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Abstract

Elections with sequential voting, such as presidential primaries, are widely-thought to
possess momentum effects, where the choices of early voters influence the behavior of later
voters. Momentum can be subtle: it may take time to build, and depends on how candidates
perform in each stage relative to expectations. This paper develops a rational theory of
momentum in sequential elections that accounts for these phenomena. We analyze an
election with two candidates in which some voters are uncertain about which candidate is
more desirable. Voters obtain private signals and vote in a sequence, observing the history
of votes at each point. We show that, regardless of the voting rule, voters can herd on
a candidate with positive probability, and such a “bandwagon” can occur with probability
approaching one in large electorates. Our theory is distinct from the standard information
cascades literature because voting is a collective decision problem, and consequently voters
have forward-looking incentives to consider the actions of those after them.
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“...when New Yorkers go to vote next Tuesday, they cannot help but be influ-
enced by Kerry’s victories in Wisconsin last week. Surely those Wisconsinites knew
something, and if so many of them voted for Kerry, then he must be a decent can-
didate.”

— Duncan Watts in Slate Magazine

1 Introduction

Many elections take place over time. The most prominent example lies at the heart of the
American presidential selection process: the primaries. A series of elections by which a party
nominates its candidate for the general presidential election, the primaries are held sequentially
across states over a few months. On a smaller scale, but also explicitly sequential, are the
roll-call voting mechanisms used by city councils and Congressional bodies. A more subtle
example is the general U.S. presidential election itself, where the early closing of polls in some
states introduces a temporal element into voting.

In contrast, most theoretical models of voting are static. The distinction between simulta-
neous and sequential elections is not just of theoretical interest, but also relevant to policy. It
is often suggested that in sequential elections, voters condition their choices on the acts of prior
voters. Such history dependence is believed to result in momentum effects: the very fact that
a particular alternative is leading in initial voting rounds may induce some later voters to select
it who would have otherwise voted differently. Moreover, voting behavior in primaries suggests
that candidates are judged by how they perform relative to expectations: a surprisingly good
performance in an early primary may generate more momentum than an anticipated victory
(Popkin, 1991).

The beliefs in momentum and performance relative to expectations have shaped electoral
policy and strategy. Some U.S. states aim to hold their primaries early in the process,1

campaign funds and media attention are disproportionately devoted to initial primaries,2 and
candidates strategically attempt to gain surprise victories. For example, Hamilton Jordan,
who would become Jimmy Carter’s White House Chief of Staff, outlined the importance of a
surprise victory in New Hampshire in a memorandum two years before Carter’s campaign: “...a
strong surprise in New Hampshire should be our goal, which would have a tremendous impact
on successive primaries...” This assessment is supported by the analysis of Bartels (1988), who
simulates Carter’s national popularity prior to his victory in New Hampshire and predicts that
Carter would have lost the 1976 nomination to George Wallace had the primaries been held

1For instance, since 1977, New Hampshire law has stated that its primary is to be the first in the nation.
As a result, the state has had to move its primary, originally in March, earlier in the year to remain the first.
New Hampshire’s primary was held on February 20 in 1996, February 1 in 2000, and then January 27 in 2004 to
compete with front-loaded primaries in other states.

2Bartels (1988) and Gurian (1986) document how a substantial share of the media’s attention and candidates’
campaign resources are devoted to New Hampshire even though that state accounts for merely 4 out of 538 total
electoral votes.
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simultaneously in all states.
The 1984 Democratic primaries featuring Gary Hart and Walter Mondale exemplifies that

voters judge candidates’ performances relative to expectations. Expected to have support
in Iowa, Mondale’s victory with close to 50% of the caucus votes in this state was largely
overshadowed by Gary Hart’s ability to garner about 17% of the votes. Even though Hart’s
performance in Iowa was far inferior to Mondale’s on an absolute scale, Hart had performed
much better than expected. This garnered him momentum, and Hart proceeded to win the
following primaries in Vermont and New Hampshire (Bartels, 1988).

This paper provides a positive theory of voter behavior in sequential elections, generating
dynamics with momentum effects. Specifically, we consider a sequential version of a canonical
election environment (Feddersen and Pesendorfer, 1996, 1997). There are two candidates,
and a finite population of voters who vote in an exogenously fixed sequence, each observing
the entire history of prior votes. The candidate who receives the majority of votes wins the
election. There are two kinds of voters: Neutrals and Partisans. Neutrals desire to elect the
“correct” or better candidate, which depends on the realization of an unknown state variable.
Partisans, on the other hand, wish to elect their exogenously preferred candidate regardless of
the state. Whether a voter is Neutral or Partisan is her private information, and each voter
receives a private binary signal that contains some information about the unknown state.

In this setting, we formalize an informational theory of voting that is built on the simple but
powerful logic that if (some) initial voters use their private information in deciding how to vote,
the voting history provides useful information to later voters. We show that a simple form of
history-dependent strategies constitutes fully rational behavior. This equilibrium generates rich
momentum effects where a leading candidate is judged relative to his expected partisan support,
and some voting histories can cause future voters to entirely ignore their private information,
with Neutrals simply joining “bandwagons” for one of the candidates.

The notion of rational bandwagons is reminiscent of the the herd-cascade literature initiated
by Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992). However, the strategic
issues involved are very different. In standard herd-cascade models, a player’s payoffs do not
directly depend on the actions of others; the only externality is informational. Thus, agents
have no strategic reason to consider the impact of their actions on future agents’ choices, and
optimal behavior for any agent is necessarily that of a backward-looking Bayesian. In contrast,
an election is a game with payoff interdependencies: a voter’s payoffs are determined by the
collective outcome, which can depend on the votes of those before and after her. A strategic
voter determines her optimal action by conditioning on being pivotal. A vote can be pivotal in
two distinct ways in sequential elections. First, just as in simultaneous voting, it can affect the
electoral outcome in the event that all other votes are tied. Second, and unique to sequential
voting, a vote can reveal some information to future voters, and therefore induce different
(distributions over) future votes. Therefore, sequential voting inherently presents forward-
looking incentives to players, and the possibility of bandwagons or information cascades in our
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environment is distinct from the standard herd-cascade literature.
The main contribution of this paper is to characterize a Perfect Bayesian equilibrium

that generates rational herding in a sequential election. In the equilibrium we character-
ize, Posterior-Based Voting (PBV), a voter uses all available information—her prior, signal,
and the observed history of votes—to form her expectation of which candidate is better for her,
and votes for this candidate. Importantly, this behavior does not require a voter to condition
on being pivotal. That is, when playing PBV, each voter does in fact behave like a backward-
looking Bayesian of the standard herding model. We show that in spite of the forward-looking
incentives in our model, this is optimal behavior for a strategic voter who conditions on being
pivotal (given that others are playing PBV). Moreover, for generic parameters, PBV is a strict
equilibrium; thus, it does not rely on the choice of how to resolve indifferences among players,
and is robust to small perturbations of the model.

Though simple, PBV generates rich dynamics. Play is inherently dependent on history,
and voters update their beliefs about which candidate is better based upon the voting history.
Accordingly, PBV generates momentum effects, where the prospects for a candidate can ebb
and flow during the course of an election as a function of the voting history. The possibility of
partisanship in our model implies that in the PBV equilibium, the performance of a candidate
is judged relative to his expected partisan support. Thus, even though a candidate may be
trailing in the absolute vote lead on the equilibrium path, he may have momentum because
he has outperformed expectations. In large elections, bandwagons for a candidate form with
very high probability, where Neutral voters vote for a candidate independent on their private
information. Indeed, a bandwagon can even form on a candidate who is trailing in the election.

The essence of why PBV is an equilibrium is that when other voters follow PBV, if a
deviation were to change the outcome of the election, the subsequent profile of votes does not
generate enough public information to outweigh a voter’s posterior that is computed from her
observed history and private signal. In fact, this logic is so pervasive that PBV is a (generically
strict) equilibrium for all anonymous and monotonic voting rules, and not simply majority rule.
Momentum can therefore be the outcome of equilibrium behavior independent of the voting rule.
Interestingly, we find that if voters play PBV, a large class of voting rules are asymptotically
equivalent in terms of the electoral outcomes they induce. Furthermore, PBV is robust to
uncertainties over the size of the voting population and remains an equilibrium regardless of
the beliefs voters have about the final population size. This is attractive in the context of large
elections.

The notion that momentum can be the outcome of a fully rational sequential voting model
is novel.3 Some of the early informal literature in political science invokes assumptions such
as a psychological desire to vote for the eventual winner to explain momentum (e.g. Berelson,
Lazarsfeld, and McPhee, 1954); this has recently been formalized by Callander (2004a) in

3To our knowledge, Fey (2000) and Wit (1997) were the first to formally examine the possibility of rational
herding in sequential voting, and both authors concluded that under “reasonable restrictions”, herds could not
arise. We postpone a a detailed comparison to Section 4.4.
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a model with an infinite population of voters, each of whom is partially motivated to elect
the right candidate, and partially motivated to simply vote for the eventual winner. While
his analysis is innovative and presents interesting comparisons with analogous simultaneous
elections (Callander, 2004b), we believe that it is important to establish a non-behaviorally-
based benchmark model of momentum, especially because the empirical evidence on whether
voters possess conformist motivations is inconclusive.4

In an important contribution, Dekel and Piccione (2000) study a model of strategic voting
and show that under some assumptions, a class of symmetric equilibria of their simultaneous
voting game remain equilibria of the corresponding sequential voting game. Naturally, such
equilibria feature history-independent voting. This result has sometimes been misinterpreted
as implying that when a voter conditions on being pivotal in a sequential voting environment,
the observed history of votes is irrelevant to her voting decision. However, this is only true
when other voters are playing history-independent strategies. In the PBV equilibrium we
derive, strategic voters do learn from previous voters and they act fully rationally, voting as
if they are pivotal. This illustrates the more general possibility that when other voters play
history-dependent strategies, a voter learns from the history how she can be pivotal, and this
may be useful for her voting decision. Our findings therefore do not contradict Dekel and
Piccione (2000); rather, we identify an appealing equilibrium of the sequential election that
has no counterpart in simultaneous elections. While Dekel and Piccione (2000) has important
normative implications of whether sequential elections can aggregate information efficiently in
certain environments, our main interest is to provide a positive description of behavior that can
account for the rich momentum effects exhibited in real world elections.

Though the informational model here contributes to the understanding of electoral dynam-
ics, we do not wish to suggest that it captures the whole story. In our model, we abstract from
many important institutional details such as campaign finance and media attention.5 Having
said that, it is difficult to shed light on why both financial and media resources are devoted to
the first few elections without making specific assumptions about voting behavior. Insofar as
the purpose of many elections—especially primaries—is to provide and aggregate information,
we believe that these institutional details should be embedded in an informational model similar
to the one here. Our work may be viewed as a first step towards understanding the role that
these institutions play in voting behavior.

The plan for the remainder of the paper is as follows. Section 2 lays out the model, and
Section 3 derives the main results about PBV strategies and equilibrium. We discuss various
implications and extensions of our analysis in Section 4. Section 5 concludes. All formal
proofs are deferred to the Appendix.

4See the discussion in Bartels (1988, pp. 108–112). Kenney and Rice (1994) test the strength of various
explanations for momentum, including both the preference for conformity theory and an informational theory
similar to the one proposed here. Studying the 1988 Republican primaries, they find that voters acted in ways
that are consistent with both theories.

5Klumpp and Polborn (2006) offer a model of momentum in this vein, examining the behavior of candidates
who must choose how to allocate a fixed pie of campaign funds across states.
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2 Model

We consider a voting game with a finite population of n voters, where n is odd. Voters
vote for one of two candidates, L or R, in a fixed sequential order, one at a time. We label
the voters 1, . . . , n, where without loss of generality, a lower numbered voter votes earlier in
the sequence. Each voter observes the entire history of votes when it is her turn to vote.
The winner of the election, denoted W ∈ {L,R}, is selected by simple majority rule. The
state of the world, ω ∈ {L,R}, is unknown, but individuals share a common prior over the
possible states, and π > 1

2 is the ex-ante probability of state L. Before voting, each voter
i receives a private signal, si ∈ {l, r}, drawn from a Bernoulli distribution with precision γ

(i.e., Pr(si = l|ω = L) = Pr(si = r|ω = R) = γ), with γ > π.6 Individual signals are drawn
independently conditional on the state.

In addition to being privately informed about her signal, a voter also has private informa-
tion about her preferences: she is either an L-partisan (Lp), a Neutral (N), or an R-partisan
(Rp). We denote this preference type of voter i by ti. Each voter’s preference type is drawn
independently from the same distribution, which assigns probability τL > 0 to preference
type Lp, probability τR > 0 to Rp, and probability τN > 0 to the Neutral type, N , where
τL + τR + τN = 1. The preference ordering over candidates is state dependent for Neutrals,
but state independent for Partisans. Specifically, payoffs for voter i are defined by the function
u(ti,W, ω) as follows:

u (Lp,W, ω) = 1{W=L} for ω ∈ {L, R}
u (Rp,W, ω) = 1{W=R} for ω ∈ {L,R}
u (N,L, L) = u (N,R, R) = 1

u (N, L, R) = u (N,R, L) = 0

Therefore, a voter of preference type Cp (C ∈ {L, R}) is a Partisan for candidate C, and
desires this candidate to be elected regardless of the state of the world. A Neutral voter, on
the other hand, would like to elect candidate C ∈ {L,R} if and only if that candidate is the
better one, i.e. if the state ω = C. Note that each voter cares about her individual vote only
instrumentally, through it’s influence on the winner of the election.

We now clarify the role of two modeling choices.
Partisans. The Partisan types here are analogous to those in a number of papers in the

literature, such as Feddersen and Pesendorfer (1996, 1997) and Feddersen and Sandroni (2006).
Nevertheless, Partisans are not necessary for the existence of a history-dependent equilibrium.
We analyze the game without Partisans—pure common value elections—in Section 4.4 and show
that Posterior-Based Voting remains an equilibrium of that game. While some of the sequential
voting literature has restricted attention to the case of pure common values, we believe that

6This implies that any individual’s signal is more informative than the prior. Our analysis will carry over
with obvious changes to cases where the signal precision is asymmetric across states of the world.

5



the presence of Partisanship is relevant both theoretically and in practice. Partisans introduce
private values into the electoral setting, an element that is important in real-world elections.7

Although we have formalized Partisans as those without a common value element to their
preferences whatsoever, this is only for expositional convenience. All that is necessary for our
results is that, under complete information, an L-Partisan needs at least three net signals in
favor of candidate R to prefer electing candidate R over L (and analogously for an R-Partisan),
independently of the population size. In contrast, a Neutral needs only one net signal in favor
of a candidate to prefer that candidate being elected. Partisans, therefore, may have a common
value component to their preferences; it is simply that their preferences (or priors) are biased in
favor of one candidate, although not necessarily to the extent that sufficient information cannot
change their views. The presence of Partisans allows our model to generate rich momentum
effects, including the feature that a candidate’s performance is judged relative to expectations
in a non-trivial way.

