss, so that the voter thinks that the T outcome corresponds
to a 1/2 probability of getting A and a 1/2 probability of getting B.14 As we will discuss
in Section 6, our results would hold also if the tie-breaking rule were confirmation of the
incumbent (assuming that there is one).

The first step is calculating the values of the function F representing the voter’s expec-
tation of action f under result ρ (given his beliefs on the values space E(n)). Table 2 plots
the values of F (·, E(n)) for every action f in the choice set {a, b, φ}. In the table, we let

14We are assuming that the coin toss is perceived to be independent of the realization of the other relevant
uncertainty. The fact that the voter has a single probability for the coin toss conforms with the model of
Gilboa & Schmeidler (1988) (which is framed in an Anscombe & Aumann (1963) environment).
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ρ1 ρ2 ρ3 ρ4 ρ5

a 0 0 min
Q∈E(n)

1
2ψ(Q) min

Q∈E(n)

1
2ψ(Q) 0

b 0 min
Q∈E(n)

− 1
2ψ(Q) min

Q∈E(n)
− 1

2ψ(Q) 0 0

φ 0 0 0 0 0

Table 2: The Graphs of Action Payoffs

ψ(Q) ≡
∫
S(n)

(πB − πA)Q(d(πA, πB)).

The calculation of these values is explained as follows: Consider for instance action a in
state ω = (ρ3, πA, πB). Its payoff a(ω) is given by −πA (since A is elected). The payoff to
abstention is instead

φ(ω) = (1/2)(−πA) + (1/2)(−πB),

since in such a case a coin toss decides who is elected. Subtracting we obtain

a(ω)− φ(ω) = (1/2)(πB − πA),

which, when integrated with respect to a Q ∈ E(n), gives (1/2)ψ(Q). The calculation of the
other values is worked out similarly.

There is an immediate observation that we can make. Suppose that the set E(n) of voter’s
beliefs on the policy space is a singleton. That is, E(n) = {Q}. Then it must be the case
that if the non-zero values of, say, a are equal to α > 0, the non-zero values of b are negative,
being −α. This immediately implies that

U(a) ≥ 0 = U(φ) ≥ U(b),

since the three values correspond eventually to the integral of, respectively, a non-negative,
zero, and non-positive function. In this case, while abstention could still be a weakly optimal
choice, it will never be strictly preferred. In fact, it is easy to see under which conditions
on the set D(n) choosing a is strictly better for the voter: Suppose that D(n) contains only
measures P which assign positive probability to the event (ρ3 ∪ ρ4). Then clearly

U(a) = α

(
min

P∈D(n)
P (ρ3 ∪ ρ4)

)
> 0.
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Thus we have that if the voter’s beliefs on the policy space are extremely precise, abstention
is going only to be a knife-edge choice, which depends on fairly specific beliefs on the election
result space. What is interesting is also that in proving this we have not really made use
of some of the assumptions in our model. For instance, we made no use whatsoever of
the assumptions of symmetric information and consequentialist beliefs (the support of the
distribution Q is irrelevant). Summarizing we have

Proposition 1 Consider a voter whose preferences are as described in Section 3, but whose
beliefs are not necessarily consequentialist. Then if his beliefs on the policy space E(n) are
given by a singleton Q, he will never strictly prefer abstaining over voting. Moreover, if his
beliefs on the election result space D(n) are such that for every P ∈ D(n), P (ρ3) > 0, then
he will never choose to abstain if the expected difference in value of the candidates ψ(Q) is
different from zero.

The following remark shows that the driving force behind this result is the stochastic indepen-
dence assumption: As we observed above and discuss elsewhere (Ghirardato & Katz 1997),
abstention can be obtained (as a unique optimum) also with a single prior, but only if a
specific type of correlation between results in R and policy positions in [0, 1]2 obtains.

Remark 2 While we have to chosen to present Proposition 3 in the context of our model
where abstention is a reference choice, even that assumption could be dispensed with. That
is, it is possible to prove the following: Consider a voter whose state-independent preferences
under certainty are described by Eq. (2), and whose preferences under uncertainty are rep-
resented by the multiple prior model with stochastically independent beliefs. He will never
strictly prefer abstention if his belief set on the policy space E(n) is a singleton. In other
words, under stochastic independence of the policy positions from election results, a voter
with a single prior would not abstain in a nontrivial fashion. Notice that this result is true
regardless of whether the voter is ambiguity averse on the election results space. So the result
applies to a SEU voter, for whom C(n) is a singleton. �

The previous considerations tell us that in order to obtain nontrivial abstention, that is,

U(φ) > U(a) and U(φ) > U(b), (6)

we have to allow the set E(n) to contain more than one point. Let us however proceed in a
slightly backward fashion, and start by assuming that we have conditions insuring that both
a and b are non-positive functions on R (that is, all the entries on row a in Table 2 are zero
or negative, and similarly for b). That is, assume that we found an E(n) such that

min
Q∈E(n)

ψ(Q) < 0 and min
Q∈E(n)

−ψ(Q) < 0. (7)

Then we of course have that abstention is (weakly) optimal, in the sense that U(φ) ≥ U(j)
for j ∈ {a, b}. As for strict optimality, we have the following simple result:
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Lemma 2 Suppose that the voter is described by the model in Section 3, and that Eq. (7)
holds. Then abstention is a strictly preferred action (i.e., Eq. (6) holds) if and only if the
set D(n) contains a measure Pa such that Pa(ρ3 ∪ ρ4) > 0 and a measure Pb such that
Pb(ρ2 ∪ ρ3) > 0.

