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Abstract

Incentives in voting models typically hinge on the event that a voter is pivotal. But voting can

also in�uence the behavior of elites in subsequent periods. In this paper, we consider a model in which

voters have private information about their policy preferences and an election is held in each of two

periods. In this setting, a vote in the �rst period can have two types of consequences; it may be pivotal

in deciding who wins the �rst election and it provides a signal that informs the beliefs that candidates

running in the second election use when selecting equilibrium platforms. Pivot events are exceedingly

unlikely, but when they occur the e¤ect of a single vote is enormous, since it determines the electoral

outcome. In contrast, vote totals always have some signaling e¤ect on future policies, but the e¤ect

of a single vote is always very small. We investigate whether the former, pivot, e¤ect or the latter,

signaling, e¤ect drives equilibrium voting behavior in large electorates.
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1 Introduction

In nearly all models of voting the payo¤ from casting a particular ballot hinges exclusively on pivot

events. These are events in which the election is tied or nearly tied, so that a single vote can determine

the outcome. In decision-theoretic models a voter decides whether and how to vote based on exogenous

probabilities of ties between candidates. Game theoretic models endogenize the equilibrium probability

that a vote is pivotal. And several recent in�uential papers focus on information that a voter can infer

from the fact that he is pivotal, and analyze electoral equilibria when voters condition on being pivotal.1

The pivot-based literature on elections is vast, but the models have two features in common: (i)

when a voter is pivotal, the action she takes has a large impact on her payo¤, but (ii) pivot events are

very unlikely. The large impact is due to the fact that in a pivot event, a single vote can determine the

outcome of the election. The low probability arises from the fact that in a large election it is exceedingly

unlikely that two candidates will receive the same number of votes or di¤er by exactly one vote.

Although pivot based models dominate the game-theoretic literature on elections, the infrequency

of pivot events in all but the smallest elections raises a natural question: is electoral behavior driven

by more than just concerns about being pivotal? If pivot events do not actually drive the calculus of

voters then a large and growing literature on voting theory may be focused on second-order concerns.

Why would voters care about anything other than a pivot event? Consider, for example, the buildup

to the 2006 midterm election in the United State. Pundits speculated that voters�dissatisfaction with

President Bush�s handing of the war in Iraq would cost the Republican party its majority in Congress.

While Republicans�electoral losses may in fact have been a direct result of voters�desire to change the

composition of the legislature, another explanation is that voters cast ballots for Democrats in order to

send Bush a message, and encourage him to change policy.

An emerging literature, based on the intuition that vote totals matter in elections that don�t end

in a tie, o¤ers an alternative perspective to the dominant pivot-based theories of elections. Theorists

1Decision theoretic models include the work of Downs (1957), Tullock (1967), Riker and Ordeshook (1968), and Myerson

and Weber (1993). Examples of game theoretic models include Palfrey and Rosenthal (1983), Myerson (1998, 2000), Campbell

(1999), and Borgers (2004). Models involving information aggregation include Feddersen and Pesendorfer (1996, 1997, 1999),

Austen-Smith and Banks (1996), Dekel and Piccione (2000), and Battaglini (2005).
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of elections have explored several di¤erent ways that vote totals could a¤ect downstream electoral or

policy outcomes.

One modelling approach is a common values setup, in which voters use their votes to convey infor-

mation about the state of the world. Piketty (2000) develops a two period model of referendum voting

in which voters communicate policy information to each other as they vote. Razin (2003) analyzes a

model of mandates in which vote totals convey information to the winner of an election and thus a¤ect

the policies she enacts. In this model, the functional form of the election winner�s response to signals

is a primitive of the game. Razin investigates limiting behavior for large electorates and characterizes

two types of equilibria. In one type of equilibrium voters�behavior is �conventional�in the sense that a

voter whose private signal indicates that liberal policies are good tends to vote for a liberal candidate:

In any limit of these conventional equilibria, the behavior of voters converges to coin �ipping.2 The

other equilibria are �unconventional�since voters respond perversely to their private signals: upon ob-

serving information that favors liberal policies, a voter becomes more likely to vote for the conservative

candidate.

The equilibria of the Piketty and Razin models suggest that a desire to in�uence the decisiveness of

victory, and not just the identity of the winner, can remain in large elections. However, in both models

all voters have identical preferences and the e¤ects that their votes can have on future policy outcomes

are determined directly by modelling assumptions, rather than being determined by strategic choices

made by competing political elites who observe election outcomes.

Another modelling approach is a private values setup, in which voters can use their votes to a¤ect

future candidates� positions, and thus policy outcomes. Each election thus serves two purposes: to

select a winner and to act as a poll about voters�preferences. In this vein, Meirowitz and Tucker (2007)

analyze a model of alternating primary and presidential elections, in which voters use their votes to

signal dissatisfaction with an incumbent and thereby induce him to exert costly e¤ort to make himself

more appealing in a subsequent election.

Castanheira (2003) adapts Piketty�s model to a private values setting, and uses it to analyze voting

for losers in an election with four candidates. In his model, there are four possible distributions of

2This result is Razin�s Proposition 4, part (i).
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voters in the electorate, and voters may choose to vote for a candidate who is almost certain to lose

in the �rst election since their vote may determine which of four positions candidates will adopt in a

second period election. In Castanheira�s model, as in Piketty�s model, the signaling e¤ect of �rst period

electoral behavior is based on the very low probability event that a vote is informationally pivotal, i.e.,

although there is signaling in these models, the signaling is fundamentally based on pivot events, which

are extremely unlikely to occur.

In contrast, Shotts (2006) develops a private values model of repeated elections in which each

voter�s actions, by conveying information about his preferences, always have some small e¤ect on future

policy outcomes. Small magnitude, high probability signaling e¤ects work quite di¤erently from large

magnitude low probability pivot e¤ects. However, in large elections, a single vote has a vanishingly

small e¤ect on politicians�beliefs about voter preferences, and Shotts does not address the question of

whether signaling motivations are actually relevant in large elections.

Moreover, a voter may �nd herself cross-pressured when a vote for the candidate she prefers sends

the wrong message to politicians, i.e., she may wish to vote for one candidate for signaling reasons and

a di¤erent one for pivot reasons. Because both the likelihood that she is pivotal and the e¤ect of a

single vote on candidates�vote shares are small it is not clear how tradeo¤s between pivot and signaling

e¤ects balance out in equilibria for large elections. Thus, although recent papers have moved beyond

pivot-based theories of voting, they do not shed light on the question of whether equilibrium behavior

in large repeated elections with private values is driven by pivot or signaling considerations.

