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Abstract

How does the size of the transfer system evolve in the short and in the long run? We model
income redistribution as determined by voting among individuals of different types and income
realizations. Taxation is distortionary because it discourages effort to accumulate human capital.
Voters are fully rational, realizing that transfers have implications also for future economic
decisions and taxation outcomes. In our economy, our politically driven redistribution provides
insurance, and we investigate to what extent the democratic process provides it appropriately.
A general finding is that redistribution tends to be too persistent relative to what would have

been chosen by a utilitarian planner under commitment. The difference is larger, the lower is
the political influence of young agents, the lower is the altruistic concern for future generations,
and the lower is risk-aversion. Furthermore, there tends to be too much redistribution in the
political equilibrium. Finally, we find that the political mechanism is important: settings with
smooth preference aggregation–we analyze probabilistic voting here–produce less persistence
and do not admit multiple rational expectation equilibria, which occur under majority-voting
aggregation.
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1 Introduction

In most currently developed countries, the size of government–say, as measured by the transfer
system–has increased significantly over the last 100 years or so. Are we on a monotonic trajectory
toward a (perhaps even higher) steady-state level of government, or is the size of government likely
to experience significant swings ahead? Some empirical studies focusing on more recent periods and
higher frequencies find what could be seeds of oscillatory behavior. In particular, in a number of
instances, the provision of welfare programs is inversely related to the number of their beneficiaries.1

Thus, low dependency ratios might induce generous redistributive policies, which in turn would lead
to low incentives to become successful and thus contribute to subsequent increasing dependency
ratios. This would then lead to a lower demand for redistribution, and so on: a “cyclical” pattern
may emerge.

Based on our time series, it is difficult to immediately separate the inherent dynamics of
government–which may or may not be oscillatory–from the “shocks” that we have been sub-
ject to, such as wars, structural change due to technology, demographics, and so on. One could
imagine pure statistical characterizations of the data, but we do think that empirical analysis of
the time series could profit significantly from the use of theory. A relevant parallel is the use of the
neoclassical growth model as an organizing tool in much of the empirical work on economic growth
(see, e.g., Barro and Sala-i-Martin, 1995). In the case of the dynamics of government, there is no
”consensus theory” to build on; in fact, there are very few frameworks that even deliver endogenous
dynamics of government.The purpose of this paper is to build in the direction of such a theory. We
stop far short of a model that one could use in actual data analysis here, but we do incorporate
what we think are important ingredients in the kind of model we envision building further toward
in future work. In particular, it contains both forces for persistence and for oscillations–along
the lines of the above data discussion–together allowing nontrivial and rich dynamics of govern-
ment. What we mainly see as missing is a neoclassical connection; there is no physical capital
accumulation, and the only state variable in this paper is the size of the welfare state itself.

What are the two forces we model? First, a standard argument suggests that welfare state
policies should be persistent; once a constituency of net recipients of transfers is built up, this
constituency is self-generating and perpetuates the transfer system. The second element formalizes
the story above suggesting oscillatory dynamics. In particular, with a large group of net recipient
of transfers, the group from which the transfers originate must be correspondingly small, which
means that per-unit transfers are more costly–distortionary–to effectuate: the cost of the welfare
state is large when the group in need is large, and vice versa. If, further, the size of the group in
need depends on the incentives to succeed–which depend on the social insurance provided by the
welfare state–then this means that a cyclical pattern could emerge. Our model delivers dynamics
that are a resolution of the forces toward monotonic dynamics and toward oscillations. Using this
model, we also examine the role efficiency plays in the political process determining the size of
transfers, and we investigate the direction politics distort the dynamics of government programs.

In our model, redistribution is a pure wealth transfer motivated by selfish concerns. While
agents are ex-ante identical, luck and effort make them, ex post, rich or poor, and to the extent that
the poor have political influence, they achieve net redistribution in their favor. Because insurance
markets for individual risk are missing, these transfers provide ex-ante valuable insurance. However,
the return to effort depends on the net wage premium of success. Thus, redistribution distorts effort,

1For example, Di Tella and MacCullough (2004) find that unemployment benefits (replacement rates) fall as the
unemployment rate increases in a panel of OECD countries. Similarly, Razin et al. (2002) document that pension
benefits fall as the dependency ratios increase.
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and is therefore costly. The political system considered presumes that current voters set current
policies but cannot bind the hands of future voters. Finally, we focus on cases where reputational
mechanisms are absent (Markov equilibria).

Our main finding is that the political mechanism tends to stabilize the dynamics of government.
Our political equilibrium always settles down in a steady state, though possibly in an oscillatory
manner. In contrast, the constrained optimum may entail oscillations that do not die out. How-
ever, such political stabilization is welfare-reducing. Relative to a “constrained optimal” allocation
determined by a benevolent planner who can commit to future transfer policies but is subject to
redistribution being distortionary, the political system dampens, and for some parameter values
even completely eliminates, the cycles that would be present in the optimal allocation. This stands
in sharp contrast to the predictions of the recent literature on politically driven cycles (see Alesina,
Roubini and Cohen 1997 for a survey), which predict that politics create fluctuations.

Two questions need to be answered to understand these findings. First, how can oscillations in
taxation and GDP be efficient, in contrast with the standard tax-smoothing argument (see, e.g.,
Barro, 1979)? The key assumption is that human capital investments increase earnings all periods
of the remaining work-life, but fully depreciate as agents pass away.2 Thus, it is the present value of
taxes over individuals’ life-cycle that determines the distortion on their investments — the time-path
of taxes is irrelevant. The planner tries to smooth the distortions, and not necessarily taxes, and
it follows that optimal allocations tend to cycle. If it were optimal to tax at a high rate at a point
in time, e.g., in order to redistribute to the initial old or to exploit the low tax-elasticity of the
initial old, then one can reduce the distortionary impact of this tax hike by lowering taxes the next
period. Because taxes are lowered the following period, however, in order to smooth the distortions
by keeping the present value of taxes similar, two periods later taxes have to be increased again,
and so on: a one-time splash produces ripples.

Second, why does the political system reduce these (constrained-optimal) oscillations? We
assume individual preferences to be aggregated by a probabilistic-voting mechanism à la Lindbeck-
Weibull (1987), which allows, as a particular case, that the utilities of all agents bear an equal
weight in the political decision. We choose this political mechanism since it resembles most closely
the choice of a benevolent utilitarian planner, avoiding that inefficient outcomes be driven by the
political preponderance of some agents or groups (e.g., the median voter in Downsian models with
majority voting). Moreover, our agents are fully rational, and choose taxation by taking into full
account the efficiency considerations discussed above. Therefore, the political determination of
redistribution has no built-in irrationality. However, the political mechanism (i) lacks commitment
and (ii) may under-represent the interests of future generation. As far as (i) is concerned, elected
policy makers cannot automatically adjust future — or past — taxes to reduce the distortionary
impact of redistribution and social insurance. Thus, oscillations are partly or fully offset with
politically determined taxation. As far as (ii) is concerned, when voters are less than perfectly
altruistic they do not put sufficient weight on the degree to which current redistribution distorts
current investments and, subsequently, the burden on future generations.

While the comparison between the equilibrium with the constrained optimum yields clear-cut

2Tax cycles do not hinge on the overlapping generation structure of the model per se — the human capital
accumulation studied here is a particular case of a more general point on which we elaborate in a paper in progress
(Hassler et al. 2003). There, we show that tax cycles also arise in dynastic models under realistic assumptions on the
depreciation structure of (physical or human) capital. The key assumption is that investments decay at a faster rate
in the long than in the short run. This happens naturally in our overlapping generations model, since agents cannot
transmit their human capital to their offspring.
Also, in this paper we abstract from the ability of governments to run deficits. However, introducing deficit

financing (as we do in Hassler et al. 2003) does not eliminate tax-driven cycles.
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results, the exact nature of the equilibrium dynamics of taxation (monotonic or oscillatory) is in
general ambiguous. This ambiguity is per se interesting as it arises from the interplay of two forces.
First, a large such group makes the tax cost per unit of benefits high. Thus, redistribution is more
costly the larger the group of poor agents, which speaks for lower taxes and redistribution. We call
this the tax-base effect ; the optimum under commitment discussed above trades off these tax-base
effects over time. Second, with probabilistic voting, an increase in the number of poor voters leads
to larger political power of the group favoring redistribution. This constituency effectcounteracts
the tax-base effect: more poor agents speaks for higher taxes. Depending on parameter values,
the equilibrium tax rate can be either increasing or decreasing in the number of poor voters. The
dynamics are oscillatory when all living agents have equal influence on the political process and when
the insurance value of redistribution is large (i.e. large risk aversion), relative to the distortionary
effect of taxation. If, however, the insurance value is low and old agents are politically over-
represented in the determination of transfer policies, then the constituency effect may dominate
and the size of government may be characterized by monotonic rather than oscillating dynamics.
Our analysis also unravels the effects of a number of characteristics of the political system on the
level of long-run redistribution. The long-run size of government is higher with higher risk aversion
and lower when the distortionary impact of taxes is large. Moreover, larger political weight of
the young agents weakens the pure ex-post redistribution motive and reduces the long-run level of
redistribution.

We emphasize lack of commitment in the political mechanism by focusing entirely on Markov-
perfect equilibria. Absence of reputation mechanisms is operationalized by focusing on equilibria
which are limits of the corresponding finite-horizon equilibria. Of course, if the horizon is literally
infinite and there is sufficiently low discounting, one could construct a large variety of equilibria
(for this approach, see, e.g., Bernheim and Nataraj, 2002). We think, however, that it is useful to
carefully examine the implications of a full lack of commitment. Moreover, in models with state
variables there are channels that allow current voters to influence the future, thus not replicating
commitment but imperfectly replacing it, as in the strategic-debt literature (see e.g. Persson and
Svensson, 1989). Here, the state variable is the initial group of unlucky agents: a large such group
tends to lead to high redistribution in the current period (assuming equilibrium redistribution is
driven by the constituency effect). As a consequence, next period’s redistribution can be influenced
today by using current taxes to influence current effort and, hence, affecting the set of unlucky
agents in the beginning of next period.

Once attention has been limited to Markov equilibria, we must still face the important question
of whether our political Markov equilibria are unique: can we expect “stability” in the size of
government in democracies? A similar setup, considered in Hassler et al. (2003), henceforth
HRSZ, assumes Downsian majority voting and finds that Markov equilibria are not unique: in one
equilibrium the welfare state survives, while in another it collapses. Multiplicity arises, there, from
a stark feature of majority voting models; the equilibrium tax rate increases discontinuously as the
number of poor exceeds 50%. This opens the possibility of voting strategically over redistribution
in order to induce future changes of majority. The probabilistic-voting mechanism, in contrast,
features a smooth mapping from group sizes to tax outcomes. In fact, we show here that multiple
equilibria cannot occur with probabilistic voting in the finite- and infinite-horizon equilibria of our
baseline setup, whereas they do with majority voting.

