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Abstract

We analyze an infinitely repeated version of the Downsian model
of elections. The folk theorem suggests that a wide range of policy
paths can be supported by subgame perfect equilibria when parties
and voters are sufficiently patient. We go beyond this result by giving
separate weak conditions on the patience of voters and the patience
of parties under which every policy path can be supported. We also
show that this indeterminacy holds, regardless of the patience of par-
ties and voters, when the policy space and the voters’ utilities are
unbounded. On the other hand, we show that when parties and vot-
ers are sufficiently impatient, all supportable policy paths lie in the
core, bringing us back to the median voter result in one dimension
and generic non-existence of equilibria in multiple dimensions. Two
distinctive features of these results are that they apply over a wide
range of discount factors and they employ a refinement of subgame
perfect equilibrium that restricts the types of punishments that can
be used.



1 Introduction

The Median Voter Theorem of Black (1958) establishes that if voters have

single-peaked preferences over a one-dimensional set of alternatives, then the

median of the distribution of voter ideal points is majority-preferred to all

other alternatives. In multidimensional policy spaces, however, such points,

called “core points,” typically do not exist (Plott, 1967; Rubinstein, 1979;

Schofield, 1983; Cox, 1984; Le Breton, 1987; Banks, 1995). The standard

game-theoretic model of two-party spatial competition, originally examined

by Downs (1957), assumes that parties are office-motivated, they can commit

to campaign platforms, and that voters eliminate weakly dominated strate-

gies. In this setting, it is easy to show that a choice of policy by the parties is

a (pure strategy) Nash equilibrium if and only if both parties locate at a core

point. Thus, the median is the unique equilibrium in the one-dimensional

model, but electoral equilibria typically fail to exist in multiple dimensions.

These conclusions rely, however, on the often unnoticed assumption, implicit

in the standard model, that parties and voters care only about the current

election.

In this paper, we investigate the consequences of repeating this Downsian

game and allowing parties and voters to anticipate the effects of their actions

on future elections. Drawing on the theory of infinitely repeated games, it is

a folk theorem that if players have sufficiently high discount factors, the set

of subgame perfect equilibrium outcomes of a repeated game can be sizeable

(Fudenberg and Maskin, 1986). Motivated by this result, we consider the

following questions concerning infinitely repeated two-party competition. Is

the median the unique equilibrium in one dimension? Do equilibria exist

in multiple dimensions when the core is empty? How large does the set of

equilibrium outcomes become? How do the equilibrium outcomes depend on

the patience of the parties and voters?

Our first set of results show that under modest conditions, not only do

electoral equilibria exist (in a single or in multiple dimensions), but every pos-

sible sequence of policies is supportable by a subgame perfect equilibrium.

We find three separate sets of conditions under which this “indeterminacy”

conclusion holds. The first requires only that voters place more weight on the
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future than the present (discount factors greater than one half) and imposes

no restriction on the parties. The second assumes that the core is non-empty,

or that it is “close” to non-empty, and requires only that parties place more

weight on the future than present. The third examines the case in which the

policy space and the voters’ utility functions are unbounded and imposes no

conditions on patience.1 These results go beyond the standard folk theorem

in two ways. First, they do not rely on arbitrary patience, but rather impose

either modest requirements on discount factors or none at all. Second, we

use a refinement of subgame perfect equilibrium that restricts the kinds of

punishments available to parties and voters. In particular, we exclude equi-

libria in which voters or parties condition on how particular voters voted in

the past, or even on total vote tallies in previous elections. Furthermore,

we suppose each voter acts as though pivotal in every election, essentially

eliminating weakly dominated strategies in every period in the spirit of the

one-shot Downsian model. Finally, we restrict ourselves to equilibria in which

any voter, when indifferent concerning which party wins, flips a fair coin to

decide his/her vote, treating the parties symmetrically.

With these results in hand, we next investigate the conditions under which

parties must choose core points (the median, in one dimension) in equilib-

rium, a phenomenon we refer to as “core equivalence.” We first note that

if voters and parties use stationary (that is, history-independent) strategies,

then we obtain core equivalence. Therefore, we are back to the median voter

theorem in one dimension and generic non-existence of equilibria in multiple

dimensions. If we allow for history-dependent equilibria, then we know from

our above results that the voters and parties must be sufficiently impatient

and the policy space must be bounded. In this setting, we show that, with an

odd number of voters and quadratic utilities, if voter and party patience are

below a relatively moderate level (discount factors below one half for voters

and one third for parties), we again obtain core equivalence. Finally, our

last result considers the case at the opposite extreme of the folk theorem,

namely, voters with discount factors sufficiently close to zero. In this case,

we show that if voters are sufficiently impatient (and parties have discount

factors below one third), then policy paths supportable by subgame perfect

1To be precise, the second and third results also require that voters place nonzero
weight on the future.
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equilibrium must be arbitrarily close to the core. As a corollary, if the core

is empty and voters are sufficiently impatient, then there exist no subgame

perfect equilibria of the repeated electoral game.

Repeated elections have been considered in the literature on “electoral ac-

countability,” which drops the commitment assumption and modifies other

details of the Downsian model, such as adding asymmetric information of one

form or another.2 While many of these models assume a single, or “represen-

tative,” voter, Duggan (2000) and Bernhardt, Hughson, and Dubey (2002)

explicitly allow for a continuum of voters, and the former paper contains

simulation results suggesting core equivalence as voters become arbitrarily

patient. Aragones and Postlewaite (2000) consider a related model but as-

sume complete information. While these papers assume a one-dimensional

policy space, Banks and Duggan (2002) prove existence of equilibria in mul-

tiple dimensions and give analytic results on core equivalence. Work on elec-

toral accountability differs from ours not only in removing the commitment

assumption, but also in focusing on stationary equilibria.3

Kramer (1977) takes a different approach by assuming office-motivated

parties that can commit to policy platforms before elections and allowing for

multiple dimensions. His model differs from ours, however, in that only the

party out of power may choose a platform, while the incumbent party is fixed

at its previous position, and in that the parties optimize myopically. Alesina

(1988) takes yet another approach by assuming policy-motivated parties that

cannot commit to policy platforms, by assuming probabilistic voting, and by

considering a specific class of non-stationary equilibria, namely, those using

“Nash reversion” punishments. Finally, McKelvey and Ordeshook (1985) and

Shotts (2000) are examples of models focusing on the informational aspects

of repeated elections with private information.

The organization of the paper is as follows. In Section 2, we lay out

the repeated electoral model. The third section describes the equilibrium

refinements we impose. In Section 4, we present our results on indeterminacy

and in Section 5, we give results on core equivalence. In Section 6, we end

2For an expository review of this literature, see Fearon (1999).
3As we show, in the repeated Downsian electoral model, stationarity implies core equiv-

alence and, therefore, equilibrium existence problems in multiple dimensions.
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with some brief concluding remarks. An appendix contains proofs of all of

our propositions, including diagrams of equilibrium constructions used in the

proofs of Propositions 2, 3, and 5.

2 The Model

The players in our model are two parties, labeled A and B, and n voters, who

participate in an infinite sequence of elections. In each election, the parties

simultaneously choose policy platforms from some set X of policy alterna-

tives, generically denoted x, x′, etc.4 We use y to denote a platform choice by

party A and z to denote a choice by B. In each period, once the parties have

selected platforms, the voters observe these choices and simultaneously cast

ballots for A or B. In every period, the election is determined by plurality

rule, with the party receiving the most votes implementing its platform for

that period. In the event of a tie, parties A and B each win with probability

one half, i.e., the winner is decided by the toss of a fair coin in case of a

tie. We denote a generic policy in period t by xt and we let x = (x1, x2, . . .)

denote an infinite path of policies.

A history of length t, denoted ht, in this game is a list of the actions of all

players in periods 1, 2, . . . , t, i.e., it must list the platforms of the parties, the

votes of the voters in each period, and, in case of electoral ties, the outcomes

of coin flips to break ties. We define the initial history, denoted h0 = ∅, as

the “empty” list that describes the game at the beginning of period 1. A

finite history is a history of finite length, whereas an infinite history is a list

of platforms and votes for every period. We denote the set of all histories of

length t by Ht and the set of all finite histories by H =
⋃

t Ht. A strategy of

a party P ∈ {A,B} is a mapping ρP : H → X, indicating the platform the

party will adopt after different histories. A strategy of a voter i is a mapping

σi : H×X×X → [0, 1] which gives, for each finite history and platform pair

(y, z) (the platforms of the parties in the current period), the probability of

a vote for party A. Letting ρ = (ρA, ρB) and σ = (σ1, . . . , σn), a profile of

4At this point, we impose no structure on the set X, allowing it to be finite or infinite,
perhaps a subset of the real line or a subset of multidimensional Euclidean space.
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strategies is (ρ, σ). An electoral outcome in period t is (i) the platforms, yt

and zt, chosen by the parties, and (ii) the winner of the election in t (possibly

determined by a tie-breaking coin flip), denoted wt ∈ {0, 1}, where wt = 1

indicates that A won and wt = 0 indicates that B won. Thus, the actual

policy implemented in period t can be expressed as wtyt + (1−wt)zt. Given

a finite history ht, let

o(ht) = ((w1, y1, z1), (w2, y2, z2), . . . , (wt, yt, zt))

denote the sequence of electoral outcomes associated with ht. A strategy

profile (ρ, σ) determines a distribution on infinite sequences of electoral out-

comes, where randomness may be introduced by mixed voting strategies and

tied elections. This distribution, in turn, determines a distribution on infinite

paths of implemented policies.

