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Abstract

We explore the implications of voter ignorance on policy selection and policy outcomes

in a model of party competition. We show that voter ignorance of the parties’ policy

choice has no effect on the outcome of a large election in a model where voters know the

distribution of preferences. We then explore a model where voters are ignorant of policy

choices and of the distribution of preferences in the electorate. We characterize the limit

equilibria (as the number of voters gets large) and show that parties may fail to choose the

median favored policy (partisan politics) and that voters may reject the median preferred

alternative among the available options (aggregation failure). We show that these non-

Downsian conclusions are most pronounced if parties have weak policy preferences and

mostly care about winning the election.

† Financial support from the National Science Foundation is gratefully acknowledged.



1. Introduction

Surveys routinely find that the American electorate is poorly informed about the pol-

icy positions of candidates. (For an early reference, see Berelson, Lazarsfeld and McPhee

(1954)). In a 1990/1991 survey only 57% of voters could correctly identify relative ideo-

logical positions of the Republican and Democratic parties on a left/right spectrum and

only 45% of voters could correctly identify the parties’ relative position on federal spending

(Delli-Carpini and Keeter (1993), Table 2). The same surveys show that voters are equally

ill informed about the electorate itself. For example, the 1990/1991 survey shows that only

47% of voters correctly identify the party that holds the majority of seats in the Senate

(Delli-Carpini and Keeter (1993), Table 2).

In this paper, we explore the implications of voter ignorance on policy selection and

policy outcomes. We consider a very simple and stylized candidate competition model.

There are two candidates; one candidate (the committed candidate) has a fixed and known

policy position (r) while the other candidate (the opportunistic candidate) must choose

between a partisan policy (denoted l) and a moderate policy (denoted m). The median

voter prefersm to r and r to l. Hence, the median voter ranks the opportunistic candidate’s

moderate policy at the top and the partisan policy at the bottom. The opportunistic

candidate is motivated both by winning the election and by the resulting policy outcome.

In particular, we assume that the opportunistic candidate prefers the partisan to the

moderate policy.

The standard model of party competition (Downs 1957) considers two candidates

who seek to maximize the probability of getting elected. Both candidates choose policies

prior to the election. Voters observe the policy choice and vote for the candidate who

offers the more attractive policy. The model predicts that the median preferred policy will

be implemented. Candidate competition is similar to Bertrand competition in oligopoly

models. If a candidate chooses a policy that is not median preferred to his opponent’s

policy then he will lose the election. As a result, the Downsian prediction of median

preferred outcomes holds even when the candidates have policy preferences.

Our model differs from the standard Downsian model in three ways: first, we assume

that some voters are ignorant of the opportunistic candidate’s policy choice. We incorpo-

rate this ignorance into a strategic model of candidate competition by assuming that each
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voter is independently informed of the realized policy choice with a probability between

zero and one.

Second, we assume that voters are ignorant of other voters’ preferences. We model this

ignorance by introducing a state variable that determines the distribution of preferences

and whose realization is unobserved by voters.

Third, the (opportunistic) candidate learns the distribution of preferences prior to

selecting a policy. Hence, the candidate makes his policy choice knowing the distribution

of preferences in the electorate while voters are ignorant of the distribution of preferences

when they cast their vote. Our assumptions are motivated by the evidence on voter

ignorance and by the fact that candidates often take (secret) opinion polls prior to selecting

a policy. These opinion polls may provide good information about the distribution of

preferences.

Our focus is on large elections. Therefore, we study limit equilibria when the number

of voters goes to infinity. The parameters are chosen so that for a large electorate the

moderate policy m is median preferred with probability close to one for every realization

of the distribution of voter preferences. We normalize the (von Neumann-Morgenstern)

utility function of the opportunistic candidate so that his utility of winning the election

with the partisan policy is 1, his utility of losing the election is 0, and his utility of winning

with the moderate policy is µ ∈ (0, 1). Hence, µ close to zero describes a candidate who
derives utility from winning only if he can implement his favored policy while µ close to

1 describes a candidate who is motivated primarily by winning the election. When µ is

close to one we refer to the candidate as an “office seeker”. Many of our results focus on

the case where the opportunistic candidate is an office seeker since we find this to be the

more descriptive case.

Our main results establish the following departures from the standard Downsian

model:

(1) Non-median Policy Choice: The policy choice of the opportunistic candidate need not

reflect the preferences of the median voter. Rather, in some states of the world the

opportunistic candidate chooses his favored policy. We will refer to this departure

from the predictions of the Downsian model as partisan politics.
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(2) Non-median Election Outcomes: The candidate who offers the median preferred policy

may lose the election. We will refer to this phenomenon as aggregation failure.

(3) Partisan politics and aggregation failure when the opportunistic candidate is an of-

fice seeker: We show that the probability of partisan politics is maximized and the

probability of aggregation failure is positive when the opportunistic candidate is an

office seeker. Moreover, increasing µ leads to an increase in the likelihood of parti-

san politics under appropriate curvature assumptions. Under additional distributional

assumptions, we show that the probability of aggregation failure is independent of µ.

Item (3) above distinguishes our analysis from other models that yield partisan pol-

itics.1 In our model, the less the candidate cares about policy, the more likely he is to

engage in partisan politics. This suggests that we should expect partisan politics and ag-

gregation failure even in a situation where parties select candidates with the objective of

maximizing the probability of winning the election.

The key for the opportunistic candidate’s success in our model is his willingness to

choose a moderate policy when he expects the election to be close. An office seeker is

reluctant to choose the partisan policy and risk losing the election if he expects the election

to be close. Therefore, conditional on a vote being pivotal an office seeker is expected to

choose the partisan policy with a small probability. In contrast, a candidate with a strong

preference for the partisan policy is expected to choose the partisan policy even if by doing

so he risks losing the election with significant probability. As a result, the office seeker

receives a much larger share of the uninformed vote than a candidate with a strong partisan

preference.

The willingness of a candidates to choose a median preferred policy when the election

is close does not imply that this candidate will have a high ex ante probability of choosing

the median preferred policy. In fact, the probability that the opportunistic candidate

implements the partisan policy is maximal if the candidate is an office seeker. Because

the office seeker receives a large share of the uninformed vote he can afford to choose

the partisan policy and win the election in situations where the candidate with a strong

partisan preference would lose the elections. Conditioning on being pivotal creates a wedge

1 Such a model is presented by Calvert (1985).
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between voting behavior and (unconditional) policy choices. Candidates with a weak policy

preference benefit from this effect.

To isolate the effects of our three main assumptions, we consider two alternative

versions of our main model. First, we study a benchmark model in which voters are

ignorant of the candidate’s policy choice but both the voters and the candidate know the

distribution of preferences. We show that in that model Downsian prediction are attained:

in large elections, the median preferred policy is implemented with probability one and

therefore neither partisan politics nor aggregation failures can occur. Despite the fact

that only a fraction of voters are informed of the opportunistic candidate’s policy choice

the outcome is as if all voters are perfectly informed. This result echoes the information

aggregation results in Feddersen and Pesendorfer (1996, 1997).

Our analysis also relies on the assumption that the opportunistic candidate is well-

informed of the distribution of voter preferences while voters are not. We show this by

introducing a model where both the voters and the opportunistic candidate are ignorant

of the distribution of preferences. We show that there are two possibilities if the candi-

date is an office seeker. If the fraction of informed voters is sufficiently small, then the

opportunistic candidate chooses the partisan policy but loses the election. If the fraction

of informed voters is sufficiently high than the median preferred outcome is implemented.

Hence, aggregation failure is never observed. If very few voters are informed, equilibrium

reflects the opportunistic candidate’s credibility problem. He cannot commit to the me-

dian preferred policy and therefore he cannot win the election. Otherwise, equilibrium

resembles the equilibrium of a Downsian model.

The evidence of voter ignorance may be considered puzzling since one might expect

political competition to force candidates the devote resources to informing the voters of

their position. In section 5, we investigate this hypothesis. We find that giving the candi-

date the opportunity to increase the proportion of informed voters has no effect on election

outcomes when the candidate is an office seeker. Hence, adding voluntary disclosure to

the model does not mitigate partisan politics or aggregation failure. This is true even

though informing voters is assumed to be costless. Our analysis suggests, however, that

informing voters about the opponent’s position, provided such information can be revealed
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in a credible way, may be an effective remedy for partisan politics and aggregation failure.

Hence, we find a role for “negative campaigning”.

