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I. Introduction

Riots, pogroms, and mass political violence have plagued paliticd life, ancient and
modern. At the turn of the twenty-first century, racid, ethnic, and religious violence are
pervasive in heterogeneous societies around the world. Few socid phenomenaare as
disturbing, intractable and — perhaps paradoxicaly — so well-sudied yet ill so
perplexing.

In this paper, we use recent advances in game theory to study the initiation of riots
and mass collective violence. Our gpproach unifies and to some extent reconciles two
distinct approachesto the study of conflict in heterogeneous societies. On the one hand
are explanations for violence that see outbresks of violence as manifestations of long-
ganding cultural antagonisms, the “age-old ethnic hatred” beloved by the popular press
(Connor 1994, Smith). The difficulty of explaining variations in conflict with a congtant
like unchanging hogtility, however, has encouraged the development of a quite different
type of explanation. This approach attributes conflict to the machinations of diteswith
materia economic and politica gods, who manipulate the masses by gppeding to
culturaly sdlient symbols and thresats (Brass).! The “hatred” versus “manipulation”
approaches have tended to talk past one another, with each stressing a preferred causd

mechanism asthe “bet” explanation of conflict. Nether investigates how affective

! Inaddition, more recent analyses portray cultural identity as socially and historically constructed and
hence somewhat flexible, rather than completely stable and enduring. In thisview, the salience of different
identities varies across contexts and, since identities can overlap with each other, may be the object of

personal choice (Anderson 1984, Laitin 1998).



attachments and grategically motivated manipulation interact to creete outbresks of
violence Yetitisprecisdy thisinteraction that may be most characteridtic of large scale
violencein racidly, ethnicaly, and religioudy diverse societies. In this paper, we pursue
thisingght. Wefirgt show formaly and then through empiricad examples exactly how
affective atachments within alarge group and strategic manipuation by asmaller one
can interact to create riots and mass collective violence.

Our models have a close relationship with others that exist in the huge literature
on the theory of collective action. Our trestment of “expressiverioters’ (those with
dfective attachments) is closaly rdated to the critica mass or threshold models initiated
by Schelling 1978 and explored further by Granovetter 1978.2 These ideas continue to be
widely employed in the socid sciences (see e.g., Laitin 1998 and Kuran 1991.) However,
our andysis differs from the Schelling-style models in two respects. First, the
microfoundations of those models are not elaborated in detail and remain rather murky.
We supply explicit microfoundations for the Schelling-style models, modeling collective
action by expressve rioters as alarge Poisson game with population uncertainty
(Myerson 1997a, 1997b, 1998). Thisis an attractive approach because the exact number
of riotersis surely amatter of uncertainty for the potentia rioters, and is an important
part of the strategic Situation they face. The Poisson game gpproach has the additiona

advantage of dlowing acomparativedy smpleformd andyss of the Stuation, mirroring

2 The critical mass models are quite different from models of information cascades [citation]. In the latter,
individual action reflects private information about the state of the world. Late moving actors may infer the
private information held by early moving actors by observing their actions, up to the point at which an

“information cascade” occurs, after which no further learning is possible.



the conceptua clarity of the early threshold models. Second, the andyds of Schelling-
style models often focuses on the dynamics of achieving critica mass, typicaly assuming
an arbitrary tannonement process. Instead, we focus on the existence of multiple,
quaitatively different equilibria. In our view, the coordination problem created by
multiple equilibriais centra to the phenomenon of rioting.

Our treatment of “riot provocateurs’ is smilar to Pafrey and Rosenthd’s moded
of collective provison of adiscrete public good (1984). In that model, each individua
may participate by making afixed contribution to a discrete public good. If a sufficient
number contribute, the good is provided, but otherwise it isnot. In other words, it isaso
athreshold model, but amed at the supply of a public good. Our andlysisis distinguished
from Pafrey and Rosentha’ s in that they assume the number of playersis common
knowledge. Again, we modd the interactions of theriot provocateurs as a Poisson game
with population uncertainty. This dlows a smpler trestment of the problem and leads to
an arguably more plausible characterization of how the riot provocateurs overcome the
free rider problem that dogs their efforts.

The digtinctive contribution of this paper, however, isto link the two games— the
expressve rioting game and the provoceation game — into a unified whole, with an
explanation for mass paliticd violence lying in the interaction of the two games. In
particular, we show how a successful solution to the provocateurs' collective action

problem can reduce the avallable equilibriain the expressve rioting game to asingle

3 The provocation model is distinct from Lohmann’ s ingenious models of mass signaling, in which
collective action aggregates private information dispersed in agroup, and signals that information to an

outside party (e.g., Lohmann 1994).



equilibrium characterized by alarge-scaeriot. The am of the collective action by the
provocateursisto do exactly that. We know of no forma analyss of mass collective
violence that employs this approach.

The huge empiricd literature on mass palitical violence contains, we believe,
many examples of the phenomenon we model. For example, severd analysts have
discussed the existence of riot provocateurs and link their activitiesto large scae politica
violence. Paul Brass, for ingtance, in anoted study of collective violence in India, records
the existence of “fire-tenders’ or “riot specidists’ who operate within “ingtitutionaized
riot systems’ (1997:16). He notes, “When the time is right for the fomenting of alarge-
scale disturbance, then students, hooligans, low-caste persons from dums and outlying
aress, criminds, and special squads of trained activists such as the members of the
Bgrang Da will be brought in. ( p. 282, emphasis added) He provides a portrait of one
such riot specidist (Chapter 7). Ethnographies of riots and studies of extremist politics
offer portraits of other such individuas. However, the empirica literature islargely slent
on the grategic problemsfacing riot activists, and how this strategic caculus intersects
with that of potentid rioters. We supply thisandyss.

The paper is organized in the following way. In Section 11, we study riotsas a
large Poisson game. We show that three outcomes are candidates for equilibriain a
Schdling-like threshold modd. All or some of these equilibria may exist under different
conditions, which we specify. We aso show that asmall riot begun by riot provocateurs
can reduce the multiple equilibriato asingle equilibrium in which thereisalargeriot. In
Section 111, we study the collective action problem facing riot provocateurs. The familiar

freeriding problem is a threat to successfully triggering ariot, but it is possble for



rationa provocateurs to overcome this problem. In Section IV, we use the models and
quditative data from histories and case studies to interpret episodes of large scale

collective violence. Section V concludes.