Clearly the condition in the Lemma is satisfied if the voter has some prior in D(n) assigning
positive probability to a tie. This is true even if D(n) is a singleton, a fact that, when joined
with Remark 2, shows that ambiguity aversion on R does not really play any significant role
in explaining abstention.15

Now we come to the more interesting problem of showing when it is true that Eq. (7)
holds. This turns out to have a nice graphical intuition. In fact observe that for every
Q ∈ E(n), we can rewrite

ψ(Q) =
∫
S(n)

πB Q(d(πA, πB))−
∫
S(n)

πAQ(d(πA, πB)) = ΠQ
B −ΠQ

A, (8)

where we let ΠQ
j ≡

∫
πj Q(d(πA, πB)). Clearly every Q ∈ E(n) can be identified with the pair

of expected values (ΠQ
A,Π

Q
B) ∈ S(n). Let Π(E(n)) be the set of all such pairs, that is,

Π(E(n)) ≡ {(xA, xB) ∈ [0, 1]2 : xA = ΠQ
A and xB = ΠQ

B for some Q ∈ E(n)}.

It is easy to see that the assumptions on E(n) imply that Π(E(n)) is a closed convex subset
of S(n). Figure 2 depicts the Π(E(n)) (the shaded polytope) induced by a set of priors
E(n) generated by six measures. Using Eq. (8) we observe that the problem of minimizing
ψ(Q), for Q ∈ E(n), is just the problem of finding the point (xA, xB) in the set Π(E(n))
which minimizes xB − xA, that is the point which touches the function in the linear family
xB = xA + k, k ∈ R, with the highest intercept k. In Fig. 2 this point is denoted by x.
Symmetrically, minimizing −ψ(Q) is tantamount to looking for the point in the set which
touches the function in the same linear family with the smallest intercept, denoted by y in
Fig. 2. Both the minimized values are negative (i.e., Eq. (7) holds) if the point x lies above
and the point y below the diagonal of the [0, 1]2 square, for then clearly xB = xA + k for a
positive k, and yB = yA + h for a negative h.

The situation depicted in Fig. 2 is representative of when Eq. (7) holds: This happens if
and only if the set Π(E(n)) is nontrivially separated in two parts by the diagonal, so that in
Π(E(n)) there is at least a point above, and at least a point below, the diagonal. We have
thus proved the following

Lemma 3 For a voter described by the model in Section 3, Eq. (7) will hold if and only if the
set Π(E(n)) contains (at least) a point above the diagonal D ≡ {(xA, xB) ∈ [0, 1]2 : xA = xB}
and (at least) a point below D. Formally: There are a point x ∈ D and two measures
Q,Q′ ∈ E(n) and an α ∈ (0, 1) such that, if we let Q′′ = αQ+(1−α)Q′ and ΠQ′′ be the point
in Π(E(n)) corresponding to Q′′, x = ΠQ′′.

15In the context of this model, since there are no costs to voting. Obviously it would play a more significant
role if there were costs to voting.
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Figure 2: The set Π(E(n)) and the points x and y

Clearly Lemma 3 implies a slightly stronger version of the first result of Proposition 1: If
the set Π(E(n)) is only a single point (as would be the case if E(n) were a singleton) then
Lemma 3 trivially implies that Eq. (7) cannot be satisfied: One of the two minima must be
non-negative. For instance, suppose that the set Π(E(n)) = {y}. Then (the minimum of)
−ψ(Q) > 0, while obviously ψ(Q) < 0.

Adding the two Lemmata together, we obtain necessary and sufficient conditions for the
voter here described to abstain nontrivially in the election. Notice that regardless of whether
the assumptions of Lemma 2 hold, if one of the two strict inequalities in Eq. (7) fails then
clearly abstention cannot be strictly optimal. In fact then there is an action f ∈ {a, b} which
is non-negative, so that U(f) ≥ U(φ) (see also Corollary 1 below).

Theorem 1 Assume that the voter is described by the model of Section 3. Then he will
strictly prefer abstaining over voting for either candidate (i.e., Eq. (6) holds) if and only if
his belief sets D(n) and E(n) satisfy both the following conditions:

(i) D(n) contains a measure Pa such that Pa(ρ3 ∪ ρ4) > 0 and a measure Pb such
that Pb(ρ2 ∪ ρ3) > 0;

(ii) E(n) contains two points Q,Q′ ∈ E(n) for which there is x ∈ D and α ∈ (0, 1)
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such that, if Q′′ = αQ+ (1− α)Q′, x = ΠQ′′.

It is immediate to characterize the cases in which abstaining is indifferent to voting for one (or
both) candidates. Adding everything together provides necessary and sufficient conditions
for abstention to be weakly optimal, i.e., there is no f ∈ {a, b} such that U(f) > U(φ).

Corollary 1 The voter weakly prefers abstention over voting for either candidate if and only
if either the conditions of Theorem 1 hold, or both the minima in Eq. (7) are non-positive,
or finally if one of the minima is positive and the set D(n) only contains measures which
assign positive probability to the ρ on which the corresponding action is equal to zero.16 (For
instance if, say, we have minQ∈E(n) ψ(Q) > 0, then we need that P (ρ3 ∪ ρ4) = 0 for every
P ∈ D(n).)