1.1 Related Literature

Several authors have examined the robustness of the Downsian prediction by intro-

ducing uncertainty about the electorate and policy preferences of candidates. For example,

Calvert (1985) analyzes the case where two candidates are symmetrically informed of the

uncertain distribution of voter preferences. Bernhard, Duggan and Squintani (2003) and

Chan (2001) analyze the case of asymmetric information. In their models, there is no

voter ignorance but policy outcomes differ from the predicted median’s preferred policy

because candidates have policy preferences and are uncertain about the distribution of

voter preferences. Hence, their model is similar to the comparison model we provide in

section 4, and yields similar results: if candidates have weak policy preferences and mostly

care about winning the election then the Downsian is attained. Otherwise, the candidates

trade-off probability of losing the election against winning with a less desired policy. In all

cases, there is no aggregation failure since voters know the policy choices of the candidates.

There is a long tradition of models examining the information aggregation properties

of elections. A classic result in this area is the Condorcet Jury theorem. (See, for example,

Young (1988)). Traditional jury models assume that voters do not behave strategically.

Austen Smith and Banks (1995) and Feddersen and Pesendorfer (1996) analyze models

closely related to the jury model under the assumption that voters act strategically. The

information aggregation literature assumes that voters are uncertain about a state variable

that affects their ranking of candidates. In our context, this corresponds to a situation

where the opportunistic candidate’s policy is chosen by some exogenous random draw.

The difference here is that the candidate’s policy choice is a strategic choice. Our analysis

of the benchmark model (i.e., when both the voters and the candidate are informed of

the electorate), show that the information aggregation result can be extended to the case

where candidates choose policies strategically.

In a series of papers, McKelvey and Ordeshook (1985, 1986) argue that even if voters

are ignorant of policy choices they may still be able to infer correctly which candidate

offers the preferred policy from polling data, endorsements, and other public information.
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In other words, McKelvey and Ordeshook argue that ignorance about policy choices alone

may not lead to non-median outcomes. We provide a similar result. If all voters have access

to accurate opinion polls that identify the distribution of preference types then we are in

the benchmark case where information is aggregated and voter ignorance about policy

choice is irrelevant. However, if some fraction of voters remains uninformed about the

distribution of preferences then the election cannot aggregate information and non-median

outcomes will result.

2. The Benchmark Model

In this section we present a model of electoral competition where some voters are

ignorant of one candidate’s policy choice. We assume that the candidates and voters

know the distribution of voter preferences. In the next section we present our main model

where voters (but not the opportunistic candidate) do not know the distribution of voter

preferences and are uncertain of the policy of a candidate. The analysis of this section

indicates that voter ignorance regarding policies alone can neither explain partisan politics

nor aggregation failure.

In the benchmark model V 0
n , two candidates stand for election. Candidate a is com-

mitted to a fixed policy (denoted r) while candidate b must choose between a moderate

policy (denoted m) and a partisan policy (denoted l). Let O = {l,m, r} denote the set of
possible policy outcomes.

The payoff of candidate b is 1 if he is elected and chooses the partisan policy l, µ ∈ (0, 1)
if he is elected and chooses the moderate policy m, and 0 if he is not elected.

In the game V 0
n there are 2n+1 voters. Voters are expected utility maximizers whose

preference depends on the (policy) outcome of the election. We assume that all voters

prefer m to r and r to l. Hence, all voter’s prefer the moderate policy of b to the policy of

a and the policy of a to the partisan policy of b. We normalize the voters’ von Neumann-

Morgenstern utility function so that the utility of policy l is zero, the utility of policy m

is 1, and the utility of policy r is λ ∈ T = [0, 1] which is the type of the voter. Therefore,

if candidate b chooses m with probability λ (and l with probability 1− λ), then the voter

type λ is indifferent between a and the lottery over policies offered by b. Types of voters
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are drawn according to the probability distribution F with support [0, 1]. We assume that

F admits a continuous density f on [0, 1] such that f(λ) > 0 for all λ ∈ [0, 1].
Candidate b does not observe the preference type of individual voters. Voters observe

their own type but not the type of other voters. Candidate b chooses a policy p ∈ {l,m}.
Each voter is independently informed of the policy choice with probability δ ∈ (0, 1]. If the
candidate chooses a mixed action then informed voters observe the realization of the mixed

action. Every voter must vote for one of the candidates. The candidate who receives n+1

or more votes wins the election.

A strategy for an uninformed voter specifies for every preference type the probability

that the voter votes for candidate b. Hence, a strategy for an uninformed voter is a

measurable function σv : T → [0, 1] where σv(λ) denotes the probability with which an

uninformed voter of type λ votes for b. A strategy for b specifies a probability of choosing

the moderate policy, denoted σb ∈ [0, 1].
We analyze symmetric Nash equilibria in weakly undominated strategies of the game

V 0
n . Hence, we assume that in equilibrium all uninformed voters use the same strategy σ

v.

The assumption that voters choose a weakly undominated strategy implies that informed

voters always choose their preferred candidate. Note that all informed voters of type

λ ∈ (0, 1) strictly prefer b if b chooses m and strictly prefer a if b chooses l. Since F is

continuous the types λ = 0 and λ = 1 occur with probability 0. Therefore, with probability

one there is a unique weakly undominated strategy for an informed voter: vote for a if b

chooses l and for b if b chooses m.

Below, “equilibrium” refers to a symmetric Nash equilibrium in weakly undominated

strategies. Suppressing the strategy of informed voters, an equilibrium can be charac-

terized by a pair σ = (σv, σb). Every strategy pair induces a probability distribution

over outcomes, denoted φ where φo denotes the probability that policy o ∈ {l,m, r} is
implemented.

Let θ denote the probability that b choosesm conditional on a vote being pivotal given

the strategy profile σ. For σv to be optimal all uninformed voters with λ < θ must vote for

b while all voters with λ > θ must vote for a. (Note that λ = θ occurs with probability 0).

Hence, in order to describe the equilibria of the election game, if is sufficient to consider
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strategies (σv, σb) consisting of two numbers; σb, the probability that candidate b chooses

the moderate policy and σv, the cutoff level for uninformed voters.

Consider any voter strategy σv. Let πo(σ) denote the probability that a randomly

selected voter votes for b conditional on the policy o ∈ {l,m} of candidate b. That is;

πl(σv) = F (σv)(1− δ)

πm(σv) = πl(σv) + δ
(1)

For x ∈ [0, 1], let Bn(x) be the binomial probability of at least n+1 successes out of 2n+1

trials given that the probability of success in each trial is x. Hence,

Bn(x) =
2n+1X
k=n+1

µ
2n+ 1

k

¶
xk(1− x)2n+1−k (2)

Then, Bn(π
o(σv)) is the probability that candidate b wins the election V 0

n given that b

chooses policy o ∈ {l,m} and voters use strategy σv. Hence, if σ is an equilibrium of V 0
n

then the corresponding outcome function is given by

φl = (1− σb)Bn(π
m(σv))

φm = σbBn(π
m(σv))

φr = 1− φm − φl

(3)

For a fixed F, µ, δ satisfying the assumptions above, let E0n denote the set of all equilibria
of V 0

n (for the parameters F, µ, δ). Let Φn(σ) denote the outcome φ of σ as defined by

equation (3) above. Let E0 denote the set of limit equilibria; that is, σ ∈ E0 if there exists
a sequence {σn} converging to σ such that σn ∈ E0n for all n. For σ ∈ E0, we use Φ(σ)
to denote the set of possible outcomes associated with the limit equilibrium σ. That is,

φ ∈ Φ(σ) if there exists σn ∈ E0n for all n such that σn converges to σ and Φn(σn) converges
to φ.

Proposition 1 characterizes equilibrium outcomes for large electorates. It states that

in a limit equilibrium the moderate policym is implemented with probability 1. Hence, the

fact that a (possibly large) fraction of voters are ignorant of b’s policy choice has virtually

no impact on the election outcome when n is large.
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Proposition 1: If σ ∈ E0 and φ ∈ Φ(σ) then φm = 1.

Proof: It is straightforward to show that a symmetric equilibrium in weakly undominated

strategies exists. Here we show that as n becomes large, the probability of the moderate

policy being implemented converges to one along any sequence of equilibrium outcomes.