On a purely methodological level, this paper contributes to the tools for analyzing dynamic
politico-economic issues. All results are analytical, due to a convenient linear-quadratic formulation,
similar to the approach addressing strategic concerns in the literature on time-consistent policies
and differential games (see e.g. Cohen, 1988, and Miller and Salmon, 1985). The theoretical
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literature on the dynamics of government is, arguably, scant and we believe the main reason is a
lack of convenient analytical tools. The study of economic dynamics is perhaps hard, but there is
a large body of work on the subject: for a given policy environment, it is textbook material how
to analyze an economy’s behavior over time when the economic actors are fully rational. Similarly,
pure political theory has worked on dynamic policy determination. The combination of politics
and economics is what poses a difficulty; one needs to model strategic voting interactions, where
political agents consider the consequences of their choice on future political outcomes, as well
as appeal to dynamic equilibrium theory to ensure that all economic agents — consumers, firms
and government — maximize their respective objective functions under rational expectations, and
resource constraints. Prior to HRSZ, the only nontrivial dynamic models (that is, that are not
repeated static frameworks or purely “backward-looking” setups) relied essentially on numerical
solution (see, e.g., Krusell and Ŕıos-Rull (1999)). HRSZ provided a tractable linear-quadratic
framework where voters are influenced both by the state of the economy — the current income
distribution — and foresee effects of the current policy outcomes on both future income distributions
and future voting outcomes, which they care about. The present paper uses some tools from HRSZ
but extends it in a technically non-trivial and economically important way by introducing risk
aversion and a social insurance motive.3

The paper is organized as follows. Section 2 presents the economic structure of the model.
Section 3 analyzes the constrained optimum: the allocation chosen by a planner who cares about
future generations and has commitment. Section 4 describes the political decision making and
analyzes politically determined redistribution. Section 4.4 discusses uniqueness of equilibrium under
a finite horizon and the connection between our Markov-perfect equilibrium and the limit of finite-
horizon equilibria. Because the political equilibrium differs from the constrained optimum both in
lacking commitment and in lacking a concern for future generations, Section 4.5 finally studies a
case where voters are altruistic toward future generations (but cannot commit to future policy).
Section 5 concludes. All proofs are provided in the appendix.

2 The model

2.1 Population, preferences, technology, and policy

The model economy has a continuum of two-period lived agents, who work in both periods. Upon
birth, agents are subject to an ability shock. With probability µ, an agent is high-skilled, and
with probability 1− µ she is low-skilled. We label high-skilled agents as “entrepreneurs” and low-
skilled agents as “workers”. Entrepreneurs undertake a risky investment in human capital yielding
a stochastic return. With probability e the investment is successful and the entrepreneur earns a
labor income w+w each period, where w ≤ 1. With probability 1−e, the investment is unsuccessful,
and the labor income is w, again each period. The cost of investment is e2, and we interpret it as
the disutility of educational effort. Workers earn an income normalized to zero, which cannot be
affected by human capital investments.

In order to make the problem interesting, we assume the component w of the entrepreneurial
income to be not verifiable. Therefore, insurance agencies, whether private or public, cannot

3In HRSZ, redistribution is by construction socially wasteful, as it distorts incentives, while agents are risk neutral,
so insurance has no value. Therefore, the constrained-optimal allocation always entails zero redistribution, and the
paper does not yield interesting normative implications. Apart from the different assumption about the political
mechanism (majority vs. probabilistic voting), the model presented here encompasses HRSZ as the particular case
in which agents are risk neutral, as the subsequent discussion will show.
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condition payments on agents’ skills, but can only discriminate between successful entrepreneurs
(who have a verifiable income equal to w) and the rest of the population (who has a verifiable
income normalized to zero).

Agents’ preferences are given by

V y
t = Et[u (ct) + βu (ct+1)− e2t ],

where β ∈ [0, 1] is the discount factor and

u (c) =

½
ac− (a− 1)x if c < x

c if c ≥ x
,

with a ≥ 1. Thus, felicity is concave and piecewise linear in consumption; marginal utility drops
discretely at a threshold consumption level x and is constant everywhere else, as shown in Figure
1. The kink in preferences allows us to maintain analytical tractability while allowing ex-ante risk
aversion. a parameterizes the concavity of the utility function; if a = 1 agents are risk neutral, while
if a > 1 they are risk averse. For convenience, we introduce the variable R ≡ (1− µ) (a− 1) ≥ 0,
which we use as a measure of aggregate risk aversion.

We assume that w > x, implying that, after the realization of the ability shock, high-skill agents
are effectively risk-neutral. In particular, the marginal utility of income for high-skill agents is equal
to unity independently of their income realization. Since agents cannot sign contracts before their
skill level is realized, this implies that no private insurance market can exist. The government can,
however, increase the ex-ante utility of agents through redistributive programs providing insurance
”behind the veil of ignorance”. Like private insurers, governments can only condition transfers
on observable income. Unlike private insurers, however, they can force agents to be part of the
insurance scheme by setting compulsory taxes. In particular, in each period, the government can
levy a lump-sum tax τ on all agents and transfer the proceeds to individuals with low observable
income (either workers or unsuccessful entrepreneurs).4 We denote by b ∈ [0, 1] the transfer rate,
implying that all agents but the successful entrepreneurs receive an amount bw. The government
budget is assumed to balance in every period, and the government cannot issue age-dependent
taxes and transfers (see Hassler et al. (2003) for an extension where age-dependent programs are
allowed).

4The assumption of lump-sum taxes is immaterial. It can be shown that the model is isomorphic to one where
transfers are financed by taxation levied on the observable component of labor income. The proof is available upon
request.
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Figure 1. Worker felicity
We assume, additionally, that w < x. This assumption simplifies the analysis, since it implies

that the marginal utility of low-skill agents is a > 1 irrespectively of the redistribution policy (recall
that b ≤ 1).5 Thus, in summary, we assume that

w < x < w. (1)

Finally, we assume that the subjective discount rate, (1− β) /β, equals the market interest rate.
Under this assumption, the savings decisions can be abstracted from since income is the same in
both periods of life for all individuals.

2.2 Discussion of assumptions

We assume that only high skilled individuals have hidden income and make an effort choice and
that individual ability is revealed already in the beginning of life. These assumptions are stark, but
we believe that they provide a reasonable shortcut description of important real-world features: (i)
in terms of its effect on productivity, the effort and human capital investments of some workers
are more important than that of others; (ii) it is likely that those agents with high entrepreneurial
ability are also well-endowed in other dimensions, therefore having higher income than workers also
if they are less successful; and (iii) already before entering college, individuals have a good idea of
their prospects in life.6

Our model abstracts from physical capital. The effects of redistribution on the accumulation
of physical capital may of course be important, but the distortion to human capital accumulation
we consider here captures the same kind of dynamic trade-offs that are present in a standard
consumption-savings decision.

5In a previous version of this paper, we assumed that even workers had a stochastic income, but could not affect
its distribution through investments. This generalization yields qualitatively identical results.

6For example, Kean and Wolphin (1998) argue that up to 90% of the variance of agents’ lifetime utility can be
explained by information known at age 16 of an individual’s life.
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Why are insurance markets missing in our model, and why is there a role for government pro-
vided redistribution? Clearly, parents are in reality able to shelter their offspring against some types
of verifiable ability shocks. In the model, we abstract from this possibility by assuming that parents
are not altruistic. However, even though parental altruism should deliver some intergenerational
insurance (for example that successful parents make transfers to unskilled children), we believe
that such insurance will never be perfect. Thus, democratic constitutions, allowing a possibility
to vote over transfers, provide redistribution with an ex-ante insurance value that neither altruism
nor private insurance markets can deliver.

The policy instruments available to the government are quite limited by design; in most political-
economy setups, and this one is no exception, the policy instruments are restricted so as to yield
a nontrivial and interesting choice situation for voters/the government. We do not allow budget
deficits and surpluses and, more importantly, we introduce some impediment to the ability of
governments to target transfers to specific groups. In particular, we assume unlucky entrepreneurs
and workers to be pooled in the same program, while it would be beneficial to separate them. While
this is an extreme characterization, it captures the realistic feature that welfare state programs are
plagued by informational problems reducing their effectiveness and increasing their cost. The
absence of government debt is instead due to tractability consideration, and we plan to extend our
analysis in this direction in future research.

2.3 The determination of effort as a function of government policy

The utilities of the agents alive at time t can be expressed as a function of government policy
variables (benefits and taxes) and human capital investments:

Ṽ oes (bt, τ t) = w + w − τ t

Ṽ oeu (bt, τ t) = btw + w − τ t

Ṽ ow (bt, τ t) = a (btw − τ t)− (a− 1)x
Ṽ ye (et, bt, bt+1, τ t, τ t+1) = et (1 + β)w + (1− et) (bt + βbt+1)w (2)

− e2t − (τ t + βτ t+1) + (1 + β)w

Ṽ yw (bt, bt+1, τ t, τ t+1) = a (btw − τ t + β (bt+1w − τ t+1))− (a− 1) (1 + β)x

where the superscripts oes, oeu, ow, ye and yw denote old successful entrepreneurs, old unsuccessful
entrepreneurs, old workers, young entrepreneurs and young workers, respectively.

The optimal investment choice of the young entrepreneurs, given bt and bt+1, is

e∗t = e (bt, bt+1) ≡ 1 + β − (bt + βbt+1)

2
w. (3)

Since the realization of the investment is i.i.d. across entrepreneurs, and all choose the same level
of effort, then et (bt, bt+1) is also the proportion of entrepreneurs who become successful. Moreover,
since success is persistent, this is also the proportion of successful old entrepreneurs in period t+1.
It is useful to denote by ut+1 = 1− et (bt, bt+1) the proportion of unsuccessful entrepreneurs.

7

The government budget constraint is 2τ t = (2 (1− µ) + µut + µ (1− e∗t ))wbt. Using, (3), we
have

τ t = τ (bt, bt+1, ut) (4)

≡
³
1 +

µ

2

³
ut − 1− (1 + β)

w

2
+ (bt + βbt+1)

w

2

´´
btw.

7The restrictions 0 ≤ b ≤ 1 and w ≤ 1 imply that ut+1 ∈
£
1−β
2
, 1
¤
.
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The marginal tax cost of redistribution in period t, ∂τ t
∂bt
, increases in ut (because more old

entrepreneurs are benefit recipients) and in bt and bt+1 (because more young entrepreneurs become
unsuccessful). Since the old in period t cannot enjoy any benefits in period t+1, their equilibrium
utility will therefore be decreasing in bt+1.

Preliminary remarks about preferences for redistribution are as follows. The old successful
entrepreneurs prefer zero benefits, since redistribution implies positive taxes without providing
them with any benefits. Benefit recipients (workers and unsuccessful entrepreneurs), in contrast,
are better off with some redistribution, even though their preferences for redistribution may be
non-monotonic, as net benefits may fall with b at high levels of taxation, due to a Laffer curve
effect. Note also that the Laffer curve is dynamic, depending both on historical investment levels
and expectations about future taxation.

After the ability shock is realized, young workers like redistribution more than young en-
trepreneur. However, one should note that the government transfer programs entail some in-
tergenerational redistribution, since the proportion of old and young successful entrepreneurs are
in general different. The preferences of the different group of young agents depend therefore on the
balance between inter- and intra-generational effects.

3 The Ramsey allocation with commitment

In this section, we show that optimal policy in the present model involves oscillations in taxation
and redistribution. We will accomplish this goal by characterizing the full commitment solution
in the case where the planner’s weights on generation t is βt, i.e., the planner discounts across
consumption of different generations as the private agents discount their own consumption over
time. In this particular case, the solution is relatively simple. We also extend briefly the analysis
to the case in which the planner discount future at a general rate λ ∈ (0, 1) . In the general case,
however, of the optimal tax sequence is more involved. Since the main focus of this paper is on
political economy, we limit attention in this case to long-run properties.