In this paper, we analyze a private values model of repeated elections with both pivot and signaling

motivations and show that the latter dominates with a large electorate. While our paper is related to

that of Meirowitz (2005), which focuses on signaling motivations in public opinion, it is, however, closest

to that of Shotts (2006). Shotts analyzes elections with a �xed population and focuses on equilibria in

which moderates abstain, to signal that they are moderate. In contrast, we analyze a model without

the possibility of abstention and focus on limiting behavior for large electorates.

It turns out that the assumption that voters cannot abstain is not crucial for our results. Hummel

(2007) builds on the present paper and Shotts (2006) to study limiting behavior when voters can

choose to abstain. Hummel shows that although the type of equilibrium with abstention characterized
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by Shotts exists for any �nite population, in the limit abstention vanishes and voter behavior converges

to the behavior we characterize here. Hummel also derives a useful lower bound for the magnitude of

signaling e¤ects in large elections.

Having discussed the relevant literature, we now summarize our contribution. The key elements

of our model are as follows. Each voter in our model has private information about his own policy

preferences, and in each of two elections he casts a ballot for one of two available alternatives. Following

the �rst election, two o¢ ce-motivated candidates compete for a second o¢ ce, by staking policy positions,

and the second election is held. Candidates in the second period base their policy positions on beliefs

about the distribution of preferences in the electorate. In equilibrium these beliefs are informed by the

vote totals in the �rst election, and each voter�s vote in the �rst period thus has a small signaling e¤ect

on second period policy.

Our main result is that as the electorate gets large the equilibrium converges to the equilibrium of

a slightly di¤erent game in which the �rst period outcome is payo¤ irrelevant, as in the case of a �rst

period poll. In other words, in large elections behavior is driven by the signaling motivation and not

the pivot motivation.

This result has potentially important implications for the literature on pivot-based models of elec-

tions, since most of the interesting equilibria in such models rely heavily on the fact that a voter only

cares about events in which his vote is pivotal. In our model, in contrast, the e¤ect of pivot events

on equilibrium voter behavior is relatively unimportant compared to the e¤ect of signaling concerns.

At the very least, future research needs to take seriously the possibility that pivot events are not of

�rst-order importance when rational voters take into account the future e¤ects of their votes.

The paper proceeds as follows. Section 2 introduces the model and in Section 3 we present two

concrete examples of how signaling and pivot e¤ects work. Section 4 proves equilibrium existence.

Section 5 describes the intuition behind our main result, which is proved in Section 6. Section 7

discusses the result.
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2 The Model

Consider an electorate with an odd number of voters n � 3: It will be convenient to use the fact that

n = 2m+1 for some integer m: Let the set of voters be N , and let each voter i 2 N have an ideal point,

vi 2 [0; 1]: We assume that the ideal points are iid draws from a distribution function, F (�); which is

strictly increasing and continuously di¤erentiable, and has a continuous density f(�) on the support

[0; 1]. Each voter�s utility over policy, x; in a given period is ui(x) = �
(jx� vij) where 
 : [0; 1]! R+

is strictly increasing, convex and di¤erentiable. Since expected utility is de�ned only up to positive

a¢ ne transformations we make the innocuous but convenient assumption that 
0(1) = 1: The voter�s

total utility is simply the sum of his policy utility in the two periods.

In the �rst period election, two �xed alternatives are available. We denote the locations of the

alternatives by L;R 2 [0; 1] (with L � R): If voters care only about the �rst period, or are myopic,

elimination of weakly dominated strategies yields a unique equilibrium, in which all voters to the left of

xp =
L+R
2 vote L and all voters to the right of xp vote R:We call this the pivot cutpoint. We, however,

are interested in the dependencies across elections, and thus consider a model with two periods, building

on Shotts (2006).

In the second period, two o¢ ce motivated candidates select policy platforms and then the electorate

votes. The candidates are assumed to know only the distribution F (�) from which the n ideal points are

drawn, the size of the electorate, n, and the voters��rst period actions. From Calvert (1985), we know

that for a game in which two o¢ ce motivated candidates believe that Fmedian (�) is the distribution of

the median voter�s ideal point, in any Nash equilibrium with weakly undominated voting the candidates

will both locate at F�1median(
1
2 ):

3 In the two-period signaling game that we study, in any Perfect Bayesian

equilibrium, the distribution of the median depends on the �rst-period votes via Bayes�Rule. At any

history in which Fmedian(�) is a distribution consistent with Bayes�Rule following the observed �rst

period voting, the second period candidates both locate at the point F�1median(
1
2 ): While Shotts (2006)

focuses on equilibria with abstention in the �rst period, we restrict the set of actions available to voters

so that they must vote either L or R; this enables us to focus on a particularly simple class of equilibria,

3One such equilibrium has each voter �ipping a fair coin when indi¤erent. Given strategies for the �rst period, the second

period behavior is standard, and well understood (Calvert 1985, Shotts 2006).
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involving only a single cutpoint. In particular, we focus on a class of equilibria in which all voters use

the same type speci�c monotone voting strategy.

In such an equilibrium, �rst-period voting strategies are characterized by a cutpoint xc with voters

to the left ( vi < xc) voting L and voters to the right (vi > xc) voting R. If voting satis�es this cutpoint,

i.e. it is monotone, then the number of votes for R, denoted #R; captures all of the publicly available

information about voter ideal points, and is a su¢ cient statistic for the second-period candidates�

problem of inferring the distribution of the median voter�s ideal point from �rst-period behavior. We

denote such a posterior distribution as Fmedian(� j #R;xc):

Before proceeding we provide a few comments about this function. Given that #R of n voters have

ideal points to the right of (greater than) xc; the median is less than xc if and only if #R � m = n�1
2 .