If σn ∈ E0n and σbn = 0 then b receives no votes and therefore a deviation to m strictly

increases b’s expected payoff. Hence, for all n, σbn > 0. Next, note that if σbn = 1 then a

receives no votes and m is implemented with probability 1. Hence, it remains to consider

the case where (along some subsequence) σbn ∈ (0, 1) for all n.
Since b chooses both policies with strictly positive probability he must be indifferent

between them. The indifference of b implies

µBn(π
l(σv)) = Bn(π

m(σv)) (4)

Next we show that (4) implies limπl(σvn) = 1/2 along any sequence σn ∈ E0n. If πl(σvn) ≥
1/2 + � along any (sub)sequence then limBn(π

l(σvn))/Bn(π
m(σvn) = 1 violating (4). Sim-

ilarly, πl(σvn) ≤ 1/2− � for all n implies limBn(π
l(σvn))/Bn(π

m(σvn)) = 0, again violating

(4). Since πl(σvn) converges to 1/2, equation (1) implies limσv>0. As we noted when

proving that voters must use a cutoff strategy, voter optimality requires that σv equal

the conditional probability that candidate b has chosen m given that the voter is pivotal.

Hence,

σvn =
σbn
¡
2n+1
n+1

¢
πm(σvn)

n(1− πm(σvn))
n

σbn
¡
2n+1
n+1

¢
πm(σvn)

n(1− πm(σvn))
n + σbn

¡
2n+1
n+1

¢
πl(σvn)

n(1− πl(σvn))
n

(5)

Some simplification of (5) yields

σbn
1− σbn

· α
m
n

αln
=

σvn
1− σvn

where αo = πo(σv)n(1 − πo(σv))n for o ∈ {m, l}. Note that αmn /αln converges to 0 since
π(σvn) converges to 1/2. Therefore, limσvn > 0 implies limσbn = 1. Also, equation (1)

yields limπm(σvn) = 1/2 + δ. Hence the probability of b winning conditional on choosing

m converges to 1, which completes the proof.
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Proposition 1 establishes that neither partisan politics nor aggregation failure can

occur in our benchmark model; the median preferred policy is chosen by candidate b and

b wins the election. Proposition 1 is related to earlier information aggregation results in

Feddersen and Pesendorfer (1997). There it is shown that for a fixed mixed strategy of

b, as n goes to infinity, the probability that b is elected if he chooses l goes to zero and

the probability that b is elected if he chooses m goes to one. This result does not imply

Proposition 1 because the strategy here is endogenous, not fixed. Proposition 1 pins down

both the behavior of the voters and the candidate.

To understand the intuition behind Proposition 1, consider the case where δ < 1/2.

The first step in the argument is to note that for large electorates, if b’s expected vote

share when choosing l is less than 1/2, then he strictly prefers choosing m to l. This is

clear if b’s vote share is greater than 1/2 conditional on m, which would mean that he wins

for sure with m and loses for sure with l. If his vote share is less than 1/2 in both cases,

then his probability of winning goes to zero with either policy, but it goes to zero much

faster with l than with m. Hence, in both cases b strictly prefers m to l.

The second step is to note that for large n, candidate b must mix in equilibrium. If

in equilibrium b were to choose l for sure, then his vote share would be less than 1/2 with

both strategies. In that case, the argument above establishes that he strictly prefers m. If

in equilibrium b were to choosem for sure then the support of the uninformed voters would

guarantee victory for b irrespective of the policy choice. In that case, b strictly prefers l.

The third step is to observe that in order to maintain b’s indifference between l andm,

it is necessary for his expected equilibrium vote share to converge to 1/2 when b chooses

l. If b’s vote share when choosing l were greater than 1/2 then he wins for sure with l and

hence would never choose m. If his vote share when choosing l is less than 1/2, then the

argument above establishes that b would strictly prefer m.

Finally, since the probability of winning with l converges to 1/2 (and therefore the

probability of winning with m converges to 1), conditional on a vote being pivotal it is

much more likely that b has chosen l than m. To maintain the incentives for uninformed

voters it must therefore be the case that b chooses l with vanishing probability as n goes to

infinity. Hence, in large electorates b will choose m almost all the time and almost always

win when he does so.
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3. Uncertainty about the Electorate

The model in the previous section assumes that the distribution of preferences is

known to all players. In this section, we analyze a game Vn with uncertainty about the

distribution of preferences. Our purpose is to investigate a situation where voters are

ignorant both of the policy choice and of the distribution of preferences in the electorate.

In the game Vn, each voter is independently assigned a preference type. The proba-

bility distribution of voter preferences depends on the state s ∈ S = [0, 1] in the following

way: with probability (1−s)/2 the voter is a partisan who always prefers b; with probabil-
ity s/2 the voter is a partisan who always prefers a; and with probability 1/2 the voter is

a swing voter. The preference types of swing voters are drawn independently according to

the distribution F with support T = [0, 1]. We assume that F admits a continuous density

f with f > 0 on T . As in the previous section, all swing voters receive a utility of 1 if m is

implemented and a utility of 0 if l is implemented. The utility of type λ when policy r is

implemented is λ. Note that the probability that a voter is a swing voter is independent

of the state s.

The timing of events is as follows. Nature draws a state s ∈ S according to the distri-

bution G. We assume that G admits a continuous density g such that g > 0 on S. Then,

nature independently assigns each voter a preference type according to the probability

distribution defined above. Candidates observe the state s but not the preference types of

individual voters. Upon observing the state, b chooses a policy o ∈ {l,m}. Voters observe
their own type but not the type of other voters or the state s. Each voter is independently

informed of the policy choice of b with probability δ ∈ (0, 1). We assume that informed
voters observe the realization of the policy choice if b chooses a mixed action. Voters must

vote for one of the candidates. The candidate who receives n+ 1 or more votes wins the

election.

As in the benchmark game, a strategy for the uninformed swing voter specifies the

probability that a voter of type λ votes for b, for every λ. Hence, a strategy for an

uninformed swing voter is a function σv : T → [0, 1] where σv(λ) denotes the probability

with which an uninformed swing voter of type λ chooses the b. A strategy for b specifies a

probability distribution over policies for each realization of the state s. Hence, a strategy

11



for b is a measurable function σb : S → [0, 1] where σb(s) denotes the probability of

choosing the moderate policy (policy m.)

We analyze symmetric Nash equilibria in weakly undominated strategies. Therefore,

equilibrium strategies of uninformed voters are described by a single function σv. As before,

informed swing voters (with probability 1) vote for b if b chooses m and for a otherwise.

Similarly, partisan voters always choose their preferred candidate. Below, “equilibrium”

refers to a symmetric Nash equilibrium in weakly undominated strategies. We suppress

the behavior of partisan and informed voters and describe equilibria by a pair σ = (σv, σb).

Given a strategy profile σ, any swing voter, regardless of whether he is informed or

not, assigns strictly positive probability to being pivotal irrespective of the strategy of the

other swing voters. Since this is the only event in which a voter can affect the election

outcome, the optimal behavior of uninformed voters depends on the probability that b

chooses policy m conditional on a vote being pivotal. Let θ ∈ [0, 1] denote this probability.
Recall that for λ < θ the voter strictly prefers b and for λ > θ the voter strictly prefers

the a. Hence, as in our benchmark model, without loss of generality, we can assume that

voters’ strategy σv is cutoff strategy (i.e., σv ∈ T = [0, 1]).

For any voter strategy σv, state s ∈ S, and policy p ∈ {l,m}, let πo(σv, s) denote the
probability that a randomly selected voter votes for b in state s conditional on candidate

b choosing policy o. That is;

πl(σv, s) = (1− s)/2 + (1− δ)F (σv)/2

πm(σv, s) = πl(σv, s) + δ/2
(6)

Hence, the probability that candidate b wins the election with 2n + 1 voter given that

choose policy o in state s is Bn(π
o(σv, s)). (Recall that Bn(x) is the binomial probability

of at least n = 1 successes in 2n + 1 trials.) Hence, if σ is an equilibrium of the voting

game with 2n+ 1 voters then the corresponding outcome function is given by

φl(s) = (1− σb(s))Bn(π
m(σv, s))

φm(s) = σb(s)Bn(π
m(σv, s))

φr(s) = 1− φm(s)− φl(s)

(7)
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For a fixed F,G, u, µ, δ satisfying the assumptions above, let En denote the set of
equilibria of the game Vn. For σ ∈ En, let Φn(σ) denote the corresponding outcome. We
abuse notation and write En(µ) or En(µ, δ) when wish to be explicit about a particular set
of parameters.

We have already noted that every optimal voter strategy is characterized by a single

cutoff type λ = σv. Our first result establishes that every equilibrium strategy of candidate

b is also described by a cutoff. That is, in any equilibrium there is a state s ∈ S such that

b chooses l at states s0 < s and m at s0 > s (with probability 1). We call an equilibrium

in which voters and candidate b use a cutoff strategy a cutoff equilibrium. Hence, a cutoff

equilibrium consists of a pair numbers (σv, σs) ∈ T ×S. Since the probability of any single

λ = σv or any single s = σb is zero, these two numbers provide a sufficient description of a

cutoff equilibrium. Proposition 2 establishes the existence of an equilibrium. It also shows

that every equilibrium is a cutoff equilibrium.