Information Structure. The binary information structure chosen here is the canonical focus
in both the voting literature (e.g. Austen-Smith and Banks, 1996; Feddersen and Pesendorfer,
1996) and the social learning literature (e.g. Bikhchandani, Hirshleifer, and Welch, 1992). Due
to its prevalence and the complexities of studying history-dependent equilibria in sequential
voting, this important benchmark is our focus here. Nonetheless, the issue of richer information
structures is certainly important, and we discuss this in Section 4.5.

Denote by G (π, γ, τL, τR; n) the sequential voting game defined above with prior π, signal
precision γ, preference type parameters τL and τR, and n voters. Throughout the subsequent
analysis, we use the term equilibrium to mean a (weak) Perfect Bayesian equilibrium of this
game (Fudenberg and Tirole, 1991). Let hi ∈ {L,R}i−1 be the realized history of votes
when it is voter i’s turn to act; denote h1 = φ. A pure strategy for voter i is a map vi :
{Lp, N, Rp}×{L,R}i−1×{l, r} → {L,R}. We say that a voter i votes informatively following
a history hi if vi

(
N,hi, l

)
= L and vi

(
N, hi, r

)
= R. The posterior probability that voter i

places on state L is denoted by µi(hi, si).

3 Posterior-Based Voting

3.1 Definition and Dynamics

We begin the analysis by introducing Posterior-Based Voting (PBV) and characterizing its
induced dynamics. This characterization allows us to demonstrate that such behavior is an
equilibrium in Section 3.2. Let v = (v1, . . . , vn) denote a strategy profile and vi = (v1, . . . , vi−1)
denote a profile of strategies for all players preceding i.

Definition 1. A strategy profile, v, satisfies (or is) Posterior-Based Voting (PBV) if for every
7For example, in the context of presidential primaries, while some voters in a party hope to nominate the

party candidate who is more electable in the general presidential election, there are others who may not be so
sophisticated and simply wish to select a particular party candidate without considering the general election.
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voter i, type ti, history hi, signal si, and for any W,W ′ ∈ {L,R},

1. Eω[u(ti,W, ω)|hi, si;vi] > Eω[u(ti,W ′, ω)|hi, si;vi] ⇒ vi(ti, hi, si) = W

2. Eω[u(ti, L, ω)|hi, si;vi] = Eω[u(ti, R, ω)|hi, si;vi] ⇒
{

vi(ti, hi, l) = L

vi

(
ti, h

i, r
)

= R

PBV is a property of a strategy profile. A PBV strategy consequently refers to a strategy
for a player that is part of a PBV profile.

The first part of the definition requires that given the history of votes and her private signal,
if a voter believes that electing candidate L (R) will yield strictly higher utility than electing
candidate R (L), then she votes for candidate L (R). In other words, in a PBV profile, each
voter updates her beliefs about candidates using all currently available information (taking as
given the strategies of previous voters), and then votes for the candidate she currently believes
to be best for her. Observe that this behavior coincides with rational behavior in a standard
herding environment, and does not explicitly account for the payoff interdependency of an
election. Since Partisan voters have a preference ordering over candidates that is independent of
the state of the world, the definition immediately implies that Partisans vote for their preferred
candidate in a PBV profile, independent of signal and history. Whenever a Neutral voter’s
posterior is µi(hi, si) 6= 1

2 , she votes for the candidate she believes to be strictly better.
Part two of the definition is a tie-breaking rule.8 It requires that when a Neutral voter

has posterior µi(hi, si) = 1
2 , she vote informatively. In doing so, she reveals her signal to

future voters. While we choose this tie-breaking rule to facilitate exposition, it does not play a
significant role in our analysis. Any choice of how to break ties only matters for a non-generic
constellation of parameters (π, γ, τL, τR). For a generic tuple, (π, γ, τL, τR), when PBV is
played, it will never be the case that there is a Neutral voter with posterior µi(hi, si) = 1

2 . We
defer a formal discussion of this point to Remark 1 in the Appendix.

The above discussion implies that the behavior of voter i in the PBV profile can be sum-
marized as follows:

vi(Lp, h
i, si) = L

vi(Rp, h
i, si) = R

vi(N,hi, si) =

{
L if µi(hi, si) > 1

2 or {µi(hi, si) = 1
2 and si = l}

R if µi(hi, si) < 1
2 or {µi(hi, si) = 1

2 and si = r}

PBV is sophisticated insofar as voters infer as much as possible from the past history,
taking into account the strategies of preceding players. However, the construction of PBV
is nevertheless myopic. Since voters are influenced by the voting history in the PBV profile,
a strategic voter who conditions on being pivotal should account for how her vote affects the

8Note that the tie from the standpoint of PBV does not imply that the voter is strategically indifferent
between her choices, because the indifference here does not condition on being pivotal.
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decisions of those after her. The requirement of PBV, on the other hand, is simply that a voter
cast her vote for the candidate she would wish to select based on what she currently knows.
This distinction between myopic and strategic reasoning makes it unclear, a priori, that PBV
can be an equilibrium. We take up that question in Section 3.2, showing that it indeed is; for
the moment, however, the focus is on characterizing the dynamics induced by PBV.

To provide intuition, we begin with an informal description of PBV behavior. As noted
previously, the behavior of Partisans is trivial, so we focus on Neutrals. Voter 1, if Neutral,
votes informatively, since signals are more informative than the prior. All subsequent Neutral
voters face a simple Bayesian inference problem: conditional on the observed history and their
private signal, what is the probability that the state is L? Consider i > 1 and a history h̃i

where all preceding Neutrals (are assumed to) have voted informatively, with h̃i containing k

votes for L and i − k − 1 votes for R. For any history, we define the public likelihood ratio,
λ

(
hi

)
, as the ratio of the public belief that the state is L versus state R after the history hi:

λ
(
hi

)
=

Pr(ω=L|hi)
Pr(ω=R|hi)

. By Bayes Rule, for the history h̃i,

λ
(
h̃i

)
=

π

(1− π)

(
τL + τNγ

τL + τN (1− γ)

)k (
τR + τN (1− γ)

τR + τNγ

)i−k−1

(1)

The public likelihood ratio above captures how informative the history h̃i is, given the
postulated behavior about preceding voters. Since γ > 1− γ, the ratio is strictly increasing in
k, i.e. seeing a greater number of votes for L strictly raises Neutral voter i’s belief that L is the
better candidate. Partisanship makes the public history noisy: when τL ' τR ' 0, the ratio
is close to its maximum, which is informationally equivalent to voter i having observed k signal
l’s and i− k − 1 signal r’s. On the other hand, when τL ' τR ' 1

2 , the ratio is approximately
π

1−π , reflecting a public history only slightly more informative than the prior. The Neutral
voter i combines the information from the public history, hi, with that of her private signal, si,
to determine her posterior belief, µi

(
hi, si

)
, that the state is L. By Bayes Rule,

µi

(
hi, si

)

1− µi (hi, si)
= λ

(
hi

) Pr (si|ω = L)
Pr (si|ω = R)

Since the signal precision of si is γ, it follows that for λ
(
hi

) ∈
[

1−γ
γ , γ

1−γ

]
, an l signal

translates into a posterior belief no less than 1
2 that the state is L and an r signal translates

into a posterior belief no less than 1
2 that the state is R. However, for λ

(
hi

)
> γ

1−γ , both
signals generate posterior beliefs strictly greater than 1

2 that the state is L, and thus in PBV, a
Neutral voter i would vote uninformatively for candidate L. Similarly, for λ

(
hi

)
< 1−γ

γ , voter
i’s posterior favors R regardless of her private signal, and a Neutral i thus votes uninformatively
for candidate R.

In sum, PBV prescribes the following behavior: Neutrals vote informatively until the public
likelihood ratio, λ

(
hi

)
, no longer lies in

[
1−γ

γ , γ
1−γ

]
; when this happens, all future Neutrals
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vote uninformatively for the candidate favored by the posterior—they herd. There are several
points to be emphasized about the nature of these herds. First, even after a herd begins for a
candidate, Partisans continue to vote for their preferred candidate. Thus, it is always possible
to see votes contrary to the herd, and any such contrarian vote is correctly inferred by future
voters as having come from a Partisan. Second, once herding begins, the public likelihood ratio
remains fixed because all voting is uninformative. Therefore, once a herd begins, its length
does not influence the beliefs held by subsequent voters; independent of the population size,
the (private) posterior belief of any voter lies within

(
(1−γ)3

γ3+(1−γ)3
, γ3

γ3+(1−γ)3

)
and is therefore

bounded away from 0 and 1. Third, at any history where the winner of the election is yet
undecided, a herd forming on, say, candidate L, does not immediately imply a victory for L.
This is because if all subsequent voters are R-partisans (an event of positive probability), R will
in fact be elected. Fourth, it is possible for a herd to form on a candidate who is trailing because
the informational content of the voting history is not limited to merely whether a candidate is
leading, but also how that candidate is performing relative to the ex-ante distribution of private
preferences. This is illustrated by the following example.

Example 1. Let n ≥ 6, π = 2
3 , γ = 3

4 , τL = 0.1, and τR = 0.45. Suppose voters play the
PBV profile, and voter 6 observes the history h6 = (R,R, R, L, L). Straightforward calculations
show that given this history, voters 1 through 5 must have voted informatively if Neutral. Due
to the relatively small partisan support for candidate L, the two votes for L from voters 4 are
5 are sufficient to overturn the impact of the 3 votes for R from voters 1 through 3 in terms of
influencing voter 6’s posterior. In fact, even if voter 6 receives an r signal, she believes that
candidate L is the better candidate. Thus, regardless of signal, voter 6’s vote is uninformative,
and by induction, all future Neutrals vote for candidate L. The bandwagon on L has formed
even though L is trailing in the election.

The discussion so far of dynamics was couched in terms of beliefs. For our equilibrium
analysis, we need a characterization in terms of the voting history. It is convenient to use two
state variables that summarize the impact of history on behavior. For any history, hi, the vote
lead for candidate L, ∆

(
hi

)
, is defined recursively as follows:

∆(h1) = 0; for all i > 1, ∆(hi) = ∆
(
hi−1

)
+

(
1{vi−1=L} − 1{vi−1=R}

)
(2)

The second state variable, called the phase, summarizes whether learning is ongoing in the
system (denoted phase 0), or has terminated in a herd for one of the candidates (denoted phase
L or R). The phase mapping is thus Ψ : hi → {L, 0, R}, and defined by the following transition
mapping:

Ψ
(
h1

)
= 0; for all i > 1, Ψ

(
hi

)
=





Ψ
(
hi−1

)
if Ψ

(
hi−1

) ∈ {L,R}
L if Ψ

(
hi−1

)
= 0 and ∆

(
hi

)
= nL (i)

R if Ψ
(
hi−1

)
= 0 and ∆

(
hi

)
= −nR (i)

0 otherwise

(3)
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Note that herding phases, Ψ ∈ {L, R}, are absorbing. The sequences nL (i) and nR (i) in
the phase map equation (3) are determined by explicitly considering posteriors, corresponding
to our earlier discussion of the public likelihood ratio. For example, assuming that all prior
Neutrals voted informatively, nL (i) is the smallest vote lead for candidate L such that at a
history hi with ∆

(
hi

)
= nL (i), the public history in favor of L outweighs a private signal r.

Therefore, the threshold nL (i) is the unique integer less than or equal to i− 1 that solves

Pr
(
ω = L|∆ (

hi
)

= nL (i)− 2, si = r
) ≤ 1

2
< Pr

(
ω = L|∆ (

hi
)

= nL (i) , si = r
)

(4)

If it is the case that a history hi with ∆
(
hi

)
= i − 1 is outweighed by signal r, we set

nL (i) = i. Similarly, the threshold nR (i) is the unique integer less than or equal to i that
solves

Pr
(
ω = L|∆ (

hi
)

= −nR (i) + 2, si = l
) ≥ 1

2
> Pr(ω = L|∆ (

hi
)

= −nR (i) , si = l) (5)

where again, implicitly, it is assumed that all prior Neutrals voted informatively. If it is the
case that a signal l outweighs even that history hi where ∆

(
hi

)
= − (i− 1), we set nR (i) = i.

We summarize with the following characterization result (all proofs are in the Appendix).

Proposition 1. Every game G (π, γ, τL,τR;n) has a unique PBV strategy profile. For each
i ≤ n, there exist thresholds, nL (i) ≤ i and nR (i) ≤ i, such that if voters play PBV in the
game G (π, γ, τL,τR; n), then a Neutral voter i votes

1. informatively if Ψ
(
hi

)
= 0;

2. uninformatively for C ∈ {L,R} if Ψ
(
hi

)
= C,

where Ψ is as defined in (3). The thresholds nL (i) and nR (i) are independent of the
population size, n.

When voters play the PBV strategy profile, a herd develops if and only if there is a history
hi such that Ψ

(
hi

) 6= 0. To study how likely this is, assume without loss of generality that
the true state is R. Fixing play according to PBV, the realized path of play is governed by
the draw of preference-types and signals. Consequently, the public likelihood ratios can be
viewed as a stochastic process, which we denote 〈λi〉, where each λi is the public likelihood
ratio when it is voter i’s turn to act. It is well-known (e.g. Smith and Sorensen, 2000) that
this stochastic process is a martingale conditional on the true state, R. By the Martingale
Convergence Theorem, the process 〈λi〉 converges almost surely to a random variable, λ∞.
Since PBV is informative and the public likelihood is bounded away from 0 and ∞ so long as
Ψ = 0, convergence of the public likelihood ratio requires that Ψ ∈ {L,R} in the limit, i.e.
herds eventually occur with probability 1. This intuition underlies the following result for our
finite voter game.
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Theorem 1. For every (π, γ, τL, τR) and for every ε > 0, there exists n < ∞ such that for all
n > n, if voters play PBV, then Pr[Ψ (hn) 6= 0 in G (π, γ, τL, τR;n)] > 1− ε.

3.2 PBV Equilibrium

In this section, we establish that PBV is an equilibrium of the sequential voting game. In fact,
we prove a stronger result. Say that the election is undecided at history hi if both candidates
still have a chance to win the election given the history hi. An equilibrium is strict if conditional
on others following their equilibrium strategies, it is uniquely optimal for a voter to follow her
equilibrium strategy at any undecided history.9 We show that not only is PBV an equilibrium,
but moreover, it is generically a strict equilibrium.

Theorem 2. The PBV strategy profile is an equilibrium, and generically, is strict.

