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Abstract

The nonexistence of equilibria in platform setting games with mutliple issues is

one of the more puzzling results in political economics. In this paper we relax the

stardard assumption that parties either have perfect information about the electorate

or that they behave as expected utility maximizers. We show that equilibria often

exist when parties are instead uncertainty averse. What is more, these equilibria can

be characterized as a straightforward generalization of the classical median voter result.

1 Introduction

The famous median voter theorem states that in a platform positioning game with a unidi-

mensional issue space played by two vote-share-maximizing parties and a set of voters with

single peaked preferences, both parties will announce the policy preferred by the median

voter in equilibrium. The assumption that the political spectrum is unidimensional is cru-

cial. Most results for multidimensional games of this sort show that equilibria exist only if

the distribution of voters satisfies very strong conditions (Plott (1967), Davis, Hinich and de

Groot (1972) and Grandmont (1978)). This is problematic since governments in real existing

democracies do decide on many different issues that can in general not be aligned perfectly

on a unidimensional spectrum (say left to right).
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In this paper we propose to solve these nonexistence problems by introducing uncertainty

aversion into the standard model of multidimensional political competition. We assume that

parties are uncertain about the preferences of voters. Consequently any party is uncertain

about the vote share it would receive, when announcing some platform x while the other

party announces platform y. For the parties it is difficult to predict of the magnitude of the

sets of votes for either platform. The Parties are facing a situation of subjective uncertainty.

And it is known that in the face of such uncertainty, decision makers do not necessarily act

as expected utility maximizers, they exhibit uncertainty aversion. We, therefore, consider it

reasonable to model the parties as uncertainty averse. The standard cases of certain parties

and expected utility maximizing parties, arise as special cases of the framework proposed

here.

Given this alternative assumption on the parties preferences over uncertain outcomes we

are able to obtain equilibria for a large range of games played by parties with whose objective

is to maximize their vote shares. What is more these equilibria can be characterized by a

straightforward extension of the median voter theorem: in equilibrium both parties will

propose the policy preferred by the median voter of every dimension. So we give a rigorous

justification to the common - but as of yet theoretically unfounded - practice to apply the

median voter theorem to isolated issues: If sufficiently much uncertainty prevails, two parties

will propose, say, the tax policy preferred by the respective median voter, independently of

the voters preferences over the other issues at stake.

2 Political Competition

We model political competition as a two stage game played by two different types of actors,

two political parties and a large set of voters. First the two parties simultaneously choose

their platforms within some (non-empty) n-dimensional convex issue space X ⊂ Rn, n ≥ 1.
Then the voters, whose preferences are defined over that same issue spaceX, cast their votes.

2.1 The Voters

Throughout this paper we assume that each voter’s preferences can be represented by a

utility function uga : X → R with

uga(x) := −
nP
i=1

gi(|xi − ai|) for all x ∈ X

where a ∈ X, gi : R→ R is a strictly increasing function for all 1 ≤ i ≤ n, and g := (gi)
n
i=1.

We normalize gi(0) = 0 for all i. Since uga(x) is maximized at x = a we call the vector

a ∈ X voter’s ideal point. Observe that the functions uga(., x−i) are single peaked for any
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x−i ∈ X−i. In fact any preference relation that can be represented by a function uga is single

peaked according the most common notions of single peakedness for multidimensional issue

spaces (c.f. Barbera, Gul and Stachetti (1993) and Roemer (2000)). The vector of functions

g = (gi)
n
i=1 determines the shape of a voter’s indifference curves. We say that a voter with

a utility uga is of type g. We say that the function gi represents the attitude of a voter
towards issue i. The indifference curves of two voters of the same type are translations of

each other. Also observe that the standard models in which a voters disutility of a platform

is the Euclidean distance between his ideal point and that platform is a special case of the

present model (the standard model obtains upon setting gi(t) := (t)2 for all t ∈ R and

1 ≤ i ≤ n, we denote this type by g◦.) The type g for which gi(t) := αit for some αi > 0

for all 1 ≤ i ≤ n will play a major role in this paper. We denote such a type by the vector

α := (α1, ..., αn). The indifference curves of a voter of this type are diamond shaped.

So any voter is characterized by a pair

(a, g) ∈ X ×H.

whereX is the issue space andH is some finite set of typesH = {g1, ...., gm} an gi = (gi1, ...gin)
and gij : R+→ R+ strictly increasing for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Consequently the entire electorate can be described fully as a set of ideal-point-type-

tupels (a, g). The electorate is represented by a distribution1 of voters (a, g)

ψ ∈ P(X ×H).

Example 1: We have 5 voters in a world where only two issues matter, external policy
and taxation. We model the issue space X as the set [0, 1]2. There are two voters with

ideal point (1
2
, 1
2
) and type (1, 1). There is one voter with ideal point (0, 0) and circular

indifference curves, another two voters have the same ideal point (2
3
, 1
3
) but different types,

one is of type (1, 1) the other has circular indifference curves. This electorate can be described

by the distribution ψ ∈ P([0, 1]2 × {g◦, (1, 1)}) with ψ((1
2
, 1
2
), (1, 1)) = 2

5
, ψ((0, 0), g◦) =

ψ((2
3
, 1
3
), (1, 1)) = ψ((2

3
, 1
3
), g◦) = 1

5
.

We are now ready to calculate the vote share of a party given an electorate ψ ∈ P(X×H)

and a platform profile (x, y) ∈ X ×X. To do so we define an indicator function I(α) that

1We have a metric dRn×H on Rn ×H with dRn×H((a, g), (a0, g0)) := dRn(a, a
0) + dH(g, g

0) with dRn the
Euclidean metric on Rn and dH(g, g

0) = 1 for g 6= g0 and 0 otherwise. The set X ×H is a compact subset of
Rn ×H. The Borel σ−algebra on Rn ×H induced by the metric dRn×H is equal to the product σ−algebra
on Rn ×H when Rn is endowed with the Borel σ−Algebra and H by the algebra of all subsets. So the set
P(X ×H) is welldefined.
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assumes the value 1 when α holds true and 0 otherwise, and we denote the preferences of a

voter (a, g) by %g
a . According to our assumption that voters base their decision only on the

platforms of the parties all voters in the set {(a, g)|I(x Âg
a y) = 1}, that is all voters that

strictly prefer platform x to y, and one half of the indifferent voters, the voters in the set

{(a, g)|I(x ∼g
a y) = 1} vote for x. So we define the vote share (of the party announcing

x given that the other party announces y and given the electorate ψ) as a function
πψ : X ×X → [0, 1] where

πψ(x, y) :=

Z
X×H

(I(x Âg
a y) +

1

2
I(x ∼g

a y))ψ(d(a, g)).

The vote share is defined as the mass of all voters strictly preferring x to y plus one half the

mass of all indifferent voters.2

Example 1 again: Take the electorate defined above, and suppose the two parties pro-
pose the platforms x = (0, 1

3
) and y = (7

8
, 0) then we have that πψ(x, y) = ψ((1

2
, 1
2
), (1, 1))+

ψ((0, 0), g◦) = 3
5
.