Similarly the median is greater than xc if and only if #R � m + 1. In the former case, the median is

the (m+ 1)�th lowest ideal point of the n �#R voters with ideal points less than xc, i.e., the median

ideal point is the (m+ 1)�th order statistic from n�#R draws from the distribution H�(x;xc) =
F (x)
F (xc)

with support [0; xc]. Similarly in the latter case, the median is the (m+1� (n�#R))�th order statistic

from #R draws from the distribution H+(x;xc) =
F (x)�F (xc)
1�F (xc) with support [xc; 1]:

As previously mentioned, Calvert�s result shows that given xc,#R, and a belief mapping Fmedian (�j#R;xc)

sequential rationality of the candidates and weakly undominated voting by the voters implies that the

second period policy is F�1median(
1
2 j #R;xc): In characterizing a cutpoint perfect Bayesian equilibrium

with weakly undominated second period voting strategies it is su¢ cient to characterize a �rst period

cutpoint xc 2 [0; 1] such that if every voter other than i is using the strategy with cutpoint xc it is

optimal for voter i to do so as well. Checking this condition hinges on the fact that in an equilibrium

of this form second period candidates both locate at the point F�1median(
1
2 j #R;xc):

The equilibrium cutpoint balances two e¤ects that in�uence �rst period voting. The pivot e¤ect

captures the incentive to vote for L if jL� vij < jR� vij and R if the opposite is true. The signaling

motivation captures the incentive to vote for R if, given i�s expectations about the actions of the other

voters, increasing #R is likely to move the second period policy F�1median(
1
2 j #R;xc) towards vi, and

to vote for L if increasing #R is likely to move the second period policy away from vi. The pivot e¤ect

is the product of the probability that i is pivotal and the payo¤ di¤erence between the policy L and R:
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In contrast to the pivot e¤ect, which captures a low probability event with a non trivial payo¤ in that

event, the signaling motivation takes into account the fact that i�s vote will always have an e¤ect on

the second period policy. However, the signaling e¤ect is small for each of the possible realizations of

the votes cast by Nnfig. For some realizations of the votes by Nnfig increasing #R will be attractive

to i, while for other realizations of the these votes increasing #R will be unattractive to i.

The goal of this paper is to compare high impact, low probability pivot events versus low impact,

high probability signaling e¤ects and determine which type of e¤ect dominates in large elections. In

particular we investigate the limiting behavior of the cutpoint xc as n tends to in�nity. We �nd that the

limiting cutpoint corresponds to the equilibrium cutpoint in a di¤erent game in which the �rst period

is irrelevant (or, equivalently, L = R) so that, in the limit, the cutpoint for voter behavior is identical

to what it would be if voters were motivated purely by signaling concerns. Thus, we �nd that while

equilibrium voting involves a balancing of these two motivations, in a very strong sense, equilibrium

voting in large elections is driven by voters�desire to in�uence the inferences of observers and not by

their desire to in�uence the election at hand.

3 Two Examples

Before analyzing the model, we illustrate it with two simple examples.

Example 1. We start with what is essentially a decision-theoretic version of the model, in which

there is just one voter, with ideal point vi and a linear loss function 
(jx� vij) = jx� vij. Suppose the

exogenously-�xed �rst period candidate locations are L = 1
2 and R = 1: The second period candidates

believe that the single voter�s ideal point is drawn from a uniform distribution on [0; 1]. Thus, if the

voter�s strategy is monotone, with cutpoint xc; the second period policy will be xc
2 if i votes for L and

1+xc
2 if i votes for R. For i to be indi¤erent between voting L and R when her ideal point is vi = xc,

the following equality must hold:

� jxc � Lj �
���xc � xc

2

��� = � jR� xcj � ����xc � 1 + xc2

���� :
For L = 1

2 and R = 1 this equality is solved at xc =
2
3 :

Example 2. To illustrate how pivot and signaling e¤ects work in the model, we now consider the
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simplest variant where a vote has a probabilistic e¤ect on both �rst and second period outcomes.

While this example cannot resolve the horse race between the signaling and pivot e¤ects as the number

of voters gets large, all of the relevant incentives and quantities of interest are present. Consider n = 3

and assume that voters i 2 f1; 2; 3g have ideal points that are i:i:d: draws from a uniform distribution

on [0; 1]. Assume that each voter has a linear loss function 
(jx� vij) = jx� vij : The �rst-period

election is between two candidates, with exogenously-�xed policy positions L = 1
2 and R = 1:

We �rst consider two benchmark cases: a pure pivot model and a pure signaling model. In a pure

pivot model there is a unique voting equilibrium in weakly undominated strategies: a voter votes for

the closer candidate, i.e., she votes for L if her ideal point is to the left of L+R2 = 0:75 and votes R if

her ideal point is to the right of 0:75: So xp = 0:75 is the pivot cutpoint.

For a pure signaling model, all that matters is how a vote a¤ects F�1median(
1
2 j #R;xc) through #R:

If voters only care about the outcome of the second period election then in the three voter example

there is a unique equilibrium, speci�ed by the signaling cutpoint, xs = 1=2:

To check that this cutpoint is an equilibrium in the game in which only the second period outcome

a¤ects voter payo¤s, we con�rm that a voter with vi = 1=2 is indi¤erent between voting L and R;

given the other actors� strategies: Focusing on voter i = 1; assume that the other voters are using

this cutpoint strategy. The signaling e¤ect of i0s �rst-period vote thus depends on the other voters�

�rst-period actions:

� With probability F (xs) �F (xs) = 1
2 �

1
2 = 0:25 the other two voters vote L. In this case the second-

period policy outcome will be 0:25, if i votes L. This is true because the second-period candidates�

posterior belief given #R = 0 and xs = 1=2 is that all three voters�ideal points are uniform draws

from [0; 0:5]: If i votes R the second-period policy outcome will be F�1median
�
1
2 j1; 1=2

�
= 0:35, since

there is a 50% chance that both of the L voters, and hence the median, will be to the left of 0:35:

Thus, the signaling e¤ect of voting R if both other voters vote L is to move the second-period

policy outcome from 0:25 to 0:35:

� With probability F (xs) � (1� F (xs)) + (1� F (xs)) � F (xs) = 2 � 12 �
1
2 = 0:5 the other two voters

split their votes. In this case if i votes L the second-period policy outcome will be 0:35 and if she

votes R the policy outcome will be 0:65:
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� With probability (1�F (xs)) � (1�F (xs)) = 1
2 �

1
2 = 0:25 the other two voters vote R. In this case

if i votes L the second-period policy outcome will be 0:65 and if i votes R the policy outcome will

be 0:75:

Thus, if a voter with ideal point vi votes L her expected second-period utility is �0:25 � jvi � 0:25j�

0:5 � jvi � 0:35j � 0:25 � jvi � 0:65j : If she votes R her expected utility is �0:25 � jvi � 0:35j � 0:5 �

jvi � 0:65j � 0:25 � jvi � 0:75j : A voter at vi = xs = 1=2 is indi¤erent between voting L and voting R:

It is straightforward to con�rm that any voter left of 1=2 strictly prefers to vote L and a voter to the

right prefers to vote R:

It is worth noting three features of signaling e¤ects that will show up in our later analysis of large

elections. First, which action, L or R; better promotes the voter�s policy interests in the second period

depends on the other voters�actions, as well as the cutpoint xs: For a voter with vi = 1=2; if the other

two voters vote L then voting R is optimal, whereas if the others vote R then voting L is optimal, and

if the others split their votes then the voter is indi¤erent. Second, the di¤erent signaling e¤ects are

not equally likely to occur, but rather occur with di¤erent probabilities. Third, since the other voters�

actions are simply draws from a binomial, in a large election, the most likely realized vote totals are

those where L receives a share close to F (xs) of the votes and R receives a share close to 1 � F (xs)

of the votes. All three of these properties of signaling e¤ects hold regardless of the cutpoint for voter

behavior in the �rst period.

In a model with both pivot and signaling e¤ects, equilibrium behavior hinges on the combined

cutpoint xc: As shown in Figure 1, in the three-voter example, xc � 0:65:4 For this xc the pivot

probability is 2 � 0:65 � (1� 0:65) = 0:455: For a voter with vi = xc the utility di¤erence between the two

possible �rst-period policy outcomes, L and R; is � jvi � Lj+ jvi �Rj = �
��0:65� 1

2

��+ j0:65� 1j = 0:2:
So i receives, in expectation, 0:2 � 0:455 � 0:09 more �rst-period utility by voting L than by voting R:

[Insert Figure 1 about here]

The second-period signaling e¤ect is a bit more complicated to compute:

4 It is just coincidence that this value for xc is the same, to two decimal places, as the second period policy outcome under

one of the action pro�les in the pure signaling model. For the general model, they need not be the same.
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� With probability F (xc) � F (xc) = 0:65 � 0:65 = 0:4225 the other two voters vote L. In this case

the second-period policy outcome will be 0:325 if i votes L: If i votes R the second-period policy

outcome will be 0:463.

� With probability F (xc) � (1 � F (xc)) + (1 � F (xc)) � F (xc) = 2 � 0:65 � (1 � 0:65) = 0:455 the

other two voters split their votes. In this case if i votes L the second-period policy outcome will

be 0:463 and if i votes R the policy outcome will be 0:756:

� With probability (1� F (xc)) � (1� F (xc)) = (1� 0:65) � (1� 0:65) = 0:1225 the other two voters

vote R. In this case if i votes L the second-period policy outcome will be 0:756 and if i votes R

the policy outcome will be 0:825:

Thus, if a voter with ideal point vi votes L his expected second-period utility is �0:4225�jvi � 0:325j�

0:455 � jvi � 0:463j�0:1225 � jvi � 0:756j ; which equals �0:24 for vi = 0:65: And if i votes R his expected

utility is �0:4225�jvi � 0:463j�0:455�jvi � 0:756j�0:1225�jvi � 0:825j ; which equals �0:15 for vi = 0:65:

The di¤erence is equal to 0:09; and for vi = xc it exactly counteracts the �rst-period utility gain that

the voter receives by voting L rather than R: Thus at xc the pivot and signaling e¤ects cancel each

other out and the voter is indi¤erent.

This example illustrates the basic tension between pivot and signaling e¤ects in our model. In this

three voter example, the equilibrium cutpoint is xc � 0:65; which lies between the signaling cutpoint,

xp = 0:5; and the pivot cutpoint, xs = 0:75: The question is how a sequence of equilibrium cutpoints

fxmg will behave in the limit as the population size n = 2m+ 1 gets large.

The di¢ culty in answering this question is that in large elections both the pivot e¤ect and the

signaling e¤ect become small; the probability of a pivot event goes to zero and the distance that

second-period candidates move in response to a single vote also goes to zero. The question is which

converges faster.

4 Preliminary Results

In this section we establish two lemmas that are useful in establishing existence of a particular type

of equilibrium for any n as well as in proving the main result about the limiting behavior of this type
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of equilibrium. We then present the existence result. Our analysis focuses on a particular class of

equilibria.

De�nition 1 (Symmetric Cutpoint Strategy) Voters use a symmetric cutpoint strategy if there

exists a point xc 2 [0; 1] such that for all i 2 N

(1) if xc = 0 then i votes L if vi = 0; and i votes R if vi > 0

(2) if xc 2 (0; 1]; then i votes L if vi < xC ; and votes R if vi � xc:

Given that all other voters use a symmetric cutpoint strategy with cutpoint xc; optimal behavior

for a voter with ideal point vi depends on the di¤erence in her expected utility between voting R and

voting L in the �rst period. Using a1i 2 fL;Rg to denote voter i0s �rst period action, we can express

this di¤erence as

udif (vi) � u(a1i = Rjvi)� u(a1i = Ljvi) = udif1 (vi) + udif2 (vi) (1)

where

udif1 (vi) �
�
2m

m

�
F (xc)

m (1� F (xc))m (
(jL� vij)� 
(jR� vij)) (2)

and

udif2 (vi) �
2mX
k=0

�
2m

k

�
(F (xc))

2m�k
(1� F (xc))k

0B@ 
(
��F�1median( 12 jk; xc)� vi��)

�
(
��F�1median( 12 jk + 1; xc)� vi��)

1CA : (3)

Thus udif1 (vi) captures the �rst period e¤ect of voting: the pivot probability is
�
2m
m

�
(F (xc))

m
(1� F (xc))m

and the utility di¤erence between the two candidates is 
(jL� vij)� 
(jR� vij) for a voter with ideal

point vi. Likewise, udif2 (vi) captures the second period e¤ect: the probability that k other voters vote

R is
�
2m
k

�
(F (xc))

2m�k
(1� F (xc))k and the utility di¤erence between voting R versus L in this event

is 
(
��F�1median( 12 j k;xc)� vi��)� 
(��F�1median( 12 j k + 1;xc)� vi��):
Remark 1: Deriving Fmedian(yj#R;xc) for xc 2 (0; 1)