3.1 Statement of the commitment problem

The choice set of the planner is the set of sequences of benefits, {bt}∞t=0, that are feasible for some
sequence of taxes and associated private effort choices. We assume that the planner can commit
to future benefits; we sometimes refer to this problem as the Ramsey problem and to its solution
as the Ramsey allocation. The planner is assumed to be perfectly utilitarian when evaluating the
utility of ex-ante identical agents. To simplify, we assume that she discounts future generations at
a constant rate by attaching a weight λt to agents born at time t. In the analysis of the political
allocation, we will assume balanced budgets in each period and to be able to compare the two
allocations, we impose this assumption also on the Ramsey allocation.8 The planner chooses the
sequence of bt ∀t ≥ 0 in order to maximize

W (u0) ≡ β (1− µ) Ṽ ow (b0, τ0) + βµ (1− u0) Ṽ
oes (b0, τ0) + βµu0Ṽ

oeu (b0, τ0) (5)

+
∞X
t=0

λt+1
³
µṼ ye (e (bt, bt+1) , bt, bt+1, τ t, τ t+1) + (1− µ) Ṽ yw (bt, bt+1, τ t, τ t+1)

´
,

8Interestingly, it can be shown that when β = λ, the balanced budget restriction does not bind for the Ramsey
planner. That is, the planner would choose the same allocation even if she were allowed to accumulate debt or savings.
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subject to

bt ∈ [0, 1] , (6)

τ t =

½
τ (b0, b1, u0) for t = 0

τ (bt, bt+1, 1− e (bt−1, bt)) for t ≥ 1.

3.2 Characterizing the solution: a recursive formulation

Let us now analyze the Ramsey allocation. The planner’s problem, (5), does not admit a standard
recursive formulation since its solution is time-inconsistent (see Section 4.5 below for more details).
Intuitively, the choice of bt+1 takes into account how the effort choice at t is influenced, but this
effort choice is bygone when the time comes to implement bt+1. It is well known that Ramsey
problems admit a two-stage formulation whereby future decisions, in stage two, can be described as
coming from a recursive problem with an additional state variable whereas the time-zero decisions,
in stage one, can be derived from a “static” problem whose payoffs are given by the value function
associated with the solution to the recursive problem.9 In this framework we will show that the
second-stage recursive problem is particularly simple in that the choice of bt+1 involves only one
state variable: current period’slevel of transfers bt — knowledge of bt is sufficient to determine the
optimal bt+1. This result follows from the fact that since individuals live for two periods only, a
benevolent planner who can commit to benefits one period ahead would choose the same level of
redistribution as a planner who could commit all future periods. Specifically, if the planner at
period t chooses bt+1, she would have chosen the same bt+1 if she had had the ability to commit
at any period s < t (assuming bt is held constant). Furthermore, although the flow of felicity in
period t is affected by both the predetermined variables ut and bt, the optimal choice of bt+1 is
only affected by bt. Therefore, the recursive program has only bt as a state variable, with bt+1
being the choice variable. As to the choice in the initial period, the planner is not subject to earlier
pre-commitments and thus chooses b0 and b1 simultaneously. We thus prove that

Lemma 1 The utilitarian planner program (5) is equivalent to the following recursive program:

W (u0) = max
b0∈[0,1]

{Y0 (u0, b0) + V (b0)} (7)

V (bt) = max
bt+1∈[0,1]

{Y (bt, bt+1) + λV (bt+1)} for t ≥ 0, (8)

where Y0 (u0, b0) is a linear-quadratic function, defined in appendix, and

Y (bt, bt+1) =

µ
µw2

4

¶
· ©2 ¡(1 + β) (β + λ)R− β2

¢
bt

− ¡(1 + β) (β + λ) (R+ 1)− λ− 2β2¢ b2t
−
³
(β + λ)2 (R+ 1)− 2λβ

´
btbt+1

+ 2λβ2bt+1 − β2λb2t+1
¤
+Q,

and where Q is a constant defined in the appendix. Moreover, the mapping Γ (v) = maxb0∈[0,1] {Y (b, b0) + λv (b0)}
is a contraction mapping with V as the unique fixed point.

9See, e.g., Marcet and Marimon (1999), where the additional state variable is marginal utility or the Lagrange
multiplier associated with the incentive constraint.
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The recursive formulation of Lemma 1 shows that the optimal policy can be represented in terms
of two policy rules. The first rule, which sets the initial choice of redistribution, maps the initial
(predetermined) proportion of unsuccessful entrepreneurs into initial choices of redistribution. The
second rule applies from period one onwards and maps previous period’s benefits into current
benefits, bt = f (bt−1).

3.2.1 Convergence to any steady state must be oscillatory

For the purposes of the discussion here, the main implication of the above result is the fact that we
can use the function Y (bt, bt+1) to discuss dynamics. If the constraint bt+1 ∈ (0, 1) is not binding, the
optimal allocation must satisfy the following first-order condition: Y2(bt, bt+1)+λY1(bt+1, bt+2) = 0.
This follows from a standard envelope argument and the first-order condition on the Bellman
equation (8). Calculating the derivatives and simplifying terms yields the following dynamic system:

η0 + η1bt + η2bt+1 + λη1bt+2 ≤ 0, (9)

where

η0 ≡ 2λ (1 + β) (β + λ)R ≥ 0
η1 ≡ −

³
(β + λ)2 (R+ 1)− 2λβ

´
< 0

η2 ≡ −2λ ¡(1 + β) (β + λ) (R+ 1)− λ− β2
¢
< 0

This dynamic system is exactly linear, and it has the important property that the coefficients
on bt, bt+1, and bt+2 are all negative. This follows from Y being strictly concave in each of its
arguments separately and from bt and bt+1 displaying “substitutability”. Intuitively, concavity
follows from the convex cost function for effort and from the fact that taxation is more costly on
the margin, the higher its level. The substitutability reflects the fact that effort depends on both
bt and bt+1, so if one of these variables is high, the cost of increasing the other one marginally is
high. Finally, note that if the solution is converging to a steady-state, an interior solution has to
obtain along the transition.

Now consider the functional-equation version of the first-order condition for benefits: letting f
denote the policy rule mapping bt into an optimal bt+1, we have Y2(bt, f(bt))+λY1(f(bt), f(f(bt))) =
0 for all bt in the neighborhood of a hypothetical steady state. Thus, locally, we are able to rule
out an increasing f : if bt is increased, Y2 as well as λY1 will decrease, since the coefficients on bt,
f(bt), and f(f(bt)) are all negative and f 0 > 0.10 Therefore, we have established the following:

Lemma 2 The utilitarian planner program (5) leads to a solution which either does not converge
to a steady state or, if it does, converges in an oscillatory fashion.

It might seem surprising that the planner would not opt for benefit smoothing but it turns
out that oscillating benefits reduce the distortion associated with redistribution. As noted in the
introduction, the reason is that the investments young agents make in period t has an effect on
the tax cost of redistribution both in period t and in period t + 1. More precisely, if benefits in
period t− 1 were large (small), the young entrepreneurs will make a small (large) investment effort
in that period. Thus, in period t, the old entrepreneurs will be relatively unsuccessful (successful),
so there will be many (few) benefit recipients that period, and the cost of redistribution per dollar

10The case where f is a constant is ruled out from concavity.
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of transfer in period t will therefore be relative large (small). Thus, the planner will set relatively
small (large) benefits in period t. Applying a similar logic for period t + 1, it is clear why the
optimal sequence of benefits might be oscillatory. Intuitively, the planner reduces the distortion of
benefits in period t by choosing lower benefits next period, as the investment decision of the young
in period t depends on redistribution both in period t and in period t+ 1. When the planner sets
at particular value bt, she takes into account the effects this has both on felicity in t − 1, t, and
t + 1 and the decision is, therefore, both backward- and forward-looking. Without commitment,
the backward-looking aspect disappears, having, as we will see below, qualitative consequences for
redistribution dynamics.

3.2.2 Full characterization of the Ramsey problem when λ = β.

The solution to the Ramsey problem delivers a policy rule which is not globally linear, except in
the case λ = β. This case is a natural benchmark, as it implies that the planner discounts future
felicities at the same rate at which agents discount future within their life-horizon. In this case, it
is possible to attain a simple closed-form solution, summarized in the following Proposition.

Proposition 1 The optimal solution to the planner program (5) in the case λ = β is

bt = bp − (bt−1 − bp) ,∀t ≥ 1,

and

b0 =

µ
1 +

(1− u0)
w
2 (1− β)

¶
bp,

where

bp ≡ R

1 + 2R
.

The result in Lemma 2 was that the equilibrium law of motion for benefits, f , cannot be
increasing around a steady state. In the case λ = β here, f indeed is decreasing and the slope
of the policy function is −1. That is, initial conditions are persistent. To show that there really
is a limit cycle in this case, one also needs to study the first-stage problem. As is clear from the
proposition, the period-0 choice of the planner depends negatively on the initial condition on u0,
since this variable influences the marginal costs of providing benefits (see Hassler et al. (2003) for
a more detailed discussion). Thus, the planner will choose initial benefits larger than or equal to
bp, and then oscillate forever between this level and another level on the other side of bp.

When λ 6= β, dynamics continue to be oscillatory. Benefits may converge to a steady state or to
a 2-period cycle. Convergence to a steady-state occur whenever one of the root of the characteristic
equation associated with the difference equation (9) lies within the unit interval. This occurs for
a non-empty range of λ’s strictly larger than β.11 When λ < β, instead, the optimal plan never
converges to a steady state, and redistribution moves in the long-run between positive and zero
redistribution. Intuitively, one can see that a reason for divergence in benefits is that in order to
keep a constant distortion in present-value terms, bt + βbt+1 needs to be constant, and to keep
this number constant and positive while there are oscillations, bt+1 must explode since we assume
that β < 1. Before that occurs, however, bt hits its lower bound. Thus, the summary description
of optimal redistribution is that oscillations always occur and that divergence to a 2-period cycle
occurs over the range of the parameter space in which we are interested. Since we will show that

11However, the dynamics are once again diverging to a 2-period limit cycle for a range λ sufficiently large.

12



when the benefit sequence is determined through political choice oscillations are possible, but they
always converge to a steady state, an important result of this paper is that the political mechanism
dampens efficient fluctuations and, in some cases, even generate policy persistence (i.e., monotonic
convergence).

4 Politically determined redistribution

4.1 The political game

In the political equilibrium, the benefit policy is chosen in each period through a voting mechanism.
In the benchmark case, we assume that agents vote over next period redistribution at the end of
each period, after the uncertainty about individual entrepreneurial earnings has been realized. Since
the old have no interest at stake, they are assumed to abstain. This is equivalent to assuming that
agents vote over the current benefit policy before the effort choice of the entrepreneurs is made,
and that only the old agents are entitled to vote. We later extend the analysis to the case in which
both the young and the old vote on current benefits.12

4.1.1 Probabilistic voting

We assume a two-candidate political model of probabilistic voting a la Lindbeck-Weibull (1987)
and restrict attention to Markov-perfect equilibria. In this model, whose features are discussed
extensively in Persson and Tabellini (2000) and are therefore not detailed here, agents cast their
votes on one of two candidates, who maximize their probability of becoming elected. Voters have
heterogeneous preferences not only over redistribution, but also over some non-economic-policy
dimension that is orthogonal to redistribution and over which the candidates cannot make binding
commitments. We refer to this additional dimension as “ideology” Persson and Tabellini (2000).
Voters differ in their evaluation of the candidates’ ideology and their preferences over this dimension
are subject to an aggregate shock whose realization is unknown to the candidates when platforms
over redistribution are set.13 In the equilibrium of this model, both candidates choose the same
platform over redistribution and each has a fifty percent probability of winning. More importantly,
the impact of each group on the equilibrium policy outcome increases with the relative weight in
utility of the policy variable. Intuitively, if agents in a group have a lower concern for ideology, a
candidate making a small change in redistribution in favor of this group will trigger a larger increase
in her political support. In other terms, groups with many “swing-voters” are more attractive to
power-seeking candidates and exert a stronger influence on the equilibrium political outcome. We
will assume that the relative concern for ideology versus redistribution is the same within cohorts but
may vary between cohorts. Under this assumption, it is straightforward to show that in equilibrium,
the candidates’ platforms simply maximize a weighted sum of individual utilities, where the weights
are the same for all agents within a cohort but may differ between cohorts. Thus, the equilibrium
policy maximizes a “political objective function” which is a weighted average utility of all voters.
We will consider the cases when the political weight on the old is normalized to unity and the
weight on the young is ω ∈ [0, 1] .
12In this case, it turns out to be irrelevant whether young agents vote before or after their ability has been revealed.
13Since candidates have no intrinsic preferences over redistribution, they are assumed to implement their promised

platform.
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4.1.2 Definition of equilibrium

It is convenient to define the indirect utilities

V y (bt, bt+1, bt+2, ut, ut+1) (10)

≡ µṼ ye (e (bt, bt+1) , bt, bt+1, τ (bt, bt+1, ut) , τ (bt+1, bt+2, ut+1))

+ (1− µ) Ṽ yw (bt, bt+1, τ (bt, bt+1, ut) , τ (bt+1, bt+2, ut+1)) ,

V j (bt, bt+1, ut)

≡ Ṽ j (bt, τ (bt, bt+1, ut)) , for j ∈ {oes, oeu, ow} .

