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Abstract

Incentives in voting models typically hinge on the event that a voter is pivotal. But voting can
also influence the behavior of elites in subsequent periods. In this paper, we consider a model in which
voters have private information about their policy preferences and an election is held in each of two
periods. In this setting, a vote in the first period can have two types of consequences; it may be pivotal
in deciding who wins the first election and it provides a signal that informs the beliefs that candidates
running in the second election use when selecting equilibrium platforms. Pivot events are exceedingly
unlikely, but when they occur the effect of a single vote is enormous, since it determines the electoral
outcome. In contrast, vote totals always have some signaling effect on future policies, but the effect
of a single vote is always very small. We investigate whether the former, pivot, effect or the latter,

signaling, effect drives equilibrium voting behavior in large electorates.
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1 Introduction

In nearly all models of voting the payoff from casting a particular ballot hinges exclusively on pivot
events. These are events in which the election is tied or nearly tied, so that a single vote can determine
the outcome. In decision-theoretic models a voter decides whether and how to vote based on exogenous
probabilities of ties between candidates. Game theoretic models endogenize the equilibrium probability
that a vote is pivotal. And several recent influential papers focus on information that a voter can infer
from the fact that he is pivotal, and analyze electoral equilibria when voters condition on being pivotal.!
The pivot-based literature on elections is vast, but the models have two features in common: (i)
when a voter is pivotal, the action she takes has a large impact on her payoff, but (ii) pivot events are
very unlikely. The large impact is due to the fact that in a pivot event, a single vote can determine the
outcome of the election. The low probability arises from the fact that in a large election it is exceedingly
unlikely that two candidates will receive the same number of votes or differ by exactly one vote.
Although pivot based models dominate the game-theoretic literature on elections, the infrequency
of pivot events in all but the smallest elections raises a natural question: is electoral behavior driven
by more than just concerns about being pivotal? If pivot events do not actually drive the calculus of
voters then a large and growing literature on voting theory may be focused on second-order concerns.
Why would voters care about anything other than a pivot event? Consider, for example, the buildup
to the 2006 midterm election in the United State. Pundits speculated that voters’ dissatisfaction with
President Bush’s handing of the war in Iraq would cost the Republican party its majority in Congress.
While Republicans’ electoral losses may in fact have been a direct result of voters’ desire to change the
composition of the legislature, another explanation is that voters cast ballots for Democrats in order to
send Bush a message, and encourage him to change policy.
An emerging literature, based on the intuition that vote totals matter in elections that don’t end

in a tie, offers an alternative perspective to the dominant pivot-based theories of elections. Theorists

'Decision theoretic models include the work of Downs (1957), Tullock (1967), Riker and Ordeshook (1968), and Myerson
and Weber (1993). Examples of game theoretic models include Palfrey and Rosenthal (1983), Myerson (1998, 2000), Campbell
(1999), and Borgers (2004). Models involving information aggregation include Feddersen and Pesendorfer (1996, 1997, 1999),
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of elections have explored several different ways that vote totals could affect downstream electoral or
policy outcomes.

One modelling approach is a common values setup, in which voters use their votes to convey infor-
mation about the state of the world. Piketty (2000) develops a two period model of referendum voting
in which voters communicate policy information to each other as they vote. Razin (2003) analyzes a
model of mandates in which vote totals convey information to the winner of an election and thus affect
the policies she enacts. In this model, the functional form of the election winner’s response to signals
is a primitive of the game. Razin investigates limiting behavior for large electorates and characterizes
two types of equilibria. In one type of equilibrium voters’ behavior is “conventional” in the sense that a
voter whose private signal indicates that liberal policies are good tends to vote for a liberal candidate.
In any limit of these conventional equilibria, the behavior of voters converges to coin flipping.? The
other equilibria are “unconventional” since voters respond perversely to their private signals: upon ob-
serving information that favors liberal policies, a voter becomes more likely to vote for the conservative
candidate.

The equilibria of the Piketty and Razin models suggest that a desire to influence the decisiveness of
victory, and not just the identity of the winner, can remain in large elections. However, in both models
all voters have identical preferences and the effects that their votes can have on future policy outcomes
are determined directly by modelling assumptions, rather than being determined by strategic choices
made by competing political elites who observe election outcomes.

Another modelling approach is a private values setup, in which voters can use their votes to affect
future candidates’ positions, and thus policy outcomes. Each election thus serves two purposes: to
select a winner and to act as a poll about voters’ preferences. In this vein, Meirowitz and Tucker (2007)
analyze a model of alternating primary and presidential elections, in which voters use their votes to
signal dissatisfaction with an incumbent and thereby induce him to exert costly effort to make himself
more appealing in a subsequent election.

Castanheira (2003) adapts Piketty’s model to a private values setting, and uses it to analyze voting

for losers in an election with four candidates. In his model, there are four possible distributions of

2This result is Razin’s Proposition 4, part (i).



voters in the electorate, and voters may choose to vote for a candidate who is almost certain to lose
in the first election since their vote may determine which of four positions candidates will adopt in a
second period election. In Castanheira’s model, as in Piketty’s model, the signaling effect of first period
electoral behavior is based on the very low probability event that a vote is informationally pivotal, i.e.,
although there is signaling in these models, the signaling is fundamentally based on pivot events, which
are extremely unlikely to occur.

In contrast, Shotts (2006) develops a private values model of repeated elections in which each
voter’s actions, by conveying information about his preferences, always have some small effect on future
policy outcomes. Small magnitude, high probability signaling effects work quite differently from large
magnitude low probability pivot effects. However, in large elections, a single vote has a vanishingly
small effect on politicians’ beliefs about voter preferences, and Shotts does not address the question of
whether signaling motivations are actually relevant in large elections.

Moreover, a voter may find herself cross-pressured when a vote for the candidate she prefers sends
the wrong message to politicians, i.e., she may wish to vote for one candidate for signaling reasons and
a different one for pivot reasons. Because both the likelihood that she is pivotal and the effect of a
single vote on candidates’ vote shares are small it is not clear how tradeoffs between pivot and signaling
effects balance out in equilibria for large elections. Thus, although recent papers have moved beyond
pivot-based theories of voting, they do not shed light on the question of whether equilibrium behavior
in large repeated elections with private values is driven by pivot or signaling considerations.

In this paper, we analyze a private values model of repeated elections with both pivot and signaling
motivations and show that the latter dominates with a large electorate. While our paper is related to
that of Meirowitz (2005), which focuses on signaling motivations in public opinion, it is, however, closest
to that of Shotts (2006). Shotts analyzes elections with a fixed population and focuses on equilibria in
which moderates abstain, to signal that they are moderate. In contrast, we analyze a model without
the possibility of abstention and focus on limiting behavior for large electorates.

It turns out that the assumption that voters cannot abstain is not crucial for our results. Hummel
(2007) builds on the present paper and Shotts (2006) to study limiting behavior when voters can

choose to abstain. Hummel shows that although the type of equilibrium with abstention characterized



by Shotts exists for any finite population, in the limit abstention vanishes and voter behavior converges
to the behavior we characterize here. Hummel also derives a useful lower bound for the magnitude of
signaling effects in large elections.

Having discussed the relevant literature, we now summarize our contribution. The key elements
of our model are as follows. Each voter in our model has private information about his own policy
preferences, and in each of two elections he casts a ballot for one of two available alternatives. Following
the first election, two office-motivated candidates compete for a second office, by staking policy positions,
and the second election is held. Candidates in the second period base their policy positions on beliefs
about the distribution of preferences in the electorate. In equilibrium these beliefs are informed by the
vote totals in the first election, and each voter’s vote in the first period thus has a small signaling effect
on second period policy.

Our main result is that as the electorate gets large the equilibrium converges to the equilibrium of
a slightly different game in which the first period outcome is payoff irrelevant, as in the case of a first
period poll. In other words, in large elections behavior is driven by the signaling motivation and not
the pivot motivation.

This result has potentially important implications for the literature on pivot-based models of elec-
tions, since most of the interesting equilibria in such models rely heavily on the fact that a voter only
cares about events in which his vote is pivotal. In our model, in contrast, the effect of pivot events
on equilibrium voter behavior is relatively unimportant compared to the effect of signaling concerns.
At the very least, future research needs to take seriously the possibility that pivot events are not of
first-order importance when rational voters take into account the future effects of their votes.

The paper proceeds as follows. Section 2 introduces the model and in Section 3 we present two
concrete examples of how signaling and pivot effects work. Section 4 proves equilibrium existence.
Section 5 describes the intuition behind our main result, which is proved in Section 6. Section 7

discusses the result.