3 The Parties

The goal of each party is to maximize its vote share. A party’s strategy variable is its

platform, the issue spaceX is its strategy space. If the electorate where known, the objective

of a party would simply be to maximize πψ(x, y). The parties of our model do, however, not

know the electorate, they are uncertain about the preferences of the voters. The innovation

of this paper is to to assume that parties are uncertainty averse.

A range of different approaches have been proposed to model uncertainty averse actors

(c.f. Bewley (1986), Gilboa Schmeidler (1989) and Schmeidler (1989)). In this paper we

represent the preferences of parties following the modelling approach of Gilboa Schmeidler

(1989). In the spirit of this approach we assume that the preferences of parties that are

uncertain about the electorate can be represented by ΠΦ : X ×X → R with

ΠΦ(x, y) := min
φ∈Φ

Z
P(X×H)

πψ(x, y)φ(dψ))

where Φ ⊂ P(P(X ×H))3 is a convex and compact set of priors on the electorate ψ.

2Observe that the sets {(a, g)|I(x Âg
a y) = 1} and {(a, g)|I(x ∼ga y) = 1} are both measurable, as gij

strictly increasing for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus the function πψ is welldefined for all ψ.
3The space X ×H is a compact subset of a metrizable space. So under the under the Prokhorov metric

dp : P(X ×H) × P(X ×H) → R the space P(X ×H) is itself metrizable and compact and we are able to
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The set of all electorates P(X ×H) represents the set of all states in this context. Given

our assumption that parties behave a s vote share maximizers the function ψ 7→ πψ(x, y)

represents a the utility of a party in each state. A generic element of the set P(P(X ×H))

is called a belief or prior on the electorate, it is a probability distribution on the set of all

electorates (or states) P(X ×H). The main non-standard axiom in the approach of Gilboa

and Schmeidler approach is that when the agent is indifferent between two horse race lotteries

he must like and mix of those two at least as good as either one of them. In our context this

means that if two parties are indifferent between offering the same platform profile to one

unknown electorate or another, they should be at least as well off when offering that same

platform profile to a mix between these two unknown electorates.

Observe that the case of expected vote share maximizing parties arises as a special case

of this formulation of party preferences. If the set of priors Φ is a singleton {φ0} we have
that the objective of any party is to maximize its expected vote share, in this case the utility

of a party reduces to

ΠΦ(x, y) =

Z
P(X×H)

πψ(x, y)φ
0(dψ))

It turns out that there exists a much simpler representation of these preferences:

Proposition 1: Let the preferences of a party be represented by ΠΦ(x, y). Then we

have

ΠΦ(x, y) = min
ψ∈Ψ

πψ(x, y).

for Ψ := {ψ0 : ψ0 = R
P(X×H)

ψφ(dψ) for some φ ∈ Φ} a convex subset of P(X ×H).

The proof of this statement is lengthy and we relegate it to the appendix. However,

the main difficulty of the proof lies in the fact that the support of the distributions ψ and

φ can be large. To gain some intuition on the mechanics of the proof, we demonstrate

the gist of Proposition 1 here for the case that the party only considers a finite number of

electorates, and that every of one these electorates consists of a finite number of voters. In

this case there exists a finite subset {ψ1, ...ψnψ
} of P(X×H) such that suppφ ⊂ {ψ1, ...ψnψ

}
for all φ ∈ Φ. And there exits a finite subset {(a1, g1), ..., (anv , gnv)} ∈ X × H such that

suppψl ⊂ {(a1, g1), ..., (anv , gnv)} for all l = 1, ..., nψ. We show that
R

P(X×H)
πψ(x, y)φ(dψ)) =

πψ0(x, y) with ψ
0 :=

R
P(X×H)

ψφ(dψ) for all φ ∈ Φ. In this finite case we have
R

P(X×H)
ψφ(dψ) =Xnψ

l=1
ψlφ(ψl).

define probabilty distributions on the space of all electorates. That is the space P(P(X ×H)) is welldefined.
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Z
P(X×H)

πψ(x, y)φ(dψ)) =

nψX
l=1

nvX
k=1

(I(x Â gk

ak
y) +

1

2
I(x ∼gk

ak
y))ψl((a

k, gk))φ(ψl) =

nvX
k=1

(I(x Â gk

ak
y) +

1

2
I(x ∼gk

ak
y))

nψX
l=1

ψl((a
k, gk))φ(ψl) =

nvX
k=1

(I(x Â gk

ak
y) +

1

2
I(x ∼gk

ak
y))ψ0k((a

k, gk)) =

πψ0(x, y).

So we can conclude that indeed ΠΦ(x, y) = min
ψ∈Ψ

πψ(x, y) in this case. In a nutshell Propo-

sition 1 says that maximizing the expected vote share is equivalent to maximizing the vote

share under the expected distribution of voters. This equivalence is rooted in the fact that

the vote share of a party is a linear function of the electorate.

Building on Proposition 1 we represent the preferences of parties over platform profiles

in the equivalent but more convenient form of:

(x, y) 7→ minψ∈Ψπψ(x, y)

where Ψ is some convex subset of P(X × H). At this point it is easy to see that in our

context the assumption of expected vote share maximizing parties and parties that know

the electorate with certainty yield equivalent results. For we have that for any prior φ about

the electorate there exists an electorate ψ0 such that
R

P(X×H)
πψ(x, y)φ(dψ)) = πψ0(x, y) for

all x, y ∈ X×X. The set Ψ represents a composition of electorates and beliefs, subsequently

we will refer to its elements as beliefs about electorates or just electorates interchangeably.

The preferences of any party can be fully specified by the set of beliefs Ψ, and form now

on we take this set to be the primitive of our description of the preferences of parties. All

further assumption we whish to impose on the preferences of parties we state as assumptions

on the set Ψ.

To state these axioms we define ψa ∈ P(X) and ψg ∈ ∆H the marginal distribution of a

and g respectively by

ψa(A) :=

Z
A×H

ψ(d(a, g)) and ψa({gj}j∈K) :=
X
j∈K

Z
X×gj

ψ(d(a, g)).

6



We call ψa the distribution of voter ideal points a. Define

Ψ(Λ, G) := {ψ ∈ P(X ×H)|ψa ∈ Λ and suppψg ⊂ G},

we call this set Ψ(Λ, G) the set of beliefs on the electorate that has been generated by the

set of voter ideal point distributions Λ and by the set of types G. The voter ideal point

distribution of any element in the set Ψ(Λ, G) belongs to Λ and that any voter type that

occurs with positive probability according to any ψ ∈ Ψ(Λ, G) belongs to the set G. Our

first assumptions state that party beliefs about the electorate can be derived from a set Λ

ad a set G.

A1) There exist sets Λ ⊂ P(X) and Gi := {gik}k∈Ki
with Ki ∈ N and gik : R+ → R

strictly increasing for all ik = 1, ..., Ki and i = 1, ..., n such that Ψ = Ψ(Λ, G) where G :=
n×
i=1

Gi.

This assumption implies a range of independence assumptions. We assume that parties

form their belief about voter ideal point distributions and about voter types independently.

