
Coordination in Turnout Games∗

Daniel Diermeier and Jan A. Van Mieghem

November 17, 2000

Abstract

We present a stochastic model of coordination in turnout games. In each period a randomly selected
voter receives information about current play through noisy polls and then, based on this information,
forms expectations about the current conÞguration of play and chooses a best response. We prove
the existence of a unique limiting distribution for the process and show that even in large electorates
substantial expected turnout is possible if voting factions are similar in size. A key requirement for
substantial turnout is that polls never provide precise feedback on the current state of the electorate.
The effect of noise, however, is non-monotonic: no noise or too much noise results in vanishing turnout,
while moderate noise may result in substantial turnout. The model�s predictions are also consistent with
the usual empirical regularities about turnout. We then derive continuum approximation results for large
electorates using a partial differential formulation and apply the results to the case of perfectly informative
polls. We show that under (perturbed) best response voters are able to spontaneously coordinate their
actions on a single state.

1 Introduction

Anthony Downs� (1957) �paradox of voting� or �turnout problem� constitutes perhaps the most famous
anomaly for rational choice models of politics. Simply put, it states that nobody should vote in large
electorates when there is even a small cost to voting because each voter�s probability to decide an election
outcome is vanishingly small. But citizens do participate, even in very large electorates.
The turnout problem has generated a large literature and many solution attempts.1 Among the most

inßuential are game-theoretic voting models (Palfrey and Rosenthal 1983, 1985; Myerson 1998). Here, voters
can vote for one of two candidates or stay home. There are two types of citizens with strictly opposed
preferences. We will refer to them as Democrats and Republicans. Each voter of a given type strictly prefers
the same candidate to win. Elections are decided by plurality rule with some tie-breaking provision, such as
a coin toss. All members of the winning faction earn a payoff or beneÞt b > 0 for winning (whether or not
they voted); losers get nothing (payoff = 0). Independent of the outcome, there is an additive and private
cost of voting c, where b

2 > c > 0.
2

Because voting for the non-preferred candidate is dominated for each voter by voting for the preferred
candidate, the relevant problem reduces to a turnout game, which simply involves the binary decision of
whether to vote or stay home. Once voting is modeled as a game-theoretic (rather than decision-theoretic)
problem, it cannot be an equilibrium for everyone to stay home, for then each voter could unilaterally decide
the election by voting instead. Similarly, it cannot be a equilibrium for everybody to vote, unless the two
teams are of the exact same size.3

It follows that all Nash-equilibria in the turnout problem involve the use of mixed strategies by at least
some voters. This leads to an abundance of Nash-equilibria, some of them with surprisingly high turnout.
However, all equilibria with non-trivial turnout in large elections are asymmetric and thus require precise

∗Both authors are at the Department of Managerial Economics and Decision Sciences (MEDS), Kellogg Gradu-
ate School of Management, Northwestern University, Evanston, IL 60208-2009; d-diermeier@kellogg.nwu.edu and Van-
Mieghem@kellogg.nwu.edu.

1 See Aldrich (1993) for an overview.
2Palfrey and Rosenthal (1983) also consider the (trivial) cases where c ≥ b

2
, and c = 0 and different tie-breaking rules.

3To see why, suppose that there is one more Republican than Democrat in the population. If all eligible voters turn out, the
Republican candidate wins, but then each Democrat might as well stay home.
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coordination.4 Subsequent research has regarded these equilibria as problematic (Palfrey and Rosenthal
1985, Myerson 1998). The predominant approach has been to limit the amount of common knowledge
present among voters by introducing some form of uncertainty, for example with respect to payoffs (Palfrey
and Rosenthal 1985) or the number of players (Myerson 1998). In these modiÞed games all remaining
equilibria have vanishing turnout.
We propose a different approach that allows us to explicitly model coordination in voting games. Voters

are assumed to receive information about current play through (noisy) opinion polls. Noise may result
from either sampling error or from the fact that polling numbers are usually reported with Þnite precision
(typically two or three digits). SpeciÞcally, in each period a randomly chosen voter observes a poll based on
the population�s last period voting behavior. Given that polls typically exhibit some sampling noise, the voter
uses Bayes� rule to form expectations about the current conÞguration of play. Based on this expectation,
she then chooses a best response action. Then again a voter is selected and so forth. This induces a Markov
process governed by the best response dynamic and the random selection of voters.5

In part, this model is motivated by our recent paper (Diermeier and Van Mieghem (2000)) that shows
how spontaneous coordination on asymmetric states is possible in a discrete public good model.6 Moreover,
the model�s limiting distribution exhibits qualitatively different features from the mixed strategy equilibria
in the game theoretic models. Since in turnout games all equilibria involve the use of mixed strategies, a
stochastic approach may generate new insights into the turnout problem. In particular, it allows us to study
polls as coordination devices and their consequences for turnout and election outcomes.
As in Diermeier and Van Mieghem (2000) we prove the existence of a unique limiting distribution. We

then investigate the qualitative properties of the limiting distribution. Surprisingly, we Þnd that even in
large electorates substantial expected turnout (up to 100%!) is possible if the faction sizes are close. A key
requirement for substantial turnout is that polls never provide precise feedback on the current state of the
electorate. Noisy polling introduces uncertainty about whether an actor is pivotal in determining the outcome
of the election. If polling information becomes too noisy, however, turnout again drops to vanishingly small
levels consistent with Palfrey and Rosenthal�s (1995) and Myerson�s (1998) Þndings. Thus, in contrast to
game-theoretic models, the amount of uncertainty has a non-monotonic effect: moderate uncertainty may
increase participation, while large uncertainty leads to vanishing turnout. Our model also conÞrms the usual
empirical regularities about turnout. Turnout, for example, drops as the participation cost or the number
of voters increase, or as factions become less equal. Turnout increases in the stakes of an election and the
closeness of opinion polls. (WolÞnger and Rosenstone 1980, Hansen, Palfrey, and Rosenthal 1987, Nalebuff
and Shachar 1999).
While we characterize the necessary and sufficient conditions of the limiting distribution, its compu-

tational complexity prevents us from deriving a closed form solution unless factions are of approximately
equal size. This suggests the use of computational methods. In an appendix we present some computational
properties of the model. In particular, we derive a recursive formulation of state probabilities that reduces
the model�s computational complexity from quadratic to linear.
Additional insights can be derived by using a continuum approximation for large electorates with N

players. Such an approach is justiÞed given that the intended domain of our model are large elections.
SpeciÞcally, we derive a partial differential equation representation of the limiting distribution that shows
that elections must be close. Moreover, the closeness depends on the accuracy of election polls. We then
apply our large N results to the special case of perfectly informative polls, which corresponds to a Markov
process with best response dynamics (Blume 1995) and log-logistic dynamics (Blume 1993). Best response
dynamics are usually difficult to analyze due to the lack of ergodicity. In our model, however, the properties
of the general model are preserved. In particular, a unique limiting distribution exists. Moreover, for large
N , voters are able to implicitly coordinate their actions. That is, we show that for large N the model
uniquely predicts vanishing turnout independently of the costs or beneÞts of voting, unless factions are of
exactly equal size where coordination occurs on the full turnout state.
To further investigate this �spontaneous coordination� result, we consider perturbed best response dy-

4 In these equilibria, the larger faction is devided into two sub-groups that play different (mixed) strategies. See Palfrey and
Rosenthal (1983) for details and Myerson (1998) for an instructive example.

