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1 Introduction

One way to assess a voting rule is to compare the outcome(s) it induces against

the social planner’s objective. However, in the absence of an all-powerful planner

to impose his own ideal decision procedure, any voting rule must be ratified by a

majority of the members of a society if it is going to function as a democratic way

of reaching collective decisions. Condorcet (1785) had first epitomized an extreme

version of this view by suggesting that whenever there is a candidate (or alternative)

always preferred by a majority of voters against any other candidate on pairwise

comparisons, such a candidate, later to become known as the Condorcet winner,

must be elected by the chosen voting rule. This requirement, called Condorcet

consistency, is “widely regarded as a compelling democratic principle” (sect. 4,

ch. 9 of Moulin’s book, 1988). Yet many voting mechanisms fail to satisfy this

appealing property. As we shall see, almost all well-known voting rules fail to be

Condorcet consistent if voters are assumed to vote strategically.

In this paper we will argue that voting procedures based on sequential elimina-

tion are superior to ones in which the winner is determined in a single-round voting,

using the criterion of Condorcet consistency. We show that when voters behave

strategically,1 sequential elimination procedures may aggregate voter preferences

better than single-round procedures. Roughly, in sequential elimination procedures

the voting outcome is determined gradually allowing voters more influence on the

outcome and preventing them from getting locked in a “bad” equilibrium, a non-

Condorcet outcome (when a Condorcet winner exists), because of miscoordination.

Even when the Condorcet winner does not exist, sequential elimination procedures

have some nice features: the outcome always belongs to the ‘top cycle’, and is

Pareto efficient when only three candidates are involved. In contrast, miscoordina-

tion tends to be pervasive in most single-round and various other voting and thus

may fail to select the Condorcet winner.

The idea of sequential elimination voting is best conveyed by the following

repeated application of the one-person-one-vote principle, although voters may be

allowed to declare preferences in more complicated ways, say, by submitting a rank-

ing. Voting takes place in rounds with all the voters simultaneously casting their

votes in each successive round. In any round the candidate receiving the smallest

1The idea of strategic voting, as opposed to sincere voting, was popularized Farquharson (1969)
and is also known as sophisticated voting.



number of votes is eliminated, with any tie involving the smallest number of votes

broken by a deterministic tie-breaking rule. This process continues until all but

one of the candidates have been eliminated. We call this the weakest link voting.2

Actually, the weakest link voting is nothing but a natural multi-round extension of

the plurality voting principle, with elimination of only the worst plurality loser in

each round.3 Similar one-by-one sequential elimination method can be adopted to

extend any familiar single-round voting rule to its appropriate multi-round equiv-

alent.4

Our results are as follows. When voters are strategic, the unique equilibrium

(if an equilibrium exists) of a broadly defined sequential elimination voting game

will select the Condorcet winner (Theorems 1–3). The sufficient condition for this

to happen (and satisfied by sequential versions of all familiar single-round voting

procedures, sequential binary voting, sequential runoff voting etc.) is indeed very

weak: For any group of majority voters, there always exists strategies coordinat-

ing which they can ensure that a candidate will not be eliminated in an ongoing

2A noteworthy application of this voting rule is the selection of the 2012 Olympic Games
host city winner: London emerged as the winner after Moscow, New York, Madrid and Paris
were eliminated in that order in successive votes held over four rounds – the actual voting is
summarized at the end of the Appendix; see also 6 July, 2005 news (“London beats Paris to
2012 Games”) in http : //news.bbc.co.uk/sport1/hi/frontpage/4655555.stm. Another interest-
ing application of the weakest link voting is the election of the leader of the Conservative Party
in the United Kingdom in 2001. The voting rule used then involved two stages. In the first
stage, a small number of (to be precise, five) candidates had put themselves up for selection
who were all simultaneously voted upon by the party’s parliamentary members in a sequence of
rounds. In each round the candidate getting the smallest number of votes was eliminated. This
process continued until only two candidates remained who then faced, in a second stage, the poll
of a large number of party members. (In fact, in the latest Conservative party deliberations in
2005, the second stage is being considered to be even dropped, with the eliminations of can-
didates to be confined to the first stage only.) For an early account of the leadership contest
procedure, see the explanation by Julian Glover in The Guardian, July 10, 2001 accessible at
http : //politics.guardian.co.uk/Print/0, 3858, 4196604, 00.html. This voting procedure is only
a recent innovation in democratically electing the party leader; on all other previous occasions,
the Conservative Party leader used to be chosen on an ad hoc basis.

3The weakest link voting is very similar to sequential runoff election where alternatives are
eliminated one-at-a-time but based on the voters submitting a full strict-order ranking of the
remaining alternatives (instead of voting for a single alternative), eliminating in each round the
alternative with the least number of first place votes.

4Of course, the elimination criterion will be different depending on the voting rule.
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round.5 In addition, if there is no Condorcet winner, we show that the elected can-

didate must be in the top cycle (Theorem 3). In contrast, we identify a large class

of instantaneous (single-round) voting rules that fail to be Condorcet consistent

(Theorem 4; Proposition 2).6 This class includes all the popular voting rules such

as plurality rule, approval voting, Borda rule and negative voting. We also high-

light two specific features of the sequential voting method that are important for

Condorcet consistency: one-by-one elimination and repeated ballots. For the first,

we provide two counter examples: (i) a plurality runoff rule eliminating all but two

candidates in the first round using plurality rule and then choosing the winner in

a second ballot from the remaining two candidates using majority rule, is shown

to fail Condorcet consistency (Proposition 3);7 (ii) an exhaustive ballot method,

which is same as the weakest link voting except that if at any round a candidate

receives majority votes then that candidate immediately becomes the winner, also

fails Condorcet consistency (Proposition 4). The importance of repeated ballots

is shown by the failure of Condorcet consistency of the instant runoff voting rule

which is based on a single ballot(Proposition 5).8

Both the positive and negative results on Condorcet consistency in this paper

should be viewed as taking an important issue further that has only been intermit-

tently studied in the literature. One strand of the literature analyzing the issue of

Condorcet consistency under sophisticated voting focus on sequential binary voting

and its variants (McKelvey and Niemi, 1978; Dutta and Pattanaik, 1985; Dutta and

Sen, 1993; and Dutta et al., 2002). An alternative focus on the same issue makes

the assumption of sincere voting (see ch. 9 of Moulin’s book (1988) for example).

5This will be the case, if, for example, the voting rule states that a candidate receiving a
majority of the top rank cannot be eliminated.

6Roughly, instantaneous voting means voting takes place only once but the winner may be
selected in one or more rounds of eliminations.

7Its extended version, sequential runoff voting, is Condorcet consistent.
8Instant runoff voting rule, alternatively known in the literature as alternative vote method

and full preferential voting (see Moulin, 1988, ch. 9), is as follows. Voters express their rankings
of candidates in a single ballot. If a candidate wins the majority of the top rank then that
candidate becomes the winner. Otherwise, the candidate receiving the smallest number of top-
rank votes is eliminated, and a fresh count is taken. In this count if the eliminated candidate was
the top-ranked candidate for some of the voters, then for those voters their second-most favorite
candidates become their respective top-ranked candidate in the second count. The vote counting
(using transferrable votes) continues until some candidate wins the majority of the top rank from
the remaining candidates.
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However, very little is available by way of characterization of Condorcet consistent

voting rules.9 Thus, our analysis should be viewed as filling an important gap

in the voting literature. Another major issue in the voting literature (Dekel and

Piccione, 2000; Strumpf, 2002; Battaglini, 2005) with which our work bears some

similarity is whether sequential voting is any better than simultaneous voting in

aggregating information that might be dispersed among the electorates. Our main

concern, however, is preference aggregation rather than information aggregation.

Also, sequential elimination voting in this paper is very different from sequential

voting considered by these authors; our voters cast their votes simultaneously and

repeatedly in successive rounds.

The paper is organized as follows. In the next section we formally describe

the voting rules and the related equilibrium solution concepts. Section 3 contains

results on sequential elimination voting. In section 4, we analyze single-round and

some other popular voting mechanisms. Section 5 concludes. Most proofs are

relegated to an Appendix.

2 The Voting Rules and Equilibrium Solutions

Much of our insight about sequential elimination voting can be gained by studying

the weakest link voting, so we start with this particular voting rule.

The weakest link voting

Formally, the weakest link voting proceeds as follows. The voting takes place in

a finite number of stages. The set of candidates is denoted as K with cardinality k,

and the voter set is denoted asN with cardinality n, both k and n at least three, and

K∩N = ∅. Each voter has a strict, ordinal preference ordering over the candidates.

A single winner is selected after completion of k − 1 voting stages. In stage 1, the

starting point of the weakest link game, all candidates are simultaneously voted

upon by the voters. The candidate receiving the smallest number of votes drops

out from the competition and the remaining k − 1 candidates proceed to a similar

stage 2 voting; any tie is broken by a single deterministic tie-breaking rule ranking

all k candidates. This procedure continues until all but one of the candidates have

been eliminated.

9Dutta and Sen (1993) is on implementation of Condorcet social choice functions.
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Two examples

Example 1. Consider three voters, and four candidates: {w, x, y, z}. The voters’

preferences are as follows:

1 : y, x, z, w

2 : z, x, y, w

3 : w, x, z, y.