We construct equilibria whose policy functions are linear (except for kinks implied by upper
and lower bounds) in the aggregate state variable: the proportion of current unsuccessful old
entrepreneurs (ut). The political equilibrium is defined as follows.

Definition 1 A political equilibrium is defined as a pair of functions hB,Ui, where B : [0, 1]→ [0, 1]
is a public policy rule, bt = B (ut) , and U : [0, 1]→ [0, 1] is a private decision rule, ut+1 = U (bt) ,
such that, given the political weight ω ∈ [0, 1] on each young, the following functional equations
hold:

1. B (ut) = argmaxbt∈[0,b̄] V (bt, bt+1, bt+2, ut, ut+1) subject to ut+1 = U (bt), bt+1 = B (U (bt)),

and bt+2 = B(U(B (U (bt)))), and

2. U (bt) = 1− e (bt, bt+1) with bt+1 = B (U (bt)),
where

V (bt, bt+1, bt+2, ut, ut+1) (11)

≡ µ ((1− ut)V
oeu (.) + utV

oes (.))

+ (1− µ)V ow (.)

+ω (V y (.)) .

The first equilibrium condition requires the political mechanism to choose bt to maximize V ,
taking into account that future redistribution depends on the current policy choice via the equi-
librium private decision rule and future equilibrium public policy rules. Furthermore, it requires
B(ut) to be a fixed point in the functional equation (1). In other words, suppose that agents believe
that future benefits are set according to the function bt+j = B (ut+j). Then we require that the
same function B(ut) define optimal benefits today. We should note that in the case ω = 0, the
political objective is given by the first two rows of (11) only, depending only on bt, bt+1, and ut.

The second equilibrium condition states that all young individuals choose their investment
optimally, given bt and bt+1, and that agents have rational expectations about future benefits and
distributions of types. In general, U could be a function of both ut and bt, but in our particular
model ut has no direct effect on the investment choice of the young. Thus, in our equilibria the
equilibrium investment choice of the young is fully determined by the current benefit level.

The function V entails the assumption that all agents within a given generation exert the same
political influence, irrespective of their type. In the general case where two generations participate
into each election, however, we allow for age-specific differences in the concern for the ideological
dimension. This is parameterized by ω ∈ [0, 1]. In particular, ω < 1 means that the old care less,
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on average, about ideology and have more “swing-voters” than the young. Hence, their preferences
carry more weight in the political objective function, V . The opposite would be true if ω > 1, a
case that we do not consider. When ω = 1 all voters are equally represented.

4.2 An economy where all agents are risk-neutral

In this section, we consider the particular case when a = 1, i.e., when agents are risk-neutral and
have therefore, ex-post, the same preference intensity for economic policy. Here, the welfare state
entails no insurance value.

It is instructive to see how the equilibrium is constructed. Let us therefore sketch the method
we use to find the political equilibrium in the simplest case when ω = 0, leaving some details for
the appendix. Substituting the discounted value functions (10) into the political objective function
(11), we obtain (with a slight abuse of notation)

V (bt, bt+1, ut) =
µ

2
(utbtw − (1− e (bt, bt+1))btw) (12)

+µ(1− ut)w

Notice that the last term is exogenous from the perspective of the voter: it is predetermined.
Omitting this and the proportionality factor µ/2, and noting that 1−e (bt, bt+1) = ut+1, the political
objective can therefore be written as (ut−ut+1)btw: positive benefits help the current old only if the
number of unsuccessful old entrepreneurs exceeds the number of unsuccessful young entrepreneurs.
The latter, of course, is determined by policy. Thus, the workers do not enter this expression: since
they are of equal number in each cohort, any transfers between them will net to zero.

Disregarding constants and using the expression for e (bt, bt+1), the political objective in (12)
can be written as

utbtw −
³
1− (1 + β)

w

2
+

w

2
(bt + βbt+1)

´
btw. (13)

We need to find two functions B(ut) and U(bt) satisfying the two equilibrium conditions in
Definition 3. Guided by the linear-quadratic form of the objective function, we guess on the
functional form for B: B(ut) = α0+α1ut, for some yet undetermined coefficients α0 and α1. Using
this guess, the second equilibrium condition can be written as

U (bt) = 1− 1 + β − (bt + β (α0 + α1U (bt)))

2
w. (14)

Solving for U(bt) we obtain

U (bt) =
2− w (1 + β (1− α0)) + btw

2− βα1w
.

Substituting the expression for U(bt) and the guess of B(ut) into the first-order condition and
solving for bt gives

bt =
1

2w
(−2 +w (1 + β (1− α0))) +

2− βα1w

2w
ut,

which verifies the tentative guess as a fixed-point of equilibrium condition 1 if α1 =
2

w(2+β) and

α0 = −α1
¡
1− 1

2 (1 + β)w
¢
,heuristically establishing the following proposition.14

14Given the quadratic objective, it is straightforward to check that the first-order condition will be sufficient for a
maximum.
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Proposition 2 Assume a = 1 and ω = 0 (risk neutrality, “n”, and only the old vote, “o”). The
political equilibrium is characterized as follows:

Bno (ut) =

½ 2
w(2+β) (ut − u) if ut ≥ u

0 else

Uno (bt) = u+
w

2

µ
1 +

β

2

¶
bt,

where where u ≡ 1− e (0, 0) = 1− 1+β
2 w. Given any u0 > u, the equilibrium law of motion is

ut+1 = u+
1

2
(ut − u) ,

bt+1 =
1

2
bt,

and the economy converges monotonically to a unique steady state with b = 0 and u = u. For
u0 ≤ u, ut = u ∀t > 0.

In the equilibrium of Proposition 2, redistribution occurs along the transition path, i.e., as long
as u0 > u. In the long run, however, there is no redistribution. Unlike in the Ramsey allocation,
here we see monotone convergence: the dynamics are characterized by a positive root equal to 1/2.
The speed of convergence is thus independent of w and β.

Figure 2 represents the equilibrium policy function and law of motion. The left-hand panel
shows that when ut > u redistribution is positive in equilibrium. Moreover, the equilibrium level
of bt increases linearly with ut. The right-hand panel illustrates how the equilibrium law of motion
implies monotonic asymptotic convergence to the steady state as long as u0 > u.

Law-of-Motion

1
2
β−

1
Policy Function

b
1tu +

tu

( )no
tB u

tu0 00,0u 0,0u1 1

Figure 2. Risk neutrality and only the old vote.

Our results can be interpreted as follows: when only the old influence the political outcome,
the equilibrium redistribution, Bno (ut) , maximizes the average income of the old. This implies
maximizing the intergenerational transfer from young to old individuals without concern for intra-
generational redistribution. Intergenerational transfers benefitting the current voters can, however,
be achieved by setting bt > 0 only if the proportion of old unsuccessful agents is higher than the
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proportion of young unsuccessful, i.e., if ut > ut+1. In particular, no redistribution can occur in
steady state. The results of Proposition 2 generalize to the case of ω ∈ [0, 1].

Turning to voter participation of the young, we have

Proposition 3 For a = 1 and any ω ∈ [0, 1], the political equilibrium is characterized as follows:

Bn (ut) =

½ ρ
w (ut − u) if ut ≥ u
0 else

Un (bt) = u+
w

2− βρ
bt,

where

ρ =
2Z

1 + βZ

and Z ∈ [0, 1/2] is the real solution to

Z
¡
1 + ωβZ2

¢
=
1− ω

2
,

which is decreasing in ω and β. Given any u0 > u, the equilibrium law of motion is

ut+1 = u+ Z (ut − u) ,

bt+1 = Zbt,

and the economy converges monotonically to a unique steady state with b = bn = 0 and u = u. For
u0 ≤ u, ut = u ∀t > 0. Finally, ρ is decreasing in ω and β; if ω = 1, we obtain ρ = 0, implying
immediate convergence to the steady state.

In the case when both young and old agents vote on current benefits, the equilibrium has the
same qualitative features as in the benchmark case (ω = 0), provided that ω < 1. In particular,
redistribution occurs along the transition path, but there is no welfare state in the long run.
Since ω < 1, the old are politically preponderant and the political equilibrium therefore favors
redistribution from young to old. Such redistribution can be achieved via positive benefits if and
only if ut > ut+1. Therefore, redistribution is positive only along the transition to the steady state.
For any ω < 1, dynamics are characterized by a positive root Z ≤ 1/2. The higher is ω, the lower
are transfers and the flatter are the equilibrium policy function and the law of motion in Figure 1.
This is due to the fact that the young exert political pressure against redistribution. With ω = 1,
benefits are zero regardless of ut and system jumps to the steady state immediately.

4.3 The case of risk-averse agents

HRSZ find that, in a model of majority voting, the welfare state can survive in the long run even
though agents are risk-neutral. The previous section shows, however, that under probabilistic
voting redistribution must die off in the long run. That is, for the same economic environment, the
long-run state of the transfer system can depend critically on the form of the democratic process.
Moreover, the transitional dynamics here are characterized by monotonic rather than oscillatory
convergence. In this section, we show that the political equilibrium features the long-run survival of
the welfare state under probabilistic voting, provided that a positive proportion of agents in society
are risk-averse. The convergence to the steady state may be oscillatory or monotonic depending on
the extent of risk aversion and the political influence of the young.
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As in the previous subsection we will initially assume that the young agents have no influence
in the voting process, i.e., that ω = 0. When a ≥ 1, the political objective function, V (bt, bt+1, ut) ,
can be expressed (up to scaling and excluding constants) as follows:

V (bt, bt+1, ut) =
2R

1 +R
(1− ut) bt (15)

+utbt −
³
1− (1 + β)

w

2
+

w

2
(bt + βbt+1)

´
bt.

The political objective is derived as in the case of risk neutrality, differing by the first term
(the second line, as above, equals (ut − ut+1)bt), which reflects a positive effect from redistribution
whenever aggregate risk aversion is positive: the higher marginal utility of workers makes any
redistributed dollar pay off more the higher is R. The part (1− ut) is the fraction of old successful
entrepreneurs, representing the size of the inelastic tax base. This term inversely reflects the
distortionary cost of redistribution. We can now characterize the equilibrium as follows.

Proposition 4 Assume ω = 0 and risk aversion (“a”). Then if R ∈ [0, Rmax], where Rmax > 1
is defined below, the political equilibrium is characterized as follows:

Bao (ut) =

½
bao + ρ

w (ut − uao) if ut ≥ uao − w
ρ b

ao

0 otherwise

Uao (bt) = uao +
w

2− βρ
(bt − bao) ,

where

ρ =
2Z

1 + βZ

Z =
1

2

1−R

1 +R
∈
·
−1
2
,
1

2

¸
bao =

4R

1 + 3R

1 + β

2 + β
,

uao = 1− w

2
(1 + β) (1− bao) ,

and Rmax is defined as R such that Bao (0) = 1. If R > 0, then bao > 0 and bt > 0 ∀ t > 0
(redistribution is positive after at most one period). Furthermore, bao and uao increase in R. For
t > 0, the equilibrium law of motion is

ut+1 = uao + Z (ut − uao) ,

bt+1 = bao + Z (bt − bao) .

