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Abstract

This paper analyses a two-candidate-one-dimension election model in which candidates pos-
sess private information over the preferences of the electorate. I show that in equilibrium
candidates' positions are jointly determined by their beliefs over the electorate's preferences and
their beliefs over their opponents' signals. Depending on the information structure, they may
choose positions that are more moderate or more extreme than their expectations of the ideal
point of the median voter. Information that are less widely known tend to have smaller impact
on candidates' positions. More informative private signals may lower electorate welfare.

JEL Classi¯cation D72

1 Introduction

To politicians seeking public o±ce, there are few things more important than ¯guring out what the

electorate wants. But accessing the opinion of a large electorate is not easy. Consulting every voter

is certainly impossible for any constituency larger than a few thousands. While opinion polls allow

candidates to survey a large sample of voters, it is infeasible to ask questions in depth, and results

may be in°uenced by the way questions are framed. Besides, even the most accurate polls can

capture only the public opinion at the moment and could not predict how it would change over the

course of a campaign. As candidates come from di®erent backgrounds, gather information through

di®erent channels, and consult with di®erent advisors, their knowledge about their constituency is

diverse, as well as fragmentary. We often assume that candidates choose di®erent platforms out of
¤I like to thank seminar participants at Cornell, UNC-Duke, Southampton, Southeast Theory Conference 2000,

Econometrica Society Winter Meetings 2000, and in particular James Friedman and Joe Harrington for helpful
comments.
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ideological reasons. In fact, they may do so simply because they have divergent beliefs about the

preferences of the electorate.

Existing models of electoral competition assume that candidates have either complete or com-

mon information. In this paper I show that incorporating private information into a formal model

can yield new insights about electoral competition. In standard Downsian models of two-candidate

electoral competition, where candidates have complete information about the electorate, competi-

tion for votes compels the candidates to adopt the median voter's favorite policy as their platforms.

The same obviously is not true when candidates have only incomplete information (as they do

not know which policy the median voter prefers). More surprisingly, candidates generally do not

choose as platforms the position they expect the median voter to prefer. Thus, there is no natural

generalization of the median-voter theorem in electoral competition with incomplete information.

Furthermore, electorate welfare is not monotone in the quality of the candidates' signals. Even

though each candidate has an incentive to select a popular position, increasing their ability do so

may actually lower welfare.

The model follows the standard two-candidate Downsian model except that the candidates are

uncertain about the preferences of the electorate. Each candidate receives a private signal and up-

dates his belief over the electorate's preferences, and on the basis of which selects a policy platform

from a one-dimensional issue space. Then, the election takes place. The candidate who receives a

plurality of votes wins and implements his position. Candidates have no policy preferences, and

their sole objective is to win the election. Voters care about policy, as well as the identity of

the winner. Their non-policy, candidate-speci¯c preferences are represented by a random variable.

Candidates know the distribution but not the realization of this random variable, and hence, from

their perspective, voters vote probabilistically. In equilibrium, each candidate selects a position that

maximizes his chance of winning, based on his beliefs about the voters, as well as his opponent's

strategy. Because signals are private, ex post the candidates may not choose the same position.

To understand why candidates do not choose their respective expected median-voter positions
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in equilibrium, note that in two-candidate elections, the optimal position of a candidate lies strictly

between the expected median-voter position and the position of his opponent.1 The expected

median-voter position is usually not a best response, because a candidate can capture some of the

votes between him and his opponent by leaning toward his opponent. The standard policy conver-

gence result relies on the additional condition that candidates have the same expectation over the

median-voter position, which is true only when candidates have complete or common information.

In that case, each candidate tries to choose a position closer to the common expectation than the

other does; hence, in equilibrium their positions converge to that position. The same argument

does not work when candidates have di®erent expectations. As a result, a candidate's position and

his expectation are usually correlated but not identical.

It is interesting to know the way in which candidates' equilibrium positions are di®erent from

the expected median-voter positions. Using the posterior expected median-voter position as a

benchmark, I call a candidate's position \moderate," if it lies between the prior and posterior

expected median-voter positions and \extreme," if it is farther away from the prior expectation

than the posterior. Given the tendency for candidates to choose positions close to each other,

one would expect them to choose moderate positions (in which case candidates having opposite

beliefs will be closer to each other). In fact, I ¯nd that depending on the information structure

candidates's equilibrium position can go either way. I consider two speci¯c information structures.

In the ¯rst one, there is a common informative signal, but each candidate observes the signal only

with probability less than one. In the second, the candidates' signals are equally informative and

conditional independent. In equilibrium, candidates under the ¯rst information structure choose

moderate positions, while those under the second may choose either moderate or extreme positions.

There are two opposing e®ects at work. The law of iterated expectation implies that candidates

believe that their opponent's average expectation of the median-voter position lies between his own

prior and posterior expectations. Since candidates' equilibrium positions are correlated with their
1I use the term \expected median-voter position" to mean a candidate's expectation of the ideal point of the

median voter, conditional on his own signal. The two candidates may have di®erent expected median-voter positions.
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expectations, they would also believe that their opponent's position is on average more moderate

than the expected median-voter position. This \average e®ect" pushes candidates toward moderate

positions. On the other hand, candidates care also about the distribution of their opponents'

beliefs. Speci¯cally, candidates put more weight on the event that their opponents receive signals

similar to their own. It turns out that the best response against such an opponent is to choose

an extreme position. If this \distribution e®ect" is su±cient strong, the candidates may choose

extreme positions in equilibrium.

Apart from candidate positioning, the model also raises an interesting point about the desir-

ability of divergent platforms. The welfare of the voters is a function of the distance between the

winner's position and their ideal points, and it is maximized when the median-voter position is

adopted.2 In models with complete information, there is no loss in e±ciency for both candidates to

choose the same position, as long as it is the ideal point of the median voter. But when candidates

have only incomplete information, choosing the median-voter position is no longer feasible. In this

case, voters have no choice when candidates choose the same position, whereas they can choose the

position they prefer when candidates choose distinct ones.

Individual candidates do not internalize the gains from divergent platforms. Each of them has

an incentive to choose a platform so as to maximize his own chance of election. As a result, their

positions tend to be too close together. Because of this con°ict between individual popularity and

platform diversity, electorate welfare is not monotone in the quality of the signals. As both signals

predict the preferences of the same electorate, making them more accurate necessarily increases

their correlation. As candidates with similar beliefs choose similar positions, having more accurate

signals may reduce platform diversity. In section 5, I show that adding noise to candidates' signal

actually can raise electorate welfare. Many commentators have noted that the increasing reliance

on opinion polls has resulted in candidates taking similar positions in most major issues. My result

suggests that even though better polls allow individual candidates to select more popular platforms,
2This is true when all voters have the same utility function up to the ideal point, and the utility function is concave

in the distance between the ideal point and the policy. See Coughlin and Nitzan (1981).
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they need not enhance social welfare.

Downs (1957) ¯rst establishes the platform-convergence result. Subsequent works, extending

the model in many directions, largely con¯rm Downs' original insight, but also identify conditions

under which platforms may diverge. An early model of probabilistic voting is Hinich (1977), which

shows that candidates' platforms need not converge to the median-voter position. The model I use

is derived from Anderson et al (1992). Several papers study election models in which candidates

have private information on factors, such as their own ability (Rogo®, 1990) and policy preferences

(Alesina and Cukierman, 1990; Banks, 1990; Harrington, 1992, 1993). These papers examine how

the candidates' incentive to reveal their private information to voters a®ects their platforms and

electoral outcomes. Heidhues and LagerlÄof (2000) study in a two-alternative election model in

which candidates have private information over the e±cacy of the two alternatives. They show

that in equilibrium candidates under-use their own information and conform to the prior belief of

the voters. My results are di®erent in that candidates in my model may under- or over-use their

information. More importantly, their results, like the rest of the literature, arise because candidates

cannot credibly signal their private information to the voters. Since voters in my model know their

own preferences, signalling is not the issue. Instead, my objective is to understand how electoral

competition determines a candidate's incentive to use his private information.

The rest of the paper is organized as follows. In sections 2 and 3, I introduce the formal model

and derive su±cient conditions for the existence of pure-strategy equilibrium. Section 4 examines

candidate positioning. Section 5 shows that more informative signals can lower welfare. Section 6

concludes.