2 The Model

Consider an electorate with an odd number of voters n > 3. It will be convenient to use the fact that
n = 2m+ 1 for some integer m. Let the set of voters be N, and let each voter ¢« € N have an ideal point,

€ [0,1]. We assume that the ideal points are iid draws from a distribution function, F(-), which is
strictly increasing and continuously differentiable, and has a continuous density f(-) on the support
[0, 1]. Each voter’s utility over policy, z, in a given period is u;(x) = —v(|z — v;|) where v : [0,1] — Ry
is strictly increasing, convex and differentiable. Since expected utility is defined only up to positive
affine transformations we make the innocuous but convenient assumption that +'(1) = 1. The voter’s
total utility is simply the sum of his policy utility in the two periods.

In the first period election, two fixed alternatives are available. We denote the locations of the
alternatives by L, R € [0,1] (with L < R). If voters care only about the first period, or are myopic,
elimination of weakly dominated strategies yields a unique equilibrium, in which all voters to the left of
Tp = # vote L and all voters to the right of z,, vote R. We call this the pivot cutpoint. We, however,
are interested in the dependencies across elections, and thus consider a model with two periods, building
on Shotts (2006).

In the second period, two office motivated candidates select policy platforms and then the electorate
votes. The candidates are assumed to know only the distribution F(-) from which the n ideal points are
drawn, the size of the electorate, n, and the voters’ first period actions. From Calvert (1985), we know
that for a game in which two office motivated candidates believe that Fpedian (+) is the distribution of
the median voter’s ideal point, in any Nash equilibrium with weakly undominated voting the candidates
will both locate at Fn;idi an(%)3 In the two-period signaling game that we study, in any Perfect Bayesian
equilibrium, the distribution of the median depends on the first-period votes via Bayes’ Rule. At any
history in which Fj,eqiqn(-) is a distribution consistent with Bayes’ Rule following the observed first
period voting, the second period candidates both locate at the point F;L;dm"(%). While Shotts (2006)

focuses on equilibria with abstention in the first period, we restrict the set of actions available to voters

so that they must vote either L or R; this enables us to focus on a particularly simple class of equilibria,

3One such equilibrium has each voter flipping a fair coin when indifferent. Given strategies for the first period, the second

period behavior is standard, and well understood (Calvert 1985, Shotts 2006).



involving only a single cutpoint. In particular, we focus on a class of equilibria in which all voters use
the same type specific monotone voting strategy.

In such an equilibrium, first-period voting strategies are characterized by a cutpoint z. with voters
to the left (v; < x.) voting L and voters to the right (v; > x.) voting R. If voting satisfies this cutpoint,
i.e. it is monotone, then the number of votes for R, denoted # R, captures all of the publicly available
information about voter ideal points, and is a sufficient statistic for the second-period candidates’
problem of inferring the distribution of the median voter’s ideal point from first-period behavior. We
denote such a posterior distribution as Fyegian (- | #R; Zc)-

Before proceeding we provide a few comments about this function. Given that #R of n voters have
ideal points to the right of (greater than) x., the median is less than z.. if and only if #R < m = "T_l

Similarly the median is greater than x. if and only if #R > m + 1. In the former case, the median is

the (m + 1)’th lowest ideal point of the n — #R voters with ideal points less than z., i.e., the median

F(x)
F(mc)

ideal point is the (m + 1)’th order statistic from n —#R draws from the distribution H ™ (z; z.) =

with support [0, z.]. Similarly in the latter case, the median is the (m+1— (n— #R))’th order statistic

Fz)—F(z.)

from #R draws from the distribution H*(z;z.) = = (e

with support [z, 1].

As previously mentioned, Calvert’s result shows that given x.., #R, and a belief mapping Fredian (-|#R; )
sequential rationality of the candidates and weakly undominated voting by the voters implies that the
second period policy is ngdm”(% | #R;x.). In characterizing a cutpoint perfect Bayesian equilibrium
with weakly undominated second period voting strategies it is sufficient to characterize a first period
cutpoint z. € [0,1] such that if every voter other than ¢ is using the strategy with cutpoint x. it is
optimal for voter i to do so as well. Checking this condition hinges on the fact that in an equilibrium
of this form second period candidates both locate at the point Fr;c}dian(% | #R; x.).

The equilibrium cutpoint balances two effects that influence first period voting. The pivot effect
captures the incentive to vote for L if |L —v;| < |R — v;| and R if the opposite is true. The signaling
motivation captures the incentive to vote for R if, given i’s expectations about the actions of the other
voters, increasing #R is likely to move the second period policy F;;dmn(% | #R; x.) towards v;, and

to vote for L if increasing #R is likely to move the second period policy away from v;. The pivot effect

is the product of the probability that ¢ is pivotal and the payoff difference between the policy L and R.



In contrast to the pivot effect, which captures a low probability event with a non trivial payoff in that
event, the signaling motivation takes into account the fact that i’s vote will always have an effect on
the second period policy. However, the signaling effect is small for each of the possible realizations of
the votes cast by N\{i}. For some realizations of the votes by N\{i} increasing #R will be attractive
to ¢, while for other realizations of the these votes increasing # R will be unattractive to 1.

The goal of this paper is to compare high impact, low probability pivot events versus low impact,
high probability signaling effects and determine which type of effect dominates in large elections. In
particular we investigate the limiting behavior of the cutpoint z. as n tends to infinity. We find that the
limiting cutpoint corresponds to the equilibrium cutpoint in a different game in which the first period
is irrelevant (or, equivalently, L = R) so that, in the limit, the cutpoint for voter behavior is identical
to what it would be if voters were motivated purely by signaling concerns. Thus, we find that while
equilibrium voting involves a balancing of these two motivations, in a very strong sense, equilibrium
voting in large elections is driven by voters’ desire to influence the inferences of observers and not by

their desire to influence the election at hand.

3 Two Examples

Before analyzing the model, we illustrate it with two simple examples.

Example 1. We start with what is essentially a decision-theoretic version of the model, in which
there is just one voter, with ideal point v; and a linear loss function v(|z — v;|) = |z — v;|. Suppose the
exogenously-fixed first period candidate locations are L = % and R = 1. The second period candidates
believe that the single voter’s ideal point is drawn from a uniform distribution on [0,1]. Thus, if the
voter’s strategy is monotone, with cutpoint z., the second period policy will be % if ¢ votes for L and
% if ¢ votes for R. For i to be indifferent between voting L and R when her ideal point is v; = z,

the following equality must hold:
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For L = % and R = 1 this equality is solved at x. = %

Example 2. To illustrate how pivot and signaling effects work in the model, we now consider the



simplest variant where a vote has a probabilistic effect on both first and second period outcomes.
While this example cannot resolve the horse race between the signaling and pivot effects as the number
of voters gets large, all of the relevant incentives and quantities of interest are present. Consider n = 3
and assume that voters ¢ € {1,2, 3} have ideal points that are i.i.d. draws from a uniform distribution
on [0,1]. Assume that each voter has a linear loss function v(|z — v;|) = |z — v;|. The first-period
election is between two candidates, with exogenously-fixed policy positions L = % and R=1.

We first consider two benchmark cases: a pure pivot model and a pure signaling model. In a pure
pivot model there is a unique voting equilibrium in weakly undominated strategies: a voter votes for
the closer candidate, i.e., she votes for L if her ideal point is to the left of # = 0.75 and votes R if
her ideal point is to the right of 0.75. So x,, = 0.75 is the pivot cutpoint.

For a pure signaling model, all that matters is how a vote affects F,!,. (1| #R;z.) through #R.
If voters only care about the outcome of the second period election then in the three voter example
there is a unique equilibrium, specified by the signaling cutpoint, x5 = 1/2.

To check that this cutpoint is an equilibrium in the game in which only the second period outcome
affects voter payoffs, we confirm that a voter with v; = 1/2 is indifferent between voting L and R,
given the other actors’ strategies. Focusing on voter ¢ = 1, assume that the other voters are using
this cutpoint strategy. The signaling effect of i’s first-period vote thus depends on the other voters’

first-period actions:

e With probability F (z;)-F (z,) = 34 = 0.25 the other two voters vote L. In this case the second-
period policy outcome will be 0.25, if 4 votes L. This is true because the second-period candidates’
posterior belief given #R = 0 and x5 = 1/2 is that all three voters’ ideal points are uniform draws
from [0, 0.5]. If i votes R the second-period policy outcome will be F/,'1 . (1]1;1/2) = 0.35, since
there is a 50% chance that both of the L voters, and hence the median, will be to the left of 0.35.