To understand udif2 (vi) it is important to see how Fmedian(yj#R;xc) depends on #R and

xc. This function can be characterized in terms of order statistics. We note that for �xed

xc 2 (0; 1); the distribution of the median is constructed as follows. Given that there are

n �#R draws with values strictly less than xc and #R draws with values greater than or

11



equal to xc we know that the median is less than xc if #R is strictly less than m+1 and it is

greater than xc otherwise. If#R < m+1; the median is them+1 largest of n�#R draws from

the conditional (on y < xc) distribution H�(y;xc) = maxf0;minf1; F (y)F (xc)
gg: Accordingly

if #R < m + 1; Fmedian(yj#R;xc) = H�
m+1;n�#R (y;xc), which is the distribution of the

(m+ 1)�th order statistic from n � #R draws from the distribution function H�(�;xc):

Similarly if#R � m+1, the median is the (m+1�(n�#R))�th order statistic from#R draws

from the conditional (on y > xc) distribution H+(y;xc) = maxf0;minf1; F (y)�F (xc)1�F (xc) gg. So

if #R � m + 1 then Fmedian(yj#R;xc) = H+
m�(n�#R);#R (y;xc), which is the distribution

of the (m+ 1� (n�#R))�th order statistic from #R draws from the distribution function

H+(�;xc).�

Remark 2: Deriving Fmedian(yj#R;xc) for xc 2 f0; 1g

Now consider extremal cutpoints, xc 2 f0; 1g: If xc = 0 then according to De�nition 1,

all voters with ideal points in (0; 1] vote R and voters with ideal point vi = 0 vote L:

Accordingly, if #R < m + 1 then the median voter�s ideal point is 0 with probability 1

and Fmedian(yj#R; 0) is constant at 1 for all y 2 [0; 1]: In this case, we de�ne F�1median( 12 j

#R; 0) = 0 and it is clear that equilibrium second period candidate locations are at 0. If

#R � m+ 1 then the median is the (m+ 1� (n�#R))�th order statistic from #R draws

from F (�). This distribution corresponds to H+(y;xc) =
F (y)�F (0)
1�F (0) with support [0; 1]: If

xc = 1 then according to De�nition 1, all voters with ideal point 1 vote R and all voters

with ideal points vi 2 [0; 1) vote L: Accordingly, if #R � m + 1 then the median voter�s

ideal point is at 1 with probability 1 and Fmedian(yj#R; 1) is constant at 0 for all y 2 [0; 1)

and equal to 1 at y = 1: In this case we de�ne F�1median(
1
2 j #R; 1) = 1. If #R < m+ 1 then

the median is the (m+ 1)�th order statistic from n�#R draws from F (�): This distribution

corresponds to H�(y;xc) =
F (y)
F (1) on [0; xc]:�

One way to see how the distribution function Fmedian(�j�; �) behaves as the arguments #R and xc

change is to consider the case of the uniform, F (y) = y on [0; 1]: Figure 2 plots the function H�(y;xc)

for xc 2 f0; 0:65; 1g. Figure 3 plots H�
m+1;n�#R (y;xc) for n = 11;m = 5 and #R 2 f2; 3g : This �gure

shows how increasing #R shifts the second period candidates�beliefs about the location of the median

12



to the right, thereby causing F�1median(
1
2 j #R;xc) to increase.

[Insert Figures 2 and 3 about here]

Combining Remarks 1 and 2, we can express the second period policy location as a function of xc

and #R when voters use a symmetric cutpoint strategy.

�(xc;#R) =

8>>>>>>>><>>>>>>>>:

0 if xc = 0 and #R < m+ 1

1 if xc = 1 and #R � m+ 1

fy : H�
m+1;n�#R (y;xc) =

1
2g if xc 2 (0; 1] and #R < m+ 1

fy : H+
m+1�(n�#R);#R (y;xc) =

1
2g if xc 2 [0; 1) and #R � m+ 1:

The �rst lemma builds on this derivation to establish properties of the distribution of the median and

the above mapping

Lemma 1 (Properties of Second Period Policy Outcomes) If voters use a symmetric cutpoint

strategy with cutpoint xc then

(1) For each #R < m+1 and y 2 [0; 1]; Fmedian(yj#R;xc) is weakly decreasing in xc for xc 2 [0; y)

and strictly decreasing for xc 2 [y; 1] and for each #R � m + 1 and y 2 (0; 1); Fmedian(yj#R;xc) is

weakly decreasing in xc for xc 2 (y; 1] and strictly decreasing in xc 2 [0; y] :

(2) If #R1 < #R2 (both in 0; 1; 2; :::; n) then for each xc 2 (0; 1), for some set Axc � [0; 1] with

positive lebesgue measure Fmedian(yj#R1;xc) > Fmedian(yj#R2;xc) if y 2 Axc and Fmedian(yj#R1;xc)

� Fmedian(yj#R2;xc) for all y 2 [0; 1]: For xc 2 f0; 1g ; Fmedian(yj#R1;xc) � Fmedian(yj#R2;xc) for

all y 2 [0; 1]:

(3) For any #R 2 f0; 1; 2; :::; n� 1g and xc 2 [0; 1]; F�1median( 12 j #R;xc) � F
�1
median(

1
2 j #R+1;xc):

(4) Fmedian(yj#R;xc) is continuous in xc on (0; 1) for each #R 2 f0; :::; ng and y 2 [0; 1] as well

as continuous in y on [0; 1] for each #R 2 f0; :::; ng and xc 2 (0; 1):

(5) The mapping �(xc;#R) is a function from [0; 1]� f1; 2::::; ng into [0; 1] and it is continuous in

xc.

Proof:

(1) Assume #R < m + 1: From our derivation of Fmedian(yj#R;xc) in Remark 1 this distribution

takes on the value 1 if y � xc and H�
m+1;n�#R (y;xc) otherwise. Thus the conclusion that it is weakly

13



decreasing for xc 2 [y; 1] is immediate. Consider xc < x0c: Since

F (y)

F (x0c)
<
F (y)

F (xc)

H�(y;x0c) < H
�(y;xc) for all x < xc and thus the former �rst order stochastically dominates the latter

on [0; xc]. This ordering of H�(y;x0c) and H
�(y;xc) implies that the distributions of order statistics,

H�
m+1;n�#R (y;x

0
c) and H

�
m+1;n�#R (y;xc) are also ordered by �rst order stochastic dominance (see for

example Theorem 4.4.1 of David and Nagaraja, p. 75). An analogous argument holds in the case of

#R � m + 1, establishing that H+
m+1�(n�#R);#R (y;x

0
c) and H

+
m+1�(n�#R);#R (y;xc) are ordered by

�rst order dominance.

