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Abstract

Many bargaining situations share the following characteristics: a central party makes an

offer to a group of individuals; the proposals are restricted to treat all group members

equally; and decisions of the group are reached through a voting process, with the vote

binding all the members of the group. Examples include debt restructuring negotiations

between a troubled company and its bondholders; shareholder votes on executive com-

pensation; and collective bargaining between a firm and union members. We study how

the equilibrium payoffs in such bargaining situations depend on the decision rule adopted

by the group.

JEL classification: C7; D7; D8.

Keywords: Strategic voting; agenda setting; multilateral bargaining.



1 Introduction

Many bargaining situations share the following characteristics: a central party makes

an offer to a group of individuals; the proposals are restricted to treat all group mem-

bers equally; and decisions of the group are reached through a voting process, with the

vote binding all the members of the group. Examples include debt restructuring negoti-

ations between a troubled company and its bondholders; shareholder votes on executive

compensation; and collective bargaining between a firm and union members.

In this paper we ask the following question: how does the voting rule used by the

group affect bargaining outcomes? Conventional wisdom suggests that voting rules that

require the consent of a large fraction of group members improve the group’s bargaining

position, and hence the welfare of group members. However, this argument has at

least two shortcomings. First, voting rules which require a high level of consensus may

make agreement hard to achieve, and lead the group to reject even desirable bargaining

proposals. Second, as the recent strategic voting literature (Austen-Smith and Banks

1996, Feddersen and Pesendorfer 1997) has shown, the most consensus-driven voting rule

of all — unanimity rule — aggregates the information of group members poorly compared

to alternatives. In this paper we analyze the extent to which the conventional wisdom

is, and is not, correct.

Specifically, we consider the following class of bargaining environments. A large group

of ex ante identical individuals foresees that at some later date it will have to bargain

with an opposing party. While still under the veil of ignorance, the group selects a

decision rule. The bargaining game, when it arrives, consists of the opposing party

making a take-it-or-leave-it offer, and the group deciding whether to accept or reject the

offer. We restrict attention to decision rules in which each member of the group votes

on the proposal, which is accepted if and only if the number of votes in favor exceeds a

prespecified threshold. Leading examples are the simple majority rule, the two-thirds

supermajority rule, and the unanimity rule.
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To illustrate our results it is useful to consider the following example. A firm, which is

initially wholly owned by a single individual, seeks to restructure its outstanding debt by

offering a group of creditors a share of its future cash flow. If creditors decline the offer,

they liquidate the firm and obtain $100, with the original owner receiving nothing. The

future cash flow of the firm (if not liquidated) is uncertain: it is either $100 or $200, with

ex ante equal probability. The debtor and each creditor possess private and partially

informative information about the relative likelihood of the two valuations.

Suppose first that the creditors are using a majority rule. The recent “strategic

voting” literature on how agents vote when in possession of private information has

established that as the number of voters grows large the aggregate decision asymptotes

to the decision that would have been made under full information. We extend this

literature to the case in which the issue being voted over is itself endogenous. For the

case of majority voting rules, we show (Section 4) that the firm’s choice boils down to the

following: either it can offer creditors 1/2 of its cash flow, so that they accept whenever

the true cash flow of the firm is $200; or it can offer creditors all its cash flow, and gain

acceptance all the time. Clearly the former is the more attractive option. In equilibrium,

then, the firm offers 1/2 of its cash flow. If the true cash flow is $200 the creditors accept,

and receive a payoff of $100; while if the true cash flow is $100, creditors reject the offer,

and obtain $100 in liquidation.

This outcome contrasts sharply with that which arises when the unanimous agree-

ment of creditors is required for acceptance. As previous authors (see Feddersen and

Pesendorfer 1998) have shown, information aggregation fails when the unanimity rule

is used. That is, creditors will reject some offers that (under full information) deliver

more than the liquidation value, but accept others that deliver less. Roughly speaking,

whether or not creditors are better off employing unanimity rule instead of majority rule

depends on whether the firm internalizes these errors or exploits them.

For the parameter values given above, it is the former. As we show (Section 5) the
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errors made under unanimity are not entirely random. In particular, creditors will always

reject an offer of one half of the firm. That is, for low offers there are only mistaken

rejections, and no mistaken acceptances. However, as the offer increases, and so becomes

more attractive to creditors, the nature of errors shifts from mistaken rejections of good

offers to mistaken acceptances of bad offers. This gives the firm the incentive to make

an offer strictly better than 1/2 of its cash flow. In this case, the conventional wisdom

we alluded to above is correct. In spite — indeed, because — of the unanimity rule’s

failure to effectively aggregate information, creditors’ equilibrium welfare is higher when

it is used.

In the above example, the firm makes a relatively low offer (1/2 cash flow) when facing

a majority rule. Creditors obtain more using the unanimity rule because it engenders

mistakes, and these mistakes in turn dissuade the firm from making a low offer. However,

under different circumstances the firm makes a high offer against a majority rule. In such

circumstances, the mistakes that arise under unanimity rule hurt the creditors.

For instance, suppose now that the firm’s cash flow (absent liquidation) is either $150

or $200. When facing a majority rule the firm must choose between offering 1/2 of its

cash flow and gaining acceptance only in the latter case, and offering 2/3 of its cash

flow and gaining acceptance always. It is easily seen that it prefers the latter strategy.

In this situation, the firm is able to exploit the errors that arise when creditors use the

unanimity rule. As we show (Lemma 6) there exists an offer strictly less than 2/3 that

the creditors always accept when using the unanimity rule. That is, just as all errors in

response to an offer of 1/2 take the form of mistaken rejections, all errors in response to

the offer 2/3 take the form of mistaken acceptances. In this instance the conventional

wisdom is wrong: far from being the “toughest” voting rule, unanimity is actually the

softest. It leads creditors to accept offers that they would otherwise reject. In this case,

creditors obtain a better outcome using a majority voting rule.

Our main results generalize the above examples by providing conditions under which
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the group is better off using unanimity rule. The choice of voting rule has an effect on

equilibrium outcomes only if group members are in some way heterogeneous. There are

two possibilities. First, they may have different information with respect to the relative

desirability of the offer compared to the status quo. Second, their intrinsic preferences

over outcomes may differ even conditional on full information. In the above example

only the former type of heterogeneity exists. One might be concerned that the intuition

we gave for this example, based as it was on information aggregation, is knife-edge.

We consider a general model that allows for both types of heterogeneity, and contains

pure private values and pure common values frameworks as special cases. The main

assumption we make is that the proposer and the group members have diametrically

opposing preferences: offers which one side prefers are disliked by the other side. This

assumption is satisfied in many common bargaining situations.

For this fairly general set of preferences, we are able to evaluate the asymptotic (as

the group size grows large) equilibrium payoffs arising when the group uses a majority

rule; and to bound the equilibrium payoffs for the unanimity rule asymptotically. Given

economic fundamentals, these results are enough to rank alternate agreement rules from

the perspective of the two sides. In cases in which group members’ heterogeneity derives

primarily from their distinct information (that is, in the close to common values case)

we are able to go further, and give a succinct condition for when the group is (and

is not) better off using the unanimity rule. As illustrated by our example above, the

key determinant is whether, when facing a (hypothetically) fully informed group, the

proposer would prefer to make a low offer that is only sometimes accepted, or a high

offer that is always accepted.

Inevitably our analysis neglects some important issues. We focus almost exclusively

on equilibrium payoffs as the group size grows large. The chief reason for this focus is

that it allows us to establish our results with fewer assumptions on preferences and the

distributional properties of agents’ information. Numerical simulations suggest that the
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group size needed for our asymptotic results to apply is not large — in many cases the

equilibrium with ten agents is very close to the limiting equilibrium.

Related, we ignore the possibility of communication between agents prior to the vote.

To some extent this is consistent with our focus on large groups. Moreover, it is worth

pointing out that since agents’ preferences include a private values component, the extent

to which they are able to communicate their private information to each other may be

limited. As a result, even if communication generates some public information, there

may still be some private information. In general, our results would be qualitatively

unchanged if in addition to observing their own private signals, agents also had access to

a public signal.1

Finally, we take as given the information possessed by group members. As noted

above, on a technical level our analysis constitutes an extension of a strategic voting game

to allow for the endogeneity of the issue being voted over to the voting rule. Other authors

have extended this same basic environment to allow for costly information acquisition,2

as well as pre-vote communication (see footnote 1). We leave the integration of these

distinct and individually important extensions for future work.

Our paper is somewhat related to the extensive recent literature on multilateral bar-

gaining, in which more than two agents must agree on the division of a pie.3 However,

in many negotiations a proposal must treat all members of some group equally, either

for technological reasons (e.g., the building of a bridge), or for institutional/legal reasons

(e.g., wage determination, debt restructuring). The literature analyzing this important

class of bargaining problems is much smaller. In a complete information setting Banks

and Duggan (2001) establish equilibrium existence and core equivalence, while Cho and

Duggan (2003) and Cardona and Ponsati (2005) establish uniqueness. Closest to us are

Manzini and Mariotti (2005), who consider a bargaining game between a group and a

1For analysis of communication prior to decision making, see Coughlan (2000), Austen-Smith and
Feddersen (2002), Doraszelski et al (2003), and Gerardi and Yariv (2005).

2See Persico (2004), Martinelli (2005), and Yariv (2004).
3The classic paper is Baron and Ferejohn (1989).
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central agent, and compare different agreement rules. All the above papers are determin-

istic complete information models. As such, informational issues do not arise. Moreover,

since agreement is always reached, there is no risk of breakdown of agreement from having

a “tougher” bargaining stance. In contrast, the possibility of failing to agree to a Pareto

improving proposal is central to our analysis and results. Finally, Chae and Moulin

(2004) provide a family of solutions to group bargaining from an axiomatic viewpoint.

Elbittar et al (2004) provide experimental evidence that the choice of voting rule used

by a group in bargaining affects outcomes.

In our model, bargaining takes place under two-sided asymmetric information. The

literature on bilateral bargaining under asymmetric information is extensive.4 We add

to this literature by considering how the internal organization of one of the parties affects

equilibrium outcomes.

On the technical side, our work is closely related to the growing literature on strate-

gic voting — see especially Feddersen and Pesendorfer (1997, 1997, 1998). Our paper

contributes to this literature by endogenizing the agenda to be voted upon.

The paper proceeds as follows. Section 2 describes the model. Section 3 analyzes some

general properties of the voting stage. Section 4 characterizes the equilibrium outcomes

of the bargaining game when the group uses a majority rule. Section 5 conducts the same

exercise when the group adopts unanimity rule. Sections 6 and 7 compare outcomes from

different rules. Section 8 concludes. All proofs are in Appendix A.

2 Model

There is a single proposer (agent 0), and a group of n ≥ 2 responders, labelled i =

1, . . . , n. The timing is as follows: (1) Under the veil of ignorance, the coalition of

responders fixes a decision making process. As noted, we restrict attention to voting

4See Kennan and Wilson (1993) for a review. Of most relevance for our paper are Samuelson (1984),
Chatterjee and Samuelson (1987), Evans (1989), Vincent (1989), and Schweizer (1989), all of which
study common values environments.
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rules: a proposal is accepted and implemented if and only if some fraction α or more

of responders vote to accept. That is, the decision rule is completely indexed by the

parameter α ∈ [0, 1]. Common examples include the simple majority rule, α = 1/2;

the supermajority rule, α = 2/3; and the unanimity rule, α = 1. (2) Each agent

i ∈ {0, 1, . . . , n} privately observes a random variable σi ∈ [σ, σ̄]. As we detail below,

the realization of σi affects agent i’s preferences and/or information. (3) The proposer

selects a proposal x ∈ [0, 1]. (4) Responders simultaneously cast ballots to accept or

reject the proposal. (5) If nα or more responders vote to accept,5 it is implemented.

Otherwise, the status quo prevails.

Preferences

Agent i’s relative preferences over the proposal x and the status quo are determined

by σi and an unobserved state variable ω ∈ {L, H}. We write responder i’s utility

associated with offer x as Uω (x, σi, λ), where λ ∈ [0, 1] is a parameter that determines

the relative importance of ω and σi. We assume that Uω (x, σi, λ) is independent of σi

at λ = 0 and that UL (·, ·, λ) ≡ UH (·, ·, λ) at λ = 1. Likewise, we write Ūω (σi, λ) for

responder i’s utility under the status quo, and make parallel assumptions for λ = 0, 1.

Note that our framework includes pure common values (λ = 0) and pure private values

(λ = 1) as special cases. A key object in our analysis is the utility of a responder from

the proposal above and beyond the status quo. Accordingly, we define

∆ω (x, σi, λ) ≡ Uω (x, σi, λ) − Ūω (σi, λ) .

Similarly, we write the proposer’s utility from having his offer accepted as V ω (x, σ0),

and his utility under the status quo as V̄ ω (σ0). Note that we do not require the relative

weights of ω and σ0 in determining the proposer’s preferences to match the relative

weights (given by λ) of ω and σi in determining responder i’s preferences.