I1. A Model of Expressive Rioting

We begin with asmple verson of the modd, in which thereis but asingle type of
player. We show how multiple equilibriamay exigt in thismodd, given different
parameter values. Then we examine how a pre-exiging riot can dramaticaly reduce the

available equilibria. We conclude the section with illudirative numerical examples.

The Model

The number of playersin the game is arandom variable drawvn from a Poisson
digribution with mean » > 0. Given this parameter n, the probability that there are &
playersinthegameis

e "n'

p(kln) =

wheree =2.71828... and k!'=1" 2" 3...” k withO! = 1.*

Theaction set C for each player is € ={0,1} , where“0” denotes“don’t riot” and

“1” denotes“riot.” Let x(c)T X ={J EQ} (theset of non-negative integers) denote the

“See standard references on probability, e.g., Mood, Graybill, and Bois. Throughout this paper we employ
notation similar to that in Myerson 1998, to facilitate comparison with standard references on Poisson

games.



number of playersin the game who choose action ¢. We will be primarily concerned with
x(1), the number of playerswho riot.”

Let thegan fromrioting ¢, a non-negative rea number, be a private good that is
acquired only through the act of rioting. In the following section, we will dlow ¢ to vary
over players and be private information, but in the smple version of the model we
assume ¢ isthe samefor dl players and common knowledge. The gain ¢ may conditute
the expected proceeds from looting. But it may aso be a non-insrumenta expression of
on€e' s ethnic, racid, or ideologica identity.® We scale ¢ so that it is bounded by zero and
one. We denote the set of possblevaluesof ¢ as 7.

Let /: X ® [, bethe potential cost of rioting to a player. The potentia losses
from the act of rioting include the possibility of beatings, arrest and prosecution by the
authorities, as well as other physicd risks inherent in the activity. We assume the per-
rioter cost of rioting fals as the number of riotersincreases, a least in some range of

rioters. More precisaly, we assume the loss function is a bounded, continuous function of

x (1), the number of rioters, and that the function is everywhere at least weakly
decreasing and is strictly decreasing for some values of x(1) . Call the maximal cost of

rioting, which occurs when only one person riots, the ceiling cost of rioting, /o l(l) e |

> We will not need to consider “action profiles’ (the vector x = ( x(0), x(l)) ) nor the set of all possible

action profiles Z (C) , although action profilesand Z (C) play animportant rolein the analysis of
canonical Poisson games (Myerson 1997).

6 If so, # may be afunction increasing in x (1) , but we abstract from this complication.



the minimal cost of rioting,  © !li)gn¥ I(x(D), thefloor cost of rioting. We assume /(- ) is

sced sothat that O£ [</£1.
The utility for each player inthegameisafunction U: 7" X~ C ® [J . More
specificaly, we specify U as.
Ux@,cr)=cg-1(xD)g
lfc=0,then U(-,-, ) =0.1f c=1,then U(-,-,-) =¢- /(x(1)). Under the above
assumptions, this function is bounded.
Strategies in Poisson games have a character that is digtinctly different from

drategiesin traditional games in which the set of playersis assumed to be common

knowledge. As Myerson explains,

In a traditiona game..., we describe players perceptions of each others
drategic behavior by drategy profiles that predict a distinct random
drategy for each player in the game [and these drategies may differ with
the identity of the player]. In our games with population uncertanty,
however, players perceptions about each others strategic behavior cannot
be formulated as a drategy profile that assigns a random srategy to each
goecific individud in the game, because a player is not aware of the
goecific identity of dl the other players...It canot be commonly
perceved that two different individuas of the same type would behave
differently because, in our model with population uncertainty, two players
of the same type have no commonly know attributes by which others can
diginguish them. . . In effect, population uncertainty forces us to treat
players symmetricaly in our game-theoretic analysis. (1997:4-5).

Hence, in thisgame in which dl the players are identical and move smultaneoudy, dl
playersmust dl employ the same strategy s ()1 [0,4], in other words, the same

probability of choosing action c.

)



Two other important properties of Poisson games require mention. Firgt, when the
players behave according to strategy s (c) S (c) >0, the number of players who choose
each action ¢ in C isa Poisson random variable with meen ns (c) . Thisistrue dueto the
“ decomposition property” of the Poisson distribution (Myerson 1997a:6).” Hence, x(1)
is a Poisson random varigble with mean ns (1). Second, from the perspective of any
player in the game, the expected number of players other than himself'is dso a Poisson
random variable with the same meen ns (1), afeature known as“environmental

equivalence”®

Given these properties of Poisson games, for arandomly sdected player, the

expected utility of choosing action ¢ when al other players are expected to behave

according to strategy s (1) > O (the probability of rioting) is

ﬁ(c|s(1)):§ p(klns (1)U (x(D).c)

k=

o

[oF'3

2

" Furthermore, the number of players who choose the action ¢ is independent of the numbers of players who
choose al other actions . So in this game, the number of rioters and non-rioters are independent random
variables. This“independence-actions property” of Poisson gamesis provenin Myerson (1997).

8 Myerson 1997 provides a proof of the “environmental equivalence’ result (Section 5).



Equilibria

Because C isfiniteand U is bounded, it follows from Theorem 3 in Myerson 1997a that
a least one equilibrium exigts in this Poisson game. But we wish to characterize the
equilibria and establish conditions on their existence. We proceed through an
examination of incentive compatibility congraints, in the spirit of d’ Agoremont and
Gerard-Varet 1979.