The second condition in Corollary corresponds graphically to the case in which the the di-
agonal D is “tangent” to set Π(E(n)): it weakly leaves it all to one side (this would hap-
pen for instance if the voter expected to be indifferent among the two candidates, so that
Π(E(n)) ⊆ D). The third corresponds to the case in which the diagonal leaves the set Π(E(n))
properly to one side, but beliefs on R are such that the voter thinks it impossible that his
vote will determine the election of the clearly better candidate.

Remark 3 Turning the conditions in Corollary 1 on their head tells us when the voter will
strictly prefer to vote for one of the two candidates over abstaining. In particular suppose
that the set Π(E(n)) is properly to one side of the diagonal and every measure in D(n)
assigns positive (possibly very small) probability to a tie (ρ3).17 Then there is a candidate
such that voting for her is strictly better than abstaining: For instance suppose that Π(E(n))
is all below the diagonal, then if the condition on D(n) holds voting for candidate B will be
strictly preferred to abstaining, and to voting for A. �

Finally, it is interesting to observe when the “completely ignorant” voter described in Exam-
ple 1 satisfies the conditions of Theorem 1, for that obviously provides an “upper bound” to
the degree of abstention: If the completely ignorant voter does not abstain, then any voter
with the same preferences (under certainty) and a smaller set Π(E(n)) will not abstain.

Example 1 (continued) If the voter is completely ignorant (with strongly independent
beliefs) then D(n) = ∆(R) and E(n) = ∆(S(n)), so that in particular Π(E(n)) = S(n). Then
condition (i) in Theorem 1 is clearly satisfied. Condition (ii) is satisfied if the square S(n)
is nontrivially intersected by the diagonal, as is for instance the case in Fig. 1. Formally,
it is satisfied when r(B,n) − l(A,n) > 0 and r(A,n) − l(B,n) > 0. On the other hand, a
voter who is completely ignorant on election results would never strictly prefer to vote for a
candidate, say B, even if the square S(n) were all below the diagonal (so that he is certain
that candidate B is better than A). In fact then there is a measure in D(n) which assigns
probability zero to the event (ρ2 ∪ ρ3) on which the voter is pivotal and determines B’s

16Notice that it is impossible that both minima in Eq. (7) be positive.
17 More generally we could require: Every P ∈ D(n) is such that P (ρ2 ∪ ρ3) > 0 and P (ρ3 ∪ ρ4) > 0.
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victory, and that measure will be used in evaluating the expectation of b, giving U(b) = 0.
That is, “maximin” behavior on the matrix in Table 2 implies that the only action that can
be strictly optimal is abstention. That is admittedly quite extreme, but as we mentioned
before, we think of complete ignorance only as a limiting case. 4

5 Clueless vs. Sherlock Holmes: Roll-off and the Compara-
tive Statics of Information

Having characterized the conditions under which a voter will choose to abstain in a given
election, we now move to analyzing how he will behave across different elections, when he
is endowed with different information across them. In particular, we expect that he will
have more information in large elections (elections with a large electorate, e.g., that for the
President of the U.S.) than in small elections (e.g., school board elections), and so we are
interested in seeing how his behavior will be affected by the size of the election.

Our analysis here is divided in two parts. The first discusses the comparative statics
problem of how the behavior of the voter in one election is affected by his information on the
two candidates. The second part uses the comparative statics result to compare the behavior
across different elections.

5.1 Comparative Statics in a Single Election

We are interested in comparing the voter’s behavior when he has m pieces of information on
the candidates’ policy position and when he has n pieces, with m < n. Let us start by making
an assumption on the beliefs on R which will make the analysis less trivial and cleaner. This
we dub the relevance assumption: For every n and every measure P in D(n), P (ρ2 ∪ ρ3) > 0
and P (ρ3 ∪ ρ4) > 0. It is for instance satisfied if (as we assumed in Remark 3) every D(n)
contains only measures which assign a positive probability to a tie. More in general relevance
requires that, regardless of his information (and hence of the size of the election), the voter
believes that there is a positive (albeit possibly vanishing) probability that he is pivotal.
Conditionally on being pivotal, the voter is also not certain that a specific candidate will win
by one vote if he does not cast his vote. That is, there is a positive probability that the voter
actually determines the winner of the election, rather than just causing a tie (this explains
our choice of name for the assumption).

It is immediate to go back to the results of the previous section, and to observe why
relevance makes our analysis sharper. First of all if relevance holds then condition (ii) of
Theorem 1 is satisfied (by every P in this case). Second, (as we observed in footnote 17)
if the set Π(E(n)) is strictly to one side of the diagonal D, then under relevance the voter
strictly prefers voting for one candidate over abstaining.