We also assume that parties form their beliefs about voter attitudes towards single issues gi
independently form their belief about voter attitudes about other issues. That is we exclude

that case that certain attitudes about issues say g01 only arise in combination with certain
other attitudes about other issues say g02 and g

00
2 .We also exclude the case that parties believe

that voters with ideal points in a particular region would have a higher propensity to be of

a certain type.

The standard case of an electorate with any voter ideal point distribution µ where all vot-

ers are of the same type with circular indifference curves fulfils A1), just set Gi = {gi|gi(t) =
t2} for all i. Given A1 we can continuously decrease the uncertainty in a model, by decreasing
the size of the sets Λ and G continuously until both contain only singletons. Finally the

assumption is much stronger than we need it. But at this point it would be unnecessarily

complicated to state a weaker form of this assumption, as A1 allows us to state the subse-

quent theorems in a straightforward manner. We denote the only electorate ψ in Ψ({µ}, {α})
by ψ := µ ∗ α. In this electorate every voter is of type α, electorates of this type will play a
major role in our proofs.

A2) The distribution of voter ideal points ψa is nonatomic and supp(ψa) = X for any

ψ ∈ Ψ.

We take A2 purely for convenience. The first part of it makes sense in the context of large

electorates, or when the knowledge of parties about the voter ideal points lacks precision.

Parties might still act as if they where facing a continuum of voters. The second part says
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that according to any belief about the electorate there is a positive measure of voters in any

nonatomic subset A ⊂ X.

3.1 Equilibrium

We summarize a voting game with uncertainty averse parties by (n,X,Λ, G), where n

denotes the dimensionality of the issue spaceX, Λ denotes the set of all of the party’s priors on

the distribution of voter ideal points and G =
n×
i=1

Gi denotes the finite set of voter types that

parties consider. We denote the set of political equilibria in such a game by PE(n,X,Λ, G),

where a (political) equilibrium is a platform profile (x, y) such that neither party can

increase its payoff by deviating from its platform. So (x, y) is an equilibrium if

x ∈ argmax
z∈X

µ
min

ψ∈Ψ(Λ,G)
πψ(z, y)

¶
and

y ∈ argmax
z∈X

µ
1− min

ψ∈Ψ(Λ,G)
πψ(x, z)

¶
.

Observe that we assumed here that both parties subscribe to the same set of priors on the

electorate. This seems the most natural extension of the common prior assumption (Harsanyi

1967-8) to games with uncertainty averse actors. However, we take this assumption purely

for convenience here, our results can easily be extended to a range of games in which parties

hold different priors about the electorates.4

4 Uncertainty about voter types

In this section we study games (n,X, {µ}, G), that is those games in which parties are
uncertain about the voter types, but do have full information about the distribution of ideal

points (or, equivalently, act as expected utility maximizers with respect to the distribution

of voter ideal points). We first restrict our attention to this one type of uncertainty to show

what degree of type-uncertainty alone suffices to obtain political equilibria.

4The set of priors not only reflects what parties think about the distribution of the electorate but it also
reflects their degree of uncertainty aversion. So even two actors that have access to the same amount of
information might base their decisions on different sets of priors, simply because one is more uncertainty
averse than the other. An investigation of the common prior assumption in this context could be based on
Ghiradato (2003) approach to seperating ambiguity form ambituigy attitude. The common prior assumtion
should be applied to the ambiguity in the problem while the ambiguity attitude is subjective to the players.
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We start by showing that any 2-dimensional game with parties that are sufficiently un-

certain about the shape of voter preferences has an equilibrium. The condition we consider

is that in any set of attitudes about the separate issues Gi there are some differentiable

functions hi and ki with h0i(x) ≥ αi ≥ k0i(x) for some fixed αi > 0. If this condition is met

we say that type-uncertainty around α prevails. To illustrate this concept, take a voter

with ideal point a and two different platforms x and x0 that differ only with respect to the
i’th issue: ai < xi = x0i − di and xj = x0j for all j 6= i. Given type uncertainty around

α parties do not know if uga(x) ≤ uga(x
0) + αidi or uga(x) ≥ uga(x

0) + αidi. In other words,

parties do not know if the utility of a voter decreases by more or less than d • α when the
platform is further distanced from the ideal point of the voter by some vector d = (d1, ...dn).

Parties need not be unreasonably uncertain for this condition to be fulfilled; they might, for

example, know with certainty that the utility decrease remains within certain bounds, such

as uga(x
0) + γid ≤ uga(x) ≤ uga(x

0) + βid for some βi > αi > γi < αi.

In fact, parties need not be uncertain at all to fulfill our definition of type-uncertainty

around α. To see this, consider the extreme case that parties know that all voters are of the

same type α, with uαa (x) := −
nP
i=1

αi|xi − ai| In this case the set G and therefore also the set

Ψ({µ}, G) are singletons.

Theorem 1. Let (2,X, {µ}, G) be a game where parties are type-uncertain around α.

Then (2,X, {µ}, G) has a political equilibrium.

There is no hope of demonstrating this theorem using Nash’s Existence Theorem, or

any of its relatives, for best response correspondences in a game (2, X, {µ}, G) can be quite
erratic, they are, in particular, generally not convex-valued. We proceed by means of a

different strategy: first we show that there is only one candidate for an equilibrium, and

then we show that in our game there does not exist any preferred deviation for either party

from that platform profile.

4.1 Characterization of Equilibria

We proceed by characterizing the set of equilibria of a game of political competition (n,X, {µ}, G).
To do so we need to introduce the notion of the median vector. For any probability-

distribution µ on someX ⊂ Rn we call the vector of the medians of all marginal distributions

µi, the vector (m(µi))1≤i≤n, themedian vector of µ.We denote this by m(µ). Throughout
section 3 we normalize the median vector of µ to 0 : m(µ) = 0.

Proposition 2. Let (x, y) be an equilibrium of a game (n,X, {µ}, G), then x = y = 0.

Proof: Observe first that, for every (x, y) ∈ PE(n,X, {µ}, G), we need to have that
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have πψ(x, y) = 1
2
for all ψ ∈ Ψ({µ}, G), for otherwise any party with a lower vote share

for some ψ ∈ Ψ({µ}, G) would be better off by deviating to the platform of the other party.
Suppose that (x, y) 6= (0, 0) say y1 6= 0. Let x0 := (0, y2, ..., yn). So all voters will base their
decision only on their attitude towards the first issue g1(|t1 − a1|). Since 0 is median of µ1,
and since a voter with ideal point a prefers (a1, y−1) to y for all y ∈ X, at least half of the

voters will vote for x0. And since supp(µ) a convex set, we have πψ(x0, y) > 1
2
= πψ(x, y) for

all ψ ∈ Ψ({µ}, G), contradicting (x, y) ∈ PE(n,X, {µ}, G). ¥

The intuition behind Proposition 2 is that any party can choose to compete with the other

in only one dimension. Thus, the only protection against such “one-dimensional attacks” is

to propose with respect to every issue i the pertaining median m(µi) = 0. Also observe that

certainty case is covered by Proposition 2: G might be a singleton.5 Observe, furthermore,

that the proof did not make any use of the particular construction of the set of party beliefs

as we assumed it in A1. In fact Proposition 2 holds true for any set of party beliefs Ψ with

ψa = µ for some fixed µ ∈ P(X) and all ψ ∈ ª. Proposition 2 settles the question of the
characterization of political equilibrium. We are now ready to prove the existence of an

equilibrium.