(2) To establish strict monotonicity in #R, consider two integers, #R1 and #R2, with 0 � #R1 <

#R2 � n. If #R1 < m + 1 � #R2 then the support of Fmedian(�j#R1;xc) is [0; xc] and the

support of Fmedian(�j#R2;xc) is [xc; 1]: Since the distribution F (�) is strictly increasing on [0; 1];

Fmedian(yj#R1;xc) > 0 for all y 2 (0; xc) while Fmedian(yj#R1;xc) = 1 for all y � xc. Simi-

larly, Fmedian(yj#R2;xc) = 0 for all y � xc and Fmedian(yj#R2;xc) < 1 for y 2 (xc; 1) : Thus,

Fmedian(yj#R2;xc) � Fmedian(yj#R1;xc); with a strict inequality for any y =2 f0; 1g :

Suppose instead that#R1 < #R2 < m+1: The relevant comparison is now betweenH
�
m+1;n�#R1

(y;xc)

and H�
m+1;n�#R2

(y;xc): To see that these two distributions are ordered by �rst order stochastic dom-

inance, we can partition n � #R1 draws from F (�) into two sets: �rst n � #R2 draws are taken

and then another #R2 � #R1 are taken. Because F (�) is strictly increasing on [0; 1]; the probabil-

ity that one of the #R2 � #R1 draws is less than the m + 1 highest draw of the �rst #R2 � #R1

draws is strictly positive, and thus H�
m+1;n�#R2

(y;xc) < H�
m+1;n�#R1

(y;xc) for y on [0; xc]. This

implies that Fmedian(yj#R2;xc) � Fmedian(yj#R1;xc) with a strict inequality if y 2 Axc = [0; xc) if

#R1 < #R2 < m+ 1: A similar argument holds for Axc = (xc; 1] and m+ 1 � #R1 < #R2:

The result for xc 2 f0; 1g follows from Remark 2.

(3) Follows immediately from (2).

(4) Continuity of Fmedian(yj#R;xc) in xc on (0; 1) for each #R 2 f0; :::; ng and y 2 [0; 1] as well as

continuity in y on [0; 1] for each #R 2 f0; :::; ng and xc 2 (0; 1) follows from the assumption that F (�) is

strictly increasing and continuously di¤erentiable and the fact that the distribution of an order statistic

from a di¤erentiable distribution function has a density. In particular, for #R < m + 1 the distribu-
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tion Fmedian(yj#R;xc) has density h�m+1;n�#R (y;xc) = k
h
@
@y

�
F (y)
F (xc)

�i
F (y)
F (xc)

a
(1� F (y)

F (xc)
)b for integers

k; a; b: For #R � m + 1; the distribution Fmedian(yj#R;xc) has density h+m+1�(n�#R);#R (y;xc) =

k0
h
@
@y

�
F (y)�F (xc)
1�F (xc)

�i�
F (y)�F (xc)
1�F (xc)

�a0
(1�

�
F (y)�F (xc)
1�F (xc)

�
)b
0
for some k0; a0; b0: Since we have assumed that

F (�) has a continuous density, for �xed #R; as long as xc 2 (0; 1) the above densities are well de�ned

and thus the distribution functions are continuous.

(5) To show that �(xc;#R) is de�ned on its domain we must show that fy : H�
m+1;n�#R (y;xc) =

1
2g

is non-empty if xc 2 (0; 1] and #R < m+1 and that fy : H+
m+1�(n�#R);#R (y;xc) =

1
2g is non-empty if

xc 2 [0; 1) and#R � m+1: In the �rst case, consider xc 2 (0; 1] and#R < m+1: From the proof of part

4 of this lemma we see that H�
m+1;n�#R (y;xc) has a continuous density function that is strictly positive

as long as y < xc: So the function H
�
m+1;n�#R (y;xc) is continuous and strictly increasing in y on [0; xc]

with 0 = H�
m+1;n�#R (0;xc) <

1
2 < H�

m+1;n�#R (xc;xc) = 1: This means that the set S�(xc;#R) =

fy 2 [0; 1] : H�
m+1;n�#R (y;xc) 2 (0; 1)g is non-empty for xc 2 (0; 1] and #R < m + 1: Moreover, by

the intermediate value theorem this means that the set fy : H�
m+1;n�#R (y;xc) =

1
2g is non-empty if

xc 2 (0; 1] and #R < m+1: An analogous argument establishes that fy : H+
m+1�(n�#R);#R (y;xc) =

1
2g

is non-empty if xc 2 [0; 1) and #R � m + 1: To show that �(xc;#R) is a function it is su¢ cient to

note that Fmedian(�j#R;xc) has the property that for each value of xc and #R there are 2 numbers,

a1; a2 2 [0; 1] such that Fmedian(�j#R;xc) is constant at 0 on [0; a1]; Fmedian(�j#R;xc) is strictly

increasing on [a1; a2] and Fmedian(�j#R;xc) is constant at 1 on [a2; 1]: This means that the equation

Fmedian(�j#R;xc) = 1
2 has at most one solution (and it is in [a1; a2]).

To establish continuity we consider two cases. First assume that #R < m + 1: By part 4 of this

lemma, for a �xed y, H�
m+1;n�#R (y;xc) is continuous in xc on (0; 1) and thus this and the fact that it is

strictly increasing (and has a density) in y on a neighborhood of the point fy : H�
m+1;n�#R (y;xc) =

1
2g

implies by way of the implicit function theorem that the solution �(xc;#R) is continuous in xc if

xc 2 (0; 1) and #R < m+1: Continuity at xc = 0 follows from the fact �(xc;#R) � xc if #R < m+1

and thus limxc!0 �(xc;#R) = 0 and �(0;#R) = 0. Continuity at xc = 1 follows from the fact that

H�
m+1;n�#R (y; 1) is de�ned and for each y; H

�
m+1;n�#R (y;xc) is continuous in xc at 1: An analogous

argument about H+
m+1�(n�#R);#R (y;xc) establishes continuity in the case of #R � m+ 1:�
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The next result establishes some properties of the utility di¤erence function in Equation 1. Since

this result simply uses conclusions from Lemma 1 in standard ways the proof is in the appendix.