2 A Model

Two candidates compete for an elective o±ce. Each receives a private signal about preferences of

the electorate and announces a policy platform. Voters then cast their votes. The candidate who

receives a majority of the votes wins the election and implements his platform.
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There is a continuum of voters with unit mass; each has a policy preference over an one-

dimensional issue space, denoted by a ¯nite interval. If candidate i with platform z wins, a voter

with ideal point x receives

u(i; z; x) = ¡¿ jx ¡ zj + "i (1)

where ¿ is a strictly positive constant and "i a candidate-speci¯c random term. The di®erence

between the two random terms, "1¡"2; is logistically distributed with zero mean and a variance of

¼2

3 . The random term captures voters' preferences over the candidates' non-policy characteristics,

such as communication skills and trustworthiness. In general, one should expect voters' non-policy

preferences to be correlated. Here, in order to simplify the analysis, I assume that they are identical,

so that "i is common among all voters. The voters know "i when they cast their ballots, while the

candidates know only the distribution of "i and not its realization when they pick their platforms.

Voters vote for the candidate whose election yields a higher utility. The importance of the random

term is determined by ¿ . When ¿ is small, the vote largely depends on the random term. The

converse holds true when ¿ is large.

The preferences of the voters are distributed over the issue space according to a density function

g® indexed by ®, the ideal point of the median voter. The candidates know the functional form

of g but are uncertain about ®. Their prior beliefs over ® is represented by a density function f .

Let xm denote the expected ideal point of the median voter. I assume that ® 2 [0; 1] and f is

continuously di®erentiable, symmetric, and single-peaked.

Before choosing their platforms, each candidate receives a private signal, si 2 S ´ fl; c; rg. Write

h(s1; s2jx) for the conditional probability that candidates 1 and 2 receive s1 and s2, respectively,

given ideal point x. Similarly, write h(sijx) for the conditional probability that candidates i receives

si. The information structure can be fully characterized by a function A : [0; 1] ! [0; 1]9 where

A(x) =

2
4

h(l; ljx) h(l; cjx) h(l; rjx)
h(c; ljx) h(c; cjx) h(c; rjx)
h(r; ljx) h(r; cjx) h(r; rjx)

3
5 :

Given A, candidates update their beliefs over the ideal point of the median voter according to the
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Bayes' rule. I use f(:jsi) and F (:jsi) to denote the posterior density and distribution distributions

of ® conditional on si: Formally

f(xjsi) =
h(sijx)f(x)R 1

0 h(sijx)f(x)dx
:

Henceforth, if y is the expectation of some random variable over f , then y(:js) and y(s) denotes y

conditional on f (:js). Note that A also de¯nes a candidate's posterior belief regarding his opponent's

signal. Candidate i receiving si would believe that there is a probability ¹ (sj jsi) that candidate j

receives sj , where

¹ (sj jsi) =

R 1
0 h(si; sjjx)f(x)dx

P
sj2Sj

R 1
0 h(si; sj jx)f(x)dx

:

Throughout, I assume that A satis¯es the following assumptions.

Assumption 1 For all x 2 [0; 1], A(x) = A0(x):

Assumption 2 For all x 2 [0; 1], h(l; ljx) = h(r; rj1 ¡ x), h(l; cjx) = h(r; cj1 ¡ x), h(l; rjx) =

h(l; rj1 ¡ x), and h(c; cjx) = h(c; cj1 ¡ x):

Assumption 3 For all x < y, h(ljx)h(ljy) ¸ h(cjx)
h(cjy) ¸ h(rjx)

h(rjy) :

Assumption 4 For all s 2 S and for all x < y, h(ljx;s)h(ljy;s) ¸ h(cjx;s)
h(cjy;s) ¸ h(rjx;s)

h(rjy;s) :

Assumption 1 means that the candidates are treated identically. For any pair of signal (a; b); the

probability that candidate 1 receives a and candidate 2 receives b is the same as the probability that

candidate 1 receives b and candidate 2 receives a: Assumption 2 implies that the probability that

signal l is drawn when ® = x is the same as the probability that signal r is drawn when ® = 1 ¡x,

and signal c is equally likely to be generated by ideal points x and 1 ¡ x. It follows that xm(c),

the expected median-voter position conditional on c, is 0:5. Assumptions 3 and 4 are monotone-

likelihood-ratio conditions. They imply that, ¯rst, for all x 2 [0; 1], F (xjl) ¸ F (xjc) ¸ F (xjr), and,

second, for all x 2 [0; 1] and for all s 2 S, F (xjs; l) ¸ F (xjs; c) ¸ F (xjs; r) (Milgrom 1982). They

also mean that xm(l; l) � xm(l) � xm(c) � xm(r) � xm(r; r). That is, a candidate receiving l shifts
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his posterior belief to the left, while one receiving r shifts his to the right. Furthermore, learning

that the other candidate's signal is l does not move a candidate's belief to the right.

3 Equilibrium

After receiving their private signals, the candidates each choose a position z 2 [0; 1] as their

election platform. A pure strategy of candidate i, denoted by ¾i, is a function from S to [0; 1].

Let Vi(zi; zjjsi; sj) denote the probability that candidate i with platform zi wins the election when

candidate j chooses zj and the signals are si and sj. Assume that the winner's payo® is one and

the loser's payo® is zero. A candidate i choosing zi receives an expected payo® of

Ui(zi; ¾j jsi) =
X

sj2Sj
¹(sjjsi)Vi(zi; ¾j(sj)jsi; sj):

A pair of pure strategies (¾1; ¾2) constitutes a Bayesian Nash equilibrium if, for i 2 f1; 2g and for

all si 2 Si, ¾i(si) 2 arg maxzi2[0;1]Ui(zi; ¾jjsi).

The vote for a candidate generally depends on g, the distribution of voters conditional on ®, as

well as on f , the distribution of ®. However, for any zi and zj, the identity of the winner depends

only on f .

Lemma 1 A candidate wins the election if the median voter strictly prefers him to the other can-

didate.

Proof of Lemma 1: Assume without loss of generality that zi < zj . Suppose ¡¿ j® ¡ zij + "i >

¡¿ j® ¡ zjj + "j; that is, the median voter strictly prefers candidate i to j. Then, for all x < ®;

¡¿ (jx ¡ zij ¡ jx ¡ zjj) = ¡¿ (jx ¡ ® + ® ¡ zij ¡ jx ¡ ® + ® ¡ zj j)

¸ ¡¿ (j® ¡ zij ¡ j® ¡ zjj) ;

with equality holds either when ® < zi or when x ¡ zj > 0. Thus, any voter with ideal point x less

than ® strictly prefers candidate i to j. By continuity, voters with ideal point slightly larger than

® strictly prefers candidate i to j as well. A majority of voters therefore prefer candidate i to j,
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as ® is the ideal point of the median voter. The proof for the case where the median voter strictly

prefers candidate j to i is similar and hence omitted.

Lemma 1 follows from the assumption that all voters have the same non-policy preferences.

It should be noted that the lemma applies only to situations where the median voter strictly

prefers one candidate to the other, and the election need not be tied when the median voter is

indi®erent between the two candidate.3 However, since this event occurs with zero probability, as

the distribution of "i is atomless, the outcome of the election is almost surely determined by the

preference of the median voter, and whoever wins his vote wins the election. For any given ®, the

probability of candidate i winning is

¼(q) =
e¿q

1 + e¿q
; (2)

where q = j® ¡ zjj ¡ j® ¡ zij measures the extent to which candidate i's position is closer to the

median voter's ideal point than candidate j's. Vi(zi; zjjsi), the average probability of winning,

obtained by integrating ¼ over f , can be written as

Vi(zi; zjjsi) =

Z 1

0

¼(jx ¡ zj j ¡ jx ¡ zij)f (xjsi)dx

= F (zijsi)¼(zj ¡ zi) +

Z zj

zi

¼(zi + zj ¡ 2x)f(xjsi)dx + (1 ¡ F (zjjsi))¼(zi ¡ zj):

The assumption of probabilistic voting guarantees that Vi is continuous in zi and zj. For any ¿ ,

¼ is increasing in q, convex in the negative domain, and concave in the positive one, and its ¯rst

derivative is symmetric over zero (i.e. d¼(t)
dq = d¼(¡t)

dq ).4 The shape of ¼ means that a change in

a candidate's position has a larger impact on indi®erent voters (with small q) than partisan ones

(with larger q). The size of ¿ and the precise functional forms of (1) and (2) are not crucial to the

results.

[Figure 1 here.]
3For example, suppose ® > zj > zi and the median voter is indi®erent between the two candidates. Voters with

ideal point x ¸ zj are indi®erent, while those with x < zj strictly prefer candidate i. Hence, candidate i wins
certainly.

4More precisely, d¼
dq
= ¿e¿q

(1+e¿q)2
, d

2¼
dq2

= ¿2e¿q(1¡e¿q)
(1+e¿q)3

, and d3¼
dq3

= ¿3e¿q(1¡4e¿q+e2¿q)
(1+e¿q)4

:
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The following two lemmas play important roles in the results that follow in the next section.