Given u0, the economy converges to a unique steady state with b = bao and u = uao following an
oscillating (monotone) path if R > (<) 1. If R = 1, convergence is immediate.

Imposing the upper bound on aggregate risk aversion, R < Rmax, ensures that the constraint
b ≤ 1 is not binding in equilibrium. This is necessary in order for the equilibrium policy function
and private decision rule to be linear and, hence, for the analytical characterization of the political
equilibrium to be viable.

Proposition 4 establishes that the dynamics of redistribution involve convergence to a unique
steady state characterized by a positive benefit rate, provided some agents are risk averse (R > 0).
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Steady-state benefits, bao, increase in risk aversion and in the share of workers, while they decrease
in the wage rate because the distortionary effect of benefits increases with the return to effort.

The equilibrium policy function and the dynamics of ut are depicted in Figure 3. As long
as R < 1, dynamics are characterized by a positive root, implying monotone convergence. If
R > 1 instead, the benefit rate is a decreasing function of ut and the root Z is negative, implying
convergence following an oscillatory pattern. In the particular case where R = 1, convergence to
the steady state occurs in one period.

1tu +

tu

Law-of-Motion
1

tu

1tu +

1

Law-of-Motion
1

0

Policy Function( )ao
tB u

tu10

( )ao
tB u

tu10

Policy Function

10

1R <

1R >
b

b

aou aou

aou

aob

aob

aou

Figure 3. The equilibrium policy function B (ut) and ut dynamics under risk aversion (R ≥ 0).
The dynamics are characterized by two opposing forces. On the one hand, the larger the current

share of unsuccessful entrepreneurs, ut, the higher the tax cost per unit of benefits. This is captured
by the fact that the first term of (15) falls in ut, reflecting the higher dependency ratio associated
with a higher share of unsuccessful old entrepreneurs. We label this the tax-base effect. Through
this effects, a higher ut reduces the marginal (political) value of benefits, tending to generate
a negative relationship between b and u. On the other hand, the larger is ut, the larger is the
second term of (15), reflecting a stronger political pressure for redistribution since more individual
entrepreneurs benefit from redistribution. We label this the constituency effect and note that a
higher ut increases the marginal political value of redistribution, tending to generate a positive
relationship between b and u. When aggregate risk aversion is low, the latter effect dominates,
while the opposite is true when aggregate risk aversion is high. The reason for this is that when R
is high, the political influence of the entrepreneurs diminish, as workers become, on average, more
sensitive to the issue of redistribution, due to their higher individual risk aversion. Since with a
probabilistic voting model preference intensity matters, this implies that the policy implemented
in equilibrium reflects the will of the average worker more closely, i.e., there is more redistribution.
Consequently, the policy outcome becomes less sensitive to the share of unsuccessful entrepreneurs,
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who want positive redistribution. Thus, the dynamics are dominated by the cost effect. In sum,
higher aggregate risk aversion therefore increases steady state benefits and makes the tax-base effect
stronger.

Proposition 4 can be generalized to the case in which the young participate in the political
decision: ω ∈ [0, 1]. The equilibrium has the same form as Proposition 4. However, the expression
of Z is involved and we only state here its main properties. The detailed proof of this proposition
is omitted and is available upon request.

Proposition 5 Assume 0 ≤ R ≤ Rmax and ω ∈ [0, 1]. The political equilibrium is then character-
ized as follows:

Ba (ut) =

½
ba + ρ

w (ut − ua) if ut ≥ ua − w
ρ b

a

0 otherwise

Ua (bt) = ua +
w

2− βρ
(bt − ba) ,

where

ρ =
2Z

1 + βZ

and Z is a constant with the following properties: (i) Z ∈ (−4/7, 1/2], (ii) dZ/dω < 0, (iii)
Z > (<) 0 iff R < (>) 1−ω1+ω ; and (iv) if Z > 0, dZ/dR < 0.
For t ≥ 0, the equilibrium law of motion is

ut+1 = ua + Z (ut − ua) ,

bt+1 = ba + Z (bt − ba) ,

where ua and ba are functions of Z defined in the appendix. Given any u0, the economy converges
to a unique steady state following an oscillating (monotone) path if R > (<) 1−ω1+ω . If R = 1−ω

1+ω ,

convergence is immediate to a steady state where b = R (1 + ω)2 / [(2 + β) / (1 + β) + ω (1− ω)] ≥
0.

We note that an increase in the political participation of the young decreases the slope of the
policy function. In particular, the sign of the slope coefficient and whether dynamics are oscillating
or not depend on whether R ≶ 1−ω

1+ω .When dynamics are monotone, the persistence of redistributive
policies falls in R, since, then, dZ/dR < 0. This condition nests the result of Proposition 4 that
the policy function is upward- (downward-)sloping if and only if R < 1 (R > 1) when ω = 0. If
instead the young are as politically influential as the old (ω = 1), then the policy function becomes
downward-sloping and dynamics are oscillatory for any positive level of risk aversion.

As far as the young are concerned, both the cost effect and the intergenerational redistribution
motive imply that benefits should fall with ut (recall that the larger ut the larger the transfer from
the young to the old). Therefore, as the influence of the young increases, the intergenerational
redistribution motive is mitigated. If ω < 1, the old retain some political preponderance, and
intergenerational transfers towards the old carry some weight in the political decision. If ω = 0,
however, this motive disappears and the dynamics of redistribution is determined by the cost effect
alone. Since the tax-base effect implies a negative relation between benefits and the number of
old unsuccessful entrepreneurs, stronger influence of young voters reduces the slope of the policy
function and tends to make dynamics oscillatory.

Unfortunately, due to the complicated expression of Z, we have not been able to sign the effect
of an increase of the participation of the young on steady-state redistribution, although numerical
analysis suggests that an increase in ω reduces redistribution in the long run.
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4.4 Finite-horizon results

In this section we seek to answer two related questions. First, we aim to show that the Markov-
perfect equilibria derived above are indeed limits of finite-horizon equilibria. Second, and more
substantially, we wish to find out whether there can be more than one finite-horizon equilibrium,
i.e., whether there can be a role for “coordination”, and perhaps “reputation”, even in finite-horizon
versions of this model. The uniqueness question is a substantial one not only formally, but in a
very applied sense: it touches on the “stability” of government redistribution schemes, which was
challenged recently in HRSZ. In that paper, a simple version of the present model with majority
voting was shown to robustly produce multiple equilibria independently of the time horizon. I.e.,
a “belief in the welfare system” seemed necessary to support the system. For brevity, we will not
cover all cases in this section; concentrating on our baseline setup where only the old vote and
where w = 1. We will first study the limit of the finite-horizon case and then discuss uniqueness.

We assume the economic environment to be identical to that of previous sections except in a
final period T where the newborn young make an effort investment but live only for one period. In
the finite horizon economy, the equilibrium policy function will in general be time-dependent. For
t < T , equilibrium condition 1 is thus modified to

Definition 2 Bt (ut) = argmaxbt∈[0,b̄] V (bt, bt+1, ut) subject to bt+1 = Bt+1 (ut+1) with ut+1 =

1− e (bt, bt+1) .

Guessing preliminarily that Bt+1 (u) is linear, i.e., Bt+1 (u) = At+1+Bt+1u, it is straightforward
to show that an interior solution to the maximization problem at period t yields a linear policy
function Bt (u) = At+Btu. Let j ≡ T − t denote the number of periods until the horizon, then the
coefficients Aj and Bj satisfy

15

·
Aj

Bj

¸
=

"
−β
2 − R

1+Rβ

0 −1−R1+R
β
2

#·
Aj−1
Bj−1

¸
+

"
2R
1+R − 1−β

2
1−R
1+R

#
. (16)

The solution to this linear system of difference equations is

Aj =

µ
−β
2

¶j

(A0 −A) +

µ
−β
2

¶j
Ã
1−

µ
1−R

1 +R

¶j
!
(B0 −B) +A, (17)

Bj =

µ
−β
2

1−R

1 +R

¶j

(B0 −B) +B,

where A0 and B0 now define the policy rule in the last period (t = T ). As this system is stable
(the roots are −β

2and −β
2
1−R
1+R), then, as j →∞, the coefficients of the policy rule converge to

A ≡ 8R

(2 + β) (2 + β +R (2− β))
− 1− β

2 + β
,

B ≡ 2
1−R

2 (1 +R) + β (1−R)
,

and the policy rule is identical in the limit to infinite horizon case detailed in Proposition 4 for the
case ω = 0 and w = 1.

15This equation follows from using bt+1 = Aj−1 +Bj−1ut+1 in the political objective function (15).
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Next, we derive the final period policy function, BT (u) and show that it is unique and linear,

with bT = A0+B0uT , for all uT in the reachable range
h
1−β
2 , 1

i
. This provides the initial condition

for the difference equation (17). Given the result above, it follows that the finite horizon equilibrium
is unique.

We propose a parameterization of the final period which we regard as reasonable, although the
argument does not hinge on the specific choice. In particular, we assume that the young born in
the final period live for one period only and that they make an effort choice. To make the final
period comparable to the previous periods, we compensate for the fact that the young in the last
period get return on effort only in one period by scaling down their disutility of effort by (1 + β)−1.
Thus, the effort cost is equal to e2/ (1 + β) , implying that the optimal effort is equivalent to that
which agents living for two periods would have chosen if they had faced the benefit level bT in both
periods. This optimal effort level is e∗T = (1− bT )

1+β,
2 implying that taxes in the final period are

given by

τT =
1

2

µ
2 (1− µ) + µuT + µ

µ
1− β

2
+ bT

1 + β

2

¶¶
bT .

Substituting in τT into the utility function yields the following political objective function:

VT (bT , uT ) = µ ((1− uT ) + uT bT ) + ((1− µ) bT +RbT )− (1 +R) τT .

Maximizing VT (bT , uT ) with respect to bT yields b
∗
T = A0 +B0uT , with

A0 = −1
2

1− β

1 + β
+

2R

(1 +R) (1 + β)
,

B0 =
1

1 + β

1−R

1 +R
,

The analysis has so far ignored, for the sake of simplicity, the constraint that b ∈ [0, 1] . Char-
acterizing the sequence of policy functions when these constraints are present is more complicated
and the details of the results depend critically on the exact form of the effort function in the last
period, about which we do not have strong prior information.16

4.5 Voting with benevolence toward future generations

There are two qualitative differences between the Ramsey allocation in Section 3 and the political
allocations in Section 4. First, the Ramsey planner has commitment. Second, the planner cares
about future, yet unborn, generations. In order to isolate the importance of commitment for
the different characteristics of the two allocations, in this section we shall study the intermediate
case where policy is chosen by a benevolent social planner who has no access to a commitment
technology. One can think of this case as forever electing to office an agent with altruism toward
future generations but without the ability to commit future policy. Alternatively, it can be thought

16That economies where the constraint that b ∈ [0, 1] never binds exist can be shown easily in some special cases,
such as when R = 1. In this case, Bj = B = 0 for all j ≥ 0, and, for all t,

Bt (u) = A

Ã
1−

µ
−β

2

¶j
β

2 (1 + β)

!
> 0

since A = (1 + β + 2s (1− µ) /µ) / (2 + β) . So the constraint is not binding when R = 1. By continuity, the same
argument carries over for values of R sufficiently close to one. For more general values of the parameters, we also
encountered no multiplicity, though some of our analysis here relies on numerical methods.
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of as a case when old voters are altruistic: the vote in order to maximize a welfare function which
is a weighted average of their own felicity and the welfare of the next generation. Either way, this
case allows us to differentiate between the effects of altruism and commitment.