Because population uncertainty imposes symmetry on strategies, there are only
three classes of equilibriato congder: apure strategy equilibrium in which al players
riot; a pure strategy equilibrium in which no playersriot; and mixed strategy equilibriain

which some players riot and others do not, but dl employ the same mixing probability.
Type 1 Equilibrium (All players riot: s (1) =1)

If s(2) =1 isto be played by dl playersin equilibrium, it must be the case that for
arandomly sampled player the expected utility of s (1) =1isweskly greater than that of
s (1) =0.% In other words, this equilibrium requires

U(lls@®)2 U(0|s @)

b 1 & p(kln)I(k+1)3 0
k=0

® We need not consider deviations to a non-degenerate mixing probability. If such adeviation were

profitable it would be dominated by adeviationto S (1) = 0. If the player were indifferent between such a
deviation and maintaining S (1) =1 (amixed strategy equilibrium) then she would also be indifferent

between S (1) =0 and S (1) =1. Soit issufficient to check adeviationto S(1) =0.



b 13 4 p(kn)i(k+1)

k=0
In other words, the expected benefit of rioting r must be greater than the expected loss of
rioting.

An obvious consequence of Equation (3) is that the equilibrium necessarily exists
if £3 1. Equdly obvioudy, the equilibrium cannot exist if ¢ </ . The moreinteresting
Stuation involves 7 > > [ . In this case, the existence of the equilibrium depends on the

mean size of the population of players, », asindicated in Lemma 1.2°

Lemmal.

_ ¥
If 1> > thenthere existsn* suchthat £3 § p(k|n)i(k+1) fordl n2 n*.

k=0

Proof: See Appendix.

Roughly spesking, the lemmaindicatesthat if the expected cost of rioting falls below ¢
when ariot becomes sufficiently large, then the riot equilibrium can exigt if the expected

population of playersis large enough.

Type 2 Equilibrium (No players riot: s (1) =0)
This equilibrium requires thet

U(0ls ()2 U(1ls @)

101 [ >¢ =], the equilibrium cannot exist, because for any n there will be some probability weight

3)

placed on values of x(1) such that l(x(l)) >t . No matter how much remaining weight falls on val ues of

x(1) suchthat £ =/, Equation (3) cannot be satisfied.

10



p 03 ¢- (1)

b £l (4)

This condition is very week: If the benefit of rioting exceeds the ceiling cost of riating,

the equilibrium cannot exigt. But otherwise it can. Note however, that when ¢ = l aType

2 equilibrium is not perfect: any chance of adeviation by any player makes

U(1ls (@) >U(0[s (1)) . Hence, we replace (4) with

t<l ®)

Type 3 Equilibrium (Players riot probabilistically: s (1)1 (0,1) )
Thelogic of amixed drategy requires that

U(0ls(@®)=U(1s @)

b 0=4 p(klns®)gg- 1(k+1)al

k=0
(using environmental equivaence)
3
P 0=1- 8 p(")i()
k=0
¥

br=§ p(klns@)I(k+1) (6)

k=0

11



It is obvious that Equation (6) cannot be stisfied if # >/ orif 7 </ . Neither can it be
sisfiedif =1 orif ¢=1.** Themoreinteresting caseis / >¢ >, addressed in Lemma

2.

Lemma?2.

If 1>¢>1,thereexistsan n, n*, suchthat for al n> n*, thereexistsas @)1 (0,1) such
3

theat r=q p(klns@))l(k+1).
k=0

Proof: See Appendix.

In other words, if » islarge enough, the mixed strategy equilibrium can exist, when

[>t>].

We gather these resullts together in Proposition One, which isillugtrated in Figure
Two for aspecific example,
PROPOSITION ONE

In the smple game (where ¢ is common to al players), the possible equilibria can be
characterized in the following way: 1) If 73 7, then only a Type 1 (riot) equilibrium
exists 2) If 1>¢>[,thena)if n < n*, only aType 2 (no riot) equilibrium exists, but b) if

1 Recall that l(k) is assumed to be weakly decreasing ink, and strictly decreasing for some values of k.

So there exists a kCsuch that l(kg </ .Fordln >0ands (1) >0, p( A nS(l)) > 0. Hence

_ ¥
1>Q p(klns@D)!(k+1). Smialy,fordln>0ands (1) >0, p(0|ns (1)) > 0. Sothereis
k=0

- ¥
some probability weight placed on /, and consequently / < é p(k | ns (1))l(k +1) .

k=0



n>n*, Typesl, 2, and 3 (mixed Strategy) equilibriaexist. 3) If ¢ </, thenonly aType 2
equilibrium exids. 4) If n = n*, only Types 1 and 2 equilibriaexist.

Discussion

Proposition One has the following interpretation. “ Small” crowds are dangerous only if ¢
IS S0 high that each member of the crowd would riot regardless of what others do.
Otherwise, there can be no riot inasmall crowd. In contragt, “large’” crowds are
potentialy dangerous, even when ¢ is much lower (but not so low that it is not worth
whileto riot even if everyone se were to do s0). But such alarge crowd is only
potentialy dangerous, for its members face a difficult coordination problem. The
problem is, no one will riot unlessthey are sure that enough others will too — rioting must
be focd. Of course, particularly sdient events can make theriot equilibrium focal. For
example, crowds of Mudims dl across India broke out inriot after the destruction of the
Ayodhya mosque, a dramatic event that symbolized for many a governmentd retreat
from inter-ethnic neutrdity. Race riots began in many cities across the U.S. in the hours
after the assassnation of Martin Luther King, as news of his death spread. Riots broke
out in Los Angdes, following the announcement of verdictsin the racialy charged,
extremely controversa, and closdy followed Rodney King trid. In genera, however,
when multiple equilibriaexig, it isthe non-riot equilibrium that is gpt to be focd,

because the absence of ariot is the basdine from which most crowds act.

The Effect of A Pre-existing Riot

In the smple game, the players dl move smultaneoudy. Suppose, however, that a

Separate group of players acts earlier, saging ariot. Then the decison of playersin the

13



smple game (the “expressive players’) is no longer whether to riot, but whether to join
the on-going riot. In this section, we investigate the decision made under these dtered
circumstances.