Note that candidate x is the Condorcet winner. Assume first that the weakest link

rule is being used and all three voters vote sincerely so that at each voting stage

each votes for his most preferred candidate among the surviving ones. Clearly, x

will be eliminated at the first stage (regardless of the tie-breaking rule) and will

not emerge as the winner. In contrast, assume now that the three voters behave

strategically. Without defining formally a solution concept at this stage, we will

argue informally why strategic behavior must result in x winning. We will invoke

a backward induction argument: Consider first the last stage in which only two

candidates remain. If x is one of these candidates then clearly x will win at this

stage because two out of three voters prefer x to the other candidate (and voting

for x weakly dominates voting for the other candidate). Similar argument implies

that if the two candidates at the last stage are (z, w), then z wins. If they are

(z, y) then z wins as well and for (y, w) candidate y emerges the winner. Consider

now the second-to-last stage of voting: If the three surviving candidates at this

stage are (y, z, w), then z must emerge the winner. This is because given the

possible continuations (as specified above), if z survives this stage he will become

the eventual winner and otherwise y will be the winner. So, voting for z is the only

(weakly) undominated choice for voters 2 and 3. Hence z will not be eliminated

at this stage and will emerge the winner. A similar argument implies that if x is

one of the remaining candidates at the second-to-last stage then he must emerge

the eventual winner. We now consider the first stage of the voting. Given the

possible continuations as described above, if x is eliminated at the first stage then

z will emerge the winner, whereas x will emerge the winner if any of the other three

candidates is eliminated. Hence, the only weakly undominated choice for voters 1

and 3 is to vote for x. Thus x will survive and will emerge the winner.

The fact that x fails to emerge as the winner if voters vote sincerely and x is

the winner when voters vote strategically has the following interesting implication.
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Consider the following simultaneous version of the weakest link rule, where the

three voters are required to submit once at the outset a preference profile10 based

on which the winner will be determined according to the weakest link rule. Assume

further that the tie-breaking rule puts x last in the elimination priority. If we

consider the resulting strategic form game among the three voters (with preference

profiles being the strategies), then it can be easily verified that voting sincerely is a

Nash equilibrium with undominated strategies. Hence x may fail to emerge as the

winner when voters behave strategically in the simultaneous version of the weakest

link, but in its sequential version strategic behavior guarantees it winning.

This example highlights the advantage of a voting procedure in which voters are

called to step in repeatedly in submitting their preferences over ones that involve

a single stage. As we will show later, this advantage goes beyond the weakest link

rule. Indeed we will introduce a large class of sequential elimination procedures

which guarantee the selection of the Condorcet winner in strategic voting and will

also argue that almost all well-known single-round voting procedures fail to have

this property. ||

Example 2. We will use the recently held selection of London as the winner of the

2012 Olympic Games’ host city, to explain some interesting voting pattern (at the

very end in the Appendix the actual votes are summarized). Of particular interest

is the inconsistency regarding Madrid: total votes in favor of Madrid dropped from

32 in the second round to 31 in the third round, when Madrid got eliminated from

the competition. The press naively explained this voting pattern by claiming that

the voters had changed their minds about Madrid. The insight that we can offer

to this story is that this explanation may be completely wrong. The apparent

inconsistency could be mainly due to the strategic voting by the voting members.

One can construct consistent preferences for the voters under which the equilibrium

behavior in the weakest link voting will generate exactly the voting pattern that

was observed. ||

Next we begin to describe our equilibrium procedure with respect to the weakest

link voting game. The same procedure can be applied to other one-by-one sequential

elimination voting and a few other potentially multi-round (but not necessarily one-

by-one) elimination voting games with minor modifications, although we will not

10A voter’s preference profile is a mapping from the set of available candidates in any elimination
round to a single candidate for non-elimination in that round.
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elaborate on these modifications. In the extreme, the solution will also apply to all

single-round voting.

The equilibrium

The equilibrium outcome of the weakest link voting follows successive elimina-

tions of strategies failing subgame perfection and weak non-domination. In addi-

tion, voters will be assumed to use only Markov strategies. These are explained

next.

In any final stage subgame (i.e., at stage k−1), the voters’ strategies must be a

Nash equilibrium and must not be (weakly) dominated when considered specifically

with respect to the subgame;11 all other strategies are eliminated. Then in the

subgames starting with stage k − 2, only the strategies that survived eliminations

at stage k−1 are considered. In any of these subgames, again, the voters’ strategies

from the restricted set must be a Nash equilibrium and must not be dominated along

the subgame, where the permissible strategies of the voters with respect to which the

weak-domination check is carried out are the strategies that have survived backward

eliminations up to that stage. We follow this backward-elimination procedure all

the way to stage 1. In general, in the subgames following a stage, irrespective of

whether such subgames are reached or not, no voter will use strategies that fail to

survive backward eliminations.

The voters adopt only Markov strategies, that is, the strategies at any stage

onwards depend only on the candidates who have survived up to that stage and

not on the specific history leading up to it.

We now develop the equilibrium procedure more formally.

The voters’ strategies are easier to describe with respect to histories. A history,

h, associated with any particular node at any stage of the successive elimination

process is a complete description of the actual voting decisions leading up to that

node. Given a deterministic tie-breaking rule, any history h uniquely defines a

subgame Γ(h) determining the set of candidates C ⊆ K who have survived at the

end of h; Γ(h0) denotes the entire game where h0 denotes the null history.

Let HC = {h|C is the set of remaining candidates}, and H =
⋃

C⊆KHC be the

set of all histories.

11While a particular strategy may not be dominated in the entire game, it could still be domi-
nated when restricted to a (smaller) subgame.
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Define the set of (pure) strategies of voter i by Si = {si : H → K s.t. si(h) ∈
C if h ∈ HC}.

For any h, let C(h) be the set of candidates left with cardinality n(h), so that

history h involves the first k − n(h) stages of eliminations. Also, let Si(h) be the

restriction of Si to the subgame Γ(h). We want to define S(h) = ΠiSi(h) to be the

product set of strategies in the subgame Γ(h). Thus,

if si ∈ Si(h),

then si : H̃(h) → C(h) s.t. si(h
′) ∈ C ′ ∀h′ ∈ HC′ ∩ H̃(h) 6= ∅

where H̃(h) =
{
h′ ∈ H|h′ = (h, h′\1,...,k−n(h)) for any history h′

}
is

the set of histories that follow h, with h′ \1,...,k−n(h) denoting actual

voting decisions associated with h′ except in the first k − n(h) stages.

Define, inductively, a profile of strategies s∗ ∈
∏

i Si to be an equilibrium, as

follows.

At any history h s.t. n(h) = 2, s∗(h) is a Nash equilibrium (in short, N.E.) in

the subgame Γ(h) and not weakly dominated in this subgame. That is,

s∗(h) ∈ S(h);

(N.E.) πi(s
∗
i (h), s∗−i(h)) ≥ πi(s

′
i, s

∗
−i(h)) ∀s′i ∈ Si(h);

(Weak non-domination) 6 ∃s′i ∈ Si(h) s.t.

πi(s
′
i, s

′
−i) ≥ πi(s

∗
i (h), s′−i) ∀s′−i ∈ S−i(h), and

πi(s
′
i, s

′
−i) > πi(s

∗
i (h), s′−i) for some s′−i ∈ S−i(h).

 (1)

Suppose s∗(h′) is defined for all h′ s.t. n(h′) ≤ j − 1. We now want to define

s∗(h) for h s.t. n(h) = j.

Let Ŝ(h) = {s ∈ S(h)| s(h′) = s∗(h′) ∀h′ ∈ H̃(h) and n(h′) < j}; that is, the

strategies in Ŝ(h) restrict the voters to choose only their equilibrium strategies in

the subgames Γ(h′), where the equilibrium is already defined. Now let Γ̂(h) be the

(reduced) subgame Γ(h) when the strategies are restricted to the set Ŝ(h). Then

s∗(h) is a N.E. in the subgame Γ̂(h) that is not weakly dominated. That is,

s∗(h) ∈ Ŝ(h);

πi(s
∗
i (h), s∗−i(h)) ≥ πi(s

′
i, s

∗
−i(h)) ∀s′i ∈ Ŝi(h);
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6 ∃s′i ∈ Ŝi(h) s.t.

πi(s
′
i, s

′
−i) ≥ πi(s

∗
i (h), s′−i) ∀s′−i ∈ Ŝ−i(h), and

πi(s
′
i, s

′
−i) > πi(s

∗
i (h), s′−i), for some s′−i ∈ Ŝ−i(h).

 (2)

By iterating backwards all the way to the first stage, we obtain s∗(h0).

Now if we let Γ̂(h) = Γ(h) for any h such that n(h) = 2 then we can define

an equilibrium s∗ as a subgame perfect equilibrium that is not weakly dominated

in any subgame Γ̂(h) for any h (thus it satisfies inductively condition (1) when

n(h) = 2 and condition (2) when n(h) > 2). ||

We define the equilibrium, s∗, to be a Markov equilibrium, if the voters are

restricted to use only Markov strategies. That is, each i selects strategies only from

SM
i = {si : H → K s.t. ∀h ∈ HC , si(h) ∈ C; and

if C(h) = C(h′) then si(h) = si(h
′)}.

This completes the formal equilibrium procedure.

Remarks. Our backward-elimination procedure differs, it must be noted, from the

more familiar procedure of iterative elimination of (weakly) dominated strategies

in one important aspect: while in the latter approach the weak-domination check

is carried out in relation to the entire game, ours is only along the subgames.12

Iterative elimination on its own, or even in combination with subgame perfection, is

unlikely to solve the miscoordination problems that result in undesirable outcomes.

It is well-known in other voting contexts that iterative elimination can have very

little elimination power.13

Our equilibrium procedure can be considered with or without the assumption

of Markov strategies. Later we justify the use of the Markov assumption for our

sequential elimination voting.

Single-round voting

To contrast the weakest link and other one-by-one sequential elimination voting

rules, we will also consider single-round voting rules such as plurality rule, approval

12Moulin (1979) formally analyzed the iterative elimination procedure to generalize the concept
of sophisticated voting and applied it to a significant class of voting – voting by veto, kingmaker
and voting by binary choices.

13For example, Dhillon and Lockwood (2004) have shown in the case of plurality voting (see
their Lemma 1 and the related discussion) that the strategy of voting any candidate other than
one’s lowest-ranked candidate will survive iterative eliminations of weakly dominated strategies.