5For a behavioral model of trail-and-error learning in turnout games see Bendor, Diermeier and Ting (2000).
6A turnout game can be interpreted as a competitive public goods where each group�s critical participation threshold is

endogenously determined by the turnout-level of the competing group.
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namics using a log-logistic formulation (Blume 1993).7 In general, perturbed best response models (even
in the limit of vanishing noise) may have very different properties from unperturbed best response models
(e.g. Blume 1997, Young 1998). We show that in the long-run expected turnout fraction may be positive for
large N , but that any such turnout is the direct consequence of noise in the individual choice process. In the
case of vanishing noise we recover negligibly small turnout fractions in the limit. The loglogistic model also
demonstrates how spontaneous coordination in elections with equal faction sizes (ND = NR) depends on a
critical threshold βC of the uncertainty parameter β. For high levels of noise (1/β > 1/βC), noise prevails
and voters coordinate on turnouts of less that 50%. As the noise level drops below 1/βC , however, a second
coordinated outcome is possible where all voters turn out. As uncertainty drops even further, the noisy
low-turnout coordinated outcome disappears and only the full turnout equilibrium remains, in accordance
with deterministic best-response.
In summary, under perfect information our model yields negligibly small turnout fractions for large N ,

independent of the costs or beneÞts of participation. The stark contrast with the noisy informative polls
shows the importance of uncertainty in turnout models and the subtlety in the effect of uncertainty.

2 The Model

There are two factions of voters in a population of size N : Democrats of size ND and Republicans NR,
where N = ND +NR, and NR ≥ ND > 0. We use k for individual voters and i, j for factions with i and j
denoting different factions unless otherwise noted. Each voter must choose from an action z ∈ {0, 1}, where
z = 0 means �abstaining.� The state of the electorate at time t is given by nt = (ntD, n

t
R), where n

t
i ≤ Ni is

the number of type i that is intending to vote at time t. Superscripts indicating time periods are dropped
unless necessary. In the usual fashion we write n−ki for the number of voters of type i without counting k.
Similarly we write n−k to denote (n−kD , nR) if k is a Democrat and (nD, n−kR ) if k is a Republican.
We assume the same payoff speciÞcation as Palfrey and Rosenthal8 (1983) and Myerson (1998): Each

member of the team that turns out more voters receives a payoff of b while the losers each receive 0. In
addition, there is a private cost c to participating independent of the election outcome. Ties are decided by
a fair coin-toss. Throughout the analysis we assume 0 < c < b

2 .
For a given conÞguration n, a voter of type i0s payoff can then be summarized in the following matrix:

Payoff Matrix n−ki < nj − 1 n−ki = nj − 1 n−ki = nj n−ki ≥ nj + 1
uk(z = 0;n

−k) 0 0 b/2 b
uk(z = 1;n

−k) 0− c b/2− c b− c b− c

Note that if any faction (not counting k) is behind by more than one vote (column 1) or ahead by at least
one vote (column 4), type k0s decision on whether to participate is irrelevant for the outcome of an election.
In columns 2 and 3, on the other hand, voters are pivotal.
Rather than specifying the Nash or Poisson equilibria for this payoff speciÞcation we deÞne a stochastic

process where voters adjust their actions in response to the current agent conÞguration. The process consists
of a selection rule and an action rule. According to our selection rule, in each period t one speciÞc agent
out of N is randomly chosen with probability 1/N.9 That agent will choose an action according to the
immediate expected return given her expectations about current play. In the next period, again a player is
chosen at random (with replacement), and so forth. The selection probabilities are denoted as follows. It is
convenient to group the agents by type: a voter of faction i that currently chooses action z is referred to as
type (i, z). The probability that the randomly chosen agent is of type (i, z) is denoted by piz. For example,
pD0 = (ND − nD)/N .
Agents condition their behavior on the current conÞguration of play in the population. Voters do not

observe the participation decision of all other voters, but receive their information about current voting

7For technical reasons researchers have overwhelmingly prefered the use of perturbed best-response dynamics because it
guarantees the existence of a unique limiting distributions parametrized by the stochastic disturbance (e.g. Blume 1993, Blume
1995, Kandori, Mailath, Rob 1993, and Young 1993).

8We only consider their model where ties are broken by a fair coin-toss.
9For simplicity, we assume that revisions are made each period. All results, however, continue to hold in continuous time

when the time between revisions is exponentially distributed.
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behavior from noisy opinion polls. To capture this intuition we assume that each selected voter observes a
noisy signal en of n, written as en(n). Published polls, for example, typically include a polling error of 3%,
which roughly means that n = en± 3%. Given en, an agent updates her beliefs about the state of the system
and chooses a best response given the signal.10

Formally, our stochastic model deÞnes a discrete time, discrete state Markov process: we have a family
of random variables {Xt : t ∈ N} where Xt assumes values on the state space Sd × Sr and where Sd =
{0, 1, 2, . . . , ND} and Sr = {0, 1, 2, . . . , NR}. Given our stationary selection rule and since signals are only
a function of n, and not explicitly of time, we have a Markov chain with stationary transition probabilities,
which are summarized in a transition matrix P . Because at most one player can change her action in a
given period the Markov chain is a two-dimensional birth-death process. A �birth� corresponds to an agent
changing her action from abstention to participation, while a �death� corresponds to a voting agent deciding
now to stay home.
The transition matrix P is completely deÞned by the selection rule and the action rule, which speciÞes

the probability that a selected agent chooses a given action. To derive the action probabilities for given a
noisy signal en, agents now must estimate the true state n given the polling information en and then, based
on that information, decide whether to vote. It follows immediately that voters will vote only if they expect
to be pivotal. Formally, the expected utility for a type (i, 0) is:

Eui(z = 0|en(n), type (i, 0)) = b

2
Pr(ni = nj |en(n)) + bPr(ni ≥ nj + 1|en(n)),

Eui(z = 1|en(n), type (i, 0)) = b

2
Pr(ni = nj − 1|en(n)) + bPr(ni ≥ nj |en(n))− c.

Hence, voting (z = 1) is preferred, iff:

Eui(z = 0|en(n), type (i, 0)) ≤ Eui(z = 1|en(n), type (i, 0)),
or:

type (i, 0) votes ⇔ b

2
Pr(ni = nj − 1|en(n)) + b

2
Pr(ni = nj |en(n)) ≥ c.

Thus, a type-0 voter participates if she expects to create a tie or victory. Similarly, for type (i, 1):

type (i, 1) votes ⇔ b

2
Pr(ni = nj |en(n)) + b

2
Pr(ni = nj + 1|en(n)) ≥ c,

who votes if she expects to sustain a tie or a victory.
We can now partition the rectangular state-space into transition zones: the birth-zone for type i is the set

of states where a type i agent Þnds it optimal to participate. In other words, for any state in the birth-zone
a type i agent is pivotal and the cost/beneÞt ratio is sufficiently small. The death-zone for type i, on the
other hand, is the state-space subset where it is optimal for a type i agent to stay home. Given that only
the cost-beneÞt ratio impacts the decisions, it is convenient to denote the ratio c/b by ξ, where 0 < ξ < 1

2 .
Formally then:

Birth-zone i : type (i, 0) votes ⇔ Pr(ni = nj − 1|en(n)) + Pr(ni = nj |en(n)) ≥ 2ξ.
Death-zone i : type (i, 1) abstains ⇔ Pr(ni = nj |en(n)) + Pr(ni = nj + 1|en(n)) < 2ξ.