We assume each voter i has a utility function ui : X → R that reflects the

voter’s preferences over policies in any period. Write x M y if x is plurality-

preferred to y, i.e., if the number of voters with ui(x) > ui(y) is greater than

the number of voters with ui(y) > ui(x). Define the core, denoted K, as the

set of plurality undominated policies, i.e.,

K = {x ∈ X | y M x for no y ∈ X}.

When voter preferences are single-peaked, it is well-known that K consists

of the median policies, i.e., x ∈ K if and only if the number of voters with

ideal points below x is less than or equal to n/2 and the number with ideal

points above is also less than or equal to n/2. Write x M* y if x is majority-

preferred to y, i.e., if the number of voters with ui(x) > ui(y) is greater than

n/2. Define the strong core, denoted K∗, as the set of majority dominant

policies, i.e,

K∗ = {x ∈ X | x M* y for all y ∈ X \ {x}}.

Clearly, K∗ ⊆ K and K∗ contains at most one element. When n is odd and

voter preferences are “linear” (ui(x) = ui(x
′) implies x = x′), it is known

that K = K∗. As well, if n is odd, if X is a convex subset of Euclidean

space, and if voter preferences are strictly quasi-concave (as in the standard

spatial model), then K = K∗.
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Voters in our model are fully rational in that they consider the effect of

their current vote on future elections in deciding how to vote. We assume

that, in order to evaluate these effects, voter preferences over infinite histories

are represented by the discounted sum of utilities from policies over time, i.e.,

(1− δi)
∞∑

t=1

δt−1
i [wtui(yt) + (1− wt)ui(zt)],

where δi ∈ [0, 1) is the discount factor for voter i. Preferences over lotteries

on outcome paths are given by the expected discounted sum of utilities. Party

P receives a payoff of one when it wins, zero otherwise. Thus, we assume

the parties are probability of winning maximizers. Each has a discount rate

δP ∈ [0, 1), and we assume A’s preferences over infinite histories are given by

(1− δA)
∞∑

t=1

δt−1
A wt

and B’s preferences by

(1− δB)
∞∑

t=1

δt−1
B (1− wt).

Again, preferences over lotteries on outcome paths are given by expected

discounted payoffs.

A specification of strategies for parties and voters is a subgame perfect

equilibrium if it satisfies the following: no party or voter has a different

strategy that, following some finite history, yields a distribution over outcome

paths with a higher expected discounted sum of utilities. We say a subgame

perfect equilibrium supports a policy path x if the distribution on infinite

policy paths determined by the equilibrium strategies puts probability one

on x. Note that this can happen in one of two ways: either both candidates

adopt platform xt or only party P adopts xt and wins with probability one. If

there is an equilibrium that supports x, then we say the path is supportable.
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3 Equilibrium Refinements

In this section, we present some restrictions on strategies in order to rule

out especially implausible equilibria of the game. It is well-known that, in

infinitely repeated games with sufficiently patient players, a large set of out-

comes can typically be supported by subgame perfect equilibria (Fudenberg

and Maskin (1986)). The standard folk theorem, however, places no lim-

itations on the types of punishments that can be used by the equilibrium

supporting a particular outcome. In the context of repeated elections, how-

ever, we want to exclude equilibria that are less compelling on the grounds

of realism, such as those in which one voter is singled out for voting the

wrong way and punished in the future by parties and other voters. Because

of this, we focus on equilibria in which such punishments are not used. That

is, we focus on equilibria in which the choices of voters and parties in any

period are conditioned only on previous electoral outcomes. We refer to this

restriction as “outcome stationarity.”

Definition 1 (OS) A strategy profile (ρ, σ) satisfies outcome stationarity if

for all t and any two histories ht ∈ Ht and h′t ∈ Ht such that o(ht) = o(h′t),

1. for each party P , ρP (ht) = ρP (h′t), and

2. for all (y, z) and all i, σi(ht, y, z) = σi(h
′
t, y, z).

In other words, outcome stationarity requires that after any two histories

with identical sequences of outcomes, the specified platform choice of each

party is the same and the choices of the voters can only be conditioned on

the party’s choices of platforms in the current period. Thus, following a

finite history ht and platform choices of the parties, y and z, each voter i can

calculate the expected discounted sum of utilities if A is elected and if B is

elected in the current period, given the strategies of the other players. Denote

these continuation values by vi(ht, y, z, 1) and vi(ht, y, z, 0), respectively. This

formulation will be very useful in what follows.

Even restricting the available strategies to those that satisfy outcome

stationarity, it is possible to establish a folk theorem-like result. In fact, the
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result is much stronger than the standard folk theorem because it holds for

any δi ≥ 0, not just a particular range of values.

Proposition 1 If n ≥ 3, every policy path is supportable by a subgame per-

fect equilibrium satisfying (OS).

The proof of this proposition is straightforward. Let x be any given policy

path. Both parties choose a strategy to play xt in period t, regardless of ht.

For the voters, as long as both parties choose the prescribed platforms in

each period (or both deviate), the voters randomize their vote. If a party

deviates from xt, then in that and all later periods, all voters vote for the

non-deviating party. Clearly, no player can gain by deviating. Subgame

perfection holds because (as n ≥ 3) it is a Nash equilibrium in the voting

subgame for all voters to vote for A, regardless of their preferences over

candidate platforms; similarly, it is Nash for all to vote for B. It is clear

that this a subgame perfect equilibrium satisfying outcome stationarity, but

it requires some voters to vote against their preferred party. The standard

response to this in a one-shot model is to impose “sincere” voting, which is

equivalent to elimination of weakly dominated strategies.

In our repeated setting, imposing sincere voting in each stage game is not

satisfactory, as the voters are fully rational and anticipate the effect of their

votes on the choices of the parties in later periods. Rather, we consider only

subgame perfect equilibria in which each voter, while taking the strategies

of all players in the future as fixed, essentially eliminates weakly dominated

strategies in the voting subgame. In other words, when the continuation

value to player i of having A elected in the current period is strictly higher

than the continuation value of electing B, voter i votes for A, and similarly

for B. This is equivalent to requiring that all voters act as if they were

pivotal in the current period. Following Baron and Kalai (1993), we refer to

this restriction as “stage game weak dominance.”

Definition 2 (WD) A strategy profile (ρ, σ) satisfies stage game weak dom-

inance if for every t, every history ht ∈ Ht, and every platform choices y and

z,
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1. (1 − δi)ui(y) + δivi(ht, y, z, 1) > (1 − δi)ui(z) + δivi(ht, y, z, 0) implies

σi(ht, y, z) = 1, and

2. the reverse inequality implies σi(ht, y, z) = 0.

Stage game weak dominance requires voters with strict preference to act

accordingly, but it does not restrict the actions of indifferent voters. While

it true that the choice of such a voter is irrelevant to that voter, it can

dramatically affect the choices of the parties. In fact, in one dimension, we

can modify the argument for Proposition 1 to again support every policy

path. If either party, say B, deviates from the given policy in period t to any

other policy, then, in all future periods, both parties locate at the median,

where the voters always vote for A. Such “Nash reversion” equilibria satisfy

stage game weak dominance, but they depend critically on the possibility

that the parties are treated asymmetrically, even when they adopt identical

platforms (and are expected to do so after every history). We therefore

impose a last restriction, augmenting stage game weak dominance, which we

call “party symmetry.”

Definition 3 (PS) A strategy profile (ρ, σ) satisfies party symmetry if for

every t, every history of length t, and every platform choices y and z, (1 −
δi)ui(y)+δivi(ht, y, z, 1) = (1−δi)ui(z)+δivi(ht, y, z, 0) implies σi(ht, y, z) =

1/2.

That is, when indifferent between the two parties, each voter flips a fair coin

to decide. Note that, as a consequence, if the inequality in Definition 2 holds

for a plurality of voters after some history and platform pairs, then party A

wins with probability greater than one half.

4 Indeterminacy

We find the result that “anything can happen” under three sets of conditions,

each using a different logic to support policy paths. Our first result assumes

only that voters are somewhat patient, placing more weight on the future

than on the present.
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Proposition 2 Let δi > 1/2 for all voters. Then every policy path is sup-

portable by a subgame perfect equilibrium satisfying (OS), (WD), and (PS).