4.2 The Existence of Equilibrium

A sufficient condition for Theorem 1 to hold is that for any deviation x form the median

vector 0 there exists an electorate ψ ∈ Ψ(Λ, G) such that πψ(x, 0) < 1
2
. If there is one such

type profile we have that min
ψ∈Ψ(Λ,G)

πψ(x, 0) <
1
2
while min

ψ∈Ψ(Λ,G)
πψ(0, 0) =

1
2
. So, uncertainty

aversion proves a strong force towards both parties announcing the same platform. After all,

the entire uncertainty is eliminated when both parties announce the same platform since in

this case they both receive half the vote under any assumption on the electorate.

The full proof that this sufficient condition holds can be found in the appendix, here

we give a sketch of that proof. First we show that given our assumption that parties are

type uncertain around α, for any platform x ∈ X there exists some ψx ∈ Ψ(Λ, G) such that

πψx(x, 0) ≤ πµ∗α(x, 0). So while the type α might not be contained in G for any x there

exists some electorate ψ ∈ Ψ(Λ, G) that gives the deviating party no more vote share than

it would get in the case that all voters where of type α.This actually holds independently

of the dimension of the issue space of the game and we conclude that whenever (0, 0) is an

equilibrium of the a game (n,X, {µ}, {α}) it also is an equilibrium of the game (n,X, {µ}, G)
for any n ∈ N.
To complete our proof we need to show that PE(2, X, {µ}, {α}) is always nonempty.

5If a distribution µ has a generalized median it coincides with the median vector.
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Without loss of generality we only investigate deviations q À 0. First we establish that for

any deviation with q1α1 6= q2α2 less than half the electorate votes for the deviator: in this

case the partisans of the deviation can either be all found above the median line x2 = 0 or

to the right of the median line x1 = 0.

insert figures 1 and 2

Finally for the case of q1α1 = q2α2 the set of voters preferring q to 0 is a subset of

the positive quadrant while the set of voters preferring 0 to q is a superset of the negative

quadrant. The proof is concluded by observation that the positive and the negative quadrant

of any two dimensional distribution (with median vector 0) contain an equal amount of

probability mass.

The fact that πµ∗α(x, 0) <
1
2
in any 2-dimensional game is of some interest in its own

right. It implies that PE(2, X, {µ}, {α}) 6= ∅ for all µ. This stands in sharp contrast with
many of the prior results on multidimensional games. Using two different - but equally

contrived - assumptions on all voters types we obtain two results that differ dramatically: in

the case that all voters indifference curves a circles political equilibria nearly always fail to

exist, in the alternative case that all voters indifference curves are diamonds there always is

a political equilibrium.

Let us quickly discuss the question if this existence result can be extended to some larger

class of voter types. Plott (1967) already showed that for any kind of differentiable utilities

there is little hope to obtain equilibria. Apparently though non-differentiabilities do not

provide the key to the existence problem either:

Remark 2: Take a game (2,X, {µ}, {g}), with g := (gi)i=1,...,n. Assume that all attitudes
gi are either strictly concave or strictly convex. Then there exists a distribution of voter

ideal points µ such that PE(2,X, {µ}, {g}) = ∅.

It follows from this observation that our existence result for two dimensional games with

the constant type α presents a knife edge result in the class of two-dimensional games. It does

not extend to higher dimensions either. If it would we could apply the proof of Theorem 1 to

games of any dimension, since the two-dimensionality of the game was only used to establish

that any game (2,X, {µ}, {α}) has an equilibrium. All other arguments of the proof apply
to games of any dimension. To obtain existence results for higher dimensional issue spaces it

appears that we need to introduce some uncertainty about the distribution of ideal points.

But before doing so let us conclude this section with the example of a 3-dimensional game

with type-uncertainty around α that does not have an equilibrium. Observe, that this
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example at the same time shows that the result PE(2,X, {µ}, {α}) 6= ∅ does not extend to
higher dimensions.

Example 2. Take the game (3,X, {µ}, {α}), with X = [−1, 1]3 and µ given by the

following chart, where the upper row denotes subspaces of [−1, 1]3 and the lower row the
probability mass in those subspaces. We assume that the conditional distribution in any of

the subspaces S is uniform.

S [0, 1]3 [0, 1]2 × [−1, 0) [0, 1]× [−1, 0)× [0, 1] [0, 1]× [−1, 0)2
µ(S) .3 05 .05 .1

f [−1, 0)3 [−1, 0)2 × [0, 1] [−1, 0)× [0, 1]× [−1, 0) [−1, 0)× [0, 1]2
µ(Af) .2 .15 .15 0

Assume that α1 = α2 = α3 =
1
3
. Observe that m(µ) = 0 and therefore by Proposition

2 (0, 0) is the only candidate for any equilibrium. But (− 1
1000

,− 1
1000

,− 1
1000

) is a preferred

deviation from this platform profile as nearly all voters in [−1, 0)3, [−1, 0)2× [0, 1], [−1, 0)×
[0, 1]× [−1, 0) and [0, 1]× [−1, 0)2 will vote for the deviator, and these sets contain 60% of
the electorate.

.

5 Uncertainty about the distribution of ideal points

In this section we relax the assumption that parties know the exact distribution of ideal

points µ. We ask what would happen, if the parties had only some vague idea about the

real µ. Given our prior existence result for 2-dimensional games we shall focus here on the

3-dimensional case. The main result in this context will be that if the two uncertainty averse

parties know sufficiently little about the distribution and the types of voters then political

equilibria exist in 3-dimensional issue spaces.

5.1 Characterization of equilibria

As in the prior case median vectors will play an important role in the characterization

of equilibria. In this case, however, many distributions of voter-ideal points matter, and

therefore, many median vectors have to be taken into account. We, thus, concentrate on the

median set M(Λ), which is defined as

M(Λ) := {x ∈ Rn : min
µ∈Λ

mk(µ) ≤ xk ≤ max
µ∈Λ

mk(µ) for all 1 ≤ k ≤ n}.

12



In a sense M(Λ) is the set of all platforms in-between the median platforms of the different

distributions µ in Λ.

Proposition 3: Let (x, y) be an equilibrium of a game (n,X,Λ, G), then x, y ∈M(Λ).

Proof: Observe first that, for every (x, y) ∈ PE(n,X,Λ, G), we have πψ(x, y) =
1
2

for every ψ ∈ Ψ(Λ, G), for otherwise any party with a lower vote share according to any

prior on the electorate would be better off by deviating to the platform of the other party.