Proposition 2: For all n, En is non-empty and every σ ∈ En is a cutoff equilibrium.

Proof: see Appendix.

Since we know that every optimal strategy of the voters is a cutoff strategy, to establish

that all equilibria are cutoff equilibria, it is enough to show that b’s best response to any

cutoff strategy is also a cutoff strategy. In particular, we will show that given a cutoff

strategy for the voters, if it is optimal for b to choose m at state s, then the only optimal

action for him at higher states is m. Note that candidate b chooses l if

Bn(π
l(σv, s)) > µBn(π

m(σv, s))

and m if this inequality is reversed. Hence, to prove that m is optimal at s implies it

is the only optimal action at s0 > s, we need to show that Bn(π
l(σv, s))/Bn(π

m(σv, s))

is decreasing in s. In Lemma 1, we show that Bn is log-concave. Since πm(σv, s) =

πl(σv, s) + (1 − λ)δ and πm(σv, s) is a linear and decreasing function of s, log-concavity

of Bn implies that Bn(π
l(σv, s))/Bn(π

m(σv, s)) is decreasing in s. We use a fixed-point

argument to establish the existence of a cutoff strategy equilibrium.
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Proposition 3 below characterizes the set of limit equilibria E . We say that so(λ) is
the critical state for policy o at cutoff λ if πo(λ, s) = 1/2. Hence, the critical state of policy

o ∈ {l,m} is the state at which a randomly drawn voter chooses b with probability 1/2 if
b chooses policy o. Equation (5) establishes that critical states satisfy

sl(λ) = (1− δ)F (λ)

sm(λ) = (1− δ)F (λ) + δ
(8)

Clearly both sl and sm are increasing functions of λ.

Proposition 2 above enables us to define the limit equilibria and their outcomes for

the current model as we have done for the benchmark model in the previous section. Let

E denote the set of limit equilibria; that is E is the set of σ such that σ = limn→∞ σn for

σn ∈ En for all n. Then, define Φ(σ) as the set of all φ such that for some sequence σn
with σn ∈ En for all n, converging to σ, Φn(σn) converges to φ.

Proposition 3 provides a simple formula for the equilibrium cutoff of voters and es-

tablishes that the equilibrium cutoff of candidate b is equal to the critical state for policy

l at the voters equilibrium cutoff. Hence, there is a unique outcome φ ∈ Φ(σ) associated
with any limit equilibrium σ.

Proposition 3: (i) If σ ∈ E and φ ∈ Φ(σ) then

σb = sl(σv)

σv =
g(sm(σv))

g(sm(σv)) + g(sl(σv))(1− µ)

φl(s) = 1 if s < sl(σv)

φm(s) = 1 if sl(σv) < s < sm(σv)

φr(s) = 1 if sm(σv) < s

(ii) If g is log-concave then there is a unique σ ∈ E .

Proof: see Appendix

The intuition behind the description of the outcome associated with a limit equilibrium

σ is straightforward. The probability that a randomly selected voter will prefer candidate
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b even if b chooses l is greater than 1/2 at any state s < sl(σv). Hence, with a large

electorate, b wins the election with probability one when b chooses l. Since b strictly

prefers l to m it follows that l must be chosen. Hence, σb(s) = 0 and φl(s) = 1 for states

s < sl(σv). Conversely, at states s > sm(σv) the probability that a randomly selected voter

will prefer b is less than 1/2 even when b chooses m. However, as n grows, the probability

winning with l goes to zero faster than the probability of winning with m. Hence, at such

states σb(s) = φr(s) = 1. While at states s ∈ (sl(σv), sm(σv) candidate b wins the election
if and only if he chooses m. Hence, σb(s) = φm(s) = 1.

−Insert figure 1 here−

Next, we provide intuition for the characterization of the limit voter cutpoint in Propo-

sition 3. Note that as the number of voters becomes very large, the probability of being

pivotal is concentrated around states in which the election is expected to be tied. There

are two such states, sl(σv) and sm(σv); Hence, conditional on being pivotal, a voter knows

that the state is in one of two small “critical intervals” around the critical states. The

inference problem for the uninformed voter therefore reduces to determining the relative

likelihoods of sl(σv) and sm(σv) conditional on a vote being pivotal.

Consider the incentives for candidate b with these intervals. If the probability of

winning with l is less than µ-times the probability of winning with m then b strictly

prefers the moderate policy m. Therefore, the critical interval around sl(σv) is truncated

at the point where the probability of winning drops below µ. (The probability of winning

the election with m in a neighborhood of sl(σv) is close to one). Hence, the closer the

parameter µ is to 1 the smaller the critical interval. The key step in the proof is to show

that the relative likelihood of the sl(σv) and sm(σv) is related to µ by the simple formula

given in Proposition 3.

To understand part (ii) of the proposition, note that by equation (6), sm(σv)−sl(σv) =
δ > 0 does not depend on σv. Since sl(σv) is increasing in λ, g(sm(σv))

g(sl(σv))
is non-increasing

whenever g(x+k)
g(x) is a non-increasing function of x for k > 0; that is, whenever g is log-

concave. Hence, the equation that defines σv in Proposition 3 can be satisfied by at most
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one σv. There is a unique sl(σv) corresponding to this σv. Since any sequence of σn lies

in a compact set, the existence of a limit equilibrium is ensured.

Our objective is to investigate the likelihoods of partisan politics and aggregation

failure in limit equilibria. Let L(σ),M(σ) and R(σ) denote the ex ante probabilities of the

policies l,m and r being implemented given the limit equilibrium σ. By Proposition 3 (see

figure 1), these probabilities can be computed as follows:

L(σ) = G(σv)

M(σ) = G(sm(σv))−G(σv)

R(σ) = 1−G(sm(σv))

(9)

Candidate b wins the election when policy l or policy m are implemented. Let W (σ)

denote the probability that b wins the election in the limit equilibrium σ. We have

W (σ) := L(σ) +M(σ) (10)

Partisan politics occurs when b chooses a policy that does not reflect the preferences of

the median voter. In our model, partisan politics occurs when b chooses l. Let P (σ) denote

the probability of partisan politics in a limit equilibrium σ. Note that by Proposition 3

(see also Figure 1) b wins the election whenever he chooses l and therefore

P (σ) = L(σ) (11)

An aggregation failure occurs when the candidate who offers the median preferred

policy loses the election. Let A(σ) denote the probability of aggregation failure in a limit

equilibrium σ. Aggregation failure occurs if b choose policy l and wins or if b chooses policy

m and loses. Hence,

A(σ) = L(σ) +R(σ) (12)

In Proposition 4 below, we analyze how changes in the parameter µ affect limit equi-

libria. Note that µ measures the strength of the partisan preference of candidate b. An

increase in µ means that candidate b’s preference for a partisan policy becomes weaker.
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For example, as µ approaches 1, the candidate cares only about winning the election and

does not care whether he wins with the partisan or the moderate policy. We describe this

situation as the candidate being an office seeker.

Proposition 4(i) shows that an office seeker wins the election for sure despite the fact

that he maximizes the probability of partisan politics. In Proposition 4(ii) we consider

the case where the uniqueness of the limit equilibrium is guaranteed and assume that g

is differentiable. Under these assumption an increase in µ (and hence a decrease in the

partisan preference of b) implies an increase in the probability of b winning and an increase

in the probability of partisan politics. Finally, Proposition 4(iii) shows that when G is

uniform the likelihood of aggregation failure does not depend on µ.

Proposition 4: (i) Let limµk = 1, σk ∈ E(µk) for all k and σ ∈ E(µ) for µ ∈ (0, 1).
Then

1 = limW (σk) > W (σ) and limP (σk) > P (σ)

(ii) If g is log-concave and differentiable, and µ0 > µ then

W (σ0) > W (σ) and P (σ0) > P (σ)

whenever σ0 ∈ E(µ0) and σ ∈ E(µ). (iii) If G is uniform then

A(σ) = 1− δ

for all µ ∈ (0, 1) and σ ∈ E(µ).

Proof: It follows from Proposition 3 that σk ∈ E(µk) and limµk = 1 implies limσvk = 1.