There are two points to emphasize about PBV equilibrium. Strictness for generic param-
eters implies that its existence does not rely upon how voter indifference is resolved when the
election remains undecided. Given that others are playing PBV, a strategic voter follows PBV
not because she is indifferent between or powerless to change the outcome, but rather because
deviations yield strictly worse expected payoffs. Strictness also implies that the equilibrium
is robust to small perturbations of the model. Second, because Partisan voters always vote
for their preferred candidates in the PBV equilibrium, every information set is reached with
positive probability. Therefore, off-the-equilibrium-path beliefs play no role in our analysis,
and PBV is a Sequential Equilibrium (Kreps and Wilson, 1982).

It may be surprising that PBV is an equilibrium even within our simple model, for at least
two reasons. First, PBV is the generalization of of sincere voting (Austen-Smith and Banks,
1996) when moving from simultaneous to sequential voting in incomplete information environ-
ments, because PBV prescribes voting for the candidate currently thought to be better, without
conditioning on being pivotal. However, as is well-known from the analysis of Austen-Smith
and Banks (1996) and Feddersen and Pesendorfer (1996), sincere behavior is not generically an
equilibrium in the simultaneous voting version of our model. Secondly, and related, behavior is
myopic in the PBV profile, whereas strategic optimality must account for the forward-looking
incentives in the game. In particular, a Neutral voter in the learning phase of the election faces
the following tradeoff when deciding to vote informatively, as prescribed by PBV. On the one
hand, the public history in the learning phase is not sufficiently informative so as to overturn
her private signal received. The benefit of voting informatively, then, is voting in the direction
favored by her current posterior. On the other hand, the cost of voting informatively is that
it may push future voters towards herding and/or push the election towards being decided,

9This definition is non-standard, but is the appropriate modification of the usual definition for voting games.
Usually, a strict equilibrium of a game is one in which a deviation to any other strategy makes a player strictly
worse off (Fudenberg and Tirole, 1991). A sequential voting game (with n ≥ 3) cannot possess any strict
equilibria in this sense, because after any history where a candidate has captured sufficiently many votes to win
the election, all actions yield identical payoffs. That is, only histories where the election remains undecided are
strategically relevant to voters. Our definition of strictness restricts attention to these histories.
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suppressing valuable information possessed by later Neutrals. Given the myriad of ways in
which a voter could be pivotal, resolving this tradeoff for every possible vote lead and for each
private signal that a Neutral voter may face in the learning phase is a priori quite complicated.

In light of these considerations, the remainder of this section provides a detailed sketch of
why PBV is an equilibrium. Readers more interested in robustness and other issues can skip
forward to Section 4.

Sketch of the equilibrium argument. For simplicity, we consider a symmetric level of par-
tisanship, τL = τR. Symmetry induces thresholds nL (j) and nR (j) that do not vary across
voters; instead, they can be denoted simply as constants nL > 0 and nR > 0. We also restrict
attention here to generic parameters of the game, where it can be shown that when others follow
PBV, a voter is never indifferent at any undecided history. (We clarify the details concerning
genericity in the Appendix, where our formal results and proofs also deal with the general case
in which τL can differ from τR.)

To see that PBV is an equilibrium, consider a voter acting when the election is undecided,
and assume that all others players are playing PBV. Note that such a voter is pivotal with
strictly positive probability. We will argue that the following three kind of behaviors are
uniquely optimal, depending on the voter’s preference type and the phase of the election:

(i) Partisans vote for their preferred candidate;

(ii) In the herding phase for L (R), Neutrals vote uninformatively for L (R);

(iii) In the learning phase, Neutrals vote informatively.

Point (i) above is a consequence a monotonicity property of PBV: when others play PBV,
a voter can never increase the probability of a future L vote, say, by herself voting R rather
than L.10 Turning to point (ii), consider the incentives for a Neutral voter i in a herding
phase. Since all subsequent voting after voter i is completely uninformative, conditioning on
being pivotal does not change i’s posterior beliefs about the state of the world. Consequently,
i strictly prefers to vote on the basis of her current posterior, µi(hi, si). By construction of
the phase map, a herding phase on candidate L (analogously for R) implies that i’s posterior
is strictly higher on L than R regardless of her private signal. Therefore, it is strictly optimal
for Neutral i to vote uninformatively for L.

It remains to establish optimality of (iii): a Neutral voter i votes informatively in the learning
phase, when Ψ

(
hi

)
= 0. As previously noted, the incentive compatibility constraint for i

concerns the tradeoff between myopically optimal behavior and inducing informative behavior
from future Neturals. Lemma 5 in the Appendix shows that if the incentive constraints are
satisfied (strictly) at histories hi in which voting for L or R immediately starts a herd and/or

10This monotonicity does not hold in an arbitrary strategy profile. Thus, eliminating weakly-dominated
strategies is not sufficient to guarantee that Partisans vote for their preferred candidate, unlike the case of a
simultaneous election. It is in fact possible to construct sequential voting equilibria (in undominated strategies)
where a Partisan votes against her preferred candidate.
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ends the election, then the incentive constraints are satisfied (strictly) at all other histories in
the learning phase. Therefore, the trade-off is most stark for the Neutral voter i who faces
∆

(
hi

)
= nL − 1 and si = l (or ∆

(
hi

)
= −nR + 1 and si = r), since voting for candidate L (or

R) in this situation ends social learning altogether.
Accordingly, we need only to show it is strictly optimal for i to vote informatively even

when she immediately triggers a herd. Consider the case where voter i receives signal l and
faces undecided history hi where Ψ

(
hi

)
= 0 and ∆

(
hi

)
= nL− 1. (The argument is analogous

for the case where ∆
(
hi

)
= −nR + 1 and si = r.) Assuming that others are playing PBV,

the impact of i’s vote can be assessed for any vector of realizations of preference types and
signals among the future voters. The set of type-signal realizations in which voter i is pivotal,
denoted as Pivi, consist of all those vectors where vi = L results in L winning the election and
vi = R results in R winning.11 Since hi is undecided, Pivi 6= ∅. Denote the set of type-signal
profiles where vi = R results in a herd for candidate C ∈ {L,R} as ξC ; let the set of type-signal
profiles where no herd forms after vi = R be denoted ξ̃. The proof is completed by showing
that i’s posterior conditional on being pivotal and on each of the three mutually exclusive and
exhaustive events, ξL, ξR, or ξ̃, is greater than 1

2 .12

Consider the event ξR ∩ Pivi. Because voting is uninformative once the cascade begins,
Pr

(
ω = L|ξR, P ivi, h

i, l
)

= Pr
(
ω = L|ξR, hi, l

)
. Since ∆

(
hi

)
= nL − 1, the event ξR can

happen only if following vi = R, candidate R subsequently gains a lead of nR votes in the
learning phase. This requires that after i’s vote, R receive an additional nL +nR−2 votes over
L in the learning phase. Since L has a vote lead of nL−1 prior to i’s vote, conditioning on ξR in
effect reveals a net total of nR− 1 votes for R in the learning phase (not counting i’s vote since
that is a deviation). By definition of nR, i’s belief given her own signal si = l and nR−1 votes for
R in the learning phase is strictly in favor of L. In other words, Pr

(
ω = L|ξR, P ivi, h

i, l
)

> 1
2 .

Now consider the events ξL ∩ Pivi and ξ̃ ∩ Pivi: amongst voters i + 1, . . . n, candidate R

can receive at most nL + nR − 2 votes over candidate L; otherwise, an R-cascade would start.
By the same logic as before, it follows that Pr

(
ω = L|ξ̃, P ivi, h

i, l
)

> 1
2 .

Therefore, conditional on her observed history, signal, and being pivotal, voter i believes
candidate L to be the better candidate with probability strictly greater than 1

2 . Since voting
L leads to a strictly higher probability of L winning the election, it is strictly optimal for voter
i to vote L, even though such a choice ends the learning phase.

11In general, there are strategy profiles where i can be pivotal in a way that vi = L results in R winning,
whereas vi = R results in L winning. This is not possible in PBV because as we noted earlier, PBV features a
weak monotonicity of subsequent votes in i’s vote.

12The simplification that τR = τL ensures that the posterior conditional on a herd forming for a candidate is
invariant to when the herd begins.
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4 Discussion

4.1 Other Equilibria

The previous section demonstrated that history-dependent behavior in the form of PBV is an
equilibrium of the sequential voting game, and moreover, such behavior engenders momentum,
with bandwagons forming almost surely in large elections. It is natural to ask whether the
model possesses other equilibria. Given the complexity of the strategy space in sequential
voting games, a characterization of all equilibria appears unfeasible. However, there is one
other equilibrium that has been identified in the literature, with which we would like to contrast
PBV.

Dekel and Piccione (2000) have shown that a class of sequential voting games possess history-
independent equilibria that are equivalent in outcomes to symmetric equilibria of otherwise
identical simultaneous voting games. Their main insight applies to the model considered here
and is as follows. For any parameter set (π, γ, τL, τR, n), the simultaneous voting analog of
our model possesses a symmetric equilibrium where each Partisan voter votes for her preferred
candidate, and each Neutral votes for a candidate on the basis of a signal-dependent probability.
Turning to the sequential voting game, consider a strategy profile where, independent of history,
every voter plays the same strategy as in the above construction. The insight of Dekel and
Piccione (2000) is that because all voters are acting independently of history, the events in
which a voter is pivotal is identical in both the simultaneous and sequential games; therefore,
since the profile is an equilibrium of the simultaneous game, it is also an equilibrium of the
sequential game. Using the approach of Feddersen and Pesendorfer (1997), it can be shown
that this equilibrium achieves full information equivalence, aggregating information efficiently
in large elections.

Though the existence of the history-independent equilibrium is an important theoretical
benchmark for efficiency, its descriptive implications appear at odds with behavior in real
dynamic elections. While the history-independent equilibrium hinges on it being common
knowledge that all voting behavior is unaffected by the history of votes,13 it is generally accepted
in practice that the prior performance of candidates influences subsequent voting behavior.
Bartels (1988) and Popkin (1991) argue that voters keep careful track of how candidates have
performed relative to expectations when deliberating how to vote, and that the information
provided to voters during the primaries is little more than horse-race statistics that describe
candidates’ performance in preceding states. Since the comparison of history-independent
versus history-dependent behavior is ultimately a difficult empirical question, this suggests
that it may be counterfactual to focus theoretically on a history-independent equilibrium.14

13Were a Neutral voter to consider the possibility that her vote may influence that of future voters, her
incentives to play according to the history-independent equilibrium can dissipate.

14Experimental evidence can be brought to bear on the issue, but we are hesitant to draw conclusions from
existing work on sequential voting. The setup of experiments such as those of Morton and Williams (1999) and
Battaglini, Morton, and Palfrey (2005) differ importantly from the model developed here. The former authors
consider an election with three options; the latter authors consider an election with only three voters, but where
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The myopic nature of PBV also makes it appealing, given the mixed evidence on the strategic
sophistication of voters. In the history-independent equilibrium of a large voting game, Neutral
voters will often be voting against the candidate they believe to be better given currently
available information. To the extent that some voters do not condition on hypothetical events
of being pivotal and draw the requisite inferences, an equilibrium that accommodates both
myopic and strategic play—if one exists (cf. Section 4.5)—is attractive.

4.2 Population Uncertainty

As argued by, for example, Myerson (1998, 2000), it may be unrealistic to assume that in large
elections, each voter knows exactly how many other voters there are in the game. While some
models of simultaneous elections (e.g. Myerson, 1998, 2000; Feddersen and Pesendorfer, 1996)
account for this possibility, existing models of sequential elections assume that the size of the
electorate is commonly known. In principle, population uncertainty can play a significant role
in voting behavior in sequential elections: based on the history, a voter can update her beliefs
about how many others are participating, and at least, set a lower bound on the number of
other voters. In spite of the complexities introduced by population uncertainty, we show that
PBV remains an equilibrium of the sequential voting game.

We define an election with population uncertainty as follows. Suppose there is a countably
infinite set of available voters, indexed by i = 1, 2, .... Nature first draws the size of the
electorate, n, according to probability measure ν with (possibly unbounded) support on the
natural numbers. The draw is unobserved by any agent. A voter is selected to vote if and
only if her index i is no larger than n. All those who are selected to vote do so sequentially,
in a roll-call order, only observing the history of votes, and receiving no information about
the numbers of voters to follow. The rest of the game, in terms of preferences, information,
and how outcomes are determined, remains as before. We define a game with population
uncertainty as G (π, γ, τL, τR; ν).

The structure of population uncertainty formulated above is general, encompassing the kinds
of population uncertainty that have been considered in simultaneous elections, such as Poisson
distributions (Myerson, 1998) and binomial distributions (Feddersen and Pesendorfer, 1996).
Nevertheless, the logic for why PBV remains an equilibrium is straightforward. Consider the
decision faced by a voter i who observes history hi, signal si, and assumes that all other voters
who are selected to vote will behave according to PBV. Voter i can assess her best response by
conditioning on every possible realization of population size that is weakly larger than i. By
Theorem 2, for every such realization, voter i would wish to vote according to PBV. Since the
behavior prescribed by PBV is independent of the population size, the result follows.

Proposition 2. For every game G (π, γ, τL, τR; ν), the PBV strategy profile is an equilibrium.

voters face a cost of voting, building on the theoretical work of Battaglini (2005). The treatment of Hung and
Plott (2001) is the closest to our model, and they find evidence of herding in almost 40 percent of experimental
rounds.
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It is interesting to note that in sequential voting games with a sufficient degree of population
uncertainty, there generally cannot exist a symmetric equilibrium in which all voters who are
selected to vote play the same strategy. The reason is that by learning about (lower bounds
on) the population size, the incentives for voters at different stages of the election are quite
different. In particular, a symmetric equilibrium of the simultaneous election with population
uncertainty does not generally remain an equilibrium of the corresponding sequential election.
A thorough examination of sequential elections with population uncertainty is left for future
research, including issues such as whether all equilibria generally feature history dependence,
or if there are also equilibria where behavior varies by voter position without depending on the
voting history.

4.3 Other Voting Rules

Generally, equilibria of elections are sensitive to the choice of voting rule, and this has been
illustrated in the case of simultaneous elections by the important contributions of Austen-
Smith and Banks (1996) and Feddersen and Pesendorfer (1998). Holding fixed a strategy
profile, changing the voting rule affects the profiles of votes in which one is pivotal, and can
therefore change one’s posterior conditional on being pivotal. Surprisingly, however, PBV is an
equilibrium in our sequential voting game for any voting rule, for all parameters. Furthermore,
a large class of voting rules are asymptotically equivalent in terms of the electoral outcome they
induce.

We study the class of voting rules termed q-rules, where if the fraction of votes for L strictly
exceeds some number q ∈ [0, 1], then L wins the election. Let G (π, γ, τL, τR; n, q) denote the
sequential voting game with parameters (π, γ, τL, τR; n) where votes are aggregated according
to the q-rule. Since the PBV strategy profile is defined independently of the voting rule, for
two different rules q and q′, PBV generates identical behavior in the games G (π, γ, τL, τR; n, q)
and G (π, γ, τL, τR; n, q′). In fact, with minor modifications to the proof of Theorem 2, the
following can be shown.