DeÞning ∆n = nD − nR, yields the general pivot equations:
Type D birth⇔ Pr (∆n ∈ {−1, 0}|en(n)) ≥ 2ξ, Type R birth⇔ Pr (∆n ∈ {0, 1}|en(n)) ≥ 2ξ,
Type D death⇔ Pr (∆n ∈ {0, 1}|en(n)) < 2ξ, Type R death⇔ Pr (∆n ∈ {−1, 0}|en(n)) < 2ξ. (1)

Clearly, the exact form of the birth and death zones depends on how true states n are reported as a noisy
poll. In the remainder we will investigate various polling structures and characterizes the corresponding
transition matrix P and birth and death zones.
10While in reality the sampling errors are normally distributed, we will assume a simpler setting of uniformly distributed

noise. This is without loss of generality: it yields simple formulas, while the insights extend to normally distributed noise.
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Ultimately our goal is to study the long-run behavior of our process to estimate turnout fractions. In
our model all states communicate so that the Markov chain is regular (Taylor and Karlin 1994; p.171) and
hence has a unique limiting distribution denoted by the column vector π, where

πj = lim
t→∞Pr{X

t = j|X0 = i}, (2)

and πj > 0 for all j ∈ S. It can easily be shown that π is the unique distribution that solves π = πP . These
equations are called the global balance equations because, rearranging πi =

P
j πjPji, yields

(1− Pii)πi =
X
j 6=i
πjPji, (3)

which can be interpreted as saying that the probability �ßow� out of state i must equal the probability ßow
into state i. To study turnout we must characterize the limiting distribution π. This requires specifying the
transition matrix P and solving π = πP for π. Like the birth and death zones, P depends on the details of
the polling technology, which we study next.

3 General Results

We will consider a simple noise model where noise is uniformly distributed over a square-grid of size [−ε, ε]2.
As mentioned above, this is computationally convenient, but without loss of generality. SpeciÞcally11 :

en(n) = (nD + ²D, nR + ²R) with probability pε =
1

(1 + 2ε)2
∀²i ∈ {−ε,−ε+ 1, . . . , ε}. (4)

Equivalently, inverting:

n(en) = (enD + ²D, enR + ²R) with probability pε ∀²i ∈ {−ε,−ε+ 1, . . . , ε}.
To Þx ideas consider a type-(i, 0) voter and a given noisy poll �n. The agent now must estimate the true
state n given the polling information en and then, based on that information, decide whether to vote. She
will vote if and only if

Pr(ni = nj − 1|en) + Pr(ni = nj |en) ≥ 2ξ.
Suppose the voter receives a signal of the form �ni = �nj . Given uniform noise with ² = 1 this implies
Pr(ni = nj |�ni = �nj) = 3

9 and Pr(ni = nj − 1|�ni = �nj) = 2
9 . Hence, the voter will participate if

5
18 ≥ ξ.

Note that the necessary cost-beneÞt ratio ξ must be lower than under complete information. If the cost-
beneÞt ratio is sufficiently low, however, then with uncertainty there are more events where a voter expects
to be pivotal. For example, in the case of an erroneous poll at �ni = �nj + 1 a voter will still participate if
5
18 ≥ ξ. So, depending on the parameters c, b, and ² turnout may increase or decrease. That is, the effect of
polling noise is that the birth zone may increase at the expense of the death zone:

Proposition 1 With uniform polling noise over the square [−ε, ε]2, the pivot equation P (∆n(en) ∈ {−1, 0}|en) ≥
2ξ deÞnes a birth-zone of �width� w(ξ, ε):

Type D birth⇔ ∆en ∈ [−w − 1, w] Type R birth⇔ ∆en ∈ [−w,w + 1]
Type D death⇔ ∆en /∈ [−w,w + 1] Type R death⇔ ∆en /∈ [−w − 1, w], (5)

where

w(ξ, ε) = b2ε− ξ(1 + 2ε)2 + 1
2c. (6)

11To be more accurate, one may add the boundary condition en ≥ 0. While this would slightly change the estimates of n near
the boundary of the state space, it does not alter any of our conclusions.
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Proof : From the general pivot equations (1) we have

Pr (∆n(en) ∈ {−1, 0}|en) = Pr (enD + ²D − enR − ²R ∈ {−1, 0}|en)
DeÞning ∆² = ²D − ²R yields

Pr (enD + ²D − enR − ²R ∈ {−1, 0}|en) = Pr (∆² ∈ {−∆en− 1,−∆en}|en)
Denote p∆²(z) = Pr(∆² = z). Given that ∆² is a sum of two random variables, its distribution is the
convolution so that, using the indicator function 1{·} (1{A} = 1 if A, otherwise 0):

p∆²(z) =
X
y

Pr(²R = z + y)Pr(²D = y)

=
X
y

pε1{−ε ≤ z + y ≤ ε}pε1{−ε ≤ y ≤ ε}

=
X
y

p2ε1{max(−ε− z,−ε) ≤ y ≤ min(ε− z, ε)}

=

½
0 if |z| > 2ε
p2ε (min(ε− z, ε)−max(−ε− z,−ε) + 1) if |z| ≤ 2ε,

=

(
0 if |z| > 2ε,
2ε−|z|+1
(1+2ε)2 if |z| ≤ 2ε.

Thus:

Pr (∆² ∈ {−∆en− 1,−∆en}|en) =

0 if ∆en /∈ [−2ε− 1, 2ε],

1
(1+2ε)2 if ∆en ∈ {−2ε− 1, 2ε}
4ε−2|∆en|+2−sign(∆en)

(1+2ε)2 otherwise.

Now, Type D birth⇔ P (∆n ∈ {−1, 0}|en) ≥ 2ξ, which is equivalent to ∆en ∈ [−w− 1, w], where w ≤ 2ε and
w = max

½
i ∈ {0, 1, . . . , 2ε} such that 4ε− 2i+ 2− 1

(1 + 2ε)2
≥ 2ξ and 4ε− 2(i+ 1) + 2 + 1

(1 + 2ε)2
≥ 2ξ

¾
,

= max
©
i ∈ {0, 1, . . . , 2ε} : 4ε− 2ξ(1 + 2ε)2 + 1 ≥ 2iª

= b2ε− ξ(1 + 2ε)2 + 1
2c.

¥
We can summarize the transition probabilities at each state in the transition matrix P , which is graph-

ically represented in Figure 1. The up and right transitions inside the strip around the diagonal represent
births, while the down or left transitions are deaths. The proposition summarizes the joint impact of relative
cost-beneÞt ξ = c/b and the noise level ε on pivot probabilities into one parameter: the width w of the birth
zone.
The transition probabilities directly imply that the states nR > ND + w + 1 and the states (nD, nR) <

(w,w) are transient and the limiting distribution is zero for those states. The latter is consistent with
the fact that (0, 0) can never be a Nash equilibrium in a game-theoretic turnout model. In addition, if
NR ≤ ND +w + 1, then the state (nD, nR) is absorbing. Proposition 2 summarizes these Þndings:
Proposition 2 A unique limiting distribution exists and solves π = πP . Moreover, π is zero at all states
n = (nD, nR) such that (nD, nR) < (w,w) or nR > ND + w + 1. If NR ≤ ND + w + 1, then π(nD, nR) = 1
so that the expected turnout is (100%, 100%).