The comparative statics results follow immediately from Lemma 1 and the conditions for
abstention. Suppose that given m pieces of information the square S(m) has no intersection
with the diagonal D. Then as observed above, the voter strictly prefers to vote for some
candidate, say A. Imagine now that the voter learns more about the two candidates: He
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learns about the candidates’ positions on n−m additional policy issues. The set of possible
candidates values is now given by the square S(n) ⊆ S(m). By consequentialist beliefs, after
“updating” his belief set he will have the possible values’ set Π(E(n)) ⊆ S(n) ⊆ S(m), so
that he will still prefer to vote for A. This will in particular be true for the voter who is
completely ignorant on the policy space, as we discuss in the following

Example 1 (continued) Consider a voter whose beliefs on the election results space satisfy
relevance (and hence cannot reflect complete ignorance), and whose beliefs on the policy
space are completely ignorant, i.e., for every n, Π(E(n)) = S(n). The observation above
immediately implies that the voter will strictly prefer abstaining for every n such that S(n)
has a nontrivial intersection with D. Suppose that the real policy positions of the two
candidates, labeled (ŷA, ŷB) are such that the associated values (π̂A, π̂B) are distinct (so that
they do not give a point on D), say π̂A < π̂B.18 Then, by the observation after Lemma 1,
there is a finite n such that after receiving n pieces of information S(n)∩D = ∅, so that the
voter switches to voting for A forever (i.e., for any additional piece of information). Thus he
abstains with poor information, and votes with sufficient information.

A nice feature of completely ignorant beliefs is that, due to the observation above, the
set Π(E(n)) shrinks monotonically in n, which implies that whenever the voter decides to
vote for one candidate, he will not change his mind after knowing more information. Also,
abstention is naturally observed for low values of n, as long as the voter cares for more than
very few issues. 4

For the voter who is not completely ignorant, things are unfortunately not so stark. When
S(n) has a nontrivial intersection with the diagonal (so that also S(m) does), it is possible
that more information will make the voter switch from, say, voting for A to abstaining. In
fact, we have not excluded the possibility that the set Π(E(m)) is all above the diagonal,
and the set Π(E(n)) has some point below it, which yields a vote for A with m pieces of
information, and an abstention with n pieces of information. What does happen in general
is that, assuming once again that π̂A 6= π̂B, there is a finite n such that after knowing the
candidates’ position on n issues the voter switches definitely to voting for the best one, and
this regardless of how he dynamically modifies his beliefs. This is of course just a consequence
of Lemma 1 and the consequentialist beliefs assumption.

Proposition 2 Given a voter satisfying the assumptions of Section 3 and relevance, if the
true values of the candidates are different, say π̂A < π̂B, then there is N such that when the
voter knows n ≥ N pieces of information, he will vote for A, whatever his (consequentialist)
beliefs.

The problem is that not much more can be said about what he will do for values n ≤ N , not
unless we put some constraints on the dynamics of belief sets. Looking back at the example
of the completely ignorant voter, one might think that an obvious sufficient condition for the
voter to behave monotonically (i.e., he might start by abstaining, and then switch to voting

18Otherwise we will not be able to obtain strict preference for any action in the limit.
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for one candidate forever) is that the belief sets shrink monotonically, Π(E(m)) ⊆ Π(E(n)).
That is certainly going to yield the required result, but it is too strong a condition, as the
following example shows.

Example 2 Suppose that the voter has a single prior Qn(·) ≡ Q(·|S(n)) on policy space, and
updates it according to Bayes’s rule. Assume that his prior assigns positive probability to the
actual pair of values (π̂A, π̂B), so that Bayesian updating works for every information vector
he might have. The condition that Π(E(m)) ⊆ Π(E(n)) then implies that for j ∈ {A,B},∫

S(m)
πj Qm(dπ) =

∫
S(n)

πj Qn(dπ).

Thus the only way in which a Bayesian updater can satisfy the condition above is by having
beliefs which always assign the same expectation to the values of the candidates. But it is
immediate to see that, except in trivial cases, this will not be true: Bayesian updating will
in general have the effect of moving the expectation of the candidates’ values around. It also
easy to construct an example in which the expectation bounces many times above and below
the diagonal, moving the voter’s preferences on candidates back and forth. 4

A similar problem could arise if we had a voter whose beliefs are not necessarily represented
by a single prior, but who updates his beliefs in the following “naive Bayesian” fashion:
Suppose that with m pieces of information his beliefs are given by the set E(m), and that he
learns n −m additional coordinates of the candidates’ policy position. Then he “updates”
E(m) into E(n) as follows: For every Q ∈ E(m), he discards Q if it is incompatible with (i.e.,
assigned probability 0 to) the observation of the additional coordinates; He updates Q using
Bayes’s rule if it is compatible, and puts the resulting measure Q′ in the set E(n). Then, once
again, it can easily happen that the set Π(E(m+1)) is larger than the set Π(E(m)), violating
monotonicity.19 As for Example 2, it is easy to construct examples of dynamic preferences
which bounce around between voting for the two candidates.

Remark 4 This is probably a good point to make a (fairly technical) comment about learn-
ing and Bayesian updating. A well-known result on Bayesian updating by Blackwell & Dubins
(1962) shows that if the beliefs of a voter are given by a single priorQ and assign positive prob-
ability to the true values’ pair π̂ = (π̂A, π̂B), then his posterior Qn will converge (“merge”) to
a probability degenerate on π̂.20 This in particular implies that the expectation according to
Qn will also get closer to the truth π̂. So, while Lemma 1 insures that consequentialist beliefs

19The same would happen with an updating rule discussed by Gilboa & Schmeidler (1993), which is a
refinement of the one discussed here. That rule discards all priors which do not give maximum likelihood to
the observed evidence.