5Throughout, we ignore the issue of whether or not nα is an integer. This issue could easily be
handled formally by replacing nα with [nα] everywhere, where [nα] denotes the smallest integer weakly
greater than nα. Since this formality has no impact on our results, we prefer to avoid the extra notation
and instead proceed as if nα were an integer.



8

For all preferences λ < 1, the realization of σi provides responder i with useful (albeit

noisy) information about the unobserved state variable ω. We assume that the random

variables {σi : i = 0, 1, . . . , n} are independent conditional on ω, and that except for σ0

(which is observed by the proposer) are identically distributed. Let F (·|ω) and F0 (·|ω)

denote the distribution functions for the responders and proposer respectively. We

assume that both distributions have associated continuous density functions, which we

write f (·|ω) and f0 (·|ω). The realization of σi is informative about ω, in the sense that

the monotone likelihood ratio property (MLRP) holds strictly;6 but no realization is

perfectly informative, i.e., f(σ|H)
f(σ|L)

> 0 and f(σ̄|H)
f(σ̄|L)

< ∞, with similar inequalities for f0.

Interpretations

Possible interpretations of the model include the following:

(A) An indebted firm offers n creditors an equity stake x in exchange for the retirement

of existing debt claims. If the creditors reject the offer the firm is liquidated. Let

1
n
Uω (x, σi, λ) be the value of an x/n share to creditor i, 1

n
Ūω (σi, λ) be the value of re-

ceiving 1/n of the liquidation value,7 V ω (x, σ0) be the debtor’s valuation of the remaining

1 − x share if his offer is accepted, and V̄ ω (σ0) his payoff in liquidation.

(B) An employer is in wage negotiations with n workers. He offers a wage x, which

worker i values at Uω (x, σi, λ). If the offer is rejected, workers strike: Ūω (σi, λ) is

worker i’s expected payoff from the strike. The firm’s total profits if the offer is accepted

are nV ω (x, σ0), and its expected total profits if a strike ensues are nV̄ ω (σ0).

(C) A president proposes a policy x.8 The proposal is adopted only if passed by the

legislature. This requires the support of a sufficient fraction of legislators from the

opposing party to the president.

6That is, f(σ|H)
f(σ|L) and f0(σ|H)

f0(σ|L) are strictly increasing in σ.
7These preferences are isomorphic under any monotone transformation, and in particular, multipli-

cation by n.
8A judicial nominee, for example.
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Equilibrium

We examine the pure strategy9 sequential equilibria of the game just described. Let

π∗
n (·; λ, α) : [σ, σ̄] → [0, 1] denote the proposer’s offer strategy for the game with n

responders using voting rule α and preference parameter λ. As is standard in the

strategic voting literature on which we build, we restrict attention to equilibria in which

the ex ante identical responders behave symmetrically.10

Responders are potentially able to infer information about the proposer’s observation

of σ0 from his offer, and thus information about the state variable ω. Since only the latter

affects responders’ preferences, we focus directly on the beliefs about ω after observing

an offer x. Let βn (x; λ, α) denote the responders’ belief that ω = H after observing offer

x in the game with n responders using voting rule α, and preference parameter λ.

A symmetric equilibrium is an offer strategy π∗
n (·; λ, α) for the proposer, a set of

responder beliefs βn (·; λ, α) and a voting strategy [σ, σ̄] → {accept,reject} for each re-

sponder such that the proposer’s strategy is a best response to the responders’ (identical)

strategies; and each responder’s strategy maximizes his expected payoff given that all

other responders use the same strategy, and his beliefs are βn (·; λ, α); and the beliefs

themselves are consistent. At a minimum, belief consistency requires that having re-

ceived an offer x, responders are not more (respectively, less) confident that the state is

H than the proposer himself is after he sees the most (respectively, least) pro-H signal

σ0 = σ̄ (respectively, σ0 = σ). That is, for all offers x,

βn (x; λ, α)

1 − βn (x; λ, α)
∈

[

f0 (σ|H)

f0 (σ|L)

Pr (H)

Pr (L)
,
f0 (σ̄|H)

f0 (σ̄|L)

Pr (H)

Pr (L)

]

. (1)

Consequently consistency implies that βn (x; λ, α) ∈
[

b, b̄
]

, for some 0 < b < b̄ < 1.

9In much of the literature concerning voting by differentially informed individuals, voters are assumed
to observe binary signals (see Duggan and Martinelli 2001, and Yılmaz 1999, for exceptions). In such
settings non-trivial pure strategy equilibria do not exist. However, in our model voters observe contin-
uous signals. As such, the restriction that voters follow pure strategy equilibria is of no consequence.
Moreover, our focus on pure strategy behavior of the proposer is solely for expositional convenience: our
main results would hold if the proposer were allowed to follow mixed strategies.

10Duggan and Martinelli (2001) give conditions under which the symmetric voting equilibrium is the
unique equilibrium for unanimity rule.
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Assumptions

We make the following assumptions:

Assumption 1 ∆ω, V and V̄ are continuously differentiable in their arguments.

Assumption 2 ∆H ≥ ∆L and ∆ω is increasing in σi; both relations are strict for x > 0.

Assumption 3 For all λ, ∆H (0, σ̄, λ) < 0 and ∆H (1, σ̄, λ) > 0.

Assumption 4 For all x, V ω (x, σ0) − V̄ ω (σ0) ≥ 0 for ω = L, H and all σ0.

Assumption 5 ∆ω is strictly increasing and V is strictly decreasing in x.

Assumption 1 is entirely standard. For future reference, observe that |∆ω| is bounded

above since ∆ω is continuous in its arguments and has compact domain. Moreover, we

will often be interested in the equilibrium properties of economies close to pure com-

mon values (λ = 0). Observe that since σ has compact support, ∆ω (x, ·, λ) converges

uniformly to ∆ω (x, ·, 0) as λ → 0.

Assumption 2 says responder i is more pro-acceptance when ω = H than ω = L, and

when the realization of σi is higher. Since higher values of σi are more likely when ω =

H (by MLRP), the content of Assumption 2 (beyond being a normalization) is that the

“private” and “common” components of responder utility act in the same direction.

Assumption 3 says that the responders regard the worst offer (x = 0) as worthless, i.e.,

they prefer the status quo. On the other hand, there are some offers which the responders

view as worthwhile under some conditions — in particular, responder i prefers the best

offer (x = 1) to the status quo when ω = H and σi = σ̄.

Assumption 4 says that the proposer strongly dislikes the status quo relative to the

range of possible alternatives: regardless of the state, he would prefer to have any proposal

x ∈ [0, 1] implemented.11

11In general, one can clearly think of a broader range of proposals [0,∞), but with the proposer
preferring the status quo to offers x ∈ (1,∞). The content of Assumption 4 is that x = 1 is the highest
offer the proposer is prepared to make for any pair (ω, σ0). For instance, in our debt renegotiation
example, a debtor (the proposer) would prefer being left with any fraction 1−x of the firm to liquidation,
if (as is typical) in the latter case he is left with nothing.
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Finally, Assumption 5 says that the proposer and responders have diametrically op-

posing preferences: higher x makes the responders more pro-agreement, but reduces the

proposer’s payoff if his proposal is accepted.

3 The voting stage

Fix a preference parameter λ and a number of responders n. Having observed the

proposer’s offer x, each responder attaches a subjective probability b = βn (x; λ, α) to

the state variable ω being H . A central insight of the existing strategic voting literature

is that responder i’s voting decision depends on the comparison of his expected utilities

from accepting and rejecting, conditional on the event of being pivotal. Taking the

strategies of other responders as given, let PIV denote the event that his vote is pivotal.

Thus responder i votes to accept offer x after observing σi if and only if

Eb [Uω (x, σi, λ) |PIV, σi] ≥ Eb

[

Ūω (x, σi, λ) |PIV, σi

]

, (2)

where Prb and Eb denote the subjective probability and expectation given b. Observe

that even though responder i does not observe σj (j 6= i), and does not know whether

or not he is actually pivotal, in casting his vote he considers only the payoffs in events

in which he is pivotal, and takes into account any information he can thus infer.

Since the random variables σi are independent conditional on ω,

Prb (ω|PIV, σi) =
Prb (ω, PIV, σi)

Prb (PIV, σi)
=

Pr (PIV |ω) Pr (σi|ω) Prb (ω)

Prb (PIV, σi)
. (3)

Substituting (3) into inequality (2), and noting that Prb (H) = b = 1−Prb (L), responder

i votes to accept proposal x after observing σi if and only if

∆H (x, σi, λ) Pr (PIV |H) f (σi|H) b + ∆L (x, σi, λ) Pr (PIV |L) f (σi|L) (1 − b) ≥ 0. (4)

By MLRP, it is immediate from (4) that in any equilibrium each responder i follows a

cutoff strategy, in the sense of voting to accept if and only if σi exceeds some critical level.

As noted, throughout we focus on symmetric equilibria in which the ex ante identical
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responders follow the same voting strategy. As such, let σ∗
n(x, b, λ, α) ∈ [σ, σ̄] denote the

common cutoff12 when the offer is x, responders attach a probability b to ω = H , there

are n responders, and the preference parameter and voting rule are λ and α respectively.

For clarity of exposition, we will suppress the arguments n, x, b, λ and α unless needed,

both for σ∗ and other variables introduced below.

Evaluating explicitly, the probability that a responder is pivotal is given by

Pr (PIV |ω) =

(

n − 1

nα − 1

)

(1 − F (σ∗ (x) |ω))nα−1F (σ∗ (x) |ω)n−nα . (5)

The acceptance condition (4) then rewrites to:

∆H (x, σi, λ) (1 − F (σ∗ (x) |H))nα−1F (σ∗ (x) |H)n−nα f (σi|H) b

+∆L (x, σi, λ) (1 − F (σ∗ (x) |L))nα−1F (σ∗ (x) |L)n−nα f (σi|L) (1 − b) ≥ 0 (6)

If there exists a σ∗ ∈ [σ, σ̄] such that responder i is indifferent between accepting and

rejecting the offer x exactly when he observes the signal σi = σ∗, then the equilibrium can

be said to be a responsive equilibrium. That is, a responsive equilibrium exists whenever

the equation

−
∆H (x, σ∗, λ)

∆L (x, σ∗, λ)

b

1 − b

f (σ∗|H)

f (σ∗|L)

1 − F (σ∗|L)

1 − F (σ∗|H)
=

(

(1 − F (σ∗|L))αF (σ∗|L)1−α

(1 − F (σ∗|H))αF (σ∗|H)1−α

)n

(7)

has a solution σ∗ ∈ [σ, σ̄]. Notationally, we represent a responsive equilibrium by its

corresponding cutoff value σ∗ ∈ [σ, σ̄].

We turn now to existence and uniqueness of responsive equilibria in the voting stage.

For a given subjective probability b that ω = H , it is useful to define the function

Z (x, σ; n, α, λ, b) ≡ ∆H (x, σ)
b

1 − b

f (σ|H)

f (σ|L)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

+∆L (x, σ)

If Z (x, σ) is positive (negative), and all but one of the responders use a cutoff strategy

σ, then the remaining responder i is better off voting to accept (reject) the proposal x

12As we show below, there exists a unique cutoff signal.
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if he observes σi = σ. Similarly, if Z (x, σ) = 0 then there is a responsive equilibrium in

which all responders use the cutoff strategy σ.

By the Theorem of the Maximum, maxσ∈[σ,σ̄] Z (x, σ) and minσ∈[σ,σ̄] Z (x, σ) are both

continuous in x. So we can define13

xn (α, λ, b) =











min {x|maxσ Z (x, σ) ≥ 0} if {x|maxσ Z (x, σ) ≥ 0} 6= ∅

1 otherwise
(8)

x̄n (α, λ, b) =











max {x|minσ Z (x, σ) ≤ 0} if {x|minσ Z (x, σ) ≤ 0} 6= ∅

0 otherwise
. (9)

Roughly speaking, xn (α, λ, b) is the lowest offer that is ever accepted in a responsive

equilibrium: if x < xn (α, λ, b), then Z (x, σ) < 0 for all σ. Similarly, x̄n (α, λ, b) is the

highest offer that is ever rejected in a responsive equilibrium. Economically, xn (α, λ, b)

and x̄n (α, λ, b) define the range of offers for which a responsive equilibrium exists:

Lemma 1 (Existence and uniqueness) Fix beliefs b, a voting rule α and preferences

λ. Then:

(1) For any n, a responsive equilibrium σ∗ (x) ∈ [σ, σ̄] exists if and only if x ∈ [xn, x̄n].

When a responsive equilibrium exists it is the unique symmetric responsive equilibrium.

(2) The equilibrium cutoff σ∗ (x) is decreasing and continuously differentiable over (xn, x̄n),

with σ∗ (xn) = σ̄ and σ∗ (x̄n) = σ.

(3) (a) If α < 1 and x is such that ∆H (x, σ̄) > 0 > ∆L (x, σ), there exists N such that

x ∈ (xn, x̄n) for n ≥ N ; (b) if α = 1 and x is such that ∆H (x, σ̄) > 0 ≥ ∆H (x, σ), there

exists N such that x ∈ (xn, x̄n) for n ≥ N.