Suppose that y /∈M(Λ), say y1 < min
µ∈Λ

m1(µ). Then by the same argument as in the proof of

Proposition 2 a deviation from x to x0 := (min
µ∈Λ

m1(µ), y2, ..., yn) yields for every ψ ∈ Ψ(Λ, G)

a vote share πψ(x0, y) > 1
2
, contradicting (x, y) ∈ PE(n,X,Λ, G). ¥

We did not succeed to show that both parties have to announce the same platform in

any equilibrium. It seems however quite implausible that there would be any equilibria in

which parties propose two different platforms, since in any such equilibrium (x, y) we would

have that πfµ(x, y) =
1
2
for all f, µ. It is quite hard to imagine that this condition would be

fulfilled for two platforms x 6= y.6

It would be natural to assume that in any equilibrium both parties must announce the

median vector of some distribution in Λ. It is easy to show that it is not true. The following

game (2,X,Λ, {α}) has an equilibrium (x, x) for which there does not exist any µ ∈ Λ such

that x = m(µ). Let Λ = {µ|µ = λµ1 + (1− λ)µ2 for λ ∈ [0, 1]} with supp(µ1) =supp(µ2) =
[−1, 2]2 and µ1([−1, 1]2) = µ2 ([0, 2]

2) = .999. Finally the distribution of µ1 conditional on

[−1, 1]2 as well as the distribution of µ2 conditional on [0, 2]2 are uniform. Then (x, x) with
x = (1

3
, 2
3
) is an equilibrium, but for all µ ∈ Λ we have m1(µ) = m2(µ).

5.2 The Existence of Equilibrium

To state sufficient conditions for the existence of equilibria in games with distribution un-

certainty we have to introduce some more concepts. We call a voter a leftist if her ideal

point lies with respect to all issues below the median vector, that is, a voter with ideal

point a ∈ X is a leftist (rightist) iff ai < m(µi) (ai > m(µi)) for all issues i. Given some

distribution µ we denote the subset of all leftists by Aµ
l . The subset of all rightists is defined

analogously and is denoted by Aµ
r . A distribution is called left leaning (right leaning) if

6In Bade (2003) we show that if we model uncertainty aversion in a different way following Bewley (1986)
equilibria with both parties announcing different platforms should always be expected to arise.
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µ(Aµ
l ) > µ(Aµ

r ), (µ(A
µ
r ) > µ(Aµ

l )). A distribution with equally many leftists and rightists

(µ(Aµ
l ) = µ(Aµ

r )) is called balanced.

Theorem 2. Let (3,X,Λ, G) be a game where parties are type-uncertain around α,

and assume that there exist some left leaning µl and some right leaning µr in Λ. Then

(3, X,Λ, G) has a political equilibrium.

The proof proceeds similarly to that of Theorem 1. Using type-uncertainty around α

we show that PE(3, X, {µ}, {α}) ⊆ PE(3,X, {µ}, G) for any fixed µ. The structure of the

preferences of parties implies that PE(3,X, {µ}, G) ⊆ PE(3,X,Λ, G) for all µ ∈ Λ. So

if we can show that PE(3,X, {µ}, {α}) is non-empty for some µ ∈ Λ we are done. The

main difficulty is that PE(3,X, {µ}, {α}) might be empty (see Example 1). In fact we can
show that (3,X, {µ}, {α}) has an equilibrium if and only if µ is balanced. Now, given our

assumption that the parties are uncertain as to whether the electorate is left or right leaning

we can show that there exists some balanced µ∗ in Λ, and we have PE(3,X, {µ∗}, {α}) =
(m(µ∗),m(µ∗)). And by the prior arguments we have (m(µ∗),m(µ∗)) ∈ PE(3,X,Λ, G).

The following example shows that the conditions given in this theorem are sufficient but

not necessary for the existence of an equilibrium.

Example 3: Take the following game of 3-dimensional political competition (3, [−1, 1]3,Λ, G).
Let all µ in Λ be right leaning. Assume that for all v = (a, b, c) with a, b, c ∈ {−.2, .2} there
exists a distribution µv in Λ such that m(µv) = v and let for any of these distributions be at

least .6 of the probability mass be concentrated in B.05(m(µ
v)) the 0.05−ball around m(µv).

We claim that the platform profile (0, 0) is a political equilibrium of this game. Ob-

serve that for any deviation y from 0 there exists quadrant Q∗ such that all voters in
that quadrant are voting for 0. Note that there exists some distribution µv

∗
in Λ such

that v∗ ∈ B.05(m(µ
v∗)) ⊂ Q∗. Consequently we have that min

µ∈Λ
πµ(y, 0) ≤ 1 − µv

∗
(Q∗) <

1− µv
∗
(B.05(m(µ

v∗)) = .4 < 1
2
and (0, 0) is an equilibrium even though by construction all

distributions µ ∈ Λ are right leaning. Observe also, that we did not have to impose any con-

dition on G to establish that (0, 0) is an equilibrium, in particular type-uncertainty around

was not needed and G might even be any singleton.

Roughly speaking, Theorem 2 establishes that any 3-dimensional game played amongst

parties that are neither certain if the electorate leans to the right or left nor whether marginal

utilities of voters in the i’th dimension diminish by more or less than some fixed αi has an

equilibrium. Example 2 shows that this amount of uncertainty is sufficient but not necessary

for the existence of equilibria. But from Proposition 3 we know that in any equilibrium,

whether the sufficient conditions are fulfilled or not, both parties have to announce a policy
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from the median set. This means that with respect to every issue i the parties announce the

ideal of a voter that is the median voter of the marginal distribution µi of some µ ∈ Λ.

6 Higher Dimensional Games

The question of under which conditions equilibria exist in games of higher-dimensional po-

litical competition naturally arises. Based on our analysis of the three dimensional case it is

easy to state a condition for the existence political equilibria in n-dimensional games with

uncertain parties. To do so we introduce a notation of all „quadrants” of the distribution

µ. To this end define the function sgn : Rn → {1, 0,−1}n by sgn(x) = (sgn(xi))1≤i≤n,
and let Aµ

f := {x|sgn(x − m(µ)) = f} for all f ∈ {1,−1}n. The expressions Aµ
f describe

the quadrants around the median vector of a distribution. Observe that Aµ
(1,1,1) = Aµ

r and

Aµ
(−1,−1,−1) = Aµ

l .We call a distribution µ ∈ P(X) equilibrated if there is the same amount
of probability mass in each pair of opposing quadrants, µ(Af) = µ(A−f) for all f ∈ {1,−1}n.

Theorem 4: Let (n,X,Λ, G) be a game where parties are type-uncertain around α and

let there exist some equilibrated µ in Λ. Then (n,X,Λ, G) has an equilibrium.

Admittedly the condition that there exist some equilibrated µ in Λ is not be very appeal-

ing. However, it seems realistic to assume that the uncertainty about electorates increases

with the dimensionality of the issue space. And in our model equilibria exist more often as

uncertainty increases. Finally, as in our prior results on games with uncertainty the condi-

tions in Theorem 4 are sufficient but not necessary for the existence of an equilibrium So

this should at least give some indication that it is likely that also in higher dimensional issue

spaces equilibria would exist.