Theorem 3. PBV is an equilibrium for any q-rule, and generically, is a strict equilibrium.

While it is straightforward to see that changing the voting rule leaves the incentives of
Partisan voters or Neutrals in the herding phases unchanged for any q-rule, the incentives of
Neutral voters to vote informatively in the learning phase would seem to be affected because
the vote profiles for which one is pivotal differs across voting rules. However, the crucial
point about PBV is that even if a voter’s deviation in the learning phase changes the outcome,
the subsequent profile of votes never generates enough public information to overturn one’s
posterior based on the private signal and available public history, regardless of the voting rule.
This is because the thresholds for herding in PBV are independent of the voting rule, and the
information that can be extracted from future voters’ actions is determined by these thresholds.

Theorem 3 raises the question of how changes in the voting rule affect the electoral outcome
when voters vote according to PBV. When voters play PBV, different rules may yield different
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(distributions over) electoral outcomes. However, the following result shows that voting rules
can be partitioned into three classes such that all rules within any class are asymptotically
ex-ante equivalent: they elect the same winner with probability approaching 1 in large voting
games.

Theorem 4. Fix any parameters π, γ, τL, τR, and assume that for any n, q, voters play PBV
in the game G(·; n, q). For any ε > 0, there exists n̄ such that for all n > n̄,

(a) |Pr(L wins in G (·; n, q)− Pr(L wins in G (·; n, q′)| < ε for all q, q′ ∈ (τL, 1− τR);
(b) Pr (L wins in G (·; n, q)) > 1− ε for all q ∈ [0, τL);
(c) Pr (L wins in G (·; n, q)) < ε for all q ∈ (1− τR, 1].

Parts (b) and (c) of Theorem 4 are not surprising given the presence of Partisans: in PBV,
the probability with which any voter votes L is at least τL and at most (1− τR). Therefore,
in any sufficiently large voting game, L wins with probability approaching 1 if q < τL and
loses with probability approaching 1 if q > (1− τR). The important result is part (a) of
Theorem 4: all “interior” voting rules—where outcomes are not determined asymptotically by
Partisanship alone—are nevertheless asymptotically equivalent. The intuition relies on the fact
that for all such voting rules, once Neutrals begin herding on a candidate, that candidate wins
with probability approaching one in large electorates. Therefore, all of these interior rules are
asymptotically equivalent once a herd begins on a particular candidate. Asymptotic ex-ante
equivalence of these voting rules then follows from the observation that the probability of a
herd beginning on a particular candidate is independent of the voting rule (since PBV behavior
is defined independently of the voting rule), and by Theorem 1, this probability approaches 1
in large games.15

It is interesting to contrast Theorems 3 and 4 with the message of Dekel and Piccione (2000).
By showing that (responsive) equilibria of a simultaneous election are outcome-equivalent to
equilibria of a voting game with any timing structure, Dekel and Piccione (2000) have demon-
strated that strategic behavior can be unaffected by the timing of a voting game. In these
history-independent equilibria, conditioning on being pivotal negates any usefulness from ob-
serving the history of votes; necessarily such equilibria are sensitive to the choice of voting rule.
Theorem 3 demonstrates that the opposite effect can prevail in sequential environments: re-
gardless of the voting rule, if others vote according to PBV, conditioning on being pivotal does
not contain more payoff-relevant information than the public history and one’s private signal.
That PBV is an equilibrium across all the voting rules and renders all interior voting rules
asymptotically equivalent in sequential frameworks illustrates the striking difference between
static and dynamic elections.

15In fact, this argument shows that Theorem 4 can be strengthened to an ex-post statement: under PBV, for
almost all realized profiles of type-signal vectors, all “interior” voting rules are asymptotically equivalent, and all
“extremal” voting rules result in one of the candidates winning with probability approaching 1 in large elections.
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4.4 Pure Common Value Elections

We have thus far studied a model where some voters are Neutral, and others are Partisan; in
contrast, most of the prior papers on sequential voting games have considered pure common
value environments, where every voter is Neutral (e.g. Fey, 2000; Wit, 1997; Callander, 2004a).
Before comparing our results with this earlier research, we should emphasize two points. First,
although we have formalized Partisans as preferring a candidate regardless of the state of the
world, this was purely for expositional purposes. It leaves our analysis unchanged to model
Partisans and Neutrals as sharing the same state-dependent rankings over candidates, but
simply specifying that Partisan preferences (or priors) be sufficiently biased in favor of one
candidate, while remaining responsive to the state of the world. Consequently, even if all
voters—Neutrals and Partisans—would agree on the preferred candidate for almost all profiles
of publicly observable signals in large elections, our results apply. Second, some element of
private values is surely an important aspect of elections in practice, and modeling this aspect
adds richness to the theory.

In any case, fix a triple (π, γ, n), i.e. a prior, signal precision, and population size. Our
main result extends as follows.

Proposition 3. Assume τL = τR = 0. Then there is an equilibrium where all voters use
PBV. In this equilibrium, a transition from the learning phase to the herding phase occurs
when ∆

(
hi

) ∈ {1,−2}.

While PBV remains an equilibrium of the pure common value election, its properties differ
in one important respect from that of PBV when τL and τR are strictly positive. Since
Partisans vote for their preferred candidates regardless of history in the PBV equilibrium, after
a herd begins, there is positive probability that any future vote may be contrary to the herd.
On the other hand, in the PBV equilibrium of the pure common values election, once a herd
begins (necessarily on the candidate who is leading), every vote thereafter is for the leading
candidate. Consequently, a vote for the losing candidate is an off-the-equilibrium-path action
after a herd has begun. This implies that some of the beliefs that sustain the equilibrium are
necessarily off-the-equilibrium-path beliefs, and a theory of “reasonable” beliefs now becomes
necessary: if voters see a vote going against a herd, how should they interpret it, and given
their interpretation, would voters still wish to herd?

A natural place to begin would be to investigate the implications of standard beliefs-based
refinements for signaling games such as the Intuitive Criterion, D1 (Cho and Kreps, 1987),
or Divinity (Banks and Sobel, 1987). However, none of these refinements have bite in this
environment. To see why, consider the even stronger refinement criterion of Never a Weak
Best Response (Kohlberg and Mertens, 1986). If future voters interpret a deviation from a
herd as being equally likely to come from a voter with signal si = l as from a voter with
signal si = r, then future voters should not update their beliefs at all based on i’s vote, and
hence it is a weak best response for voter i to deviate from the herd regardless of her signal.
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Given this, the belief that a deviation is equally likely to come from either signal-type of voter
i survives Never a Weak Best Response, which is the strongest of standard dominance-based
belief refinements.

In contrast, the aforementioned papers that consider common value sequential voting impose
the following belief restriction: if a voter i votes for R once an L-herd has begun, it must be
believed that si = r; similarly, if i votes for L once an R-herd has begun, it must be believed
that si = l. Under this belief restriction—henceforth referred to as Perpetual Revelation—Fey
(2000) and Wit (1997) show that because of the signaling motive inherent in common value
sequential voting, at least one voter with a signal that opposes the herd would always wish to
deviate out of the herd and reveal her signal to future voters. That is, in the pure common
value setting, Perpetual Revelation is sufficient to halt momentum by inducing anti-herding for
at least one voter.

Without recourse to standard belief-based refinements, it is ad hoc to impose direct restric-
tions on off-path beliefs in the pure common values game. The off-path belief of ignoring a
deviation from the herd, which supports the PBV equilibrium of Proposition 3, is a limit of the
beliefs when the possibility of Partisanship is strictly positive. It is not our contention that this
limiting belief is the only reasonable or sensible off-path belief in the pure common value game,
but rather, that precluding it—by a priori requiring Perpetual Revelation, for example—lacks
justification.

4.5 Richer Information Structures

The binary signal structure we have studied is the canonical framework for both social learning
models and the information aggregation approach to elections. In this setting, we have have
been able to identify a history-dependent equilibrium in the form of PBV. Although the binary
signal structure is an essential benchmark, it is important to understand the extent to which
the results here generalize to richer informational structure. The challenge, however, stems
from the payoff interdependencies inherent to elections. Due to the forward looking incentives
in sequential voting, richer information structures tremendously complicate the analysis of
inferences to be drawn from the myriad of ways a voter may be pivotal in a history-dependent
strategy profile.16 This contrasts with standard models without payoff interdependencies,
where even a continuum of signals presents no difficulty to equilibrium characterization, adding
challenges only to outcome dynamics (Smith and Sorensen, 2000).

Therefore, we leave the study of momentum effects with richer information structures to
future research. We simply note by example that PBV will not always be an equilibrium,
illustrating the need to consider more complex forms of history-dependent strategies in richer
environments.

Example 2. Consider a sequential voting game with 3 voters where π ' 1
2 , τL ' 0, and τR = 1

2 .

16The results of Dekel and Piccione (2000) can still be applied to yield history-independent equilibria in some
cases.
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A Neutral voter can be one of two types : a Guru (G), who obtains a perfectly informative signal,
or a Follower (F), who obtains a signal of precision γ = 3

5 . Conditional on being Neutral, a
voter is a Guru with probability τG = 4

5 and a Follower with probability 1
5 . Consider a PBV

strategy profile, and suppose that voter 1 has voted R, and voter 2 is a Neutral Follower with
signal r. Given the history and private signal, voter 2’s posterior favors R, and PBV therefore
prescribes that she vote for R. By following PBV, she immediately determines the winner of
the election as R. Voter 2’s expected payoff from voting R is therefore approximately 8

11 . On
the other hand, if she deviates from PBV and votes for L, she makes voter 3 pivotal. If voter
3 is a Neutral Follower (and follows PBV), voter 3 will vote L uninformatively; therefore, by
voting L, voter 2 knows that R will win if and only if voter 3 is an R-Partisan or a Neutral
Guru who observes an r signal. Consequently, voter 2’s expected payoff from voting L computes
as 87

110 , which is strictly greater than her payoffs from voting R. It is optimal for her to deviate
from PBV following voter 1’s vote for R.

5 Conclusion

This paper has proposed an informational theory of momentum and herd behavior in sequen-
tial voting environments. Our model is that of a binary election where a proportion of the
voters seek to elect the better candidate, and the remainder have partisan preferences. The
central result is that there exists a generically strict equilibrium that leads to herding with high
probability in large elections. In this equilibrium, voters learn from the voting history , and
use this information to update on optimally to cast their vote. The behavior exhibited in this
equilibrium can explain why voters rationally judge candidates relative to expectations.

Our results raise various issues that deserve further study, some of which we have already
mentioned in Section 4. We conclude by highlighting some others.

We touched briefly on efficiency comparisons of simultaneous and sequential voting in Sec-
tion 4.1, using the insights of Dekel and Piccione (2000). However, real-world sequential voting
mechanisms may feature informational benefits that have not been considered here, nor in other
models. For example, when thinking about presidential primaries, one natural point of depar-
ture is that candidates face greater constraints in campaigning across states that hold primaries
on the same day than across states whose primaries are sequenced. This can be modeled for-
mally as a constraint on the informativeness of signals that are obtained by voters who vote
simultaneously. If sequencing can increase the informativeness of signals, this provides a ratio-
nale for greater information aggregation in sequential voting mechanisms, even in the presence
of momentum effects.

Our focus in this paper has been on elections with only two options. Given the nature of the
candidate winnowing process in the U.S. presidential primaries, it is important to understand
the dynamics of sequential voting with more than two candidates. We are currently exploring
this idea.

We have also restricted attention here to an environment where voting is entirely sequential,
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one voter at a time. Though there are elections of this form—for example, roll-call voting
mechanisms used in city councils and legislatures—there are many dynamic elections, such as
the primaries, that feature a mixture of simultaneous and sequential voting. To what extent
such games possess history-dependent equilibria with similar qualitative features is a significant
question for future research.

This paper has abstracted away from the role of institutions, and concentrated on voters as
being the sole players. Certainly, in practice, there are other forces involved in dynamic elec-
tions, many of which are strategic in nature, such as the media, campaign finance contributors,
and so forth. By examining the potential for sequential voting alone to create momentum, our
model provides a benchmark to understand the impact of different institutions on sequential
elections.

Finally, we note that social learning with payoff and information externalities can arise
more generally outside the confines of voting. Many environments of economic interest—such
as dynamic coordination games, timing of investments, or network choice—feature sequential
decision-making, private information that has social value, and payoff interdependencies (cf.
Dasgupta, 2000; Neeman and Orosel, 1999). Our results contribute to a better understanding
of social learning when there are incentives to reveal or distort one’s information to successors.
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A Proofs

A.1 Proofs for Section 3.1

We begin with preliminaries that formally construct the thresholds nL (i) and nR (i) for each
constellation of parameters (π, γ, τL, τR), and each index i. Define the functions

f (τL, τR) ≡ τL + (1− τL − τR) γ

τL + (1− τL − τR) (1− γ)

where the domain is τL, τR ∈
[
0, 1

2

)
. It is straightforward to verify that f strictly exceeds

1 over its domain.
For each positive integer i and any integer k where |k| < i and i − k is odd, define the

function gi (k) = (f (τL, τR))k
(

f(τL,τR)
f(τR,τL)

) i−k−1
2 . Note that for a history hi where ∆

(
hi

)
= k

and all prior Neutrals voted informatively and Partisans voted for their preferred candidates,
gi (k) =

Pr(hi|ω=L)
Pr(hi|ω=R)

; thus gi(k) =
(

1−π
π

)
λ

(
hi

)
, as defined in equation (1) in the text. Plainly,

gi (k) is strictly increasing in k.
For a given (π, γ, τL, τR), define {nL (i)}∞i=1 as follows. For all i such that gi (i− 1) ≤ (1−π)γ

π(1−γ) ,

set nL (i) = i. If gi (i− 1) > (1−π)γ
π(1−γ) , we shall set nL (i) to be the unique integer that solves:

gi (nL (i)− 2) ≤ (1− π) γ

π (1− γ)
< gi (nL (i)) (6)

Since gi (− (i− 1)) is strictly less than (1−π)γ
π(1−γ) , and gi (k) is strictly increasing in k, a unique

solution exists to (6).
Similarly, we define {nR (i)}∞i=1 as follows. For all i such that gi (− (i− 1)) ≥ (1−π)(1−γ)

πγ ,

set nR (i) = i. If gi (− (i− 1)) < (1−π)(1−γ)
πγ , set nR (i) to be the unique integer that solves:

gi (−nR (i) + 2) ≥ (1− π) (1− γ)
πγ

> gi (−nR (i)) (7)

As before, since gi(k) is strictly increasing in k, and gi (i− 1) = (f(τL, τR))i−1 ≥ 1 >
(1−π)(1−γ)

πγ , a unique solution exists to (7).
We use these values of nL(i) and nR(i) to define Ψ (·) as in equation (3) from the text, and

turn to the proof of Proposition 1.