Denote the size of the pre-existing riot as x (1)T ¥ = X . Because the expressive
players move after observing the pre-exidting riot, a srategy for them is now afunction
s:¥® D(C), where D(-) istheset of al probability distributions over afinite set.
This definition of a Strategy raises the possibility of akind of “sunspot” equilibrium, in
which the pre-exigting riot does not materidly affect the utility of the expressve rioters
but makes one equilibrium focal from amid several candidates® For example, multiple
equilibriain the expressve game may exigt but if the pre-exigting riot reaches a sufficient
Sze, the expressve rioters may shift their expectations from a Type 2 equilibrium to a
Type 1 or 3 equilibrium, a shift in expectations that would be sdlf-fufilling. However, we
concentrate here on the way the pre-exiding riot materially afectsthe utility of the
expressve players through its impact on their loss function.

Define the effective lass function facing the players of the expressve game as

1 X W ® 0, with z(x(l);}(l)) =z(x(1)+§c(J)). The loss function of the prior sections

issmply thisfunction, when )Ac(l) = 0. Theefective caling cog of rioting facing the

12 The terminology derives from certain models in macroeconomics. In these models, there are multiple
equilibria. Rather arbitrary, non-payoff relevant events (“sunspots”’) determine which of the possible

equilibriathe economy residesin (citation).

14



expressive playersis 70 l(l+)Ac(1)) . However, the effective floor cost of rioting remains
unchanged, since. 1im 1(x(D+x@) = lim /(x())+0).
x(D®¥ x(1)® ¥
Under the earlier assumptions about the loss function (at least weskly decreasing
everywhere and gtrictly decreasing somewhere), if }(1) > 0 then the celling cogt of
rioting weekly falls, as does the cost of rioting at any level of riot (i.e, I £1 and

l(x(l) + ;c(l)) £ 1(x(1)+0)). The expected cost of rioting for the expressive players,

¥ A A A
A p(klms @) I(k +1+ x(l)) , srictly fallsas x(1) incresses, for al vauesof x(1).23

k=0

These factsimply that a pre-exigting riot can dter the avallable equilibriain the

expressve rioting game because the pre-existing riot reduces the effective cost of rioting,

asindicated in the following propostion.
PROPOSITION TWO
Foral ¢ suchthat 7 >¢ >¢ , thereexistsan x(1) suchthat ¢ 3 ‘.

Proof: See Appendix.

Discussion
Proposition Two has the following interpretation. A pre-existing riot reduces the cost of
rioting for the expressive players. Suppose the benefit of rioting is greater than the floor

cost of rioting (otherwise, ariot is never possible). If the pre-exigting riot islarge enough,

15



it can reduce the cost of rioting for the expressive rioters so much that the only

equilibrium in the game is one in which dl the expressve playersriot. A corollary to the
proposition is somewhat weaker. Suppose ¢ is greater than the floor cost of rioting but the
crowd istoo smdl to be potentialy dangerous (the only equilibrium is the no riot
equilibrium). Then apre-existing riot of sufficient Sze can make the crowd “ dangerous”

that is, Type 1 and Type 3 equilibria can become possible.**

An Example of the Expressive Rioting Game

To illugtrate the modd, we introduce an example. In the example, the loss function is:

1

O emn

wherea® 1and 0<b£1.Thus, [ =0. Becausef:%b, 0<i<1.
a

The parameters a and b have a subgtantive interpretation. The celling cost I can

be seen as ameasure of the police “presence” at a potentia riot. In other words, the

ceiling codt indicates the implicit response of the authorities to an individud attempting

~ ¥ ~
13 The derivative of the expected loss function with respect to x (1) is é p(klns (D) l(I(k+l+ x(l)) :
k=0

All the [€: ) £ 0 and some /§: ) < O so the sum must be less than zero.

-_ 3
' A formal statement of thiscorollary ist If #>Q p (k| n) (k+1)>¢>1 thenthere

k=0

exigt x(1) suwchthat 7 >3 g_p(kln))l(k+1+3c(])) >1.

k=0

16



to initiate a disturbance. For smal b, 7 » J/a , so that larger vdues of a indicate a
smaller police presence. In contrast, b measures the resilience of the authoritiesin the
face of ariot, their ability to resst being overwhelmed by amob. Smdl vaues of

b indicate that the authorities can continue to impaose costs on rioters even during alarge
riot. Larger vaues indicate that rioters easily swamp the ability of the police to respond
effectively. A degree of police colluson with the rioters or even smple incompetence
among the authorities — both of which are often adleged to be an important part of ethnic
rioting (see e.g., Brass 1997:273-276, 286-288) — can be represented by high values of a
and b.

Closad form solutions to the mode require calculating the expected loss function

3
k=

a p(k|n)i (k+1), asum with infinitly many terms. However, the bulk of the density

0

of a Poisson random variable lies near the variable’ s mean (recdl that the variance of a
Poisson didtributed variable equas the mean). Thus, summing over thefirg, say, 10n
terms in the expected loss function provides avery, very close goproximation to its true
vaue, even for smdl n. We use this gpproximation in caculating numerica examples.
Figure One shows the expected loss function for values of n between 1 and 1000, given
a=149 and b =.01.

Theleft-hand pand in Figure Two illustrates Proposition One, again for the case
inwhich a =1.49 and b =.01. Asshown, the Type 1 (riot) equilibrium exists over a
largerange of +'sand n’sbut it is the sole equilibrium only for rather high vauesof ¢, at

or above / = 2/3. Theri ght-hand pand of Figure Two illugtrates Proposition Two. It

shows the effect of apre-exidting riot of 100. Given therict, the effective celling cost has

17



dropped to .40 and the effective expected loss function has shifted down. Some
combinationsof ¢ and » that could not support a Type 1 equilibrium without the pre-
exigting riot now do so. In other words, some crowds that were too small to be
“dangerous’ become so in the face of anindigating riot. But even more dramétic isthe
expangon of the areain which only a Type 1 equilibrium can exigt. In these cases, a
relatively smal group of indtigators pushed a crowd into activerioting. The caseisrather

dramétic but illustrates how a small spark can ignite a conflagration.