20In fact in the context of this model a much stronger result could be obtained. For instance, to obtain
merging it is only necessary that truth is in the support of the voter’s prior beliefs (and this also insures that
the beliefs obtained by Bayesian updating are consequentialist). That is, every neighborhood of π̂ is given
positive probability by Q.
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must converge to a small neighborhood of truth in finite time, the merging due to Bayesian
updating might make the convergence to truth faster.21

A similar result could possibly be proved for the voter with multiple priors, if he, say,
updates his beliefs according to the naive Bayesian rule outlined above. Assume that at
least one prior in the voter’s belief set E(n) assigns positive probability to truth. Then,
we conjecture that as a result of the updating rule the set E(n) will merge to a measure
degenerate on truth, in the sense that for every ε > 0 there is an N such that for all n ≥ N ,
the expected values with respect to Q, for every Q ∈ E(n), will be in a ball of radius ε around
π̂. This type of convergence however will likely take place at the same speed as the one due
to Lemma 1, for if there are in the initial set priors which do not assign positive probability
to truth (more in general, do not merge), these will eventually be ruled out due only to the
collapse of the set S(n). Faster convergence might again take place if all the priors in the
initial set satisfy the condition for merging. Even then we have the problem that the speed
of convergence will vary from prior to prior (and hence from set to set). Thus it seems that
in general we can only say: The presence of Bayesian updating can make the shift towards
a definite choice of one candidate take place a bit sooner than the monotonic reduction of
S(n), but not necessarily. �

While the previous considerations show that the nice monotonicity of behavior that we
observe in the case of the completely ignorant voter will not be observed in general, one might
wonder whether there are conditions on his beliefs which will make the voter only oscillate
between voting for one candidate and abstaining. Interestingly, this happens under a fairly
general condition. Before seeing it, it is useful to look at a stronger assumption which is quite
transparent. Suppose that π̂ 6∈ D, say π̂A < π̂B, and that for every n, π̂ ∈ Π(E(n)), the true
value is always in the set of values that the voter considers possible. Then by Theorem 1
and Remark 3, the only possibilities are that he either abstains or votes for A, the better
candidate. This will depend on whether the set Π(E(n)) contains also a point below the
diagonal.

The condition above is however still a bit too strong. For instance it would not neces-
sarily be satisfied even if the voter assigned a positive probability to truth. The following
generalization might however be satisfied in a significant number of cases. We say that the
voter has sign-correct beliefs if for every n his belief set E(n) contains at least a prior Q which
has the same sign as truth. That is, if the true values are such that π̂A < π̂B then∫

S(n)
πAQ(dπ) <

∫
S(n)

πB Q(dπ).

In other words, there is a prior in the voter’s belief set which assigns sufficient weight to
the event that πA < πB (so that the expectations are also above the diagonal). Clearly this
generalization works for the same reason as the proposal we discussed above, so we finally
obtain

21Precisely, by faster convergence we mean the following: For every ε > 0, if the set S(n) is contained in
the ball of radius ε around π̂, then the expectation according to Qn is also in the ball, and is possibly much
closer than ε to π̂.
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Proposition 3 Suppose that the voter satisfies the assumption of Section 3 and relevance,
that π̂ 6∈ D and that the voter has sign-correct beliefs. Then for every n ≥ 0 he will either
abstain or vote for the best candidate.

5.2 “Large” vs. “Small” Elections

Having observed how the voter described in Section 3 will behave in a single election according
to the amount of information he has regarding the candidates, we now move to comparing
his behavior across different elections. Doing this properly requires a full model of how
information gets transmitted from candidates to media, and then to voters. For the sake of
brevity in this subsection we only develop a “reduced form” model of information acquisition,
which we hope still captures some important features of the process by which voters receive
information. The extremely simplified picture we have in mind is that of a voter who has,
prior to relocating himself into the ballot booth, spent all his life in front of a TV, which
every now and then provides him with news programs discussing the positions of candidates
on different elections. As we pointed out before, we make the fairly innocuous assumption
that information bits have the form of a comparison of the two candidates on their relative
position regarding an issue. That is, they are of the form: “On the issue of whether permanent
residents should be allowed to buy firearms, candidate A has restated his favorable position,
while candidate B strongly opposes it.” More substantially, we also assume that the voter
receives stark information, and believes it.

Besides these assumptions, which we believe to a significant extent relaxable without
altering the nature of our results, our caricatural description of the voter shows that in this
subsection we implicitly view him as a passive subject in the information retrieval stage. Of
course nothing in the model developed so far depends on the way information is gathered
(except for the two assumptions we just mentioned), but in the analysis here we prefer just
to assume that information is handed out by the media to the voter who collects it costlessly.
Modelling active (and costly) search for information on part of the voter requires discussing in
depth the issue of the value of information in this model, and introduces serious complications
to the analysis. We thus prefer to leave it as an important task for future research.

The same is said for the part of the model dealing with the supply side of information.
Leaving aside the question of the strategic revelation of information on part of the candidates
(another crucial aspect to be included in future developments), it is clear that a complete
model of the information about different elections must carefully describe the media’s in-
centive to provide such information. We expect, though, the following result to hold in any
model of information provision by media: Except for very small electorates, the larger the
electorate for a given election is, the more likely it is that a new piece of information regarding
that election will be provided.22 The intuitive reason for this is that the larger the electorate,
the more the media will be interested in broadcasting information about an election, for a

22The exception is due to the fact that for elections with a very small electorate, the monotonicity might be
going in the opposite direction: The smaller the electorate, the higher the amount of information (everybody
knows everybody) available about the election. As we shall see below, this is totally in line with the prediction
of our model.
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larger share of the audience will be (at least marginally) interested in knowing more about
the candidates. The same could be said of elections which, for one reason or another, are
more salient in the media’s (and presumably public) opinion. For instance propositions on
delicate issues, such as California’s recent Prop. 187, restricting undocumented immigrants
access to state services.