Thus, the signaling effect of voting R if both other voters vote L is to move the second-period

policy outcome from 0.25 to 0.35.

e With probability F (z4)- (1 — F (zs)) + (1 — F (z)) - F (z5) =2- L -1 = 0.5 the other two voters

22
split their votes. In this case if ¢ votes L the second-period policy outcome will be 0.35 and if she

votes R the policy outcome will be 0.65.



e With probability (1 —F (z5)) (1 —F (z,)) = 3 - + = 0.25 the other two voters vote R. In this case
if 7 votes L the second-period policy outcome will be 0.65 and if ¢ votes R the policy outcome will

be 0.75.

Thus, if a voter with ideal point v; votes L her expected second-period utility is —0.25 - |v; — 0.25| —
0.5 - |[v; —0.35] — 0.25 - |v; — 0.65|. If she votes R her expected utility is —0.25 - |v; — 0.35| — 0.5 -
|v; — 0.65] — 0.25 - |[v; — 0.75]. A voter at v; = x5 = 1/2 is indifferent between voting L and voting R.
It is straightforward to confirm that any voter left of 1/2 strictly prefers to vote L and a voter to the
right prefers to vote R.

It is worth noting three features of signaling effects that will show up in our later analysis of large
elections. First, which action, L or R, better promotes the voter’s policy interests in the second period
depends on the other voters’ actions, as well as the cutpoint z,. For a voter with v; = 1/2, if the other
two voters vote L then voting R is optimal, whereas if the others vote R then voting L is optimal, and
if the others split their votes then the voter is indifferent. Second, the different signaling effects are
not equally likely to occur, but rather occur with different probabilities. Third, since the other voters’
actions are simply draws from a binomial, in a large election, the most likely realized vote totals are
those where L receives a share close to F (zs) of the votes and R receives a share close to 1 — F' (z)
of the votes. All three of these properties of signaling effects hold regardless of the cutpoint for voter
behavior in the first period.

In a model with both pivot and signaling effects, equilibrium behavior hinges on the combined
cutpoint x.. As shown in Figure 1, in the three-voter example, z. ~ 0.65.* For this x. the pivot
probability is 2-0.65 - (1 — 0.65) = 0.455. For a voter with v; = x, the utility difference between the two
possible first-period policy outcomes, L and R, is — |v; — L]+ |v; — R| = — [0.65 — 3| +]0.65 — 1| = 0.2.

So @ receives, in expectation, 0.2 - 0.455 ~ 0.09 more first-period utility by voting L than by voting R.
[Insert Figure 1 about here]

The second-period signaling effect is a bit more complicated to compute:

41t is just coincidence that this value for . is the same, to two decimal places, as the second period policy outcome under

one of the action profiles in the pure signaling model. For the general model, they need not be the same.



e With probability F (x.) - F (z.) = 0.65 - 0.65 = 0.4225 the other two voters vote L. In this case
the second-period policy outcome will be 0.325 if ¢ votes L. If ¢ votes R the second-period policy

outcome will be 0.463.

e With probability F'(z.) - (1 — F(x.)) + (1 — F(z.)) - F(z.) = 2-0.65- (1 —0.65) = 0.455 the
other two voters split their votes. In this case if ¢ votes L the second-period policy outcome will

be 0.463 and if ¢ votes R the policy outcome will be 0.756.

e With probability (1 — F (z.))- (1 — F (z.)) = (1 —0.65) - (1 — 0.65) = 0.1225 the other two voters
vote R. In this case if ¢ votes L the second-period policy outcome will be 0.756 and if ¢ votes R

the policy outcome will be 0.825.

Thus, if a voter with ideal point v; votes L his expected second-period utility is —0.4225-|v; — 0.325|—
0.455 - |v; — 0.463| —0.1225 - |v; — 0.756| , which equals —0.24 for v; = 0.65. And if 7 votes R his expected
utility is —0.4225-|v; — 0.463| —0.455- |v; — 0.756] —0.1225-|v; — 0.825| , which equals —0.15 for v; = 0.65.
The difference is equal to 0.09, and for v; = x. it exactly counteracts the first-period utility gain that
the voter receives by voting L rather than R. Thus at z. the pivot and signaling effects cancel each
other out and the voter is indifferent.

This example illustrates the basic tension between pivot and signaling effects in our model. In this
three voter example, the equilibrium cutpoint is x. =~ 0.65, which lies between the signaling cutpoint,
zp = 0.5, and the pivot cutpoint, x5 = 0.75. The question is how a sequence of equilibrium cutpoints
{zm} will behave in the limit as the population size n = 2m + 1 gets large.

The difficulty in answering this question is that in large elections both the pivot effect and the
signaling effect become small; the probability of a pivot event goes to zero and the distance that
second-period candidates move in response to a single vote also goes to zero. The question is which

converges faster.

4 Preliminary Results

In this section we establish two lemmas that are useful in establishing existence of a particular type

of equilibrium for any n as well as in proving the main result about the limiting behavior of this type
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of equilibrium. We then present the existence result. Our analysis focuses on a particular class of

equilibria.

Definition 1 (Symmetric Cutpoint Strategy) Voters use a symmetric cutpoint strategy if there
exists a point x. € [0,1] such that for alli € N
(1) if . =0 then i votes L if v; = 0, and i votes R if v; > 0

(2) if . € (0,1], then i votes L if v; < xc, and votes R if v; > ..

Given that all other voters use a symmetric cutpoint strategy with cutpoint x., optimal behavior
for a voter with ideal point v; depends on the difference in her expected utility between voting R and
voting L in the first period. Using a} € {L, R} to denote voter i’s first period action, we can express

this difference as
ugis (vi) = u(a; = Rlv;) —u(a;j = Llv;) = ugip1 (vi) + uaifa (vi) (1)

where
wigs ) = () Pleo™ (1= Ple)™ (1L = i) = 2 (1R - ) ®)
and

= m median k7x0 )
waigz (Vi) = Y (Qk > (F(z.)*™ % (1 = F(z.)" M Frscaian (31K 2) = i NG

k=0 - | medzan( |k + 1’x6) - ’U’L‘)

Thus ug; 1 (v;) captures the first period effect of voting: the pivot probability is (*™) (F(z.))™ (1 — F(z.))™
and the utility difference between the two candidates is y(|L — v;]) — v(|R — v;]) for a voter with ideal
point v;. Likewise, ug;f2 (v;) captures the second period effect: the probability that k other voters vote

Ris (37 (F(2:))>™ % (1 = F(z.))" and the utility difference between voting R versus L in this event
is V(| Foegian (3 | K3 2e) = vi]) = V(| Frlgian (3 |k + Lize) — vg)).

Remark 1: Deriving Feqian(y|#R; x.) for z. € (0,1)

To understand wg;r2 (v;) it is important to see how Fyeqian(y|#R; z.) depends on #R and

.. This function can be characterized in terms of order statistics. We note that for fixed

€ (0,1), the distribution of the median is constructed as follows. Given that there are

n — #R draws with values strictly less than x, and #R draws with values greater than or
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equal to x. we know that the median is less than . if #R is strictly less than m 41 and it is

greater than x. otherwise. If #R < m+1, the median is the m+1 largest of n—# R draws from

the conditional (on y < ) distribution H~ (y;z.) = max{0, min{1, & }} Accordingly

F(z )
if #R < m + 1, Fredian(Y|#R; 2.) = H;H,nf#R (y; x.), which is the distribution of the
(m 4+ 1)’th order statistic from n — #R draws from the distribution function H ™ (-;z.).
Similarly if #R > m+1, the median is the (m+1—(n—#R))’th order statistic from #R draws
from the conditional (on y > z.) distribution H*(y;z.) = max{0, min{1, ZW-FE)11 g,

T1-F(z.)

if #R > m + 1 then Fpegian(y|#R; ) = H::L which is the distribution

—n—#r)ar Y3 Te),
of the (m + 1 — (n — #R))’th order statistic from #R draws from the distribution function
HY(;z.).1

Remark 2: Deriving Fredian (y|#R; x.) for z. € {0,1}

Now consider extremal cutpoints, z. € {0,1}. If . = 0 then according to Definition 1,
all voters with ideal points in (0,1] vote R and voters with ideal point v; = 0 vote L.
Accordingly, if #R < m + 1 then the median voter’s ideal point is 0 with probability 1
and Frnedian (y|#R;0) is constant at 1 for all y € [0,1]. In this case, we define F),!,. (1|
#R;0) = 0 and it is clear that equilibrium second period candidate locations are at 0. If
#R > m+ 1 then the median is the (m + 1 — (n — #R))’th order statistic from #R draws
from F(-). This distribution corresponds to H' (y;z.) = %g}go) with support [0,1]. If
z. = 1 then according to Definition 1, all voters with ideal point 1 vote R and all voters
with ideal points v; € [0,1) vote L. Accordingly, if #R > m + 1 then the median voter’s
ideal point is at 1 with probability 1 and Fiedian(y|#R; 1) is constant at 0 for all y € [0,1)
and equal to 1 at y = 1. In this case we define Fr;edzan(2 | #R;1) = 1. f #R < m+ 1 then
the median is the (m + 1)’th order statistic from n — #R draws from F(-). This distribution

corresponds to H™ (y; z.) = % on [0,z.].0

One way to see how the distribution function Fiegian(¢];-) behaves as the arguments #R and x.
change is to consider the case of the uniform, F(y) = y on [0, 1]. Figure 2 plots the function H~ (y; z.)
for x. € {0,0.65,1}. Figure 3 plots H,_ ., . ,p (y;7.) for n =11,m =5 and #R € {2,3}. This figure

shows how increasing # R shifts the second period candidates’ beliefs about the location of the median
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to the right, thereby causing F, .. (3 | #R;z.) to increase.

median

[Insert Figures 2 and 3 about here]

Combining Remarks 1 and 2, we can express the second period policy location as a function of x.

and #R when voters use a symmetric cutpoint strategy.