In addition to responsive equilibria, non-responsive equilibria also exist. Specifically,

for any α > 1
n

there is an equilibrium in which each responder votes to reject regardless of

his signal, i.e., σ∗ = σ̄. Likewise, for any α < 1− 1
n

there is an equilibrium in which each

responder votes to accept regardless of his signal, i.e., σ∗ = σ. We follow the literature

13Observe that xn (α, λ, b) > 0 since, by Assumptions 2 and 3, Z (0, σ) < 0 for all σ.
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and assume that if a responsive equilibrium exists, then it is played. From Lemma 1 it

follows that as x increases over the interval (xn, x̄n) the acceptance probability increases

continuously from 0 to 1. We thus assume that when x ≤ xn the rejection equilibrium

is played, while for x ≥ x̄n the acceptance equilibrium is played. In addition to being

intuitive and ensuring continuity, this rule selects the unique trembling-hand perfect

equilibrium when x ≤ xn.14

How does the equilibrium respond to changes in responders’ beliefs? The following

is a straightforward corollary of Lemma 1:

Corollary 1 (Change in beliefs) Fix n, α, λ, and suppose that a responsive equilib-

rium exists given offer x and beliefs b. Then for any beliefs b′ > b, the acceptance

probability is higher.

The heart of our analysis concerns the effect of the voting rule on the proposer’s

offer x, and in turn the effect on responder and proposer payoffs. Notationally, we

write ΠR
n

(x, λ, α, b) for a responder’s expected payoff from offer x under voting rule α,

responder preferences λ, and responder beliefs b; and ΠP
n

(x, λ, α, σ0, b) for the proposer’s

expected payoff after observing σ0. Before proceeding, we note a second straightforward

corollary of Lemma 1:

Corollary 2 (Continuity and differentiability of payoffs) Fix a set of responder

beliefs b. Then ΠR
n (x, λ, α, b) and ΠP

n
(x, λ, α, σ0, b) are continuous functions of the offer

x, and are differentiable except at the boundaries of the responsive equilibrium range,

xn (α, λ, b) and x̄n (α, λ, b).

14Formally, for any beliefs b, preference parameter λ and voting rule α > 1
2 + 1

2n
, if x ≤ xn then

the only trembling-hand perfect equilibrium is the non-responsive equilibrium in which each responder
always rejects. A proof is available on the authors’ webpages.

Moreover, although when x ≥ x̄n both the acceptance and rejection equilibria are trembling-hand per-
fect, the trembles required to support the rejection equilibrium do not satisfy the cutoff rule property we
discussed earlier. Indeed, if tremble strategies were required to satisfy the mild monotonicity restriction
that voting to accept is weakly more likely after a higher signal, then the acceptance equilibrium would
be the only trembling-hand perfect equilibrium when x ≥ x̄n.



15

4 Majority voting

We first characterize the equilibrium payoffs for any non-unanimity voting rule α < 1.

Throughout, we refer to any non-unanimity voting rule α as a majority rule. As we

will see, asymptotically (in the number of responders n) all such rules generate the same

equilibrium outcomes. For ω = L, H , define σω (α) and xω (λ, α) implicitly by

1 − F (σω (α) |ω) = α and ∆ω (xω (λ, α) , σω (α) , λ) = 0.

That is, conditional on ω there is a probability α that the realization of σi exceeds σω (α);

and xω (λ, α) is the proposal that gives a responder i the same payoff as the status quo,

given ω and σi = σω (α). As such, if the state ω were public information, then an offer

just above xω (λ, α) would be accepted with probability converging to 1 as the number

of responders n grows large.

By Assumption 3, ∆ω (x, σω, λ) is strictly negative at x = 0, and is strictly increasing

in x. Consequently xω (λ, α) is well-defined unless ∆ω (x, σω, λ) < 0 at x = 1. For this

case, we write xω (λ, α) = ∞. Note that σω (α) is strictly decreasing. Likewise, xω (λ, α)

is strictly increasing in α, except at the common values extreme λ = 0, in which case it

is constant in α. Moreover, by Assumption 3, xH (λ, α) 6= ∞ for all λ sufficiently small.

Our first result extends Feddersen and Pesendorfer’s (1997) finding that under ma-

jority rule, the aggregate response of the voting group to an offer x matches that which

would be obtained under full information. The key difference relative to their analysis

is that the proposal being voted over varies with the number of responders. Because

there is no reason to require the proposal to have a well-defined limit, we state our result

in terms of the limits infimum and supremum. Formally, let An (x, b, λ, α) denote the

event in which the offer x is accepted:

Lemma 2 (Acceptance probabilities under majority) Suppose a majority voting

rule α < 1 is in effect. Take any λ ∈ [0, 1], and consider a sequence of offers xn.



16

If lim inf xn > xω (λ, α) then Pr (An (xn)|ω) → 1 and if lim sup xn < xω (λ, α) then

Pr (An (xn)|ω) → 0 as n → ∞.

Our next result characterizes the proposer’s response to the voting behavior described

in Lemma 2. To this end, for any σ0 define

W (σ0; λ, α) ≡ Pr (H|σ0) V H (xH , σ0) + Pr (L|σ0) V̄ L (σ0) − E [V ω (xL, σ0) |σ0] . (10)

The function W has the following interpretation: the first two terms are the proposer’s

expected payoff from offering xH if this offer is accepted when ω = H and rejected

when ω = L. The final term is the proposer’s expected payoff from offering xL if this

offer is always accepted. In Lemma 2 we established that approximately this acceptance

behavior is obtained as the number of responders grows large. As such, we should expect

that a proposer facing a large coalition will offer xH whenever W (σ0; λ, α) > 0; and will

offer xL whenever W (σ0; λ, α) < 0.

Lemma 3 (Equilibrium offer under majority) Suppose a majority voting rule α <

1 is in effect. Then:

(1) If xL (λ, α) 6= ∞ 6= xH (λ, α), then for any ε, δ > 0 there exists N (ε, δ) such that

(a) If W (σ0) > ε and n ≥ N (ε, δ) then |π∗
n (σ0; λ, α) − xH (λ, α)| < δ and

Pr (An|σ0, H) > 1 − δ and Pr (An|σ0, L) < δ.

(b) If W (σ0) < −ε and n ≥ N (ε, δ) then |π∗
n (σ0; λ, α) − xL (λ, α)| < δ and

Pr (An|σ0) > 1 − δ.

(2) If xH (λ, α) 6= ∞ and xL (λ, α) = ∞ then for any δ > 0 there exists N (δ) such that

|π∗
n (σ0; λ, α) − xH (λ, α)| < δ and Pr (An|σ0, H) > 1 − δ for all σ0 when n ≥ N (δ).

(3) If xL (λ, α) = xH (λ, α) = ∞, for any δ > 0 there exists N (δ) such that Pr (An|σ0, ω) <

δ for all σ0, ω = L, H when n ≥ N (δ).

For use below, we set W (σ0; λ, α) = ∞ when xH (λ, α) 6= ∞ and xL (λ, α) = ∞.

Lemma 3 says that the proposer will make an offer close to xH (λ, α) (respectively,
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xL (λ, α) > xH (λ, α)) after observing a σ0 such that W (σ0) is strictly positive (neg-

ative). As stated, it does not cover equilibrium behavior when W (σ0) = 0. In general,

this knife-edge condition will hold only for finitely many realizations of σ0. In particular,

W (σ0) = 0 for at most one value of σ0 if the proposer’s payoffs V ω (x, σ0) and V̄ ω (σ0)

are independent of σ0 — or more generally, if the private values component of proposer

payoffs is sufficiently small, i.e.,
∣

∣

∣

∂
∂σ0

V ω (x, σ0)
∣

∣

∣
and

∣

∣

∣

∂
∂σ0

V̄ ω (σ0)
∣

∣

∣
are sufficiently small for

all x and σ0. For the remainder of the paper we make the following mild assumption:

Assumption 6 W (σ0; λ, α) = 0 for at most finitely many values of σ0 when xL (λ, α) 6=

∞ 6= xH (λ, α).

From Lemma 3 it is straightforward to establish the limiting expected payoffs of

the proposer and the responders under any majority voting rule. Notationally, we write

Π∗P
n

(λ, α) and Π∗R
n

(λ, α) for the proposer’s and responders’ expected equilibrium payoffs.

Proposition 1 (Equilibrium payoffs under majority) Suppose a majority voting

rule α < 1 is in effect and xH (λ, α) 6= ∞. Then the equilibrium payoffs satisfy:

Π∗R
n

(λ, α) → Eσi,ω

[

Ūω (σi)
]

+

∫

σ0 s.t. W (σ0)<0

Eσi,ω [∆ω (xL, σi, λ) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

Pr (H|σ0)Eσi

[

∆H (xH , σi, λ) |H
]

dF0 (σ0)

Π∗P
n

(λ, α) →

∫

σ0 s.t. W (σ0)<0

Eω [V ω (xL, σ0) |σ0] dF0 (σ0)

+

∫

σ0 s.t. W (σ0)>0

(

Pr (H|σ0)V H (xH , σ0) + Pr (L|σ0) V̄ L (σ0)
)

dF0 (σ0) .

5 Unanimity rule

We now turn to the proposer’s offer when he faces responders who employ unanimity

rule (i.e., α = 1). We first show that if responders’ preferences are sufficiently close

to the common values extreme (i.e., λ small enough), then compared to their behavior
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under a majority rule, they accept “low” offers less often but “high” offers more often.

Specifically, whereas under majority an offer slightly above xH (λ, α) is accepted with

probability approaching one when ω = H , under unanimity such an offer is accepted

with vanishingly small probability. Conversely, under majority an offer slightly below

xL (λ, α) is rejected with probability approaching one when ω = L; but under unanimity,

it is certain to be accepted.

We formally establish these results below. Their main implication is as follows. Con-

sider a realization of σ0 such that W (σ0) is positive. Against a group using majority the

proposer’s favorite offer is close to xH (λ, α). However, against a group using unanimity,

this — and all lower offers — is rejected almost for sure; but by making a higher offer

the proposer can increase the acceptance probability. So in this case, the proposer makes

a higher offer when responders use unanimity rule than when they use a majority rule.

Conversely, the proposer will actually make a lower offer against the unanimity rule after

any σ0 for which W (σ0) is negative: against a majority rule his favorite offer is close

to xL (λ, α), while against unanimity he can assure himself of acceptance with an offer

strictly less than xL (λ, α).

These arguments apply only when preferences are sufficiently close to the common

values extreme. Consequently, establishing them formally requires us to take what is

essentially a double limit: we must allow the preference parameter λ to approach 0 at

the same time as the number of responders grows large. A further complication is that,

as under majority rules, there is no reason to suppose a priori that either xn (λ) or the

corresponding acceptance probability converges in either λ or n. Formally, we handle

these difficulties by stating our results about acceptance probabilities in terms of

sup
Λ,N

inf
λ∈(0,Λ],n≥N

Pr (An (xn (λ) , λ) |ω) , (11)

with parallel expressions for offer sequences xn(λ). These expressions serve to give a

lower bound on the offer and acceptance probability as n grows large and λ approaches
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0 at the same time. To see this, observe that the lower bound

inf
λ∈(0,Λ],n≥N

Pr (An (xn (λ) , λ) |ω)

increases as N grows and Λ shrinks, and so by taking the supremum of this expression

over Λ and N we characterize the limiting behavior of the lower bound of Pr (An|ω).

Likewise, the following expression captures the limiting behavior of the upper bound of

Pr (An|ω):

inf
Λ,N

sup
λ∈(0,Λ],n≥N

Pr (An (xn (λ) , λ) |ω) .

Finally, we want to stress that although we state all our results in terms of the joint

limiting behavior of n and λ, analogous versions of our results hold for any fixed pref-

erence parameter λ0 ≥ 0 that is close enough to the common values extreme that

xH (λ0, α = 1) 6= ∞.15

Voting under unanimity rule

Lemma 2 above characterized responders’ aggregate response to an arbitrary offer

under any majority rule. Lemmas 4, 5 and 6 do the same for the unanimity rule. First,

Lemma 4 says that if the offers stay bounded away from xH (λ) as n grows large, then

the probabilities that these offers are accepted likewise stay bounded away from 0.

Lemma 4 (Intermediate offers accepted under unanimity) Suppose unanimity

rule is in effect (α = 1). Take a set of offers xn (λ). If

sup
Λ,N

inf
λ∈(0,Λ],n≥N

xn(λ) − xH (λ) > 0 (12)

then

sup
Λ,N

inf
λ∈(0,Λ],n≥N

Pr (An|H) > 0. (13)

At first glance Lemma 4 is surprising: one might have conjectured that agreement is

impossible when the unanimous consent of a large number of responders is required. The

15Proofs are available upon request from the authors. As would be expected, the arguments are
slightly easier when the preference parameter is held fixed.
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reason why agreement is in fact possible is that each individual votes to accept with a

probability that approaches one as the number of responders grows large. Such a strategy

is individually rational because, given that many other individuals are voting to accept,

each responder concludes that, conditional on being pivotal, there is strong evidence that

the offer is worth accepting.