The equilibrium constructed in the appendix can be described roughly as

follows. We specify that both parties choose platform xt in period t, unless

some party has deviated. In any period where one party, say A, has deviated

to y 6= xt, future policy platforms depend on several factors. If xt M y, then

the deviation is ignored and the parties “return to the equilibrium path.”

If y M xt, then future policy platforms depend on which party wins: if the

deviating party, A, wins, then the parties adopt xt in all future periods;

if party B wins, then the parties move to the deviant platform, y, in all

future periods. Along the equilibrium path, voters are indifferent between

the parties and so flip coins to decide their ballots, giving the parties expected

discounted equilibrium payoffs of one half. If A deviates to y, a voter votes

for A if ui(xt) > ui(y), votes for B if the opposite inequality holds, and

flips a coin if equality holds. Given the strategies of the parties, and given

that δi > 1/2, these voting strategies are best responses satisfying (WD) and

(PS). Given the strategies of the voters, no party has an incentive to deviate:

if A deviates to y M xt, for example, then a plurality of voters will vote for B,

so A wins with probability less than one half in period t (and will win with

probability one half in the future), giving it an expected discounted payoff

less than one half.

Whereas the preceding result restricts the patience of voters and allows

for arbitrary party discount factors, the next relies on somewhat patient

parties and assumes only that voters put some positive weight on the future.

Interestingly, the construction used to support arbitrary policy paths uses the

existence of a strong core point: equilibrium uniqueness in one-shot Downsian

elections can lead to indeterminacy in infinitely repeated elections.

Proposition 3 Let δi > 0 for all voters, let δP ≥ 1/2 for both parties, and

let K∗ 6= ∅. Then every policy path is supportable by a subgame perfect

equilibrium satisfying (OS), (WD), and (PS).

The equilibrium constructed for Proposition 3 uses some of the same ideas

as does Proposition 2, but it is somewhat more complex, so we leave the
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reader to the formal description in the appendix. One difference between the

constructions is of note. To prove Proposition 2, we specified party strategies

so that the parties always choose the same platform and, unless one party

deviated, voters treat the parties symmetrically. In proving Proposition 3,

we also specify that parties always choose the same platform, but in some

subgames one party wins with probability one and one wins with probability

zero. This is consistent with voter incentives because the parties’ current

platforms are identical and, by design, the expectations about the future are

worse for a majority party if the latter party wins. Note that without the dif-

ference in future policies, and without positive discount factors for the voters,

our party symmetry condition would make this impossible. A difficulty that

arises is the potential for the “losing” party to deviate profitably. Because

voters may be arbitrarily close to myopic, we cannot use future policies to

induce voters to punish deviations, so we are forced to assume a strong core

point.

Next, we show that, if typical regularity conditions are imposed, then

Proposition 3 is actually robust to the assumption that the strong core is non-

empty. Indeed, if voter discount factors are positive and voter preferences

are sufficiently close to admitting a strong core, then every policy path is

supportable. In the following, we say the sequence {um
i } of utility functions

converges uniformly to ui if

sup
x∈X

|um
i (x)− ui(x)| → 0.

We say the sequence {(um
1 , . . . , um

n )} of vectors of utility functions converges

uniformly to (u1, . . . , un) if um
i → ui uniformly for every voter. We write

K∗(u1, . . . , un) for the strong core at the vector (u1, . . . , un).

Proposition 4 Assume X ⊆ Rd is compact and convex. Let δi = δ > 0

for all voters, let δP ≥ 1/2 for both parties, let K∗(u1, . . . , un) 6= ∅, and

let (um
1 , . . . , um

n ) → (u1, . . . , un) uniformly. Assume um
i is concave and ui

is continuous for all voters. Then, for high enough m, every policy path

is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and

(PS).
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Our last result in this section allows for arbitrary discount factors of par-

ties and any positive discount factors for voters, and instead uses a condition

on voter utilities. We say utility functions are majority unbounded below if

there exists a majority C ⊆ N such that, for all c ∈ R, there exists x ∈ X

satisfying ui(x) ≤ c for all i ∈ C, i.e.,

inf
x∈X

max
i∈C

ui(x) = −∞.

This condition is satisfied if, for example, X = Rd, each ui is concave, and

some policy is Pareto dominated. To see this, take any x0 ∈ X outside

the Pareto set, so there exists x′ ∈ X with ui(x
′) > ui(x

0) for every voter.

Letting x1 = 2x0 − x′, we have x0 = (1/2)x′ + (1/2)x1, and, by concavity,

ui(x
0) ≥ (1/2)ui(x

′) + (1/2)ui(x
1)

for every voter. Equivalently,

ui(x
1) ≤ ui(x

′)− 2(ui(x
′)− ui(x

0)).

Defining xk = (k + 1)x0 − kx′ for each integer k ≥ 2, we can deduce

ui(x
k) ≤ ui(x

′)− k(ui(x
′)− ui(x

0)).

Since ui(x
′)−ui(x

0) > 0 for all i, we can make each ui(x
k) arbitrarily low by

picking k sufficiently high, fulfilling the definition of majority unboundedness

below. Since these assumptions on voter preferences are rather weak, we

see that unboundedness of the policy space is essentially sufficient for the

condition. In fact, as long as X is a closed subset of Euclidean space and

each ui is continuous, it is necessary as well.

Proposition 5 Assume that voter utilities are majority unbounded below

and that δi > 0 for all voters. Then every policy path is supportable by a

subgame perfect equilibrium satisfying (OS), (WD), and (PS).

The equilibrium used in the proof is similar to that used to prove Propo-

sition 2. Now, however, if A deviates to y M xt and wins, then we specify

that both parties move to a platform that is significantly worse than xt for
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a majority of voters, a construction that is made possible by majority un-

boundedness below. This gives a majority of voters an incentive to vote

against A and eliminates any incentive for the parties to deviate. Note that

majority unboundedness below, and therefore the logic of Proposition 5, can

hold only when X is infinite.

5 Core Equivalence

In this section, we first consider policy paths supportable by subgame perfect

equilibria satisfying a stationarity condition stronger than outcome station-

arity. We say a specification of strategies satisfies “strong stationarity” if

parties use history-independent strategies and voters condition only on the

platforms of the parties in the current period.

Definition 4 (SS) A strategy profile (ρ, σ) satisfies strong stationarity if

for all t and any two histories ht ∈ Ht and h′t ∈ Ht,

1. for each party P , ρP (ht) = ρP (h′t), and

2. for all (y, z) and all i, σi(ht, y, z) = σi(h
′
t, y, z).

In a subgame perfect equilibrium satisfying strong stationarity, it is clear

that vi(ht, y, z, P ) is independent of ht, y, z, and P : regardless of their values,

the parties will each choose some y and z in period t+1, and in every period

thereafter, and any voter who conditions only on those platforms will vote

the same way in every period. Similarly, the parties’ expected discounted

payoffs are constant across all histories.

The next proposition shows that strengthening outcome stationarity to

strong stationarity brings us back to the Downsian core equivalence result.

Note that the “only if” direction in the following proposition does not rely on

party symmetry because strong stationarity and weak dominance are enough

to imply that all voters must vote sincerely in every period.
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Proposition 6 A policy path x is supportable by a subgame perfect equilib-

rium satisfying (SS), (WD), and (PS) if and only if xt ∈ K for all t.

An implication is that every policy path through the core can be sup-

ported by a subgame perfect equilibrium, in fact, by a strongly stationary

one. In the remainder of this section, we drop the restriction of strong sta-

tionarity and give sufficient conditions for the opposite inclusion, namely,

that all supportable policy paths must lie in the core. From Propositions

2-5, we know that we must assume the policy space is bounded and that we

must impose restrictions on voter and party patience.

Our next result imposes rather weak restrictions on discount factors and

adds the following strong, but standard, conditions: the number of voters is

odd, the policy space is Euclidean, voter utilities are quadratic, i.e., ui(x) =

−||x− x̃i||2 for each i, where x̃i is i’s “ideal point,” and the ideal points of the

voters are distinct, i.e., x̃i = x̃j implies i = j. Furthermore, the proposition

requires the non-emptiness of the core, an assumption that is automatically

satisfied in one dimension but quite restrictive in multiple dimensions.

Proposition 7 Assume that n is odd, that X ⊆ Rd is bounded, that the

utility functions ui are quadratic with distinct ideal points, and that K 6= ∅.
Let δi = δ < 1/2 for all voters, and let δP < 1/3 for the parties. Then x

is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and

(PS) if and only if xt ∈ K∗ = K for all t.

In Proposition 7, we assume voters are minimally impatient, in the sense

that they place more weight on the present than the future, and we impose

a somewhat stronger restriction on party discount factors. In fact, we can

prove core equivalence in the environment of the proposition by interchang-

ing those assumptions: party discount factors are less than one half and

the voter discount factor is less than one third. Admittedly, however, the

assumptions of quadratic utility and a non-empty core limit the interest of

such a result. The next proposition reaches essentially the same conclusion,

assuming minimally impatient parties and imposing a stronger restriction on

the voters’ discount rates, without those background assumptions.