7 Conclusion

In this paper we showed that uncertainty aversion is a useful modelling tool to mitigate

the non-existence problems of voting theory with multidimensional issue spaces. Given that

parties are sufficiently uncertain equilibria exist in games of multi-issue political competition

with two parties. What is more, in these equilibria both parties announce issue by issue the

policy preferred by some relevant median voter. So this theory can be used to justify the

common practice to look at certain issues in isolation when modelling democratic processes.

The power of the uncertainty aversion assumption lies in the fact that the two parties

face no uncertainty when they both announce the same platform. Therefore, the parties in
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this model face a similar choice as the subjects of the famous mind experiment by Ellsberg7:

they can chose between a lottery of given odds (adopting the same platform as the other

party and both half the vote for sure) or they can go for the uncertain option of proposing

a different platform, in this case their chances of success are no longer clear. So if they are

sufficiently uncertainty averse, any party will always stick to the median vector as its policy,

given that also the other party proposes the median vector.

The conditions for the existence of equilibria given in the theorems of this paper are

sufficient but not necessary for the existence of equilibria. It is hoped that in the future

more stringent conditions for the existence of equilibria will be established. A promising

venue could be to restrict the set of permissible distributions and then ask what amount of

uncertainty is sufficient to establish that equilibria exist. In particular we hope to show that

under the assumption that the society is not polarized (following Caplin and Nalebuff (1988))

a small amount of uncertainty on voter ideal point distribution is sufficient to establish the

existence of equilibria in n-dimensional games.

Another extension of this research could be to apply the same model of uncertainty

aversion to solve different but related non-existence problems in political economy. Some

models of ideologically motivated parties for example is plagued by similar non-existence

problems as the Downs model. The challenge in extending the present framework to such

models lies in defining the utilities of parties.

Furthermore, in a companion paper (Bade 2003) we show that with a different approach

towards modelling uncertainty averse actors (following Bewley 1986), there might be equi-

libria in which office motivated parties announce different platforms. Our explanation for

platform divergence does not need any ad hoc assumptions on the ideological motivation or

parties, the driving force of this result are non-convexities in the preferences of voters.
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9 Appendix

Proof of Proposition 1: The integral
R

P(X×H)
ψφ(dψ) is well-defined as the identity function

on P(X ×H) is an integrable function.

We show next that for any probability φ ∈ P(P(X×H)) we have
R

P(X×H)
πψ(x, y)φ(dψ)) =

πψ0(x, y) with ψ0 :=
R

P(X×H)
ψφ(dψ).
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Z
P(X×H)

πψ(x, y)φ(d(ψ)) =

Z
P(X×H)

Z
X×H

(I(x Â g
ay) +

1

2
I(x ∼g

a y))ψ(d(a, g))φ(dψ) =

Z
P(X×H)

µ
ψ ({(a, g)|I(x Âg

a y) = 1}) +
1

2
ψ ({(a, g)|I(x ∼g

a y) = 1})
¶
φ(dψ) =

Z
P(X×H)

ψ ({(a, g)|I(x Âg
a y) = 1})φ(dψ) +

1

2

Z
P(X×H)

ψ ({(a, g)|I(x ∼g
a y) = 1})φ(dψ) = (∗)

Now we can apply our definition: ψ0 :=
R

P(X×H)
ψφ(dψ) and obtain

(∗) = ψ0 ({(a, g)|I(x Âg
a y) = 1}) + ψ0 ({(a, g)|I(x ∼g

a y) = 1}) =Z
X×H

(I(x Â g
ay) +

1

2
I(x ∼g

a y))ψ
0(d(a, g)) =

πψ0(x, y).

It follows that

ΠΦ(x, y) = min
ψ∈Ψ

πψ(x, y).

for Ψ := {ψ : ψ = R
P(X×H)

ψφ(dψ) for some φ ∈ Φ}. All that remains to show is that Ψ is

indeed a convex subset of P(X ×H) and. We show first that Ψ ⊂ P(X ×H)

1.

ψ0(∅) =
Z

P(X×H)

ψ(∅)φ(dψ) =
Z

P(X×H)

0φ(dψ) = 0

2.

ψ0(X ×H) =

Z
P(X×H)

ψ(X ×H)φ(dψ) =

Z
P(X×H)

1φ(dψ) = 1
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3. Now take {Ai}∞i=1 a countable set of mutually disjoint Borel sets in X ×H. We have

ψ0(∪∞i=1Ai) =Z
P(X×H)

ψ(∪∞i=1Ai)φ(dψ) =

Z
P(X×H)

Σ∞i=1ψ(Ai)φ(dψ) =

Z
P(X×H)

lim
n→∞

Σn
i=1ψ(Ai)φ(dψ) = (∗)

Now define fn(σ) := Σn
i=1ψ(Ai), Observe that f1 ≤ f2 ≤ f3 ≤ ..., so by the monotone

convergence theorem we have that:

(∗) =

lim
n→∞

Z
P(X×H)

Σn
i=1ψ(Ai)φ(dψ) =

lim
n→∞

nX
i=1

Z
P(X×H)

ψ(Ai)φ(dψ) =

∞X
i=1

Z
P(X×H)

ψ(Ai)φ(dψ) =

=
∞X
i=1

ψ0(Ai).

4. Show that Ψ convex. Take α, β ∈ Ψ and any λ ∈ [0, 1]. There exist φα, φβ in Φ such

that α =
R
ψφα(dψ) and β =

R
ψφβ(dψ). We have:

λα+ (1− λ)β =

λ

Z
P(X×H)

ψφα(dψ) + (1− λ)

Z
P(X×H)

ψφβ(dψ) =

Z
P(X×H)

ψ(λφα + (1− λ)φβ)(dψ).
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But as Φ is a convex set we have that λφα + (1 − λ)φβ ∈ Φ and therefore we conclude

that λα+ (1− λ)β ∈ Ψ. ¥

Proof of Theorem 1: Before starting with the proof of Theorem 1 we separately show
two main steps of that proof as Lemma 1 and Lemma 2:

Lemma 1: Any 2-dimensional game (2,X, {µ}, {α}) has an equilibrium.

Proof: Suppose some profitable deviation q À 0 existed. Let A be the set of voters

that are indifferent between 0 and q. Given the type profile α we have that all voters a0 /∈ A

for which there exists an a ∈ A such that a0 ¿ a strictly prefer 0 to q. If A∩{a|a1 = 0} = ∅
or A ∩ {a|a2 = 0} = ∅ then since the A is a connected set either all voters in {a|a1 ≤ 0} or
all voters in {a|a2 ≤ 0} will prefer 0 to q. Figures 1 and 2 give two examples for these two
cases; the dotted graphs represent the set A, the shaded areas represent the sets {a|a1 ≤ 0}
and {a|a2 ≤ 0} respectively. Since (0, 0) is the median vector we have µ({a|a1 ≤ 0}) ≥ 1

2

and µ({a|a2 ≤ 0}) ≥ 1
2
so in either case at least half the electorate votes for 0 and therefore

such a deviation to q cannot raise the deviating party’s vote share.

Let us now consider the remaining case in which A ∩ {a|a1 = 0} 6= ∅ and A ∩ {a|a2 =
0} 6= ∅. This only holds for deviations q such that q1α1 = q2α2. In this case all voters in

{a|a1 ≤ 0 and a2 ≥ q2} and in {a|a1 ≥ q1 and a2 ≤ 0} are indifferent between 0 and q.