(As both lemmas hold for any signal s, I suppress s in the equations.)

Lemma 2 For all zj, there exists a unique z¤ such that (i)
@Vi(z

¤;zj)
@zi

= 0 and (ii) for all zi 6=

z¤, @Vi(zi;zj)
@zi

(z¤ ¡ zi) > 0. For all zj,
dz¤
dzj

> 0: When zj = xm; z¤ = xm: When zj 6= xm; z¤

2 (min(xm; zj);max(xm; zj)).

Lemma 3 Let z0 be the position such that 1 ¡ F (z0) = F (z). Then, for all z < xm and for all

y 2 [0; z0], @Vi(z;z)
@zi

> @Vi(z;y)
@zi

; and for all z > xm and for all y 2 [z0; 1], @Vi(z;z)@zi
< @Vi(z;y)

@zi
:

Lemma 2 re°ects a well-known feature of two-candidate-one-dimensional electoral competitions,

namely the tendency for candidates to choose similar positions. It says that for any opponent's

position a candidate always has a unique best response, which moves in the same direction as

his opponent does. If the opponent's position is the same as the candidates' expectation of the

median-voter position, then the candidate's best response is to choose that position; otherwise, his

best response is to choose a position strictly between the two. In other words, candidates want

to be near their opponents but on the popular side of the public opinion. By moving toward his

opponent from the median-voter position, a candidate captures some of the votes between he and

his opponent without losing much of his base, as voters indi®erent between the two candidates are

more sensitive to a minor change in position than those who strongly prefer one candidate to the

other.5 It follows immediately from Lemma 1 that candidates choose the expected median-voter

position in equilibrium when they have common information. Figure 1 shows
@Vi(zi;zj)

@zi
when voters

are distributed according to a truncated normal distribution with a mean of 0:5 and a variance of

0:09. The best response z¤ is 0:52 when zj = 0:6 and 0:56 when zj = 0:7.

Lemma 3 describes how a candidate's marginal incentive to change his position is a®ected by his

opponent's position. It says that for a candidate not choosing xm, the marginal gains for moving

toward xm is greater when his opponent's position is z than any other in [0; z0] if z < xm (or [z0; 1] if
5That is, d¼

dq
reaches the maximum at q = 0.
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z > xm). Since we have already learned from Lemma 2 that there is a tendency for a candidate to

move toward his opponent, it is no surprise that a candidate has a lower marginal incentive to move

toward xm as his opponent moves away from it. What is not obvious is that the candidate may

still have a lower marginal incentive to move toward xm even as his opponent moves toward xm.

For example, in ¯gure 1 @Vi(0:7;0:7)
@zi

<
@Vi(0:7;0:6)

@zi
. This is because competition is more intense when

candidates' positions are close to each other. While a small shift in position may make two similar

candidates look signi¯cantly di®erent, it would not have the same e®ect when the candidates are

already far apart.6 By moving toward xm, a candidate widens the di®erence between he and his

opponent, making voters less sensitive to any further change in position.

It is clear from ¯gure 1 that Vi is generally not concave. As a result Ui need not be quasi-

concave, and the candidates' best-response sets may be non-convex. For example, if a candidate

believes, ¯rst, that the distribution of the ideal point is either skewed to the left or the right, and,

second, that his opponent (owing to superior information) will choose left in the ¯rst occasion and

right in the second, then the candidate's best response is to choose either left or right but not

in between, where he will lose surely. Because of the non-convexity, the game does not satisfy

standard su±cient conditions for the existence of pure-strategy Bayesian Nash equilibrium. (Since

Ui is continuous and the candidates' strategy set is compact, mixed-strategy Nash equilibrium

always exists.) This does not mean that pure-strategy equilibrium does not exist, only that there

may not be one. The following proposition shows that pure-strategy equilibrium exists when the

private signals are weak.

Proposition 1 Consider a sequence of conditional probability functions fhn(si; sjjx)g1n=1 converg-

ing uniformly to an non-informative probability function h¤(si; sjjx) that is constant in x. Let ¡n

be the election game associated with hn(si; sj jx). There exists n¤ such that for all n ¸ n¤, ¡n has

a pure-strategy equilibrium.

The proof relies on the fact the payo® function Ui is \locally" concave, which means that for
6Imagine how Patrick Buchanan will look compared to Ralph Nader if the former becomes slightly more liberal.
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any point x 2 [0; 1], there is some interval I containing x such that for all si 2 S; Ui(:jsi) is concave

for all zi contained in I, provided that the other candidate's action is also contained in I. Here

I provide an outline of the proof. First, I show that as the signals become weaker, both xm(l; l)

and xm(r; r) converge to 0:5, so that for su±ciently weak signals, Ui is concave in the interval

[xm(l; l); xm(r; r)]. It then follows from Glicksberg (1952) that pure-strategy equilibrium exists in

a modi¯ed game in which candidates are restricted to positions in the interval [xm(l; l); xm(r; r)]:

Finally, I show that any position outside of [xm(l; l); xm(r; r)] cannot be a best response against a

position inside of [xm(l; l); xm(r; r)]. Hence, the pure-strategy equilibrium of the restricted game is

also an equilibrium in the original game.

4 Candidate Positioning

Downs (1957) shows that in two-candidate-one-dimensional election models both candidates select

the median-voter position in equilibrium. An analogue to the celebrated Median Voter Theorem

holds true in my model when candidates have common information. But, as we shall see, when

candidates have private information and, hence, di®erent posterior expectations over the ideal point

of the median voter, they generally do not choose their respective expected median-voter positions

in equilibrium.

For the rest of the paper, I assume that Ui is quasi-concave and pure-strategy equilibrium

exists.7 A candidate's strategy is symmetric if ¾i(l) = 1 ¡ ¾i(r) and ¾i(c) = 0:5: A pure-strategy

equilibrium is symmetric if the candidates adopt identical symmetric strategies. (Hence, I shall

drop the subscript i and use ¾ to denote the equilibrium strategy.) The following proposition

shows that symmetric equilibrium exists and is unique.

Proposition 2 There exists a unique symmetric equilibrium ¾¤, and

¾¤(l)

8
<
:

< xm(l)
= xm(l)
> xm(l)

if L(xm(l))

8
<
:

< 0
= 0
> 0

:

7Proposition 1 shows that these conditions hold when the signals are weak.
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where

L(z) = ¹(ljl)@Vi(z; zjl; l)
@zi

+ ¹(cjl)@Vi(z; 0:5jl; c)
@zi

+ ¹(rjl)@Vi(z; 1 ¡ zjl; r)
@zi

: (3)

Suppose the candidates choose the symmetric strategy pro¯le (z; 0:5; 1 ¡ z). Then L(z) is the

marginal gains a candidate with signal l will receive for moving slightly to the right from z. If

L (z) is equal to zero, z is a best response for the candidate, provided that the other candidate's

strategy is (z; 0:5; 1¡z).8 On the other hand, if L (z) is not zero, the candidate can raise his payo®

by slightly altering his position. Proposition 2 says that in the unique symmetric equilibrium, a

candidate receiving l chooses a position less than xm(l) when L(xm(l)) < 0; and greater than xm(l)

when L(xm(l)) < 0.

To understand the idea of the proof, ¯rst consider the strategy pro¯le (0:5; 0:5; 0:5). As signal l

shifts the posterior belief over the ideal point to the left, if the candidates choose this strategy, then

a candidate with signal l, expecting xm(l) < 0:5, will want to defect to the left. Hence L(0:5) < 0.

Now, consider the strategy pro¯le (xm(l; l); 0:5; xm(r; r)). If the candidates choose this strategy,

then a candidate with signal l will want to defect to the right. Note that xm(l; l) is a best response

only against l. Against the other two signals, the best response is larger than xm(l; l): Hence

L(xm(l; l)) > 0: In the proof given in the appendix, I show that L is decreasing in z. As a result,

L intersects the x-axis once, and the intersection is larger than xm(l) if and only if L(xm(l)) > 0.

See ¯gure 2.

[Figure 2 here.]

Henceforth, I focus exclusively on the symmetric equilibrium. I call a candidate's strategy

or position \moderate" if ¾(l) > xm(l) and ¾(r) < xm(r), and \extreme" if ¾(l) < xm(l) and

¾(r) > xm(r): When candidates choose moderate positions, their positions are closer to each other

than are their underlying beliefs. The converse is true when candidates choose extreme positions.
8The ¯rst order conditions are also su±cient because V is concave in the ¯rst argument. Since 0:5 is a best

response for a candidate with signal c, L (z) = 0 is necessary and su±cient for (z; 0:5; 1¡z) to be a Nash equilibrium.
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By Proposition 2, we can determine whether the candidates' equilibrium positions are moderate or

extreme without computing the equilibrium explicitly.