In order to derive a recursive formulation of the problem, we define the “weighted average
felicity” across both young and old agents at time t as

F0 (ut, bt, bt+1) ≡ β (1− µ)
³
Ṽ ow (bt, τ t)

´
(18)

+βµ
³
(1− ut) Ṽ

oes (bt, τ t) + utṼ
oeu (bt, τ t)

´
+λ (1− µ) (a (wbt − τ t)− (a− 1)x)
+λµ

³
e∗tw + (1− e∗t )wbt − (e∗t )2 + w − τ t

´
,

where e∗t = e (bt, bt+1) and τ t = τ(bt, bt+1, ut).
As above, we let β ∈ [0, 1] and λ ∈ [0, β], respectively, be the weights on the old and young

currently alive. When β = λ, the old are “perfectly altruistic” and weight equally their old-age
felicity and that of the young. If, on the other hand, λ = 0, we obtain the case analyzed in
Proposition 2. We restrict attention to economies where λ ≤ β, so that altruism cannot “exceed
100%”.

Since the problem is autonomous when policies are in the Markov class, a recursive formulation
of the political objective can be written as

W (ut) ≡ max
bt∈[0,b̄]

{F0 (ut, bt, bt+1) + λW (ut+1)} , (19)

s.t. bt+1 = B (U (bt)) ,

ut+1 = U (bt) .

In direct analogy with our equilibrium definition above, we provide

Definition 3 A political equilibrium with altruistic voting is defined as a pair of functions hB,Ui,
where B : [0, 1] → [0, 1] is a public policy rule, bt = B (ut) , and U : [0, 1] → [0, 1] is a private
decision rule, ut+1 = U (bt) .

1. B (ut) = argmaxbt {F0 (ut, bt, bt+1) + λW (ut+1)} subject to ut+1 = U (bt) , bt+1 = B (U (bt))
and bt ∈

£
0, b̄
¤
,

2. U (bt) = 1− e (bt, bt+1) with bt+1 = B (U (bt)),
where W (ut+1) is defined by the Bellman equation (19).

The following can then be established.

Proposition 6 Assume λ ≤ β (altruism, “al”) and 0 ≤ R ≤ Rmax. The political equilibrium with
altruistic voting is characterized as follows:

Balo (ut) =

½
balo + ρ

w

¡
ut − ualo

¢
if ut ≥ ualo − w

ρ b
alo

0 otherwise

Ualo (bt) = ualo +
w

2− βρ

³
bt − balo

´
,
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where

ρ =
2Z

1 + βZ

and Z is a constant (details in the proof) with the following properties: (i) Z ∈ [−1/ (2 + λ) , 1/2],
(ii) dZ/dR < 0, (iii) dZ/dλ < 0, and (iv) Z > 0 if and only if R > (β − λ)/(β + λ).
For t > 0, the equilibrium law of motion is

ut+1 = ualo + Z
³
ut − ualo

´
,

bt+1 = balo + Z
³
bt − balo

´
.

Given any u0, the economy converges to a unique steady state such that b = balo ≤ bao and u =

ualo ≤ uao following an oscillating (monotone) path if R > (<) β−λβ+λ . If R = 0, Z =
1
2

³
1− λ

β

´
≥ 0

and balo = 0. If R = β−λ
β+λ , convergence is immediate to a steady state with

1+β
β(2+β)−λ (β − λ) ≥ 0.

The proposition establishes that the slope coefficient of the policy function is decreasing in λ.
Namely, the altruistic motive in the political equilibrium reduces the interest in intergenerational
redistribution and tends to make efficiency considerations more important (similarly to when we
considered political participation of the young). This strengthens the tax-base effect and tends
to make dynamics oscillatory. In particular, if λ = β and R > 0, the dynamics are oscillatory,
indicating that the tax-base effect dominates the constituency effect. However, oscillations need
not occur: for λ < β, when R is sufficiently small, dynamics are monotone–contrasting the
Ramsey case–and we therefore conclude that the lack of commitment does play an important
role in dampening tax cycles. This section, however, also shows that voters’ concern about future
generations tends to contribute to oscillatory dynamics.

One would suspect that steady-state redistribution is decreasing in λ, since the distortionary
costs of taxation are larger for young than for old individuals. We have not been able to establish
this relation formally, however, although we have not found any numerical counterexamples. Figure
4 considers the parametric case where β = 1/2, showing the steady-state benefits in the case when
λ = 0 (no altruism, upper curve) and the steady-state benefits in the case when λ = β (lower curve)
for different values of the risk-aversion parameter R. As we see, the difference increases with R. It
also turns out that this increases with β.

One would suspect that steady-state redistribution is decreasing in λ, since the distortionary
costs of taxation are larger for young than for old individuals. We have not been able to establish
this relation formally, however, although we have not found any numerical counterexamples. To
compare the case of full altruism to the case when the old voters have no concern at all for future
generations, we plot bao (solid curves) and balo (dashed curves) against R when λ = β and Figure
4.The curves are drawn for two values of β, namely β = 1/2 (thin curves) and β = 3/4 (thick
curves). As is evident from the figure, the benefits are larger when there is less altruism. Moreover,
this effect is larger as β and R increases.
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5 Conclusion

At least some, and we believe many, questions in political economy call for an analysis that uses a
dynamic setting. The literature, however, lacks analytical frameworks where voting and economic
decision making both are rational and forward-looking and where the dynamic mechanisms are
fully operative; in most of the existing papers that respect rationality of all agents, the dynamics
are either mutated by preferences that mimic myopia (under some conditions, logarithmic utility
has this feature) or by a lack of dynamic decision variables that call for forward-looking (such
as investment), or they are only possible to analyze using numerical methods. In this paper,
we have constructed a positive model where redistribution and social insurance take place in a
dynamic setting: the taxation underlying these expenditures distorts human capital accumulation.
In our economy, current taxation thus sets off nontrivial political and economic dynamics and the
agents take these dynamics into account when making decisions. We are thus able to conduct both
exercises of “comparative statics”–analyzing the effects of primitives on long-run outcomes–and
of “comparative dynamics”–analyzing the effects of primitives on short-run outcomes. We focus on
the case where the political system–a setting where policy decisions are made through probabilistic
voting–cannot, either formally or through reputation effects, commit to future policy decisions.

The model is analytically tractable, making the mechanisms that determine the dynamics trans-
parent. Relative to “constrained-optimal” allocations, i.e., allocations which would result if a plan-
ner could set all taxes and transfers at time 0 to maximize some weighted utility of all agents, we
find that the political system has a stabilizing role. In particular, the lack of commitment makes
(optimal) oscillatory responses to disturbances become weaker or disappear. This effect can be
qualitatively important: for a large range of parameter values, the constrained optimum prescribes
limit cycles, whereas the political equilibrium never does.
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We have identified two opposing mechanisms underlying the determination of redistribution
and of how it evolves over time. One of these mechanisms is the constituency effect . According to
this effect, an increase in redistribution induces a change in individual actions that increases future
demand for redistribution. Thus, the constituency effect tends to induce positive feedback, and
therefore persistence, in the size of government.

We believe that such an effect may be at work also in other areas of government activity.
For example, an expansion of government employment may induce educational choices suited for
government jobs and therefore make future reductions in investments politically costly, an effect
stressed by, among others Lindbeck (1995). In this paper, we have used probabilistic voting as
the political aggregator of preferences. This voting model provides a smooth mapping from the
distribution of preferences to political outcomes. This means that constituency effect is smooth,
operating over a large range of the domain of the state-variable. In particular, in this paper, the
constituency effect generates persistence in the level of redistribution, but eventually redistribution
always returns to a unique steady state.

In contrast to the smooth operation of probabilistic voting, Downsian majority voting may lead
to abrupt changes in policy when the preferences of the median voter changes. Therefore, the
constituency effect can be stronger under majority voting than under probabilistic voting, leading
not only to persistence but to complete hysteresis as in Hassler et al. (2003), where a tempo-
rary shock to the demand for redistribution may lead to indefinitely high levels of redistribution.
Our model therefore predicts that, ceteris paribus, countries with a political system closer in line
with the smooth (discontinuous) preference aggregation of probabilistic voting (majority voting)
should have weaker (stronger) policy persistence. Another difference between these institutions
that follows from this logic and that we analyze in this paper is that majority voting can lead to
expectational equilibria–beliefs that the government will (continue to) be large in the future can
be self-fulfilling–whereas probabilistic voting cannot.

The second mechanism behind the dynamics of government that we identify is the tax-base effect .
According to this effect, positive redistribution today leads to higher future costs of redistribution
since higher levels of redistribution reduces investments and thereby shrinks the future size of the tax
base. Since higher costs of redistribution reduce the attractiveness and therefore political viability
of redistribution, the tax-base effect produces a negative feedback inducing oscillating dynamics.
The tax-base effect is the only active channel underlying the constrained-optimal allocation.

We have showed that there are several factors that can strengthen the relative importance of
the constituency and tax-base effects in our political equilibrium, thereby determining the extent
to which equilibrium dynamics are persistent or oscillatory.

First, increased political influence of individuals behind the veil of ignorance, or by young agents
in our terminology, tends to increase the relative importance of the costs of redistribution and thus
of the tax-base effect. This is a natural consequence of the fact that conflicts of redistribution
strengthen with age when individuals are exposed to idiosyncratic shocks. Individuals who ex-ante
have coinciding interests on social insurance may later in life be divided into “losers” and “winners”
from redistribution. As the political influence of the latter is diminished, the relative size of winners
and losers become less important as, instead, the common ex-ante interest gets the political upper
hand. Furthermore, the distortionary costs of redistribution are partly borne in the future, since
current redistribution reduces the future size of the tax base. This is a greater concern for young
individuals with a longer remaining lifetime. However, whenever the ex-post interest is politically
preponderant, a case which we deem the most likely, dynamics are monotone and redistribution
persistent.

Second, more concern about the welfare of future generations also strengthens the tax-base
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effect. When the old voters are altruistic vis-à-vis the young, they appreciate the ex-ante interest
and not only their own ex-post interest. Therefore, altruism vis-à-vis future generations tends to
generate less persistence; in fact, when the old place the same weight on their own utility as on
that of their offspring, dynamics are always oscillatory.

Third, an ability to commit future levels of redistribution strengthens the tax-base effect. Since
future benefits distorts current investment choices, increasing the current cost of redistribution,
agents have an interest in curtailing future redistribution. This interest is particularly strong if
current redistribution is chosen to be high. Therefore, commitment tends to induce a negative
feedback and oscillating dynamics. In particular, when the discount factor on future cohorts equal
the private intertemporal discount factor, dynamics are characterized by a unitary negative root,
producing everlasting oscillations of constant amplitude.

Finally, we have found that higher levels of risk-aversion also strengthens the tax-base effect.
In our model, we have separated the insurance value of redistribution from its distortive costs
by assuming that individuals in need of redistribution do not make choices that are distorted
by redistribution. In a more general setting, an increase in risk-aversion might also affect the
marginal utility of unsuccessful agents whose investment decisions are sensitive to the amount of
redistribution. In such a case, the constituency effect should also be strengthened by higher risk
aversion, making the total effect on dynamics ambiguous.