Proposition 1 on pp. 10

Proof. The claim is obviously true for Voter 1 as Ψ
(
h1

)
= 0 ∈ (−nR(1), nL(1)), and by con-

struction, a PBV strategy involves a Neutral Voter 1 voting informatively. To proceed by
induction, assume that the claim about behavior is true for all Neutral voter j < i.

Case 1: Ψ
(
hi

)
= 0: All preceding neutrals have voted informatively. It is straightforward

to see that the posterior µ
(
hi, si

)
= µ

(
h̃i, si

)
if ∆

(
hi

)
= ∆

(
h̃i

)
and Ψ

(
hi

)
= Ψ

(
h̃i

)
= 0

22



(i.e., so long as all preceding neutrals have voted informatively, only vote lead matters, and not
the actual sequence). Thus, we can define µ̃i (∆, si) = µ

(
hi, si

)
where ∆ = ∆(hi). By Bayes’

rule,

µ̃i (∆, l) =
πγgi (∆)

πγgi (∆) + (1− π) (1− γ)

Simple manipulation shows that µ̃i (∆, l) ≥ 1
2 ⇔ gi (∆) ≥ (1−π)(1−γ)

πγ . This latter inequality
holds since by hypothesis, Ψ

(
hi

)
= 0, and therefore, ∆ ≥ −nR (i) + 1. If µ̃i (∆, l) > 1

2 ,
then Condition 1 of the PBV definition requires that Neutral voter i vote L given si = l; if
µ̃i (∆, l) = 1

2 , then Condition 2 of the PBV definition requires that Neutral voter i vote L given
si = l.

Similarly, using Bayes’ rule,

µ̃i (∆, r) =
π (1− γ) gi (∆)

π (1− γ) gi (∆) + (1− π) γ

Simple manipulation shows that µ̃i (∆, r) ≤ 1
2 ⇔ gi (∆) ≤ (1−π)γ

π(1−γ) . The latter inequality
holds since by hypothesis, Ψ

(
hi

)
= 0, and therefore, ∆ ≤ nL − 1. If µ̃i (∆, r) < 1

2 , then
Condition 1 of the PBV definition requires that Neutral voter i vote R given si = r; if µ̃i (∆, r)
then Condition 2 of the PBV definition requires that Neutral voter i vote R given si = r.

Case 2: Ψ
(
hi

)
= L. Then all Neutrals who voted prior to the first time Ψ took on the value

L voted informatively, whereas no voter voted informatively thereafter. Let j ≤ i be such that
Ψ

(
hj

)
= L and Ψ

(
hj−1

)
= 0; therefore, ∆

(
hj

)
= nL (j). Then, µ

(
hj , sj

)
= µ̃j (nL (j) , sj).

Since all voting after that of (j − 1) is uninformative, µ
(
hi, si

)
= µ

(
hj , si

)
= µ̃j (nL (j) , si). A

simple variant of the argument in Case 1 implies that µ̃j (nL (j) , l) > 1
2 , and therefore Condition

1 of the PBV definition requires that Neutral voter i vote L given si = l. Consider now si = r.
Since gj (nL (j)) > (1−π)γ

π(1−γ) , it follows that µ̃j (nL (j) , r) > 1
2 , and therefore Condition 1 of the

PBV definition requires that Neutral voter i vote L even following si = r.
Case 3: Ψ

(
hi

)
= R. Then all Neutrals who voted prior to the first time Ψ took on the

value R voted informatively, whereas no voter voted informatively thereafter. Let j ≤ i be
such that Ψ

(
hj

)
= R and Ψ

(
hj−1

)
= 0; therefore, ∆

(
hj

)
= −nR (j). Then, µ

(
hj , sj

)
=

µ̃j (−nR (j) , sj). Since all voting after that of (j − 1) is uninformative, µ
(
hi, si

)
= µ

(
hj , si

)
=

µ̃j (−nR (j) , si). A simple variant of the argument in Case 1 implies that µ̃j (−nR (j) , r) < 1
2 ,

and therefore Condition (1) of the PBV definition requires that Neutral voter i vote R given
si = r. Consider now si = l. Since gj (−nR (j)) < (1−π)(1−γ)

πγ , it follows that µ̃j (−nR (j) , l) <
1
2 , and therefore Condition 1 of the PBV definition requires that Neutral voter i vote R even
following si = l. ¤

Remark 1. As promised in the text, we argue here that the tie-breaking Condition (2) of
the PBV definition only matters for a non-generic set of parameters (π, γ, τL, τR). Observe
that from the proof of Proposition 1, the posterior of voter i having observed a history hi and
private signal si is 1

2 if and only if Ψ
(
hi

)
= 0 and gi

(
∆

(
hi

)) ∈
{

(1−π)(1−γ)
πγ , (1−π)γ

π(1−γ)

}
. For
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any particular (π, γ, τL), this occurs for at most a countable collection of τR. Therefore, for a
given (π, γ), the set

Γπ,γ ≡
{

(τL, τR) ∈
(

0,
1
2

)2

: gi (∆) ∈
{

(1− π) (1− γ)
πγ

,
(1− π) γ

π (1− γ)

}
for some i ∈ Z+ and |∆| ≤ i

}

is isomorphic to a 1-dimensional set. Thus, the need for tie-breaking arises only for a set of
parameters (π, γ, τL, τR) of (Lebesgue) measure 0.

Theorem 1 on pp. 11

Proof. The proof consists of two steps: first, we show that there must almost surely be a herd in
the limit as the population size n →∞; second, we show that this implies the finite population
statement of the Theorem. Assume without loss of generality that the true state is R. (If the
true state is L, one proceeds identically, but using the inverse of the likelihood ratio λi).

Step 1: As discussed in the text, by the Martingale Convergence Theorem for non-negative
random variables (Billingsley, 1995, pp. 468–469), λi

a.s.→ λ∞ with Support (λ∞) ⊆ [0,∞).
Define Λ̄ ≡ [0, b] ∪ [

b̄,∞)
and Λ = [0, b) ∪ (

b̄,∞)
, where b (resp. b̄) is the likelihood ratio such

that the associated public belief that the state is L causes the posterior upon observing signal
l (resp. r ) to be exactly 1

2 . Note that by their definitions, b < 1
2 < b̄. To prove that there

must almost surely be a herd in the limit, it needs to be shown that eventually 〈λi〉 ∈ Λ almost
surely.17

We claim that Support (λ∞) ⊆ Λ̄. To prove this, fix some x /∈ Λ̄ and suppose towards
contradiction that x ∈ Support (λ∞). Since voting is informative when λi = x, the probability
of each vote is continuous in the likelihood ratio around x. Moreover, the updating process
on the likelihood ratio following each vote is also continuous around x. Thus, Theorem B.2
of Smith and Sorensen (2000) applies, implying that for both possible votes, either (i) the
probability of the vote is 0 when the likelihood ratio is x; or (ii) the updated likelihood ratio
following the vote remains x. Since voting is informative, neither of these two is true—
contradiction.

The argument is completed by showing that Pr (λ∞ ∈ Λ) = 1. Suppose not, towards
contradiction. Then since Support (λ∞) ⊆ Λ̄, it must be that Pr

(
λ∞ ∈ {

b, b̄
})

> 0. Without
loss of generality, assume Pr (λ∞ = b) > 0; the argument is analogous if Pr

(
λ∞ = b̄

)
> 0 .

Observe that if λm < b for some m, then by definition of b and PBV, λm+1 = λm < b and this
sequence of public likelihood ratios converges to a point less than b. Thus Pr (λ∞ = b) > 0
requires that for any ε > 0, eventually 〈λi〉 ∈ [b, b + ε) with strictly positive probability. But
notice that by the definition of b, if λi = b then voter i votes informatively under PBV and thus
if λi = b, either λi+1 < b (if vi = R) or λi+1 = 1

2 (if vi = L). By continuity of the updating
process in the public likelihood ratio on the set

[
b, b̄

]
, it follows that if ε > 0 is chosen small

17To be clear, when we say that 〈λi〉 eventually lies (or does not lie) in some set S almost surely, we mean
that with probability one there exists some k < ∞ that for all i > k, λk ∈ (/∈) S.
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enough, then λi ∈ [b, b + ε) implies that λi+1 /∈ [b, b + ε). This contradicts the requirement
that for any ε > 0, eventually 〈λi〉 ∈ [b, b + ε) with strictly positive probability.

Step 2: Since λi
a.s.→ λ∞, λi converges in probability to λ∞, i.e. for any δ, η > 0, there exists

n < ∞ such that for all n > n, Pr (|λn − λ∞| ≥ δ) < η. Since Pr (λ∞ ∈ Λ) = 1, for any ε > 0,
we can pick δ > 0 small enough such that
Pr

(
λ∞ ∈ [0, b− δ) ∪ (

b̄ + δ,∞))
> 1 − ε

2 . Pick η = ε
2 . With these choices of δ and η, the

previous statement implies that there exists n < ∞ such that for all n > n, Pr (λn ∈ Λ) > 1−ε,
which proves the theorem. ¤

A.2 Proofs for Section 3.2

The proof for Theorem 2 follows the logic of the argument laid out in the text. We need various
intermediate steps to prove the results. Throughout, to prove that PBV is an equilibrium,
we assume that the relevant history is undecided since all actions at a decided history yield
the same payoffs. We first prove that following PBF is strictly optimal for Partisan voters
(conditional on others playing PBV strategies).

Definition 2. (Winning Prob.) For a history hi, let P
(
Ψ

(
hi

)
, ∆

(
hi

)
, n− i + 1, ω

)
be the

probability with which L wins given the phase Ψ
(
hi

)
, the vote lead ∆

(
hi

)
, the number of voters

who have not yet voted (n− i + 1), and the true state is ω.

Note that once Ψ
(
hi

) ∈ {L,R}, all players are voting uninformatively, and therefore,
P

(
Ψ

(
hi

)
, ·) is independent of state. For the subsequent results, let K denote n − i, and

∆ denote ∆
(
hi

)
.

Lemma 1. For all hi, P
(
Ψ

(
hi, L

)
, ∆ + 1,K, ω

) ≥ P
(
Ψ

(
hi, R

)
, ∆− 1,K, ω

)
for all ω ∈

{L,R}. The inequality is strict if K > ∆− 1.

Proof. Consider any realized profile of preference types and signals of the remaining K voters
given true state ω (conditional on the state, this realization is independent of previous voters’
types/signals/votes). In this profile, whenever a voter i votes for L given a vote lead ∆ − 1,
he would also vote L given a vote lead ∆ + 1. Thus, if the type-signal profile is such that
L wins given an initial lead of ∆ − 1, then L would also win given an initial lead of ∆ + 1.
Since this applies to an arbitrary type-signal profile (of the remaining K voters, given state ω),
it follows that P

(
Ψ

(
hi, l

)
, ∆ + 1,K, ω

) ≥ P
(
Ψ

(
hi, r

)
, ∆− 1,K, ω

)
. That the inequality is

strict if K > ∆− 1 follows from the fact that with positive probability, the remaining K voters
may all be Partisans, with exactly ∆ more R-partisans than L-partisans. In such a case, L

wins given initial informative vote lead ∆ + 1, whereas R wins given initial informative vote
lead ∆− 1. ¤

Lemma 2. If all other players are playing PBV and the election is undecided at the current
history, it is strictly optimal for a Partisan to vote for her preferred candidate.
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Proof. We will begin by showing that an L-partisan always votes L if others are playing PBV
strategies. By voting L, an L-partisan’s utility is:

µ
(
hi, si

)
P

(
Ψ

(
hi, L

)
, ∆ + 1,K, L

)
+

(
1− µ

(
hi, si

))
P

(
Ψ

(
hi, L

)
, ∆ + 1,K, R

)

If she voted R, her utility is

µ
(
hi, si

)
P

(
Ψ

(
hi, R

)
,∆− 1,K, L

)
+

(
1− µ

(
hi, si

))
P

(
Ψ

(
hi, R

)
, ∆− 1, N, R

)

It follows from Lemma 1 that the L-partisan voter i strictly prefers to vote L when the election
is undecided (i.e. K > ∆− 1).

The same arguments apply mutatis mutandis to see that R-partisans strictly prefer to vote
R when the election is undecided. ¤

To show that following PBV is optimal for a Neutral voter (conditional on others following
PBV strategies), we need to describe the inferences a Neutral voter makes conditioning on being
pivotal. As usual, let a profile of type and signal realizations for all other voters apart from i

be denoted
(t−i, s−i) ≡ ((t1, s1) , ..., (ti−1, si−1) , (ti+1, si+1) , ..., (tn, sn))

Given that other players are playing PBV, for any realized profile (t−i, s−i), i’s vote deter-
ministically selects a winner because PBV does not involve mixing. For a vote by voter i,
Vi ∈ {L, R}, denote the winner of the election x (Vi; (t−i, s−i)) ∈ {L,R}. Then, denote the
event in which voter i is pivotal as Pivi = {(t−i, s−i) : x (L; (t−i, s−i)) 6= x (R; (t−i, s−i))}. By
arguments identical to Lemma 1, for a given profile (t−i, s−i), if a subsequent voter after i votes
L following Vi = R, then she would also do so following Vi = L. Therefore,

Pivi = {(t−i, s−i) : x (L, (t−i, s−i)) = L and x (R, (t−i, s−i)) = R} (8)

Let U
(
Vi|hi, si

)
denote a Neutral Voter i’s expected utility from action V ∈ {L,R} when

she faces a history hi and has a private signal, si. If Pr
(
Pivi|hi, si

)
= 0, then no action is

sub-optimal for Voter i. If Pr
(
Pivi|hi, si

)
> 0, i’s vote changes her expected utility if and only

if her vote is pivotal. Therefore, in such cases,

U
(
V |hi, si

)
> U

(
Ṽ |hi, si

)
⇔ U

(
V |hi, si, P ivi

)
> U

(
Ṽ |hi, si, P ivi

)
for V 6= Ṽ

It follows from equation (8) that U
(
L|hi, si, P ivi

)
= Pr

(
ω = L|hi, si, P ivi

)
and U

(
R|hi, si, P ivi

)
=

1 − Pr
(
ω = L|hi, si, P ivi

)
. Therefore, if Pr

(
ω = L|hi, l, P ivi

)
> 1

2 , it is strictly optimal for
a Neutral Voter i to vote for L, and if Pr

(
ω = L|hi, l, P ivi

)
< 1

2 , it is strictly optimal for a
Neutral Voter i to vote R.
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Lemma 3. If all other players are playing PBV and the election is undecided at the current
history, it is strictly optimal for a Partisan to vote for her preferred candidate.