Suppose therefore that there are two elections on the ballot, which we denote 1 and 2.
Each election i, i = 1, 2, has two candidates Ai and Bi competing. Imagine that the voter
has m bits of information on election 1, and n > m bits on election 2.23 Since we are now
in a truly multi-election set-up, we also have to specify the voter’s preferences in this more
complex environment. To do this, we take the easiest possible formulation and make the
following assumptions. We assume that the voter’s preferences under certainty for the pair of
election outcomes are additively separable. That is, there are vectors w1 and w2, representing
the voter’s preferences among candidates in election 1 and 2 respectively, and the utility of the
pair of candidates (j1, j2), ji ∈ {Ai, Bi}, being elected is the sum of the two values obtained
as in Section 3. Abstention is a reference choice in both elections, and the voter’s (sets of)
beliefs are assumed to be stochastically independent across the two elections and satisfy all
the other assumptions of Section 3. This implies that the voter makes separated choices in
the two elections: He chooses in election 1 the action which is optimal for that election alone,
and then does the same for election 2. While additive separability of preferences is restrictive
and material to the analysis here, stochastic independence is assumed only for expository
purposes, and it could be relaxed without altering the nature of our results (which are based
on the dynamics of the supports, and not on the specific form of the beliefs). Finally, as in
the previous subsection we rule out some trivial cases by assuming that the voter’s beliefs
satisfy relevance for every election.

As before, we start by discussing the completely ignorant voter, who as usual provides
the cleanest results and a useful benchmark case.

Example 1 (continued) Here the voter has beliefs on election 1 given by the set E1(m) =
S1(m) and on election 2 given by E2(n) = S2(n). As we pointed out in the previous subsec-
tion, in this case the voter with n bits of information abstains in election i if the set Si(n)
intersects the diagonal. That is, if we let π̂i be he true values’ pair for election i = 1, 2 we
have

Proposition 4 Suppose that π̂1 6∈ D and π̂2 6∈ D. There is m ≥ 0 small enough and n large
enough such that the voter abstains in election 1 and votes in election 2.

Clearly we have to allow m = 0 since it is possible that the voter only cares about the first
issue on election 1, so that w1

1 = 1. 4

When the voter is not completely ignorant, we cannot conclude that he will abstain with
little information, but we expect that to be the case if his beliefs are sufficiently spread out,

23Without any loss of generality, we label the issues on each election according to the order in which they
are presented to the voter. That is, the candidates’ position on issue 1 is the first bit of information given to
the voter regarding the election, and so on.
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so that condition (ii) of Theorem 1 holds. Also Proposition 2 implies that for n large enough
the voter will strictly prefer one of the candidates (unless they are truly indifferent to him).

Proposition 5 Suppose that the voter satisfies the assumptions mentioned above, and that
π̂1 6∈ D and π̂2 6∈ D. Then there is an m ≥ 0 small enough and n large enough so that the
voter might (if set Π(E1(m)) satisfies condition (ii) of Theorem 1) abstain in election 1 (he
might vote for the correct candidate, if his beliefs are sign-correct), while he certainly votes
in election 2.

While it is as not as stark as one might like, we believe that this Proposition captures
most of our intuition on the “paradoxes” of the patterns of voting. We expect a voter with
little information about an election to be quite “uncertain” about the possible values (more
generally: the possible ranking) of the candidates. That is, he has a fairly large Π(E(m))
with a nontrivial intersection with the diagonal D, and thus strictly prefers abstaining over
voting for the possibly “wrong” candidate. On the other hand, when well-informed about
the positions of the candidates, the voter’s beliefs are naturally more concentrated, and
(especially if one candidate is significantly better than the other) he is likely to cast his vote
for the “right” candidate.24

A couple of observations are now in order. Notice that the size of the m and the n in
Proposition 5 depend quite crucially, via Lemma 1, on the form of the vectors wi, i = 1, 2. If
the voter cares only for few issues which are discussed early on, then he will switch to voting
for the best candidate very soon.25 Another factor which (for given vector wi) affects the
speed at which the voter switches definitely to voting is the distance of the two candidates
in terms of values: The farther π̂i is from D, the sooner the switch will take place. Thus
for instance our model predicts lower abstention in elections in which there are few very
salient policy issues (wi is positive for a small number of issues for most voters), possibly
heavily discussed by the media, like a number of California’s Propositions in recent years.
Analogously, we do not necessarily predict that voters will abstain in elections with a small
electorate (say, the school board elections), especially when these elections are based on a
small number of issues, and the election is so small that the voter might have good information
(like “my neighbor knows him and says...”) about the candidates’ position on these issues.

6 A Discussion of the Other Candidates

Having seen the model and its implications for voting in multiple elections, it is now a
good time to pause and analyze our choices and the possible alternatives. We start by

24It will not have escaped the reader’s attention that in this model there is by construction “information
aggregation” for high levels of information of the voters. Clearly the assumption of consequentialist beliefs is
the driving force behind this. Whether elections aggregate information in other set-ups is however subject of
current research (see Austen-Smith & Banks 1996, Ledyard 1989, McKelvey & Ordeshook 1985).