Clearly, the limiting expected turnout is minimal when the birth zone is minimal (w = 0) but is mono-
tonically increasing in the width of w. As an example, we simulated the expected turnout in our model for
various values of w for a total electorate of 1 million voters12 with 48% democrats and 52% republicans. The
12For such large electorates the limiting distribution π can no longer be calculated exactly (the linear system π = πP has

480 × 520 million unknowns). The time dynamics of the Markov chain, however, can easily by simulated. For each w, we
simulated three sample paths, each with 10 million time periods. As the graph shows, the simulation error is remarkably small.
The models computational properties are discussed in an appendix.
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Figure 1: The state space is partitioned in a �birth zone� around the diagonal and two death zones. The
speciÞc state transition probabilities (relative to N) are shown.

expected turnout together with sample points are reported in Figure 2. Clearly turnout increases rapidly for
small values of w, after which growth slows to an almost linear rate, until it picks up again as we approach
w = 40000. At w = 40, 000, we have that NR = ND +w so that turnout is 100% for both parties. (Interest-
ingly, the smaller party has larger proportional turnout for w < 20, 000, while the reverse is true for larger
w.)
Given that the width parameter w captures all system dynamics for Þxed faction sizes, it only remains to

analyze how w changes as function of ξ and ² to assess the effects of the cost/beneÞt ratio and uncertainty
on expected turnout.

Corollary 3 The birth width w decreases linearly in the cost-beneÞt ratio of voting ξ, but is concave in the
level of noise ε. SpeciÞcally, turnout is minimal (w = 0) for large cost-beneÞt ratios (if ξ ≥ ξ(ε)), in the
absence of noise or with a large amount of noise (if ε = 0 or if ε ≥ ε(ξ)), while turnout is maximal (w∗ = ε)
for the intermediate level of noise ε∗(ξ), where

ξ(ε) =
4ε+ 1

2 (1 + 2ε)2
,

ε(ξ) =
1− 2ξ +p(1− 2ξ)

4ξ
,

ε∗(ξ) =
1− 2ξ
4ξ

.

Proof: Clearly, w(ξ, ε) is jointly concave in ξ = c/b and ε, and for each c is maximal for (neglecting
integrality restrictions):

∂w

∂ε
= 2− 2ξ(1 + 2ε)2 = 0⇔ ε∗(ξ) =

1− 2ξ
4ξ

,
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Figure 2: The expected turnout fractions as a function of the width w of the birth zone for an electorate of
size 1 million with 48% Democrats and 52% Republicans.

and associated maximal width is:

wmax(ξ) = w(ξ, ε
∗(ξ)) = b21− 2ξ

4ξ
− ξ(1 + 21− 2ξ

4ξ
)2 + 1

2c =
1− 2ξ
4ξ

= ε∗(ξ).

Similarly, w reaches its minimal value 0 when

2ε− ξ(1 + 2ε)2 + 1
2 = 0⇔ ε ≥ ε(ξ) = 1− 2ξ +p(1− 2ξ)

4ξ
,

or when

ξ ≥ ξ(ε) = 4ε+ 1

2 (1 + 2ε)2
.

¥
The corollary is summarized in Figure 3, which shows a contour map of the parameter w that summarizes

the impact of both cost/beneÞt (ξ) and noise (ε). Recall that high values of the width w imply high turnout.
Somewhat surprisingly, while small levels of noise increase turnout, high levels of noise decrease it. This
Þnding is in contrast with the results from game-theoretic models where the introduction of uncertainty
destroys the high-turnout equilibria (Palfrey and Rosenthal 1985, Myerson 1998). Moreover, our model can
account for some the well-known empirical regularities of turnout with respect to the costs and potential
beneÞts of voting (Hansen, Palfrey, and Rosenthal 1987, WolÞnger and Rosenstone 1980). Turnout decreases
in the cost of participation (because w decreases), but increases in the stakes of the election (because w
increases)13, and of course, the closeness of the race as reported in the opinion poll (Nalebuff and Shachar
1999).14

13Participation in national elections is higher than in state or local elections.
14 It is worth pointing out that turnout may be substanstially higher if voters decide on many elections simultaneously. For

example, in presidential elections voters also vote on House elections, and perhaps on Senate elections, referenda etc. If the
marginal cost of Þlling out an additional ballot is small compared to the cost of driving to the polls, then our model suggests
that participation in all election may be driven by the election with the largest w, leading to substantially larger turnout. We
like to thank Ken Shepsle for suggesting this conjecture.
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Figure 3: The width parameter w as a function of ξ = c/b and ε = εfN .

To see the critical effect of polling noise, consider an example by Myerson (1998), which was constructed
to demonstrate the strikingly low expected turnout in large elections with costly voting with random faction
sizes ND and NR. In Myerson�s model, it can be easily shown that the expected turnout of Democrats and
Republicans in large electorates is roughly the same at approximately 1/(4πξ2). In his example, the voting
factions are assumed to be very dissimilar (ND = 1 million and NR = 2 million with a cost-beneÞt ratio
of 0.05) so that in the unique Poisson voting equilibrium expected turnout equals about 32 voters of either
party. For our model, highest expected turnout occurs for largest value of w. The corollary and Figure 3
show that the highest w for ξ = 0.05 is w∗ = 10 for a rather low polling noise level of ε∗(ξ) = 9.5, which
corresponds to an polling noise level of about 0.001%. Nevertheless, such little amount of noise is critical
and results in an expected turnout in our model15 of (1.05%±0.26%, 0.53±0.12%), which means that about
ten thousand voters of each party are expected to vote.
The discrepancy, we believe, can be explained by the stochastic assumptions: Myerson assumes a best-

response model with only uncertainty in the faction sizes. Our model assumes certainty in faction sizes
but introduces polling noise in a dynamic model. Our results indicate that polling noise has a much more
pronounced impact on turnout than faction size uncertainty. Indeed, consider an example with the same
cost-beneÞt ratio of ξ = 0.05, but more plausible faction sizes: ND = 480, 000 and NR = 520, 000. Turnout
for this example in Myerson�s model remains virtually unchanged16 at about 64 voters (or .0064%), similar to
the earlier example with 3 million voters. In our model, more similar faction sizes have a substantial impact
and with w = 10, expected turnout now is about (4.40%, 4.07%), as reßected in Figure 2. This means about
twenty-one thousand voters of each party are expected to show up. Finally, if the cost-beneÞt ratio were
to decrease Þfty fold to ξ = 0.0001, the highest width increases to w∗ = 2500 and expected turnout in our
model17 increases to about 20%, as shown in Figure 2. So, a Þfty fold drop in the cost/beneÞt ratio roughly
corresponded to a Þve fold increase in turnout percentages. This highlights the subtle yet crucial impact of
polling uncertainty, rather than faction uncertainty, in turnout models.
The example also conÞrms and highlights the impact of the cost-beneÞt ratio in voting turnout models. As

15The expected turnout was obtained through dynamic simulation of 10 sample paths, each simulated during 20 million time
periods. We report averages together with 95% conÞdence intervals.
16The reason is that Myerson assumes that ND and NR are Poisson random variables, whose standard deviation is the square

root of the mean. Hence, with a mean of about 500,000, the standard deviation is only 707. Hence, whether NR −ND is 1
million as in the Þrst example, or 40,000, as in the second, statistically the faction sizes are clearly not equal so that expected
turnout is not much affected.
17Myerson�s large population approximation does no longer apply in this low cost-beneÞt region.
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population size increases, substantial turnout requires higher noise and lower cost/beneÞt ratios. Substantial
turnout is possible if the stakes in large elections are substantially higher than in small elections.18 If,
for example voters care more about Senatorial than a House election, then although the district size is
larger in the former election turnout may still be substantial. The critical question then is how fast the
cost/beneÞt must change in N to ensure non-vanishing turnout. The corollary allows us to formally analyze
the relationship between ξ and N. First note that the answer depends on the noise level. Consider a Þxed
relative amount of noise, i.e. εf = ε/N is constant. Then, we have that19 :

ξ(εf ) =
4εfN + 1

2 (1 + 2εfN)
2 = O(

1

2εfN
),

so that a substantial turnout with large population size requires that ξ decreases inversely in N . For example,
for a polling noise level εf = 3%, substantial turnout requires that ξ(N) ≤

¡
1 + 3

50N
¢−1

.