Oifz. =0and #R<m +1

lifz,=1and #R>m+1
X(ze, #R) =
v H, 1 ur Wize) = 1Vifz. € (0,1] and #R <m + 1

{y: H:1+17(n7#R)7#R (y;zc) = 3} if 2. € [0,1) and #R > m + 1.
The first lemma builds on this derivation to establish properties of the distribution of the median and

the above mapping

Lemma 1 (Properties of Second Period Policy Outcomes) If voters use a symmetric cutpoint
strategy with cutpoint x. then

(1) For each #R < m+1 and y € [0,1], Fiedian (y|#R; x.) is weakly decreasing in x. for x. € [0,y)
and strictly decreasing for x. € [y,1] and for each #R > m + 1 and y € (0,1), Fiedian(Y|#R; Tc) i
weakly decreasing in . for x. € (y,1] and strictly decreasing in x. € [0,y] .

(2) If #R1 < #Rs (both in 0,1,2,...,n) then for each z. € (0,1), for some set A,, C [0,1] with
positive lebesgue measure Frnedian (Y|#R1;2c) > Fiedian (Y|[#Ro; xc) if y € Ay, and Fregion (y|#R1; )
> Fiedian(Y|#R2; xc) for all y € [0,1]. For z. € {0,1}, Fiedian(Y|#R1;2c) > Fmedian(Y|#R2; xc) for
all y €10,1].

(3) For any #R € {0,1,2,....n — 1} and z. € [0,1], F,, L. (L | #Ryz.) < Flyion (5 | #R+1;30).

(4) Fredian(Y|#R; ) is continuous in x. on (0,1) for each #R € {0,...,n} and y € [0,1] as well
as continuous in y on [0,1] for each #R € {0,...,n} and z. € (0,1).

(5) The mapping x(x., #R) is a function from [0,1] x {1,2....,n} into [0,1] and it is continuous in

Te.

Proof:
(1) Assume #R < m + 1. From our derivation of F,egian(y|#R; z.) in Remark 1 this distribution

takes on the value 1 if y > x. and H;z,+1 — (y; z.) otherwise. Thus the conclusion that it is weakly
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decreasing for z. € [y, 1] is immediate. Consider z. < .. Since

=
=
&

A
H™ (y;2.) < H (y; ) for all x < z. and thus the former first order stochastically dominates the latter
on [0,z.]. This ordering of H (y;x.) and H (y;z.) implies that the distributions of order statistics,
Ho 1 yp (ize)and Hy 45 (y;2c) are also ordered by first order stochastic dominance (see for

example Theorem 4.4.1 of David and Nagaraja, p. 75). An analogous argument holds in the case of

and H'

. . +
#R > m + 1, establishing that H mt1—(n—

—(n—#R) %R Y5 xl) 4R) 4R (y; x.) are ordered by
first order dominance.

(2) To establish strict monotonicity in #R, consider two integers, #R; and #Rs, with 0 < #R; <
#Ry < n. If #R1 < m + 1 < #Rs then the support of Ficdgian(-|#R1;2z:) is [0,z.] and the
support of Fiedian(:|#Re;x.) i [z, 1]. Since the distribution F(-) is strictly increasing on [0, 1],
Fredian(y|#R1;2.) > 0 for all y € (0,z.) while Foedian(y|#R1;2.) = 1 for all y > x.. Simi-
larly, Fredian(Y|#R2;x.) = 0 for all y < z. and Fredian(Y|[#R2;2.) < 1 for y € (z,1). Thus,
Fredian (Y|#R2; ) < Fredian(y|#R1; @), with a strict inequality for any y ¢ {0,1}.

Suppose instead that # R < # Ry < m+1. The relevant comparison is now between H_ — (y; xc)

and H

m+1,n—#Rs (y; ). To see that these two distributions are ordered by first order stochastic dom-

inance, we can partition n — #R; draws from F(-) into two sets: first n — #Ry draws are taken
and then another #Ry; — #R; are taken. Because F(-) is strictly increasing on [0, 1], the probabil-
ity that one of the #Ry — #R; draws is less than the m + 1 highest draw of the first #Ry — #R;
draws is strictly positive, and thus H, ., ,p (yize) < H_ 1, 4g (y;2) for y on [0,2]. This
implies that Fiedian(Y|#R2;2e) < Fredian(y|#R1; ) with a strict inequality if y € A, = [0,z.) if
#Ry < #Ry <m+ 1. A similar argument holds for A, = (z.,1] and m+ 1 < #R; < #Ra.

The result for z. € {0,1} follows from Remark 2.

(3) Follows immediately from (2).

(4) Continuity of Finedian(y|#R; z.) in z. on (0,1) for each #R € {0,...,n} and y € [0, 1] as well as
continuity in y on [0, 1] for each #R € {0, ...,n} and z. € (0,1) follows from the assumption that F(-) is
strictly increasing and continuously differentiable and the fact that the distribution of an order statistic

from a differentiable distribution function has a density. In particular, for #R < m + 1 the distribu-
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tion Fonedian (Y|#R; ) has density Ponsin— 4R (y;2c) =k [6% (5(%3))} ﬁ(;’c))a(l — ;((ch)))b for integers

k,a,b. For #R > m + 1, the distribution Fyedian(y|#R; ) has density h;”nﬂ_(n_#R)’#R (y;ze) =

K [8% (F(ly_);fi(:;))} (F(ly_);g(3°))a (1—- (7“174_);{;(3“)))1’/ for some k', a’,b’. Since we have assumed that

F(-) has a continuous density, for fixed #R, as long as z. € (0,1) the above densities are well defined
and thus the distribution functions are continuous.

(5) To show that x(z., #R) is defined on its domain we must show that {y : H, , , ,p (y;2c) = 1}
is non-empty if z. € (0,1] and #R < m+1 and that {y : H$+17(n7#3),#R (y;xc) = 3} is non-empty if
z. € [0,1) and #R > m+1. In the first case, consider z. € (0,1] and #R < m+1. From the proof of part
4 of this lemma we see that H, tln—#R (y; z.) has a continuous density function that is strictly positive
as long as y < .. So the function H;+17n7#R (y; x.) is continuous and strictly increasing in y on [0, 2]
with 0= H, ., 4p (0i2:) < i< H . ur (Tcze) = 1. This means that the set S~ (x., #R) =
{yel0,1]: H ,y, 4r (y:2c) € (0,1)} is non-empty for z. € (0,1] and #R < m + 1. Moreover, by
the intermediate value theorem this means that the set {y : H ., Lp (y;7c) = 1} is non-empty if
z. € (0,1] and #R < m+1. An analogous argument establishes that {y : H$+1_(n_#R)7#R (y;2.) = %}
is non-empty if z. € [0,1) and #R > m + 1. To show that x(z.,#R) is a function it is sufficient to
note that Foeqian(-|#R; 2.) has the property that for each value of 2. and #R there are 2 numbers,
a1,az € [0,1] such that Fpedqion(-|#R;2.) is constant at 0 on [0,a1], Fedian(:|#R; ) is strictly
increasing on [a1,as] and Fiedian(-|#R; ) is constant at 1 on [ag,1]. This means that the equation
Fredian(|#R; x:) = § has at most one solution (and it is in [a1, as]).