I11. A Model of Riot Provocateurs

The sparksthat fire alarge riot may smply reflect the presence of individuals with an
extraordinary propensity to violence. In other words, if a crowd contains some
individuds with values of ¢ greater than the ceiling cogt of rioting, these “high
demanders’ will riot. If the mass of theseriotersislarge enough, it may impel alarge
crowd of people with lower ¢’ sinto activerioting. Thisis the essentid ingght of the
Schelling-gtyle tipping modes, which we formdized in the previous section. But, the
ability of asmal group to indigate a large disturbance raises an intriguing possibility:
can asmdl drategicdly-minded group deliberately indtigate alarge act of collective
violence?

Therole of strategic provocateursis hardly academic. The 19 and 20" centuries
saw therise of groups that explicitly advocated domestic disorder and mass violence as
tactics for advancing their politica interests. Perhaps the most famous exampleisthe
Nazisin the 1930s, with their brutd, street fighting thugs of the SA. But Brass, in his
study of collective violencein India, notes “...the deliberate inculcation among the RSS

cadres [the RSSis an extremist Hindu nationalist organization] who provide the shock

18



troops for the entire ‘family’ of its organizations . . . of acult of violence aimed at the
intimidation of Mudims, their sdlective killings, and the destruction of their properties
during riots. . . Those well-skilled in the practices of violence, prepared to use them
againg Mudims, are portrayed as heroes’ (p. 282). Surely groups other than those
explicitly advocating violence have been drawn to such stratagems as well (references).
In this section, we consider the Strategic problems facing a group of riot
provocateurs who stand to benefit from domestic disorder. In the interest of generdity,

we do not explicitly model the domestic palitics that can bring such benefits to a group.

Instead, we subsume them in a parameter tthatisa public good for members of the
group, if they can ingtigate mass violence. For example, alarge riot may topple the
government, an end desired by the provocateurs. The benefits from atoppled government
accrue to dl who share this goa regardless of whether they undertook the costly action of
sparking the riot. Hence, those who wish to spark theriot in order to topple the
government must over-come a free-riding problem. The centrd issue for the modd isthe
ability of the provocateurs to overcome free-riding and successfully trigger large scde
riots and domestic disorder.

We focus on the most difficult set of circumstances for the riot provocateurs. If
the provocateurs can solve their collective action problem under these circumstances,
they are only more likely to do so under less adverse circumstances. To focus on the
toughest set of circumstances, we assume the provocateurs receive no private benefits
from participating in theriot (for them, ¢ = 0). If they did — asin fact most surely do —
then this benefit would blunt the incentive to free-ride and thus make effective collective

action eeser. We dso assume that if multiple equilibriaexist in the expressive rioting
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game, a Type 2 (no riot) equilibrium isfocal.*> So the provocateurs gain t only if
multiple equilibria do not exist in the expressve game, and the equilibrium thet exigsisa
riot equilibrium. This assumption places the heaviest possible burden on the
provocateurs. If they can use avery smdl disturbance to manipulate focd pointsin the
expressve game, thiswill make the provocateurs job easier; but we do not invoke this

mechanism in our anayss.

The Model

The modd is broadly smilar to that of the previous section. We assume the number of
playersin the provocation game is a Poisson random variable with mean m. The choice

set of the provocateursisidenticd to that of the expressverioters. That is, achoice
cl € ={0,1} where“1” denotes “riot” and “0” denotes“don’t riot.” Asin the previous

section, we denote the number of provocateurs who riot as }(1)7 ¥, the set of non
negdtive integers. The loss function from rioting for the provocateurs is exactly the same
as that facing the expressive rioters absent a pre-existing riot, with identica ceiling and
floor costs. We assume the gain to the provocateurs from ariot by the expressive players

is, in expectation, 71 7', and that ¢ isa public good for al of the provocateurs. We scale

¢ so that it is bounded by zero and one.

151 multiple equilibriaexist and a Type 1 or 3 equilibrium isfocal absent any action by the provocateurs,
then the provocateurs simply do not need to act. If multiple equilibriaexist and a Type 1 or 3 equilibrium
becomesfocal only if the provocateurs achieve ariot of at least size w, then the analysis below goes

through entirely.



We use Proposition Two to smplify the analyss, in the following way. If theriot
provocateurs achieve a sufficiently large riot themsalves, then a Type 1 (riot) equilibrium
becomes the unique equilibrium in the expressive rioting game. The condition that

definesthisStuation is

(310 1(x(@)+1)
Many valuesof x(1) will satisfy equation (7). However, define w asthe smallest x(1) that
setifiesit: w© min x(1)1 {;c(l)|t3 z(}(1)+1)} . Because the loss function is at least

weekly decreasing for dl szeriots, ariot of Szew or greater assuresthat equation (7) is

satidfied. In other words, w is the threshold size of riot by the provocateursin order to
touch off alarge riot by the expressive players, for sure, and thereby receive $ .

The utility for each provocateur in the gameisafunction V: 77 " ‘€® [0 .
Specificdly, we assume V(;c(l), 2; ?) =It-d ( ;c(l)) ,.where  isan indicator function thet
takesthevdue 1 if fc(l) 3 w and 0 otherwise. Thus, a provocateur receives V(- vy ) = ¢if
she does not riot but the other provocateurs nonethel ess reach or exceed athreshold riot.

Shereceives V (-, ) =1- l(;c(l)) if she riots and the provocateurs collectively reach or

exceed athreshold riot. Shereceives ¥ (-,-,-) = -1 ( ;c(l)) if sheriots but the provocateurs

fail to reach athreshold riot. And, shereceives ¥ (-, -, - ) =0 if she does not participate
and the other provocateursfail to reach athreshold riot.
If the provocateurs employ Strategy s (1) >0 (the probahility of rioting in the

provocation game) then the probakility of reaching or exceeding w is

()
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1

p(w)° 1- S p(k|mé(1)).Foraraqdom player, the expected utility of choosing action
k=

0
¢ when al other provocateurs in the game are expected to behave according to Strategy

§(1)>0is

V(c|§(1)) = 5 p(k|m§(1))r/(3c(1),2)

k=0

! : ®
i (w-1)- & p(kInS@)i(k+1) if =1
I k=0

Equilibria

Because Cisfiniteand 7/ bounded, it again follows from Theorem 3 in Myerson 1997a
that at least one equilibrium exigts in this Poisson game. Again we characterize the
equilibria through examination of incentive compatibility congraints. As before, the
strong symmetry condition imposed by population uncertainty alows only the same three

classes of equilibria.