Lemma 4 is established by contradiction. We sketch the argument for a fixed pref-

erence parameter λ close to 0. Suppose that, contrary to the claim, the acceptance

probability converges to 0, i.e., (1 − F (σ∗
n|H))n → 0. This implies that the equilibrium

stays away from the acceptance equilibrium σ∗ = σ in the following sense: either (i)

σ∗
n ≥ σ + κ, for some κ > 0, or (ii) σ∗

n > σ, and converges to σ at a “slower” rate than n

grows large. In either case it follows (immediately in (i), by l’Hôpital’s rule in (ii)) that

(1 − F (σ∗
n|L))n

(1 − F (σ∗
n|H))n → 0 as n → ∞.

In other words, conditional on being pivotal, each responder infers that the true realiza-

tion of ω is almost certainly H . Since by hypothesis the offer is bounded away from

xH (λ), the benefit of accepting the offer when ω = H is likewise bounded away from 0.

As such, each responder i votes to accept independent of his own observation σi. But

then the equilibrium is the acceptance equilibrium σ∗ = σ, giving a contradiction.

Lemma 5 complements Lemma 4, and says that if instead the proposer’s offer con-

verges to xH (λ) as n → ∞, then the probability that it is accepted converges to zero.

Lemma 5 (Low offers rejected under unanimity) Suppose unanimity rule is in

effect (α = 1). Take a set of offers xn (λ). Then (1) if

sup
Λ,N

inf
λ∈(0,Λ],n≥N

xn(λ) − xH (λ) ≤ 0 (14)

then

sup
Λ,N

inf
λ∈(0,Λ],n≥N

Pr (An) = 0, (15)
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and (2) if for all ε > 0 there exists Nε such that16

inf
Λ

sup
λ∈(0,Λ],n≥Nε

xn(λ) − xH (λ) ≤ ε (16)

then

inf
Λ,N

sup
λ∈(0,Λ],n≥N

Pr (An) = 0. (17)

We sketch the proof of Part (1) for a fixed preference parameter λ. Suppose that

contrary to the claim the acceptance probability stays bounded away from 0, even though

in the limit the offer xn is less than xH (λ). That is, (1 − F (σ∗
n|H))n stays bounded

away from 0. This means that the equilibrium is “close” to the acceptance equilibrium

σ∗ = σ: either σ∗
n = σ, or σ∗

n approaches σ “faster” than n approaches ∞. It follows that

as n → ∞, the acceptance probability in L, (1 − F (σ∗
n|L))n, stays bounded away from

0. Consequently, after conditioning on being pivotal each individual i attaches a strictly

positive probability to both ω = L and ω = H . By hypothesis, the offer approaches

xH (λ) as n → ∞. So conditional on seeing σi = σH = σ, the benefits from accepting

the offer approach zero when ω = H , and are strictly negative when ω = L. But then

each responder i votes to reject the offer over some neighborhood of observations of σi

around σ, and so the equilibrium cannot be close to the acceptance equilibrium after all.

Thus far we have focused on the aggregate response of responders to offers close to

xH (λ). We now turn to the opposite extreme of offers close to xL (λ). Recall that under

majority voting, the proposer makes an offer close to xL (λ) whenever W (σ0) < 0, but

never makes an offer that is significantly greater. Our next result shows that when the

proposer faces unanimity rule, the maximum offer he will ever make is lower than xL (λ).

Specifically, we show that there is an offer below xL (λ) that responders always accept if

n is sufficiently large.

Lemma 6 (Upper bound on offers under unanimity) Suppose unanimity rule is

in effect (α = 1), and xL (λ) 6= ∞ for all λ small enough. Then there exists κ > 0 and

16The hypothesis (16) of Part 2 of Lemma 5 says, loosely, that limλ→0 xn (λ) − xH (λ) converges to a
constant C ≤ 0 as n → ∞.
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Λ > 0 such that the offer xL (λ) − κ is accepted with certainty for all λ ≤ Λ and all n.

As such, π∗
n (σ0; λ) ≤ xL (λ).

Lemmas 5 and 6 both relate to the failure of information aggregation under unanimity

rule. In Lemma 5, failure of information aggregation leads offers above xH to be rejected

even when ω = H . Conversely, in Lemma 6 failure of information aggregation leads offers

below xL to be accepted even when ω = L.

Equilibrium offers under unanimity

From Lemmas 4 and 5, offers that converge to xH (λ) are rejected, while offers that

remain bounded away are accepted with a probability that stays bounded away from 0.

Since the proposer prefers acceptance to rejection, his equilibrium offers stay bounded

away from xH (λ):

Lemma 7 (Equilibrium offers under unanimity) Suppose unanimity rule is in

effect (α = 1). Then there exists κ > 0 and N such that for all σ0,

sup
Λ

inf
λ∈(0,Λ],n≥N

π∗
n (σ0; λ) − xH (λ) ≥ κ.

That is, the proposer’s offer is bounded uniformly away from xH (λ) when n is sufficiently

large and λ is sufficiently small.

Responder payoffs

When σ0 is such that W (σ0) > 0, for any majority rule α responders would receive a

higher offer if instead they employed unanimity rule (for large n). Does this mean that

responders are better off under unanimity rule? The main complication is that under

unanimity responders’ aggregate decision is frequently suboptimal ex post, in the sense

that offers that should be accepted are rejected, and vice versa. As such, it is conceivable

that a higher offer would increase the error rate to such an extent that it actually lowers

responder welfare. Our next result explicitly characterizes the effect of a change in the

offer on responders’ welfare under unanimity. It shows that in spite of changes in error

rate, the net effect is positive.
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Lemma 8 Suppose unanimity rule is in effect (α = 1). Then holding responder beliefs

fixed, for x 6= xn (α, λ, b) , x̄n (α, λ, b),

∂ΠR
n

∂x
≥ b Pr (An (x) |H)E

[

∂

∂x
∆H (x, σ, λ) |H, σ ≥ σ∗

]

+ (1 − b) Pr (An (x) |L) E

[

∂

∂x
∆L (x, σ, λ) |L, σ ≥ σ∗

]

.

We are now ready to state our main conclusion in this section. As we have seen, the

proposer’s equilibrium offers stay bounded away from xH (λ) when he faces unanimity

rule (Lemma 7). Moreover, when responders use unanimity rule, higher offers improve

their welfare (Lemma 8). From these observations, the responders’ equilibrium payoff

under unanimity rule is bounded away from their status quo payoff, Eσi,ω

[

Ūω (σi, λ)
]

.

Proposition 2 (Lower bound for the responders’ payoff under unanimity)

There exists γ > 0 such that

sup
N,Λ

inf
λ∈(0,Λ̄],n≥N

Π∗R
n

(λ, α = 1) − Eσi,ω

[

Ūω (σi, λ)
]

≥ γ.

Finally, Lemma 6 gives an upper bound for the proposer’s offer against unanimity

rule. An immediate consequence is the following upper bound for the responders’ payoff:

Proposition 3 (Upper bound for the responders’ payoff under unanimity)

Suppose xL (λ, α) 6= ∞ for all λ small enough. Then there exists γ > 0 and Λ > 0 such

that for all λ ≤ Λ and all n,

Π∗R
n

(λ, α = 1) ≤ Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xL (λ) , σi, λ)] − γ.

6 Comparing majority and unanimity voting rules

Propositions 1, 2 and 3 characterize payoffs under majority and unanimity rules. We

use these results to analyze the effect of the voting rule α on the welfare of the two

negotiating parties. We consider the following three representative cases:
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Case I: If it were public information that ω = L, the proposer would be unable to

make an offer that the responders would accept. That is, xL = ∞.

Case II: If it were public information that ω = L, the proposer would be able to make

an offer that the responders would accept. Moreover, he prefers to have the offer xL

accepted always than to have the less generous offer xH accepted only when ω = H ; and

this is true independent of his information σ0.

Case III: If it were public information that ω = L, the proposer would be able to

make an offer that the responders accept. However, the proposer prefers to have the

offer xH accepted only when ω = H than to have the more generous offer xL accepted

always; and this is true independent of his information σ0.

In all three cases, we focus on circumstances in which the responder coalition is large,

and responder heterogeneity derives primarily from distinct private information, i.e.,

λ ≈ 0. Such an assumption is natural in many applications. In particular, whenever

responders receive a financial claim as an outcome of bargaining, and these claims are ex

post tradeable, responder preferences will be close to the common values extreme.

Since all majority voting rules α < 1 asymptotically deliver the same payoffs at

the common values extreme, our results concern the comparison between an arbitrary

majority rule α < 1, and unanimity rule α = 1. (Moreover, recall that although in

general xω depends on the voting rule α, it is independent of α at the common values

extreme λ = 0.)

Case I: Proposer unable to make a satisfactory offer when ω = L

Directly from Proposition 1, for any majority voting rule α < 1,

Π∗R
n

(λ, α) → Eσi,ω

[

Ūω (σi, λ)
]

+ Pr (H)Eσi

[

∆H (xH (λ, α) , σi, λ) |H
]

as the number of responders grows large. The first term is the responders’ payoff under

the status quo. In general, the second term can be positive or negative. However,

by definition, ∆H (xH (λ, α) , σH , λ) = 0, and ∆H is independent of σi when λ = 0.

Consequently Eσi

[

∆H (xH (λ) , σi, λ) |H
]

approaches 0 as λ → 0, and so the responders’



25

payoff approaches their status quo payoff. Put differently, against a majority rule the

proposer is able to reduce the responders’ payoff all the way to their outside option.

In contrast, when responders use unanimity rule, from Proposition 2 we know their

payoff is bounded away from their status quo payoff as n grows large and preferences

approach the common values extreme. Consequently:

Proposition 4 Fix a majority rule α < 1. If xL (λ, α) = ∞ for λ small enough, then

there exists γ > 0 and λ̄ > 0 such that whenever λ ≤ λ̄, for all n large enough the

responders are better off under unanimity: Π∗R
n

(λ, 1) ≥ Π∗R
n

(λ, α) + γ.

Proposition 4 says that, in this case, responders prefer unanimity rule to any ma-

jority rule. However, and in spite of the opposing preferences of the proposer and the

responders, this does not by itself imply that the proposer prefers to face majority rule.

In particular, suppose that the proposer’s relative valuation of x were much higher when

ω = L than ω = H . Offers slightly above xH are accepted with higher probability when

ω = L under unanimity rule than under a majority rule, but with lower probability when

ω = H . As such, it is quite possible that a change from a majority rule to the unanimity

rule would increase the welfare of both negotiating parties: the responders gain because

they receive a higher offer, while the proposer gains because agreement is reached when

ω = L, which he values highly.

Nonetheless, under many circumstances effects of this type do not arise. In particular,

consider the following additional assumption, which is satisfied in standard “split-the-

dollar” type bargaining games:

Assumption 7 (i) V ω (x, σ0) and V̄ (σ0) are independent of σ0; (ii) V ω (x = 1, σ0) =

V̄ (σ0); (iii) Uω (x, σi, λ = 0) and V ω (x, σ0) are linear in x; (iv) Uω
x (x, σi, λ = 0) /V ω

x (x, σ0)

is independent of ω.

Assumption 7 says that (i) the proposer’s payoff has no private value component, (ii)

the proposer is indifferent between the status quo and having his most generous offer
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x = 1 accepted, (iii) both the proposer and responders are risk-neutral in x, and (iv) the

relative value of changes in the offer x for the responders and the proposer is always the

same. Assumption 7 is sufficient (but not necessary) to imply the following result:

Proposition 5 (Proposer’s payoff in a split-the-dollar environment) Fix a ma-

jority voting rule α < 1. If Assumption 7 holds and xL (λ, α) = ∞ for λ small enough,

then there exists λ̄ > 0 such that whenever λ ≤ λ̄, for all n large enough the proposer is

worse off against unanimity rule: Π∗P
n

(λ, 1) < Π∗P
n

(λ, α).

A useful way to view Proposition 5 is as follows. Given that xL = ∞, agreement

on any x ∈ [0, 1] when ω = H , and disagreement when ω = L, are ex post Pareto

efficient outcomes. As such, a majority rule is asymptotically ex post Pareto efficient.

Assumption 7 is enough to ensure that ex post Pareto efficiency implies ex ante Pareto

efficiency. Since responders do better under majority rule than unanimity rule, it follows

that the proposer must do worse.

Case II: Proposer able and willing to make a satisfactory offer when ω = L

Formally, this case arises when W (σ0; λ, α) < 0 for all σ0. Against any majority

rule α < 1, from Lemma 3 the proposer’s offer converges to xL as the responder coalition

grows large. That is, the proposer is both able and willing to make an offer that is

accepted when ω = L. From Proposition 1, as the number of responders grows large

Π∗R
n

(λ, α) → Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xL (λ, α) , σi, λ)] .