The crucial di®erence between common and private signals is that candidates do not observe

each other's signal in the latter. In equilibrium a candidate's position is determined by his beliefs

over his opponent's signal, as well as that over the ideal point of the median voter. Depending on the

information structure, the candidates may choose moderate or extreme positions in equilibrium.

Below, I illustrate the connection between information structure and candidates' positioning by

means of two examples. There are two reasons why candidates may receive di®erent information.

It is possible that one candidate has superior information, knowing something the other does

not, or their information are obtained through independent channels. The two examples roughly

correspond to these two situations. In the ¯rst one, there is a common signal, which each candidate

observes with probability less than one. Because the signal is common, a candidate's belief over

the ideal point is not be a®ected by his knowledge of his opponent's signal. In the second example,

the candidates receive independent signals so that they can infer additional information from their

opponents' signals. I show that while candidates in the ¯rst example always choose moderate

positions, those in the second may choose either way.

4.1 Example One (Common Signals)

For concreteness, imagine that there is a study on the demographic characteristics of the voters

that has important implications on their preference. The candidates know that the study exists

and are free to purchase a copy of the report, but there is only a probability p < 1 that each will

actually do so.9 The study has two possible conclusions. Let l denote the one which implies the

voters are liberal and r the one which implies the voters are conservative. Let c denote the event

that a candidate does not have the report. Whether a candidate purchases the report is private

information. Let ½(sijx) denote the probability that the ideal point is x when the conclusion is si.
9Some candidates do not read.
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I assume that for all x < y;

½(ljx)

½(ljy)
¸ ½(rjx)

½(rjy)
:

The complete information structure is given by

A(x) =

2
4

p2½(ljx) p(1 ¡ p)½(ljx) 0
p(1 ¡ p)½(ljx) (1 ¡ p)2 p(1 ¡ p)½(rjx)

0 p(1 ¡ p)½(rjx) p2½(rjx)

3
5 :

In this example, a candidate who knows the conclusion of the report cannot infer any additional

information from knowing what the other candidate knows. As there is only one source of informa-

tion, the candidate knows that his opponent either knows the conclusion or not, and in neither case

would the candidate update his belief. It means that for s 2 fl; rg, F (:js; s) = F (:js; c) = F (:js).

Proposition 3 says that under such circumstances the candidates choose positions closer to the cen-

ter than their beliefs, and, furthermore, the equilibrium position is farther away from the expected

median-voter position when the chance that candidates purchase the report is low.

Proposition 3 Let ¾¤(p) = (¾¤(l; p); 0:5; ¾¤(r; p)) denote the symmetric equilibrium in Example 1.

Then, for all p 2 [0; 1), ¾¤(l; p) > xm(l) and d¾¤(l;p)
dp < 0.

Proof of Proposition 3:

For a candidate receiving l, there is a probability p that his opponent receives l and a probability

1 ¡ p that his opponent receives c. As the signal is common, V (:jl; l) = V (:jl; c) = V (:jl) and

¹(rjl) = 0. We can write

L(xm(l)) = p
@Vi(xm(l); xm(l)jl)

@zi
+ (1 ¡ p)

@Vi(xm(l); 0:5jl)
@zi

> 0:

The inequality holds as, by Lemma 2, the ¯rst term in the middle expression is zero, and the second

term is positive. To a candidate with signal l, a small deviation from xm(l) to the right causes a

second-order loss against an opponent choosing xm(l) and a ¯rst-order gain against one choosing

0:5. By de¯nition, L(¾¤(l; p)) = 0: Di®erentiating both sides with respect to p gives

d¾¤(l; p)

dp
=

@Vi(¾
¤(l;p);0:5jl;c)
@zi

¡ @Vi(¾
¤(l;p);¾¤(l;p)jl;l)

@zi

p
@V 2i (¾

¤(l;p);¾¤(l;p)jl;l)
@zi

+ (1 ¡ p)
@V 2i (¾

¤(l;p);0:5jl;c)
@zi

< 0:
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In the above expression, the numerator is positive as ¾¤(l; p) 2 (xm(l); 0:5) and the denominator is

negative as Vi is concave.

Proposition 3 provides an alternative interpretation to the well-known policy-convergence result.

According to the standard interpretation, candidates forego their own idiosyncratic preferences and

converge to a common position popular among voters. See Calvert (1985). Under this interpreta-

tion, policy convergence is desirable as it ensures that the will of the people is carried out. In my

model, the candidates, however, have no policy preferences of their own. Instead, they \under-use"

their private information and partially converge to the conventional wisdom. Instead of choosing a

position that they think the electorate will like, they choose one that is closer to what they think

the other candidate thinks the electorate will like. The equilibrium position ¾¤(l; p) is increasing in

p: In other words, the less widely known a signal, the smaller its impact on a candidate's position.

In this example a candidate who knows the conclusion of the study would expect his opponent

to have a belief that is \on average" between his own posterior belief and the common prior. For

example, suppose candidate 1 is the one who knows the conclusion. If candidate 2 also knows

it, his posterior belief will be the same as candidate 1's. On the other hand, if candidate 2 does

not know, his posterior belief will be the same as the prior. Since candidate 1 does not know

whether candidate 2 knows, he will believe that candidate 2's belief is on average between the prior

and his own posterior belief. More generally, the law of iterated expectation implies that for any

information structure A that satis¯es Assumptions 1 to 4 and for all x 2 [0; 1],

F (xjl) =
X

sj2S
¹(sj jl)F (xjl; sj) ¸

X

sj2S
¹(sjjl)F (xjs):

Intuitively, candidates do not expect his opponent to know what they know, as signals are private.

If a candidate receives a l signal, he would expect his opponent to have a moderate belief between

F (:jl) and F (:). Now, since candidates' positions are correlated with beliefs, this candidate would

also expect his opponent to take a position more moderate than his expectation of the median-voter

position. Hence, there is a tendency for candidates to choose moderate positions.
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4.2 Example Two (Independent Signals)

Suppose the candidates independently conduct their own polls, which are identically designed, and

in which a respondent is asked to identify herself as liberal (l), centrist (c), or conservative (r).

Suppose »(sijx), the probability that a respondent with ideal point x says si in candidate i's poll,

satis¯es the monotone-likelihood-ration condition, such that for all x < y;

»(ljx)

»(ljy)
>

»(cjx)

»(cjy)
>

»(rjx)

»(rjy)
:

Furthermore, assume that for all x 2 [0; 1] »(sijx) can be written as,

»(ljx) = (1 ¡ d)° (ljx) ; »(cjx) = d; and »(rjx) = (1 ¡ d)° (rjx) ;

for some function ° (:j:) and constant d. The assumption means that the response c is non-

informative, and candidates' posterior beliefs over the ideal point are not a®ected by d. The

information structure of the game is

A(x) =

2
4

»2(ljx) »(ljx)d »(ljx)»(rjx)
d»(ljx) d2 d»(rjx)

»(rjx)»(ljx) »(rjx)d »2(rjx)

3
5 :

As the polls are conducted independently, a candidate can infer additional information from

the polling outcome of his opponent. Speci¯cally, a candidate with signal l updates his belief to

the left, from F (:jl) to F (:jl; l) ; if he knows the other candidate's signal is l, and he updates his

belief to the right, from F (:jl) to F (:jl; r); if he knows the other candidate's signal is r: His belief

is unchanged if the other candidate's signal is c. In summary,

xm(l; l) < xm(l; c) = xm(l) < xm(l; r):

Proposition 4 says that in this case candidates choose moderate positions when d is large and

extreme positions when d is small.