In conclusion, we have identified several parameters that affect the dynamics of redistribu-
tion. Identifying the inherent dynamic patterns of government size in the data and tying them to
observables–possibly using a model like the one we develop here–is a demanding task but one
that we think may be a very profitable one in the not too distant future.
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6 Appendix

6.1 Proof of Lemma 1

Consider the Ramsey-problem as formulated in (5). Define the planner’s period t felicity, i.e., the
“weighted average felicity” across young and old agents at time t for t ≥ 1, as

F (bt−1, bt, bt+1) ≡ β (1− µ) Ṽ ow (bt, τ t) (20)

+βµ
³
e∗t−1Ṽ

oes (bt, τ t) +
¡
1− e∗t−1

¢
Ṽ oeu (bt, τ t)

´
+λµ

³
we∗t + (1− e∗t ) btw − (e∗t )2 − τ t + w

´
+λ (1− µ) (a (btw − τ t)− (a− 1)x) ,

where e∗j = e (bj , bj+1) is defined in (3), τ t = τ (bt, bt+1, 1− e (bt−1, bt)) is defined in (4) and the
functions Ṽ i are defined in (2). Note that the function F (bt−1, bt, bt+1) is additively separable in
(bt−1, bt) and (bt, bt+1). More formally, there exist (linear-quadratic) functions G and H such that
F (bt−1, bt, bt+1) = G (bt−1, bt) +H (bt, bt+1), where

G (bt−1, bt) = −µw
2

4
(((β + λ) (R+ 1)− 2β) btbt−1 + 2βbt−1)

and

H (bt, bt+1) =

µ
w2µ

4

¶
· [2 ((1 + β) (β + λ) (R+ 1)− (1 + 2β)β − λ) bt

− ¡(1 + β) (β + λ) (R+ 1)− λ− 2β2¢ b2t
+ 2λβ2bt+1 − β2λb2t+1 − β (β + λ) (R+ 1) btbt+1

¤
+Q,

where the constant Q is given by

Q ≡ w2

4
µ (1 + β) (2β + λ (1− β)) + (β + λ) (µw −Rx) .

Define now Y (bt, bt+1) ≡ λG (bt, bt+1) +H (bt, bt+1), where the expression for Y appears in the
text (in Lemma 1). Using this and the definition of the function F0 (u0, b0, b1) from equation (18),
the sequential problem (5) can be expressed as

W (u0) = max
{bt}∞t=0

(
F0 (b0, b1, u0) +

∞X
t=1

λtF (bt−1, bt, bt+1)

)

= max
{bt}∞t=0

(
F0 (b0, b1, u0)−H (b0, b1) +

∞X
t=0

λt (λG (bt, bt+1) +H (bt, bt+1))

)

= max
{bt}∞t=0

(
Y0 (b0, u0) +

∞X
t=0

λtY (bt, bt+1)

)
, (21)
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where Y0 ≡ F0 (b0, b1, u0)−H (b0, b1) is given by

Y0 (b0, u0) =
µw

2

³
((β + λ) (R+ 1)− 2β)

³
1− u0 − w

2
(1 + β)

´
+ wβ2

´
b0

+
µw2

4
β ((β + λ) (R+ 1)− 2β) b20 + µβw

³
1− u0 − w

2
(1 + β)

´
.

Define now the value function V for the continuation problem, i.e., for t ≥ 1 in (21), via the
functional equation

V (bt) = max
bt+1∈[0,1]

{Y (bt, bt+1) + λV (bt+1)} .

Since Y is bounded by the fact that b ∈ [0, 1] and since 0 ≤ λ < 1, this is a contraction mapping
with a unique solution, which must also be the solution to the sequential continuation problem
(Theorem 4.3 in Stokey and Lucas, 1989). Given V , it follows from the sequential formulation (21)
that benefits in the initial period can be determined from the static problem

W (u0) = max
b0∈[0,1]

{Y0 (u0, b0) + V (b0)} .

6.2 Proof of Proposition 1

Start17 by guessing that the value function, V (bt) , is linear-quadratic in b, i.e., that

V (bt) =
µw2

4

¡
A0 +A1bt +A2b

2
t

¢
, (22)

where

A2 ≡ −β (1− β + 2R)

A1 ≡ 2β (2R− β)

A0 ≡
¡
64R2 − 9β2¢β2

16 (1− β) (2R+ 1)
+

4

(1− β)µw2
Q̃

Q̃ ≡ w2

4
µ (1 + β)β (3− β) + 2β (µw −Rx) .

When λ = β, the current felicity Y in the recursive formulation (8) simplifies to

Y (bt, bt+1) =

µ
µw2

4

¶
· {2β (2R (1 + β)− β) bt

−β (1 + 2 (1 + β)R) b2t − 2β2 (1 + 2R) btbt+1
+ 2β3bt+1 − β3b2t+1

¤
+ Q̃.

Note that the right-hand side in the bellman equation is concave in bt+1 since the coefficient on
b2t+1 is negative (0 > −β2 (1 + 2R)). The first-order condition 0 ≥ d

dbt+1
{Y (bt, bt+1) + βV (bt+1)}

is then sufficient for optimality and is given by

bt+1 = f (bt) = b∗ − (bt − b∗) ,
17An alternative strategy for this proof would have been to guess a linear-quadratic functional form for the value

function, with unknown parameters A0, A1, and A2. We would then assume that the first-order condition be necessary
and sufficient for optimality, compute the optimal policy f (b) as a function of the Ai’s. Finally, we would compute
the Ai’s by equating coefficients through the Bellman equation V (b) = Y (b, f (b)) + βV (f (b)).
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where b∗ = R/ (1 + 2R). It is now straightforward to verify that V (b) = Y (b, f (b)) + βV (f (b)).
This proves that V is a fixed-point of the functional mapping Γ (v) = maxb0∈[0,1] {Y (b, b0) + λv (b0)}.
Since Γ is a contraction mapping, f must be the unique optimal policy.

Consider now the first-period problem (7). Inserting the expression for Y0 and V and simplifying yields

max
b0∈[0,1]

{Y0 (u0, b0) + V (b0)}

= µwβR
³
1− u0 +

w

2
(1− β)

´
b0 − µw2

4
β (1− β) (2R+ 1) b20 + Q̂,

where Q̂ is a constant. This problem is convex, since the coefficient on b20 is negative. The first-order
condition d

db0
{Y0 (u0, b0) + V (b0)} ≤ 0 yields

b0 = min

½
R

(2R+ 1)

µ
1 +

(1− u0)
w
2 (1− β)

¶
, 1

¾
,

which is monotone falling in u0.

6.3 Proof of Proposition 2

In addition to what is stated in the text, the constraint bt ∈ [0, 1] remains to be verified. Without
risk aversion, B(ut) =

2
w(2+β) (ut − u) yields an interior solution for any ut ≥ u. However, if ut < u,

the restriction bt ≥ 0 will bind. Thus, we modify the guess to B(ut) =
2

w(2+β) (ut − u) if ut ≥ u
and 0 otherwise. The new guess will still maximize the political objective. To see this, note that
(13) remains unchanged under the new guess of B(ut), since the guess is modified only for values
of ut+1 that are infeasible (this follows directly from the fact that, for any feasible pair (bt, bt+1),

ut+1 = 1− 1+β−(bt+βbt+1)
2 w ≥ 1− 1

2 (1 + β)w). For the same reason, U(bt) in (14) is unaffected.

6.4 Proof of Proposition 3

When R = 0, and for ω ∈ [0, 1], the political objective function can be written as
V = µ (1− ut)w + µutbtw + (1− µ) btw

+ω (1− µ) (bt + βbt+1)w

+ωµet (1 + β)w + ωµ (1− et) (bt + βbt+1)w

−ωµ (et)2
− (1 + ω) τ t − ωβτ t+1.

Here, it is convenient to guess that bt = α1 (ut − u) for a coefficient α1 yet to be determined. We
first solve for U (bt) to obtain

U (bt) = u+
w

2− βα1w
bt,

delivering B (U (bt)) =
wα1

2−βα1wbt. Defining Z = α1w
2−βα1w , this implies bt+1 = Zbt and bt+2 = Z2bt

and

et = (1 + β − (1 + βZ) bt)
w

2

τ t =
³
1− µ

2

³
1− ut + (1 + β − (1 + βZ) bt)

w

2

´´
btw

τ t+1 =
³
1− µw

4
(2 (1 + β)− (1 + Z (1 + β + βZ)) bt)

´
Zbtw.
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We now note that

dbt+1
dbt

= Z,
dbt+2
dbt

= Z2,
det
dbt

= − (1 + βZ)
w

2

dτ t
dbt

≡ T0 =

µ
2− µ

µ
1− ut − w (1 + βZ) bt +

w (1 + β)

2

¶¶
w

2

dτ t+1
dbt

≡ T1 =
1

2
µw2Z (1 + Z) (1 + βZ) bt +wZ − µw

1

2
w (1 + β)Z.

The first-order condition for maximizing the political objective is then

0 = µutw + (1 + ω (1 + βZ)) (1− µ)w + ωµ (1− et) (1 + βZ)w − (1 + ω)T0 − ωβT1

yielding

bt =
1

w

1− ω

1 + Z (β + ωβZ (1 + βZ))
(ut − u)

verifying the guess, provided

α1 =
1

w

1− ω

1 + Z (β + ωβZ (1 + βZ))
.

From the definition of Z we obtain α1 =
2Z

(1+βZ)w . Thus,

2Z

(1 + βZ)w
=
1

w

1− ω

1 + Z (β + ωβZ (1 + βZ))
, (23)

which can be rewritten ¡
ωβZ2 + 1

¢
Z =

1− ω

2
.

The left-hand side is monotonically increasing from zero as Z increases from zero. Furthermore,
an increase in ω increases the left-hand side while it reduces the right-hand side. The solution
in terms of Z therefore falls. Similarly, an increase in β increases the left-hand side, provided
ω > 0, implying that that solution in terms of Z falls, unless it is zero. Since α1 is monotonically
increasing in Z, we have established that α1 is decreasing in ω and β. From this it also follows that
the constraint B (u) ∈ [0, 1] is satisfied for any u ≥ u and we set B (u) = 0 for u < u, which, as in
the previous proof, neither affects the objective function nor U (bt).

6.5 Proof of Proposition 4

As above, guess B (ut) = α0 + α1ut. Then

B (U (bt)) = α0 + α1
2− (1 + β (1− α0))w

2− βα1w
+ bt

α1w

2− βα1w
. (24)

Using this in the first-order condition for maximizing (11) over bt and solving for bt yields

bt =
(2− α1wβ)R

w (1 +R)
− 1

w
+
1 + β (1− α0)

2
+
1

2

(1−R) (2− βα1w)

(1 +R)w
ut,
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which is linear, as conjectured. We thus need to set

α0 = − 2−w (1 + β)

w (2 (1 +R) + β (1−R))

+R
(β (1− β) + 2)w + 8− 2 (2− β)

(2 (1 +R) + β (1−R))w (2 + β)

α1 =
2 (1−R)

w (2 + β +R (2− β))
=

ρ

w
.

Noting that B (U (bt)) and U (B (u)) have a fixed point, respectively, at

bao = R
4 (1 + β)

(2 + β) (1 + 3R)
,

uao = 1− w

2
(1 + β) (1− bao)

we can write

B (ut) = α0 + α1ut

= bao +
ρ

w
(ut − uao) .

Next we need to prove that if R < Rmax then the constraint b ≤ b̄ is never binding in equilibrium.
Clearly, since B (u) is linear, its maximum is attained at either u = 0 or u = 1. Hence, if b̄ ≥
φ (R) ≡ max{B (0;R) , B (1;R)}, the constraint does not bind. Note that b̄ is independent of R
and that φ0 (R) > 0 since algebraic manipulations show yield ∂B(0;R)

∂R ,∂B(1;R)∂R > 0. Hence, φ (.) is a
one-to-one mapping and admits use of the inverse function φ−1 (.) so there must exist an R such
that φ (.) ≤ b̄. Now, we must show that b̄ ≥ φ (R) for all R ≥ 0. For this purpose we consider
φ (0) = α0+α1 since B is upward-sloping when R = 0 . We focus on the case when w = 1. In that

case, φ (0) = 1+β
2+β while b̄ =

1
µβ

µr³
(µ+ 2)2 + 4µβ

´
− (µ+ 2)

¶
, which is decreasing in µ.18 We

therefore require µ to be sufficiently small, i.e., specifically that

µ ≤ 4 2 + β

4 + 7β + 4β2 + β3
∈ [3/4, 2].