Then equations (9)− (11) prove part (i). To prove part (ii) note that by Proposition 3(i)
and equation (8), any equilibrium voter cutoff σv must solve

σv(1 + ρ(σv)(1− µ)) = 1

where

ρ(σv) =
g((1− δ)F (σv))

g((1− δ)F (σv) + δ)
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Since F is strictly increasing, g is differentiable and log-concave, it follows that ρ0(σv) :=

∂ρ(σv)/∂σv ≥ 0. Taking a total derivative therefore yields

dσv

dµ
=

σvρ(λ)

1 + ρ(σv(1− µ)) + σvρ0(σv)(1− µ)
> 0

as desired. When G is uniform, equations (8), (9) and (12) establish that A(σ) = 1− δ for

all µ and all σ ∈ E(µ).

To understand Proposition 4, note that the second line of Proposition 3(i) ensure

that σv approaches 1 as µ approaches 1. Hence, when candidate b is an office seeker all

uninformed voters voter for him. Then, candidate b wins the election for sure if he chooses

m. Hence, candidate b never loses. Note that candidate b can never win the election with

policy l if informed voters together with the partisan voters constitute a majority. On the

other hand, if all uninformed voter vote b, the informed voters and the partisans of a are

the only ones voting for a. Hence, an office seeker maximizes the probability of winning

with l which is equal to P (σ). Part (ii) of the proposition is related to the uniqueness result

in Proposition 3. Given differentiability, the log-concavity ensures that σv is increasing in

µ, which yields the desired comparative statics.

Note that while an increase in σv leads to an unambiguous increase in P (σ), its effect

on A(σ) is not clear. To see this recall that aggregation failure does not occur if and only

if the outcome is m.

A(σ) =1−M(σ)

=1−G(σv) +G(sm(σv))

An increase in σv increases sm(σv) and hence the net affect on A(σ) is unclear. However,

when G is uniform, we have

A(σ) =1−M(σ)

=1−G(σv) +G(sm(σv))

=1− δ

for all µ ∈ (0, 1) and σ ∈ E(µ).
Proposition 4(i) implies that an office seeker is elected with probability 1, as in the

benchmark model V o. However, in contrast to the benchmark model the probability of
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partisan politics and the probability of aggregation failure do not go to 0. In the case

where G is uniform, the probability of aggregation failure is 1 − δ, the fraction of swing

voters that are uninformed, regardless of µ.

Next, we analyze the effect of a change in the distribution of swing voter preferences on

the limit equilibrium outcomes. Let Fα, α ∈ [0, 1] denote a family of probability distribu-
tions over preference types T := [0, 1]. Assume that Fα(λ) is increasing and differentiable

in α. Hence, a decrease in α implies a first order stochastically dominant shift in the

distribution of preferences (in favor of candidate b).

Proposition 5 asserts that shifting swing voter preferences towards candidate b has the

same effect as increasing µ: candidate b will win more frequently and choose the partisan

policy more frequently.

Proposition 5: If g is log-concave and differentiable, α > α0, then

P (σ0) > P (σ) and W (σ0) > W (σ)

whenever σ0 ∈ E(Fα0) and σ ∈ E(Fα).

Proof: By Proposition 3 and equation (8), an equilibrium σv must solve

σv(1 + ρ(σv, α)(1− µ)) = 1

where

ρ(σv, α) :=
g((1− δ)Fα(σ

v))

g((1− δ)Fα(σv) + δ)

Since g is differentiable and log-concave and Fα is strictly increasing, it follows that

∂ρ/∂σv ≥ 0, ∂ρ/∂α ≤ 0

Therefore, taking a total derivative yields

dσv

dα
=

−σv(1− µ)∂ρ/∂α

1 + (1− µ)(ρ+ σv∂ρ/∂σv)
≥ 0
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As in the case of an increase in µ, a shift in the distribution of swing voters’ pref-

erences towards candidate b increases the probability that an uninformed voter votes for

b. Therefore the probability of a partisan outcome and similarly, the probability that b is

elected is strictly increasing in α.

Next, we analyze to role of δ, the probability that a voter is informed, on limit equilib-

rium outcomes. Of particular interest is the case when µ approaches 1 and δ approaches 0;

that is, when an office seeker faces a (almost) completely ignorant electorate. Proposition

6 establishes that in this case, both partisan politics and aggregation failure are observed

with probability 1. The case where F and G are both uniform leads to unambiguous

comparative statics in δ for any µ. In this case, a more ignorant electorate implies more

partisan politics and greater aggregation failure.

Proposition 6: (i) If lim(µk, δk) = (1, 0) and σk ∈ E(µk, δk) for all k, then

limP (σk) = limA(σk) = 1

(ii) If both F,G are uniform and δ > δ0

P (σ0) > P (σ) and A(σ0) > A(σ)

whenever σ0 ∈ E(δ0) and σ ∈ E(δ).

Proof: Proposition 3 ensures that limσvk = 1. Then, (i) follows from equations (9)−(12).
Part (ii) follows from Proposition 3 and equations (9)− (12) as well.

In our analysis of Proposition 4, we noted that all uninformed voters vote for b (i.e.

sl(σv) = 1) when b is an office seeker. This observation suffices to explain part (i) of

Proposition 6. It is straightforward to verify using the characterization of limit equilibria

in Proposition 3 and equations (8)−(12) then when F,G are both uniform P (σ) = (1−δ)σv.
By Proposition 4, A(σ) = 1−δ when G is uniform. The latter observation establishes that
A is decreasing in δ for all µ. Proposition 3 also yields σv = 1/(2− µ) and hence P (σ) is

also decreasing in δ.
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4. Uninformed Candidates

In the analysis of the previous section, we assumed that the voters are ignorant of both

the policy choice of candidate b and the electorate (i.e., the distribution of preferences).

However, we also assumed that the candidates are informed. To illustrate the importance

of this last assumption we briefly examine a version of the model where candidate b is also

uninformed of the distribution of preferences. Consider an election game with an ignorant

candidate b, V b which is identical to the game in section 3 except in V b candidate b cannot

observe the parameter s. For simplicity assume that F and G are uniform on [0, 1].

In this modified model, the strategy of the candidate cannot depend on s. As before,

we consider symmetric equilibria in weakly undominated strategies. It is straightforward

to show that the equilibrium strategy of voters is a cutoff strategy σv. Hence, we can define

the set of limit equilibria Ec for V b the same way that we defined E0 for V 0. Proposition

7 below characterizes the unique limit equilibrium of the game V b. In this equilibrium,

candidate b mixes between l and m with probability σb. The voter strategy σv is equal to

σb. Hence, voters with type λ < σb vote for b while voters with type λ > σb vote for a.

Proposition 7: For F,G uniform there is a unique limit equilibrium σ ∈ Ec(µ, δ) where,

σv = σb =

(
1 if µ ≥ 1−2δ

1−δ
δ

(1−µ)(1−δ) if µ < 1−2δ
1−δ

Proof: We note that in any limit equilibrium, candidate b wins at any state s < sl(σv) =

(1−δ)F (σv) if he adopts l while he wins with policym at states s < sm(σv) = (1−δ)F (σv)
and he loses at any state s > sm(σv) no matter what policy he chooses. This follows from

equation (7) and the fact that at any state where a random voter votes for x ∈ {a, b} with
probability greater than 1/2, the probability of x winning goes to 1 as the number of voters

goes to infinity. Hence, (since F,G are uniform), the probability that b wins if he chooses

m is (1 − δ)σv + δ, while the probability that b wins if he chooses l is (1 − δ)σv. Hence,

for a mixed limit equilibrium strategy to be optimal, we must have

µ(1− δ)σv + µδ = (1− δ)σv (13)
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Solving (13) for σv yields

σv =
δ

(1− µ)(1− δ)
(14)

It is easy to verify that (13 defines the unique equilibrium strategy for b if µ < (1−2δ)/(1−
δ) and σv = 1 is the unique equilibrium strategy if µ ≥ (1− 2δ)/(1− δ).