25Remember that the numbering of issues refers to the order in which they are discussed, not to their
importance for the voter.

25



discussing some specific aspects of our model, and then move on to discussing some more
radical departures which might also explain roll-off.

As for preferences under certainty, we do rely heavily on the separability across issues that
is built in our structure. We do not believe that it will be generally satisfied, but neither we
think that it is terribly restrictive. It is quite standard in the literature. Analogously, state
independence is an assumption which is made in most rational choice models, but which does
instead impose a strong restriction. It is crucial for our model, though: Forfeiting it would
make the analysis of the voter’s decision problem extremely difficult.

We have mentioned previously the possibility that Yi = [0, 1]. Doing so would have the
double advantage of allowing the possibility that: 1) The politician does not really have a
well-defined position on every issue, her position yi then represents the probability that she
will have a negative (opposite to the voter’s point of view) position whenever the issue is
discussed; 2) The voter does not believe the candidate when she declares her position on
a given issue, and again assigns probability yi to the event that the candidate will have a
negative position. The main reason why we chose not to include this in this model is that
it would introduce a lot of complications in the updating procedure, which we totally avoid
here. Complexity of the exposition aside, we do not believe that this extension would change
our results significantly.

Coming to the structure of the voter’s preferences under uncertainty, we have already
mentioned that the stochastic independence assumption, while simplifying the analysis quite
substantially, does not really modify the intuition behind our results. We relax it in a
companion paper, Ghirardato & Katz (1997), and obtain similar results. In its absence
however our argument that the voter with a single prior on values space (who is therefore not
ambiguity averse) does not abstain is no longer true: There is a type of correlation between
beliefs on R and S(n) which can generate abstention even by a SEU maximizing voter. For
that to be true, however, it is necessary that differences of one vote (that is, movements from
ρ2 to ρ3 and from ρ3 to ρ4) significantly affect the voter’s beliefs on the relative position of
the candidates. This is for instance the case in the afore-mentioned papers by Feddersen and
Pesendorfer (1996b, 1996a), where the right type of correlation results from an assumption
that voters’ preferences under certainty are aligned in a certain fashion, and that voters can be
differentially informed. The problem with this justification of abstention is that, as it happens
in most game-theoretic models, it relies heavily on the assumption that every voter knows the
structure of the voting game. If a voter is not certain that all other voters have this particular
type of preferences (and that they are differentially informed in a specific way) then it is not
clear that he would place such importance in differences of one vote. After all, few people are
as smart as game theorists make them, and if there are voters who are not as sophisticated
as the model requires then a difference of one vote might not necessarily arise as a result
of careful equilibrium reasoning. By making the clearly extreme assumption of stochastic
independence, here we show that there is a complementary explanation of abstention which
is more robust to changes in the voter’s understanding of his environment.

Another important assumption for our model is that abstention is considered a reference
choice. It is worth repeating that the bite of this assumption comes from its joining with
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the multiple prior model, as we saw in Remark 1. Our intuitive motivation for imposing it
is the anecdotal observation that abstention is viewed by most people as an option which
is “safe.” It does not entail the same costs as voting for a candidate, which could lead to
a situation of discomfort (“regret”), if one’s vote determines the election and the candidate
turns out to be the wrong person. A natural variant of the model is to assume full regret
(à la Savage, see Savage (1951) and Ferejohn & Fiorina (1974)), in the sense that the voter
considers a “mistake” any action which is not ex post optimal, rather than only those action
which do worse than abstention. It is possible to see with some work that such a variant
produces results analogous to the ones we obtain here, at the cost of less straightforward
analysis. We chose the model presented here for the sake of simplicity and because we find a
comparison with abstention more intuitive and plausible than a comparison with the optimal
action. Strictly speaking, though, neither form of renormalization of payoffs is needed to
obtain abstention. In fact abstention can be obtained in a pure ambiguity aversion model
in which the voter does not renormalize the payoffs at all. Here abstention is a result of
the pessimism in the valuation of the policy position of the two candidates and preference
for “objective” randomization: If the voter is sufficiently ignorant then he favors abstaining
over voting, basically because he prefers the “risky” randomization over A and B given by
the coin toss over the purely “uncertain” prospects given by obtaining either candidate for
sure. If the tie-breaking rule is not an objective randomization like a flip of an (unbiased)
coin, say if the incumbent is confirmed in office, then we do not necessarily have abstention.
The same happens if the voter’s beliefs over the policy space are stochastically independent
(as defined above) across candidates, a possibility which cannot be ruled out, for then the
preference for randomization does not obtain. As we find neither of these results plausible and
conforming to our intuition, we strictly prefer the model we present here to one where there
is only ambiguity aversion.26 Emphatically, we do not think that preference for objective
randomization is what explains abstention, even in a world where voters do not have very
good information on the candidates’ positions.

Coming to the ambiguity aversion which is embodied in our “maximin” formulation,
it is important to remark that such extreme attitude is not really required for obtaining
abstention. Suppose for instance that the voter’s preference functional is given by a convex
combination (with weight α ∈ [0, 1]) of the smallest possible integral with respect to measures
in C(n), as in Eq. (3), and of the largest possible integral (substitute “max” for “min” in Eq.
(3)). Then α can be taken as an index of the ambiguity aversion of the voter, ranging from
extremely ambiguity averse (α = 1) to extremely ambiguity loving (α = 0).27 It is immediate
to see that our results hold in general for large values of α (while they clearly fail for α very
small), and not only for α = 1.