Note also that when β ≤ 0.65, this condition is satisfied for any µ ∈ [0, 1]. We also need to make
sure that oscillations can occur, i.e., that R > 1. In that case, we first note that b̄ is independent
of R and

φ (1) =
1 + β

2 + β
,

implying that for sufficiently large µ, b̄ ≥ φ (1).
To prove that benefits are strictly positive after at most one period, observe that, in equilibrium,

the law of motion bt+1 = Bao (Uao (bt)), conditioned on ut+1 ≥ uao − w
ρ b

ao, can be written

bt+1 = bao +
1

2

1−R

1 +R
(bt − bao)

= bao
1

2

1 + 3R

1 +R
+
1

2

1−R

1 +R
bt.

18The derivative is

∂b̄

∂µ
= −2

(2 + µ+ µβ)−
q
(2 + µ+ µβ)2 − µ2β (2 + β)

µ2β
q
(2 + µ)2 + 4µβ

< 0.
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Clearly, whenever 12
1−R
1+R > 0, bt ≥ 0 implies bt+1 ≥ 0, since bao ≥ 0, implying that ut+1 ≥ uao−w

ρ b
ao.

Consider the other case, i.e., consider 12
1−R
1+R ≤ 0. Then, since bt ≤ 1, we have

bt+1 ≥ bao
1

2

1 + 3R

1 +R
+
1

2

1−R

1 +R

=
1

2

R (2 + 3β)

(2 + β) (1 +R)
+

1

2 (1 +R)
> 0.

Whenever bt ≥ 0, then bt+1 > 0 for any t ≥ 0. Since we assume that u0 is arbitrary, we cannot rule
out that the constraint that b0 ≥ 0 binds.

6.6 Proof of Proposition 6

The weighted average felicity F (ut, bt, bt+1) is

F (ut, bt, bt+1) = β (µ (1− ut)w + µutbtw)

+ (β + λ) ((1− µ) btw +Rbtw)

+λ
³
µe (bt, bt+1)w + µ (1− e (bt, bt+1)) btw − µe (bt, bt+1)

2
´

− (λ+ β) (1 +R) τ (ut, bt, bt+1) .

The usual guess, bt = α0 + α1ut, together with the equation for optimal effort choice yields

bt+1 = X + Zbt, implying balo = X
1−Z and ualo = 1 − e

³
X
1−Z ,

X
1−Z

´
where, as above, X ≡

α0+α1
2−(1+β(1−α0))w

2−βα1w and Z ≡ α1w
2−βα1w , which implies ut+1 = 1− (1 + β (1−X) − (1 + βZ) bt)

w
2 .

The problem admits a recursive formulation of the following type:

W (ut) = max
bt∈[0,b̄]

{F (ut, bt, bt+1) + λW (ut+1)} , (25)

s.t. bt+1 = X + Zbt,

ut+1 = 1− (1 + β (1−X)− (1 + βZ) bt)
w

2
.

Given the guess, the first-order condition for maximizing the RHS of the Bellman equation is

∂F

∂bt
+

∂F

∂bt+t
Z + λW 0 (ut+1) (1 + βZ)

w

2
= 0,

where

∂F

∂bt
= βµutw + (β + λ) ((1− µ)w +Rw) + λ (µ (1− et)w)

− (λ+ β) (1 +R)
∂τ

∂bt
+ λµ (w − btw − 2et) ∂et

∂bt
,

∂F

∂bt+t
= − (λ+ β) (1 +R)

∂τ

∂bt+t
+ λµ (w − wbt − 2et) ∂et

∂bt+1
.

We also know that

∂et
∂bt

= −w
2
,
∂et
∂bt+1

= −βw
2

∂τ

∂bt
=

³
1− µ

2

³
1− ut + (1 + β)

w

2
− (bt + β (X + Zbt))

w

2

´´
w + µbt

w2

4
∂τ

∂bt+1
=

1

4
βµw2bt.
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Using the envelope condition and the fact that ∂τ(ut,bt,bt+1)
∂ut

= 1
2µbtw, we obtain

W 0 (ut) = β (−µw + µbtw)− (λ+ β) (1 +R)
∂τ (ut, bt, bt+1)

∂ut

=

µ
β − λ

2
− λ+ β

2
R

¶
µwbt − βµw,

implying that we can write the first-order condition as

(βµut + (β + λ) (1− µ+R) + λµ (1− et))w

− (λ+ β) (1 +R)
∂τ

∂bt
− λµ (w − btw − 2et) w

2

−Z (λ+ β) (1 +R)
∂τ

∂bt+1
− Zλµ (w −wbt − 2et)βw

2

+λ

µµ
β − λ

2
− λ+ β

2
R

¶
µwbt − βµw

¶
(1 + βZ)

w

2

= 0.

Collecting terms and using et = (1 + β (1−X) − (1 + βZ) bt)
w
2 yields

0 =
1

2
µw2 (1 + Zβ)

µ
1

2
λ (β − λ)− β (1 + λZ)−R (β + λ)

µ
1 +

1

2
λ

¶¶
bt

+
µw

2
(λ+ β)

µ
β − λ

λ+ β
−R

¶
ut + C, (26)

where

C =

µ
1 +

1

2
(1 + β (1−X))w

¶
µ
w

2
(β + λ)R− (β − λ (1−w))µ

w

2

−1
2
λβµw2 (1 + Z (1 + β)) +

µ
Zλβ +

β + λ

2

¶
µ

2
(1 + β (1−X))w2.

The guess bt = α0 + α1ut and the FOC (26) can be used to solve, by equating coefficients, for
α0 and α1. Next, using the definition Z ≡ α1w

2−βα1w implies that Z must satisfy

Qalo (Z;R) ≡ Z

µ
β (1 + λZ)− λ

β − λ

2
+R

β + λ

2
(2 + λ)

¶
=

λ+ β

2

µ
β − λ

λ+ β
−R

¶
. (27)

and Z belongs to the unit interval. We then obtain equilibrium Z as the unique stable solution to

the quadratic equation Qalo (Z;R)− λ+β
2

³
β−λ
λ+β −R

´
= 0. This is given by

Z =
−
³
β − λβ−λ

2 +Rβ+λ
2 (2 + λ)

´
2λβ

+

r³
β − λβ−λ

2 +Rβ+λ
2 (2 + λ)

´2
+ 4λβ λ+β

2

³
β−λ
λ+β −R

´
2λβ

.

35



The solution is always real, since the discriminant increases in R and equals 14 (λ (β − λ) + 2β)2 > 0
when R = 0.19 To see that the other root is smaller than −1, we note that when R = 0 it is given by
− 1λ < −1 and that it decreases in R. Straightforward algebra then shows that for any R ≥ 0, there
is a solution to (27) in

h
− 1
2+λ ,

1
2

i
, which decreases in R and λ, and that Z < (≥)0 if R > (≤) β−λλ+β .

Finally, from the definition of α0 and α1 we have α0 =
Xw−Z(2−w(1+β))

w(1+βZ) . Using this in the

solution for the constant in (26), we obtain

(Xw − Z (2− w (1 + β)))
1

2
µw

µ
1

2
λ (β − λ)− β (1 + λZ)−R (β + λ)

µ
1 +

1

2
λ

¶¶
= −C,

from which we find

X = − − ((2 + (1 + β)w) (β + λ))R

w
¡
(2 + λ+ β) (β + λ)R+ λ2 + β (2 + β) + 2Zλβ (1 + β)

¢
+

³
Z + 1

2

³
2−λ
λ + λ

β

´
+ 1

2
2+λ
λβ (β + λ)R

´
2 (2− w (1 + β))λβZ

w
¡
(2 + λ+ β) (β + λ)R+ λ2 + β (2 + β) + 2Zλβ (1 + β)

¢
− (β − λ) (2−w (1 + β))

w
¡
(2 + λ+ β) (β + λ)R+ λ2 + β (2 + β) + 2Zλβ (1 + β)

¢ .
To see the derivations of the claims on Z in more detail, we note

Qalo (0;R) = 0,

dQalo (Z;R)

dZ
= R

β + λ

2
(2 + λ)− 1

2
λ (β − λ) + β (1 + 2λZ) ,

Qalo

µ
1

2
;R

¶
− λ+ β

2

µ
β − λ

λ+ β
−R

¶
= (β + λ)

µ
1 +

1

4
λ

¶
R+

1

2
λ

µ
1 +

1

2
λ

¶
≥ 0,

with equality only if λ = R = 0. Therefore, when R = β−λ
λ+β , it must be that Z = 0 and that

balo = X = 1+β
β(2+β)−λ (β − λ) .

In addition, dQ
alo(Z;R)
dZ > 0 if Z > 0 and β−λ

λ+β > R. Thus, β−λ
λ+β > R implies Z ∈ ¡0, 12¤ .

Furthermore, since both

d
³
Qalo (Z;R)− λ+β

2

³
β−λ
λ+β −R

´´
dλ

= λ+ 2βZ +
1

2
(1− β) +R

µ
3

2
+ λ+

1

2
β

¶
and

d
³
Qalo (Z;R)− λ+β

2

³
β−λ
λ+β −R

´´
dR

= (β + λ)
1

2
(1 + Z (2 + λ))

19The discriminant is µ
β − λ

β − λ

2
+R

β + λ

2
(2 + λ)

¶2
+ 4λβ

λ+ β

2

µ
β − λ

λ+ β
−R

¶
with a derivative

1

2
(β + λ)

¡
(λ+ β)

¡
4 (1 + λ) + λ2

¢
R+ 4β (1− λ) + λ2 (2− (β − λ))

¢
.
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are larger than zero when Z > 0, equilibrium Z is decreasing in λ and R.
Next, consider the case when β−λ

λ+β < R. Clearly, now equilibrium Z is negative. Furthermore,

for any Z > − 1
2+λ ,

d
³
Qalo (Z;R)− λ+β

2

³
β−λ
λ+β −R

´´
dZ

= R
β + λ

2
(2 + λ)− 1

2
λ (β − λ) + β (1 + 2λZ)

>
β − λ

λ+ β

β + λ

2
(2 + λ)− 1

2
λ (β − λ) + β (1 + 2λZ)

= 2β (1 + Zλ)− λ > 0,

and since µ
Qalo

µ
− 1

2 + λ
;R

¶
− λ+ β

2

µ
β − λ

λ+ β
−R

¶¶
= −

µ
1

2 + λ
β +

1

2
(β − λ)

¶µ
1− λ

2 + λ

¶
≤ 0,

equilibrium Z ≥ − 1
2+λ . Finally,

d
³
Qalo (Z;R)− λ+β

2

³
β−λ
λ+β −R

´´
dλ

= λ+ 2βZ +
1

2
(1− β) +R

µ
3

2
+ λ+

1

2
β

¶
≥

µ
λ− 2β 1

2 + λ
+
1

2
(1− β) +

β − λ

λ+ β

µ
3

2
+ λ+

1

2
β

¶¶
> 0

and
d
³
Qalo (Z;R)− λ+β

2

³
β−λ
λ+β −R

´´
dR

= (β + λ)
1

2
(1 + Z (2 + λ)) ,

implying that equilibrium Z is decreasing in R and in λ.
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