To complete the proof we need to show that σb = σv. As we have argued in section 3,

conditional on being pivotal, the voter assigns probability 1 that the state is either sl(σv)

or sm(σv) and since G is uniform, he assigns equal probability to both events.2 Optimality

of an uninformed voter’s strategy requires that σv equal the probability of b choosing m

conditional on the voter being pivotal. Hence,

σv =
σb/2

σb/2 + (1− σb)/2
= σb

Let Lb,Mb, Rb be the ex ante probability of the outcomes l,m, r respectively and let

P b be the probability of partisan politics and Ab denote the probability of aggregation

failure in V b. Recall that for candidate b to win with the partisan policy l, the state has

to be less than sl(σv) while with policy m, he wins at any state less than sm(σv). Hence,

the ex ante probabilities of each outcome are easily computed to be

Lb(σ) = (1− σb)G(sl(σv))

Mb(σ) = σb(G(sm(σv))−G(sl(σv)))

Rb(σ) = 1−G(sm(σv))

Recall that partisan politics arise if candidate b chooses l while aggregation failure

occurs if candidate b chooses l and wins or choose m and loses. Hence,

P b(σ) = 1− σv

Ab(σ) = (1− σb)G(sl(σv)) + σb(1−G(sm(σv)))

Proposition 8 establishes that in the game V b, aggregation failure never occurs when an

office seeker confronts a completely ignorant electorate. If δ goes to zero slower than

2 For a formal statement and proof of a similar assertion, see the proof of Proposition 2.
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1−µ, the standard Downsian outcome prevails. Otherwise, the candidate (almost) always
chooses the partisan policy and (almost) always loses.

Proposition 8: If (µk, δk) converges to (1, 0), α := lim(1 − µk)/δk 6= 1, and σk ∈
E(µk, δk) for all k, then

limAb(σk) = 0 and

limP b(σk) = limRb(σk) = 1 if α > 1

limMb(σk) = 1 if α < 1

The intuition behind Proposition 8 is as follows. When an office seeker confronts

almost completely ignorant electorate, there are two possibilities: either the fraction of

informed voters is high enough to discipline candidate b, in which case he behaves as if

there is perfect information and standard Downsian outcome attains, or there are two few

informed voters in which case candidate b cannot commit to policy m and hence loses

the election. The more partisan the candidate, the greater the fraction of informed voters

needed to get the Downsian outcome. The simple relationship between δ and µ needed to

ensure the Downsian outcome is due to our assumption of uniform F,G.

5. Control of Information

This section considers a situation where b can control the information about policy

choices. As in the previous section, we assume that a has a fixed policy r and b chooses a

policy p ∈ {l,m}. In addition, b chooses the probability δ∗ ∈ {δ,∆} (where 0 < δ < ∆ < 1)

with which voters are informed of the policy choice. We assume that the choice of δ∗ is

not observed by voters.

One interpretation of this model is the following. Suppose b runs two campaign

commercials. One commercial is uninformative about the policy choice while the other

commercial is informative. The candidate runs a certain fixed number of commercials but

must choose what proportion of the commercials are informative. Voters sample one (or

more) of the commercials at random. If a voters has the informative commercial in his
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sample he observes the policy choice. The voter remains uninformed if the informative

commercial is not in the sample.

Since all swing voters strictly prefer m to r and voters never use weakly dominated

strategies, b will choose δ = ∆ whenever he chooses the moderate policy m. Note also that

all swing voters prefer r to l. Therefore choosing ∆ when the policy l is chosen cannot be

optimal unless all uninformed swing voters vote for a. If all uninformed swing voters vote

for a then the choice of δ∗ does not affect voting behavior when a chooses l. Therefore, the

analysis below suppresses the choice of δ and assumes that the probability that a voter is

informed of the policy choice is δ if b chooses l and ∆ if b chooses m.

It is straightforward to adapt the analysis of the previous section to this new game V c

and to adopt the corresponding definitions for Ecn, Ec. Since the candidate either chooses
(δ, l) or (∆,m), the definitions of the critical states are modified as follows:

sl(σv) = F (σv)(1− δ)

sm(σv) = F (σv)(1−∆) +∆

With this modified definition of critical states, Proposition 3 is easily adopted to V c.

Proposition 9: If σ ∈ Ec and φ ∈ Φ(σ) then

σb = sl(σv)

σv =
(1−∆)g(sm(σv))

(1−∆)g(sm(σv)) + (1− δ)g(sl(σv))(1− µ)

φl(s) = 1 if s < sl(σv)

φm(s) = 1 if sl(σv) < s < sm(σv)

φr(s) = 1 if sm(σv) < s

Note that uninformed voters must take into account the fact that b can choose the

informativeness of the campaign. The terms 1− δ and 1−∆ in Proposition 9 reflect this

effect. However, for µ close to one this term has little effect on σv and hence has little

effect on the probability that b is elected. Proposition 10 below makes this precise.
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In order to the address the question, “Does providing the opportunistic candidate

with means to inform voters of his action curtail partisan politics and aggregation failure?”

we compare the limit equilibrium of the game in section 3 with the corresponding limit

equilibrium of the current game with the same parameters (including δ) and any ∆ > δ.

We focus on the case of where b is an office seeker. Proposition 10 below establishes that

limit equilibria of V and the corresponding V c are identical when b is an office seeker.

Proposition 10: Let limµk = 1, σk ∈ E(µk, δ), σ̂k ∈ Ec(µk, δ,∆) for all k, then

limL(σk) = G(1− δ) = limL(σ̂k)

limM(σk) = 1−G(1− δ) = limMc(σ̂k)

Proposition 10 shows that when candidate b is an office seeker the fact that he can

choose to inform voters has no impact on election outcomes.

To understand Proposition 10 note in the model with δ fixed all uninformed voter vote

for b when b is an office seeker (µk converges to 1). This result is independent of δ and

extends to the game where b can choose to run a more informative campaign. As a result,

sm converges to 1 in both games. But if all uninformed voters vote for b, b choose l unless

the informed voters and the a partisans form a majority (i.e., s > 1 − δ). Otherwise, he

chooses m and wins. Therefore, the behavior of candidate b converges to the same limit

strategy in both games.

When b has control over the informativeness of his campaign, he chooses the partisan

policy and runs an uninformative campaign (i.e., chooses δ∗ as small as possible) in states

s < 1−δ. The probability of partisan politics is therefore equal to G(1−δ) and unaffected
by b’s ability to provide information. For states s > 1− δ candidate b runs an informative

campaign and chooses δ∗ = ∆ together with the moderate policy m. As in the benchmark

case with a fixed δ, candidate b wins the election and implements the moderate policy in

states s > 1 − δ. The effect of the informative campaign in this case is to increase the

margin of victory of candidate b.

This section demonstrates that the findings of partisan politics and aggregation failure

continue to hold in a setting where the candidate can choose to inform voters of their own

policy choices.
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6. Conclusion

We analyzed how candidate competition is altered when some voters are informed of

the candidate’s policy choice. We show that when a candidate is an office seeker with a

weak partisan preference then the ignorance of voters will permit him to win with more

partisan policies. At the same time the candidate will be treated by uninformed voters as

if he has chosen the moderate (median preferred) policy.

One consequence of this effect is that candidates have little incentive to spend resources

to inform voters of their policy choices. When the opportunistic candidate is an office seeker

providing the candidate with the opportunity to freely inform voters has no effect on the

equilibrium outcome. As long as voters are convinced that a candidate will “do what it

takes” to get elected, his chance of getting elected is not harmed by the ignorance among

voters. At the same time, a less well informed electorate allows the candidate to choose

policies that closer match his policy preference.

7. Appendix

Lemma 1: (i) Bn(x) =

R
x

0
θn(1−θ)ndθR 1

0
θn(1−θ)ndθ ; (ii) Bn is strictly log-concave.

Proof: (i) The binomial theorem implies thatZ x

0

θn(1− θ)ndθ =

Z x

0

(θ − θ2)ndθ =

Z x
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(−1)kθn+k
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(−1)k

(A1)

Next, we show that

Bn(x) =
(2n+ 1)!

n!n!

nX
k=0

µ
n

k

¶
xn+k+1

n+ k + 1
(−1)k (A2)

The binomial theorem yields

Bn(x) =
2n+1X
k=n+1

µ
2n+ 1

k

¶
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=
2n+1X
k=n+1

2n+1−kX
m=0

xk+m(−1)m
µ
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m

¶µ
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k
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Hence, letting t = m+ k and rearranging terms yields

Bn(x) =
2n+1X
k=n+1

2n+1X
t=k

xt(−1)t−k
µ
2n+ 1− k

t− k

¶µ
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¶
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µ
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(−1)m
m!(t−m)!