4 Results for Large Electorates

The intended domain of applications for our model are large elections. Therefore, it seems appropriate to
investigate a continuum approximation for large population size N . Consider the fractional state descriptor:

xi =
ni
Ni

and αi =
Ni
N

and wf =
w

N
.

Clearly, the state space for x is a discrete grid or subset of the unit square. The birth zones become, slightly
abusing notation,

S(wf ) = {x ∈ [0, 1]2 : xiNi ∈ {0, 1, ..., Ni} and αRxR − αDxD ∈ [−wf − 1

N
,wf ]}

In this section, we consider the approximation where x is considered a continuous state variable on the unit
square, which formally obtains as the limit for N → ∞. Similarly, we denote the continuous extension of
π(s) by p(x). To avoid trivialities, we assume 0 ≤ wf < ∆α = αR − αD = NR−ND

N , so that from before, we
know that:

x ∈ [0, wf ]
2 is transient ⇒ p(x) = 0,

xR >
αD +wf
αR

is transient ⇒ p(x) = 0.

Proposition 4 The limiting distribution π(n) for large population sizes (N → ∞) tends to the probability
density function p(x), where xi = ni/Ni. The density p solves the following partial differential equations:

inside the birth strip, p solves PDE1(x) : (1− xD) ∂p
∂xD

+ (1− xR) ∂p
∂xR

= 2p,

inside the death zone, p solves PDE2(x) : xD
∂p

∂xD
+ xR

∂p

∂xR
= −2p.

Thus, p(1− x) is homogeneous of degree −2 inside the birth strip and p(x) is homogeneous of degree −2 in
the death zone.

Proof : Denote by ei a unit vector on the i-axis and let εi = 1
Ni
= 1

αiN
. For a state x inside the birth

zone, we only have births:

x→ x+ εiei w.p. pi0 =
Ni − ni
N

=
Ni
N
(1− xi) = αi(1− xi).

18While polling noise and N are easily measurable, the measurement of c and b is a difficult, perhaps insoluble, empirical
problem. In their study of Oregon school board referenda, Hansen, Palfrey and Rosenthal (1987) structurally estimated the
cost of participation. Of course, that estimate critically depends on the underlying game-theoretic model of turnout.
19The notation O(f(x)) describes the behavior for large x. Formally, O(f(x)) denotes any function g(x) such that

limx→∞ g(x)/f(x) = 1. Informally, it means that for large x, O(f(x)) ' f(x).
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The limiting distribution π(x) solves the global balance equations π = πP , which inside the birth zone thus
reduce to:

αD (1− (xD − εD))π(x− εDeD) + αR (1− (xR − εR))π(x− εReR) = (αD(1− xD) + αR(1− xR))π(x).
(7)

Now, consider the continuum approximation p(x) of π(x) by using a Þrst-order Taylor expansion: π(x −
εiei) = p(x)− εi ∂p∂xi + o(εi). Denoting

∂p
∂xi

by pi, (7) is equivalent up to o( 1N ) for large N to:

αD (1− xD + εD) (p− pDεD)) + αR (1− xR + εR) (p− pRεR))− (αD(1− xD) + αR(1− xR)) p = 0

⇔−αDpDεD + αDxDpDεD + αDεDp− αDpDε2D − αRpRεR + αRxRpRεR + αRεRp− αRpRε2R = 0

⇔−pD + xDpD + p− pDεD − pR + xRpR + p− pRεR = 0

⇔ (1− xD + εD)pD + (1− xR + εR)pR − 2p = 0

Hence, for N →∞, we have:

PDE1(x) : (1− xD) ∂p
∂xD

+ (1− xR) ∂p
∂xR

= 2p. (8)

Changing variables ui = 1− xi, we get:

PDE1(u) : uD
∂p

∂uD
+ uR

∂p

∂uR
= −2p,

with general solution: p(u) is homogeneous of degree −2. If x is outside the birth strip, we only have deaths
so that

x→ x− εiei w.p. pi0 = ni
N
=
Ni
N
xi = αixi.

The limiting distribution in the death zone solves:

αD(xD + εD)π(x+ εDeD) + αR(xR + εR)π(x+ εReR) = (αDxD + αRxR) p(x).

Similar to before, for N →∞, we have:

PDE2(x) : xD
∂p

∂xD
+ xR

∂p

∂xR
= −2p, (9)

with general solution: p(x) is homogeneous of degree −2. ¥
Given that an interior extremum would require ∂p

∂xi
= 0, the two PDE�s directly yield:

Corollary 5 In the large population limit, the limiting density p cannot attain an extremum in the interior
of the birth or death zones. Hence, the most likely outcome must be on either the upper or lower strip
boundary αRxR − αDxD = ±wf .

So, elections must be close. How close depends on w.

5 Perfectly Informative Polls

The PDEs� boundary conditions are too complex to derive a closed form solution for the general case.
However, we can characterize the special case of perfectly informative polls where en(n) = n. This case
corresponds to the minimal width birth-zone: w = 0. So, the pivot probabilities are either one or zero.
Notice that this case corresponds to Blume�s (1995) best-response dynamic as applied to the turnout game.20

20 In general, the analysis of best-response dynamics even in simple 2× 2 games may be highly non-trivial. See Blume (1995)
for details.
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Given that 0 < 2ξ < 1, the general pivot equations simplify to

Type D birth⇔ ∆n ∈ {−1, 0} Type R birth⇔ ∆n ∈ {0, 1}
Type D death⇔ ∆n /∈ {0, 1} Type R death⇔ ∆n /∈ {−1, 0}.