Moving away from our model, let us spend a moment discussing a different explanation
26As we remarked before, the results of this paper carry over with little modification to the case in which

the incumbent staying is the tie-breaking criterion. Assuming that A is the incumbent, the only difference
there is that b(ρ2) = 0 and a(ρ3) = 0, but the other entries of Table 2 remain identical. Hence the conditions
on E(n) in Theorem 1 do not change, and the conditions on D(n) have to be strengthened slightly.

27A decision model with a similar preference representation is, e.g., in Ghirardato (1995). In the literature
on decision theory, α is known as the Hurwicz pessimism index.
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of roll-off, which is only apparently similar to ours. One could argue that the act of voting
entails some “fixed” (independent of n in our model) costs that abstention does not entail.
For instance a voter has to read the ballot and possibly turn many pages to find the actual
place where the vote has to be inscribed. Suppose that a voter does not really care much for
an election (which we might model by letting w ≡

∑
iwi be variable and very small, rather

than normalizing it to 1), and has no information on the candidates. Then his utility for
voting can be much smaller than the fixed cost of voting, and he hence abstains. If instead,
the voter cares for an election (and thus has high w) the utility might be higher than the
cost, and so the voter chooses to vote. The problem with this explanation is that it runs into
the traditional problem of obtaining too much abstention. If the utility of voting depends
(as it probably would) on the probability that the voter is pivotal, and the voter is realistic
in his calculation of the latter, it is almost impossible that he will vote on large elections,
in which the probability of being pivotal is infinitesimal.28 We frankly doubt that then we
should ever see anybody voting for the President’s election, even if the cost for casting that
vote is very small and the voter possibly cares for its result.

We are therefore not totally convinced that such a model can adequately explain observed
behavior. In our opinion the real fixed cost is that of placing the voter in the ballot booth,
and we tend to think (in accordance with the received view in the literature) that such fixed
cost is probably offset by some form of “citizen duty” value for going to the polls. Once
there, we do not consider it likely that the voter will face significant costs, especially for
elections in which he is well-informed. One could imagine enriching the model we presented
by adding an (all-encompassing) “variable” cost factor to voting, which depends negatively
on the amount of information that the voter has, and becomes zero with finitely many bits
of information.29 One would then obtain results similar to the ones we have here, with some
more abstention in obscure elections due to the variable cost factor. The problem we have
with such an extension is that we do not know how to model the variable cost, beyond the
indirect way that we use here. We are certainly not keen on doing this just by assuming a
given cost function. On the other hand we feel that our model captures a significant part of
the “variable” costs to voting, so we leave it to future work to develop this aspect more fully.

Appendix
28This is for instance what happens in the game-theoretic models of voting of Ledyard (1984) and Palfrey &

Rosenthal (1983), in which in large elections only voters with zero (or negative) fixed cost vote in equilibrium.
29That would probably require enriching our notion of information, to include also technical aspects of the

election unrelated to the candidates’ positions, like the standard format of the poll. For instance in Italy it is
quite typical that media spend a considerable amount of time explaining what a vote in a referendum means
when translated in practical terms. In fact the questions are formulated in an obscure bureaucratic language,
so that a voter could easily find himself in the position of having decided what to vote for, but being unable
to identify it on the poll!
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A Separability

Here we show that given strong independence, the functional U can defined in Eq. (3) can
be rewritten as in Eq. (4). This makes use of some results contained in Ghirardato (1997).
There it is shown that, given sets of beliefs D and E , respectively defined on two sets R and
S,30 if a “product” belief C on R× S is the stochastically independent product of D and E ,
if a function F : R× S → R has affinely related ρ-sections then we have

min
R∈C

∫
R×S

F (ρ, π)R(d(ρ, π)) = min
P∈D

∫
R

min
Q∈E

∫
S
F (ρ, π)Q(dπ)P (dρ), (9)

which gives us Eq. (4) if, for f ∈ {a, b, φ}, we substitute for F the function

Γf (ρ, π) ≡ f(ρ, π)− φ(ρ, π).

So we are done if we show that for every f ∈ {a, b, φ}, Γf (ρ, π) has this property. First
though, we need to give the formal definition:

Definition 1 Given F : R × S → R, we say that F has affinely related ρ-sections if for
all ρ, ρ′ ∈ R, F (ρ, ·) and F (ρ′, ·) are affinely related functions from S into R. That is,
there exist α ≥ 0 and β ∈ R such that either F (ρ, π) = αF (ρ′, π) + β for all π ∈ S, or
F (ρ′, π) = αF (ρ, π) + β for all π ∈ S, or both.

As the name suggests, F has affinely related ρ-sections, if every pair of sections along the S
axis are functions which are a positive affine transformation of each other (or at least one is
a constant).

The fact that each Γf has affinely related sections follows immediately from the observa-
tion of Table 3, which plots Γf for every f ∈ {a, b, φ}, at a given value π ∈ S. For instance,
Γa has affinely related ρ-sections, for the sections are either identically 0, or they are equal
to the function 1/2(πB − πB).
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