Feller (1967) pg 65 provides the followign identity:µ
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¶
Hence, the last equation implies
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We conclude from (A1) and (A2) that

A ·
R x
0
θn(1− θ)ndθR 1

0
θn(1− θ)ndθ

= Bn(x)

for some constant A > 0. Clearly, A = 1 since

1 = Bn(1) = A ·
R 1
0 θ

n(1− θ)ndθR 1
0
θn(1− θ)ndθ

= A

which proves part (i)

(ii) We must show that

d

dx

µ
B0
n(x)

Bn(x)

¶
< 0 (A3)
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Substituting the left hand side expression from part (i) and computing the derivative,

straightforward computation shows that inequality (A3) is equivalent to

n(1− 2x)
µZ x

0

θn(1− θ)ndθ

¶
− xn+1(1− x)n+1 < 0 (A4)

For x ≥ 1/2 the inequality is obviously correct. To see that it holds for x < 1/2 note that

for x < 1/2 we have

(1− 2x)
µZ x

0

θn(1− θ)n
¶
≤
µZ x

0

θn(1− θ)n(1− 2θ)dθ
¶
=

xn+1(1− x)n+1

n+ 1
(A5)

Substituting (A5) into (A4) proves part (ii).

Lemma 2: Assume (i) liman = 1/2, limαn = α > 1/2, lim bn = b < 1/2, and limβn =

β > 1/2. (ii) {f1, h1, f2, h2, . . .} are equicontinuous functions on [0, 1] such that for some
c, C ∈ IR+ c ≤ fn ≤ C, c ≤ hn ≤ C for all n, and (iii) lim fn(1/2), limhn(1/2), γ :=

lim

R 1

an
xn(1−xn)ndxR 1

0
xn(1−xn)ndx

exist. Then,

lim

R αn
an

xn(1− xn)
nfn(x)dxR βn

bn
xn(1− xn)nhn(x)dx

= γ lim
fn(1/2)

hn(1/2)

Proof: Define

qn(x) = xn(1− x)n

zn =

¡
1
2 − �

¢n ¡1
2 + �

¢n¡
1−�
2

¢n ¡1+�
2

¢n
Xn(r, t) =

Z t

r

qn(x)dx

Step 1: lim rn = r < t = lim tn and 1/2 /∈ [r, t] implies

lim
Xn(rn, tn)

Xn(0, 1)
= 0

Assume that 1/2 < r and choose � ∈ (0, a − 1/2). (The proof for the 1/2 > t is

symmetric and omitted.) Let Note that q is a strictly quasiconcave function on [0, 1]

which attains its unique maximum at 1/2. Let y = r − � and z = min{t + �, 1}. Hence,
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qn(x) ≤ qn(y) for all x ∈ [y, z] and qn(x) ≥ qn((1− �)/2) for all x ∈ [(1− �)/2, (1 + �)/2].

Therefore, for n sufficiently large

Xn(rn, tn)

Xn(0, 1)
≤ Xn(y, z)

Xn(1− �)/2, (1 + �)/2

≤ (A− a)zn
�

Since lim zn = 0 step 1 follows.

Step 2: lim rn = r < t = lim tn and 1/2 ∈ (r, t) implies

lim
Xn(rn, tn)

Xn(0, 1)
= 1

Choose � ∈ (0,min{1/2− r, t− 1/2}. Then, for n large enough

1 ≥ lim Xn(rn, tn)

Xn(0, 1)
≥ Xn(1/2− �, 1/2 + �)

Xn(0, 1)
=

1

1 + Xn(0,1/2−�)
Xn(1/2−�,1/2+�) +

Xn(1/2+�,1)
Xn(1/2−�,1/2+�)

By step 1, the second and third terms in the denominator go to 0 as n goes to 0, proving

step 2.

Let

Nn =

Z α

an

qn(x)fn(x)dx

Dn =

Z βn

bn

qn(x)hn(x)dx

Tn =
Nn

Dn

Step 3: limTn =
γ lim fn(1/2)
limhn(1/2)

.

The equicontinuity of fn, hn ensures that for any � > 0 there exists �0 > 0 such that

for n large enough

[fn(1/2)− �]Xn(an, 1/2 + �0) ≤ Nn ≤ [fn(1/2) + �]Xn(an, 1/2 + �0) +CXn(1/2 + �0, 1)

[fn(1/2)− �]Xn(1/2− �0, 1/2 + �0) ≤
Dn ≤ [fn(1/2) + �]Xn(1/2− �0, 1/2 + �0) +CXn(0, 1/2− �0) +CXn(1/2 + �0, 1)
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Using the expressions above to bound Nn/Dn, then dividing terms by Xn(0, 1), letting

n go to infinity and applying steps 1 and 2 yields

lim fn(1/2)− �

limhn(1/2) + �
· lim Xn(an, 1/2 + δ)

Xn(1/2− �0, 1/2 + �0)
≤

limTn ≤ lim fn(1/2) + �

limhn(1/2)− �
· lim Xn(an, 1/2 + �0)

Xn(1/2− �0, 1/2 + �0)

Applying step 1 and step 2 again yields

lim fn(1/2)− �

limhn(1/2) + �
· Xn(an, 1)

Xn(0, 1)
≤ limTn ≤ lim fn(1/2) + �

limhn(1/2)− �
· Xn(an, 1)

Xn(0, 1)

Since the equation above holds for any �, we conclude that

limTn =
lim fn(1/2)

limhn(1/2)
· lim Xn(an, 1)

Xn(0, 1)
=

γ lim fn(1/2)

limhn(1/2)

as desired.

7.1 Proof of Proposition 2

In the text, we have shown that in any equilibrium the voters must use a cutoff

strategy. Hence to prove that every equilibrium is a cutoff equilibrium, we show that b’s

best response to any cutoff strategy is also a cutoff strategy.

If σb is a best response to voters’ cutoff strategy λ then σb(s) = 1 whenever

Bn(π
m(λ, s))

Bn(πl(λ, s))
> µ

and σb(s) = 0 if this inequality is reversed. To show that this yields a cutoff strategy, it

suffices to show that Bn(π
m(λ,s))

Bn(πl(λ,s))
is strictly increasing in s or equivalently

lnBn(π
m(λ, s))− lnBn(π

l(λ, s))

is strictly increasing in s. Recall that πl(λ, s) is a strictly decreasing linear function of s

and πm(λ, s) = πl(λ, s) + δ
2 . Lemma 1 shows that lnBn is strictly concave and therefore

lnBn(x+ δ)− lnBn(x) is strictly decreasing in x. Hence, lnBn(π
m(λ, s))− lnBn(π

l(λ, s))

is strictly increasing in s.
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To prove that equilibrium exists, let h : T × S → T be defined as

hn(λ, s) :=

"
1 +

R s
0
πl(λ, s)n(1− πl(β, s))ng(s)dsR 1

s
πm(λ, s)n(1− πm(λ, s))ng(s)ds

#−1
(A7)

Note that hn is continuous and h(λ, s) is the probability that candidate b chooses m given

that voters cutoff strategy is λ, candidate b’s cutoff strategy is s and a voter is pivotal.

Hence h(λ, s) describes the optimal cutoff of a voter if other voters are using the symmetric

cutoff strategy λ and b is using the cutoff strategy s.

Let k : T → S be defined as follows:

k(λ) :=


1 if Bn(π

l(λ,1)))
Bn(πm(λ,1))

> µ

0 if Bn(π
l(λ,0)))

Bn(πm(λ,0))
< µ

{s ∈ S| Bn(πl(λ,s)))Bn(πm(λ,s)))
= µ} otherwise.

Note that k is in fact a function since Bn(π
l(λ,s)))

Bn(πm(λ,s)))
is decreasing and continuous in s. Since

Bn(π
l(λ,s)))

Bn(πm(λ,s)))
is jointly continuous in (λ, s), k is also continuous. The cutoff strategy with

cutoff k(λ) is the best response of b to the cutoff strategy λ by voters. We conclude that

a fixed-point of (h, k) : S × T → S × T is an equilibrium in cutoff strategies. Since both

h, k are continuous and S, T are compact this mapping has a fixed point.

7.2 Proof of Proposition 3

Lemma 3: Let (σvn, σ
b
n) be a convergent sequence of equilibria with limit (σ

v, σb). Then,

σb = sl(σv).

Proof: Let s < sl(σv). Then there is � > 0 such that πl(σv, s) ≥ 1/2+ � for n sufficiently

large. This implies that b wins the election with probability close to one if he chooses

policy l. Since µ < 1 this implies that l must be the unique optimal choice at s and hence

σv > s. We conclude that σb ≥ sl(σv).

If sl(σv) > s > sm(σv) then there is � > 0 such that πm(σvn, s
0) > 1/2 + � and

πl(σvn, s
0) < 1/2 − �. This implies that b wins with probability close to one if he chooses

m but loses with probability close to one if he chooses l. Since 0 < µ it follows that the

unique optimal choice is m. If follows that σb ≤ sl(σv) and hence σb = sl(σv).
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Lemma 4: Let (σvn, σ
b
n) be a convergent sequence of equilibria with limit (σ

v
n, σ

b
n). Then,

0 < σbn < 1 for large n and limBn(π
l(σvn, σ

b
n)) = µ.