Proof. Consider a history, hi, where Ψ
(
hi

)
= L. Since all future Neutral voters vote un-

informatively for L, Pr
(
ω = L|hi, si, P ivi

)
= Pr

(
ω = L|hi, si

)
, which by construction strictly

exceeds 1
2 for all si (since Ψ

(
hi

)
= L). Therefore, a Neutral voter strictly prefers to vote L.

An analogous argument applies when Ψ(hi) = R. ¤

Lemma 4. If all other players are playing PBV and the election is undecided at the current
history, hi, it is (generically, strictly) optimal for a Neutral voter i to vote informatively when
Ψ

(
hi

)
= 0 and ∆(hi) ∈ {−nR (i + 1) + 1, . . . , nL (i + 1)− 1}.

The proof proceeds in a series of steps. We shall first use an intermediate lemma (Lemma
5) to show that if the incentive constraints hold for certain voters at certain histories of the
learning phase, then they hold for all other possible histories in the learning phase. This
simplifies the verification of many incentive constraints to that of a few important constraints.
We shall then verify that those constraints also hold in Lemmas 6, 9, and 10.

Lemma 5. Consider any hi where Ψ
(
hi

)
= 0 and ∆

(
hi

)
= ∆. Then if it is incentive

compatible for Neutral Voter (i + 1) to vote informatively when ∆
(
hi+1

) ∈ {∆− 1, ∆ + 1},
then it is incentive compatible for Neutral Voter i to vote informatively when ∆

(
hi

)
= ∆.

Moreover, if the incentive compatibility condition for Neutral Voter (i + 1) holds strictly at
least in one of the two cases when ∆

(
hi+1

) ∈ {∆− 1,∆ + 1}, then it holds strictly for Neutral
Voter i.

Proof. We prove that it is optimal for i to vote L given signal si = l; a similar logic holds for
optimality of voting R with signal r. It is necessary and sufficient that

µ̃i (∆, l) [P (0, ∆ + 1,K, L)− P (0,∆− 1,K, L)]
− (1− µ̃i (∆, l)) [P (0, ∆ + 1,K, R)− P (0, ∆− 1,K, R)]

≥ 0 (9)

Define the state-valued functions p (·) and q (·)

p (ω) =

{
τL + (1− τL − τR) γ if ω = L

τL + (1− τL − τR) (1− γ) if ω = R

q (ω) =

{
τR + (1− τL − τR) (1− γ) if ω = L

τR + (1− τL − τR) γ if ω = R

Since voter i+1 votes informatively if Neutral (because both ∆+1 and ∆− 1 are non-herd
leads), the probability that i+1 votes L and R in state ω is p (ω) and q (ω) respectively. Noting
the recursive relation

P
(
Ψ

(
hi

)
,∆,K + 1, ω

)
= p (ω) P

(
Ψ

(
hi, l

)
, ∆ + 1,K, ω

)
+ q (ω) P

(
Ψ

(
hi, r

)
, ∆− 1,K, ω

)
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it follows that the above inequality holds if and only if

0 ≤ µ̃i (∆, l)

[ (
P

(
Ψ

(
hi, l, l

)
,∆ + 2,K − 1, L

)− P (0, ∆,K − 1, L)
)
p (L)

+
(
P (0, ∆,K − 1, L)− P

(
Ψ

(
hi, r, r

)
,∆− 2,K − 1, L

))
q (L)

]

− (1− µ̃i (∆, l))

[ (
P

(
Ψ

(
hi, l, l

)
, ∆ + 2,K − 1, R

)− P (0, ∆,K − 1, R)
)
p (R)

+
(
P (0, ∆, K − 1, R)− P

(
Ψ

(
hi, r, r

)
,∆− 2, K − 1, R

))
q (R)

]

Dividing by p (R) (1− µ̃i (∆, l)), the above is equivalent to

0 ≤
(

µ̃i(∆,l)
1−µ̃i(∆,l)

p(L)
p(R)

[
P

(
Ψ

(
hi, l, l

)
, ∆ + 2,K − 1, L

)− P (0,∆,K − 1, L)
]

− [
P

(
Ψ

(
hi, l, l

)
,∆ + 2, K − 1, R

)− P (0,∆,K − 1, R)
]

)

+

(
µ̃i(∆,l)

1−µ̃i(∆,l)
q(L)
p(R)

[
P (0, ∆,K − 1, L)− P

(
Ψ

(
hi, r, r

)
,∆− 2,K − 1, L

)]

− q(R)
p(R)

[
P (0, ∆,K − 1, R)− P

(
Ψ

(
hi, r, r

)
∆− 2,K − 1, R

)]
)

We now argue that each of the two lines of the right hand side above is non-negative.

1. Since µ̃i(∆,l)
1−µ̃i(∆,l) = πγ

(1−π)(1−γ)gi (∆) and p(L)
p(R) = f (τL, τR), it follows that

µ̃i (∆, l)
1− µ̃i (∆, l)

p (L)
p (R)

=
πγ

(1− π) (1− γ)
gi+1 (∆ + 1)

=
µ̃i+1 (∆ + 1, l)

1− µ̃i+1 (∆ + 1, l)

Since IC holds for voter i+1 with vote lead ∆+1, observe that if the election is undecided
for i + 1, µ̃i+1(∆+1,l)

1−µ̃i+1(∆+1,l) ≥
P (Ψ(hi,l,l),∆+2,K−1,R)−P (0,∆,K−1,R)

P (Ψ(hi,l,l),∆+2,K−1,L)−P (0,∆,K−1,L)
, which proves that the first

line of the desired right hand side is non-negative. If the election is decided for i+1 with
vote lead ∆ + 1, then the first line of the desired right hand side is exactly 0.

2. Using the previous identities,

µ̃i (∆, l)
1− µ̃i (∆, l)

q (L)
q (R)

=
πγ

(1− π) (1− γ)
gi+1 (∆− 1)

=
µ̃i+1 (∆− 1, l)

1− µ̃i+1 (∆− 1, l)

Since IC holds for voter i+1 with vote lead ∆−1, observe that if the election is undecided
for i−1, then µ̃i+1(∆−1,l)

1−µ̃i+1(∆−1,l)
q(L)
q(R) ≥

P (0,∆,K−1,R)−P (Ψ(hi,r,r),∆−2,K−1,R)

P (0,∆,K−1,L)−P (Ψ(hi,r,r),∆−2,K−1,L)
, and thus the second

line of the desired right hand side is non-negative. If the election is decided for i+1 with
vote lead ∆− 1, then the second line of the desired right hand side is exactly 0.

Observe that if incentive compatibility holds strictly for voter i + 1 in either one of the
two cases, then at least one of the two lines of the right hand side is strictly positive, and
consequently inequality (9) must hold strictly. ¤
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By the above Lemma, we are left to only check the incentive conditions for a Neutral voter
i with undecided history hi such that Ψ(hi) = 0, but voter i + 1 will not vote informatively
when Neutral if either vi = L or vi = R. This possibility can be divided into two cases:

1. either i’s vote causes the phase to transition into a herding phase; or

2. i is the final voter (i = n) and ∆(hn) = 0.

Lemma 6 below deals with the latter case; Lemmas 9 and 10 concern the former. (Lemmas
7 and 8 are intermediate steps towards Lemma 9.)

Lemma 6. If there exists a history hn such that Ψ(hn) = 0 and ∆(hn) = 0, then it is incentive
compatible for Voter n to vote informatively. For generic parameters of the game, the incentive
compatibility conditions hold strictly.

Proof. Since ∆ (hn) = 0 and n is the final voter, Pr (ω = L|hn, sn, P ivn) = Pr (ω = L|hn, sn).
Since Ψ (hn) = 0, Pr (ω = L|hn, l) ≥ 1

2 ≥ Pr (ω = L|hn, r). Therefore, voting informatively is
incentive compatible. Recall from Remark 1 that Pr (ω = L|hn, sn) = 1

2 for some sn ∈ {l, r}
only if (π, γ, τL, τR) is such that (τL, τR) ∈ Γπ,γ , which is a set of (Lebesgue) measure 0. If
(τL, τR) /∈ Γπ,γ , then given that Ψ (hn) = 0, Pr (ω = L|hn, l) > 1

2 > Pr (ω = L|hn, r), and
therefore for generic parameters, voting informatively is strictly optimal for voter n. ¤

Lemma 7. Consider any hi where Ψ
(
hi

)
= 0 and ∆

(
hi

)
= ∆. Then, P

(
Ψ

(
hi, l

)
, ∆ + 1,K, L

) ≥
P

(
Ψ

(
hi, l

)
,∆ + 1,K,R

)
and P

(
Ψ

(
hi, r

)
,∆− 1,K, L

) ≥ P
(
Ψ

(
hi, r

)
, ∆− 1,K, R

)
implies

P (0, ∆, K + 1, L) ≥ P (0,∆,K + 1, R).

Proof. Simple manipulations yield

P (0, ∆,K + 1, L)− P (0, ∆,K + 1, R)

=
p (L) P

(
Ψ

(
hi, l

)
, ∆ + 1,K, L

)
+ q (L) P

(
Ψ

(
hi, r

)
, ∆− 1,K, L

)

− [
p (R) P

(
Ψ

(
hi, l

)
,∆ + 1,K,R

)
+ q (R) P

(
Ψ

(
hi, r

)
,∆− 1,K, R

)]

≥ p (L) P
(
Ψ

(
hi, l

)
, ∆ + 1,K, L

)
+ q (L) P

(
Ψ

(
hi, r

)
, ∆− 1,K, L

)

− [
p (L) P

(
Ψ

(
hi, l

)
, ∆ + 1,K, R

)
+ q (L) P

(
Ψ

(
hi, l

)
, ∆− 1,K, R

)]

=
p (L)

[
P

(
Ψ

(
hi, l

)
, ∆ + 1,K, L

)− P
(
Ψ

(
hi, l

)
, ∆ + 1,K, R

)]

+q (L)
[
P

(
Ψ

(
hi, r

)
, ∆− 1,K, L

)− P
(
Ψ

(
hi, r

)
,∆− 1, K,R

)]

≥ 0

where the first inequality uses the fact that p (L) ≥ p (R) and P (∆ + 1,K, R) ≥ P (∆− 1,K, R);
and the last inequality uses the hypotheses of the Lemma. ¤

Lemma 8. For all hi, P
(
Ψ

(
hi

)
, ∆,K + 1, L

) ≥ P
(
Ψ

(
hi

)
, ∆,K + 1, R

)
.
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Proof. Base Step: The Claim is true when K = 0. To see this, first note that ∆ must be even
for P

(
Ψ

(
hi

)
,∆, 1, ω

)
to be well-defined. If ∆ 6= 0 (hence |∆| ≥ 2), then P

(
Ψ

(
hi

)
, ∆, 1, L

)
=

P
(
Ψ

(
hi

)
,∆, 1, R

)
. For ∆ = 0, we have P (0, 1, L) = p (L) > p (R) = P (0, 1, R).

Inductive Step: For any K ≥ 2, the desired inequality trivially holds if ∆ ∈ {−nR, nL}
because P (nL,K, L) = P (nL,K,R) and P (−nR,K, L) = P (−nR,K,R). So it remains to
consider only ∆ ∈ {−nR + 1, . . . , nL − 1}. Assume inductively that P (∆ + 1,K − 1, L) ≥
P (∆ + 1,K − 1, R) and P (∆− 1,K − 1, L) ≥ P (∆− 1,K − 1, R). [The Base Step guaran-
teed this for K = 2.] Using the previous Lemma, it follows that P (∆,K, L) ≥ P (∆,K,R) for
all ∆ ∈ {−nR + 1, . . . , nL − 1}. ¤

Lemma 9. Consider history hi such that ∆
(
hi

)
= nL (i + 1)− 1 and Ψ

(
hi

)
= 0. Then if all

other voters are playing PBV, and a neutral voter i receives signal r, it is strictly optimal for
her to vote R. Analogously, if ∆

(
hi

)
= −nR (i + 1) + 1, and if all other voters are playing

PBV, and a neutral voter i receives signal l, it is strictly optimal to vote L.

Proof. Consider hi such that ∆
(
hi

)
= nL (i + 1)−1 = ∆, and Ψ

(
hi

)
= 0. For it to be strictly

optimal for the voter to vote informatively, it must be that

µ̃i (∆, r) P (0,∆− 1, K, L) + (1− µ̃ (∆, r)) (1− P (0, ∆− 1,K, R))

> µ̃i (∆, r) P (L,∆ + 1,K, L) + (1− µ̃i (∆, r)) (1− P (L,∆ + 1,K, R))

which is equivalent to

µ̃i (∆, r)
1− µ̃i (∆, r)

<
P (L,∆ + 1,K, R)− P (0, ∆− 1,K,R)
P (L,∆ + 1,K, L)− P (0, ∆− 1,K, L)

(10)

By Lemma 8, P (0, ∆− 1,K, L) ≥ P (0, ∆− 1,K, R), and by definition, P (L,∆ + 1,K, R) =
P (L,∆ + 1,K, L). Therefore, the right-hand side of (10) is bounded below by 1. Since
Ψ

(
hi

)
= 0, µ

(
hi, r

)
= µ̃i (∆, r) < 1

2 , the left-hand side of (10) is strictly less than 1, es-
tablishing the strict inequality. An analogous argument applies to prove the case where
∆

(
hi

)
= −nR (i + 1) + 1 and si = l. ¤

Lemma 10. Consider history hi such that ∆
(
hi

)
= nL (i + 1) − 1 and Ψ

(
hi

)
= 0. Then if

all other voters are playing PBV, and a neutral voter i receives signal l, it is optimal for her
to vote L. Analogously, if ∆

(
hi

)
= −nR (i + 1) + 1, and if all other voters are playing PBV,

and a neutral voter i receives signal r, it is optimal to vote R. For generic parameters of the
game, the optimality is strict.