To establish continuity we consider two cases. First assume that #R < m + 1. By part 4 of this

lemma, for a fixed y, H,

mi1n—#r (Y Tc) is continuous in z. on (0, 1) and thus this and the fact that it is

strictly increasing (and has a density) in y on a neighborhood of the point {y : H_ ., , 4x (y;2c) = 1}
implies by way of the implicit function theorem that the solution x(z.,#R) is continuous in z. if
z. € (0,1) and #R < m+ 1. Continuity at z. = 0 follows from the fact x(z., #R) < z. if #R <m +1
and thus lim, o x(ze, #R) = 0 and x(0,#R) = 0. Continuity at 2. = 1 follows from the fact that
H, 1, 4gr (y;1) is defined and for each y, H, ., , ,p (y;2.) is continuous in x. at 1. An analogous

argument about H:1+17(n7#3) 4R (y; z.) establishes continuity in the case of #R > m + 1.1
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The next result establishes some properties of the utility difference function in Equation 1. Since

this result simply uses conclusions from Lemma 1 in standard ways the proof is in the appendix.

Lemma 2 (Properties of Utility Difference Function) If voters use a symmetric cutpoint strat-
eqy with cutpoint x. then

(1) ugif (v;) is continuous and weakly increasing in v;.

(2) (Lipschitz property) Yu;,0; € [0,1], |wair (9;) — vaif (0;)] < 4 |0; — 4] .

(8) uair (0) <0 and ugr (1) > 0.

We can now state our first main result. The proof, which applies a standard fixed point argument

to the function wug;y (-), is in the appendix.

Proposition 1 There exists an equilibrium in which voters use a symmetric cutpoint strateqy in the

first period.

5 Intuition for the Convergence Result

Having established existence, we now turn to the question of equilibrium behavior in large electorates,
i.e., as m — oo. We suppress the ¢ subscript and let z,, denote the cutpoint in a symmetric cutpoint
strategy equilibrium with n = 2m + 1 voters. Our interest is then in lim,, . ., (if it exists). We
show that this limit is equal to the point F _1(%). Since this limit does not depend on the first period
candidate locations L and R, it is also the limit of cutpoints for equilibria in the pure signaling game.

The proof proceeds by contradiction. We show that if a sequence of cutpoints does not converge to
F _1(%) then these cutpoints cannot be equilibrium cutpoints for infinitely many values of m because
voters at the cutpoint x,,, who must be indifferent in equilibrium, will strictly prefer to vote for one
candidate over the other. To be more precise, we show that if any subsequence of equilibrium cutpoints
converges to a point other than F' _1(%) then for m sufficiently large a voter with ideal point x,,
will strictly prefer to vote for one candidate over the other. Once it is established that no subsequence
converges to a point other than F—* (%) it follows that every subsequence, and thus the actual sequence,
converges to F'~! (%) This brief section serves as a roadmap for the proof, presenting an informal version

of the argument. The next section contains a proof of the main result.
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Suppose that in a large electorate voters behave according to a cutpoint x,, which is converging to
a number Z > F _1(%). We show that for large values of m a voter at x,,, will strictly prefer to vote R.
There are three types of effects that the voter must consider.

The first consideration is a pivot effect, which we label PV. Since the election is not expected to be a
tie, i.e., T, # F‘l(%), and the population size is large, the probability of this pivot event is exceedingly
small in a large electorate.

The second consideration involves bad signaling effects from voting R; whenever more than half of
the other voters vote R, the second period policy will be to the right of x,,, so if a voter with v; = x,
votes R this will move second period policy to the right, i.e., away from his ideal point, as established
in part 3 of Lemma 1. However, because x,, > F_l(%)7 more than half of the votes are expected to go
to L, and thus in a large electorate bad signaling effects are extremely unlikely to occur. We find an
upper bound on the probability-weighted sum of these bad signaling effects, and label it UBBS (upper
bound for bad signaling ).

The third consideration involves good signaling effects from voting R; whenever more than half of
the other voters vote L, the second period policy will be to the left of z,,, so if a voter with v; = x,,, votes
R this will move second period policy to the right, i.e., towards his ideal point. Since x,, > F‘l(%)7
more than half of the votes are expected to go to L, and thus in a large electorate it is extremely likely
that the signaling effect of voting R will be good. We find a lower bound on the probability-weighted
sum of these good signaling effects, and label it LBGS (lower bound for good signaling ).

We consider the ratio of bad signaling plus pivot effects to good signaling effects, and show that this

ratio
PV +UBBS
LBGS

can be expressed as a limit of the form

. Ptie+(m+1)Ptie
lim .
m— o0 CP

(4)

In this expression, Py, = (%:?)F(:ym)m (1 — F(x,,))™ is the probability of an exact tie among the other
2m voters given the cutpoint x,,. In the denominator, P is the probability of a certain type of good

signaling effect, and P goes to zero much more slowly than Pj;.. The ¢ in the denominator is a constant

that does not depend on m. At the end of the proof we show that Equation 4 is bounded by an
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expression of the form (m + 2) q(%fcl)Qm with constants ¢ € (0,1), and ¢; € (0,1/2). Thus the limit of
Equation 4 is 0, which means that for a voter with ideal point x,, (and voters with ideal points close

enough to x,,) it will be optimal to deviate and vote R.

6 The Convergence Result

Our main result is
Proposition 2 lim, . zn, = F71(3).

Proof: Assume by way of a contradiction that the cutpoints do not converge to the point M =
F‘l(%). Because z,,, € [0,1], ¥m, the Bolzano-Weierstrass Theorem implies that there exists some
number Z € [0,1] with Z # M such that a subsequence {z,, } — Z. We focus on such a subsequence,
ignoring the residual portion of the original sequence. Thus the assumption that Proposition 2 is false
equates to the claim that {x,,} — Z. Either Z < M or Z > M and in the remainder of the proof we
focus on the latter case; the argument for the former case is virtually identical and is thus omitted.

Our goal is to show that there exists a m such that if m > m then a voter with ideal point z,, has
a strict preference to vote for R. Once this claim is established, the continuity of the utility functions
established in Lemma 2 implies that for m > m there exists a d,, > 0 such that if v; € (€, —0pm, Tm+dm)
a voter with ideal point v; prefers to vote for R when everyone else uses the cutpoint x,,. Thus for
some voters to the left of x,, voting L is not a best response, contradicting the hypothesis that z,, is
an equilibrium cutpoint when the population size is 2m + 1. This contradiction means that we cannot
have a subsequence of cutpoints converging to any Z # M and thus the sequence of cutpoints converges
to M.

For each m, consider a voter, i, with ideal point x,,. Given that voters to the left of z,,, vote L and

voters to the right of z,, vote R, the probability of any individual voting R is
Pm =1— F(zp).
Since ,, > F~*(1/2) we know that p,, < 3.
We start by analyzing the utility function of a voter with ideal point x,,. If exactly m voters other

than i vote R then the election is tied, and i’s vote is pivotal in determining the first period policy.
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However, in terms of first period motivations, which depend on the candidate locations L and R, it is
not clear whether ¢ prefers to vote L or vote R in the event that he is pivotal. In terms of second period
motivations, which depend on candidate locations given # R, it is also unclear whether i prefers to vote
L or vote R in the event that he is pivotal.

In contrast, the voter’s preferences are clear for events in which he is not pivotal. If m — 1 or fewer
of the other voters vote for R the second period policy will be to the left of z,, regardless of i’s vote
and if at least m + 1 of the other voters vote for R then the second period policy will be to the right of
X regardless of ¢’s vote (as established in Remark 1). These facts and the monotonicity of the second
period policy in #R (part 3 of Lemma 1) imply that if m — 1 or fewer of the other voters vote for R
then a vote for R moves the second period policy closer to i’s ideal point. On the other hand, if at least
m + 1 of the other voters vote for R, then a vote for R moves the second period away from ¢’s ideal
point. Note that in either of these cases, i’s vote cannot move policy far enough to leapfrog her ideal
point, x,, (see Remark 1).