Notice that the pivot equations are independent of ξ. This corresponds to the following matrix

Best-Response Action Probabilities ni < nj − 1 ni = nj − 1 ni = nj ni = nj + 1 ni > nj + 1

Type (i, 0): z = 0 1 0 0 1 1
Type (i, 0): z = 1 0 1 1 0 0
Type (i, 1): z = 0 1 1 0 0 1
Type (i, 1): z = 1 0 0 1 1 0

Even though the action rule is deterministic, the selection rule induces stochasticity in the state transitions.
De-conditioning on types through the selection rule allows us to map the best response action probabilities
into the state transition probability matrix yields:

Best-Response Transition Matrix ni + 1 ni − 1 nj + 1 nj − 1 n

ni < nj − 1 0 pi1 0 pj1 1− pi1 − pj1
ni = nj − 1 pi0 pi1 0 0 1− pi0 − pi1
ni = nj pi0 0 pj0 0 1− pi0 − pj0
ni = nj + 1 0 0 pj0 pj1 1− pj0 − pj1
ni > nj + 1 0 pi1 0 pj1 1− pi1 − pj1

The unique limiting distribution π can now be found by solving the linear system of equations π = Pπ given
by the global balance equations. Applying Proposition (4) we can show the following:

Proposition 6 As the size of the electorate grows (N = ND + NR → ∞) while the fractions αi = Ni/N
remain constant, the limiting distribution of turnout fractions with a perfectly informative poll converges to
zero everywhere except for a Dirac impulse at (0%, 0%) if ND 6= NR or at (100%, 100%) if ND = NR.
Proof: With perfect information, we know that w = 0. Using our fractional state descriptor xi = ni

Ni
, the

type i birth-zone in the scaled state space are the two lines αRxR − αDxD ∈ [− 1
N , 0]. Clearly, as N →∞,

both type�s birth zones reduce to the line αRxR − αDxD = 0. First consider the case ND 6= NR. Anywhere
outside that birth-line, the continuum approximation p(x) is homogeneous of degree −2. Thus, in polar
coordination p(x1, x2) = p(r cos θ, r sin θ) = r−2p(cos θ, sin θ), which means that p has a pole of order −2 at
the origin. Because p must be integrable, it must be that p(cos θ, sin θ) = 0 for all θ. By extension, p is
zero in the interior of the death zone, which yields that p has a Dirac impulse of measure 1 at the origin
x = (0, 0). In the special case where ND = NR, we have that αD = αR = 1

2 and our earlier argument must
exclude the angle θ = 45o, which corresponds to the birth line. Indeed, we know that for ND = NR (even
for small values of N) we have a Dirac impulse of measure 1 at x = (1, 1) because that state is absorbing for
any value of N (thus also in the limit).¥
For large N , voters will (almost surely) coordinate on a state with zero turnout level, unless we have

the knife-edge case of exactly equal factions.21 There is no analogue to the mixed strategy equilibria in the
game-theoretic model or the asymmetric high-turnout equilibria found in Palfrey and Rosenthal (1983).22

Moreover, in contrast to the multiplicity of equilibria in that model, the prediction is unique. Note that the
result obtains in the absence of any uncertainty or noise. It is purely driven by the explicit coordination
device.
For technical reasons most of the literature has used perturbed best response as the action rule (Foster

and Young 1990, Blume 1993, Kandori, Mailath, and Rob 1993, Young 1993). Using perturbed best response
ensures the existence of a unique limiting distribution. Rather than characterizing the limiting distribution
directly researchers have focussed on the case of arbitrarily small noise. The critical notion here is that
21Recall that in the case of exactly equal factions there is a Nash-equilibrium in pure strategies with full turnout.
22Compare this result to the discrete public good game analyzed in Diermeier and Van Mieghem (2000) where asymmetric

states with high participation may be the most likely long-run states.
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of stochastically stable state (Foster and Young 1990). Intuitively, a state is stochastically stable if its
assigned limiting probability is strictly positive for vanishing noise. These are states that are most likely to
be observed over the long run if perturbations from best response behavior are arbitrarily small. Technically,
this approach amounts to a double-limit argument. First time is driven to inÞnity to Þnd the limiting
distribution parametrized by the noise term, and then noise is driven to zero to identify the stochastically
stable states. The advantage of this approach is that in many games the stochastically stable states can be
characterized directly without having to specify the limiting distribution Þrst.23

In our case the stable state short-cut is not available. Rather, we need to explicitly derive the limiting
distribution. Following Blume (1993) we consider the case of log-logistic choice.24. Let pβ(z|Xt

−k) denote
the conditional probability that in period t+1 agent k will play action z given that the current conÞguration
of play (not including k) is Xt

−k. Then the log-linear choice rule is given by:

pβ(z|Xt
−k) =

exp[βu(z;Xt
−k)]P

z0∈Z
exp[βu(z0;Xt

−k)]
,

It is equivalent to the assumption that the pair-wise probability ratios of choosing actions are proportional
to the respective pay-off differences. This rule can either be interpreted as �perturbed� decision making
(e.g. Blume 1993) or as a random utility model (e.g. McFadden 1973). In the latter interpretation, rather
than specifying that agents have Þxed incentives, utilities are assumed to vary randomly according to a
given probability distribution with a Þxed mean. Given these incentives agents choose optimal actions.
This interpretation is particularly suitable for a model of voting since the (perceived) beneÞts and costs
of participating may well vary substantially over time.25 Nothing in our model presupposes a particular
interpretation of the log-linear rule. All we assume is that the agents� behavioral regularities can be captured
by it. The parameter β may be interpreted as the degree to which choices respond to the incentives in the
model. For β = 0 choice is completely random. That is, for all possible conÞgurations, k will play each
action with probability 1/2. For β → ∞, log-linear choice converges to a distribution that puts positive
probability only on best-responses to Xt

−k.
In the log-logistic model the action probabilities are given by the following matrix:

Log-Logistic Action Probabilities ni < nj − 1 ni = nj − 1 ni = nj ni = nj + 1 ni > nj + 1

Type (i, 0): z = 0 1
1+e−βc

1
1+eβ(0.5b−c)

1
1+eβ(0.5b−c)

1
1+e−βc

1
1+e−βc

Type (i, 0): z = 1 e−βc
1+e−βc

eβ(0.5b−c)
1+eβ(0.5b−c)

eβ(0.5b−c)
1+eβ(0.5b−c)

e−βc
1+e−βc

e−βc
1+e−βc

Type (i, 1): z = 0 1
1+e−βc

1
1+e−βc

1
1+eβ(0.5b−c)

1
1+eβ(0.5b−c)

1
1+e−βc

Type (i, 1): z = 1 e−βc
1+e−βc

e−βc
1+e−βc

eβ(0.5b−c)
1+eβ(0.5b−c)

eβ(0.5b−c)
1+eβ(0.5b−c)

e−βc
1+e−βc

Mapping these action probabilities into the state transition probability matrix yields:

Log-Logistic Transition Matrix ni + 1 ni − 1 nj + 1 nj − 1
ni < nj − 1 e−βc

1+e−βc pi0
1

1+e−βc pi1
e−βc
1+e−βc pj0

1
1+e−βc pj1

ni = nj − 1 eβ(0.5b−c)
1+eβ(0.5b−c) pi0

1
1+e−βc pi1

e−βc
1+e−βc pj0

1
1+eβ(0.5b−c) pj1

ni = nj
eβ(0.5b−c)
1+eβ(0.5b−c) pi0

1
1+eβ(0.5b−c) pi1

eβ(0.5b−c)
1+eβ(0.5b−c) pj0

1
1+eβ(0.5b−c) pj1

ni = nj + 1
e−βc
1+e−βc pi0

1
1+eβ(0.5b−c) pi1

eβ(0.5b−c)
1+eβ(0.5b−c) pj0

1
1+e−βc pj1

ni > nj + 1
e−βc
1+e−βc pi0

1
1+e−βc pi1

e−βc
1+e−βc pj0

1
1+e−βc pj1

and the probability of staying in state n equals 1 minus the above probabilities of leaving that state. We
can then show:
23These two limits are in general not interchangeable, even in closely related games, such as a discrete public good game

(Blume 1995, Diermeier and Van Mieghem 2000). So, a model with vanishing noise may have very different properties from a
model with unperturbed best response.
24 See Blume (1997), and Young (1998) for overviews of alternative choice models.
25For example, turnout may be affected by bad weather.
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Proposition 7 As the size of the electorate grows (N = ND + NR → ∞) while the fractions αi = Ni/N
remain constant, the limiting distribution of turnout fractions for the log-logistic model for any β converge
to a Dirac impulse at

xD = xR =
e−βc

1 + e−βc
. (10)

Proof: Set γ = 1
1+e−βc . Analogous to the derivation of the continuum approximation earlier, we have

that the drifts at any state x = (nD/ND, nR/NR) in the death zone are:

x → x+ εDeD w.p. (1− γ) ND − nD
N

= (1− γ) ND − nD
ND

ND
N

= (1− γ)αD (1− xD) ,

x → x− εDeD w.p. γnD
N
= γαDxD,

x → x+ εReR w.p. (1− γ) NR − nR
N

= (1− γ)αR (1− xR) ,

x → x− εReR w.p. γnR
N
= γαRxR.