Proposition 4 In Example 2, there exists d and d 2 (0; 1) such that ¾¤(l) � xm(l) when d � d

and ¾¤(l) ¸ xm(l) when d ¸ d.
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Proof of Proposition 4:

By de¯nition,

L(xm(l)) = ¹(ljl)@Vi(xm(l); xm(l)jl; l)
@zi

+ ¹(cjl)@Vi(xm(l); 0:5jl; c)
@zi

+ ¹(rjl)@Vi(xm(l); 1 ¡ xm(l)jl; r)
@zi

(4)

Recall from Lemma 2 that xm(l) is a best response for a candidate with signal l if his opponent

chooses the same position, meaning that

¹(ljl)@Vi(xm(l); xm(l)jl; l)
@zi

+ ¹(cjl)@Vi(xm(l); xm(l)jl; c)
@zi

+ ¹(rjl)@Vi(xm(l); xm(l)jl; r)
@zi

= 0: (5)

Subtracting (5) from (4) gives

L(xm(l)) = ¹(cjl)C + ¹(rjl)D

where

C =
@Vi(xm(l); 0:5jl; c)

@zi
¡ @Vi(xm(l); xm(l)jl; c)

@zi
;

D =
@Vi(xm(l); 1 ¡ xm(l)jl; r)

@zi
¡ @Vi(xm(l); xm(l)jl; r)

@zi
:

C and D measure the change in
@Vi(xm(l);zj jl)

@zi
, the marginal gains to move right, when zj is 0:5 and

1 ¡ xm(l); respectively, rather than xm(l). As f (:jl; c) = f(:jl), by Lemma 2, C is positive. By

Assumption 2, the posterior distribution of ® conditional on l and r is symmetric, meaning that

F (xm(l)) = 1 ¡ F (1 ¡ xm(l)). Hence, by Lemma 3, D is negative.

By de¯nition,

¹ (cjl) =
d

R 1
0 °(ljx)f(x)dx

d
R 1
0 °(ljx)f(x)dx + (1 ¡ d)

R 1
0 °2(ljx)f(x)dx + (1 ¡ d)

R 1
0 °(ljx)°(rjx)f (x)dx

:

It is straightforward to show that limd!0 ¹ (cjl) = 0 and limd!1 ¹ (cjl) = 1. Thus, when d is close

to one,

L(xm(l)) » @Vi(xm(l); 0:5jl)
@zi

¡ @Vi(xm(l); xm(l)jl)
@zi

> 0;
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and when d is close to zero,

L(xm(l)) » ¹(rjl)
µ

@Vi(xm(l); 1 ¡ xm(l)jl; r)
@zi

¡ @Vi(xm(l); xm(l)jl; r)
@zi

¶
< 0:

It follows from Proposition 2 that candidates choose moderate positions in the ¯rst case and extreme

ones in the second.

When d is close to 1, the prior probability for a candidate to receive l or r is extremely low, and

a candidate, even when his own signal is l or r, expects his opponent to receive c: The situation is

similar to Example 1. In equilibrium, the candidate receiving l chooses a position between xm(l)

and 0:5, the equilibrium position of an opponent with signal c, so as to capture the votes between

xm(l) and 0:5.

When d is small, a candidate expects his opponent to receive either l or r. In either case, his

posterior belief over ® changes substantially when he ¯nds out which signal his opponent receives.

Intuitively, this is a situation where there is a lot of uncertainty and the candidates are easily

swayed by their opponents' beliefs. If a candidate's own signal is l, he will think it is more likely

that his opponent receives l than r and, therefore, he will still believe that his opponent's average

belief is more moderate than his own. But, unlike his counterpart in Example 1, he will not choose

a moderate position. The candidate knows that the opponent receiving r will choose a position

far to the right, signi¯cantly di®erent from his own. As their positions are already far apart, the

candidate is not going to lose much against an opponent with signal r by moving marginally to

the left. But doing so will help him gain signi¯cantly against the opponent with signal l; whose

position is close to his. As a result, in equilibrium a candidate will try to out°ank the opponent

with the same signal by choosing an extreme position.10

10Candidate 1 is like a goalkeeper defending a penalty kick in soccer. As the shooter aims either at the left or
the right corner, the goalkeeper should dive all the way to one side even when he thinks the chance is almost 5{50.
Diving ninety-¯ve instead of a hundred percent to the left would not increase his chance of blocking a shot to the
right.
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4.3 Discussion

Examples 1 and 2 illustrate two e®ects that determine equilibrium outcomes. On the one hand,

candidates expect the mean of their opponents' beliefs over the median-voter position to be more

moderate than their own. As candidates prefer to choose a position close to their opponents', this

\average e®ect" pushes candidates toward moderate positions. On the other hand, candidates care

more about opponents who are close to them. Since such opponents must have received a similar

signal, candidates put more weight on the event that the distribution of median-voter position is

more extreme than what their own signal indicates. This \distribution e®ect" pushes candidates

toward extreme positions. Depending on the relative strength of these two e®ects, the candidates

may choose moderate or extreme positions. While both results are robust, it should be noted that

the \distribution e®ect" is operative only when candidates (conditional on their own signal) ¯nd

their opponent's signal informative. When they do not, the \average e®ect" dominates and the

candidates choose moderate positions in equilibrium.

In the model, candidates can infer their opponents' private information through their action,

and, hence, they may want to revise their positions as soon as their original positions are announced.

However, if candidates could change their positions, they would want to conceal their information

by not committing to a particular position in the beginning. Furthermore, changing position is

costly as it harms a candidate's credibility. Thus, allowing candidates to revise their platforms may

not lead to full information revelation.

Thus far, I have assumed that di®erences in beliefs arise out of asymmetric information. In

reality, they may also re°ect ideological and not informational di®erences. When candidates have

heterogeneous beliefs, they do not update their beliefs on the basis of each other's signal. For

example, a left-wing candidate who believes voters are willing to pay higher taxes in return for

better social service are unlikely to change his mind upon learning that his right-wing counterpart

believes the opposite. It is far more likely that he will simply conclude that the right-wing candidate

is wrong. Such a cases is essentially the same as Example 1, where candidates choose moderate
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positions relative to their beliefs.

When candidates receive multiple signals, the results suggest that candidates may react di®er-

ently to equally informative signals. In particular, information are widely known tend to have a

larger impact on a candidate's platform. Polling data, for example, may have a strong in°uence

on a candidate's positions, as they are likely to be known by both candidates. In comparison, a

candidate may have strong personal beliefs over what the voters want (through his own research

on the issues and experience with voters), but since these beliefs are less likely to be shared by his

opponent, they tend to have smaller impact.

Aragones and Palfrey (2000) show that in a standard one-dimensional Downsian model of two-

candidate elections, the candidate with an advantage (say, better image) adopts a more moderate

position than the disadvantaged candidate, for the favored candidate wins when the policy positions

of the two candidates are close. The logic behind Proposition 3 suggests that in a similar model

with private information, the favored candidate may use his private information less than the

disadvantaged candidate. It also suggests that in contest with two leading candidates and one or

more also-rans, the leading candidates are likely to be less responsive to private signals than minor

candidates who have little to lose.11

5 Signal Quality and Electorate Welfare

In a standard complete-information Downsian model (with linear or concave utility function), the

average utility of the voters is maximized when the median-voter position is implemented. In

equilibrium, both candidates choose the position, and the outcome is e±cient. In such a model,

there is no e±ciency loss for having identical platforms.

However, when candidates are uncertain about the preferences of the electorate, selecting the

median-voter position is no longer feasible (as they do not know its location). In that case, the

outcome is usually ine±cient when candidates choose identical positions. Consider the case where
11Lewis 1996 covering the 1996 Republican primaries made a similar observation.
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voters have no non-policy preferences. If both candidates choose the same positions, then that

position would be implemented, regardless of the preferences of the voters. But if one candidate

changes his position, then the voters can now choose between two positions. When they prefer the

original position, they can still elect the candidate holding that position and, hence, will not be

any worse o®. When they prefer the new position, they will be strictly better o®, as they can now

implement that position by electing the other candidate.

Individual candidates however do not internalize the bene¯ts of divergent platforms. IAs a

result, as we shall see, electorate welfare is not monotone in the quality of the signals. Before I

proceed, I need to introduce a measure of electorate welfare. In my model, while the identity of the

winner depends only on ®, the average utility of the voters depends on both g, the distribution of

voters conditional on ®, as well as f , the distribution of ®. In the following, I measure welfare by

the average utility of the median voter, which depends only on f: This is equivalent to assuming

that all voters have the same ideal point ®. The assumption, while restrictive, is su±cient for my

present purpose, which is to show that having more accurate signals can lower welfare. The welfare

of the electorate is measured by

W (z1; z2) =

Z 1

0
E (max(u(1; z1); u(2; z2))) f (x)dx

=

Z 1

0
ln

Ã
2X

i=1

e¡¿ jx¡zij
!

f(x)dx:

W decreases linearly with the distance between the winning position and the ideal point of the

median-voter.12 When ¿ is large, the vote is mainly determined by the candidates' positions,

and the electorate welfare is approximately equal to
R 1
0 max i2f1;2g (¡¿ jx ¡ zij) f(x)dx. When ¿

is small, the vote is mainly determined by non-issue characteristics, and the electorate welfare is

approximately equal to ln2, the expectation of max("1; "2).13

Lemma 4 For any z, z0 6= z; there exists ¿¤ such that for all ¿ ¸ ¿¤, W (z; z0) > W (z; z):
12In general, the average utility of the voters also decreases as the distance the winning position and the median-

voter position increases, but the relation is not linear.
13See Anderson, de Palma, and Thisse (1992) pp.60-61.
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Lemma 4 formalizes the argument I made in the beginning of the section. It says that if the

voters are care mainly about policy, then for any pair of distinct platforms z, z0, the voters are

better o® when one candidate choose z and the other z0 than when both choose z or when both

choose z0.