In contrast, when responders use unanimity rule there exists an offer strictly less than

xL that the responders will always accept (see Lemma 6). As such, the proposer clearly

prefers to face unanimity rule (even without additional conditions such as Assumption

7). Moreover, the responders’ payoff under unanimity is bounded away from

Eσi,ω

[

Ūω (σi, λ)
]

+ Eσi,ω [∆ω (xL (λ, α = 1) , σi, λ)]
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from above (see Proposition 3). Thus the responders receive both a higher offer and a

higher payoff under a majority rule than under unanimity rule.

Loosely speaking, in this case the proposer is able to exploit the failure of unanimity

rule to aggregate responders’ information. Formally:

Proposition 6 Fix a majority voting rule α < 1. If W (σ0; λ = 0, α) < 0 for all σ0,

then there exists λ̄ > 0 such that whenever λ ≤ λ̄, for all n large enough the responders

are worse off and the proposer is better off under unanimity rule: Π∗R
n

(λ, 1) < Π∗R
n

(λ, α)

and Π∗P
n

(λ, 1) > Π∗P
n

(λ, α).

Case III: Proposer able but unwilling to make a satisfactory offer when ω = L

Formally, this case arises when xL (λ, α) 6= ∞ and W (σ0; λ, α) > 0 for all σ0. Against

any majority rule α < 1, from Lemma 3 the proposer’s offer converges to xH as the

responder coalition grows large. That is, although the proposer is able to make an offer

that would be accepted by responders who knew that ω = L, when facing a majority

rule he is unwilling to do so.

For the responders, the welfare comparison exactly matches that of Case I, for the

same reasons. As such, the responder coalition prefers to use unanimity rule:

Proposition 7 Fix a majority voting rule α < 1. If W (σ0; λ = 0, α) > 0 for all σ0,

then there exists γ > 0 and λ̄ > 0 such that whenever λ ≤ λ̄, for all n large enough the

responders are better off under unanimity: Π∗R
n

(λ, 1) ≥ Π∗R
n

(λ, α) + γ.

Finally, there are conditions under which the proposer prefers to face majority rule,

and conditions under which he prefers to face unanimity rule. The key distinction relative

to Case I is that since xL 6= ∞, the equilibrium outcome under majority rule is ex post

Pareto inefficient when ω = L — both the proposer and responders would be better off if

they agreed to xL. As such, moving from a majority rule to unanimity rule subjects the

proposer’s equilibrium payoff to two offsetting effects. On the one hand, the proposer

raises his offer beyond xH , his offer against a majority coalition. But on the other
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hand, unanimity improves the prospects for agreement when ω = L, thereby moving the

outcome when ω = L closer to Pareto efficiency. It is easy to produce examples in which

either one of these effects dominates. In particular, even when Assumption 7 holds there

are instances in which the equilibrium outcome under a majority voting rule is Pareto

dominated by the equilibrium outcome under unanimity rule.

Summary

Based on the results above, the following table lists the preferred voting rule of each

of the two negotiating parties.

Responder coalition Proposer

Case I (“unable”) Unanimity Majority (under Assumption 7)

Case II (“able and willing”) Majority Unanimity

Case III (“able but unwilling”) Unanimity Ambiguous

For low offers agreement is harder to reach under unanimity rule. In the common values

setting, it is not impossible, however. Unanimity engenders a better offer from the

proposer, making the responders better off. For higher offers, however, the so-called

swing voter’s curse has the implication that agreement is more likely under unanimity.

In this case, unanimity is not the tougher rule — it is the softer one. Using unanimity

rule then lowers the responders’ payoff. Which of the two cases applies depends on

the offer the proposer would make against fully informed responders. In particular, if

agreement is not Pareto efficient when ω = L then unanimity is better for responders.

7 Private values

In general, adoption of unanimity rule affects the group’s payoffs in two distinct ways.

On the one hand, unanimity makes agreement harder to obtain. On the other hand,

this “toughness” may be useful in negotiation. The previous section identifies a fairly

general set of circumstances under which the latter effect dominates: whenever prefer-

ences are close to common values, and the proposer is either unable or unwilling to make
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a satisfactory offer when ω = L, the increase in the proposer’s offer (relative to majority)

more than compensates for the increased probability of mistakenly rejecting the offer.

One way to think about this result is that when responders vote strategically, the

requirement of unanimity is not as inimical to agreement as it might at first seem. Recall

that each responder conditions his or her vote only on the circumstances under which

it is actually pivotal. Given unanimity rule, this means that a responder considers the

impact of voting to accept an offer conditional on all other responders accepting — in

other words, conditional on all other responders viewing the offer as attractive. Such a

responder will vote to accept unless his own signal is very pro status quo.

In contrast, as we move to a situation in which responders are further away from the

common values benchmark, we reach a situation in which agreement is indeed extremely

difficult to obtain under unanimity. This is most easily seen at the extreme of fully

private values preferences (λ = 1): each responder will vote to accept only if his own

valuation of the offer on the table exceeds his payoff under the status quo.

Formally, suppose that ∆H (x = 1, σ, λ = 1) < 0, so that a responder who received the

most pro status quo realization of σi prefers the status quo to even the most generous offer.

Under this assumption, it can be shown that if responders have preferences sufficiently

close to pure private values, then the agreement probability converges to zero as the

number of responders grows large. Moreover, under additional mild assumptions there

exists some majority rule α̂ < 1 that Pareto dominates unanimity whenever preferences

are close to private values and the number of responders is sufficiently large.17

8 Concluding remarks

There are many instances in which a group of individuals is engaged in collective bar-

gaining. In such instances, it is often tempting to model the group as a single individual.

One way to view our paper is as an exploration of the extent to which this approach

17A proof is available on the authors’ webpages.
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is justified. When the group uses a majority rule, and the main source of intra-group

heterogeneity is different information, it is indeed the case that the response of a large

group to an offer made by the opposing party matches that of a single individual endowed

with the same information. However, by adopting unanimity rule the group will cause

its joint behavior to diverge from that of an individual. Our results suggest that under

some circumstances such a purposeful deviation is beneficial to the group.

A somewhat related issue is the extent to which our results would change if instead

of analyzing a take-it-or-leave game we allowed for alternating offers. However, to do

so would introduce the non-trivial complication that the group would have to decide on

a procedure for selecting a counter-offer. In particular, what is the optimal way for a

group to decide which member(s) should make the offer?18 We leave this undoubtedly

important issue for future research.
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A Appendix

We repeatedly use the following result. The proof is straightforward and available from

the authors’ webpages.

Lemma 9 F (σ|H) /F (σ|L) is increasing in σ, and is bounded above by 1. Conse-

quently, F (σ|H) ≤ F (σ|L), and is strict if σ ∈ (σ, σ̄). Moreover, (1 − F (σ|H)) / (1 − F (σ|L))

is increasing in σ, and is bounded above by f (σ̄|H) /f (σ̄|L) > 1.
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Proof of Lemma 1: First note that if Z(x, σ) = 0, then it must be the case that

∆H(x, σ) > 0 by Assumption 2. This implies that Z(x, σ) is strictly increasing in σ

whenever Z(x, σ) ≥ 0. In turn, Z(x, σ′) < 0 for all σ′ < σ if Z(x, σ) = 0.

Part 1: By definition, if x < xn then Z (x, ·) < 0, while if x > x̄n then Z (x, ·) > 0.

For x ∈ [xn, x̄n] we claim that Z (x, σ) = 0 for some unique σ, which we write as

σ∗ (x). Existence is immediate, since maxσ Z (x, σ) ≥ 0 ≥ minσ Z (x, σ), and Z (x, σ) is

continuous in σ. Uniqueness follows from the result we have just shown that Z(x, σ) is

strictly increasing in σ whenever Z(x, σ) ≥ 0.

Part 2: To see that σ∗ (x) is decreasing, consider x and x′ > x in (xn, x̄n). Since

Z (x, σ∗ (x)) = 0, it follows that Z (x′, σ∗ (x)) > 0. Since Z (x′, σ) is increasing in σ

it must be the case that σ∗ (x′) < σ∗ (x). By the Implicit Function Theorem, σ (x) is

continuously differentiable over (xn, x̄n). To see σ∗ (xn) = σ̄, suppose to the contrary

that σ∗ (xn) < σ̄. By definition Z (xn, σ∗ (xn)) = 0, and so Z (xn, σ̄) > 0. By continuity

there exists an x < xn such that Z (x, σ̄) > 0 as well. This contradicts the definition of

xn. Likewise, to see σ∗ (x̄n) = σ suppose to the contrary that σ∗ (x̄n) > σ. By definition

Z (x̄n, σ∗ (x̄n)) = 0 which implies that Z (x̄n, σ) < 0. By continuity there exists an x such

that x > x̄n and Z (x, σ) < 0, contradicting the definition of x̄n.

Part 3: Part (a) is immediate from the observation that as n → ∞,

f (σ|H)

f (σ|L)

(

F (σ|H)

F (σ|L)

)n−nα(
1 − F (σ|H)

1 − F (σ|L)

)nα−1

converges to 0 and ∞ respectively for σ = σ, σ̄. Part (b) is proved similarly.

Proof of Lemma 2: We prove the lemma in four steps.

Claim 1 If lim sup xn < xH (λ) then lim inf σ∗
n > σH .

Proof: By hypothesis, there exists ε such that xn ≤ xH (λ) − ε for all n large enough.

Suppose now to the contrary that lim inf σ∗
n ≤ σH . So for any δ > 0, there exists a

subsequence of σ∗
n such that σ∗

n ≤ σH + δ. By definition ∆H (xH (λ) , σH , λ) = 0; so for δ
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small enough, there exists ε̂ such that ∆H (xn, σ∗
n, λ) < −ε̂. Moreover, ∆L (xn, σ∗

n, λ) ≤

∆H (xn, σ∗
n, λ). Consequently Z (xn, σ∗

n) < 0. As such, σ∗
n is not a responsive equilib-

rium; and since xn ≤ x̄n then σ∗
n is not an acceptance equilibrium either. The only

remaining possibility is that σ∗
n is a rejection equilibrium — but then σ∗

n = σ̄, which

gives a contradiction when δ is chosen small enough.

Claim 2 If lim sup xn < xL (λ) then lim inf σ∗
n > σL.

Proof: By hypothesis, there exists ε such that xn ≤ xL (λ) − ε for all n large enough.

Suppose now to the contrary that lim inf σ∗
n ≤ σL. So for any δ > 0, there exists a

subsequence of σ∗
n such that σ∗

n ≤ σL + δ. By definition ∆L (xL (λ) , σL, λ) = 0; so for δ

small enough, there exists ε̂ such that ∆L (xn, σ∗
n, λ) < −ε̂. Next, define

φ = max
σ∈[σ,σL+δ]

(1 − F (σ|H))αF (σ|H)1−α

(1 − F (σ|L))αF (σ|L)1−α

Note that the function (1 − q)αq1−α is increasing for q ∈ (0, 1 − α) and decreasing for

q ∈ (1 − α, 1). Recall that by definition F (σL|L) = 1 − α, and by Lemma 9 F (σ|H) <

F (σ|L) for all σ ∈ (σ, σ̄). It follows that φ < 1 for δ chosen small enough, and so

(

(1 − F (σ∗|H))αF (σ∗|H)1−α

(1 − F (σ∗|L))αF (σ∗|L)1−α

)n

≤ φn → 0.

Since σ∗
n is bounded away from σ̄, then 1−F (σ∗

n|H) is bounded away from 0. By belief

consistency, βn(xn)
1−βn(xn)

is bounded away from infinity. Consequently Z (xn, σ∗
n) < 0 for n

sufficiently large. A contradiction then follows as in Claim 1.

Claim 3 If lim inf xn > xL (λ) then lim sup σ∗
n < σL.

Proof: By hypothesis, there exists ε such that xn ≥ xL (λ) + ε for all n large enough.

Suppose that contrary to the claim lim sup σ∗
n ≥ σL. So for any δ, there exists a

subsequence such that σ∗
n ≥ σL − δ. By definition, ∆L (xL (λ) , σL, λ) = 0; so for δ

small enough, there exists ε̂ such that ∆L (xn, σ∗
n, λ) > ε̂. Moreover, ∆H (xn, σ∗

n, λ) ≥
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∆L (xn, σ∗
n, λ). Consequently Z (xn, σ∗

n) > 0 for n sufficiently large. So σ∗
n cannot be a

responsive equilibrium; and since xn ≥ xn it is not a rejection equilibrium either. The

only remaining possibility is that σ∗
n is an acceptance equilibrium — but then σ∗

n = σ,

which gives a contradiction when δ is chosen small enough.

Claim 4 If lim inf xn > xH (λ) then lim sup σ∗
n < σH .

Proof: By hypothesis, there exists ε such that xn ≥ xH (λ) + ε for all n large enough.