Proof: (i) Suppose there exists a (sub)sequence of equilibria (σvn, σ
b
n) such that σ

b
n = 1 for

all n (and hence σb = 1). Then since conditional on a vote being pivotal b chooses l with

probability 1, σvn = 0 for all n. Hence, σ
v = 0 and by Lemma 3, σb = sl(σb) = 0 6= 1 = σb

a contradiction. If there exists a (sub)sequence of equilibria (σvn, σ
b
n) such that σ

b
n = 0 for

all n (and hence σb = 0), then since conditional on a vote being pivotal, b chooses m with

probability 1, σvn = 1 for all n and therefore σ
v = 1. By Lemma 3, σb = sl(σv) = 1− δ >

0 6= σb a contradiction.

(ii) For 0 < σbn < 1 we must have

µBn(π
m(σvn, σ

b
n)) = Bn(π

l(σvn, σ
b
n))

This follows since for o ∈ {l,m}, πo(σvn, ·) is continuous for all n. Further observe that
πm = πl + δ/2 with πl(σvn, σ

b
n) = 1/2. Therefore, it follows that for large n, π

m(σvn, σ
b
n) >

1/2 + � for some � > 0 and hence limBn(π
m(σvn, σ

b
n)) = 1. This yields the Lemma.

Lemma 5: Let (σvn, σ
b
n) be a sequence of equilibria converging to (σ

v, σb). Then, 0 <

σb < 1.

Proof: Optimality of voters’ strategies ensures that σvn = hn(σ
v
n, σ

b
n). First, we show that

hn(σ
v
n, σ

v
n) ≤ 1− � for some � > 0 and n sufficiently large. If σvn ≤ 1/2 we are done. Hence,

assume that σv > 1/2 and hence σvn > 1/2 for large n. Since g is continuous and g > 0 on

S, there exists constants C ≥ c > 0 such that

1− hn(σ
v
n, σ

b
n)

hn(σvn, σ
b
n)

=

R σbn
0

πl(σvn, s)
n(1− πl(σvn, s))

ng(s)dsR 1
σbn

πm(σvn, s)
n(1− πm(σvn, s))

ng(s)ds

≥ c

C
·
R σbn
0

πl(σvn, s)
n(1− πl(σvn, s))

ndsR 1
σbn

πm(σvn, s)
n(1− πm(σvn, s))

nds

A change of variables using the fact that πm = πl + δ/2 and πl is a linear function of s

establishes

1− hn(σ
v
n, σ

b
n)

hn(σvn, σ
b
n)

≥ α ·
R πl(σvn,σbn)
πl(σvn,0)

xn(1− x)ndsR 1
0
xn(1− x)nds
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for some α > 0.

Optimality of candidate b’s behavior requires that πl(σvn, σ
b
n) ≤ bn where Bn(bn) = µ.

By the law of large numbers, lim bn = 1/2. Let an := πl(σvn, 0) = 1/2 + F (σvn)(1 − δ)/2

and note that an > 1/2 for n large since λn ≥ 1/2. By Lemma 2, we conclude that for
large n, R πl(σvn,1)

πl(σvn,σ
b
n)
xn(1− x)ndsR 1

0
xn(1− x)nds

=

R an
bn

xn(1− x)ndxR 1
0
xn(1− x)ndx

≥ 1
2

R 1
bn
xn(1− x)ndxR 1

0
xn(1− x)ndx

By Lemma 1, R 1
bn
xn(1− x)ndxR 1

0
xn(1− x)ndx

= 1−
R bn
0

xn(1− x)ndxR 1
0
xn(1− x)ndx

= 1− µ

Since 1−µ > 0 we conclude that 1−h(λn, sn) is bounded away from 0 and hence h(σvn, σbn)
is bounded away from 1 for all n. This shows that σv < 1− � for some � > 0.

Next we show that σv > � for some � > 0. Let an := πm(σvn, 1) and note that

an = 1/2 − (1 − δ)F (1 − σv)/2. Since σv stays bounded away from 1 we conclude that

there is � > 0 such that an < 1/2 − � for large n. Let bn := πm(σvn, σ
b
n) and note that

bn = πl(σvn, σ
b
n) + δ/2. Since limπl(σvn, σ

b
n) = 1/2 we conclude that there is � > 0 such

that bn ≥ 1/2 + � for some � > 0.

By an analogous argument to the one above, we conclude that there is a constant

α > 0 such that for large n

1− hn(σ
v
n, σ

b
n)

hn(σvn, σ
b
n)

≥ α ·
R 1
0
xn(1− x)ndsR bn

an
xn(1− x)nds

≥ α

This shows that h(σvn, σ
b
n) stays bounded away from zero for all n and therefore σv > 0.

Lemma 6: Let (σvn, σ
b
n) be a sequence of equilibria and converging to (σ

v, σb). Then,

σv =
g(sm(σv))

g(sm(σv)) + g(sl(σv))(1− µ)
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Proof: Note that

Tn :=
1− σvn
σvn

=

R σbn
0

πl(σvn, s)
n(1− πl(σvn, s))

ng(s)R 1
σbn

πm(σvn, s)
n(1− πm(σvn, s))

ng(s)

To prove the Lemma, we will show that

limTn =
g(sl(σv))

g(sm(σv))
(1− µ) (A8)

Let an := πl(σvn, σ
b
n), αn := πl(σ

v
n, 0), bn := πm(σ

v
n, 1), βn := πm(σvn, σ

v
n). Since [0, 1]

is compact, we can assume without loss of generality, that (an, αn, bn, βn) converges to

some (a, α, b, β). By Lemma 5 and the fact that δ > 0, we have α, β > 1/2 and b < 1/2.

Moreover, a = 1/2 by Lemma 3.

Recall that qn(x) := xn(1− x)n. A change of variables yields

Tn =

R αn
an

qn(x)h
l
n(x)dxR βn

bn
qn(x)hmn (x)dx

where hon(x) = g(zon(x)) for o ∈ {l,m} and zon(x) is the unique solution to πo(σvn, zon)) = x.

First, seach the collection of linear functions {hln, hmn } for n = 1, . . . all have the

same slope, they are equicontinuous. Also, by Lemma 3, σb = a = sl(σv) and therefore

limhl(1/2) = g(sl(σv)). Similarly, limhm(1/2) = g(sm(σv)). Then, by Lemma 2,

limTn =
limhl(1/2)

limhm(1/2)
· lim

R 1
an

qn(x)dxR βn
0

qn(x)dx
=

g(sl(σv))

g(sm(σv))
· lim

R 1
an

qn(x)dxR βn
0

qn(x)dx
(A9)

But by Lemma 1,

lim

R 1
an

qn(x)dxR 1
0 qn(x)dx

= 1− lim
R an
0

qn(x)dxR 1
0 qn(x)dx

= 1− limBn(an)

and since an = πl(σv, σb), Lemma 4 yields Bn(an) = µ. Then, (A9) establishes limTn =

g(sl(σv))
g(sm(σv))(1− µ) as desired.
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Lemma 7: If σ ∈ E and φ ∈ Φ(σ) then

φl(s) = 1 if s < sl(σv)

φm(s) = 1 if sl(σv) < s < sm(σv)

φr(s) = 1 if sm(σv) < s.

Proof: Suppose σn ∈ En for all n. If s < sl(σv) then by Lemma 3, there exists N , s∗ ∈
(s, sl(σv)) such that for all n ≥ N , σbn ≥ s∗. Hence, in equilibrium (for all n ≥ N) candidate

b chooses l at s. Also, for � > 0, we can choose N sufficently large so that Bn(π
l(σvn, s)) ≥

Bn(π
l(σvn, s

∗))− �. Since, limπl(σvn, s
∗) > 1/2 we conclude that limBn(π

l(σvn, s)) ≥ 1− �.

Since this statement holds for any �, we have limBn(π
l(σvn, s)) = 1, as desired. The proofs

of the other two cases are similar and omitted.

Lemmas 3, 6 and 7 prove part (i) of the proposition. To prove part (ii) note that by

Lemma 5, if σ ∈ E then σv is a fixed-point of the mapping h defined by

h(λ) =
g(sm(λ))

g(sm(λ)) + g(sl(λ))(1− µ)

But, as we noted in the text, h is non-increasing when g is log-concave. Hence, h has a

unique-fixed point when g is log-concave. Then, Lemma 3 ensures that E is a singleton
when g is log-concave.
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