The limiting distribution π(x) at any interior death-zone state x solves:

(1− γ)αD (1− (xD − εD))π(x− εDeD) + γαD (xD + εD)π(x+ εDeD) + (1− γ)αR (1− (xR − εR))π(x− εReR)
+γαR (xR + εR)π(x+ εReR)− ((1− γ)αD (1− xD) + γαDxD + (1− γ)αR (1− xR) + γαRxR)π(x) = 0

Using the continuum approximation p(x) for π and Taylor�s expansion to the Þrst order yields:

(1− γ − xD) ∂p
∂xD

+ (1− γ − xR) ∂p
∂xR

= 2p.

Hence, p is homogeneous of degree −2 in ui = 1− γ − xi. As before, integrality implies that p must be zero
everywhere except at ui = 0, where it thus must have a Dirac impulse of measure 1.¥
Notice that the equilibrium distribution is stochastically decreasing in c. Also, the equilibrium distribu-

tion converges to the best-response limiting distribution for β → ∞, regardless of c.26 While substantial
participation may occur in the perturbed model, any such participation is driven by the random perturbations
of the best response correspondence, i.e., by those agents that vote although their (unperturbed) incentives
would suggest to abstain. Indeed as β → ∞ we recover the best response model with zero turnout.27 The
key insight from the (unperturbed) best response model is still valid: If information about current voting
behavior is perfect, voters almost surely coordinate (in the limit as β → ∞) on a single state. Moreover,
expected participation is small whenever voting factions are not of exactly the same size.
In addition to providing a robustness check of best-response dynamics, the log-logistic formulation allows

us to study �spontaneous� coordination through polls in more detail. Consider Figure 4, which shows the
limiting distribution of turnout in an example with ND = NR = 50 for various values of β. The minimal
value β = 0 corresponds to pure random choice. The turnout distribution thus is a Gaussian mountain with
maximum turnout likelihood at (25,25) = (50%, 50%). As β increases, behavior is more and more driven by
the incentives given by the game form. Recall that without noise the unique best-response turnout is (50,
50)=(100%, 100%) with probability 1. So, we may expect a convergence to universal turnout for vanishing
noise. This, however, is not the case. Rather, the dynamics as a function of β are non-linear: as β increases,
voters coordinate on smaller turnouts, which are consistent with unequal faction sizes. In the case of β = 38,
there are three most likely turnout states: the most likely noise-induced state is 14 people from each party,
with probability 0.68%, and two small turnout states: 4 Democrats and zero Republicans, or the reverse (0,
4), each also with probability 0.68%. As β increases, the two small turnout states become the most likely
outcome at even lower turnout. At β = 95, for example, 2 voters of one party and zero of the other are the
two most likely states with probability 1.47%, while the symmetric 14 people state still has probability of
0.68%. At a critical value βC between 95 and 96, however, spontaneous coordination at the (100%,100%)

26This already holds for Þnite N.
27 So, in the turnout participation game the two limits (t→∞) and (β →∞) are interchangeable.
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Figure 4: The limiting turnout density π as a function of the two turnout fractions and the parameter β for
an example with ND = NR = 50 and cost-beneÞt ratio ξ = 0.1.

outcome suddenly becomes possible: for β = 95, the state (50,50)=(100%,100%) has probability 10−17,
whereas for β = 96 that state has probability 0.32%!
This phenomenon is reminiscent of the well-known phase transitions in theoretical physics.28 For low

β noise prevails, while at higher β two low-turnout states that are each other�s mirror image (or differing
only in �spin�) are equally likely. During a β-interval starting at βC , two �phases�, i.e the low turnout
phase (with two most-likely states, differing only in �spin�) and the full turnout phase (with one most likely
state), can be balanced. Finally, as β increases beyond βC , the low turnout phase becomes less likely, and
ultimately, the full turnout phase prevails with probability 100%.29

28The threshold 1/βC plays a role similar to the Curie temperature in models of �spontaneous magnetization,� which is
magnetization�an ordered state�in the absence of any external magnetic Þeld. Once the temperature drops below a critical
threshold (the Curie temperature) the system suddenly switches to a magnetized state. This analogy can be made precise by
the use of Ising models (e.g. Blume 1993). Ising models are isomorphic to inÞnite lattice games where each node �plays� a 2×2
coordination game with its immediate neighbors. The case of pure coordination with x > 0 on the diagonals and 0 everywhere
else then corresponds to the case of spontaneous magnetization.
29 In the case of ND 6= NR this phase transition does not occur. Rather, more and more probability weight is put on the low

turnout states. So, at least from a stochastic point of view, the system is better behaved in the case where there is no Nash
equilibrium in pure strategies.
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6 Conclusion
We have proposed a new methodology to study coordination in voting games. As in game-theoretic models,
the voters� incentives are given by a normal form. As in stochastic learning models, however, voters adjust
their voting behavior in response to polling information about the current state of the electorate.
The model is applied to turnout games (Palfrey and Rosenthal 1983, 1985) where we investigate how noisy

opinion polls may serve as coordination devices. Voters coordinate in both noisy and perfectly informative
polls, under the assumption of both perturbed and unperturbed best response. We characterize the effect
of uncertainty, induced either through information coarseness or sampling error, on turnout. We show that
the effect of noise is non-monotonic: some uncertainty is necessary for non-zero participation levels, but too
much uncertainty again leads to vanishing turnout. Using large N approximations we then demonstrate how
voters can spontaneously coordinate their actions through polls.
Overall our results indicate a potentially important role for stochastic models in voting environments,

especially if coordination is an important characteristic of the strategic problem faced by voters. This suggests
other applications of the model in voting games, for example in the case of multi-candidate elections or under
different electoral rules. Eventually, the model should also include candidates as strategic actors.
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7 Appendix - Computational Properties
Universal turnout is possible if factions are close in size, costs are small or polling noise is moderate. To
calculate speciÞc turnout numbers, however, one must solve the general balance equations π = πP for π.
Unfortunately, the derivation of a closed form solution is a very hard problem. This suggests the use of
computational methods. From the global balance equations (and the normalization condition) it follows
that in principle, π can be solved for exactly by solving a simple system of linear equations. This direct
procedure involves (ND+1)(NR+1) states and thus unknowns, which, computationally, makes this a viable
approach only for relatively small populations.30

The balance equations, however, have a sparse structure, as each state only involves its direct neighbors.
More importantly, in the death zones it involves only lower states, whereas in the birth zone only higher
states are involved. This special structure can be exploited recursively to reduce the �quadratic complexity�
of the problem from (ND + 1)(NR + 1) to a �linear� complexity of only 2ND −w + 1 unknowns.31
This recursive formulation expresses all state probabilities in terms of the upper and lower strip boundary

probabilities. We use i : j to denote the set of integers {i, i+ 1, . . . , j} if i < j and i : j = ∅ otherwise.:

ui = π(i, i+w + 1) ∀i ∈ 0 : ND,
li = π(i, i−w − 1) ∀i ∈ (w + 1) : ND.