Type 1 Equilibrium (All players riot: s D=1

Inamodd very smilar to this one but without population uncertainty, Pafrey and
Rosentha consder pure strategy equilibriain which exactly w players contribute to the
public good (equivaent to rioting in the provocateur game) while the remaining players
do not. These are the only pure strategy equilibriain which the threshold is reached, in
the game they condder. Such equilibria are not possble in this Poisson game, due to
population uncertainty. However, avery different pure strategy equilibrium can exist in

the Poisson game. In this equilibrium, dl the provocateurs in the game riot with certainty,
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and receive in expectation net positive benefits from doing so. As we discuss below, the
equilibrium requires rather sringent conditionsif it isto exig.

The equilibrium requires

17(1|§(1))3 17(0|§(1))

b ip(w-1)- & p(kIm)I(k+1) i (w)

k=0

a p(klm)i(k+1)
p p(w-l|m) 3 40 ; ©)

The left hand side (Ihs) of equation (9) is the probability that a random provocateur is
“pivota,” that is, the probahility that w will not be achieved if he does nat riot but will be
if he does. The right hand side (rhs) is the familiar expected loss function, divided by the
vaue to the provocateurs of the public good they will receiveif they succeed in sparking
mass violence. The left hand term is concave in m. It reachesamaximumat m =w -1
and w- 2 if m isaninteger, or a one of those vauesif m isnot an integer (see Mood,
Grayhill, and Boes Theorem 8 p. 98). The right hand term is drictly decreasing in m, as

noted in the proof of Lemma 1. Hence, equation (9) can be satisfied in 3 different ways
1) Ihs=rhsat two points, m and m , and the equilibrium exists for values of
m1 §n,mY (thisisillustrated in Figure 3).
2) lhs=rhsa one point, atangency point, and the equilibrium exigs only at the value of
m & the tangency point.
3) lhs=rhsa onepoint, and Ihs> rhsat al greater m. The equilibrium exigsfor dl m

greater than or equal to the m a which Ihs=rhs.
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Cases 2 and 3 are obvioudy quite specid. Case 2 isaknife-edge equilibrium. Case 3
requires the expected cost of rioting to decline extraordinarily precipitoudy above
w- 1.1° Accordingly we focus on Case 1.

Focusing on Case 1, equation 9 indicates that a Type 1 equilibrium can exis only
under stringent conditions. First, m must be neither “too large” nor “too smdl,” relative
to w- 1.If m istoo amdl rdativeto w- 1, the equilibrium cannot exist because the cost
of rioting will betoo high, even if dl riot. If m istoo large, the equilibrium cannot exist
because the probability of being pivota will be too smdl —in other words, freeriding
kills the equilibrium. Second, equation 9 indicates that a Type 1 equilibrium in the
provocation game can exis only if w israther small. Thisis because the pivot probability
declinesquickly, evenif m =w - 1 (so the pivot probability attains the highest possble
vauegiven w). For example, p(5|5)=.175and p(10]10)=.125 but p(100|100) =.040.
The need to keep w manageable meansthat in the expressive rioting game ¢ (the
participatory vaue of rioting to expressive rioters) must be fairly close to the ceiling cost
{ to begin with. In other words, the Stuation must be a“tinder box.” Third, if w isnot
large, then equation (9) implies that the expected loss from rioting must decline quite
quickly. The“reslience’ of the police in the face of ariot must be smdl. Accordingly,

the provocateurs will have to seek places or times when the police response is wesk.

16 This might occur if, for example, the loss function /(- ) were a step function, with the step at w, and the

value of the lower step equal to zero.
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Type 2 Equilibrium (No players riot: s ®»=0)
This equilibrium requires thet
17(0 |§(1)) 3 17(1I§(D)
P 03 -/(1) if w>1
or

b tElif w=1 (10)

In other words, a no-riot equilibrium can dways exigt, except in the exceptiona casein
which w = 1. This suggests that the provocateurs themsalves face a coordination
problem, assuming type 1 or 3 equilibria aso exist. However, solving this problem for a

smdl group of drategicaly minded players may not be difficult.
Type 3 Equilibrium (Players riot probabilistically: s M1 (0,1) )
The eqilibrium requires that V(Q 1)|s (1)) 3 V(1|§ (1)) and that
V(s(1)|§(1)) 3 V(o |§(1))  Together theseimply:

3

& p(klms@)i(k+1

p(w- l|m§ (1)): = . (12)

which issmilar to equation (9). However, equation (11) is an equdity, so the mixed
drategy equilibrium can exigt only if the pivat probability exactly equals the expected

cogt of rioting. This condition is even more stringent than those needed for a Type 1
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equilibrium. However, note that equation (11) implies that the mixed strategy equilibrium

can exis for vaues of m that aretoo large (relativeto w- 1) for the pure Strategy

equilibrium to exi<.

An Example

We continue with the example from the previous section, that is, where

I(x(@) = _r . Tocdculate w, weinvert t =1 = 1 to solve for the

a+(x())b “a+b(w+l)

Il

threshold w: w=ib- ibb.Thusif a=149 and b=.01,w=234if t =.3; w=100if
t

t=.4;andw =50if r = .5. Notethat w isindependent of the expected size of the crowd
of expressive players, n. Instead, n effects the expected Sze of the expressiveriot if itis
achieved.