Proof. Consider the information set where Ψ
(
hi

)
= 0, ∆

(
hi

)
= nL (i + 1)− 1, and si = l. By

the discussion in the text (p. 26), it suffices to show that Pr
(
ω = L|hi, l, P ivi

) ≥ 1
2 . For any i,

and for any k > i, let ξΨ
k be the set of types {(tj , sj)}j 6=i that is consistent with history hi, induces(

Ψ
(
hk−1

)
, Ψ

(
hk

))
= (0, Ψ) where Ψ ∈ {L,R} after vi = R, and where i’s vote is pivotal. Let

KΨ =
{
k > i : ξΨ

k 6= ∅}. Denote by ξ0
∆ the set of types {(tj , sj)}j 6=i that are consistent with
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hi, induces Ψ (hn) = 0 and ∆
(
hn+1

)
= ∆ < 0 after vi = R, and where i’s vote is pivotal. Let

K0
∆ =

{
∆ : ξ0

∆ 6= ∅}. Observe that since the event
(
hi, P ivi

)
= ∪Ψ

(∪k∈KΨξΨ
k

)∪
(
∪∆∈K0

∆
ξ0
∆

)
,

by the definition of conditional probability

Pr
(
ω = L|hi, l, P ivi

)
=

∑

Ψ∈{L,R}

∑

k∈KΨ

Pr
(
ξΨ
k |hi, l, P ivi

)
Pr

(
ω = L|ξΨ

k , l
)

+
∑

∆∈K0
∆

Pr
(
ξ0
∆|hi, l, P ivi

)
Pr

(
ω = L|ξ0

∆, l
)

We shall argue that Pr
(
ω = L|hi, l, P ivi

) ≥ 1
2 by showing that Pr

(
ω = L|ξL

k , l
)

> 1
2 for each

k ∈ KL, Pr
(
ω = L|ξR

k , l
) ≥ 1

2 for each k ∈ KR, and Pr
(
ω = L|ξ0

∆, l
) ≥ 1

2 for each ∆ ∈ K0
∆.

Consider k ∈ KL: ξL
k denotes a set of signal-type realizations that induce an L-herd after

the vote of voter (k − 1) (and meet the aforementioned conditions). Since only votes in the
learning phase are informative,

Pr
(
ω = L|ξL

k , l
)

= Pr
(
ω = L|l, Ψ

(
hk−1

)
= 0, ∆

(
hk

)
= nL (k)

)

Given that vi = R, the informational content of this event is equivalent to a history h̃k−1 where
∆

(
h̃k−1

)
= nL (k) + 1, and all Neutrals are assumed to have voted informatively. Therefore,

Pr
(
ω = L|ξL

k , l
)

=
πγgk−1 (nL (k) + 1)

πγgk−1 (nL (k) + 1) + (1− π) (1− γ)

Observe that gk−1(nL (k) + 1) > gk (nL (k)) > (1−π)γ
π(1−γ) . Therefore, Pr

(
ω = L|ξΨ

k , l
)

>

γ2

γ2+(1−γ)2
> 1

2 .

Now consider k ∈ KR: ξR
k denotes a set of signal-type realizations that induce an R-herd

after the vote of voter (k − 1) (and meet the aforementioned conditions). As before, only votes
in the learning phase contain information about the state of the world; thus, Pr

(
ω = L|ξR

k , l
)

=
Pr

(
ω = L|l, Ψ (

hk−1
)

= 0, ∆
(
hk

)
= −nR (k)

)
. Given that vi = R, the informational content

is equivalent to a history h̃k−1 where ∆
(
h̃k−1

)
= −nR (k) + 1, and all neutrals are assumed to

have voted informatively. Therefore,

Pr
(
ω = L|ξR

k , l
)

=
πγgk−1 (−nR (k) + 1)

πγgk−1 (−nR (k) + 1) + (1− π) (1− γ)

As by assumption, ∆
(
hk−1

)
= −nR (k)+1 and Ψ

(
hk−1

)
= 0, we have gk−1 (−nR (k) + 1) ≥

(1−π)(1−γ)
πγ . Therefore, Pr

(
ω = L|ξR

k , l
) ≥ 1

2 .
Now consider the event ∆ ∈ K0

∆: ξ0
∆ denotes a set of signal-type realizations that induce

no herd and a final vote lead of ∆ < 0. Therefore,

Pr
(
ω = L|ξ0

∆, l
)

=
πγgn (∆ + 1)

πγgn (∆ + 1) + (1− π)
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Since ∆ (hn) ∈ {∆− 1, ∆ + 1}and Ψ (hn) = 0, we have gn (∆ + 1) ≥ (1−π)(1−γ)
πγ , and there-

fore Pr
(
ω = L|ξ0

∆, l
) ≥ 1

2 .
We use the above three facts to deduce that Pr

(
ω = L|hi, l, P ivi

) ≥ 1
2 : observe that

∑

Ψ∈{L,R},k∈KΨ

Pr
(
ξΨ
k |hi, l, P ivi

)
+

∑

∆∈K0
∆

Pr
(
ξ0
∆|hi, l, P ivi

)
= 1

Therefore, Pr
(
ω = L|hi, l, P ivi

)
is a convex combination of numbers that are bounded below

by 1
2 .
An analogous argument can be made to ensure optimality at the information set where

∆
(
hi

)
= −nR (i + 1) + 1 and si = r.

Let us now explain why the incentive conditions hold strictly for generic parameters of the
game. Observe that from our arguments above that indifference arises only if there exists
some k ≤ n and history hk such that Pr

(
ω = L|hk, sk

)
= 1

2 . Recall from Remark 1 that
this can hold only if (π, γ, τL, τR) is such that (τL, τR) ∈ Γπ,γ , which is a set of (Lebesgue)
measure 0. If (τL, τR) /∈ Γπ,γ , then for every k, Ψ

(
hk

)
= 0 implies that Pr

(
ω = L|hk, l

)
>

1
2 > Pr

(
ω = L|hk, r

)
. Therefore, for generic parameters of the game, following PBV is strictly

optimal for Voter n regardless of history. ¤

Lemmas 5, 6, 9, and 10 establish Lemma 4: conditional on all others playing according to
PBV, it is optimal for Neutrals to vote informatively in the learning phase. Observe that
generic parameters of the game yield strict optimality of the incentive conditions in Lemmas
6 and 10, and therefore, by Lemma 5, all the incentive conditions in the learning phase hold
strictly generically.

A.3 Proofs for Section 4

Theorem 3 on pp. 16

Proof. The result follows from minor modifications of Theorem 2; in particular, modifying
Lemma 6 to Ψ (hn) = 0 and ∆ (hn) ∈ {bqnc , dqne}. ¤

Theorem 4 on pp. 17

Proof. We shall consider a PBV strategy profile and consider two threshold rules q and q′ where
τL < q < q′ < 1− τR. Given a profile of n votes, let Sn denote the total number of votes cast
in favor of L.

Pick ε > 0. From Theorem 1, we know that there exists k̄ such that for all k ≥
k̄, Pr

(
Ψ

(
hk

)
= L

)
+ Pr

(
Ψ

(
hk

)
= R

)
> 1 − ε

2 . Pick any k ≥ k̄. By the Weak Law
of Large Numbers, for every κ > 0, limn→∞ Pr

(∣∣Sn
n − (1− τR)

∣∣ < κ|Ψ (
hk

)
= L

)
= 1 and

limn→∞ Pr
(∣∣Sn

n − τL

∣∣ < κ|Ψ (
hk

)
= R

)
= 1. Pick some κ < min {(1− τR)− q′, q − τL}.

There exists some n̄ > k such that for all n ≥ n̄, Pr
(∣∣Sn

n − (1− τR)
∣∣ < κ|Ψ (

hk
)

= L
)

> 1− ε
2
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and Pr
(∣∣Sn

n − τL

∣∣ < κ|Ψ (
hk

)
= R

)
> 1− ε

2 . Observe that by the choice of κ,
∣∣Sn

n − (1− τR)
∣∣ <

κ implies that L wins under both rules q and q′ whereas
∣∣Sn

n − τL

∣∣ < κ implies that L loses
under both rules q and q′. For any n ≥ n̄, we have

∣∣Pr(L wins in G (π, γ, τL, τR; n, q)− Pr(L wins in G
(
π, γ, τL, τR;n, q′

)∣∣

<

∣∣∣∣∣∣
∑

x∈{L,R}
Pr

(
Ψ

(
hk

)
= x

)
Pr

(
Sn

n
∈ (

q, q′
] |Ψ

(
hk

)
= x

)∣∣∣∣∣∣
+

ε

2

< ε

which proves part (a) of the Theorem.
For part (b), consider any q < τL. The probability with which a voter votes L is at least

τL. Therefore, invoking the Weak Law of Large Numbers, limn→∞ Pr
(

Sn
n < q

)
= 0. The

argument is analogous for part (c). ¤

Proposition 3 on pp. 18

Proof. We shall begin by describing the PBV strategy profile and then proceed to establish

that it is an equilibrium. Observe that for τL = τR = 0, for every i, gi (k) =
(

γ
1−γ

)k
. As

γ
1−γ > (1−π)γ

π(1−γ) > 1 > 1−γ
γ > (1−π)(1−γ)

πγ >
(

1−γ
γ

)2
. Therefore,

(nL (i) , nR (i)) =

{
(1, 3) if i is even
(2, 2) if i is odd

Therefore, PBV prescribes that if Ψ
(
hi−1

)
= 0, and ∆

(
hi

) ∈ {1,−2}, then Ψ
(
hi

) 6= 0. To
show that this strategy profile is an equilibrium, we shall consider the incentives in the learning
and herding phases separately.

Observe that if Ψ
(
hi

)
= L(R), voting for R (L) occurs with zero-probability on the path

of play. We shall consider a belief-restriction that specifies that any off-path vote is simply
ignored and does not affect the public belief. Given this belief-restriction, it can be shown
using Theorem 2 (particularly Lemmas 3, 4) that PBV is an equilibrium. ¤
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B Supplementary Results on Cut-Point Voting

In this Appendix, we consider the class of Cut-Point Voting (CPV) strategy profiles introduced
by Callander (2004a). While this class does entail some restrictions, it covers a wide class of
strategies, generalizing PBV to permit behavior ranging from fully informative to uninformative
voting. We prove that for generic parameters, any equilibrium within this class leads to herding
with high probability in large elections. This result is of interest because it suggests that our
results are more general beyond the PBV equilibrium.

To define a CPV profile, let µ
(
hi

) ≡ Pr
(
ω = L|hi

)
, so that µ

(
hi

)
denotes the public belief

following history hi.

Definition 3. A strategy profile, v, is a Cut-Point Voting (CPV) strategy profile if there exist
0 ≤ µ∗ ≤ µ∗ ≤ 1 such that for every voter i, history hi, and signal si,

vi

(
N, hi, si

)
=

{
L if µ

(
hi

)
> µ∗ or {µ (

hi
)

= µ∗ and si = l}
R if µ

(
hi

)
< µ∗ or {µ (

hi
)

= µ∗ and si = r}
vi

(
Lp, h

i, si

)
= L

vi

(
Rp, h

i, si

)
= R

In a CPV strategy profile, Neutrals vote according to their signals alone if and only if the
public belief when it is their turn to vote lies within [µ∗, µ∗]; otherwise, a Neutral votes for one of
the candidates independently of her private signal. Denote a CPV profile with belief thresholds
µ∗ and µ∗ as CPV (µ∗, µ∗). These thresholds define the extent to which a CPV profile weighs
past history relative to the private signal: CPV (0, 1) corresponds to informative voting (by
Neutrals) where history never influences play, whereas CPV (1− γ, γ) corresponds to PBV by
Neutrals. Similarly, CPV (0, 0) and CPV (1, 1) represent strategy profiles where every Neutral
votes uninformatively for candidate L and R respectively. Therefore, CPV captures a variety
of behavior for Neutrals.

A CPV equilibrium is an equilibrium whose strategy profile is a CPV profile. While we
are unable to derive a tight characterization of what non-PBV but CPV profiles—if any—
constitute equilibria, we can nevertheless show that generically, large elections lead to herds
with high probability within the class of CPV equilibria.

Theorem 5. For every (π, γ, τL, τR) such that τL 6= τR, and for every ε > 0, there exists
n < ∞ such that for all n > n, if voters play a CPV equilibrium, Pr[a herd develops in
G (π, γ, τL, τR; n)] > 1− ε.

Proof

We argue through a succession of lemmas that there exist µ∗ < 1 and µ∗ > 0 such that when
τL 6= τR, in a large enough election, a CPV (µ∗, µ∗) is an equilibrium only if µ∗ ≤ µ∗ < µ∗ ≤ µ∗.
This suffices to prove the Theorem, because then, the arguments of Theorem 1 apply with trivial
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modifications. Note that in all the lemmas below, it is implicitly assumed when we consider a
particular voter’s incentives that she is at an undecided history.

For any CPV (µ∗, µ∗), we can define threshold sequences {ñL(i)}∞i=i and {ñR(i)}∞i=i similarly
to {nL(i)}∞i=i and {nR(i)}∞i=i, except using the belief threshold µ∗ (resp. µ∗) in place of the
PBV threshold γ (resp. 1−γ). That is, for all i such that gi (i− 1) ≤ (1−π)µ∗

π(1−µ∗) , set ñL (i) = i. If

gi (i− 1) > (1−π)µ∗
π(1−µ∗) , we set ñL (i) to be the unique integer that solves gi (ñL (i)− 2) ≤ (1−π)µ∗

π(1−µ∗) <

gi (ñL (i)). For all i such that gi (− (i− 1)) ≥ (1−π)(µ∗)
π(1−µ∗)

, set ñR (i) = i. If gi (− (i− 1)) <
(1−π)µ∗
π(1−µ∗)

, set ñR (i) to be the unique integer that solves gi (−ñR (i) + 2) ≥ (1−π)µ∗
π(1−µ∗)

> gi (−ñR (i)).
Given these thresholds sequences ñL and ñR, we define the phase mapping Ψ̃ : hi → {L, 0, R} in
the obvious way that extends the PBV phase mapping Ψ. We state without proof the following
generalization of Proposition 1.

Proposition 4. Fix a parameter set (π, γ, τL, τR, n). For each i ≤ n, if voters play CPV (µ∗, µ∗)
in the game G (π, γ, τL,τR; n), there exist sequences {ñL(i)}∞i=i and {ñR(i)}∞i=i satisfying |ñC(i)| ≤
i such that a Neutral voter i votes

1. informatively if Ψ̃
(
hi

)
= 0;

2. uninformatively for L if Ψ̃
(
hi

)
= L;

3. uninformatively for R if Ψ̃
(
hi

)
= R;

where Ψ̃ is the phase mapping with respect to ñL and ñR. The thresholds ñL (i) and
ñR (i) do not depend on the population size, n.

Lemma 11. There exists µ̄∗ < 1 and µ∗ > 0 such that in any CPV (µ∗, µ∗),

1. if µ∗ > µ̄∗ then ñL(i) > nL(i) for all i such that nL (i) < i;

2. if µ∗ < µ∗, then −ñR(i) < −nR(i) for all i such that −nR (i) > −i.