Since we assume that all indifferent voters vote for either platform with equal probability

we only need to look at the voters that strictly prefer one platform to the other. The set

of voters strictly preferring q to 0 is a subset of {a|a1 > 0, a2 > 0} whereas the set strictly
preferring 0 to q is a superset of {a|a1 < 0, a2 < 0}. But since (0, 0) is the median vector
of the nonatomic µ we have µ({a|a1 > 0, a2 > 0}) = µ({a|a1 < 0, a2 < 0}). Consequently
it cannot be that such a deviation increases the vote share. But by the same arguments

no other deviation q raises the vote share to the deviating party and (0, 0) is a political

equilibrium. Q.E.D.

Lemma 2: Take a game (n,X, {µ}, G) with type uncertainty around α, then for all x

in X there exists a type profile ψx in Ψ({µ}, G) such that πψx(x, 0) ≤ πµ∗α(x, 0).

Proof: We begin by showing that for all ideal points a such that:

uαa (0) > uαa (x)

there exists some g ∈ G such that uga(0) > uga(x). Split the set {1, ...., n} into two disjoint
sets H,K with |xi − ai| ≥ |ai| for all i ∈ H and |ai| > |xi − ai| for all i ∈ K. Observe first
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of all that uαa (x) > uαa (y) impliesX
i∈H

αi(|xi − ai|− |ai|) >
X
i∈K

αi(|ai|− |xi − ai|).

Then since the slope of hi is always at least αi we have that

hi(|xi − ai|)− hi(|ai|) ≥ αi|xi − ai|− αi|ai| for all i ∈ H.

By the same logic we have

αi|ai|− αi|xi − ai| ≥ ki(|yi − ai|)− ki(|ai|) for all i ∈ K.

Jointly these three inequalities imply:

X
i∈H

hi(|xi − ai|)− hi(|ai|) >
X
i∈K

ki(|ai|)− ki(|xi − ai|)

Now choose gi = hi for i ∈ H and gi = ki for i ∈ K, the above chain of inequalities

yields:
nP
i=1

(gi(|xi − ai|)− gi(|ai|)) > 0 or uga(0) > uga(x).

Now observe that for all ideal points a such that

uαa (0) = uαa (x)

we have for g with gi = hi for all i ∈ H and gi = ki for all i ∈ K where the sets H and K

have been defined as above, that uga(0) ≥ uga(x).

Define a conditional probability r : X × G → [0, 1] such that r(a, g(a)) = 1 where

gi(a) = hi for all i ∈ H and gi(a) = ki for all i ∈ K where the sets H and K have been

defined as above and r(a, g) = 0 if g 6= g(a). Define ψx := µ× r.

Then we have by construction that

πψx(x, 0) =

1− µ(a|ug(a)a (0) > ug(a)a (x))− 1
2
µ(a|ug(a)a (0) = ug(a)a (x)) ≤

1− µ(a|uαa (0) > uαa (x))−
1

2
µ(a|uαa (0) = uαa (x)) =

πµ∗α(x, 0).¥

Proof of Theorem 1: By Proposition 1 we know that the only candidate for an equi-
librium is (0, 0). The payoff to a party that deviates to x is min

ψ∈Ψ({µ},G)
πψ(x, 0). By Lemma
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2 we know that πµ∗α(x, 0) is an upper bound on this payoff. Finally by Lemma 1 we know
that according to the type profile α no profitable deviation form (0, 0) exists. To summa-

rize: min
ψ∈Ψ({µ},G)

πψ(x, 0) ≤ πψx(x, 0) ≤ πµ∗α(x, 0) ≤ 1
2
= min

ψ∈Ψ({µ},G)
πψ(0, 0) where ψx is the

type profile constructed in Lemma 2. So there is not profitable deviation, and (0, 0) is an

equilibrium of (2, X, {µ}, G). ¥
Proof of Theorem 2: The following Lemma 3 is a major building block of the proof

of Theorem 2.

Lemma 3: A 3-dimensional game (3, X, {µ}, {α}) has an equilibrium if and only if µ is
balanced.

Proof: As in section 5 we define the „quadrants” of the distribution µ. We define the

function sgn : Rn → {1, 0,−1}n by sgn(x) = (sgn(xi))1≤i≤n, and let A
µ
f := {x|sgn(x −

m(µ)) = f} for all f ∈ {1,−1}n. As Lemma 3 covers games with certainty we can, for
ease of exposition, revert to the normalization m(µ) = 0. We therefore also drop µ from

the notation of the sets of all leftists and rightist and now write Al and Ar and from all

quadrants and write Af .

We first show that µ(Al) = µ(Ar) if and only if µ(Af) = µ(A−f) for all f, then we show
that this condition is necessary and sufficient for (0, 0) being an equilibrium.

Let µ(Al) = µ(Ar). Define 4 variables Df = µ(Af) − µ(A−f) for all f with f1 = 1.

Since 0 is the median vector of µ we have that
X
fi=1

Df = 0 for all i = 1, 2, 3. Given D(1,1,1) =

µ(Ar)−µ(Al) = 0 this reduces to a system of 3 linearly independent equations in 3 unknowns,

the only solution is Df = µ(Af)− µ(A−f) = 0 for all f.
Given µ(Af) = µ(A−f) for all f we show that for any deviation from (0, 0) the party

remaining at 0 gets at least half the vote share. First we derive a condition under which

all voters in some Af vote for 0. Then we use this condition to show that given the choice

between the platforms q 6= 0 and 0 for any f either all voters in Af or all voters in A−f vote
for 0 or no voter in either Af or A−f strictly prefers q to 0.

All voters in Af vote for 0 iff for all a ∈ Af the utility from platform 0 : −
3P

i=1

αi|ai| is

larger than the utility from the other platform: −
3P

i=1

αi|qi − ai|. So let us calculate

sup
a∈Af

3X
i=1

αi|ai|−
3X

i=1

αi|qi − ai|

Since for all a ∈ Af we have ai < 0 if fi = −1 and ai > 0 if fi = 1 the above expression

reduces to:
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sup
a∈Af

ÃX
fi=−1

− αiai − αi(qi − ai)+

+
X

0≤ai≤qi
αiai − αi(qi − ai) +

X
qi<ai

αiai + αi(qi − ai)

!
=

= sup
a∈Af

ÃX
fi=−1

− αiqi +
X

0≤ai≤qi
2αiai − αiqi +

X
qi<ai

αiqi

!
=

=
3X

i=1

fiαiqi

So if this expression is negative we are done all voters in Af vote for 0. If this expression is

positive we have

−
3X

i=1

fiαiqi =
3X

i=1

− fiαiqi < 0

and therefore all voters in A−f vote for 0. Finally if
nP
i=1

fiαiqi = 0 then

sup
a∈Af

3X
i=1

αi|ai|−
3X

i=1

αi|qi − ai| =

sup
a∈A−f

3X
i=1

αi|ai|−
3X

i=1

αi|qi − ai| = 0.

and consequently no voter in either Af or A−f strictly prefers platform q.