14



In stating the result, we use a measure of how easily a policy path x

can be profitably deviated from. To define this measure, let M denote the

collection of all majority coalitions, and let PC(x) denote the set of policies,

x′, such that ui(x
′) > ui(x) for all i ∈ C. Define

ψ(x) = sup
t∈N

max
C∈M

sup
x′∈PC(xt)∪{xt}

min
i∈C

ui(x
′)− ui(xt),

where N is the natural numbers. In words, for every x′ preferred by a majority

C to xt, we find the minimum utility difference between x′ and xt for members

of C; we then find the policy x′ and majority C for which this minimum

difference is maximized to measure how far xt is from being a core point;

and we then find the policy in x furthest from being a core point. That is

our measure of how easily x may be “broken.” Note that ψ(x) ≥ 0. In the

following proposition, let ui = supx∈X ui(x) and ui = infx∈X ui(x). Note that

the proposition does not rely on party symmetry.

Proposition 8 Assume each ui is bounded, and let δP < 1/2 for the par-

ties. If x is supportable by a subgame perfect equilibrium satisfying (OS) and

(WD), then

ψ(x)

ui − ui + ψ(x)
≤ δi

for some voter i.

It is interesting to compare this result to Proposition 2, which does not

impose any restrictions on party discount factors and holds, in particular,

when δP < 1/2 for both parties. Because all policy paths are supportable

under the conditions of the latter proposition, it follows that, under those

conditions, the inequality in Proposition 8 must be satisfied by all paths.

Indeed, it is: given any path x, it can be checked that ψ(x) ≤ ui − ui for

some voter i; for that voter,

ψ(x)

ui − ui + ψ(x)
≤ 1

2
,

which is less than δi under the assumptions of Proposition 2.
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We can characterize the paths for which ψ(x) = 0 as follows. Define the

weak core, denoted K◦, as the set of majority undominated policies, i.e.,

K◦ = {x ∈ X | y M* x for no y ∈ X}.

Clearly, K∗ ⊆ K ⊆ K◦. Under standard assumptions, such as n odd and

strict quasi-concavity, we have equivalence of these three sets. It is straight-

forward to verify that ψ(x) = 0 if and only if xt ∈ K◦ for all t. Thus, when

K◦ 6= ∅ and xt ∈ K◦ for all t, the condition in Proposition 8 is unrestric-

tive: it is satisfied regardless of the voters’ discount factors. When xt /∈ K◦

for some t, the proposition implies that, when voter discount rates are low

enough, the path x cannot be supported by a subgame perfect equilibrium

satisfying our conditions. Put differently, the only policy paths that are sup-

portable for all discount rates lie in the weak core. Note that the fraction

on the lefthand side of the inequality in Proposition 8 is increasing in ψ(x),

implying that, the further a policy path is from being in the core, the higher

voter discount rates must be to support it. The fraction is decreasing in

ui − ui, reflecting potentially stronger incentives that future outcomes may

have on voters, dissuading them from voting for a deviating party.

We can say more if we impose some very weak regularity conditions on

the policy space and voter utilities.

Corollary 1 Assume X is compact and each ui is continuous, and let δP <

1/2 for the parties. If K◦ = ∅, then there exists δ > 0 such that, when δi < δ

for all voters, no policy path is supported by a subgame perfect equilibrium

satisfying (OS) and (WD).

The proof of the corollary uses the observation that, by a version of the

Theorem of the Maximum (Aliprantis and Border, 1994, Lemma 14.28), the

function

f(x) = max
C∈M

sup
y∈PC(x)∪{x}

min
i∈C

ui(y)− ui(x)

is lower semicontinuous in x. Since X is compact, f has a minimum on X,

say at policy x′. Moreover, since K◦ = ∅, the value of f at x′ is positive.
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Now, given any policy path x, note that ψ(x) ≥ f(x′) > 0. Then, setting

δ =
f(x′)

(maxi∈N ui − ui) + f(x′)
,

the corollary is proved. In fact, though the corollary is not stated in quite

such terms, we can use these arguments to show that there does not exist

any subgame perfect equilibrium satisfying our conditions — not even ones

that induce non-degenerate distributions on policy paths.

6 Conclusion

We have shown that, if voters are somewhat patient, or if parties are some-

what patient and the strong core is close to non-empty, or if the policy space

is unbounded, then there is a subgame perfect equilibrium of the infinitely

repeated electoral game. This is true regardless of the dimensionality of the

policy space or voter preferences, providing a solution to the equilibrium exis-

tence problem. This sword is double-edged, however, for, in fact, every path

of policies can be supported by a class of subgame perfect equilibria. As a

consequence, the sharp predictions of the median voter theorem — and more

generally core equivalence in multiple dimensions with a non-empty core —

are endangered. We show that the median voter theorem holds if stationar-

ity is imposed or if parties and voters are sufficiently impatient, but then we

lose existence of equilibria in multiple dimensions when the core is empty.

To achieve a general equilibrium existence result that preserves the median

voter theorem in a model of infinitely repeated elections, we conclude that

the background assumptions of the Downsian model must be re-examined.

As in the electoral accountability approach, alternatives may involve policy

motivations for candidates, dropping the commitment assumption (as in the

literature on citizen-candidates), allowing for imperfect information about

voter preferences (as in the literature on probabilistic voting), or some com-

bination of these directions.
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A Proofs of Propositions

Proposition 2 Let δi > 1/2 for all voters. Then every policy path is sup-

portable by a subgame perfect equilibrium satisfying (OS), (WD), and (PS).

Proof : Let x = (x1, x2, . . .) be any policy path. We construct a subgame

perfect equilibrium to support x by labeling each finite history, ht, with a

“state,” s(ht) and by labeling each history and a platform pair (y, z) with a

state s(ht, y, z). This labeling rule, defined recursively below, will simplify

our specification of strategies. The set S of states will be

S = (X × {∞}) ∪ (X × {A,B} ×X) ∪ (Z+ × {∗}),
where Z+ is the non-negative integers. We label the initial history with

(0, ∗), i.e., s(h0) = (0, ∗). If ht is labeled (t, ∗), we interpret this to mean

“the parties have followed the desired path of play through period t and will

continue to do so.” In this case, given platforms (y, z), define the next state

as follows.

• ht labeled (t, ∗):

s(ht, y, z) =





(xt, A, y) if y M xt+1 = z
(xt, B, z) if z M xt+1 = y
(t + 1, ∗) else.

Thus, if the parties both choose xt+1, or if one party deviates to something

not plurality-preferred to xt+1, or if both parties deviate to other platforms,

the state continues to reflect that we follow the desired path of play. (Such

deviations are harmless below.) If ht is labeled (x,∞), we interpret this to

mean “the parties are supposed to choose x in period t + 1 and will do so

ever after.” Define the state transition rule as follows.

• ht labeled (x,∞):

s(ht, y, z) =





(x,A, y) if y M x = z
(x,B, z) if z M x = y
(x,∞) else.
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If (ht, y, z) is labeled (t + 1, ∗), then following voting and the selection of the

winner in period t + 1, we simply label the new history ht+1 with (t + 1, ∗),
as below.

• (ht, y, z) labeled (t + 1, ∗):
s(ht+1) = (t + 1, ∗).

If (ht, y, z) is labeled (x,∞), then following voting and the selection of the

winner in period t + 1, we label the new history ht+1 with (x,∞).

• (ht+1, y, z) labeled (x,∞):

s(ht, y, z) = (x,∞).

Thus, if we begin period t + 1 in states (t + 1, ∗) or (x,∞), and the parties

choose as required (xt+1 in the former case, x in the latter), then the state

at the beginning of period t + 2 is independent of the outcome of voting.

If (ht, y, z) is labeled (x, A, x′), we interpret this to mean “the parties were

supposed to choose x in t + 1 but A deviated to x′.” Then, after voting and

the selection of the winner P in period t + 1, we label the new history ht+1

as follows.

• (ht, y, z) labeled (x,A, x′):

s(ht+1) =

{
(x,∞) if P = A
(x′,∞) if P = B.

Thus, if A deviates from x to x′ and wins, then the state moves to (x,∞),

i.e., the original policy outcome ever after. If A deviates and B wins, then

the state moves to (x′,∞), i.e., A’s deviation forever. Since x′ M x, this will

give a plurality of voters an incentive to vote against A. If (ht, y, z) is labeled

(x, B, x′), which we interpret to mean “the parties were supposed to choose

x in t + 1 but B deviated to x′,” we label ht+1 as follows.

• (ht, y, z) labeled (x,B, x′):

s(ht+1) =

{
(x,∞) if P = B
(x′,∞) if P = A.
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We next specify strategies for parties and voters.