Suppose now to the contrary that lim sup σ∗
n ≥ σH . So for any δ > 0, there exists a

subsequence of σ∗
n such that σ∗

n ≥ σH − δ. By definition ∆H (xH (λ) , σH , λ) = 0; so for

δ small enough, there exists ε̂ such that ∆H (xn, σ∗
n, λ) > ε̂. Next, define

φ = min
σ∈[σH−δ,σ̄]

(1 − F (σ|H))αF (σ|H)1−α

(1 − F (σ|L))αF (σ|L)1−α

Recall that by definition F (σH |H) = 1 − α. By arguments similar to those in Claim 2,

it follows that φ > 1 for δ chosen small enough, and so

(

(1 − F (σ∗|H))αF (σ∗|H)1−α

(1 − F (σ∗|L))αF (σ∗|L)1−α

)n

≥ φn → ∞.

From Lemma 9, the term 1−F (σ|L)
1−F (σ|H)

lies above f (σ̄|L) /f (σ̄|H). By belief consistency,

βn(xn)
1−βn(xn)

is bounded away from zero. Consequently Z (xn, σ∗
n) > 0 for n sufficiently large.

A contradiction then follows as in Claim 3.

Proof of Lemma 3: We focus on Part 1a. (Part 1b and 2 are proved by similar

arguments, which we omit for conciseness. Part 3 is immediate from Lemma 2.) The

main idea is straightforward: for any σ0 such that W (σ0) > 0, the proposer prefers

offering xH (λ, α) and gaining acceptance if and only if ω = H to offering xL (λ, α) and

gaining acceptance all the time. Given the limiting behavior of responders established

in Lemma 2, intuitively it follows that the proposer’s offer converges to xH (λ, α) as the

number of responders grows large. The main difficulty encountered in the formal proof

is establishing uniform convergence: for any ε, δ > 0, there is some N (ε, δ) such that
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when n ≥ N (ε, δ), the proposer’s offer lies within δ of xH (λ, α) for all σ0 such that

W (σ0) > ε.

Take any ε, δ > 0. Throughout the proof, we omit all λ and α arguments for

readability. We define ∆ω
0 (x, σ0) ≡ V ω (x, σ0) − V̄ ω (σ0), the proposer’s gain to offer x

being accepted conditional on ω.

Preliminaries: The first part of the proof consists of defining bounds which we will

use to establish uniform convergence below. Choose µ, δ1, δ2, δ3 ∈ (0, δ] such that

xH + µ < xL − µ, and for all σ0 for which W (σ0) > ε,

Pr (H|σ0) V H
(

xH +
µ

2
, σ0

)

+ Pr (L|σ0) V̄ L (σ0) ≥ E [V ω (xL − µ, σ0) |σ0] +
ε

2
, (18)

δ1∆
H
0

(

xH +
µ

2
, σ0

)

≤
ε

4
, (19)

δ2

(

Pr (H|σ0)∆H
0 (0, σ0) + Pr (L|σ0) ∆L

0 (0, σ0)
)

< (1 − δ1) Pr (H|σ0)∆H
0

(

xH +
µ

2
, σ0

)

,

(20)

Pr (H|σ0)
(

(1 − δ1) ∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0)

)

> Pr (L|σ0) δ3∆
L
0 (xH + µ, σ0) ,

(21)

Pr (H|σ0)
(

(1 − δ1)V H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

+ Pr (L|σ0) V̄ L (σ0)

> Pr (H|σ0)
(

(1 − δ)V H (xH − µ, σ0) + δV̄ H (σ0)
)

+ Pr (L|σ0)
(

δ3V
L (xH − µ, σ0) + (1 − δ3) V̄ L (σ0)

)

. (22)

A choice of µ, δ1, δ2, δ3 exists such that (18), (19), (20), (21), and (22) hold as follows.

First, choose µ such that (18) holds, along with

V H
(

xH +
µ

2
, σ0

)

> (1 − δ) V H (xH − µ, σ0) + δV̄ H (σ0) . (23)

It is possible to choose µ > 0 that satisfies these two inequalities for all σ0 since |V ω
x |

is bounded. The same argument applies in choosing δ1, δ2, δ3 below. Second, choose δ1

such that (19) holds, along with

(1 − δ1)∆H
0

(

xH +
µ

2
, σ0

)

− ∆H
0 (xH + µ, σ0) > 0, (24)
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(

(1 − δ1) V H
(

xH +
µ

2
, σ0

)

+ δ1V̄
H (σ0)

)

−
(

(1 − δ) V H (xH − µ, σ0) + δV̄ H (σ0)
)

> 0,

(25)

where (25) is possible by (23). Third, choose δ2 such that (20) holds. Finally, choose

δ3 such that (21) and (22) hold, which is possible by (24) and (25) respectively.

Let b and b̄ respectively denote the most pro-L and pro-H beliefs possible. Fix a

realization of σ0 such that W (σ0) ≥ ε. Define the following offer sequences, which we

use throughout the proof:

xn ≡ π∗
n (σ0) , xH+

n ≡ xH +
µ

2
, xH−

n ≡ xH − µ, xL−
n ≡ xL − µ.

By Lemma 2, Pr
(

An

(

xH+
n , b

)

|H
)

→ 1 and Pr
(

An

(

xH+
n , b̄

)

|L
)

→ 0; Pr
(

An

(

xH−
n , b̄

)

|ω
)

→

0 for ω = L, H ; and Pr
(

An

(

xL−
n , b̄

)

|L
)

→ 0. Thus there exist N1, N2, N3 such that

Pr
(

An

(

xH+
n , b

)

|H
)

≥ 1−δ1 and Pr
(

An

(

xH+
n , b̄

)

|L
)

≤ δ1 for n ≥ N1; Pr
(

An

(

xH−
n , b̄

)

|ω
)

≤

δ2 for ω = L, H and n ≥ N2; and Pr
(

An

(

xL−
n , b̄

)

|L
)

≤ δ3 for n ≥ N3. Let N (ε, δ) =

max {N1, N2, N3}. Note that N (ε, δ) depends only on ε and δ, and not σ0.

Part A: If W (σ0) ≥ ε then Pr (An (π∗
n (σ0)) |L) ≤ δ3 ≤ δ when n ≥ N (ε, δ).

Proof: If xn ≤ xL−
n then Pr (An (xn) |L) ≤ Pr

(

An

(

xL−, b̄
)

|L
)

≤ δ3 for n ≥ N (ε, δ).

Consequently it suffices to show that xn ≤ xL−
n for all n ≥ N (ε, δ). If this were not

the case, there must exist some m ≥ N (ε, δ) such that xm > xL−
m . By Assumption

4 the proposer is always better off when his offer is accepted; and so if xm > xL−
m the

proposer’s expected payoff is bounded above by E
[

V ω
(

xL−
m , σ0

)

|σ0

]

. In contrast, since

m ≥ N (ε, δ), the proposer’s payoff from the offer xH+
m is bounded below by

Pr (H|σ0)
(

(1 − δ1)V
H
(

xH+
m , σ0

)

+ δ1V̄
H (σ0)

)

+ Pr (L|σ0) V̄ L (σ0)

= Pr (H|σ0)
(

V H
(

xH+
m , σ0

)

− δ1∆
H
0

(

xH+
m , σ0

))

+ Pr (L|σ0) V̄ L (σ0)

≥ Pr (H|σ0)V H
(

xH+
m , σ0

)

+ Pr (L|σ0) V̄ L (σ0) −
ε

4

where the inequality follows by (19) (and the fact that Pr (H|σ0) ≤ 1). By (18) this

lower bound exceeds E
[

V ω
(

xL−
m , σ0

)

|σ0

]

, contradicting the optimality of xn.
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Part B: If W (σ0) ≥ ε then |π∗
n (σ0) − xH | ≤ µ ≤ δ for all n ≥ N (ε, δ).

Proof: First, we claim that xn > xH−
n whenever n ≥ N (ε, δ). If this were not the case,

there must exist some m ≥ N (ε, δ) such that xm ≤ xH−
m . The acceptance probability of

xm given ω is consequently less than that of xH−
m under the most pro-acceptance beliefs

b̄, which is in turn less than δ2. The acceptance probability of xH+
m given H is at least

1 − δ1. It follows from (20) that the proposer’s payoff is higher under xH+
m than under

xm. But this contradicts the optimality of the proposer’s offer xm. Second, we claim

that xn ≤ xH + µ whenever n ≥ N (ε, δ). If not, there exists m ≥ N (ε, δ) such that

xm > xH + µ. By Part A, proposer’s payoff under xm is bounded above by

Pr (H|σ0)
(

∆H
0

(

xH + µ, σ0

)

+ V̄ H (σ0)
)

+ Pr (L|σ0)
(

δ3∆
L
0

(

xH + µ, σ0

)

+ V̄ L (σ0)
)

.

In contrast, since m ≥ N (ε, δ), the proposer’s payoff from the offer xH+
m is bounded

below by

Pr (H|σ0)
(

(1 − δ1)∆
H
0

(

xH+
m , σ0

)

+ V̄ H (σ0)
)

+ Pr (L|σ0) V̄ L (σ0) ,

which exceeds the payoff from the offer xm by (21), contradicting optimality of xm.

Part C: If W (σ0) ≥ ε, then Pr (An (π∗
n (σ0)) |H) ≥ 1 − δ for all n ≥ N (ε, δ).

Proof: Suppose that contrary to the claim, there exists m ≥ N (ε, δ) such that Pr (Am (xm) |H) <

1 − δ. By Part A, Pr
(

An

(

xL−
m , b̄

)

|L
)

≤ δ3, and by Part B, xm ≥ xH−
m and hence pro-

poser’s payoff is bounded above by

Pr (H|σ0)
(

(1 − δ) V H
(

xH−
m , σ0

)

+ δV̄ H (σ0)
)

+Pr (L|σ0)
(

δ3V
L
(

xH−
m , σ0

)

+ (1 − δ3) V̄ L (σ0)
)

.

In contrast, under the offers xH+
m , the proposer’s payoff is bounded below by

Pr (H|σ0)
(

(1 − δ1) V H
(

xH+
m , σ0

)

+ δ1V̄
H (σ0)

)

+ Pr (L|σ0) V̄ L (σ0) .

By (22) the latter is strictly greater, contradicting the optimality of the offers xn.

Proof of Proposition 1: Immediate from Lemma 3
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Proof of Lemma 4: The basic idea of the proof is as follows. In Claim 1, we choose Λ

and N such that when λ ∈ (0, Λ] and n ≥ N the voting equilibrium is “well-behaved.”

In Claim 2, we show that if infλ∈(0,Λ],n≥N Pr (An|H) = 0, then this would allow us to form

a sequence in which the number of responders grows large “faster” than the probability

that each responder votes to accept approaches 1. In Claim 3, we then show just the

opposite: given the “well-behaved” properties we established in Claim 1, then the number

of responders must grow large “slower” than the probability that each responder votes

to accept approaches 1.

Claim 1: There exists (Λ, N) and δ > 0 such that for all λ ∈ (0, Λ] and n ≥ N ,

(

1 − F (σ∗
n (xn (λ) , λ) |L)

1 − F (σ∗
n (xn (λ) , λ) |H)

)n

≥ δ if σ∗
n (xn (λ) , λ) > σ (26)

inf
λ∈(0,Λ]

σ∗
n (xn (λ) , λ) ≤ (σ + σ̄) /2. (27)

Proof of Claim 1: By hypothesis (condition (12)), for all ε > 0 sufficiently small there

exists Λ > 0 and N0 such that xn(λ) − xH (λ) ≥ ε whenever λ ∈ (0, Λ] and n ≥ N0.

Note that σH = σ, so ∆H (xH (λ) , σ) = 0 < ∆H (xH (λ) , σ̄). Let b be the most pro-L

beliefs. From Lemma 1, there exists N1 ≥ N0 such that if n ≥ N1 and λ ∈ (0, Λ], then

there is a responsive voting equilibrium when the offer is xn (λ) ≥ xH (λ) + ε and the

beliefs are b. Consequently, by Corollary 1 it follows that if λ ∈ (0, Λ] and n ≥ N1, then

given the actual beliefs b associated with offer xn (λ), either a responsive equilibrium

exists, or the equilibrium is the acceptance equilibrium.

If the equilibrium for some xn (λ) and λ is the acceptance equilibrium, then σ∗
n (xn (λ) , λ) =

σ. On the other hand, if the equilibrium is a responsive equilibrium, then since σ∗
n (xn (λ) , λ) ≥

σ = σH and xn(λ)−xH (λ) ≥ ε, and by definition ∆H (xH (λ) , σH , λ) = 0, it follows that

there exists ε̂ > 0 such that ∆H (xn (λ) , σ∗
n, λ) > ε̂. By assumption ∆L is bounded, and

the remaining terms on the lefthand side of the equilibrium condition (7) are bounded

away from 0. Consequently, there exists δ > 0 and N2 ≥ N1 such that inequality (26)

holds for all λ ∈ (0, Λ] and n ≥ N2. To complete the proof of Claim 1, it suffices to show



40

that

inf
λ∈(0,Λ]

σ∗
n (xn (λ) , λ) → σ as n → ∞. (28)

Suppose to the contrary that for all λ ∈ (0, Λ] there exists a subsequence of σ∗
n (xn (λ) , λ)

which stays bounded away from σ. Clearly along this subsequence the equilibria

are responsive. From Lemma 9, 1−F (σ|L)
1−F (σ|H)

< 1 for any σ ∈ (σ, σ̄), and converges to

f (σ̄|L) /f (σ̄|H) < 1 as σ → σ̄. This gives a contradiction to (26).