5.1 Example Three (Partially Correlated Signals)

I illustrate the connection between signal quality and electorate welfare through a model of partially

correlated signals. For concreteness, imagine that each candidate, like those in Example 2, conducts

a private poll. But the polls, instead of being fully independent, are both derived from some common

underlying poll denoted by s0 2 S = fl; c; rg. Let

P (¯) =

2
4

p(ljl; ¯) p(cjl; ¯) p(rjl; ¯)
p(ljc; ¯) p(cjc; ¯) p(rjc; ¯)
p(ljr; ¯) p(cjr; ¯) p(rjr; ¯)

3
5

denote a family of garbling matrixes indexed by a positive real parameter ¯. P (0) is the identity

matrix. For all ¯ and for all s0 2 S,
P
si2Si p(sijs0; ¯) = 1. Given s0 and ¯, candidate i receives

si with probability p(sijs0; ¯). For all si, s0 2 S, p(sijs0; ¯) is continuously di®erentiable in the

parameter ¯. When ¯ is zero, the candidates receive identical signals. When ¯ is positive, the

candidates' signals will be correlated conditional on ®. This would be the case if, for example, all

opinion polls using the same technique tend to elicit similar responses. Finally, I assume that Ã(:j:);

the probability distribution function of the common poll s0; satis¯es the monotone-likelihood-ratio

condition. The information structure can be represented by:

A(x; ¯) = P 0(¯) £

2
4

Ã(ljx) 0 0
0 Ã(cjx) 0
0 0 Ã(rjx)

3
5 £ P (¯):

A (x; ¯) obviously satis¯es Assumptions 1 and 2. For the remainder of this section, I assume that

¯ is su±ciently small so that Assumptions 3 and 4 are satis¯ed as well.
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Let ¾¤(¯) denote the symmetric equilibrium. The equilibrium electorate welfare is given by

W ¤(¯) =
X

s02S

X

s12S1

X

s22S2
prob(s0)p(s1js0; ¯)p(s2js0; ¯)W (¾¤(s1; ¯); ¾¤ (s2; ¯) js0)

where W (¾¤(s1; ¯); ¾¤(s2; ¯)js0) denote the social welfare given s0, s1, and s2.

Following Blackwell (1950), one signal is more informative than another if the former is a

su±cient statistic of the latter. In the example, the common signal s0 is more informative than

an individual signal si when ¯ is greater than zero. A more informative signal enables a candidate

to access the preference of the electorate more accurately and, hence, reduce the average distance

between his position and the ideal point of the median voter.

The objective of the analysis is to compare W ¤(¯) with W ¤(0). First, I consider the case

where candidates have common information. To that end, let us assume for the time being that

the candidates receive the same noisy signal es derived from s0, rather than independent ones. It is

important to distinguish between the expected median-voter position conditional on the underlying

signal s0 and that conditional on the candidates' noisy signal es. I shall write xm(s0) for the former

and xm(esj¯) for the latter. In equilibrium both candidates receive the same signal es and choose

the same position xm(esj¯). The equilibrium welfare is thus given by

W ¤(¯) =
X

s02S

X

s2S

prob(s0)p(esjs0; ¯)W (xm(esj¯); xm(esj¯)js0).

Proposition 5 In Example 3, if candidates have common information, then W ¤(0) > W ¤(¯) for

all ¯ > 0.

Proposition 5 says that under common information the electorate welfare is increasing in the

informativeness of the signal. The key of the proposition is to show that

8z 2 [0; 1]=xm and8s0; W (xm(s0); xm(s0)js0) > W (z; zjs0) ; (6)

which means that given that the candidates's positions are identical, the electorate welfare is

maximized when z1 = z2 = xm(s0). When ¯ = 0, the candidates' signal es is always the same as
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the common signal s0 and their expected median-voter position xm(esj¯) is equal to xm(s0). When

¯ > 0, there is a positive probability that es 6= s0; and xm(lj¯) is more moderate than xm(l), as the

candidates' signal is less informative than the underlying signal. Hence, the equilibrium position is

di®erent from xm(s0). It then follows from (4) that W ¤(0) > W ¤(¯).

I now return to the case where candidates have independent signals. When ¯ = 0, the equilib-

rium strategy is still xm(sij¯): But the situation is di®erent when ¯ > 0. Not only is it true that

the candidates's signals may not be the same as s0, they may also be di®erent from each other. For

example, when s0 = l, it is possible that one candidate receives l while the other receives r. The

garbling therefore creates two welfare e®ects. On the one hand, it makes the candidates' signals

less accurate, reducing their individual ability to select a popular position. On the other hand,

it leads to more variety in positions. Whether electorate welfare is higher when ¯ > 0 or when

¯ = 0 depends on the size of the two e®ects. The following proposition shows that when divergent

platforms are desirable, adding a small amount of the noise increases electorate welfare.

Proposition 6 Suppose for all s 2 S and for all s0 6= s, W (xm(s); xm(s0) > W (xm(s); xm(s0)).

Then dW ¤
d¯ j¯=0 > 0.

To illustrate the intuition behind Proposition 6, I compare the welfare of the electorate between

¯ = 0 and ¯ > 0 when the underlying signal s0 is l. The same logic applies to the other two signals.

To simplify notation, I write W (s1; s2j¯; s0) for W (¾¤(s1j¯); ¾¤(s2j¯)js0). When ¯ = 0, both

candidates observe l and the welfare is W (l; lj0; l). When ¯ > 0, there are three possible outcomes,

namely both candidates receive l, only one receives l, and neither receives l: The electorate welfare

W (l; lj¯; l) can be written as

p(l; ljl; ¯)W (l; lj¯; l) +
X

s22fc;rg
2p(l; s2jl; ¯)W (l; s1j¯; l) +

X

(s1;s2)2fc;rg2
p(s1; s2jl; ¯)W (s1; s2j¯; l): (7)

When ¯ approaches 0, for each candidate the probability of receiving l approaches 1. As the

candidates' signal are conditionally independent, the probability that neither candidate receives l
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is of second order, insigni¯cant compared to the probability that at least one candidate receives l.

As a result, we can ignore the last term and concentrate on the ¯rst two in (5).

First, consider the event where both candidates receive l. We know from (4) that xm(l) maxi-

mizes welfare given the candidates choose the same position. As their signals become less informa-

tive when ¯ > 0, the candidates' equilibrium position ¾¤(lj¯) would be more moderate than xm(l),

and electorate welfare, as a result, would be lower than it would have been if ¯ = 0. However, as

¯ approaches 0, ¾¤(lj¯) converges to xm(l), and since dW ¤(z;z)
dz jz=xm = 0, choosing ¾¤(l; ¯) instead

of xm(l) causes only a second-order loss in welfare.

Finally, consider the event where one candidate receives l and the other c or r. As ¯ converges

to 0; ¾¤(sj¯) converges to xm(s). Compared to the case of ¯ = 0, where both candidates choose

xm(l), voters have a ¯rst-order gain as they can now choose between xm(l) and xm(r) (or between

xm(l) and xm(c)).

In summary, a small increase of ¯ will result in a ¯rst-order gain and a second-order loss;

therefore, when ¯ is su±ciently small, W ¤(¯) > W ¤(0):

5.2 Welfare E®ects of Opinion Polls

Despite its popularity among pundits, the claim that the democratic process is harmed by candi-

dates' increasing reliance on polls is puzzling form the perspective of rational choice.14 Candidates

gain votes by adopting popular platforms. By providing a more accurate assessment of the public

opinion, opinion polls ensure that the winning platform is closely aligned with the preferences of

the electorate. As a result, they should increase welfare.

Conventional arguments against opinion polls are often problematic. One typical argument

is simply that politicians should adopt the \right" policy rather than the one the public prefers.

Another argument is that opinion polls are biased and do not re°ect the preference of the electorate.

However, if that were the case, then it would be irrational for candidates to devote so much resources

to them.
14For example, see Geer (1996), Lewis (1998), and Sabato (1981).
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Proposition 6 provides an alternative explanation as to why better opinion polls may lead

to inferior outcomes. When candidates are uncertain about the preferences of the electorate, it is

socially e±cient for them to adopt divergent platforms. In this world, having more accurate opinion

polls have two e®ects. Each candidate can choose a position that is on average more popular. But,

the candidates are also more likely to choose similar positions. While the ¯rst e®ect raises social

welfare, the second does the opposite. As a result, welfare may go down when the second e®ect

dominates the ¯rst. Note that this can happen only in a model with private information. In a

standard complete-information model, divergent platforms do not increase welfare.