Following Equations 1, 2, and 3, given the conjectured equilibrium for population size n = 2m + 1,
the utility difference between voting R versus voting L for a voter with ideal point v; = x,, in the

equilibrium with population size 2m + 1 is
Ug;f (Tm) = ug}fl (zm) + quQ (zm)

which we re-write as

m 2m m m
ugiy (Tm) = ( m ) (1= pm)" pm"™ (VL = zn]) — (IR — zm])) )
= /2m 1 .
2m—k _ B
! kzzo ( k ) (= om) P’ (7( Frncian <2|k;xm> - mm‘) - ’y(‘Fmidian <2|k + l;mm> - xm‘)>
2m m m —1 1 . _ _ 1 1 . -
+<m) (1 _pm) bm (’y( Fm.edian <2m,$m> .’L‘m‘) ’Y('Fmedian <2|m+ 17$m> .’L‘m’)>
o 2m 1 .
+ Z < k > (1 —pm)2m_kpmk ('Y(‘Fmidian <2k7$m) - -Tm‘) - ’Y(‘Fmidian <2|]€ + 17xm> — xm’)) .
k=m+1

The first line of Equation 5 is the pivot effect. The second line represents good signaling effects of
voting R when m — 1 or fewer other voters vote R. The third line represents the indeterminate signaling
effect when the 2m other voters split their votes equally between L and R. The fourth line represents

bad signaling effects, when m + 1 or more other voters vote R.
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Our ultimate goal is to show that there exists an 7 such that for m > m, ug; (x,,) > 0. To simplify
the expression in Equation 5, we first simplify each component of the utility function, by finding bounds
that limit how severe the bad effects of voting R can be, along with a lower bound on good effects of
voting R.

Pivot effect. The pivot effect can be either positive or negative, depending on the positions of the two
first-period candidates. A bound based on the fact that L, R, and z,, are all in the interval [0, 1], will

be sufficient:

2m m. m 2m m_m 2m m_m
() = ) G = ) =218 = ) > = (%) (= ) 5 1) = = (2] (1= ) ™
(6)
Recall that we have normalized utility so that 4/(1) = 1 and we have assumed that this function is
convex, allowing us to treat the maximal possible utility difference between L and R as 1.
Bad and indeterminate signaling effects. For any k € {1,..,n—1}, F. ', (%|k;,,) € (0,1) and

F_l (%'k + 1;xm> € (Oa 1)7 S0

median

2m
2m — _ 1
Z ( k ) (]' _pm)2 kpmk (7( Fmidian <2|]€,$m) - i.m‘) - ’7(
k=m-+1
om - - 1 - 1
() @ o ™ (o Pt (311520 ) = 2) = 3o (14 50 ) =
m 2 2
2m

=3 () e b = = 3 () @

k=m k=m

)

1
F7;idian <2|k + 1; xm) — Tm

)

We will use repeatedly the fact that the binomial expansion is monotonic. In particular, since p,, < 1/2,
for any k € {m+1,...,2m}, (2,17:) (1- pm)Qm_kpmk < (Qm) (1 *pm)mpmm- As a consequence of this

m

fact, the total of the bad and indeterminate signaling effects must be strictly greater than

=t ) () () )

Good signaling effects. We now develop a lower bound on good signaling effects. Fix any points A
and B in the unit interval such that M < A < B < Z. For any m, let A,, represent the largest number
less than A such that for some integer a,, < 2m + 1 it is the case that A,, = F ! (%|am;xm).

median

Likewise, let B, represent the largest number less than B such that for some integer b,, < 2m + 1

median

it is the case that B, = F_! (%\bm;x,,,,,) . For the b,, identified in the definition of B,, let C,, =

—1 1 .
Fmedian (§|bm +1; (L’m) .
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For m sufficiently large it turns out that M < A,, < B,, < B < C,, < Z, and since we are
interested in the limit as m — oo we henceforth focus on values of m that are large enough for this
inequality to hold. Since A,, < B,, < B < Z are true by construction, establishing that these
inequalities eventually hold requires only that we show that (i) M < A,,, (ii) B < C,, < Z and (iii)
Ay, < By, for m large enough. Each of these results follows from the fact that for any ¢ € (0,1) the
sequence |F7;eldian (Alem+ g+ Liay) — F b (31(2m +1)g; Tm )| converges to 0. To see this note

that in the first instance this fact allows us to conclude that if A,, < M infinitely often then it is

1
edian

not the case that for every m, A < F,, (3|am + 1;2,,) , which contradicts the definition of A,
(and ap,). In the second instance, if Z < Cy, infinitely often then this fact means that we must have
B < B, for infinitely many values of m (contradicting the definition of B,,) and if C,, < B infinitely
often then this fact means that for infinitely many values of m, B,, < C,, < B, contradicting the
definition of B,,. In the third instance the fact that A < B implies that if A,, = B,, then A,, > A or
F’r;;dian (%|bm +1; a?m) < B for infinitely many m (contradicting the definition of A,, or By,).

For fixed m the set of profiles for other voters that, given i’s vote, can result in a policy be-
tween A,, and C,, consists of profiles for which the number of other voters that vote R is in the set

{amyam + 1, ....;by — 1, b, }. Although we cannot analytically solve for the policy distance between

ot (ks z) and L (k4 15 3,,) for particular values of k, we do know that

median median
b"'L 1 1
Z <F’r;eldian <2k + 1,$m> - F’r;eldian <2|k,$m>> =Cn—An>B-A
k=am

Since we have A,, < B,, < B < C,, the last inequality above is due to the fact that A4, < A < B. We

re-write the good signaling effects term from Equation 5 as

m—1
2m m—k _ 1
< k > (1 *pm)2 kpmk (7( FnLeldian (2|k,l’m> —Tm )77(
0

_ 1
Fmeldian <2|k +1 mm) - xm‘))

>
Il

[
Q
3
|
A
VS
[N}
3
N———
—
-
|
i)
3
—
3
x>
=
3
=
VRS
=

_ 1 B 1

Fm;dian <2|k7 xm) - xm‘) - 7<’Fm;dian <2|k + 1a mm) — Tm ))
. 1 B . |

Fedian §|k§$m —Tm ECiian §|k + Lz, | —xml|)

m—1
2m — _ 1 _ 1
+ ( k ) (1 _pﬂ”L)2 kpmk (’Y(’Fm;dian <2|k7$m) - .Z'm‘) - 7(’Fm;dian <2|k + 1,.’13m> - xm’)) .
k=bm,+1

) —

21



Because B < Z and v(+) is convex the slope of the utility difference to ¢ with v; > # for points in

[0, B] is at least v := v'(Z52). Since y(-) is strictly increasing 7'(252) > 0. Because ,, is assumed

. Thus, the good signaling effects term is eventually

to converge to Z, for m sufficiently large v; > #

greater than

o (2m 1
o 2m—k k —1 ) . . o
Z < k ) (]‘ pm) Dm ('Fmedzan (2|k,£€m> :L'm‘

k=am

1
-1 .
Fmedian (2|k + 1,$m> - xm‘) 7

Since M < A,, < C,, and p,, < 1/2, we know from monotonicity of the binomial expansion that the
event in which b, others vote for R is the least likely of the set of profiles of the 2m other voters in

which #’s vote can result in a policy in the interval [A,,, Cy,]. Thus the above expression is greater than

b
2m m—b,, - _ 1 _ 1
<bm> (1 _pm)2 pfﬁn E : <‘Fmeldian <2|k,{L'm> - mm‘ - ‘Fmidian <2|k + 1;£L'm> — Tm )Py' (8)

k=am
Note that because Vk € {am,am + 1,...,bm}, F’r;eldian (%|k;, a:m) < F1 (%Uﬂ +1; SUm) < T,

median
b
= 1
Z (‘Frzeldian (2|]€,.’Em> —Tm

1
- ‘Fr;idian <2k + 17$m> - xm‘)
k=am

1 1

1 -1

= Fmedian <2|b’m + 17 an) - Fmedian <2|a7n; x'm)
= Cn—A4n

> B- A

Thus, we can rewrite Equation 8 to get the following lower bound for good signaling effects:

2m

18- A) () (1= o)l )

Having derived bounds on pivot effects, bad signaling effects, and good signaling effects (Equations 6,
7, and 9, respectively) we now substitute these bounds into the utility difference expression in Equation

5 to get
2m m m 2m m_ m 2m mM—bu,
ugf (xm) > _<m) (l_pm) Pm _(m+1) <m> (1_pm) Pm +Z(B_A) (b ) (l—pm)2 b pl;,rl”.

To show that there exists an m, such that for m > m, ug}f (Zm) > 0, it is sufficient to show that

lim (2::) (1- pm)mpmm + (m +1) (2;7) (1 *pm)mpmm

— =0.
meee Z(B —4) (i:) (1- pm)Q nbm pi)ﬁ”
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Combining terms in the numerator, and noting that v (B — A) is strictly greater than zero and unaf-

)Y A—pm) " pm ™

T ) (1—pn )2 m plm

fected by m, it is sufficient to show that lim,, o, (m + 2) ( = 0. For convenience,

Co)=pm)" o™ Rearranging yields
(2m)(1_pm)2m7bmpl:nm . gmg y

bm

define ¥, = (m + 2)

D m—bm, (Qm)
v, = m+2 (m) Am/
ANy BN
m—b, 2m/!
= (m+2) (1 - ) —
Pm b l2m—b,)!
m—b
Dm ™ b !(2m — byy,)!
= 2 _— _—_—
(m + )(1pm> m!m!
m— m—by, -
Pm b 2 @m—=bp —j+1)
= (m + 2) 1 m—b .
—Pm szl m(m—j+1)

Taking the largest of the m — b,,, terms on the top of the product and the smallest of the m — b, terms

on the bottom we see that

e () RS e (5 (R o

To find lim,,,—,~ ¥,, we establish results about the terms (%) <2{,an) and the exponent m — b,,.