Proof. We give the argument for part (1); it is similar for part (2). Define µ̄∗ by the equality
µ̄∗

1−µ̄∗ = γ
1−γ f(τL, τR)f(τR, τL). It is straightforward to compute from the definition of gi(·)

that for any k (such that |k| < i and i−k is odd), gi(k−2)f(τL, τR)f(τR, τL) = gi(k). Suppose
µ∗ > µ̄∗ and there is some i with ñL(i) ≤ nL(i) . By the definitions of nL(i) and ñL(i), and
the monotonicity of gi(k) in k,

gi(nL(i)− 2) = gi(nL(i)) [f(τL, τR)f(τR, τL)]−1

≥ gi(ñL(i)) [f(τL, τR)f(τR, τL)]−1

>
(1− π) µ∗

π(1− µ∗)
[f(τL, τR)f(τR, τL)]−1

>
(1− π) γ

π (1− γ)

contradicting the definition of nL (i) which requires that gi(nL(i)− 2) ≤ (1−π)γ
π(1−γ) . ¤
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Lemma 12. If all Neutral voters play according to a CPV profile, it is uniquely optimal for an
L-partisan to vote L and an R-partisan to vote R.

Proof. This follows from the weak monotonicity imposed by CPV; trivial modifications to the
argument in Lemma 2 establish this result. ¤

Lemma 13. In a large enough election, CPV (0, 1) is not an equilibrium unless τL = τR.

Proof. Suppose all voters play CPV strategy (0, 1). Without loss of generality assume τL > τR;
the argument is analogous if τL < τR. Let ςt (n) denote the number of voters of preference-
type t ∈ {L,R, N} when the electorate size is n. Denote τN = 1 − τL − τR. Suppose voter
1 is Neutral and has received signal l. She is pivotal if and only if amongst the other n − 1
voters, the number of L votes is exactly equal the number of R votes. Let ςN,s (n) denote
the number of Neutrals who have received signal s ∈ {l, r}. Under the CPV profile (0, 1),
voter 1 is pivotal if and only if ςN,r (n) − (ςN,l (n)− 1) = ςL (n) − ςR (n). By the Weak Law
of Large Numbers, for any ε > 0 and any t ∈ {L, R, N}, limn→∞ Pr

(∣∣∣ ςt(n)
n − τ t

∣∣∣ < ε
)

= 1.
Consequently, since τL > τR, for any ε > 0 and k > 0, there exists n̄ such that for all n > n̄,
Pr (ςL (n)− ςR (n) > k) > 1− ε. Thus, denoting Piv1 as the set of preference-type and signal
realizations where the Neutral voter 1 with si = l is pivotal, we have that for any ε > 0
and k > 0, there exists n̄ such that for all n > n̄, Pr (ςN,r (n)− ςN,l (n) > k|Piv1) > 1 − ε.
Since Pr (ω = L|ςN,r (n) , ςN,l (n)) is strictly decreasing in ςN,r (n)− ςN,l (n), it follows that by
considering k large enough in the previous statement, we can make Pr (ω = L|Piv1) < 1

2 in
large enough elections. Consequently, in large enough elections, voter 1 strictly prefers to vote
R when she is Neutral and has received si = l, which is a deviation from the CPV strategy
(0, 1). ¤

Lemma 14. In a large enough election, CPV (µ∗, µ∗) is not an equilibrium if either µ∗ > 1
2 or

µ∗ < π.

Proof. If µ∗ > π, then the first voter votes uninformatively for R if Neutral, and consequently,
all votes are uninformative. Thus, conditioning on being pivotal adds no new information to
any voter. Since µ1

(
h1, l

)
> π > 1

2 (recall that h1 = φ), voter 1 has an incentive to deviate
from the CPV strategy and vote L if she is Neutral and receives signal s1 = l.

If µ∗ ∈
(

1
2 , π

]
, let hk+1 be a history of k consecutive R votes. It is straightforward that

for some integer k ≥ 1, µ
(
hk

) ≥ µ∗ > µ
(
hk+1

)
. Since an R-herd has started when it is voter

k +1’s turn to vote, conditioning on being pivotal adds to information to voter k +1. Suppose
voter k +1 is Neutral and receives sk+1 = l. Then since an R-herd has started, she is supposed
to vote R. But since µk+1

(
hk+1, l

)
> µ

(
hk

) ≥ µ∗ > 1
2 , she strictly prefers to vote L.

If µ∗ < π, the argument is analogous to the case of µ∗ > π, noting that µ1

(
h1, r

)
< 1

2

because γ > π. ¤

Lemma 15. In a large enough election, CPV (µ∗, 1) is not an equilibrium for any µ∗ ∈ (0, π].
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Proof. Suppose CPV (µ∗, 1) with µ∗ ∈ (0, π] is an equilibrium. Consider a Neutral voter m

with signal sm = r and history hm such that µ (hm) ≥ µ∗ but µ
(
hm+1

)
< µ∗ following vm = R.

(To see that such a configuration can arise in a large enough election, consider a sequence of
consecutive R votes by all voters.) Voter m is supposed to vote R in the equilibrium. We will
show that she strictly prefers a deviation to voting L in a large enough election.

Claim 1: If the true state is R, then following vm = L, the probability of an R-herd converges
to 1 as the electorate size n → ∞. Proof : Recall that the likelihood ratio stochastic process
λi

a.s.→ λ∞ (where the domain can be taken as i = m + 1,m + 2, . . .). Since voter i votes
informatively if and only if λi ≥ µ∗

1−µ∗
, the argument used in proving Theorem 1 allows us to

conclude that Support (λ∞) ⊆
[
0, µ∗

1−µ∗

]
and Pr

(
λ∞ = µ∗

1−µ∗

)
= 0. Consequently, there is a

herd on R eventually almost surely in state R.
Claim 2: Pr (Pivm|ω = R) converges to 0 as the electorate size n → ∞. Proof : To be

explicit, we use superscripts to denote the electorate size n, e.g. we write Pivn
m instead of

Pivm. Denote

Xn = {(t−m, s−m) ∈ Pivm : L-herd after vm = L, R-herd after vm = R}
Y n = {(t−m, s−m) ∈ Pivm : no herd after vm = L, R-herd after vm = R}
Zn = {(t−m, s−m) ∈ Pivm : R-herd after vm = L and vm = R}

We have Pivn
m = Xn ∪ Y n ∪ Zn; hence it suffices to show that Pr (Xn) → 0, Pr (Y n) → 0,

and Pr (Zn) → 0. That Pr (Xn) → 0 and Pr (Y n) → 0 follows straightforwardly from Claim
1. To show that Pr (Zn) → 0, let Ψn

k denote the phase after voter k has voted, i.e. when
it is voter k + 1’s turn to vote. For any n, consider the set of {(tj , sj)}n

j=m+1 such that
after vm = L, Ψn

n 6= L; denote this set Ξn. Partition this into the sets that induce Ψn
n = 0

and Ψn
n = R, denoted Ξn,0 and Ξn,R respectively. Clearly, Zn ⊆ Ξn,R. For any ε, for

large enough n, regardless of m’s vote, Pr (Ψn
n = 0) < ε by Claim 1, and thus, Pr

(
Ξn,0

)
< ε.

Now consider any n′ > n. Zn′ ⊆ Ξn because if there is a L-herd following vm = L with
electorate size n, there cannot be an R-herd following vm = L with electorate size n′. Thus,
Pr

(
Zn′

)
= Pr

(
Ξn,0

)
Pr

(
Zn′ |Ξn,0

)
+ Pr

(
Ξn,R

)
Pr

(
Zn′ |ΞR

n

)
< ε + Pr

(
Ξn,R

)
Pr

(
Zn′ |ΞR

n

)
for

large enough n. We have Pr
(
Zn′ |Ξn,R

)
=

Pr
(
Zn′ ∩ Ξn,R

)

Pr (Ξn,R)
. It is straightforward to see that

Pr
(
Zn′ ∩ Ξn,R

)
→ 0 as n′ → ∞, using the fact that τL < 1 − τL and invoking the Weak

Law of Large Numbers similarly to Lemma 13. Note that Pr
(
Ξn,R

)
is bounded away from 0

because if sufficiently many voters immediately after m are R-partisans, then an R-herd will
start regardless of m’s vote. This proves that Pr

(
Zn′

)
→ 0.

Claim 3: If the true state is L, then following vm = L, the probability that L wins is bounded

away from 0 as the electorate size n → ∞. Proof : Define ξ
(
hi

)
=

Pr(ω=R|hi)
Pr(ω=L|hi)

; this generates
a stochastic process 〈ξi〉 (i = m + 1,m + 2, . . .) which is a martingale conditional on state L,
and thus 〈ξi〉 a.s.→ ξ∞. Note that ξm+1 < 1−µ∗

µ∗
since µ (hm) ≥ µ∗ and vm = L. Since voter
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i votes informatively if and only if ξi ∈
(
0, 1−µ∗

µ∗

]
, the argument used in proving Theorem 1

allows us to conclude that Support (ξ∞) ⊆ {0}∪
[

1−µ∗
µ∗

,∞
)

and Pr
(
ξ∞ = 1−µ∗

µ∗

)
= 0. Suppose

towards contradiction that 0 /∈ Support (ξ∞). This implies E [ξ∞] > 1−µ∗
µ∗

. By Fatou’s Lemma
(Billingsley, 1995, p. 209), E [ξ∞] ≤ limn→∞ E [ξn]; since for any n ≥ m + 1, E [ξn] = ξm+1, we
have 1−µ∗

µ∗
< E [ξ∞] ≤ ξm+1 < 1−µ∗

µ∗
, a contradiction. Thus, 0 ∈ Support (ξ∞), and it must be

that Pr (ξ∞ = 0) > 0. The claim follows from the observation that for any history sequence
where ξi

(
hi

) → 0 it must be that ∆
(
hi

) →∞.
Consider the expected utility for voter m from voting R or L respectively, conditional on be-

ing pivotal: EUm (vm = R|Pivm) = Pr (ω = R|Pivm) and EUm (vm = L|Pivm) = Pr (ω = L|Pivm).
Thus, she strictly prefers to vote L if and only if Pr (ω = L|Pivm) > Pr (ω = R|Pivm), or
equivalently, if and only if Pr (Pivm|ω = L) > Pr (Pivm|ω = R) 1−µm(hm,r)

µm(hm,r) . By Claim 2,
Pr (Pivm|ω = R) converges to 0 as electorate grows. On the other hand, Pr (Pivm|ω = L)
is bounded away from 0, because by Claim 3, the probability that L wins following vm = L

is bounded away from 0, whereas if vm = R, a R-herd starts and thus the probability that
R wins converges to 1 as the electorate size grows. Therefore, in a large enough election,
Pr (Pivm|ω = L) > Pr (Pivm|ω = R) 1−µm(hm,r)

µm(hm,r) , and it is strictly optimal for m to vote L

following his signal sm = r, which is a deviation from the CPV strategy. ¤

Lemma 16. In a large enough election, CPV (0, µ∗) is not an equilibrium for any µ∗ ∈ [π, 1).

Proof. Analogous to Lemma 15, it can be shown here that in a large enough election there is a
voter who when Neutral is supposed to vote L with signal l, but strictly prefers to vote R. ¤

Lemma 17. In a large enough election, CPV (µ∗, µ∗) is not an equilibrium if µ∗ ∈ (µ̄∗, 1) and
µ∗ ∈ (0, 1

2 ].

Proof. Fix an equilibrium CPV (µ∗, µ∗) with µ∗ ∈ (µ̄∗, 1) and µ∗ ∈ (0, 1
2 ]. By Lemma 11,

ñL(i) > nL(i) for all i. Consider a Neutral voter m with signal sm = r and history hm such
that µ (hm) ≥ µ∗ but µ

(
hm+1

)
< µ∗ following vm = R. (To see that such a configuration

can arise in a large enough election, consider a sequence of consecutive R votes by all voters.)
Voter m is supposed to vote R in the equilibrium. We will show that she strictly prefers a
deviation to voting L in a large enough election.

First, note that by following the argument of Theorem 1, it is straightforward to show that
regardless of m’s vote, a herd arises with arbitrarily high probability when the electorate size n

is sufficiently large. Define Xn, Y n, and Zn as in Lemma 15, where n indexes the electorate size.
Plainly, Pr (Y n) → 0. The argument of Claim 2 in Lemma 15 implies with obvious modifications
that Pr (Zn) → 0. Finally, Pr (Xn) 9 0 because there exists m′ > m such that if vi = L for all
i ∈ {m + 1, . . . , m′}, then Ψn

m′ = L, and Pr (vi = L for all i ∈ {m + 1, . . . m′}) ≥ (τL)m′−m > 0.
Since Pivn

m = Xn ∪ Y n ∪ Zn, we conclude that as n → ∞, Pr (Xn|Pivn
m) → 1, whereas

Pr (Y n|Pivn
m) → 0 and Pr (Zn|Pivn

m) → 0. Consequently, for any ε > 0, there exists n̄ such
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that for all n > n̄,

|EUm (vm = L|Xn, sm = r)− EUm (vm = L|Pivn
m, sm = r)| < ε

and
|EUm (vm = R|Xn, sm = r)− EUm (vm = R|Pivn

m, sm = r)| < ε

Therefore, it suffices to show that for any n > m,

EUm (vm = L|Xn, sm = r) > EUm (vm = R|Xn, sm = r) ,

or equivalently, Pr (ω = L|Xn, sm = r) > Pr (ω = R|Xn, sm = r). For any k ∈ {m + 1, . . . , n},
define

Xn
k =

{
(t−m, s−m) ∈ Pivn

m : Ψn
k−1 = 0 but Ψn

k = L after vm = L, Ψn
n after vm = R

}

Clearly, this requires ñL (k + 1) < k + 1. For i 6= j, Xn
i ∩ Xn

j = ∅, but Xn = ∪n
k=m+1X

n
k ,

and thus Pr (ω|Xn, sm = r) = ∪n
k=m+1 Pr (ω|Xn

k , sm = r) Pr (Xn
k |Xn). It therefore suffices

to show that for any k ∈ {m + 1, . . . , n}, Pr (ω = L|Xn
k , sm = r) > Pr (ω = R|Xn

k , sm = r).
Given that vm = L, the informational content of Xn

k is equivalent to a history hk+1 where
∆

(
hk+1

)
= ñL (k + 1)−2, and all neutrals are assumed to have voted informatively. Therefore,

Pr (ω = L|Xn
k , sm = r) =

πγgk+1 (ñL (k + 1)− 2)
πγgk+1 (ñL (k + 1)− 2) + (1− π) (1− γ)

Since ñL (k + 1) < k+1 and ñL(i) > nL(i) for all i, it must be that ñL(k+1)−2 ≥ nL(k+1).
Consequently,

Pr (ω = L|Xn
k , sm = r) ≥ πγgk+1 (nL (k + 1))

πγgk+1 (nL (k + 1)) + (1− π) (1− γ)

>
1
2

where the second inequality is by the definition of nL (k + 1). ¤

Lemma 18. In a large enough election, CPV (µ∗, µ∗) is not an equilibrium if µ∗ ∈ [π, 1) and
µ∗ ∈ (0, µ∗).

Proof. Analogous to Lemma 17, it can be shown here that in a large enough election there is a
voter who when Neutral is supposed to vote L with signal l, but strictly prefers to vote R. ¤
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