Given the assumption that µ(A−f) = µ(Af) for all f we can now show that
P
f1=1

µ(Af)

represents a lower bound on π(0, q). This is so since for any f with f1 = 1 either a mass of

voters µ(Af) or a mass of voters µ(A−f) = µ(Af) or a mass of voters 1
2
(µ(Af) + µ(A−f)) =

µ(Af) votes for 0. On the other hand since 0 is the median vector of µ we know thatP
fi=1

µ (Af) =
1
2
and we have π(0, q) ≥ 1

2
and therefore no deviation from (0, 0) that raises the

vote share of the deviating party exists.

Now suppose µ where not balanced, that is assume µ(Al) = x and µ(Ar) = y with x > y.

Let the values of all µ(Af) be given by the following chart:

f (1, 1, 1) (1, 1,−1) (1,−1, 1) (1,−1,−1)
µ(Af) y z w 1

2
− z − w − y
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f (−1,−1,−1) (−1,−1, 1) (−1, 1,−1) (−1, 1, 1)
µ(Af) x z + (y − x) w + (y − x) 1

2
− z − w − y − (y − x)

When a deviator plays λ( 1
α1
, 1
α2
, 1
α3
) with λ > 0 against 0, then all voters inAl, A(1,−1,−1), A(−1,−1,1)

and A(−1,1,−1) are voting for 0. In the limit for λ→ 0 only these voters will vote for 0. So in

the limit the vote share of the remaining party is 1
2
+ y−x. Since the remaining parties vote

share decreases continuously in λ there exists some λ∗ > 0 such that π(λ∗( 1
α1
, 1
α2
, 1
α3
), 0) > 1

2

and (0, 0) cannot be an equilibrium. ¥

Before proceeding with the proof of Theorem 2 let us remark that Lemma 3 generalizes

Lemma 1 as any 2-dimensional distribution of voter ideal points is balanced. Secondly, ob-

serve that balancedness of µ does not imply µ(Af) = µ(A−f) for all f for higher dimensional
issue spaces.

Proof of Theorem 2: We start by showing that there exists a balanced µ in Λ. Define

µλ = λ µl + (1− λ)µr. Define

f : [0, 1]→ [−1, 1]
f(λ) = µλ(A

µλ
l )− µλ(A

µλ
r )

a continuous function. Clearly: f(1) > 0 and f(0) < 0 so there exists some λb ∈ (0, 1) such
that f(λb) = 0. Observe that µλb is balanced. Since Λ convex we also have that µλb ∈ Λ.

By the same argument as forwarded in the proof of Theorem 1 we know that (m(µλb),m(µλb))

is an element of PE(3, X, {µλb}, G). Finally

min
ψ∈Ψ(Λ,G)

πψ(0, 0) ≥ min
ψ∈Ψ({µ

λb
},G)

πψ(x, 0)

and therefore (m(µλb),m(µλb)) is also an element of PE(3,X,Λ, G). Q.E.D.

Proof of Remark 2:
We have to consider three cases: g1 and g2 both strictly concave, both strictly convex or

g1 strictly convex and g2 strictly concave.

Take first case uga(x) = −g1(|x1−a1|)−g2(|x2−a2|) with g1 and g2 strictly concave. Pick
three points a, b, x in R2 such that

xÀ 0,

a2 = x2, a1 < 0 and g1(x1 − a1)− g1(−a1) < g2(x2),

b1 = x1, b2 < 0 and g2(x2 − b2)− g2(−b2) < g1(x1).
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Observe that such a triple of vectors exists since g1(x1− a1)− g1(a1) as well as g2(x2− b2)−
g2(b2) go to zero as a1 and b2 become very small. Pick some small ε such that all voters

with ideal points in either Bε(a) or Bε(b) strictly prefer x to 0 and such that xi − ε > 0 for

i = 1, 2, a1 + ε < 0 and b2 + ε < 0.8 Now define an atomless Borel probability measure µ

with support [−c, c]2 for c = max{|a1|, |a2|, |b1|, |b2|, |x1|, |x2|}+ 2ε by

µ(Bε(a)) = µ(Bε(b)) = µ(Bε(x)) = µ(Bε(−x)) = 1

5

and

µ([0, c]2\Bε(x)) = µ([0, c]× [−c, 0]\Bε(b)) =

µ([−c, 0]× [0, c]\Bε(a)) = µ([−c, 0]2\Bε(−x)) = 1

20
.

Then (0, 0) is the median vector of µ, but it is not a political equilibrium. To see that observe

that by construction π(x, 0) ≥ µ(Bε(a)) + µ(Bε(b)) + µ(Bε(x)) =
3
5
> 1

2
.

For the second case ua(x) = −g1(|x1 − a1|)− g2(|x2 − a2|) with g1 and g2 strictly convex

follow the same argument through with the modification that now the points x, a and b have

to fulfill
xÀ 0,

a1 = −1, a2 > 0 and g1(x1 + 1)− g1(1) < g2(a2)− g2(|x2 − a2|),
b2 = −1, b1 > 0 and g2(x2 + 1)− g2(1) < g1(b1)− g1(|x1 − b1|).

Observe that such vectors x, a and b exist since gi(ai) − gi(|xi − ai|) becomes large as ai
becomes large.

In the third case ua(x) = −g1(|x1 − a1|) − g2(|x2 − a2|) with g1 strictly concave and g2

strictly convex, the condition on the points x, a and b is:

xÀ 0,

a2 = x2, a1 < 0 and g1(x1 − a1)− g1(−a1) < g2(x2),

b2 = −1, b1 > 0 and g2(x2 + 1)− g2(1) < g1(b1)− g1(|x1 − b1|).
In both cases the construction of µ follows in complete analogy and we are done. Q.E.D.

Given the proof of Remark 2 it is easy to construct an n-dimensional (n>2) distribution

µ that (n,X, {µ}, {g}) does not have an equilibrium where all gi either strictly convex or

strictly concave. Pick X = [−1, 1]n. By the above proof we can pick some two dimensional
distribution µ0 such that (2, [−1, 1]2, {µ0}, {g0}) does not have an equilibrium, where (g01, g02) =
(g1, g2). Now define µ := µ0 ∗

n

Π
i=3

µiwith µi the uniform distribution on [−1, 1]. Then again by

8Such an ε exists since voters a or b strictly prefer x to 0, and since g1 and g2 are continious functions.
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the proof of Remark 2 (n, [−1, 1]n, {µ}, {g0}) does not have an equilibrium.

Proof of Theorem 4: Following the proof of Theorem 3, observe that once we had

established that µ(Af) = µ(A−f) for all f in Lemma 3 we made no more use of either
balancedness or 3-dimensionality in the proofs of Lemma 3. So we note the following Lemma

4 in passing:

Lemma 4: Take an n-dimensional game (n,X, {µ}, {α}) with m(µ) = 0. This game has
an equilibrium µ(Af) = µ(A−f) for all f .

The proof of Theorem 4 proceeds like that of Theorem 2 replacing Lemma 3 by Lemma

4.
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