According this view, polls are harmful, not because they are biased, but because they lead

to premature platform convergence. Polls capture current public opinion but do not predict how

it would change when voters acquire new information. Even when the public currently favor a

particular policy, it may still be socially bene¯cial for candidates to explore di®erent alternatives.

However, the more accurate the polls, the higher the potential price a candidate has to pay for taking

a currently unpopular position. Instead of doing so, they may settle on a consensus prematurely. For

example, in the 2000 US Presidential election, the Democrats have largely endorsed the Republican's

position on the missile defense program, which is popular among voters, despite open questions

regarding the feasibility of the program. Even if we believe missile defense should be built so long

as a majority supports it, the fact remains that the society will bene¯t from the public debate that

would have occurred had the Democrats chosen a di®erent position.

6 Concluding Remarks

Models of electoral competition usually begin with the assumption that candidates have complete

information over the preferences of the electorate. In reality candidates always have to settle for

incomplete information collected through public and private channels. In this paper, I analyze the

problem facing such candidates in a one-dimension Downsian model. My results identify two new

properties of electoral competition that do not exist in models with complete information. First,
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candidates generally do not select the expected median-voter position in equilibrium, and, second,

electorate welfare is not monotone with signal quality. My result explains why better opinion polls

may actually lower welfare.

I have assumed that signals are exogenously given. A natural extension is to allow candidates

to collect information from multiple channels and decide the how much information to collect.

Throughout, I have focused on the properties of the symmetric pure-strategy equilibrium. But as

I mention in section 3 such an equilibrium do not always exist, and it is important to analyze the

properties of mixed-strategy equilibria. More work is also needed to determine the prevalence of

each type of outcomes. While both moderate and extreme outcomes are robust, causal observations

seem to suggest that the ¯rst type is far more common. Note that the two types of outcomes are

not mutually exclusive. In models with more than three signals, candidates may choose moderate

positions for some signals and extreme positions for others.

7 Appendix

Proof of Lemma 2:

By de¯nition:

@Vi
@zi

= (1 ¡ F (zi) ¡ F (zj))
d¼(zi ¡ zj)

dq
+

Z zj

zi

d¼(2x ¡ zi ¡ zj)

dq
f(x)dx:

When zj = xm,
@Vi(xm;zj )

@zi
= 0. When zj > xm,

@Vi(xm;zj)
@zi

> 0 and
@Vi(zj ;zj )

@zi
< 0: When zj < xm,

@Vi(xm;zj )
@zi

< 0 and
@Vi(zj ;zj)

@zi
> 0. In either case, there exists z¤ 2 (min(zj; xm);max(zj; xm)) such

that
@Vi(z

¤;zj )
@zi

= 0. By de¯nition,

@2Vi
@z2i

= ¡2f (zi)
d¼(zi ¡ zj)

dq
+ (1 ¡ F (zi) ¡ F (zj))

d2¼(zi ¡ zj)

dq2
¡

Z zj

zi

d2¼(2x ¡ zi ¡ zj)

dq2
f (x)dx:

Using the fact that d2¼
dq2

= d¼
dq

³
1¡e¿q
1+e¿q

´
, we can write @2Vi

@z2i
as

@2Vi
@z2i

= ¡2f(zi)
d¼(zi ¡ zj)

dq
+ ¿

@Vi
@zi

Ã
1 ¡ e¿ (zi¡zj)

1 + e¿ (zi¡zj)

!
(8)

¡ ¿

Z zj

zi

@¼(2x ¡ zi ¡ zj)

@q

Ã
1 ¡ e¿ (zi¡zj)

1 + e¿ (zi¡zj)
+

1 ¡ e¿(2x¡zi¡zj )

1 + e¿(2x¡zi¡zj )

!
f(x)dx:
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The ¯rst term in (6) is negative and the second term is zero when @Vi
@zi

= 0: As
d
³
1¡e¿q
1+e¿q

´

dq = ¡¿e2¿x
(1+e¿x)2

<

0, and 1¡e¿(zi¡zj)
1+e¿(zi¡zj)

+ 1¡e¿(zj¡zi)
1+e¿(zj¡zi)

= 0,

1 ¡ e¿ (zi¡zj)

1 + e¿ (zi¡zj)
+

1 ¡ e¿(2x¡zi¡zj)

1 + e¿(2x¡zi¡zj)
> 0 for all x 2 [min(zi; zj);max(zi; zj)];

and hence the third term in (6) is negative. We can therefore conclude that @2Vi
@z2i

is negative when

@Vi
@zi

= 0: It implies that z¤ is unique. Furthermore, @Vi@zi
> 0 when zi < z¤, and @Vi

@zi
< 0 when zi > z¤.

Proof of Lemma 3:

Recall that z0 is the position such that 1 ¡ F (z0) = F (z). Suppose z < xm: For all y 2 [z; z0];

@Vi
@zi

(z; z) = (1 ¡ 2F (z))
¿

4

= (1 ¡ F (z) ¡ F (y))
¿

4
+ (F (y) ¡ F (z))

¿

4

> (1 ¡ F (z) ¡ F (y))
d¼(z ¡ y)

dq
+

Z y

z

d¼(2x ¡ y ¡ z)

dq
f(x)dx

=
@Vi
@zi

(z; y):

For all y < z;

@Vi
@zi

(z; z) > (1 ¡ 2F (z))
d¼(y ¡ z)

dq
¡

Z z

y

µ
d¼(2x ¡ y ¡ z)

dq
¡ d¼(y ¡ z)

dq

¶
f(x)dx

=
@Vi
@zi

(z; y):

The proof when z > xm is analogous.

Proof of Proposition 1:

For any conditional probability function hn(:jx), let xnm(s1; s2) denote the expected median-voter

position conditional on s1 and s2. If hn(:jx) converges uniformly to some h¤(:jx) constant in x,

then limn!1 xnm(l; l) = limn!1 xnm(r; r) = 0:5. Thus, for any k, there is some n¤ such that for all

n ¸ n¤, xnm(r; r)¡xnm(l; l) < 2k: It follows from Lemma 5 that for su±ciently large n,
@2Vi(zi;zj)

@z2i
< 0

for all zi, zj 2 [xm(l; l); xm(r; r)]. Let ¡n denote such a game. Consider a restricted version of ¡n

in which the candidates' choice sets are restricted to [xm(l; l); xm(r; r)]. As Vi is concave in this

restricted game, pure-strategy equilibrium exists. Let ¾¤ denote such an equilibrium. From Lemma
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2, any z =2 [xm(l; l); xm(r; r)] is never a best response against ¾¤; hence, ¾¤ is also an equilibrium

of the original game, ¡n:

Lemma 5 For any ¿ and for any y 2 [0; 1], there exists k such that
@2Vi(zi;zj)

@z2i
< 0 for all zi,

zj 2 [y ¡ k; y + k].

Proof of lemma 5:

Pick some k > 0. Let f= minff(x) : x 2 [y¡k; y+k]g; and let »(k) = max
n¯̄

¯d2¼(r)dq2

¯̄
¯ : r 2 [0; 2k]

o
:

It is straightforward to verify that for all zi, zj 2 [y ¡ k; y + k],

@2Vi(zi; zj)

@z2i
< ¡2f

d¼(2k)

dq
+ (j1 ¡ F (zi) + F (zj)j + jF (zj) ¡ F (zi)j) »(l):

Since limk!0
d¼i(2k)
dq = ¿

4 and limk!0 »(k) = 0,
@2Vi(zi;zj )

@z2i
is strictly negative when k is su±ciently

small.

Proof of Proposition 2:

By Lemma 2, L(0:5) = @Vi(0:5;0:5)jl)
@zi

< 0. Next, consider L(xm(l; l)). The position xm(l; l) is the

best response against xm(l; l) if the other candidate's signal is also l. But against the other two

signals, the best response is larger than xm(l; l). As xm(l; l) is less than both min(0:5; xm(l; c)) and

min(xm(l; r); 1¡xm(l; l)), it follows from Lemma 2 that both @Vi(xm(l;l);0:5jl;c)
@zi

and @Vi(xm(l;l);1¡xm(l;l)jl;r)
@zi

are strictly positive. It follows that

L(xm(l; l)) = ¹(cjl)@Vi(xm(l; l); 0:5jl; c)
@zi

+ ¹(rjl)@Vi(xm(l; l); 1 ¡ xm(l; l)jl; r)
@zi

> 0:

By continuity, there exists z¤ such that L(z¤) = 0.