1. Parties:

(a) If ht is labeled (t, ∗), then the parties adopt platforms yt+1 =

zt+1 = xt+1.

(b) If ht is labeled (x,∞), then both adopt yt+1 = zt+1 = x.

2. Voters:

(a) If (ht, y, z) is labeled (t + 1, ∗), then voter i votes for A if ui(y) >

ui(z); i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(y) = ui(z).

(b) If (ht, y, z) is labeled (x,∞), then voter i votes for A if ui(y) >

ui(z); i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(y) = ui(z).

(c) If (ht, y, z) is labeled (x,A, x′), then voter i votes for A if ui(x) >

ui(x
′); i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(x) = ui(x
′).

(d) If (ht, y, z) is labeled (x,B, x′), then voter i votes for B if ui(x) >

ui(x
′); i votes for A if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(x) = ui(x
′).

This construction is diagrammed in Figure 1, where arrows denote tran-

sitions between states as a function of party platforms and election returns.

Hollow arrows indicate the path of play.

[ Figure 1 about here. ]

We now verify that the above specification of strategies is, indeed, sub-

game perfect and satisfies (OS), (WD), and (PS). By the one-shot deviation

principle (Fudenberg and Tirole, 1991), we need show only that no party or

voter can achieve a higher expected discounted payoff by a “one-shot devi-

ation” following any history. That is, we need to show, given an arbitrary

history, that no party or voter can profit by deviating in the following period
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and returning to the above strategy thereafter. Consider a voter i’s decision

after (ht, y, z) labeled (t + 1, ∗). Regardless of the winner in period t + 1, ac-

cording to the above strategies, the parties will choose the same platforms in

subsequent periods, namely, xt+2, xt+3, . . . , so vi(ht, y, z, 1) = vi(ht, y, z, 0).

It is a best response to vote for A if

(1− δi)ui(y) + δivi(ht, y, z, 1) ≥ (1− δi)ui(z) + δivi(ht, y, z, 0),

which is equivalent to ui(y) ≥ ui(z), and voting for B is a best response if

ui(z) ≥ ui(y), so 2(a) gives the voters best responses. Similarly, after (ht, y, z)

labeled (x,∞), the above strategies specify that the parties both choose x

forever, and 2(b) is a best response. After (ht, y, z) labeled (x,A, x′), the

policy path depends on which party wins in period t + 1. If A wins, then,

according to the above strategies, both parties will choose x thereafter, so

vi(ht, y, z, 1) = ui(x); if B wins, then both parties will choose x′ thereafter,

so vi(ht, y, z, 1) = ui(x
′). Thus, it is a best response for i to vote for A if

(1− δi)ui(x
′) + δiui(x) ≥ (1− δi)ui(x) + δiui(x

′).

Since δi > 1/2, this is equivalent to ui(x) ≥ ui(x
′), and it is a best response

to vote for A if ui(x) ≥ ui(x), likewise for B if ui(x
′) ≥ ui(x), as in 2(c).

Note that, since x′ M x by construction, the latter holds for a plurality of

voters, so B will win with probability greater than one half in period t + 1.

The analysis is similar after (ht, y, z) labeled (x,B, x′), but, in that case, A

wins with probability greater than one half in period t+1. We conclude that

the strategies specified above for voters are best responses after all histories.

Consider the decision of a party, say A, after a history ht labeled (t, ∗).
According to the strategies specified above, the parties both choose xt+1 in

period t + 1 and follow x thereafter, the voters flip coins to decide between

parties in all periods, and A’s expected discounted payoff is one half. If A

deviates by choosing platform y 6= xt+1 and following the above strategy

thereafter, there are two possibilities. First, if y M xt, then (ht, y, xt) is la-

beled with (xt, A, y). By 2(c), with some probability πA < 1/2, party A wins,

the new history ht+1 is labeled (y,∞), and the voters randomize thereafter,

giving the party an expected discounted payoff of one half. With probability

πB = 1 − πA > 1/2, party B wins, and the new history is labeled (y,∞).
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After that history, according to 1(b) above, both parties choose y and, by

2(b), voters randomize between the parties thereafter. Thus, A’s expected

discounted payoff from deviating is

πA((1− δA)(1) + δA(1/2)) + πB((1− δA)(0) + δA(1/2)

= (1− δA)(πA) + δA(1/2),

which is less than one half, since πA < 1/2. Second, if not y M xt, then

(ht, y, xt) is labeled with (t+1, ∗). By 2(a), A wins with probability πA ≤ 1/2

and B wins with probability πB ≥ 1/2. By 1(a) and 2(a), both parties

follow the path x and voters randomize between them thereafter. Thus, A’s

expected discounted payoff from deviating is less than or equal to one half.

The logic following a history ht labeled (x,∞) is similar: if a party deviates

to a platform plurality-preferred to x, then it will win in period t + 1 with

probability less than one half and win half the time thereafter; if it deviates

to a platform not plurality-preferred to x, then it can do no better than win

half the time in t + 1, and it wins half the time thereafter. We conclude that

party A, likewise party B, has no profitable one-shot deviations.

Thus, the above specification of strategies is a subgame perfect equilib-

rium, and it clearly supports x. That it satisfies (OS) follows from two

observations: the transition rule for states only depends on past electoral

outcomes; and strategies, in turn, only depend on states. Finally, (WD) and

(PS) are clear from the preceding arguments.

Proposition 3 Let δi > 0 for all voters, let δP ≥ 1/2 for both parties, and

let K∗ 6= ∅. Then every policy path is supportable by a subgame perfect

equilibrium satisfying (OS), (WD), and (PS).

Proof : Let K∗ = {x∗} and fix an arbitrary alternative x0 ∈ X \ {x∗}. Let

x = (x1, x2, . . .) be any policy path. As in the proof of Proposition 2, we

label each history, ht, with a state s(ht) and each history and platform pair

(y, z) with a state s(ht, y, z). The set S of states is

S = {(x∗,∞), (E, A), (E, B)} ∪ (Z+ × {∗}) ∪ ({O1} × {A, B})
∪({O2} ×X) ∪ ({O} × {A,B} ×X).
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Following the proof of Proposition 2, states evolve according to a transition

rule, defined recursively as follows. The initial history is assigned the state

(0, ∗). Suppose that, following history ht, the parties choose platforms (y, z).

As before, (t, ∗) is interpreted to mean “the parties have followed the desired

path of play through period t and will continue to do so.”

• If ht is labeled (t, ∗), then

s(ht, y, z) =





(E,A) if y M xt+1 = z
(E,B) if z M xt+1 = y
(t + 1, ∗) else.

As before, (x∗,∞) means “the parties are supposed to choose x∗ in period

t + 1 and will do so every after.”

• If ht is labeled (x∗,∞), then

s(ht, y, z) = (x∗,∞).

We interpret (O1, A) to mean “party A deviated from the desired path in the

previous period and won the election,” and similarly for (O1, B).

• If ht is labeled (O1, A), then

s(ht, y, z) =





(O, A, y) if y 6= z = x∗

(O, B, z) if z 6= y = x∗

(O1, A) else.

• If ht is labeled (O1, B), then

s(ht, y, z) =





(O, A, y) if y 6= z = x∗

(O, B, z) if z 6= y = x∗

(O1, B) else.

We interpret (O2, x) to mean “some party deviated from the desired path of

play; this was followed by another deviation; and from now on the parties

will both choose x.”
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• If ht is labeled (O2, x), then

s(ht, y, z) =





(E, A) if y M z = x
(E, B) if z M y = x
(O2, x) else.

Now suppose that, following ht and platform choices (y, z), the winning party

is P . The resulting history, ht+1, is labeled as follows. As before, if the

parties have followed the desired path, then the transition is independent of

the winner in period t + 1.

• If (ht, y, z) is labeled (t + 1, ∗), then

s(ht+1) = (t + 1, ∗).

The transition is similar if we are in a state that called for the strong core

point ever after.

• If (ht, y, z) is labeled (x∗,∞), then

s(ht+1) = (x∗,∞).

We interpret (E, A) to mean “party A deviated from the desired path of play

in the previous period.” In this case, the label of ht+1 will depend on the

winner in period t + 1. Similar remarks hold for (E, B).

• If (ht, y, z) is labeled (E,A), then

s(ht+1) =

{
(x∗,∞) if P = B
(O1, A) if P = A.

• If (ht, y, z) is labeled (E,B), then

s(ht+1) =

{
(x∗,∞) if P = A
(O1, B) if P = B.

If party A deviated from the desired path in the previous period and won,

the label of ht+1 depends on the winner in period t+1, and similarly if party

B deviated and won.
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• If (ht, y, z) is labeled (O1, A), then

s(ht+1) =

{
(O2, x

0) if P = A
(O1, A) if P = B.

• If (ht, y, z) is labeled (O1, B), then

s(ht+1) =

{
(O2, x

0) if P = B
(O1, B) if P = A.