9



voting, Borda voting and negative voting. For these voting rules the equilibrium

solution concept is undominated Nash, i.e., the voters’ strategies must be a Nash

equilibrium and must not be (weakly) dominated. Note that our twin requirements

of subgame perfection and non-domination (independently of the Markov strategy

assumption) boil down to the equilibrium definition for single-round voting rules.

Thus, the comparisons to be made in section 3 between sequential elimination

voting and single-round voting are based on the same benchmark solution concept.

3 Sequential (elimination) voting

In this section and the rest of the paper, the voters are always understood to be

strategic unless otherwise specified.

3.1 Condorcet consistency

We start with a key result on the weakest link voting and generalize to a class of

sequential elimination voting.

Theorem 1 Suppose the voters use Markov strategies. Then the weakest link voting

with a deterministic tie-breaking rule is Condorcet consistent.

Proof. Suppose there is a Condorcet winner z, but the weakest link voting game has

a Markov equilibrium that results in some other candidate z1 (6= z) as the ultimate

winner. Order the stages of elimination of (k − 1) candidates as follows:

The winner z1

Stage k-1 z1, z2

Stage k-2 z1, z2, z3

Stage k-3 z1, z2, z3, z4

·

·

Stage 1 z1, z2, z3, z4, . . . , zk.

Thus in stage j, the eliminated candidate is labelled as candidate zk−j+1, j =

1, 2, . . . , k − 1.
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Initially, consider stage k−1 and suppose z2 = z. Given that z2 is the Condorcet

winner, clearly for any voter who prefers z2 over z1, and there will be a majority

of such voters, the strategy of choosing z1 is weakly dominated in the stage-(k −
1) subgame: choosing z2 instead will produce no worse and sometimes a better

outcome (when z2 wins the majority vote). (In fact, sincere voting by all voters is

the only Nash equilibrium that is also undominated in this final stage subgame.)

Thus if the Condorcet winner z survives up to stage k− 1, he must be the ultimate

winner so that z1 = z; z2 = z is not possible.

Now suppose the following hypothesis is true:

If candidate z survives up to stage j on- or off-the-equilibrium path, then he will

also survive the remaining stages and become the ultimate winner.

We then prove that having proceeded to any stage-(j−1) subgame with only k−j+2

candidates left,14 candidate z will also survive stage j − 1 to move up to stage j

and thus become the ultimate winner.

Suppose on the contrary that zk−j+2 = z. Consider those voters who prefer

zk−j+2 over z′1, where z′1 is going to be the ultimate winner if z is eliminated in

stage-(j−1) voting.15 By definition of z, these voters will form a majority. Consider

any such voter’s strategy in the stage-(j − 1) subgame, where z′1 is to become the

ultimate winner. Suppose the representative voter were to choose some z′ 6= z.

This, we claim, is not possible. If the voter switches his vote from z′ to z and

z is not eliminated, which will be the case if all who prefer z over z′1 vote for z,

then z survives, by hypothesis, all the subsequent stages and becomes the ultimate

winner that is better than z′1; if, on the other hand, z is eliminated then by the

Markov property of the voters’ strategies z′1 becomes the ultimate winner. Thus, in

the subgame z will weakly dominate z′ so that the representative voter must vote

for z only. This implies a majority of voters would vote for z, contradicting that

zk−j+2 = z.

We already proved our hypothesis for j = k− 1. So use an induction argument

to conclude that the weakest link voting with a deterministic tie-breaking rule will

not admit, in equilibrium, any non-Condorcet (winner) outcome. To show that

the Condorcet winner z will be the ultimate winner, one has to show that there

14This subgame can be on- or off-the-equilibrium path.
15z′1 = z1 if this subgame is on the equilibrium path, and otherwise z′1 can be some other

candidate.
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exists an equilibrium in the weakest link voting game whenever there is a Condorcet

winner. In the Appendix, we establish an existence result that does not rely on any

assumption about the Condorcet winner (Theorem 6).

Our argument so far does not make any reference to the tie-breaking rule, thus

the weakest link voting is Condorcet consistent for any arbitrary deterministic tie-

breaking rule. Q.E.D.

Remarks. The procedure of eliminating the weakest link, if extended naturally

to eliminate all but one candidate in a single round of voting (as opposed to suc-

cessive eliminations), translates into one-shot plurality voting. Plurality voting

will be later shown to fail Condorcet consistency (Theorem 4). Thus, Theorem

1 illustrates the distinct advantage of the sequential elimination procedure over a

single-round elimination (of plurality rule). Later, based on Theorem 2, similar

parallels can be made between all well-known single-round voting rules and their

sequential counterparts.

A weaker version of the Markov property would suffice for Theorem 1 proof.

All we require is that the strategies do not depend on the history through the

specific configuration of votes that led to the particular candidates’ eliminations.

However, the strategies can still depend on the order in which the candidates were

eliminated. In fact, if we assume that the votes are not revealed between stages but

only the identity of the eliminated candidate at each stage is announced, then we

do not need the Markov property. Also, the assumption that the voters use only

Markov strategies could be considered a limitation of Theorem 1. In the Appendix

(Theorem 5) we provide a formal justification for this assumption.

Theorem 1 should be viewed in combination with Theorem 6 (stated and proved

in the Appendix) that shows that there always exists an equilibrium of the weakest

link voting game for our solution concept defined in section 2. The equilibrium

existence result in Theorem 6 is particularly important (although we prefer it to be

put in the Appendix because of the technical nature of the proof), because there

could be subgames off-the-equilibrium path without a Condorcet winner (among

the remaining candidates) and it is by no means clear that our solution concept

would necessarily yield an equilibrium in such subgames. ||

Next we define a rather general sequential process of elimination with the only

restriction that in each round only one candidate will be eliminated.

12



Sequential voting.16 Players vote in k − 1 rounds. At each stage the voters

simultaneously vote and one candidate is removed. The winner is the candidate

who survives the last stage. If C is the set of candidates left at any stage j < k

then a vote for voter i at that stage consists of choosing an element of the set

Ai(C, j); moreover if each i chooses ai ∈ Ai(C, j) at this stage then we shall denote

the eliminated candidate by e(a1, ..., an) ∈ C. So in stage 1 each voter i chooses

ai ∈ Ai(K, 1). We now specify the following property to define a class of sequential

voting rules.

Non-elimination property : For any stage j, any remaining set of candidates C, any

k ∈ C and any majority of voters µ1, ..., µn∗ (where n∗ =

{
n/2 + 1 if n is even

(n + 1)/2 if n is odd
)

there exist votes ak
µ1
∈ Aµ1(C, j), ak

µ2
∈ Aµ2(C, j), .., ak

µn∗ ∈ Aµn∗ (C, j) such that

e(ak
µ1

, ak
µ2

, .., ak
µn∗ ) 6= k. Thus at any stage with C the set of remaining candidates,

any majority can ensure that any specific candidate k is not eliminated.17

All sequential voting rules satisfying the non-elimination property constitute the

family F . ||

We further like to emphasize the following aspects of our sequential voting.

The voting cast by the voters is quite general. Voters can express their preference

for only a single candidate or more than one candidate by submitting a ranking,

and the ranking can be strict or weak; in fact, the preference submission could be

more abstract than a simple ranking of candidates. The candidates considered for

elimination in any particular round can be all the remaining candidates or a subset

of the candidates.18

Now go back to the proof of Theorem 1. It is not difficult to see that the

arguments there will apply equally for the entire family F . In particular, the non-

elimination property comes to equal effect in sustaining the Condorcet winner as

follows. Assume the hypothesis for stage j is true and consider stage-(j − 1) sub-

game.19 Suppose if z is eliminated in stage j − 1 then z′1 becomes the ultimate

winner. There will be a majority of voters µ1, ..., µn∗ who prefer z over z′1. More-

16By sequential voting, we mean sequential elimination of candidates.
17This non-elimination property implies majority rule in stage k − 1.
18In particular, the voting could be over pairs of candidates in successive rounds as in sequential

binary voting, an extensively studied subject.
19Clearly, the hypothesis is true for j = k−1 because non-elimination property implies majority

rule in stage k − 1.
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over, by the non-elimination property there exist votes az
µ1
∈ Aµ1(C, j − 1), az

µ2
∈

Aµ2(C, j − 1), .., az
µn∗ ∈ Aµn∗ (C, j − 1) such that e(az

µ1
, az

µ2
, .., az

µn∗ ) 6= z.

Now suppose any such voter µi chooses a′µi
6= az

µi
resulting in z being eliminated.

This, we claim, is not possible. If the voter instead chose az
µi

in place of a′µi
and z is

not eliminated, then by hypothesis z will progress to become the ultimate winner,

which is a better outcome than z′1; on the other hand, if z is eliminated then by

Markov property z′1 is the ultimate winner. Thus, choosing az
µi

weakly dominates

a′µi
. Hence, z cannot be eliminated in the stage-(j − 1) subgame and an induction

argument would induce z to become the ultimate winner. Thus, we can state the

following result:

Theorem 2 All sequential voting rules in the family F will be Condorcet consis-

tent.

Note that the Markov assumption for Theorem 2, like Theorem 1, is justifiable

as we have argued in the Appendix (Theorem 5).

Remark. The required non-elimination condition for voting rules to belong to the

family F is indeed very weak. The sequential (one-by-one elimination) versions of

all single-round voting rules, plus sequential binary voting, sequential runoff voting

etc. satisfy this property and thus belongs to the family F .

So far our analysis is based on the assumption that a Condorcet winner exists.

The structure of equilibrium in the absence of a Condorcet winner should be of

interest. The next result applies to the sequential family F , with or without a

Condorcet winner.

Before stating our result let us clarify some notations. Given the voters’ strict

preference ordering over candidates, a binary comparison operator T defines a can-

didate x to be majority preferred over another candidate y, written as xTy, if the

number of voters preferring x over y exceeds the the number of voters preferring

y over x. The operator T will be a majority tournament if either n is odd or a

deterministic tie-breaking rule breaks the ties.