Claim 2: Let Λ and N be as defined in Claim 1. If

inf
λ∈(0,Λ]

Pr (An|H) = 0, (29)

then there exists a sequence (λm, nm) with λm ∈ (0, Λ] and nm ≥ N such that as m → ∞,

lim
(

1 − F
(

σ∗
nm

(xnm
(λm) , λm) |H

))nm

= 0, (30)

lim nm = ∞, (31)

lim σ∗
nm

(xnm
(λm) , λm) = σ, (32)

lim

(

1 − F
(

σ∗
nm

(xnm
(λm) , λm) |L

)

1 − F
(

σ∗
nm

(xnm
(λm) , λm) |H

)

)nm

= δ̂ > 0. (33)

Proof of Claim 2: Equality (29) can only hold if there exists some sequence (λm, nm)

for which λm ∈ (0, Λ] and nm ≥ N and (30) holds. If nm were bounded above, then

(30) could hold only if σ∗
nm

(xnm
(λm) , λm) → σ̄. Since this would contradict (27), it

follows that nm → ∞. If σ∗
nm

(xnm
(λm) , λm) = σ then F

(

σ∗
nm

(xnm
(λm) , λm) |H

)

= 0;

so to avoid violating (30), we need σ∗
nm

(xnm
(λm) , λm) > σ for all m large enough.

Without loss, choose the sequence (λm, nm) so that it has this property directly. Since

σ∗
nm

(xnm
(λm) , λm) > σ and nm → ∞, (26) implies that lim σ∗

nm
(xnm

(λm) , λm) = σ.

The sequence defined by (33) is bounded, and so by Bolzano-Weierstrass has a conver-

gent subsequence. Again, without loss, assume that the sequence (λm, nm) was chosen

so that it has this property directly. By (26), the limit of expression (33) is above δ

completing the proof of the claim.
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Claim 3: If (λm, nm) is a sequence that satisfies (31) - (33), then

lim
(

1 − F
(

σ∗
nm

(xnm
(λm) , λm) |H

))nm

> 0

Proof of Claim 3: For readability, for the remainder of the proof we suppress the argu-

ments (xnm
(λm) , λm) in writing σ∗

nm
. It suffices to show that lim ln

(

1 − F
(

σ∗
nm

|H
))nm

is

bounded away from −∞. To evaluate this limit, we use the discrete version of l’Hôpital’s

rule, which gives19

lim ln
(

1 − F
(

σ∗
nm

|H
))nm

= lim
nm+1 − nm

1

ln 1−F(σ∗

nm+1
|H)

− 1

ln 1−F(σ∗

nm
|H)

(34)

Define J (σ) = ln (1 − F (σ|L)) − ln (1 − F (σ|H)) and K (σ) = ln (1 − F (σ|H)). Ex-

panding, the right hand side of (34) is equal to

lim (nm+1 − nm)
J
(

σ∗
nm

)

J
(

σ∗
nm+1

)

J
(

σ∗
nm

)

− J
(

σ∗
nm+1

)

J
(

σ∗
nm

)

− J
(

σ∗
nm+1

)

K
(

σ∗
nm

)

− K
(

σ∗
nm+1

)

K
(

σ∗
nm

)

J
(

σ∗
nm

)

K
(

σ∗
nm+1

)

J
(

σ∗
nm+1

) .

By (32), σ∗
nm

→ σ, and so20

J
(

σ∗
nm

)

− J
(

σ∗
nm+1

)

K
(

σ∗
nm

)

− K
(

σ∗
nm+1

) →
f (σ|L)

f (σ|H)
− 1 (35)

K
(

σ∗
nm

)

J
(

σ∗
nm

) →

(

f (σ|L)

f (σ|H)
− 1

)−1

(36)

By strict MLRP, f (σ|L) /f (σ|H) > 1. Applying the discrete version of l’Hôpital’s rule

a second time,

lim ln

(

1 − F
(

σ∗
nm

|L
)

1 − F
(

σ∗
nm

|H
)

)nm

= lim (nm+1 − nm)
J
(

σ∗
nm

)

J
(

σ∗
nm+1

)

J
(

σ∗
nm

)

− J
(

σ∗
nm+1

) . (37)

Since this limit is bounded away from −∞ by property (33), it follows that the limit of

expression (34) is also. This completes the proof of Claim 3.

19This is necessary since σ∗
nm

is not differentiable with respect to nm. The discrete version of l’Hôpital’s
rule holds provided that 1

ln 1−F(σ∗

nm
(λm)|H)

→ ∞, which is satisfied since σ∗
nm

(λm) → σ.

20The next two limits follow since ln (1 − F (σ|R)) = −F (σ|R) + o
(

F (σ|R)2
)

and F (σ|R) =

(σ − σ) f (σ|R) + o
(

(σ − σ)
2
)

; consequently ln (1 − F (σ|R)) = − (σ − σ) f (σ|R) + o
(

(σ − σ)
2
)

.
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Proof of Main Result: Take Λ and N as defined in Claim 1. If condition (29) is

satisfied, then by Claim 2 there exists a sequence (λm, nm) that satisfies (30) - (33) hold.

But then by Claim 3, (30) cannot be satisfied, a contradiction. Consequently, condition

(29) cannot hold, i.e.,

inf
λ∈(0,Λ],n≥N

Pr (An|H) > 0.

This gives the result.

Proof of Lemma 5:

Part 1: Suppose to the contrary that (15) does not hold. So there exists Λ and N

such that infλ∈(0,Λ],n≥N Pr (An|H) > 0. From (14), we can construct a sequence (λm, nm)

for which λm ∈ (0, Λ] and nm ≥ N , with nm → ∞ and infm xnm
(λm) − xH (λm) ≤ 0. By

Bolzano-Weierstrass the sequences xnm
(λm) − xH (λm) and Pr (Anm

(xnm
(λm) , λm) H)

have a convergent subsequences. Thus without loss, assume that (λm, nm) is chosen

directly so that limits exist, and

lim xnm
(λm) − xH (λm) ≤ 0, (38)

lim Pr (Anm
(xnm

(λm) , λm) |H) > 0. (39)

As in the proof of Lemma 4 (39) implies σ∗
nm

(xnm
(λm) , λm) → σ since nm → ∞. For

the remainder of the proof we suppress the arguments (xnm
(λm) , λm) for clarity. More-

over, by definition ∆H (xH (λ) , σH , λ) = 0 and so ∆L (xH (λ) , σH , λ) < 0. Since σH = σ,

and beliefs are bounded, it follows that for nm large enough a responder would strictly

prefer to reject an offer of xnm
(λm) after observing σH . Consequently the equilibrium

does not feature unconditional acceptance, and is instead responsive: σ∗
nm

> σ for nm

large, and hence, the equilibrium condition (7) must hold. Since σ∗
nm

> σ = σH and

∆H (xH (λ) , σH , λ) = 0 by definition, it follows that lim ∆H
(

xnm
(λm) , σ∗

nm
, λnm

)

≤ 0

by (38). If the inequality is strict we have an immediate contradiction to the equilib-

rium condition. Otherwise, since β(xn)
1−β(xn)

is bounded away from infinity, the equilibrium
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condition (7) implies that

lim

(

1 − F
(

σ∗
nm

|L
)

1 − F
(

σ∗
nm

|H
)

)nm

= 0 (40)

Define J (σ) and K (σ) as in the proof of Lemma 4. By equation (37) of the same proof,

lim ln

(

1 − F
(

σ∗
nm

|L
)

1 − F
(

σ∗
nm

|H
)

)nm

= lim (nm+1 − nm)
J
(

σ∗
nm

)

J
(

σ∗
nm+1

)

J
(

σ∗
nm

)

− J
(

σ∗
nm+1

)

By (39), lim
(

1 − F
(

σ∗
nm

|H
))nm

exists and is strictly positive. By the discrete version

of l’Hôpital’s rule,

lim ln
(

1 − F
(

σ∗
nm

|H
))nm

= lim (nm+1 − nm)
K
(

σ∗
nm

)

K
(

σ∗
nm+1

)

K
(

σ∗
nm

)

− K
(

σ∗
nm+1

) > −∞.

By (35) and (36) (again, see the proof of Lemma 4), it follows that lim ln

(

1−F(σ∗

nm
|L)

1−F(σ∗

nm
|H)

)nm

exists and is bounded away from −∞. But this contradicts (40), completing the proof.

Part 2: Suppose to the contrary that (17) does not hold: there exists δ > 0 such

that for any Λ and N , supλ∈(0,Λ],n≥N Pr (An) ≥ δ. So we can construct a sequence

(λm, nm) with λm → 0 and nm → ∞ such that Pr (Anm
(xnm

(λm) , λm) |H) ≥ δ. By (16),

lim supm xnm
(λm) − xH (λm) ≤ 0. As in Part 1, by Bolzano-Weierstrass we can assume

without loss that the subsequence (λm, nm) is chosen so that equations (38) and (39)

hold. The remainder of the proof exactly parallels that of Part 1.

Proof of Lemma 6: Observe that xL (λ = 0, α = 1) > 0 since ∆L (x = 0, σL, λ = 0) < 0

by Assumption 3, ∆L is strictly increasing in x by Assumption 5 and ∆L (xL (0, 1) , σL, λ = 0) =

0 by definition. Since σL (α = 1) = σ by choosing x sufficiently close to xL (0, 1), the term

∆L (x, σ, λ = 0) can be made negative. Consequently, there exists κ > 0 such that

−
∆H (xL (0, 1) − κ, σ, λ = 0)

∆L (xL (0, 1) − κ, σ, λ = 0)

f (σ|H) Pr (H)

f (σ|L) Pr (L)

f (σ|H)

f (σ|L)
> 1.

By continuity, it follows that there exists Λ > 0 such that for all λ ≤ Λ,

−
∆H (xL (λ, 1) , σ, λ)

∆L (xL (λ, 1) , σ, λ)

f (σ|H) Pr (H)

f (σ|L) Pr (L)

f (σ|H)

f (σ|L)
> 1. (41)
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By MLRP 1−F (σ|H)
1−F (σ|L)

≥ 1 for any σ (see Lemma 9). Since for any consistent beliefs

b ≥ b, and both f(σ|H)
f(σ|L)

and 1−F (σ|H)
1−F (σ|L)

are increasing in σ, it follows that by (41) that

Z (xL (λ, 1) − κ, σ; n, α = 1, λ, b) > 0 for all σ. Thus xL (λ, 1)− κ > x̄n (α = 1, λ, b), i.e.,

the offer xL (λ, 1) − κ is always accepted.

Proof of Lemma 7: The proof is by contradiction. Suppose that contrary to the claim,

for all N and all κ > 0 there exists σ0 such that

sup
Λ

inf
λ∈(0,Λ],n≥N

π∗
n (σ0; λ) − xH (λ) < κ. (42)

As such, for all N and all κ > 0 there exists σ0 such that for any Λ > 0, there exists n ≥ N

and λ ∈ (0, Λ] such that π∗
n (σ0; λ)−xH (λ) < κ. This in turn implies that for any N , there

exists nN , λN and σN
0 such that nN ≥ N , λN ≤ 1/N , and π∗

nN

(

σN
0 ; λN

)

− xH (λN) ≤ 1
N

.

That is, along the sequence
(

nN , λN , σN
0

)

the number of responders becomes infinite,

preferences approach the common values extreme, and π∗
nN

(

σN
0 ; λN

)

− xH (λN) → 0. By

Lemma 5, it follows that21 Pr
(

AnN

(

π∗
nN

(

σN
0 ; λN

)

, λN

))

→ 0 as N → ∞. Choose ε > 0

such that for λ small enough, xH (λ) + ε < 1. Consider the alternate sequence of offers

x̃nN
(λN) = xH (λN ) + ε. From Lemma 4,22 lim inf Pr (AnN

(x̃nN
(λN ) , λN) |H) > 0.

Since (by Assumption 4) the proposer strictly prefers acceptance of any offer x < 1 to

rejection, it follows that for N large enough the offer x̃nN
(λN ) is preferred to the offer

π∗
nN

(

σN
0 ; λN

)

when there are N responders and preferences are λN . But this contradicts

the optimality of the equilibrium offers, completing the proof.

Proof of Lemma 8: Fix a set of beliefs b and an offer x. When x is such that the equi-

librium is either a non-responsive rejection equilibrium, or a non-responsive acceptance

equilibrium, the result follows trivially. Below, we focus on the case in which there is a

21Observe that in Lemma 5 both the hypothesis and the result are stated in terms of the full set of
offers {xn (λ) : n, λ}. Here, we are using a variant where both the hypothesis and result hold for a
particular sequence {xnN

(λN ) : N = 1, 2, . . .} . It is easily verified that the proof of Lemma 5 can be
adopted, with only minor modifications, to cover this case.