We interpret (O, A, y) to mean “party A deviated from the desired path

of play in the previous period, won, and has deviated again, this time to

platform y.” In this case, the label of ht+1 again depends on the winner in

period t + 1. Similar remarks hold for (O,B, z).

• If (ht, y, z) is labeled (O, A, y), then

s(ht+1) =

{
(O2, y) if P = A
(O1, A) if P = B.

• If (ht, y, z) is labeled (O, B, z), then

s(ht+1) =

{
(O2, z) if P = B
(O1, B) if P = A.

If some party deviated from the desired path of play, followed by another

deviation, and the parties are to choose x forever, then the transition is

independent of the winner.

• If (ht, y, z) is labeled (O2, x), then

s(ht, y, z) = (O2, x).

We next specify strategies for parties and voters.

1. Parties:

25



(a) If ht is labeled (t, ∗), then the parties adopt platforms yt+1 =

zt+1 = xt+1.

(b) If ht is labeled (x∗,∞) or (O1, A) or (O1, B), then both adopt

yt+1 = zt+1 = x∗.

(c) If ht is labeled (O2, x), then both parties choose yt+1 = zt+1 = x.

2. Voters:

(a) If (ht, y, z) is labeled (t+1, ∗), (x∗,∞), (E, A), (E, B), or (O2, x),

then voter i votes for A if ui(y) > ui(z); i votes for B if this

inequality is reversed; and i votes for the parties with equal prob-

abilities if ui(y) = ui(z).

(b) If (ht, y, z) is labeled (O1, A), then voter i votes for B if

(1− δi)ui(z) + δiui(x
∗) > (1− δi)ui(y) + δiui(x

0);

voter i votes for A if this inequality is reversed; and i votes for the

parties with equal probabilities if equality holds.

(c) If (ht, y, z) is labeled (O1, B), then voter i votes for A if

(1− δi)ui(y) + δiui(x
∗) > (1− δi)ui(z) + δiui(x

0);

voter i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if equality holds.

(d) If (ht, y, z) is labeled (O, A, y), then voter i votes for B if

(1− δi)ui(z) + δiui(x
∗) > ui(y);

voter i votes for A if this inequality is reversed; and i votes for the

parties with equal probabilities if equality holds.

(e) If (ht, y, z) is labeled (O, B, z), then voter i votes for A if

(1− δi)ui(y) + δiui(x
∗) > ui(z);

voter i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if equality holds.
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This construction is diagrammed in Figure 2.

[ Figure 2 about here. ]

To show that these strategies form a subgame perfect equilibrium, it is

sufficient, by the one-shot deviation principle, to show there is no history

at which a party or voter can profitably deviate that period and return to

the above strategy thereafter. Consider a voter i’s decision after a history

(ht, y, z) labeled (t+1, ∗). Regardless of the winner in period t+1, according

to the above strategies, the parties will choose the same platforms thereafter,

namely, xt+2, xt+3, . . . , so vi(ht, y, z, 1) = vi(ht, y, z, 0). It is a best response

to vote for A if

(1− δi)ui(y) + δivi(ht, y, z, 1) ≥ (1− δi)ui(z) + δivi(ht, y, z, 0),

which is equivalent to ui(y) ≥ ui(z), and voting for B is a best response if

ui(z) ≥ ui(y), so 2(a) gives the voters best responses. Similarly, after (ht, y, z)

labeled (x∗,∞), the above strategies specify that the parties both choose x∗

forever, and 2(a) is a best response. After (ht, y, z) labeled (O2, x), the parties

both choose x forever, so 2(a) is a best response. Next, consider a history ht

and platform pair (y, z) labeled (E,A). If B wins, then the state moves to

(x∗,∞), and both parties choose x∗ thereafter. Thus, vi(ht, y, z, 0) = ui(x
∗).

If A wins, then the state becomes (O1, A), and, by 1(b), the parties both

choose x∗ in period t + 2. Then, by 2(b), voter i votes for B if ui(x
∗) >

ui(x
0), so a majority of voters vote for B, and B wins with probability one.

According to our transition rule, the state remains (O1, A), and B continues

to win thereafter with platform x∗. Thus, vi(ht, y, z, 1) = ui(x
∗). Again,

voting for A is a best response if ui(y) ≥ ui(z), and voting for B is a best

response if ui(z) ≥ ui(y), so 2(a) is a best response. Applying the same

argument, 2(a) is also a best response in state (E,B).

After (ht, y, z) labeled (O1, A), the policy path depends on which party

wins in period t+1. If B wins, then the state remains (O1, A), and the above

strategies specify that both parties will choose x∗ thereafter, so vi(ht, y, z, 1) =

ui(x
∗). If A wins, then the state moves to (O2, x

0), where, by 1(c), the parties

both choose x0 thereafter, implying vi(ht, y, z, 1) = ui(x
0). Thus, it is a best
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response for i to vote for B if

(1− δi)ui(z) + δiui(x
∗) ≥ (1− δi)ui(y) + δiui(x

0),

and 2(b) is a best response. Note that, if y 6= x∗ = z, then a majority

of voters vote for B, and B wins with probability one. For (O1, B), the

same argument shows that 2(c) is a best response. Note that, in that case, if

z 6= x∗ = y, then a majority of voters vote for A, and A wins with probability

one.

Now consider (ht, y, z) labeled (O,A, y). If B wins in period t + 1, the

state moves to (O1, A) and both parties adopt x∗ in all following periods.

This implies that vi(ht, y, z, 1) = ui(x
∗). If A wins, then the state moves

to (O2, y), where both parties choose y thereafter, so vi(ht, y, z, 1) = ui(y).

Thus, it is a best response for i to vote for B if

(1− δi)ui(z) + δiui(x
∗) ≥ (1− δi)ui(y) + δiui(y),

and voting for A is a best response if the opposite weak inequality holds, as

in 2(d). Note that, if y 6= x∗ = z, then a majority of voters vote for B, and

B wins with probability one. A similar calculation shows that 2(e) is a best

response when the state is labeled (O, B, z). In that case, if z 6= x∗ = z, then

a majority of voters vote for A, and A wins with probability one. We conclude

that the above voting strategies specify best responses after all histories.

Turning to the parties, consider the decision of a party, say A, after

a history ht labeled (t, ∗). According to the strategies specified above, the

parties both choose xt+1 in period t+1 and follow x thereafter, the voters flip

coins to decide between parties in all periods, and A’s expected discounted

payoff is one half. If A deviates to y such that y such that y M xt, then the

state moves to (E, A) and, by 2(a), party A wins with probability πA > 1/2.

The state then moves to (O1, A), and, according to the strategies specified

above, A wins with probability zero thereafter. Party B wins with probability

πB = 1−πA < 1/2, after which the state moves to (x∗,∞), and A’s expected

discounted payoff is then one half. Thus, A’s expected discounted payoff

from deviating is

πA((1− δA)(1) + δA(0)) + πB(1/2),
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which is no greater than one half, since δA ≥ 1/2. If A deviates to y such

that not y M xt+1, then the state remains at (t, ∗). By 2(a), A wins in period

t+1 with probability less than or equal to one half. Regardless of the winner,

the state stays at (t, ∗), and A’s expected discounted payoff is then one half.

Thus, the deviation is not profitable.

After a history labeled (x∗,∞), according to the above strategies, both

parties choose x∗ and A wins with probability one half in every period, yield-

ing an expected discounted payoff of one half. If A deviates to y 6= x∗, then

the state remains at (x∗,∞), and, by 2(a), a majority of voters vote for B,

and A wins with probability zero. After that, A’s expected discounted payoff

is again one half, so the deviation is not profitable.

Next, take a history ht labeled (O1, A). According to the strategies spec-

ified above, party A wins with probability zero in period t + 1 and in all

future periods. If A deviates to y 6= x∗, then the state moves to (O, A, y).

By 2(d), voter i votes for B if ui(x
∗) > ui(y), where we use the fact that,

by 1(b), z = x∗. This inequality holds for a majority of voters, so B wins

with probability one in period t + 1 after A deviates. The state then moves

back to (O1, A), where A continues to lose forever. Thus, the deviation is not

profitable. After a history labeled (O1, B), A’s expected discounted payoff is

one, so A clearly has no profitable deviation.

Lastly, after a history ht labeled (O2, x), according to the strategies speci-

fied above, both parties choose x forever, and A’s expected discounted payoff

is one half. If A deviates to y such that y M x, then the state moves to (E, A).

(We treat this deviation as we would treat a deviation from the desired path.)