We can write all other π(i, j) in terms of u and l as follows. Above the strip, the balance equation

(i+ 1)π(i+ 1, j) + (j + 1)π(i, j + 1) = (i+ j)π(i, j)

can be solved backwards recursively given that π(i, j) = 0 for j > j := ND +w:

π(i, j) =
i+ 1

i+ j
π(i+ 1, j)⇒ π(i, j) =

(i+ 1) · · ·ND¡
i+ j

¢ · · · ¡ND + j¢uND
.

Now, full backward recursion applies to the upper triangle and speciÞes π(i, j) in terms of uj , uj+1, . . . , uND .
SpeciÞcally, ∀i ∈ 0 : (ND − 1) we have that

π(i, i+w + 2) =
N1X

j=i+w+2

Uijuj ,

Similarly, we solve the lower triangle in terms of l and ∀i ∈ (w + 1) : (ND − 1) we have that

π(i, i−w − 2) =
NDX
j=i+1

Lijlj .

Inside the strip, we can solve for all π in terms of both u and l. Indeed, the balance equation inside:

(ND − i+ 1)π(i− 1, j) + (NR − j + 1)π(i, j − 1) = (N − i− j)π(i, j),

can now be solved by forward recursion. Thus, this also solves for the diagonals one-off the strip boundaries:
∀i ∈ 0 : (ND − 1) we have that

π(i, i+ w) =
i−1X
j=0

U+ijuj +
i−1X

j=w+1

L+ijlj .

π(i, i− w) =
i−1X
j=0

U−ijuj +
i−1X

j=w+1

L−ijlj .

30A simple personal computer with 128MB of RAM can solve a linear system with a few thousand unknowns. Hence, with
N1N2 ' 4000, one solves exactly for populations Ni ' 200.
31Hence, using this recursive formulation our simple personal computer can solve populations of size Ni ' 2000 exactly.
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Now we only need to solve for the line probabilities u and l, which follow from the balance equations on
those lines. SpeciÞcally, the upper strip boundary yields:

(NR − j + 1)π(i, j − 1) + (j + 1)π(i, j + 1) = NDπ(i, j),

⇔ (NR − i−w)π(i, i+w) + (i+w + 2)π(i, i+w + 2) = NDπ(i, i+w + 1)

⇔ (NR − i−w)
i−1X
j=0

U+ijuj +
i−1X

j=w+1

L+ijlj

+ (i+w + 2) N1X
j=i+1

Uijuj = NDui. (11)

The lower strip boundary yields:

(ND − i+ 1)π(i− 1, j) + (i+ 1)π(i+ 1, j) = NRπ(i, j),

⇔ (ND − i+ 1)π(i− 1, i−w − 1) + (i+ 1)π(i+ 1, i−w − 1) = NRπ(i, i−w − 1)

⇔ (ND − i+ 1)
i−2X
j=0

U−i−1,juj +
i−2X

j=w+1

L−i−1,jlj

+ (i+ 1) N1X
j=i+2

Li+1,jlj = NRli. (12)

Equations (11)�(12) specify the recursive problem formulation. Since it yields a linear system of equations
with full coefficient matrix, an analytic closed form solution seems unlikely. Computational complexity,
however, is greatly reduced by the recursive formulation, which as a linear system the numeric solution is
straightforward to solve.
Nevertheless, even that approach cannot compute electorate sizes of millions. In that case one needs to

resort to simulations.32 This technique exploits the ergodic properties of the process, i.e., the fact that πj
also gives the long-run mean fraction of time that the process occupies state j (e.g., Taylor and Karlin 1994;
p.176). Formally,

πj = lim
m→∞

1

m

m−1X
τ=0

Pr{Xτ = j|X0 = i}

Invoking the fact that the limiting distribution is independent of the starting state, one obtains π by simu-
lation the dynamics for an arbitrarily long period of time, starting from any state at time 0. Of course, for
Þnite time-spans simulations only yield approximate results.

32The general problem is not computational time, but storage: the coefficient matrix of our recursive formulation is dense so
that with Ni ' 1 million, we need to store 1 trillion numbers!

18



References
[1] Aldrich, John. 1993. �Rational Choice and Turnout.� American Journal of Political Science. 37(1):246-

278.

[2] Bendor,Jonathan, Daniel Diermeier, and Michael M. Ting. 2000. �A Behavioral Model of Turnout�.
Mimeo. Graduate School of Business. Stanford University.

[3] Blume, Lawrence E. 1993. �The Statistical Mechanics of Strategic Interaction�. Games and Economic
Behavior 4:387-424.

[4] Blume, Larry. 1995. �The Statistical Mechanics of Best-Response Strategy Revision�. Games and Eco-
nomic Behavior 11: 111-45.

[5] Blume, Lawrence E. 1997. �Population Games�. In W. Brian Arthur, Steven N. Durlauf, and David A.
Lane, eds. The Economy as an Evolving Complex System II. Reading: Addison-Wesley.

[6] Diermeier, Daniel, and Jan Van Mieghem. 2000. �Spontaneous Collective Action�. CMSEMS Discussion
Paper No. 1302. Kellogg Graduate School of Management. Northwestern University.

[7] Downs, Anthony. 1957. An Economic Theory of Democracy. New York: Harper and Row.

[8] Foster, Dean and H. Peyton Young. 1990. �Stochastic Evolutionary Game Dynamics.� Theoretical
Population Biology 38: 219-232.

[9] Hansen, Steven, Thomas Palfrey, and Howard Rosenthal. 1987. �The Relationship between Constituency
Size, and Turnout: Using Game Theory to Estimate the Cost of Voting.� Public Choice 52:15-33.

[10] Kandori, Michihiro, George Mailath and Raffael Rob. 1993. �Learning, Mutation, and Log-Run Equi-
libria in Games�. Econometrica 61: 29-56.

[11] McFadden, Daniel. 1973. �Conditional Logit Analysis of Qualitative Choice Behavior.� in P. Zarembka,
ed., Frontiers in Econometrics. New York: Academic Press.

[12] Myerson, Roger. 1998. �Population Uncertainty and Poisson Games.� International Journal of Game
Theory 27:375-392.

[13] Nalebuff, Barry, and Ron Shahar. 1999. �Follow the Leader: Theory and Evidence on Political Partici-
pation.� American Economic Review 89(3):525-549.

[14] Palfrey, Thomas R., and Howard Rosenthal. 1983. �A Strategic Calculus of Voting.� Public Choice
41:7-53.

[15] Palfrey, Thomas R., and Howard Rosenthal. 1985. �Voter Participation and Strategic Uncertainty.�
American Political Science Review 79:62-78.

[16] Taylor, Howard M., and Samuel Karlin. 1994. An Introduction to Stochastic Modeling. Second Edition.
Boston et al.:Academic Press.

[17] WolÞnger, Raymond E., and Rosenstone, Steven. 1980.Who Votes? New Haven. Yale University Press.

[18] Young, H. Peyton. 1993. �The Evolution of Conventions�. Econometrica 61:57-84.

[19] Young, H. Peyton. 1998. Individual Strategy and Social Structure. Princeton: Princeton University Press.

19