22Parallel remarks apply here as in footnote 21.
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responsive voting equilibrium. For the remainder of the proof, we write b (H) for b and

b (L) for 1 − b. The average responder’s expected payoff can be decomposed as

ΠR
n (x, λ, α, b) =

∑

ω

b (ω)
(

E
[

Ūω (σi, λ) |ω
])

+
∑

ω

b (ω) Pr (An (x, b) |ω)E

[

1

n

n
∑

i=1

∆ω (x, σi, λ) |An (x, b) , ω

]

.

Now,

∂

∂x

(

Pr (An (x, b) |ω) E

[

1

n

n
∑

i=1

∆ω (x, σi, λ) |An (x, b) , ω

])

=
∂

∂x

(

∫

σ∗

. . .

∫

σ∗

1

n

n
∑

i=1

∆ω (x, σi, λ) dF (σ1|ω) . . . dF (σn|ω)

)

=
∂

∂x

(

(1 − F (σ∗|ω))n−1

∫

σ∗

∆ω (x, σ, λ) dF (σ|ω)

)

= −
∂σ∗

∂x
f (σ∗|ω) (n − 1) (1 − F (σ∗|ω))n−2

∫

σ∗

∆ω (x, σ, λ) dF (σ|ω)

−
∂σ∗

∂x
(1 − F (σ∗|ω))n−1∆ω (x, σ∗, λ) f (σ∗|ω)

+(1 − F (σ∗|ω))n−1

∫

σ∗

∆ω
x (x, σ, λ) dF (σ|ω) . (43)

Note that ∂
∂x

Pr (An (x, b) |ω) = ∂
∂x

(1 − F (σ∗|ω))n = −n∂σ∗

∂x
f (σ∗|ω) (1 − F (σ∗|ω))n−1,

and

(1 − F (σ∗|ω))n−1

∫

σ∗

∆ω
x (x, σ, λ) dF (σ|ω) = Pr (An (x, b) |ω) E [∆ω

x (x, σ, λ) |ω, σ ≥ σ∗] .

After substitution, expression (43) rewrites as

∂

∂x
Pr (An (x, b) |ω)

(

n − 1

n
E [∆ω (x, σ, λ) (x, σ) |ω, σ ≥ σ∗] +

1

n
∆ω (x, σ∗, λ)

)

+ Pr (An (x, b) |ω) E [∆ω
x (x, σ, λ) |ω, σ ≥ σ∗] .

Consequently

∂ΠR
n

∂x
= +

n − 1

n

∑

ω

b (ω)
∂

∂x
Pr (An (x, b) |ω) E [∆ω (x, σ, λ) |ω, σ ≥ σ∗]

+
1

n

∑

ω

b (ω)
∂

∂x
Pr (An (x, b) |ω)∆ω (x, σ∗, λ)

+
∑

ω

b (ω) Pr (An (x, b) |ω) E [∆ω
x (x, σ, λ) |ω, σ ≥ σ∗] .
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Now, from the equilibrium condition (7):

∂ Pr(An(x,b)|H)
∂x

∂ Pr(An(x,b)|L)
∂x

=
f (σ∗|H) (1 − F (σ∗|H))n−1

f (σ∗|L) (1 − F (σ∗|L))n−1
= −

∆L (x, σ∗, λ)

∆H (x, σ∗, λ)

b (L)

b (H)

and so
∑

ω

b (ω)
∂

∂x
Pr (An (x, b) |ω) ∆ω (x, σ∗, λ) = 0.

Since ∆ω (x, σ, λ) is increasing in σ (Assumption 2), it follows that

∑

ω

b (ω)
∂

∂x
Pr (An (x, b) |ω) E [∆ω (x, σ, λ) |ω, σ ≥ σ∗] ≥ 0

also. The result then follows.

Proof of Proposition 2: For any λ and n, consider an equilibrium (π∗
n, σ∗

n, βn). We

start with some preliminary bounds: From Lemma 7, we know that there exists κx > 0

and Nx such that for all σ0,

sup
Λ

inf
λ∈(0,Λ],n≥Nx

π∗
n (σ0; λ, α = 1) − xH (λ) ≥ κx.

For any λ, define a sequence of offers by x̂n (λ) = xH (λ) + κx/2. Let b and b̄ denote the

most pro-L and pro-H beliefs possible respectively. From Lemma 4, there exists κA > 0

and NA such that

sup
Λ

inf
λ∈(0,Λ],n≥NA

Pr (An (x̂n (λ) , b) |H) ≥ κA.

Since ∂
∂x

∆H is bounded uniformly away from 0, there exists δ > 0 such that

E
[

∂
∂x

∆H (x, σi, λ) |H, σi ≥ σ∗
]

> δ for all x and λ. By Lemma 5, choose NL such that

inf
Λ

sup
λ∈(0,Λ],n≥NL

Pr
(

An

(

xH (λ) , b̄
)

|L
)

max
∣

∣∆L
∣

∣ ≤ bκAδ
κx

4
. (44)

Finally, define N̂ = max {Nx, NA, NL}. We show below that for any σ0,

sup
Λ

inf
λ∈(0,Λ],n≥N̂

ΠR
n

(π∗
n (σ0) , λ, α, βn (π∗

n (σ0))) − Eσi,ω

[

Ūω (σi, λ)
]

≥ bκAδ
κx

4
. (45)

Inequality (45) is enough to establish the Proposition, as follows. First, inequality (45)
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implies that there exists Λ̄ such that

inf
λ∈(0,Λ̄],n≥N̂

ΠR
n

(π∗
n (σ0) , λ, α, βn (π∗

n (σ0))) − Eσi,ω

[

Ūω (σi, λ)
]

≥ bκAδ
κx

8
. (46)

From (46),

sup
Λ>0

inf
λ∈(0,Λ],n≥N̂

Π∗R
n

(λ) − Eσi,ω

[

Ūω (σi, λ)
]

= sup
Λ>0

inf
λ∈(0,Λ],n≥N̂

∫

ΠR
n

(π∗
n (σ0) , λ, βn (π∗

n (σ0; λ))) dF (σ0) − Eσi,ω

[

Ūω (σi, λ)
]

≥ sup
Λ∈(0,Λ̄]

inf
λ∈(0,Λ],n≥N̂

∫

ΠR
n

(π∗
n (σ0) , λ, βn (π∗

n (σ0; λ))) dF (σ0) − Eσi,ω

[

Ūω (σi, λ)
]

≥ sup
Λ∈(0,Λ̄]

∫

inf
λ∈(0,Λ],n≥N̂

ΠR
n

(π∗
n (σ0) , λ, βn (π∗

n (σ0; λ))) dF (σ0) − Eσi,ω

[

Ūω (σi, λ)
]

≥ sup
Λ∈(0,Λ̄]

∫

bκAδ
κx

8
dF (σ0) = bκAδ

κx

8
.

Setting γ = bκAδ κx

8
gives the result.

Proof of inequality (45): Consider a particular realization of σ0. For the remainder

of the proof, we write x∗
n (λ) for π∗

n (σ0; λ), and drop λ where doing so will create no

confusion. Likewise, let bn (λ) denote the responders’ equilibrium beliefs at the offer

x∗
n (λ), i.e., bn (λ) = βn (x∗

n (λ) , λ).

Arithmetically, the responders’ expected payoff from the equilibrium offer x∗
n given

the equilibrium beliefs bn can be decomposed as

ΠR
n

(x∗
n, λ, bn) = ΠR

n
(xH (λ) , λ, bn) + ΠR

n
(x̂n (λ) , λ, bn) − ΠR

n
(xH (λ) , λ, bn)

+ ΠR
n

(x∗
n, λ, bn) − ΠR

n
(x̂n (λ) , λ, bn) . (47)

From Lemma 8, the derivative of ΠR
n

between xH (λ) and x̂n (λ) is positive, and so

ΠR
n

(x̂n (λ) , λ, bn)−ΠR
n

(xH (λ) , λ, bn) ≥ 0. By the construction of x̂n (λ), the acceptance

probability given offer x̂n (λ) and beliefs bn satisfies

sup
Λ

inf
λ∈(0,Λ],n≥NA

Pr (An (x̂n (λ) , bn) |H) ≥ κA,
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since under beliefs bn acceptance is (weakly) more likely than under b (see Corollary 1).

Consequently, since x∗
n − x̂n (λ) ≥ κx

2
for λ chosen small enough, by Lemma 8,

sup
Λ

inf
λ∈(0,Λ],n≥N̂

ΠR
n

(x∗
n, λ, bn) − ΠR

n
(x̂n (λ) , λ, bn) ≥ bκAδ

κx

2
.

Finally,

ΠR
n

(xH (λ) , λ, bn) − Eσi,ω

[

Ūω (σi, λ)
]

= bn Pr (An (xH (λ) , bn) |H)E
[

∆H (xH (λ) , σi, λ) |An (xH (λ) , bn) , H
]

+ (1 − bn) Pr (An (xH (λ) , bn) |L) E
[

∆L (xH (λ) , σi, λ) |An (xH (λ) , bn) , L
]

.

Recall that ∆H (xH (0) , σi, 0) = 0 for all σi, and so for any N ,

sup
Λ

inf
λ∈(0,Λ],n≥N

E
[

∆H (xH (λ) , σi, λ) |An (xH (λ) , bn) , H
]

= 0.

From (44), regardless of whether the expression E
[

∆L (xH (λ) , σi, λ) |An (xH (λ) , bn) , L
]

is positive or negative,

sup
Λ

inf
λ∈(0,Λ],n≥NL

ΠR
n

(xH (λ) , λ, bn) − Eσi,ω

[

Ūω (σi, λ)
]

≥ −bκAδ
κx

4
.

From (47), it follows that

sup
Λ

inf
λ∈(0,Λ],n≥N̂

ΠR
n

(x∗
n, λ, α, bn) − Eσi,ω

[

Ūω (σi, λ)
]

≥ bκAδ
κx

4
.

The result then follows.

Proof of Proposition 3: Immediate from Lemma 6 and Lemma 8.

Proof of Proposition 4: Proposition 4 is a special case of Proposition 7, which is

proved below.

Proof of Proposition 5: The proof is omitted for reasons of space. It is available from

the authors’ webpages.

Proof of Proposition 6: From Proposition 3, there exists γ > 0 and Λ > 0 such that

whenever λ ≤ Λ,

Π∗R
n

(λ, 1) − Eσi,ω

[

Ūω (σi, λ)
]

≤ Eσi,ω [∆ω (xL (λ, 1) , σi, λ)] − γ.
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As such, there exists Λ1 ≤ Λ such that whenever λ ≤ Λ1,

Π∗R
n

(λ, 1) − Eσi,ω

[

Ūω (σi, λ)
]

≤ Eσi,ω [∆ω (xL (0, 1) , σi, 0)] −
γ

2
.

Moreover, there exists Λα such that when λ ≤ Λα

|Eσi,ω [∆ω (xL (0, α) , σi, 0)] − Eσi,ω [∆ω (xL (λ, α) , σi, λ)]| <
γ

8
.

As such, when λ ≤ min {Λα, Λ1} from Proposition 1 there exists Nα such that when

n ≥ Nα,

Π∗R
n

(λ, α) − Eσi,ω

[

Ūω (σi, λ)
]

≥ Eσi,ω [∆ω (xL (λ, α) , σi, λ)] −
γ

4

> Π∗R
n

(λ, 1) − Eσi,ω

[

Ūω (σi, λ)
]

.

The comparison of the proposer’s payoff is straightforward.

Proof of Proposition 7: From Proposition 2, there exists γ0 > 0, N1 and Λ1 > 0 such

that

inf
λ∈(0,Λ1],n≥N1

(

Π∗R
n

(λ, 1) − Eσi,ω

[

Ūω (σi, λ)
])

≥
γ0

2
.

Choose Λα such that Pr (H)Eσi

[

∆H (xH (λ, α) , σi, λ) |H
]

≤ γ0

8
, for all λ ∈ (0, Λα].

Choose ΛW > 0 such that minσ0∈[σ,σ̄] W (σ0; λ, α) > 0 whenever λ ≤ ΛW . Then

from Proposition 1, for any λ ≤ min {Λα, ΛW} there exists Nα (λ) such thatΠ∗R
n

(λ, α) −

Eσi,ω

[

Ūω (σi, λ)
]

≤ γ0

4
whenever n ≥ Nα (λ) . Consequently, whenever λ ≤ min {Λα, ΛW , Λ1}

and n ≥ max {Nα (λ) , N1},

Π∗R
n

(λ, 1) − Eσi,ω

[

Ūω (σi, λ)
]

≥
γ0

2
>

γ0

4
≥ Π∗R

n
(λ, α) − Eσi,ω

[

Ūω (σi, λ)
]

.

Setting γ = γ0/4 and λ̄ = min {Λα, ΛW , Λ1} completes the proof.