By 2(a), A wins with probability πA > 1/2 in period t + 1, in which case

the state moves to (O1, A), where B wins in all subsequent periods. Party B

wins with probability πB < 1/2, in which case the state moves to (x∗,∞) and

A’s expected discounted payoff is one half. Thus, A’s expected discounted

payoff from deviating is

πA((1− δA)(1) + δA(0)) + πB(1/2),

which is not profitable. If A deviates to y such that not y M x, then, by

2(a), A wins in period t + 1 with probability no greater than one half, the

state remains at (O2, x), and A’s expected discounted payoff is again one
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half. Thus, the deviation is not profitable. We conclude that party A, and

likewise party B, has no profitable one-shot deviations.

Thus, the above specification of strategies is a subgame perfect equilib-

rium, and it clearly supports x. That it satisfies (OS) follows from two

observations: the transition rule for states only depends on past electoral

outcomes; and strategies, in turn, only depend on states. Finally, (WD) and

(PS) are clear from the preceding arguments.

Proposition 4 Assume X ⊆ Rd is compact and convex. Let δi = δ > 0

for all voters, let δP ≥ 1/2 for both parties, let K∗(u1, . . . , un) 6= ∅, and

let (um
1 , . . . , um

n ) → (u1, . . . , un) uniformly. Assume um
i is concave and ui

is continuous for all voters. Then, for high enough m, every policy path

is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and

(PS).

Proof : The proof is very close to the proof of Proposition 3, so we only

sketch the changes needed here. Let K∗(u1, . . . , un) = {x∗}. As before, we

fix a policy x0 6= x∗. For high enough m, note that a majority of voters

will have um
i (x∗) > um

i (x0). Thus, as before, if both parties choose x∗ in

state (O1, A), then B will win with probability one; similarly, A will win

with probability one in state (O1, B). But to ensure that, e.g., B winning

with probability one in state (O1, A) is an equilibrium in that subgame, we

must ensure that A cannot win with positive probability by deviating from

x∗. Originally, when x∗ was the strong core point, this was relatively easy:

we defined the parties’ strategies so that, if A deviated to y 6= x∗, then the

voters would expect y forever if A won and x∗ forever if B won. Naturally,

a majority would then vote against A. Now, however, there may be a policy

y that is majority-preferred to x∗ at utility profile (um
1 , . . . , um

n ). After a

deviation by A, therefore, we now specify strategies for the parties such that,

were A to win, they would choose x0 thereafter. Specifically, we have the

state move from (O,A, y) to (O2, x
0). We claim that, for high enough m,

this specification will ensure that A cannot profitably deviate to such a y,

because, as before, a majority would vote against A after such a deviation.
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To establish the claim, suppose that, for each m, there exists a policy ym

with

(1− δ)um
i (ym) + δum

i (x0) ≥ ui(x
∗)

for at least half of the voters, allowing party A to deviate and win with

positive probability. Letting xm = (1 − δ)ym + δx0, concavity of the um
i

implies

um
i (xm) ≥ um

i (x∗)

for all such i. By compactness of X, {ym} has a subsequence with some

limit, say y, and then {xm} has a corresponding subsequence with limit

x = (1 − δ)y + δx0 6= x∗. By uniform convergence to, and continuity of, ui,

the above inequality implies

ui(x) ≥ ui(x
∗)

for at least half of the voters, contradicting our assumption that x∗ is the

strong core point at (u1, . . . , un). Therefore, for high enough m, there is

no platform to which A can deviate in state (O1, A) and win with positive

probability. Of course, the same approach can be used in state (O1, B).

Lastly, we must support (x∗, x∗) as an equilibrium in state (x∗,∞), trivial

when x∗ is the strong core point. To do this, we simply use the same method

used to support (xt+1, xt+1) in state (t, ∗), i.e., we move to state (E, A) if A

deviates to y such that y M x∗, allowing that party to win in that period with

positive probability but with probability zero thereafter.

Proposition 5 Assume that voter utilities are majority unbounded below

and that δi > 0 for all voters. Then every policy path is supportable by a

subgame perfect equilibrium satisfying (OS), (WD), and (PS).

Proof : Fix δ > 0 and an arbitrary alternative x0 ∈ X. Given these choices,

let x(x, x′) be an alternative in X satisfying

ui(x(x, x′)) <
(1− δi)ui(x) + δiui(x

0)− (1− δi)ui(x
′)

δi
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for some majority C and all i ∈ C. That such an alternative exists is a

consequence of majority unboundedness from below. Let x = (x1, x2, . . .) be

any policy path. As in the proofs of our earlier propositions, we label each

history, ht, with a state s(ht), and we label each history ht and platform pair

(y, z) with a state s(ht, y, z). The set S of states is

S = (X × {∞}) ∪ (X × {A,B} ×X) ∪ (Z+ × {∗}).

We label the states recursively as follows. The initial history is assigned the

state (0, ∗). States are assigned as follows, with interpretations as in the

proof of Proposition 2.

• If ht is labeled (t, ∗), then

s(ht, y, z) =





(xt, A, y) if y 6= xt+1 = z
(xt, B, z) if z 6= xt+1 = y
(t + 1, ∗) else.

• If ht is labeled (x,∞), then

s(ht, y, z) =





(x,A, y) if y 6= x = z
(x,B, z) if z 6= x = y
(x,∞) else.

After votes are cast and a winner, P , is determined, states move as follows.

• If (ht, y, z) is labeled (t + 1, ∗), then

s(ht+1) = (t + 1, ∗).

• If (ht, y, z) is labeled (x,∞), then

s(ht+1) = (x,∞).

If A deviates from x to x′ and wins, we specify the new state as (x(x, x′),∞),

while, if A deviates and B wins, we define the new state as (x0,∞). This

will give a majority of voters an incentive to vote against A after such a

deviation. Similarly comments hold for deviations by B.
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• If (ht, y, z) is labeled (x,A, x′), then

s(ht+1) =

{
(x(x, x′),∞) if P = A
(x0,∞) if P = B.

• If (ht, y, z) is labeled (x,B, x′), then

s(ht+1) =

{
(x(x, x′),∞) if P = B
(x0,∞) if P = A.

We next specify strategies for parties and voters.

1. Parties:

(a) If ht is labeled (t, ∗), then the parties adopt platforms yt+1 =

zt+1 = xt+1.

(b) If ht is labeled (x,∞), then both adopt yt+1 = zt+1 = x.

2. Voters:

(a) If (ht, y, z) is labeled (t + 1, ∗), then voter i votes for A if ui(y) >

ui(z); i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(y) = ui(z).

(b) If (ht, y, z) is labeled (x,∞), then voter i votes for A if ui(y) >

ui(z); i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if ui(y) = ui(z).

(c) If (ht, y, z) is labeled (x,A, x′), then voter i votes for A if

(1− δi)ui(x
′) + δiui(x(x, x′)) > (1− δi)ui(x) + δiui(x

0);

voter i votes for B if this inequality is reversed; and i votes for

the parties with equal probabilities if equality holds.

(d) If (ht, y, z) is labeled (x,B, x′), then voter i votes for B if

(1− δi)ui(x
′) + δiui(x(x, x′)) > (1− δi)ui(x) + δiui(x

0);

voter i votes for A if this inequality is reversed; and i votes for the

parties with equal probabilities if equality holds.
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This construction is diagrammed in Figure 3.

[ Figure 3 about here. ]

To show that these strategies form a subgame perfect equilibrium, it is

sufficient, by the one-shot deviation principle, to show there is no history after

which a party or voter can profit by deviating that period and returning to

the above strategy thereafter. Consider a voter i’s decision after a history

(ht, y, z) labeled (t+1, ∗). Regardless of the winner in period t+1, according

to the above strategies, the parties will choose the same platforms thereafter,

namely, xt+2, xt+3, . . . , so vi(ht, y, z, 1) = vi(ht, y, z, 0). It is a best response

to vote for A if

(1− δi)ui(y) + δivi(ht, y, z, 1) ≥ (1− δi)ui(z) + δivi(ht, y, z, 0),

which is equivalent to ui(y) ≥ ui(z), and voting for B is a best response if

ui(z) ≥ ui(y), so 2(a) gives voters best responses. Similarly, after (ht, y, z)

labeled (x,∞), the above strategies specify that the parties both choose x

forever, and 2(b) is a best response. After (ht, y, z) labeled (x,A, x′), the

policy path depends on which party wins in period t + 1. If A wins, then,

according to the above strategies, both parties will choose x(x, x′) thereafter,

so vi(ht, y, z, 1) = ui(x(x, x′)); if B wins, then both parties will choose x0

thereafter, so vi(ht, y, z, 1) = ui(x
0). Thus, it is a best response to vote for

A if

(1− δi)ui(x
′) + δiui(x(x, x′)) ≥ (1− δi)ui(x) + δiui(x

0),

and voting for B is a best response if the opposite weak inequality holds,

so 2(c) gives the voters best responses. Note that, given our definition of

x(x, x′), a majority of voters vote for B after A deviates, so B wins with

probability one. The analysis is similar after (ht, y, z) labeled (x,B, x′), but,

in that case, A wins with probability one after B deviates. We conclude that

the strategies specified above for voters are best responses after all histories.