It is very easy to condruct examplesin which a Type 1 equilibrium does not exi<.
It ismore difficult to construct cases in which one does exist. One caseisshown in
Figure 3. Inthiscase, a =1 but b =.9. The high vaue of indicates that the police
presenceis very brittle— it is eadly overwhelmed by ariaot, either due to incompetence or
tacit collusion in the face of any szeable disturbance. Absent any disturbance by the
provocateurs, the ceiling cost of rioting for the affective playersis .53, asit isfor the
provocateurs. We assumethe value of ¢ for affective playersisalow .085. Because the
police presenceis so brittle, however, ariot of w = 10 is sufficient to reduce the effective
caling cogt to thislevd. What range of m can support a Type 1 equilibrium among the
provocateurs? The answer is shown in Figure 3. The green bars show the pivot

probability for each value m between 1 and 20. The black curve is the expected loss
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function, divided by the vaue of the public good (assumed to be .9). If the value of the
pivot probability lies above the expected loss function, the expected population size of
provocateurs supports a Type 1 equilibrium. As indicated, the vaues supporting the

equilibrium are 9-12, inclusve. So if, for example, m = 10, dl the provocateurs riot with

s (1) =1 and receive postive expected utility from doing so.

IV. Interpreting Riots and Collective Violence

We turn now to an example of mass violence in which strategic behavior by riot
provocateurs taps into issues with high affective salience for specific groupsto bring
about riot events. The violence in this case has been attributed primarily to single factors

without fully explaining the interplay of outcome-oriented and act- oriented goals.

Party Politics and Violence: The BJP and the Rath Yatra of 1990

In late 1990, a series of riots broke out across India after the abrupt and incomplete end
of ardigious pilgrimage, or rath yatra, undertaken by L. K. Advani, one of the top
leaders of the Hindu nationdist Bharatiya Janata Party (BJP). This journey was
precipitated by a series of politicad decisions taken by the minority government of the
Nationa Front, led by Prime Minigter V. P. Singh. 1n Jduly 1990, the government had
suffered the defection of amgor backward-caste leader. To attempt to compensate for
the possible loss of low-caste dectora support, Singh had announced the implementation
of along-dormant affirmative action plan at the nationd leve that would set aside places
in government employment and higher education for members of the "Other Backward

Classes," who comprised over haf the nationa population.
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This policy announcement was highly problematic for the BJP. On the one hand,
their ectord support came primarily from high-caste Hindus in the upper and middle
classes, and these groups were staunchly opposed to affirmative action. On the other
hand, even the BJP had to attempt to appedl to the vast OBC dectorate, and they could
not afford to dienate these voters by denouncing the proposed legidation. Indeed, their
platform, like amogt every other party's platform, supported implementation of these
policies. Therefore, the BJP chose an end run around the policy; they emphasized the
unity of Hindu interests through religious symbolsin order to counter the potentid
cleavages created by caste-based policies.

One of the BJPs dlied socid-rdigious organizations, the Vishwa Hindu Parishad
(VHP), had made the demalition of amosque at Ayodhyaits mgor priority. The VHP
asserted that it had evidence to show that the mosque had been built on the Site of the
birthplace of Rama, and that a Hindu temple that had preceded the mosgue had been
demoalished during one of the Mudim invasions of the middle ages. During the first half
of 1990, the VHP had been attempting to organize a grass-roots movement in Uttar
Pradesh to build a new temple where the mosgue currently stood, but it had not been
very successtul.

Bardly amonth after V. P. Singh's announcement on reservations, BJP leader L.
K. Advani announced that he would undertake arath yatra, or a chariot pilgrimage, from
Somnath in Gujarat to Ayodhya, to mobilise public opinion
and "paliticaly educate" the people about the Ram Janambhoomi issue’ (Indian Express,
September 13, 1990). The pilgrimage would wind its way through nine states and make

frequent stops at pre-arranged locations.
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Politica observers assumed that this decision was paliticaly motivated.

Asthe Hindustan Times reported, The three-day biggest-ever conclave of the BJP leaders
here [Bhopal] has made one thing very clear: the Hindu card will be used vigoroudy

against PM V. P. Singh's caste card.” A The entire conclave was centered on Hinduism."
The BJP leadership, which fedsisolated after the bombshells thrown by Mr. V. P. Singh,
isnow convinced that only the Hindu card could work in the wake of mid-term eections
(September 19, 1990).

Advani's procession received enormous publicity and proceeded with great
fanfare. Although the crowdsin rurd areas were initidly described as"sparse,” the
turnout in the cities was larger and more enthusiagtic (Times of India, September 27,
1990). AsAdvani proceeded on his 6,000 mile journey, communal tensions were
heightened dong the route. At the same time, the VHP began another parald processon
in southern India and in other places through which Advani would not be passing, and
commund tension was risng aong that route as well (Jaffrelot 1998).

Advani's journey was accompanied by increasing publicity, crowds, and conflict.
dthough the violence was rlatively sporadic. The organizations most responsible for the
grass-roots mobilization, the VHP and the more militant RSS, were concerned more with
generating large crowds for the roadside than with fomenting riots. Neverthdess, by the
time Advani reached Delhi, three weeks into the procession, there was considerable
apprehension about what might happen as he approached Ayodhya. The police, while
adways on dert, were reluctant to wade into the crowds. At the same time, the
governments of each state were either sympathetic to the BJP or afraid of making Advani

into a sympathetic figure, and so refrained from encouraging alarge police presence. At
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the beginning of the trip Advani was primarily drawing large crowds in BJP strongholds,
but by the later stages he was attracting enormous attention everywhere. Findly, on
October 23, the day before Advani was scheduled to enter UP, the central government,
with the support of the dlied Bihar state government, arrested Advani and ended the
procession.

The BJP immediately cdled for aBharat bandh, or nationa shutdown gtrike, which

was only partidly observed in some parts of the country but was extremely successful in

the states through which the procession had passed. I1n these states, the strike degenerated

into communa violence in which dozens were killed in less than two days. Newspaper
accounts stressed, sometimes with helpful maps, that the riots were more prevaent

and more deadly in those locdities through which Advani had passed, and especialy
those in which he had halted for ralies. The drike actions were led by the RSS and the
VHP, and many loca newspaper reports aso attributed the riots to them aswell. The
riots largely involved religious conflict between Hindus and Muslims, as opposed to the
caste-based violence that had followed the affirmative action policy announcement of V.
P. Singh. Meanwhile, in New Ddhi, the BJP formally withdrew its support of the V. P.
Singh government, which fell less than two weeks later.