Top Cycle. TC(K) = {x ∈ K : for all candidates y 6= x, either xTy or there exist

x1, x2, . . . , xτ candidates such that xTx1T . . . TxτTy.}
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Theorem 3 Suppose strategy s∗ is a Markov equilibrium. Then in any stage with

remaining candidates Ω, w is the winner in the subgame (with candidates Ω) of any

sequential elimination voting in the family F only if w is a member of the top cycle

TC(Ω).

Proof. We will use induction according to the number of remaining candidates.

Suppose Ω consists of two candidates. Then the result is trivially true. Now

assume the following hypothesis:

Theorem 3 is true for any subgame with remaining candidates Ω of cardinality

τ − 1.

We want to show that the result is also true for any subgame with τ remaining

candidates. Suppose not. Then there is a subgame with remaining candidates Ω̃

of cardinality τ such that w wins (i.e., first z1 is eliminated, followed by successive

eliminations of z2, . . . , zτ−1 and then w wins) and w 6∈ TC(Ω̃). This implies there

exists some y ∈ Ω̃ such that

y T w and it is not the case that w T x1 T x2 T . . . T x` T y. (3)

Next we establish two intermediate claims.

Claim 1: y must be the eliminated candidate in this stage (i.e., z1 = y).

If not, z1 6= y is eliminated. The remaining candidate set is Ω̃ \ z1 and w wins,

which implies by hypothesis w ∈ TC(Ω̃ \ z1). But then there will be a (direct or

an indirect) chain such that w T x1 T x2 T . . . T x` T y, contradicting (3). ||

Next consider any candidate a 6= y, a ∈ Ω̃ and any subgame Γy with the remain-

ing candidates Ω̃ \ a (i.e., any off-equilibrium subgame where y is not eliminated).

Denote the winner of this subgame by ŵ. By hypothesis, ŵ ∈ TC(Ω̃ \ a).

Claim 2: In the subgame Γy, it must be that ŵ = y.

First note that, y ∈ Ω̃ \ a implies that w 6∈ TC(Ω̃ \ a), and hence by hypothesis

ŵ 6= w.

Now suppose contrary to Claim 2, ŵ 6= y. Since ŵ ∈ TC(Ω̃\a), it must be that

ŵ T . . . T y. (4)

Also, since by Claim 1 and hypothesis w ∈ TC(Ω̃ \ y), and ŵ 6= w (as established

above), therefore

w T . . . T ŵ. (5)
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Now (4) and (5) together imply

w T . . . T ŵ T . . . T y,

but this contradicts (3). So Claim 2 must be true. ||

The rest of the proof is the same as in the case of having a Condorcet winner,

as follows. In the subgame with remaining candidates Ω̃, consider any voter i

such that y �i w; there will be a majority of such voters because y T w. Denote

these majority voters (and voter i is one of them) by µ1, µ2, ..., µn∗ . Denote i’s

proposed equilibrium vote at this stage (with candidates Ω̃) by ai 6= ay
i where

ai, a
y
i ∈ Ai(Ω̃, j − 1) and e(ay

µ1
, ay

µ2
, .., ay

µn∗ ) 6= y, with the last condition guaranteed

by the non-elimination property of F . But then for such i voting for ay
i weakly

dominates voting for any other ai: either y is eliminated in which case w wins (by

Claim 1); if y is not eliminated then y will win (by Claim 2). But then the majority

voters, µ1, µ2, ..., µn∗ , would vote for non-elimination of y, following which y becomes

the winner (by Claim 2). Thus, w 6∈ TC(Ω̃) cannot be the winner. Q.E.D.

The top cycle equilibrium property of our sequential elimination voting is a

nice feature. In a related context of binary voting games, McKelvey and Niemi

(1978) had shown a similar result. However, the class of binary voting games is

neither a subset nor a superset of our sequential elimination voting games, thus

the result in Theorem 3 should be of interest. While the top cycle set is a familiar

bound characterizing voting equilibria in some contexts (see sect. 3 of Dutta et

al. (2002) on this), it is not the most desirable bound, however, as it can admit

Pareto inefficient outcome. So we further ask the question of Pareto efficiency with

respect to our family of sequential elimination voting. As can be expected, given

that the class of sequential elimination voting is quite large, Pareto efficiency fails

as we show in an example in the Appendix for the weakest link voting.20 On the

other hand, Pareto efficiency may hold for other voting rules within the sequential

elimination family; for instance, sequential binary voting is known to be Pareto

efficient. We could establish only a limited result on Pareto efficiency, summarized

in the following proposition.

Proposition 1 For three candidates and an odd but arbitrary number of voters

(≥ 3), any sequential elimination voting in the family F is Pareto efficient.

20Obviously, for such a result to occur it must be that the voter preferences do not admit a
Condorcet winner; Condorcet winner, when it exists, is Pareto efficient.
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Characterization of Pareto efficient voting rules more generally under strategic

voting is an interesting and difficult issue that we hope will be addressed in future

research. Dutta and Pattanaik (1985) show Pareto efficiency for group decision

rules based on pairwise comparisons. Moulin (1988) shows Pareto optimality for

a special type of sequential binary voting using majority comparison (called the

multistage elimination tree), but under the assumption of sincere voting (see sect.

4, of ch. 9).

4 Single-round and some other voting mechanisms

In this section we look at voting rules that differ from the sequential family F
in two important respects: either (1) the elimination of candidates is not one-by-

one, or (2) the elimination which may even be sequential is through a single ballot,

or both. This complementary class21 includes all single-round voting, a plurality

runoff rule, the exhaustive ballot method, and instant runoff voting (also known as

the alternative vote method).

Let us start by examining the Condorcet consistency property (or the lack of

it) for a class of single-round voting rules where the voters simultaneously submit

a strict ranking of candidates and the voting rule elects one candidate as the clear

winner (that is, only a deterministic tie-breaker is invoked, if at all). While submis-

sion of strict-order ranking would rule out approval voting,22 included are voting

rules that ask for submission of candidates of a particular rank (such as plurality

rule, negative voting etc.): the mapping from submitted preference profiles to a

winner may well ignore part of the information.

Definition 1 A voting rule, v, is responsive if it satisfies the following two condi-

tions:

1. Consider any three-candidates voting problem and any pair of candidates x, y.

For any preference submission strategy Ri by any voter i such that x � y,

there exists a profile of preference submission strategies RN\{i} by the remain-

ing voters such that combining Ri and RN\{i} elects x as the winner, and

21It is also worth noting that, this complementary class includes any sequential elimination
voting that fails the non-elimination property of F .

22Approval voting asks voters to partition candidates into 1’s (i.e., the candidates one approves)
and 0’s (the candidates one disapproves).
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combining R̂i and RN\{i} elects y as the winner where R̂i is any submission

by voter i such that y � x.

2. Consider any three-candidates voting problem. For any voter i and any pair of

candidates x, y, there exists a profile of preference submission strategies RN\{i}

by the remaining voters such that if i places x at the top and y at the bottom

candidate x is elected, and if i places x second and y at the bottom candidate

y is elected.

Definition 2 A voting rule v is scale invariant if replicating the set of voters with

their submitted preferences by any multiple will not alter the winner.

The meaning of scale invariance should be quite clear. Responsiveness means

that for any pair of candidates any voter can become pivotal in determining the

winner among the two candidates for some strategy profile of the remaining voters.

Theorem 4 Suppose the number of voters, n, is odd. For any single-round voting

rule, v, with voters submitting a full, strict-order ranking, if v satisfies responsive-

ness and scale invariance then v is not Condorcet consistent.

In the Appendix we verify that plurality rule, negative voting, Borda rule,

Copeland rule and Simpson rule will all satisfy responsiveness and scale invariance

conditions, thus coming under the scope of Theorem 4. It is also worth pointing

out that under sincere voting both Copeland and Simpson rules are Condorcet

consistent (Moulin, 1988, ch. 9). Thus, strategic considerations could make things

worse for voters as a whole.

Proof of Theorem 4. We need to show that for some preference profile admitting

a Condorcet winner, there exists a Nash equilibrium with weakly undominated

strategies such that a non-Condorcet winner is elected. We will prove the assertion

for the case of only three candidates A = {a, b, c}.23

We start by showing that reporting one’s true preference is never a weakly

dominated strategy. Without any loss of generality assume that agent i has the

23The restriction to three candidates in this proof can be easily relaxed by assuming an intuitive
property, as follows. A voting rule satisfies weak IIA if the following hold: For every three-
candidates problem A = {a, b, c} with preference orderings RN and any k candidates preference
orderings R̃N with R̃N |{a,b,c} = RN and such that any candidate x 6= a, b, c is ranked below a, b, c

in R̃N , the same candidate is elected for both R̃N and RN .
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preference relation R which is a � b � c. Suppose by way of contradiction that there

is a nontruthful submission strategy R′ that weakly dominates the submission of R.

First consider the top position in R′ and suppose b is placed at the top. Applying

condition 1 in Definition 1 with respect to a and b, conclude that b cannot be at

the top of R′. Similarly c cannot be at the top of R′. Therefore a must be placed

at the top of R′. Next consider the second position in R′ and suppose c is placed

second, so that b is placed at the bottom of R′. Now apply condition 1 again with

respect to b and c to conclude that c cannot be in the middle. Therefore the second

position in R′ is occupied by b, hence R = R′, which is a contradiction.

Consider now a voting rule which is not Condorcet consistent with respect to

sincere voting and let RN be the preference profile in which Condorcet consistency

is violated. By the arguments above each voter submitting his true preference is

not using a dominated strategy. Consider now a sufficiently large replica of the

voting game with everybody submitting the true preferences (so that the scale

invariance of Definition 2 applies) and such that unilateral deviation does not alter

the outcome. Then the corresponding strategy combination is a Nash equilibrium

with undominated strategies yielding a candidate which is not a Condorcet winner.