Two intermediate limiting results will be established. The first is the fact that B,, — B € (M, Z).

The second, which builds on the first, is that lim,, . 22 € (0, 1].

Recall that B, is the largest number less than B such that for some integer b,, < 2m + 1
it is the case that B, = Fn;;dian (%\bm;xm). We now claim that B,, — B. To see this note
that if for some ¢ > 0, |F, ! (L|b,;2,) — B| > ¢ infinitely often we obtain the following con-

tradiction. Since max,e(o,1] [Fmedian (Z[0m; Tm) — Fmedian (¢|bm + 1;2,,)] — 0 there is some m’ s.t.

< ¢ and thus F! (%|bm/ + 1;xm1) < B, contra-

median

|Fn;eldian (%'bm"xm') - Fr;i:dian (%|bm' + 1,.’1’5m/)

1
edian

dicting the definition of B,,,. We have, thus, shown that B, = F (31bm; zm) is converging to B,

which is in (M, Z). This implies that b,, must also have a limit.

We use this fact to establish eventual bounds on the ratio ;’ﬁ Suppose now that }2’—% converges to a

1

1 . =
cgian (31bm; ) > 2y, and since we

number greater than 1. By Remark 1, b,, > m+ 1 implies that F,
have assumed that z,, — Z, and we have Fr?Lidian (%|bm; mm) — B we must have B > Z contradicting

the definition of B (that B < Z). Also it is clear that b,, — 0 is not possible since B > 0 and B,, — B.

Thus ¢; := lim 2= € (0, 4].

2m

23



We now work on the limit of the terms in brackets from equation 10, using the fact that lim,;, —co pm =

1 — F(Z) and lim, oo 22 = ¢y,

bm,

: Pm 2m — bm . . DPm —zn
lim = lim

m—oo \ 1 — pp, by +1 m—oo \ 1 — pp, 1)757/,;";1

1-F(Z) 1-¢
F(Z) C1 ’

(11)

1-F(2)
F(z)

that ¢; > 1 — F(Z). We show that if ¢; <1 — F(Z) then B < M.

We wish to show that

71:1 € (0,1), and because max{1l — F (Z),c1} < % it suffices to show

First, from Theorem 2.5 in David and Nagaraja (2003, p. 17) the distribution of the (m + 1)’th ideal
point (i.e. the median) from 2m + 1 (i.e. n) draws from F(-) conditional on the fact that b,, <m +1
realized ideal points are greater than x,, is just the distribution of the (m + 1)’th draw from 2m+1—b,,

F()
F(xm)

draws from the distribution on [0, z,,], which we denote as X,,+1,2m+1—b

m*

To disprove the possibility that ¢; < 1 — F(Z) we assume that there is a ¢ > 0 such that ¢; + 9 =
1 — F(Z). We use a very weak consequence of Sen’s result on the asymptotic normality of sample

quantiles for non i.i.d. draws (Sen 1968, p. 1725, Theorem 2.1).° to conclude that Xon+1,2m+1—b

m

is asymptotically normal with mean £ where £ solves 5((?) = 3 F(Zl) 5 < % This is true since we

have just established that X,,+1 2m+1-b,, is an order statistic from %, which is converging to %

m—+1 _ 1 _ 1
2m+1—b,, ~— 2(1—c1) — 2(F(2)

by assumption, and lim rE Thus X,;,4+1,2m+1-b,, has the same limiting

distribution as X B — This means that X,,41,2m+1-5,, is asymptotically normal with mean &

< 1 and thus since F(-) is strictly increasing on its support, F/(§) < 1

) _ 1
where g solves W = m >3
implies that £ < M. But this means that B < M, which is not possible. Given that we have established

>c; > 1— F(Z), we conclude that 1;2()2) . 1:% € (0,1).

1
2

’Sen extends Bahadur’s (1966) result on the asymptotic normality of a qauntile of a sample to the case of non i.i.d random
variables. Bahadur’s result states that if F'(z) is a probability distribution that is twice differentiable and F(§) = p (with

density f(§) > 0) and X, , is the 7 th order statistic from n draws and Z,, is the number of observations greater than £ then

Zn—n(l—p)

6] + R,,, where R,, vanishes, and this random variable is

for r/n — p € (0,1) the random variable X, ,, is equal to £ +
asymptotically normal. Sen’s generalization goes well beyond but includes the case of independent draws from distributions

that vary with n, F,(-). This is the only part of the extension we need. The challenge of these results is pinning down the

rate of convergence of R,,. We care only about the fact that X, , is asymptotically normal with mean &.

24



We now find a lower bound, as a function of m, on the exponent m — b,, in Equation 10. We
first tighten the bound on ¢; showing that in fact ¢; < % By way of a contradiction suppose now
that g—g — % We can divide this sequence into two subsequences. The first subsequence contains
{5320, with ¢ satisfying b, < ¢, and the second contains {zj)ﬁ}j’;l with ¢ satisfying b; > j. So the
first subsequence consists of the cases where the median ideal point is an intermediate order statistic of

the form Xj, ¢ from the parent distribution FZE')) on [0, z,,] with % — 1 and the second subsequence

consists of the cases where the median ideal point is an intermediate order statistic of the form X;,_; ;

F(y)—F(zm)

bj—j
1_F(‘T7n) j

J

from the parent distribution on [z, 1] with — 0. For intermediate order statistics, the

relevant analogue to the result by Sen used above is due to Watts (1980). To apply Watts’s Theorem

F()

1 we first consider a slight modification of the subsequences with the parent distributions FlZ=2)

on

[0, Z—¢] and % on [Z+¢,1] respectively. Here ¢ is chosen to satisfy Z— B > 2e. Watts’s result,

restated in our notation, states that as long as the convergence of % — 1 and b’;j — 0 is slow enough,

the relevant order statistics converge to Z —e + d; and Z 4 ¢ + 4; in probability (where both ¢; and 0;

vanish at a known rate).® These two convergence results imply that even when % —land % 0

converge slowly Fpedian (Z — 2¢|by; Z —€) — 0 and Fredian (Z + 2¢]bj; Z +¢) — 1. Accordingly it is

not possible for By, to converge to B with B < Z —2¢. Now we relax the assumption that the sequence

()

of draws is from identical parent distributions and allow for the fact that the draws are from o)

on

[0,2,,] and %w on [%m, 1]. To accommodate this fact it is sufficient to observe that the actual

[,)il }321) first order stochastically dominate the

order statistics in the subsequence {212, (as well as {3

subsequence {%}?21 with parent distribution % on [0,Z —¢] .7 Thus, we cannot have B,, — B if

g'ﬁ — %, so it cannot be that g—m — %, so ¢ € (0, %) Thus lim,, s % = % — ¢y, and if we fix a
1_
=2 201 there exists a mq such that for all m > mq, mz—T:m > % —c — 0, le.,
1
m — by, > ;A 2m. (12)

%Bounds on the rate of % — 1 and bjj—_] — 0 are critical to showing that a limiting distribution exists. For example

when lbojg—g,jj has a finite limit the intermediate order statistic behaves like an extreme value and may not possess a limiting

distribution. For our purposes the worst case scenarios are the ones when the convergence is slow. If g’—'n; — % more quickly,

it is even harder to support B,, — B with B # Z while z,, — Z.

"This additional, rather trivial, step is neccesitated by our inability to find an extension of Watts’s result to the case of

non i.i.d draws from a parent distribution.
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To conclude the argument we can combine results from Equations 10, 11, and 12 to get our result:

1
1—F(Z) 1-¢ ]G )
lim ¥,, < lim (m+2) F(Z() ) 1-a
m— oo m— oo c1

= 0.

This last step follows from the observation that the relevant limit is of the form lim,,, s (m + 2) (¢(m))7™)

where lim,,, .o ((m) € (0,1) and lim,, o n(m) = co.l

7 Discussion

One can imagine other signaling motivations in elections.® In fact Razin (2003) discusses a model in
which the signaling motivation is exogenous. The goal of our paper, in contrast, is to consider a game
where the signaling motivation is endogenous and see which effect — pivot or signaling — dominates.
A natural extension of our analysis would be a model in which the second period candidates do not
converge in equilibrium, e.g., because they face uncertainty about voter preferences and have policy
motivations. We conjecture that the proof technique employed in establishing Proposition 2 could be
extended to address this case, but such an analysis is beyond the scope of this paper.