Lemma 2 (Properties of Utility Di¤erence Function) If voters use a symmetric cutpoint strat-

egy with cutpoint xc then

(1) udif (vi) is continuous and weakly increasing in vi:

(2) (Lipschitz property) 8~vi; v̂i 2 [0; 1], judif (~vi)� udif (v̂i)j � 4 j~vi � v̂ij :

(3) udif (0) � 0 and udif (1) � 0:

We can now state our �rst main result. The proof, which applies a standard �xed point argument

to the function udif (�), is in the appendix.

Proposition 1 There exists an equilibrium in which voters use a symmetric cutpoint strategy in the

�rst period.

5 Intuition for the Convergence Result

Having established existence, we now turn to the question of equilibrium behavior in large electorates,

i.e., as m ! 1. We suppress the c subscript and let xm denote the cutpoint in a symmetric cutpoint

strategy equilibrium with n = 2m + 1 voters. Our interest is then in limm!1 xm (if it exists). We

show that this limit is equal to the point F�1( 12 ): Since this limit does not depend on the �rst period

candidate locations L and R, it is also the limit of cutpoints for equilibria in the pure signaling game.

The proof proceeds by contradiction. We show that if a sequence of cutpoints does not converge to

F�1( 12 ) then these cutpoints cannot be equilibrium cutpoints for in�nitely many values of m because

voters at the cutpoint xm; who must be indi¤erent in equilibrium, will strictly prefer to vote for one

candidate over the other. To be more precise, we show that if any subsequence of equilibrium cutpoints

converges to a point other than F�1( 12 ) then for m su¢ ciently large a voter with ideal point xm

will strictly prefer to vote for one candidate over the other. Once it is established that no subsequence

converges to a point other than F�1( 12 ) it follows that every subsequence, and thus the actual sequence,

converges to F�1( 12 ): This brief section serves as a roadmap for the proof, presenting an informal version

of the argument. The next section contains a proof of the main result.
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Suppose that in a large electorate voters behave according to a cutpoint xm which is converging to

a number Z > F�1( 12 ): We show that for large values of m a voter at xm will strictly prefer to vote R.

There are three types of e¤ects that the voter must consider.

The �rst consideration is a pivot e¤ect, which we label PV: Since the election is not expected to be a

tie, i.e., xm 6= F�1( 12 ), and the population size is large, the probability of this pivot event is exceedingly

small in a large electorate.

The second consideration involves bad signaling e¤ects from voting R; whenever more than half of

the other voters vote R, the second period policy will be to the right of xm, so if a voter with vi = xc

votes R this will move second period policy to the right, i.e., away from his ideal point, as established

in part 3 of Lemma 1. However, because xm > F�1( 12 ); more than half of the votes are expected to go

to L; and thus in a large electorate bad signaling e¤ects are extremely unlikely to occur. We �nd an

upper bound on the probability-weighted sum of these bad signaling e¤ects, and label it UBBS (upper

bound for bad signaling ).

The third consideration involves good signaling e¤ects from voting R; whenever more than half of

the other voters vote L, the second period policy will be to the left of xm, so if a voter with vi = xm votes

R this will move second period policy to the right, i.e., towards his ideal point. Since xm > F�1( 12 );

more than half of the votes are expected to go to L; and thus in a large electorate it is extremely likely

that the signaling e¤ect of voting R will be good. We �nd a lower bound on the probability-weighted

sum of these good signaling e¤ects, and label it LBGS (lower bound for good signaling ).

We consider the ratio of bad signaling plus pivot e¤ects to good signaling e¤ects, and show that this

ratio

PV + UBBS

LBGS

can be expressed as a limit of the form

lim
m!1

Ptie + (m+ 1)Ptie
cP

: (4)

In this expression, Ptie =
�
2m
m

�
F (xm)

m (1� F (xm))m is the probability of an exact tie among the other

2m voters given the cutpoint xm. In the denominator, P is the probability of a certain type of good

signaling e¤ect, and P goes to zero much more slowly than Ptie: The c in the denominator is a constant

that does not depend on m. At the end of the proof we show that Equation 4 is bounded by an
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expression of the form (m+ 2) q(
1
2�c1)2m with constants q 2 (0; 1), and c1 2 (0; 1=2) : Thus the limit of

Equation 4 is 0, which means that for a voter with ideal point xm (and voters with ideal points close

enough to xm) it will be optimal to deviate and vote R:

6 The Convergence Result

Our main result is

Proposition 2 limm!1 xm = F�1( 12 ):

Proof: Assume by way of a contradiction that the cutpoints do not converge to the point M �

F�1( 12 ): Because xm 2 [0; 1], 8m; the Bolzano-Weierstrass Theorem implies that there exists some

number Z 2 [0; 1] with Z 6=M such that a subsequence fxm0g ! Z: We focus on such a subsequence,

ignoring the residual portion of the original sequence. Thus the assumption that Proposition 2 is false

equates to the claim that fxmg ! Z. Either Z < M or Z > M and in the remainder of the proof we

focus on the latter case; the argument for the former case is virtually identical and is thus omitted.

Our goal is to show that there exists a �m such that if m > �m then a voter with ideal point xm has

a strict preference to vote for R: Once this claim is established, the continuity of the utility functions

established in Lemma 2 implies that form > �m there exists a �m > 0 such that if vi 2 (xm��m; xm+�m)

a voter with ideal point vi prefers to vote for R when everyone else uses the cutpoint xm: Thus for

some voters to the left of xm voting L is not a best response, contradicting the hypothesis that xm is

an equilibrium cutpoint when the population size is 2m+ 1: This contradiction means that we cannot

have a subsequence of cutpoints converging to any Z 6=M and thus the sequence of cutpoints converges

to M:

For each m, consider a voter, i, with ideal point xm. Given that voters to the left of xm vote L and

voters to the right of xm vote R, the probability of any individual voting R is

pm � 1� F (xm):

Since xm > F�1(1=2) we know that pm < 1
2 :

We start by analyzing the utility function of a voter with ideal point xm: If exactly m voters other

than i vote R then the election is tied, and i�s vote is pivotal in determining the �rst period policy.
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However, in terms of �rst period motivations, which depend on the candidate locations L and R; it is

not clear whether i prefers to vote L or vote R in the event that he is pivotal. In terms of second period

motivations, which depend on candidate locations given #R; it is also unclear whether i prefers to vote

L or vote R in the event that he is pivotal.