Consider next voting rules which are Condorcet consistent in sincere voting,

i.e., if a Condorcet winner exists with respect to the reported preferences then that

candidate is elected. Consider a true preference profile RN for which candidate a

is a Condorcet winner. Since the number of voters is odd, we can assume without

loss of generality that there exists a majority S preferring b to c. Consider a

representative voter i from the set S and suppose w is ranked bottom according to

his true preference relation. Clearly w 6= b. We assert that, for i the strategy of

submitting b at the top and w at the bottom is not weakly dominated: first, note

that by condition 2 in Definition 1 there is a joint strategy for N \{i} such that b is

elected if i submits b at the top and w at the bottom, and w is elected if i submits b

in the middle and w at the bottom; then, in comparing i’s strategy of placing b top,

w bottom with any of his remaining strategies, condition 1 guarantees that there is

always some strategy profile for N \{i} such that the former yields i a strictly higher

payoff. Consider now any strategy combination in which every member of S puts

b at the top and his least-preferred candidate at the bottom (which is just shown

to be undominated), and the rest submit any undominated strategy. Since there

is a majority submitting b at the top, b must be a Condorcet winner with respect

to the submitted preferences. Since the voting system is Condorcet consistent with
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respect to sincere voting, b must be elected. Consider now a sufficiently large replica

of the voting games with the submitted strategies (so that the scale invariance of

Definition 2 applies) for which unilateral deviation does not alter the outcome. Then

the corresponding strategy combination is a Nash equilibrium with undominated

strategies, yielding the candidate b. But a is the Condorcet winner with respect to

true preferences. Q.E.D.

Another single-round voting rule that might be of interest is approval voting

(Brahms and Fishburn, 1978; Myerson 2002): each voter partitions the candidates

into “equally good” and “equally bad” ones by giving candidates in the first cate-

gory 1’s and the second category 0’s, and the candidate with a maximal number of

votes is elected. Because approval voting does not allow strict-order submissions,

Theorem 4 does not apply.

Proposition 2 Approval voting is not Condorcet consistent.

So far in this section we have considered only single-round voting for which the

candidates (except the winner) are all eliminated simultaneously. Next we consider

voting rules that do not belong to either the class of single-round voting considered

above or the sequential (elimination) family of section 3. Obviously one can think

of many voting rules that come under a third complementary group. We are not

going to make any general observation here. Instead, we consider three specific

voting rules from this category – plurality runoff rule,24 exhaustive ballot method,

and instant runoff voting – which are not entirely uncommon and demonstrate

key characteristics not exhibited by the first two voting families; see section 1 for

descriptions of these voting rules. We use these mainly to indicate why both one-

by-one elimination and repeated ballots are potentially important for Condorcet

consistency. Both plurality runoff rule and exhaustive ballot method share features

of weakest link voting but fail one-by-one elimination requirement;25 instant runoff

voting with elimination procedure roughly similar to weakest link voting (except for

a majority vote trigger) fails both requirements of one-by-one elimination and re-

peated ballots; and all three voting rules fail Condorcet consistency as the following

propositions show.

24This voting rule is also known under alternative names such as two-ballot, double ballot,
second ballot, majority runoff, and two round system.

25In fact, the plurality runoff rule is even closer to ‘sequential runoff election’. The latter is a
full drawn-out version of the former; see section 1.
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Proposition 3 The plurality runoff rule is not Condorcet consistent.

Proposition 4 The exhaustive ballot method is not Condorcet consistent.

Proposition 5 The instant runoff rule is not Condorcet consistent.

5 Concluding remarks

One potential downside of sequential elimination procedures is that they take longer

to run and that they are organizationally more elaborate. Interestingly we can

avoid the first downside by calling voters to step in only one time in the sequential

elimination procedure at which they submit a full strategy of the sequential game

(instead of submitting a vote or a ranking). Let us go back to our example in section

2 with its weakest link rule. Instead of calling agents stage-by-stage to submit their

votes, we can ask them to submit a strategy for the sequential game of the weakest

link at the outset. Formally such a strategy is a mapping f that maps for each

subset of candidates S ⊂ {x, y, w, z}, a single candidate f(S) in S. Given a strategy

profile by all voters we can implement the weakest link rule as if voters stepped in

stage-by-stage. The game now becomes a normal form game, which is strategically

equivalent to the sequential one, and the Condorcet winner is guaranteed to be the

outcome in an equilibrium (which is now Nash with undominated strategies). What

is then the difference between the sequential version of the weakest link and its one-

stage version (in which voters submit a ranking one time at the outset). Evidently

the only difference is with the set of available strategies in the normal form game.

Note that every ranking strategy can be embedded in a mapping strategy f of the

kind we described above but not vice-versa. There are mapping strategies which

do not correspond to a ranking. Hence the sequential elimination version allows

voters a larger set of strategies. We shall say that a strategy mapping f satisfies

the IIA (independent of irrelevant alternatives) property if it satisfies the following:

for every two sets of candidates S, T ⊂ {x, y, w, z} such that T ⊂ S and f(S) ∈ T

we have f(S) = f(T ). It can be easily verified that a strategy mapping satisfies the

IIA property if and only if it is a ranking strategy. Hence the difference between

the sequential version of the weakest link voting and the one-stage version can be

viewed as the difference between allowing voters to submit any strategy mapping

and restricting them to submit only ones that satisfy IIA. As it turns out such a

21



restriction can be quite binding from a strategic point of view and can result in less

desirable voting outcomes.

Our interest in Condorcet consistent voting rules is borne out of the fact that

voting mechanisms seem to be the most natural and decentralized way of reaching

collective decisions. Substantial research in the important literature of implemen-

tation theory investigate questions of how to achieve desirable social objectives.

Pareto efficiency, while a very weak requirement in many environments, is still one

of the most noncontroversial criteria by which any social decision procedure can be

judged. So ensuring Condorcet consistency, a necessary part of the broader objec-

tive of achieving Pareto efficiency, should be an important task of any collective

decision process.

Appendix

Justifying the use of Markov strategies.

Recall, Si is the strategy set of voter i with si : H → K s.t. si(h) ∈ C ∀h ∈ HC .

Also, let S = ΠiSi.

Definition 3 A strategy si ∈ Si is more complex than another strategy s′i ∈ Si if

∃C s.t.

(i) si(h) = s′i(h) ∀h 6∈ HC ;

(ii) s′i(h) = s′i(h
′) ∀h, h′ ∈ HC ;

(iii) si(h) 6= si(h
′) for some h, h′ ∈ HC .

The above ordering of complexity is only a partial ordering. Nevertheless, it

will prove a powerful one for our purpose. Based on this ordering let us introduce

an equilibrium definition, which is a further refinement of our earlier definition of

equilibrium solution.

Definition 4 A strategy profile s ∈ S will be called a simple equilibrium of the

weakest link voting game, if

(i) s ∈ S∗(h0);

(ii) 6 ∃i ∈ N s.t. ∃s′i ∈ Si s.t. πi(s
′
i, s−i) = πi(si, s−i),

and si is more complex than s′i, where πi(·, ·) is the payoff function of voter i.
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Note that while the definition of simple equilibrium allows history-dependent

(i.e., non-Markov) strategies,26 the second condition reflects the implicit assumption

that the voters are averse to complexity (as in Definition 4) unless it helps to

increase their payoffs. Thus, simplicity of the simple equilibrium is a very weak,

and in our view plausible, requirement for any descriptive analysis. We can therefore

use the simplicity criterion for equilibrium selection.

Theorem 5 Any simple equilibrium is also a Markov equilibrium.

Proof. Suppose s ∈ S is a simple equilibrium but not a Markov equilibrium. Then

there exists some i, C and h, h′ ∈ HC s.t. si(h) 6= si(h
′). Clearly, if HC ∩ E 6= ∅

where E is the equilibrium path corresponding to the simple equilibrium s, then

HC ∩ E is unique; that is, C happens on the equilibrium path at most once. Now

consider another strategy s′i ∈ Si s.t.

s′i(h) = si(h) ∀h 6∈ HC ;

∀h ∈ HC , s′i(h) =

{
si(HC ∩ E)

a ∈ C

if HC ∩ E 6= ∅,
if HC ∩ E = ∅,

where a denotes any arbitrary element.

It is easy to see that s′i is simpler than si. Moreover, because s′i differs from si

only for histories in HC that are off-the-equilibrium path, (s′i, s−i) will result in the

same winner as the equilibrium s, so that πi(s
′
i, s−i) = πi(si, s−i). Hence, s cannot

be a simple equilibrium – a contradiction. Q.E.D.

Proof of Proposition 1. Consider three candidates C = {x, y, z}, and an odd (but

otherwise) arbitrary number of voters. Suppose x is the winner of any sequential

elimination voting satisfying the non-elimination property and x is Pareto domi-

nated by z. Given strict preference ordering by voters, it must be that z �i x for

all i. But because x must be in the top cycle (by Theorem 3), either x T z or

x T y T z. But the first one is not possible. Therefore it must be that x T y,

combining which with the fact that z �i x for all i and the number of voters is odd

implies that z T y, contradicting x T y T z. Q.E.D.

26S∗(h0) does not employ the Markov assumption.
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Proof of Proposition 2. Consider a 3 voters, 3 candidates scenario, where the voters’

ranking of the candidates are as follows:

1 : z1, z2, z3

2 : z3, z1, z2

3 : z2, z1, z3.

z1 is the Condorcet winner. Suppose, as before, the tie-breaker is: z2, z3, z1. The

proposed equilibrium strategies under approval voting are as follows:

1. 1, 1, 0

2. 0, 0, 1

3. 0, 1, 0,

where the vote points are respectively for z1, z2 and z3. Denote this strategy profile

by s∗.

s∗ will pick z2. It is obvious that s∗ is a Nash equilibrium. Next we verify that

for any voter no other strategy weakly dominates his proposed equilibrium strategy

in s∗.

Each voter can choose one of the following 8 strategies:

1, 0, 0; 0, 1, 0; 0, 0, 1;

1, 1, 0; 0, 1, 1; 1, 0, 1;

1, 1, 1; 0, 0, 0.