Most accounts, whether by journdists or scholars, emphasize the politica
gtrategic nature of Advani and the BJP's decision to undertake the Rath Yatra. Nandy
and his coauthors assart that "the politicaly aert “ saw the Y atra as the beginning of the
BJP's dection campaign” (1995: 40). Even scholars more directly concerned with
religious identity as distinct from politics saw Advani's decison as wholly politicdl:

Since the agitation around the reservation issue imperiled the Hindu
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agenda of the VHP/BJP/RSS, La Kishan Advani, the leader of the BJP,
decided to gart aritua procession that would pass through ten States . . .
Advani's posturing as Rama. . . took place in the context of this campaign’
(van der Veer 1994: 5).

It isdifficult to disagree with this explanation, especially when BJP leaders, "before
throwing themsdves fully into the Ayodhya movement, openly talked about their
politica purposes as "playing the Hindu card' for electoral advantage’ (Brass 1997: 269).
Thetiming of the BJP's decision to make building the Ram temple a Ayodhyathe
highest priority; the decison of Advani, a Sindhi Hindu who claimed to be "spiritudly a
Skh" (Nandy et a. 1995: 40), to dressin the clothes of an ascetic and decorate his
Toyotavan like alotus-painted chariot; and the sdlection of Somnath as the starting point
al suggest adrategy of crass eectord gain.

Y et, despiteits obvioudy politica ingrumenta benefits, and despite the explosive
nature of the strategy, Advani's procession aso appeared to generate sincere affective
behavior. Certainly the VHP and the RSS were organizing support for Advani. But the
crowd of nearly 100,00 that greeted him in Delhi was not entirely manufactured by these
organizations, and the accounts of the violence that followed Advani's arest made it clear
that much of it was not planned in advance.

Our model alows us to account for both the strategic, outcome-oriented behavior
undertaken by the BJP and its organization dlies as wel as the more spontaneous,
afectivey-oriented behavior exhibited by rank and file participants. The BJP had an

explicit political agenda: it needed to divert attention from the Nationa Front's
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affirmative action policy initiative because cagte- conscious policies split its Hindu
electorate. Therath yatra alowed the party to put that electorate back together under
the banner of Hindu solidarity. It dso provided a coordination mechanism
through the pilgrimage itself; participants who came out to view the procession saw
others and got a sense of how many others were motivated by the sameissues. When
Advani was arrested, it provided a second coordination point, one around which affective
participants could riot with a reasonable expectation of how many otherswould berioting
with them. Unlike the VHPs earlier unsuccessful effortsin UP to organize Hindus
around the mosque issue, the procession was a highly sdient coordination mechanism.
The modd directs usto look for specific types of factorsthat precipitate ariot. First,
there have to be a smdl but critical group of riot provocateurs. For the riots that followed
Advani's arrest, the RSS and VHP largely provided these participants. Second, the
provocateurs must provide afoca point that causes participants with high vaue from
participation to be mohilized. Both the processon itsdf and the arrest served this
function: the procession because it assembled like-minded participants and provided
information on the Sze of the potentia crowd, and the arrest because it served the
immediate function of providing an event which the provocateurs could use to begin the
riot itsdlf. Findly, the provocateurs must believe that they will achieve their desired
outcome, in this case the destabilization of the incumbent government. The pilgrimage,
and the increasing crowds that accompanied it, suggested that there was considerable
support for the BJP and its Hindu nationalist strategy. When Advani was arrested, the
potentid for rioting was perceived to be reatively high, and the success of the Strategy

was borne out within the month, as the Nationa Front government was forced to resign.
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V. Conclusion

The modds in this pgper formdize ideasimplicit in many writings about riots and mass
violence. Accordingly, they provide aframework for organizing many well-known
observations about riots and mass violence. More importantly, they integrate two hitherto
digoint strands in the literature on mass violence, the “ hatred” approach and the
“manipulation” gpproach. When the two are brought together in an explicit and careful
fashion, the result isa set of new but largdly intuitive and quite plausible conjectures
about the circumstances under which manipulation can occur. We see this at the principa
subgtantive contribution of the paper.

The Poisson game approach used here to study expressiveriots and riot
provocation can be gpplied to many other situations involving thresholds, cascades, and
mass collective action. Examples include mass protest movements and socid movements
(MacAdam), transformation of ethnic norms and the development of reputational
cascades (Kuran), and language politics and the strategic congtruction of identities
(Laitin). Moreover, the interaction of the provocation and expressive games may point to

gmilar dynamics dsewhere.
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Appendix

Proof of Lemma 1

¥
(Sketch). Expected loss § p(k|n)I(k+1) iscontinuousin n, convergesto / asn ® ¥,

k=0

and is trictly decreasing in n. The lemmathen follows. To see that

¥
limQ p(kn)l(k+1) =1, firs recdl thet the variance n = n. Soif n isvery large,
k=0

n® ¥

¥ n+]60\/n_ n+]°OJ;
ap(k|n)l(k+1)» a p(k|n)l(k+1) »l Q p(k|n) » [ . To see that expected
k=0 k=n-10n k=n-10n

lossisdrictly decreasing in n, firdt note that any

Tp(k [ ) = pk| )"0 soaanyn,
n & n o

increasing n puts less probability weight on dl losstermsin the sum inwhich £ < » and
gregter weight on al termsin which £ > n. But by assumption the latter must contain
terms that are srictly smdler than sometermsin the former, and none greater than any
term in the former. So the value of the sum must fal as» increases, a any vaue of n.

Q.ED.
Proof of Lemma 2

Any expected loss function 5 p(klns @) (k+1),with s()T (0,1), isexactly

k=0

¥
equivaent to alossfunction § p(k|m)I(k+1) wherem = ns (1) . Lemmal establishes
k=0

the existence of n* for thisloss function. Q.E.D.
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Proof of Proposition Two

From the specified loss function and the definition of floor cogts, it must be the case that

lim I(x(@®+ () =1 forall x(1)> 0. The proposition isimmedicte. QED.
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Figure 2. Equilibria in the Example
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Figure 3. Loss Function and Pivot Probability
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