Turning to the parties, consider a history ht labeled (t, ∗). If a party

chooses xt+1 and follows the above strategy thereafter, then, since voters flip

coins to decide between parties in all periods, the party’s expected discounted
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payoff is one half. If one, say A, deviates from xt+1 to y 6= xt+1, then

(ht, y, xt) is labeled with (xt, A, y). By 2(c), a majority of voters vote for B,

which wins with probability one, and the new history ht+1 is labeled (x0,∞).

By 1(b), both parties choose then choose x0 thereafter, and, by 2(b), voters

randomize between the parties forever. Thus, A’s expected discounted payoff

from deviating is (1− δi)(0)+ δi(1/2) < 1/2. The logic following a history ht

labeled (x,∞) is similar. We conclude that party A, likewise party B, has

no profitable one-shot deviations.

Thus, the above specification of strategies is a subgame perfect equilib-

rium, and it clearly supports x. That it satisfies (OS) follows from two

observations: the transition rule for states only depends on past electoral

outcomes; and strategies, in turn, only depend on states. Finally, (WD) and

(PS) are clear from the preceding arguments.

Proposition 6 A policy path x is supportable by a subgame perfect equilib-

rium satisfying (SS), (WD), and (PS) if and only if xt ∈ K for all t.

Proof : Suppose x is supported by a subgame perfect equilibrium satisfying

(WD) and (SS), but that xt /∈ K for some t. In period t, therefore, either both

parties choose xt or only one does and wins with probability 1. To deal with

both cases, it is enough to assume that at least one party chooses xt and wins

with probability greater than or equal to one half. Without loss of generality,

suppose A is the other party, which wins with probability pA < 1/2 in period

t. We claim that A can increase its expected discounted payoff by deviating to

y such that y M xt in period t and returning to its original strategy thereafter.

Assumptions (WD) and (SS) together imply that voters vote sincerely in each

period. That is, voter i votes for A if ui(y) > ui(xt). Since this holds for a

plurality of voters, A wins with probability strictly greater than 1/2 in period

t. So A achieves a higher payoff in period t. By (SS), party A’s expected

payoff for all later periods is independent of A’s choice in period t. Therefore

A’s deviating strategy is profitable, a contradiction. Therefore, xt ∈ K for

all t.
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Now suppose xt ∈ K for all t and consider the following specification of

strategies. Let yt = zt = xt after all histories, and, after any finite history

and platform choices (y, z), let voter i vote for A if ui(y) > ui(z), for B

if the inequality is reversed, and for both parties with equal probability if

ui(y) = ui(z). Again, we use the one-shot deviation principle to establish that

this specification is a subgame perfect equilibrium. After any finite history

ht and any (y, z), voter i’s continuation value, given these strategies, is just

the discounted sum vi =
∑∞

t′=t+1 δt′−t−1
i ui(xt′). It is then a best response for

i to vote for A if

(1− δi)ui(y) + δivi ≥ (1− δi)ui(z) + δivi,

or equivalently, ui(y) ≥ ui(z). Similarly, it is a best response for i to vote

B if ui(z) ≥ ui(y). Thus, we have specified best responses for the voters.

Note that, if the above strategies are followed, then each party wins with

probability one half after every history. Suppose a party, say A, deviates to

platform y 6= xt+1 after any history of length t and then returns to the above

strategy. Since xt+1 ∈ K, it is not the case that y M xt+1. According to the

above strategies, therefore, A would win in period t + 1 with probability no

greater than one half and would win with probability one half thereafter. We

conclude that the specified strategies are best responses for the parties, and

that we have a subgame perfect equilibrium. The properties (SS), (WD),

and (PS) are evident from the preceding arguments.

Proposition 7 Assume that n is odd, that X ⊆ Rd is bounded, that the

utility functions ui are quadratic with distinct ideal points, and that K 6= ∅.
Let δi = δ < 1/2 for all voters, and let δP < 1/3 for the parties. Then x

is supportable by a subgame perfect equilibrium satisfying (OS), (WD), and

(PS) if and only if xt ∈ K∗ = K for all t.

Proof : That x can be supported if xt ∈ K∗ for all t follows from Proposition

6. Consider any subgame perfect equilibrium, and let X∗ be the set of pos-

sible equilibrium policy outcomes: x ∈ X∗ if and only if there is some finite

history after which one party adopts x and wins with positive probability.
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By our assumptions that n is odd and that voters have quadratic utility func-

tions, the strong core and core coincide with the ideal point of some voter,

indexed k. By K 6= ∅, by the assumption of common discount factors, and

by (WD), Lemma 1 of Banks and Duggan (2001) then implies that this core

voter is “decisive” after all histories. That is, A wins with probability one

after history ht and platform choices (y, z) if

(1− δ)uk(y) + δvk(ht, y, z, 1) > (1− δ)uk(z) + δvk(ht, y, z, 0),

and B wins with probability one if the inequality is reversed. Furthermore,

if equality holds for the core voter, then, by the assumption of distinct ideal

points, the above inequality and the reverse inequality hold for equal numbers

of voters. Thus, in this case, the parties win with equal probabilities. It

follows that, if x ∈ X∗, then there is a history after which some party wins

with probability at least one half by choosing x. Let

u = inf{uk(x) | x ∈ X∗},

which is finite, since X is bounded. Letting x̃k denote the core point (and

the ideal point of the core voter), suppose that u < uk(x̃k). By construction,

there exist a sequence {htm} of histories and a sequence {xm} of policies

such that (i) for all m, some party, say Pm, wins with probability at least one

half by adopting xm after htm , and (ii) uk(xm) → u. Assume without loss

of generality that Pm = A along a subsequence. Indexing that subsequence

again by m, we have Pm = A for all m, i.e., B wins with probability less than

or equal to one half in the period following each history htm . We claim that,

for high enough m, B can win with probability one after htm by deviating to

x̃k. If not, then, because the core voter is decisive, we must have

(1− δ)uk(x̃k) + δvk(htm , xm, x̃k, 0) ≤ (1− δ)uk(xm) + δvk(htm , xm, x̃k, 1)

for some subsequence (also indexed by m). Since

u ≤ vk(htm , xm, x̃k, 0) and vk(htm , xm, x̃k, 1) ≤ uk(x̃k),

this implies

(1− δ)uk(x̃k) + δu ≤ (1− δ)uk(xm) + δuk(x̃k),
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or equivalently,

uk(x̃k)− uk(xm)

uk(x̃k)− u
≤ δ

1− δ
.

Taking limits, we have

lim
m→∞

uk(x̃k)− uk(xm)

uk(x̃k)− u
= 1,

but δ < 1/2 implies δ/(1− δ) < 1. This contradiction establishes the claim.

Let htm be any history such that B can win with probability one in the

period following. The party’s expected discounted payoff is less than or

equal to (1 − δP )(1/2) + δP (1) if it does not deviate, while it’s expected

discounted payoff from deviating is at least (1− δP )(1) + δP (0). Since δP <

1/3, the deviation is profitable, a contradiction. Therefore, u = uk(x̃k), and

we conclude that X∗ = {x̃k}.

Proposition 8 Assume each ui is bounded, and let δP < 1/2 for the parties.

If x is supportable by a subgame perfect equilibrium satisfying (OS) and(WD),

then

ψ(x)

ui − ui + ψ(x)
≤ δi

for some voter i.

Proof : Consider a policy path x supported by a subgame perfect equilibrium

satisfying (OS) and (WD), and suppose the inequality in the statement of the

proposition is violated for all voters. Since the lefthand side of the inequality

is strictly increasing and continuous in ψ(x), we may take a period t, a

majority C, and a policy x′ such that

δi <
minj∈C uj(x

′)− uj(xt)

ui − ui + minj∈C uj(x′)− uj(xt)
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for all i ∈ N . In particular, for all i ∈ C,

δi <
ui(x

′)− ui(xt)

ui − ui + ui(x′)− ui(xt)
. (1)

Letting ht−1 denote the equilibrium path of play in the first t − 1 periods,

we have, by assumption, that xt is the policy outcome in period t with

probability one. One of the parties, say A, must have an expected discounted

payoff starting from the beginning of period t of less than or equal to one

half. Thus, because δA < 1/2, party B wins in period t with some positive

probability, and we conclude that B’s platform is xt. We claim that A can

deviate to x′ in period t and win with probability one. Indeed, for all i ∈ C,

the inequality

(1− δi)ui(x
′) + δivi(x

′, xt, 1) > (1− δi)ui(xt) + δivi(x
′, xt, 0)

is implied by

(1− δi)ui(x
′) + δiui > (1− δi)ui(xt) + δiui,

which is equivalent to (1). By (WD), therefore, A wins in period t after

deviating to x′. The expected discounted payoff from deviating is at least (1−
δA)(1)+ δA(0) = 1− δA > 1/2, so the deviation is profitable, a contradiction.
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