First consider the strategy of voter 1. It is easy to see that

1. 1, 0, 0 1, 1, 0 1. 0, 1, 0 1, 1, 0

2. 0, 0, 1 ≺ 0, 0, 1 2. 1, 0, 0 ≺ 1, 0, 0

3. 0, 1, 1 0, 1, 1 3. 0, 0, 1 0, 0, 1

1. 0, 0, 1 1, 1, 0 1. 0, 1, 1 1, 1, 0

2. 0, 1, 1 ≺ 0, 1, 1 2. 1, 0, 0 ≺ 1, 0, 0

3. 0, 0, 1 0, 0, 1 3. 0, 0, 1 0, 0, 1

1. 1, 0, 1 1, 1, 0 1. 1, 1, 1 1, 1, 0

2. 0, 0, 1 ≺ 0, 0, 1 2. 0, 1, 1 ≺ 0, 1, 0

3. 1, 0, 0 1, 0, 0 3. 0, 0, 1 0, 0, 1
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1. 1, 0, 0 1, 1, 0

2. 1, 0, 0 ≺ 1, 0, 0

3. 0, 0, 1 0, 0, 1.

For voter 2,

1. 1, 0, 1 1, 0, 1 1. 1, 0, 1 1, 0, 1

2. 1, 0, 0 ≺ 0, 0, 1 2. 0, 1, 0 ≺ 0, 0, 1

3. 1, 0, 0 1, 0, 0 3. 0, 1, 0 0, 1, 0

1. 1, 0, 1 1, 0, 1 1. 0, 0, 1 0, 0, 1

2. 1, 1, 0 ≺ 0, 0, 1 2. 0, 1, 1 ≺ 0, 0, 1

3. 0, 1, 0 0, 1, 0 3. 0, 1, 0 0, 1, 0

1. 1, 0, 1 1, 0, 1 1. 0, 0, 0 0, 0, 0

2. 0, 1, 0 ≺ 0, 0, 1 2. 1, 1, 1 ≺ 0, 0, 1

3. 0, 1, 0 0, 1, 0 3. 0, 1, 0 0, 1, 0

1. 1, 0, 1 1, 0, 1

2. 0, 0, 0 ≺ 0, 0, 1

3. 0, 1, 0 0, 1, 0.

Finally for voter 3,

1. 1, 1, 0 1, 1, 0 1. 1, 1, 0 1, 1, 0

2. 0, 0, 1 ≺ 0, 0, 1 2. 0, 0, 1 ≺ 0, 0, 1

3. 1, 0, 0 0, 1, 0 3. 0, 0, 1 0, 1, 0

1. 1, 0, 0 1, 0, 0 1. 1, 0, 0 1, 0, 0

2. 0, 0, 1 ≺ 0, 0, 1 2. 0, 0, 1 ≺ 0, 0, 1

3. 1, 1, 0 0, 1, 0 3. 0, 1, 1 0, 1, 0

1. 1, 1, 0 1, 1, 0 1. 1, 0, 0 1, 0, 0

2. 0, 0, 1 ≺ 0, 0, 1 2. 0, 0, 1 ≺ 0, 0, 1

3. 1, 0, 1 0, 1, 0 3. 1, 1, 1 0, 1, 0
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1. 1, 0, 0 1, 0, 0

2. 0, 0, 1 ≺ 0, 0, 1

3. 0, 0, 0 0, 1, 0.

Thus, s∗ is an equilibrium. Hence, approval voting is not Condorcet consis-

tent. Q.E.D.

Proof of Proposition 3. Consider a 3 voters, 4 candidates scenario, where the voters’

ranking of the candidates are as follows:

1 : z1, z4, z2, z3

2 : z1, z2, z3, z4

3 : z3, z4, z2, z1.

z1 is the Condorcet winner. Also, z2 T z3 T z4 T z2.

Consider the tie-breaker: z2, z3, z4, z1. Under plurality-runoff rule, an equilib-

rium strategy profile is

(z2, z3, z4)

in stage 1, followed by sincere voting in stage 2. In stage 1, z1 and z4 are eliminated,

so that z2 is picked as the ultimate winner.

Given that sincere voting in stage 2 constitute a Nash equilibrium that is also

weakly undominated, we only need to check that the proposed stage 1 strategies

will be Nash equilibrium and weakly undominated. Checking for Nash equilibrium

is straightforward. So we will only verify that for any voter no other strategy weakly

dominates his proposed equilibrium strategy.

The votes by voters 1 and 2 are the unique best responses, thus also weakly

undominated. So let us consider voter 3’s strategy. Let voters 1 and 2 choose in

stage 1 respectively z1 and z3. If voter 3 chooses z4 the outcome is z3; on the other

hand, if voter 3 chooses z1 or z3 the outcome is z1, and if he chooses z2 the outcome

is z2, and both are worse compared to z3.

Thus, plurality-runoff rule is not Condorcet consistent. Q.E.D.

Proof of Proposition 4. There are three types of voters, A, B and C, with 3 voters

of each type. There are three alternatives with the following preferences:

A : x, y, z
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B : y, z, x

C : x, z, y.

The Condorcet winner is x.

Consider the following strategy profile: In round 1, type A voters vote for x and

types B and C vote for z. In round 2, if reached, each type vote for the alternative

(from the remaining two) which he prefers most.

The above strategy induces z as the winner. We claim that this strategy will

be an equilibrium. That round 2 voting satisfies the equilibrium conditions is

trivial. So consider round 1 voting. First, note that no player can gain by deviating

unilaterally in this round (this is because each type has three voters). It thus

remains to argue that no weakly dominated strategies are used in round 1. As type-

A voters vote for their top-ranked candidate, clearly the strategy is undominated.

So we need to argue that voter types B and C are not using weakly dominated

strategies in round 1. First consider type-C voters. Let the strategy combination

in round 1 be as follows: all A-type vote for y, all B-type vote for z, two C-type vote

for z and one C-type votes for x. This leads to z being elected. If on the other hand

one of the two C-type voters who voted for z now switches to either y or x, then x

will be eliminated and y is the ultimate outcome, which is worse for a type-C voter.

Consider now type-B voters. Let the strategy combination in round 1 be follows:

all A-type vote for x, all C-type vote for z, one of B-type votes for x and the other

two vote for z. For this profile the outcome is z. If, however, one of the voters who

earlier voted for z now switches to either y or x, then y will be eliminated and x is

the ultimate outcome, which is worse for a type-B voter. Q.E.D.

Proof of Proposition 5. Consider a replicated version of the preferences in section

2 example involving three types of voters A, B and C, with 3 voters of each type:

A : y, x, z, w

B : z, x, y, w

C : w, x, z, y.

The Condorcet winner is x.

First we claim that in equilibrium (assuming an equilibrium exists27) each voter

will place his top-ranked candidate ahead of others. Without loss of generality

27If there is no equilibrium then our Proposition trivially holds.
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assume that this voter’s (whom we denote voter i) true preference is: y, x, z, w.

Note that x cannot be placed top in Ri. Otherwise, consider the remaining 8 voters

and assume that four of them submit y, x, z, w and four submit x, z, y, w. Then

clearly placing y at the top (which will lead to y) is better than placing x at the

top (which leads to x). Using the same argument, conclude that neither z nor w

can be placed top in Ri. Hence it must be that y is placed top in Ri.

Given that each voter will place his top-ranked candidate ahead of others, x will

be eliminated in the first count. Thus, the instant runoff rule will not be Condorcet

consistent. Q.E.D.

Theorem 6 Assume N ≥ 2K − 1. Then in the weakest link game there exists s∗

which is SPE and not weakly dominated.

Proof. To prove existence we need to show that there exists a strategy profile s∗

such that at each stage it is Nash and undominated assuming that all players play

according to s∗ in any later stages.

Denote v to be a generic voter. Define s∗ inductively in subgames with a given

number of candidates as the inductive variable, as follows.

Let, ∀h s.t. k(h) = 2 (k(h) denotes the number of voters at h), voter v choose

sincere voting as his strategy, s∗v(h). Clearly such a strategy profile is an undomi-

nated Nash equilibrium in this last stage.

Now suppose for all h′ such that k(h′) ≤ J − 1, s∗(h′) is defined.

We need to define a profile of choices for all voters s∗(h) ∀h s.t. k(h) = J

such that s∗(h) is an undominated Nash equilibrium assuming that all follow s∗(h′)

∀k(h′) ≤ J − 1.

Fix any h s.t. k(h) = J . Let C = {c1, ..., cJ} be the set of candidates at h.

Without any loss of generality assume that ci is higher in the tie-breaking rule than

cj if and only if i < j.

Also let σ(c) be the winner if c is eliminated at the start of play of the subgame

Γ(h),28 and Mv = arg maxc∈C πv(σ(c)), where πv(·) is voter v’s payoff resulting from

the winning candidate. Note that Mv need not be unique. Finally, let M c
v = C\Mv.

First note the following result.

Lemma 1 In the subgame Γ(h), any c ∈ M c
v is not weakly dominated for v.

28σ(c) is unique by the assumption that the voters use Markov strategies.
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Proof of Lemma 1. Fix c /∈ Mv and any c′ 6= c; c′ may or may not belong to Mv.

We want to argue that switching his vote from c to c′ would be worse for voter v

for at least one profile of other voters’ votes.

If the tie-breaker places some ĉ ∈ Mv ahead of c and ĉ 6= c′, let the distribution

of votes be as follows:

voter v: c;

others: w(ĉ) = 0,

w(c) = 0,

and w(c̃) > 0, ∀c̃ 6= ĉ, c,

where w(·) denotes the number of votes in favor of a candidate. Distribution of

votes as above leads to the elimination of ĉ. However, if v switches to c′ while the

rest stay with their votes as above, candidates ĉ and c will be tied with minimal

votes and by the tie-breaker c will be eliminated, which is worse for voter v. If

ĉ = c′, the argument holds with even greater force as c would be eliminated (as v

switches to c′) without having to invoke the tie-breaker.