To show that z¤ is unique, note that L is monotonic: for all z 2 [0; 1]

dL(z)

dz
= ¹(ljl)

µ
@V 2

i (z; zjl; l)
@z2i

+
@V 2

i (z; zjl; l)
@zi@zj

¶
+ ¹(cjl)@V 2

i (z; 0:5jl; c)
@z2i

+ ¹(rjl)
µ

@V 2
i (z; 1 ¡ zjl; r)

@z2i
¡ @V 2

i (z; 1 ¡ zjl; r)
@zi@zj

¶
:
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By de¯nition,

@2Vi
@zizj

= ¡(1 ¡ F (zi) ¡ F (zj))
d2¼(zi ¡ zj)

dq2
¡

Z zj

zi

d2¼(2x ¡ zi ¡ zj)

dq2
f(x)dx:

It is straightforward to verify that both
@V 2i (z;zjl;l)
@zi@zj

and
@V 2i (z;1¡zjl;r)

@zi@zj
equal 0. The latter is true

because f(xjl; r) is symmetric over 0:5. We can therefore write

dL(z)

dz
= ¹(ljl)@V 2

i (z; zjl; l)
@z2i

+ ¹(cjl)@V 2
i (z; 0:5jl; c)

@z2i
+ ¹(rjl)@V 2

i (z; 1 ¡ zjl; r)
@z2i

< 0:

As a result L can intersect 0 only once. Since Vi is concave, so is Ui is concave in the relevant

range, and hence L(z¤) = 0 is necessary and su±cient for (z¤; 0:5; 1¡ z¤) to be a Nash equilibrium.

Proof of Lemma4:

Note that W (z; z0) >
R 1
0 max i2f1;2g (¡¿ jx ¡ zij) f(x)dx ¡ ln 2. It follows that

W (z; z0) ¡ W (z; z) =

Z 1

z+z0
2

¡¿
¡
jz0 ¡ xj ¡ jz ¡ xj

¢
f(x)dx ¡ 2 ln 2:

The expression is strictly positive when ¿ is su±ciently large.

Proof of Proposition 5

First, I show that for all s0 2 S, xm(s0) = arg maxz2[0;1] W (z; zjs0) : By de¯nition,

W (z; zjs0) = ln 2 +

Z z

0
¡¿(z ¡ x)f(xjs0)dx +

Z 1

z
¡¿(x ¡ z)f(xjs0)dx:

It is straightforward to show that dW (z;zjs0)
dz = ¡

R z
0 ¿f(xjs0)dx +

R 1
z ¿f(xjs0)dx and d2W (z;zjs0)

dz2
=

¡2¿f(z) < 0: Thus, dW (z;zjs0)
dz = 0 if and only if z = xm(s0). To see that the Proposition is true,

note that

W ¤(¯) =
X

s02S
prob(s0)

X

s2S

p(sjs0; ¯)

Z 1

0
¡¿ jx ¡ xm(s)j f(xjs0)dx;

<
X

s02S
prob(s0)

Z 1

0
¡¿ jx ¡ xm(s0)j f (xjs0)dx;

= W ¤(0):
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Proof of Proposition 6:

By de¯nition:

dW

d¯
=

X

s02S
prob(s0)

X

s12S1

X

s22S2
fd(p(s1js0; ¯)p(s2js0; ¯))

d¯
W (z¤1(s1; 0); z

¤
2 (s2; 0) js0)

+ p(s1js0; 0)p(s2js0; 0)
dW (z¤1(s1; ¯); z¤2 (s2; ¯) js0)

dz

µ
dz¤1(s1; ¯)

d¯
+

dz¤2(s1; ¯)

d¯

¶
g:

For all s 2 S, lim¯!0 z¤1(s; ¯) = xm(s). Proposition 5 thus implies that

lim¯!0
dW (z¤1(s1;¯);z

¤
2(s2;¯)js0)

dz = 0. Second, for all s0 2 S and for all s 2 S=s0, lim¯!0 p(sjs0; ¯) = 0.

That is, the probability for a candidate to receive a signal other than the underlying signal s0 goes

to zero as ¯ goes to zero. By de¯nition

d(p(s1js0; ¯)p(s2js0; ¯))

d¯
= p(s1js0; ¯)

dp(s2js0; ¯)

d¯
+ p(s2js0; ¯)

dp(s1js0; ¯)

d¯
:

Hence, for all s1; s2 6= s0; lim¯!0
d(p(s1js0;¯)p(s2js0;¯))

d¯ : We can therefore write dW
d¯ j¯=0 as

dW

d¯
j¯=0 =

X

s02S
prob(s0)2fdp(s0js0; ¯)

d¯
j¯=0W (xm(s0); xm (s0) js0)

+
X

s12S=s0

dp(s1js0; ¯)

d¯
j¯=0W (xm(s0); xm (s1) js0)g

=
X

s02S
prob(s0)

X

s12S=s0

dp(s1js0; ¯)

d¯
fW (xm(s0); xm (s0) js0) ¡ W (xm(s0); xm (s1) js0)g

> 0:

The second equality holds as
P
s12S

dp(s1js0;¯)
d¯ = 0, and the last holds as W (xm(s0); xm (s0) js0) is

strictly less than W (xm(s0); xm (s1) js0).

References

[1] Alesina, A. and A. Cukierman (1990), \The Politics of Ambiguity," Quarterly Journal of

Economics105:829-850.

[2] Anderson, P., A. de Palma, and J. Thisse (1992), \Discrete Choice Theory of Product Di®er-

entiation," The MIT Press.

32



[3] Aragon¶es, Enriqueta and Thomas Palfrey, (2000), \Mixed Equilibrium in a Downsian Model

with a Favored Candidate," mimeo.

[4] Banks, Je®ery, (1990), \A Model of Electoral Competition with Incomplete Information,"

Journal of Economic Theory 50:309-25.

[5] Blackwell, D. (1950), \Comparison of Experiments," Proc. Second Berkeley Symp.on Math.

Stat. and Prob. University of California Press.

[6] Calvert, R. (1985), \Robustness of the Multidimensional Voting Model: Candidate Motiva-

tions, Uncertainty, and Convergence," American Journal of Political Science 29:69-95.

[7] Coughlin, Peter and S. Nitzan (1981), \Electoral Outcomes with Probabilistic Voting and

Nash Social Welfare Maxima," Journal of Public Economics 15:113-21.

[8] Downs, A (1957), \An Economic Theory of Democracy," New York: Harper and Row.

[9] Enelow, J. and M. Hinich (1982), \Non-Spatial Candidate Characteristics and Electoral Com-

petition," Journal of Politics 44:115-30.

[10] Enelow, J. and M. Hinich (1984), \Probabilistic Voting and the Importance of Centrist Ide-

ologies in Democratic Elections," Journal of Politics 46:459-78.

[11] Fudenberg, D. and J. Tirole (1991), \Game Theory," The MIT Press.

[12] Geer, John (1996), \From Tea Leaves to Opinion Polls," Columbia University Press.

[13] Glicksberg, I. (1952), \A Further Generalization of the Kakutani Fixed Point Theorem with

Applications to Nash Equilibrium Points," Proceedings of the National Academy of Sciences

38:170-174.

[14] Harrington, Joseph, Jr. (1993a), \Economic Policy, Economic Performance, and Elections,"

American Economic Review, 83:27-42.

33



[15] Harrington, Joseph, Jr. (1993b), \The Impact of Reelection Pressures on the Ful¯llment of

Campaign Promises," Games and Ecnomic Behavior 5:71-97.

[16] Heidhues, Paul and Johan LagerlÄof, (2000) \Hiding Information in Electoral Competition,"

mimeo.

[17] Hinich, M (1977), \Equilibrium in Spatial Voting: The Median Voter Result is an Artifact,"

Journal of Economic Theory 16:208-19.

[18] Lewis, Michael, (1998) \Trail Fever," Random House.

[19] Milgrom, Paul (1982), \Good News and Bad News: Representation Theorems and Applica-

tions," Bell Journal of Economics pp.380-391.

[20] Rogo®, Kenneth (1990), \Equilibrium Political Budget Cycles," American Economic Review,

80:21-36.

[21] Sabato, L. (1981), \The Rise of Political Consultants," New York: Basic Books.

34



-2

-1.5

-1

-0.5

0

0.5

dV/dz_i

0.2 0.4 0.6 0.8 1x

Figure 1: Solid line: zj = 0:6, Dotted line: zj = 0:7:
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