At a broader level, our result has important implications for theories of elections. Put bluntly, it
may be the case that existing electoral models’ focus on pivot events is misplaced. Of course, the
purely pivot-based variant of our model is substantially more simplified than the sophisticated one-shot
pivot-based models that other authors have used to analyze issues such as turnout, multiple candidates,
sequential versus simultaneous voting, and voters’ correlated private information. However, all of these
analyses are fundamentally based on low-probability pivot events, so our main result suggests that it
might be fruitful to rethink some of the more sophisticated pivot-based models, as well as the insights
about representation and efficiency that they yield, when there is a large electorate and a signaling

motivation is present.

8We should note that at least two authors have conjectured that signaling may remain important in large elections. Fowler
and Smirnov (2007) analyze a decision theoretic model of voting in situations where vote totals affect future policies via an
exogenously set reaction function. Although Fowler and Smirnov are interested in the importance of the signaling motivation
they assume the problem away by hard wiring the pivot probability at zero so their model cannot be used to analyze the

relative importance of pivot and signaling effects. Our finding breathes additional life into the relevance of their conclusions.
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8 Appendix

The following lemma is used in the proof of Proposition 1.

Lemma 2:

(1) ugif (vs) is continuous and weakly increasing in v;.

(2) [Lipschitz property] Vo;,0; € [0,1], |ugif (0;) — waiy (0:)] < 4 |0; — 04

(3) uaif (0) <0 and ugir (1) > 0.

Proof: We first prove separate versions of this result for ug; 1 (v;) and wug; f2 (v;), then combine them
to get the desired result for wg;r (v;) = vair1 (v;) + wgire (Vi) -

For ug;1 (v;), note that v (|L — v;|) — v (|R — v;]) is continuous and weakly increasing in v; since
7 is continuous and strictly increasing and L < R. Thus, because (*7") (F(z.))™ (1 — F(z.))™ € [0,1],

ugif1 (v;) is continuous and weakly increasing in v;. For the Lipschitz property, note that

|uaipy (0:) = waipy (B:)] = V(1L = 0il) = (IR = 0il) = (IL — i]) + (| R — 0i)]

V(1L = Bi]) = (1L = B3]) = (IR = B:]) + y(|R — 0:])]

which is less than or equal to 2 |&; — ©;| because 7/(1) = 1 and ~(-) is convex. Finally, since L < R,
ugif1 (0) <0 and ugifi (1) > 0.

For ug; 2 (v;) , note that by part 3 of Lemma 1, Yk € {1, ...,2m}, F, Lk ) < F;edmn (1 |k + 1;xc) ,

medzan (

so v(|F, o ian (Blkize) — vi|) = (|F, o ian (Bl + L) — v;|) is continuous and weakly increasing in

)

is continuous and weakly increasing in v;. For the Lipschitz property, note that |ug; 2 (0;) — wqif2 (0;)

v;. Thus the probability-weighted sum,

2m

5 (%) ™ 0= Fa)* (2| Pt (31152 )~

k=0

1
) (‘Fmeldmn <2|k+1;xc) — Y

equals
2m  (2m 2m—k 1 1 ~
k=0 ( k ) (F(ZEC)) (1 - ( | medwfn ( |k’ :E(') z| \ medwn (2 |k +1; xc) - Uz|)) -
i:() (QIZYL) (F(xc))Qmik (1 - | medmn (1 |k7xc) Z‘ | medmn (1 |k + 1’x5) - ﬁl{))

which simplifies to

in: (2m> (F(-'lf ))2m—k (1 — F(.CL‘ ))k | medzan (1 |]€, l'c) 2| | medzan (1 |k, :L'c) . @1|)
k=0 k ’ medmn( |k'+1 ZEC)—Uz‘ +’y ’ mfidmn(l‘k“rl;xc)—ﬁi‘)
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Recall that 7/(1) = 1 and 7(-) is convex, so the above less than or equal to

2m
S <2lin> (F(z)™™ " (1 = F(z)* - 218 — 05 < 2- |5 — 04

k=0
For ug; 2 (0) < 0, recall from part 3 of Lemma 1 that Vk, Fn_zeldian (%U@,xc) < F,;eldicm (%|k +1; xc) SO
< (2m ok k(i 1 . 1
warn® = 3 (1) ) 0 P (Falaan (3h2:) ~ Fnlaan (5 15.) )
< 0_

By a similar argument ug; 2 (1) > 0.
Because ug;f1 (v;) and wugif2 (v;) are continuous and weakly increasing in wv;, so is ugir (v;) =
Udif1 (’UZ) + Udif2 (1}1) . And because \udifl (171) — Udif1 (@z)| S 2 |’l~)Z — f),| and |udif2 (f}l) — Udif2 (’lA]Z)‘ S

2|0; — 0;], we have |ugif (0;) — uqgiy (0:)] < 4|0; — ;| . Finally, ugir1 (0) < 0 and ugir2 (0) < 0 imply

that ug;s (0) <0, and likewise ug; 1 (1) > 0 and ug;p2 (1) > 0 imply ugr (1) > 0.0

Proposition 1: There exists an equilibrium in which voters use a symmetric cutpoint strategy in
the first period.

Proof: Consider the correspondence
d(xe) = {v; € [0,1] : ugi¢ (v;) = 0 when N\i use the symmetric cutpoint strategy specified by x.}

Note that ¢(z.) : [0,1] — [0, 1] is nonempty for all z. € [0,1], by parts 1 and 3 of Lemma 2 and the
Intermediate Value Theorem. Also, since ugq;s («) is continuous and weakly increasing, ¢(x.) is convex-
valued. So, to apply Kakutani’s fixed point theorem, and conclude that there exists an equilibrium,
ie., an z € ¢ (), all we need to do is to establish that ¢(z.) is upper hemi-continuous.

Consider a sequence of points {z} — Z. and a sequence {y'} — 7 where y* € ¢(xl),Vt. We need to
show that § € ¢(Z.).

For each t, following the definition of ug;s (v;) in Equation 1, let u, , (v;) be the utility difference
function given cutpoint zf and let @g; ¢ (v;) be the utility difference function given cutpoint Z..

We first note that {uﬁh f (’Ul)} converges pointwise to @g; s (v;) . The first part of the utility difference

function is

2m

%mw»=( )w@m”@—Fummww~ww—MR—m»

m
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which converges pointwise to

s (v1) = <2m> (F(E))™ (1~ F(E)™ (1(IL — i) (R — wi)

since {z%} — Z.. The second part is

2m
2m 2m—k k
i) = 3 () (PG 0 Fad)
Fl <1|k'mt> — v Fl. <1|k+1'xt> —;
median gl te ? median 9 e ?

e )

which (by part 5 of Lemma 1, continuity of (-), and the fact that {z!} — Z.) converges pointwise to

) —(

wain) = 3 () @)™ 0 - FE)

k=0
([ Frnedian 1Ik;:Ec —v; ).
(ot (152 )

Now we suppose that § ¢ ¢(Z.), and derive a contradiction. If § ¢ ¢(Z.) then either @g;s (§) > 0 or

_ 1 .
) — ’Y('Fmeldmn (2|k + 1 $c> —v;

Ggir (§) < 0. Without loss of generality suppose the former. Then since uf; f (v;) converges pointwise to
Gqif (v;) there exists T such that for all ¢ > T, ul, f (g) > %@) By the Lipschitz property in part 2 of
Lemma 2, for all ¢ > T, ul, ; (§) — ul;; (§ — 6) < 46 for any § > 0. Setting d = %@) we have that for
t> T, uly, () =l (§—0) < %@), 80 Ul (4 —6) > ul (§) — %@) > 0. Thus, since y' € ¢(zt)

or, equivalently, u; ; (y*) = 0, and uy; ; (v;) is weakly increasing in v;, we conclude that y* < § — 4 for

all t > T, which means that {y’} cannot converge to ¢, a contradiction.ll
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Figure 1: Equilibrium in Example 2, Combined Model

First period candidates: L=1/2, R=1

First period voter
strategy, as a function

of voter’s ideal point Vote L X, = 0.65 Vote R
A A
|/ \l ~ —
! | | I I '
. . 0.325 0.463 0.756  0.825
Second period policy, {LLL} {L,L,R} {LRR} {RRR}

as a function of first
period votes



Figure 2

Examples of H (y;x.) for values of x. in {0,0.65,1}



Figure 3
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