If the tie-breaker is such that c is placed ahead of all ĉ ∈ Mv, let the distribution

of votes be as follows:

voter v: c;

others: w(c̆) = 1 for some c̆ ∈ Mv,

w(c) = 0,

and w(c̃) > 1, ∀c̃ 6= c̆, c,

which leads to the elimination of c̆. However, if v switches to c′ while the rest stay

with their votes as above, c will be unique with minimal votes and therefore be

eliminated, which is worse for voter v. This completes the proof of Lemma 1. ||

Next for any k = 1, .., J we define the following property.

Definition 5 Any k ∈ {2, .., J} satisfies property α if there exists a set of voters

Ω = (u1, v1, u2, v2, .., uk−1, vk−1) consisting of 2(k − 1) different voters such that

cj ∈ M c
v for v = uj, vj for all j < k. (6)

Also, to simplify the exposition we assume that k = 1 always satisfies property α.

Lemma 2 Consider any k ≤ J . Suppose that k satisfies property α and k +1 does

not satisfy property α. Then there exist a choice profile s∗(h) that is Nash and is

not weakly dominated.
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Proof of Lemma 2. Given that k satisfies property α, there exists a set of voters Ω

(that is empty if k = 1) consisting of 2(k−1) different voters (u1, v1, u2, v2, .., uk−1, vk−1) ⊂
N such that

cj ∈ M c
v for v = uj, vj for all j < k (7)

and there exists a set of voters V ⊂ N\Ω such that

| V |= N − 2(k − 1)− 1 (8)

and

ck ∈ Mv for any v ∈ V. (9)

Let

Ck =
{
c ∈ C

∣∣σ(c) = σ(ck)
}

and C
k

= {C\Ck} ∩ {ck+1, .., cJ}.

Since the preferences of each agent is strict it follows that

C
k ⊂ M c

v for any v ∈ V. (10)

Also since | V |= N − 2(k − 1) − 1, | C
k |≤ J − k and by assumption N ≥

2K − 1 ≥ 2J − 1 and k ≤ J, it follows that the number of voters in V is at least

twice the number of candidates in C
k
. But this implies that there exists a choice

profile {s∗v(h)}v∈V such that

s∗v(h) ∈ C
k

for each v ∈ V, (11)

|{v ∈ V |s∗v(h) = c}| ≥ 2 for each c ∈ C
k
. (12)

(The second condition says that each candidate c ∈ C
k

receive at least two votes).

Next set the choice s∗v(h) of each v ∈ Ω to be such that

s∗v(h) = cj for v = uj, vj. (13)

Finally, denote the remaining voter N\{V ∪ Ω} by x and set the choice of voter x

to be such that
s∗x(h) ∈ M c

x\ck if M c
x\ck is not empty

s∗x(h) ∈ ck otherwise.
(14)

Now by Lemma 1 and conditions (7), (10), (11), (13) and (14) the choice s∗v(h) is

not dominated in this round for any voter v. Next we show that s∗(h) = {s∗v(h)}v∈N

is Nash. There are two possible cases.
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Case A. M c
x 6= ck. First, note that by (12) and (13), in this round each

candidate c ∈ C
k ∪ {c1, .., ck−1} receives at least two votes, ck receives zero, and

any other c′ ∈ Ck ∩{ck+1, . . . , cJ} receives at most one vote. This means that some

candidate c ∈ Ck is eliminated and σ(ck) will be the final winner. Moreover, since

ck receives zero vote it must be that the eliminated candidate ce ∈ Ck receives zero

vote and e ≥ k.

Since, by (9), σ(ck) is a best outcome for each v ∈ V it follows that s∗v(h) is a best

choice for any v ∈ V . Moreover, each voter v ∈ Ω cannot change the final outcome

σ(ck) by changing its action because the choice s∗v(h) ∈ {c1, .., ck−1} receives at

least two votes, the eliminated candidate ce has zero vote and e ≥ k. Finally, voter

x cannot change the final outcome σ(ck) by changing its action because either the

choice s∗x(h) ∈ {c1, .., ck−1} ∪ C
k
, in which case s∗x(h) receives at least three votes

and as before ce has zero vote, or s∗v(h) ∈ Ck ∩ {ck+1, . . . , cJ} in which case s∗x(h)

receives one vote and any deviation results in some candidate in the set Ck to be

eliminated.

Case B. M c
x = ck. Then for each c′ 6= ck, c′ ∈ Mx. Therefore

∀c′, c′′ 6= ck, σ(c′) = σ(c′′). (15)

This implies that C
k

= {ck+1, .., cJ}. This together with (12) and (13) imply that

in this round each candidate c 6= ck receives at least two votes, ck receives one

vote (the vote of x), ck is eliminated and σ(ck) will be the final winner. As in the

previous case, since this is a best outcome for each v ∈ V it follows that s∗v(h) is a

best choice for any v ∈ V . Next note that for each voter v = uj, vj for j < k we

have s∗v(h) = cj ∈ M c
v and thus ck ∈ Mv. Therefore, eliminating ck is also the best

outcome for any v ∈ Ω. Finally, note that voter x cannot change the final outcome

σ(ck) by changing its action because every c 6= ck receives two votes. ||

Lemma 3 Suppose that J satisfies property α. Then there exist a choice profile

s∗(h) that is Nash and is not weakly dominated.

Proof of Lemma 3. Given that J satisfies property α, there exists a set of voters

Ω = (u1, v1, u2, v2, .., uJ−1, vJ−1) consisting of 2(J − 1) different voters such that

cj ∈ M c
v for v = uj, vj for all j ≤ J. (16)
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Set the choice profile {s∗v(h)}v∈Ω to be such that

s∗v(h) = cj if v = uj, vj. (17)

Also partition the remaining agents as follows:

ΓJ =
{
v ∈ N\Ω|M c

v = cJ
}

Γ
J

=
{
v ∈ N\Ω|M c

v 6= cJ
}

.

Let the choice profile {s∗v(h)}v∈N\Ω to be such that

s∗v(h) ∈

{
cJ if v ∈ ΓJ

M c
v\cJ if v ∈ Γ

J

and

∀c, c′ 6= cJ s.t. σ(c) = σ(c′), |n(c)− n(c′)| ≤ 1 (18)

where

n(c) = |{v ∈ V |s∗v(h) = c}| for any c.

(Since (18) is used only when ΓJ is non-empty, the strategy profile is written so that

(18) is required to be satisfied only if ΓJ is non-empty. See below the explanation

following (20) why (18) is feasible.) By Lemma 1 s∗(h) is not weakly dominated.

Next we show that it is a Nash equilibrium.

Case A. ΓJ is empty. Then every c 6= cJ receives at least two votes, cJ receives

no votes and is eliminated. This together with cJ having the lowest rank in the

tie-breaking rule imply that no player can change the final outcome by changing

their choices and thus s∗(h) constitutes a a Nash equilibrium.

Case B. ΓJ is non-empty. Then

∀c′, c′′ 6= cJ , σ(c′) = σ(c′′) 6= σ(cJ). (19)

Then since for each v /∈ ΓJ there exists a c 6= cJ such that c ∈ M c
v , it follows that

∀v /∈ ΓJ , cJ ∈ Mv. (20)

(Note that if ΓJ is non-empty, (18) is possible because of the following reasons.

Each cj, j < J receives two votes from set of voters Ω. The only other voters

that vote for the candidates cj, j < J is the set Γ
J
. Because ΓJ is non-empty it

follows from (19) that for each v ∈ ΓJ , M c
v = {c1, . . . , cJ−1}; therefore votes by the
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members of Γ
J

can be arranged so that (18) is satisfied: the first member of Γ
J

votes for c1, the second for c2 etc. until the (J − 1)st member votes for cJ−1, the

J-th member for c1, (J + 1)st for c2 etc.)

Now there are two possibilities.

Subcase 1: Candidate cJ is eliminated. Then, by (20), this is the best outcome

for any v /∈ ΓJ and therefore, each such v is choosing his optimal action. Moreover,

each v ∈ ΓJ cannot change the outcome by deviating from s∗v(h) because s∗v(h) = cJ

and cJ is the candidate that is eliminated.

Subcase 2: Some c 6= cJ is eliminated. Then, by the tie-breaking rule

n(c) < n(cJ) (21)

Next note that by (19) and the definition of ΓJ , this is the best outcome for any

v ∈ ΓJ and therefore, each such v is choosing his optimal action. Next we show

that no voter v /∈ ΓJ can change the outcome by deviating. Suppose not; then

some voter v /∈ ΓJ can deviate from s∗v(h) = cj(6= c) for some j < J and change the

final outcome σ(c) by voting for another candidate. Since the outcome is changed,

by (19), it must be that cJ is eliminated. This implies that

n(c) + 1 ≥ n(cJ)

and

n(cj)− 1 ≥ n(cJ)

But this together with (19) imply that

n(cj) > n(c) + 1

But this contradicts condition (18). Therefore no v /∈ ΓJ can change the final

outcome by deviating. ||

The last two lemmas together establish that there exists a choice profile s∗(h)

that is Nash and is not weakly dominated. Q.E.D.

An Example of a winner in the weakest link voting
that is Pareto dominated.
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Background

We have the following from the existence proof.

Let, ∀h s.t. k(h) = 2 (k(h) denotes the number of candidates), voter v choose

sincere voting as his strategy, s∗v(h). Clearly such a strategy profile is an undomi-

nated Nash equilibrium in this last stage.

Now suppose for all h′ such that k(h′) ≤ J − 1, s∗(h′) is defined.

We need to define a profile of choices for all voters s∗(h) ∀h s.t. k(h) = J

such that s∗(h) is an undominated Nash equilibrium assuming that all follow s∗(h′)

∀k(h′) ≤ J − 1.

Fix any h s.t. k(h) = J . Let C = {c1, ..., cJ} be the set of candidates at h.

Without any loss of generality assume that ci is higher in the tie-breaking rule than

cj if and only if i < j.

Also let σ(c) be the winner if c is eliminated at the start of play of the subgame

Γ(h), and Mv = arg maxc∈C πv(σ(c)), where πv(·) is voter v’s payoff resulting from

the winning candidate. Note that Mv need not be unique. Finally, let M c
v = C\Mv.

We have already established the following result in the proof of Theorem 6 that

we will also use for the counter-example:

In the subgame Γ(h) with set of remaining candidates C, any c ∈ M c
v

is not weakly dominated for v.

Example:

4 candidates, 9 voters of 3 different types A, B, C with the following preferences:

• A(×3): z1, z2, z4, z3

• B(×3): z3, z1, z2, z4

• C(×3): z4, z3, z1, z2.

The strategies in each subgame:

1. C consists of two candidates: sincere voting.

2. C = z1, z2, z3. Here z3 is the CC and therefore the winner.

3. C = z1, z2, z4. Here z1 is the CC and therefore the winner.
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4. C = z1, z3, z4. Here As choose z1, Bs choose z1 and Cs choose z4 and z3 is

eliminated and z1 ends up winning.

Note that since no agent is pivotal the above choices are best responses.

Moreover, in this case z1 ∈ M c
A = {z1, z2}, z1 ∈ M c

B = {z1, z3} and z4 ∈
M c

C = {z3, z4}; therefore these choices are not weakly dominated.

5. C = z2, z3, z4. Here As choose z2, Bs choose z2 and Cs choose z4 and z3 is

eliminated and z2 ends up winning.

Note that since no agent is pivotal the above choices are best responses.

Moreover, in this case z2 ∈ M c
A = {z4, z2}, z2 ∈ M c

B = {z2, z3} and z4 ∈
M c

C = {z3, z4}; therefore these choices are not weakly dominated.

6. C = z1, z2, z3, z4. Here As choose z4, Bs choose z3 and Cs choose z2 and z1 is

eliminated and z2 ends up winning.

Note that since no agent is pivotal the above choices are best responses.

Moreover, in this case z4 ∈ M c
A = {z1, z4}, z3 ∈ M c

B = {z1, z2, z3} and z2 ∈
M c

C = {z1, z2, z3}; therefore these choices are not weakly dominated.

The winner is z2 and is Pareto dominated by z1.

Verification of responsiveness and scale-invariance
conditions (Theorem 4).

Plurality rule. For plurality rule, what matters is whether a candidate is placed

at the top. Any other rank in strict-order submissions can be considered equivalent.

Let us check condition 1. Consider a pair of candidates a, b and suppose some voter

i votes for a. Of the others, let (n − 1)/2 voters vote for a and the remaining

(n− 1)/2 voters vote for b. This means a will be elected. But if i were to vote for

b then b is elected. Thus condition 1 is satisfied.

We check condition 2 with an eye also on exactly how the condition is used in

Theorem 4 proof. Fix voter i with his true preference as a � b � c. Also assume

that the tie-breaker places b ahead of c. Among the other voters let one voter vote

for a, (n − 1)/2 − 1 voters vote for b, (n − 1)/2 voters vote for c. Given this, if i
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votes for b by placing b at the top then b is elected (by invoking the tie-breaker);

if i does not vote for b (by placing b not at the top) then c is elected. This verifies

condition 2.

Negative voting. The negative voting rule29 allows the voters to express only their

least desired candidate by giving a point, 0, while giving the remaining candidates

all 1’s. The candidate with the highest total points, i.e. the candidate with the

fewest 0’s, wins.

For negative voting, the only thing that matters is whether a candidate is placed

at the bottom. Any other rank in strict-order submissions can be ignored.

To check that negative voting comes under the scope of Theorem 4, we shall

check only condition 1; the first part of Theorem 4 proof that applies to voting rules

that are not Condorcet consistent under sincere voting can be invoked (negative

voting is not Condorcet consistent under sincere voting).30 So consider a pair of

candidates a, b and suppose some voter i votes against b by placing him at the

bottom. Let the remaining (n − 1) voters place c at the bottom. This means a is

elected. But if i were to place a at the bottom then b is elected. Thus condition 1

is satisfied.

Borda rule. Check condition 1 with respect to the pair of candidates a, b. Voter

i can place a ahead of b in one of three ways: (1) a � b � c; (2) a � c � b; (3)

c � a � b. In each of these three cases, let (n − 1)/2 voters submit a � b � c

and the remaining (n − 1)/2 voters submit b � a � c. With i making any of

three submissions listed above, candidate a will be elected, whereas i submitting

b � a � c or b � c � a or c � b � a would elect b.

To check condition 2, let i submit b � a � c. Let RN\i be such that (n−1)/2−1

voters submit b � c � a and (n − 1)/2 + 1 voters submit c � b � a, so that the

overall Borda scores are BS(b) = (5/2)(n − 1) + 2 = BS(c), BS(a) = n + 1;

thus, assuming tie-breaker b, c, a, candidate b is elected. On the other hand, when

i submits a � b � c instead, the Borda scores change to: BS(b) = (5/2)(n − 1) +

1, BS(c) = (5/2)(n−1)+2, BS(a) = n+2 so that c is elected, satisfying condition

2.

29It is also known as the anti-plurality rule (p. 231, Moulin, 1988). See also Myerson (2002).
30Consider a 3 voters, 3 candidates scenario, where the voters’ ranking of the candidates are:

z1, z2, z3 (voter 1); z2, z3, z1 (voter 2); z1, z2, z3 (voter 3). The Condorcet winner is z1. However,
for the tie-breaker z2, z3, z1, sincere voting would elect z2.
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Copeland rule. (Moulin 1988, ch. 9). First recall how Copeland rule is defined.

Compare candidate a with every other candidate x. Score +1 if a majority prefers

a to x, −1 if a majority prefers x to a, and 0 if it is a tie. Summing up those scores

over all x, x 6= a, yields the Copeland score of a. A candidate with the highest such

score, called a Copeland winner, is elected.

Now let us check condition 1 with respect to a, b. Again, voter i can consider

placing a ahead of b as follows: (1) a � b � c; (2) a � c � b; (3) c � a � b.

In each of these three cases, again let (n − 1)/2 voters submit a � b � c and

the remaining (n − 1)/2 voters submit b � a � c. With i making any of three

submissions listed above, scores of a against b and a against c will be +1 each, so

that the Copeland score of a is +2, electing a as the winner (Copeland scores of

b and c will be respectively 0 and −2). Alternatively, if i submits b � a � c or

b � c � a or c � b � a, Copeland score of b will be +2, electing b as the winner

(Copeland scores of a and c will be respectively 0 and −2).

We now verify condition 2 for the candidates pair a, c with c always placed at

the bottom. Let(n − 1)/2 voters submit a � c � b and (n − 1)/2 other voters

submit c � b � a. Now if i submits a � b � c, let us calculate Copeland scores.

Comparing a, b yields a the score +1 and comparing a, c yields a the score +1, so

candidate a’s Copeland score is +2, electing a.

On the other hand, if i were to submit b � a � c instead, Copeland scores

are calculated as follows. Candidate a: comparison a, b yields a the score −1 and

comparison a, c yields a the score +1, so a’s Copeland score is 0. Candidate b:

against a, b’s score is +1, and comparison b, c yields b the score −1, so b’s Copeland

score is 0. Candidate c: c’s score against a is −1, and against b the score is +1. So

c’s Copeland score is 0. Now using the tie-breaker c, b, a or c, a, b, the winner is c.

Simpson rule. (Moulin 1988, ch. 9). Recall how Simpson rule is defined. Consider

candidate a, and for every other candidate x, compute the number N(a, x) of voters

preferring a to x. The Simpson score of a is the minimum of N(a, x) over all x, x 6= a.

A candidate with the highest such score, called a Simpson winner, is elected.

Let us now check condition 1 with respect to a, b. Voter i places a ahead of b

in any of following three submissions: (1) a � b � c; (2) a � c � b; (3) c � a � b.

Let (n− 1)/2 voters submit a � b � c and the remaining (n− 1)/2 voters submit

b � a � c.
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If i adopts (1), SSc(a) = (n − 1)/2 + 1 whereas SSc(b) = (n − 1)/2 and

SSc(c) = 0, thus Simpson winner is a. Alternatively, if i submits b � a � c or

b � c � a or c � b � a, then SSc(a) = (n − 1)/2, SSc(b) = (n − 1)/2 + 1 and

SSc(c) ≤ 1; thus Simpson winner is b. Following a similar procedure it is easy to

check that Simpson winner is a if i adopts (2) or (3), whereas Simpson winner is b

if i submits b � a � c or b � c � a or c � b � a. Thus, condition 1 is satisfied.

We will now verify condition 2 for the candidates pair a, c with c always placed at

the bottom. Let(n−1)/2 voters submit a � c � b and (n−1)/2 other voters submit

c � a � b. Now if i submits a � b � c, then SSc(a) = (n − 1)/2 + 1, SSc(b) =

0, SSc(c) = (n − 1)/2 so that Simpson winner is a. On the other hand, if i were

to submit b � a � c instead, Simpson scores are: SSc(a) = (n − 1)/2, SSc(b) =

1, SSc(c) = (n − 1)/2. Thus, with a tie-breaker placing c ahead of a, Simpson

winner is c. ||

Note that, for all of the voting rules verified above Definition 2 will also be

satisfied.

Breakdown of the 2012 Olympic Games Host City Compe-

tition Votes

(Source: http : //news.bbc.co.uk/sport1/hi/othersports/olympics2012/4656529.stm)

First round

London 22

Paris 21

Madrid 20

New York 19

Moscow 15 (eliminated)

Second round

Madrid 32

London 27

Paris 25

New York 16 (eliminated)

Third round

London 39
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Paris 33

Madrid 31 (eliminated)

Fourth round

London 54

Paris 50 (eliminated)
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