In contrast, the voter�s preferences are clear for events in which he is not pivotal. If m� 1 or fewer

of the other voters vote for R the second period policy will be to the left of xm regardless of i�s vote

and if at least m+1 of the other voters vote for R then the second period policy will be to the right of

xm regardless of i�s vote (as established in Remark 1). These facts and the monotonicity of the second

period policy in #R (part 3 of Lemma 1) imply that if m � 1 or fewer of the other voters vote for R

then a vote for R moves the second period policy closer to i�s ideal point. On the other hand, if at least

m + 1 of the other voters vote for R; then a vote for R moves the second period away from i�s ideal

point. Note that in either of these cases; i�s vote cannot move policy far enough to leapfrog her ideal

point, xm (see Remark 1).

Following Equations 1, 2, and 3, given the conjectured equilibrium for population size n = 2m+ 1;

the utility di¤erence between voting R versus voting L for a voter with ideal point vi = xm in the

equilibrium with population size 2m+ 1 is

umdif (xm) � umdif1 (xm) + umdif2 (xm)

which we re-write as

umdif (xm) =

�
2m

m

�
(1� pm)m pmm (
(jL� xmj)� 
(jR� xmj)) (5)

+
m�1X
k=0

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)�
+

�
2m

m

�
(1� pm)m pmm

�

(

����F�1median�12 jm;xm
�
� xm

����)� 
(����F�1median�12 jm+ 1;xm
�
� xm

����)�
+

2mX
k=m+1

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)� :
The �rst line of Equation 5 is the pivot e¤ect. The second line represents good signaling e¤ects of

voting R when m�1 or fewer other voters vote R. The third line represents the indeterminate signaling

e¤ect when the 2m other voters split their votes equally between L and R. The fourth line represents

bad signaling e¤ects, when m+ 1 or more other voters vote R:
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Our ultimate goal is to show that there exists an �m such that for m > �m; umdif (xm) > 0: To simplify

the expression in Equation 5, we �rst simplify each component of the utility function, by �nding bounds

that limit how severe the bad e¤ects of voting R can be, along with a lower bound on good e¤ects of

voting R:

Pivot e¤ect. The pivot e¤ect can be either positive or negative, depending on the positions of the two

�rst-period candidates. A bound based on the fact that L; R, and xm are all in the interval [0; 1]; will

be su¢ cient:�
2m

m

�
(1� pm)m pmm (
(jL� xmj)� 
(jR� xmj)) > �

�
2m

m

�
(1� pm)m pmm
0(1) = �

�
2m

m

�
(1� pm)m pmm:

(6)

Recall that we have normalized utility so that 
0(1) = 1 and we have assumed that this function is

convex, allowing us to treat the maximal possible utility di¤erence between L and R as 1.

Bad and indeterminate signaling e¤ects. For any k 2 f1; ::; n� 1g, F�1median
�
1
2 jk;xm

�
2 (0; 1) and

F�1median
�
1
2 jk + 1;xm

�
2 (0; 1), so

2mX
k=m+1

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)�
+

�
2m

m

�
(1� pm)m pmm

�

(

����F�1median�12 jm;xm
�
� xm

����)� 
(����F�1median�12 jm+ 1;xm
�
� xm

����)�
> �

2mX
k=m

�
2m

k

�
(1� pm)2m�k pmk
0(1) = �

2mX
k=m

�
2m

k

�
(1� pm)2m�k pmk

We will use repeatedly the fact that the binomial expansion is monotonic. In particular, since pm < 1=2;

for any k 2 fm+ 1; :::; 2mg ;
�
2m
k

�
(1� pm)2m�k pmk <

�
2m
m

�
(1� pm)m pmm: As a consequence of this

fact, the total of the bad and indeterminate signaling e¤ects must be strictly greater than

� (m+ 1)
�
2m

m

�
(1� pm)m pmm: (7)

Good signaling e¤ects. We now develop a lower bound on good signaling e¤ects. Fix any points A

and B in the unit interval such that M < A < B < Z: For any m; let Am represent the largest number

less than A such that for some integer am < 2m + 1 it is the case that Am = F�1median
�
1
2 jam;xm

�
:

Likewise, let Bm represent the largest number less than B such that for some integer bm < 2m + 1

it is the case that Bm = F�1median
�
1
2 jbm;xm

�
: For the bm identi�ed in the de�nition of Bm let Cm =

F�1median
�
1
2 jbm + 1;xm

�
:
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For m su¢ ciently large it turns out that M < Am < Bm < B � Cm < Z, and since we are

interested in the limit as m ! 1 we henceforth focus on values of m that are large enough for this

inequality to hold. Since Am � Bm < B < Z are true by construction, establishing that these

inequalities eventually hold requires only that we show that (i) M < Am, (ii) B � Cm < Z and (iii)

Am < Bm for m large enough. Each of these results follows from the fact that for any q 2 (0; 1) the

sequence
��F�1median � 12 j(2m+ 1)q + 1;xm�� F�1median � 12 j(2m+ 1)q;xm��� converges to 0. To see this note

that in the �rst instance this fact allows us to conclude that if Am < M in�nitely often then it is

not the case that for every m; A < F�1median
�
1
2 jam + 1;xm

�
; which contradicts the de�nition of Am

(and am). In the second instance, if Z < Cm in�nitely often then this fact means that we must have

B < Bm for in�nitely many values of m (contradicting the de�nition of Bm) and if Cm < B in�nitely

often then this fact means that for in�nitely many values of m; Bm < Cm < B; contradicting the

de�nition of Bm: In the third instance the fact that A < B implies that if Am = Bm then Am > A or

F�1median
�
1
2 jbm + 1;xm

�
< B for in�nitely many m (contradicting the de�nition of Am or Bm).

For �xed m the set of pro�les for other voters that, given i0s vote, can result in a policy be-

tween Am and Cm consists of pro�les for which the number of other voters that vote R is in the set

fam; am + 1; ::::; bm � 1; bmg: Although we cannot analytically solve for the policy distance between

F�1median
�
1
2 jk;xm

�
and F�1median

�
1
2 jk + 1;xm

�
for particular values of k; we do know that

bmX
k=am

�
F�1median

�
1

2
jk + 1;xm

�
� F�1median

�
1

2
jk;xm

��
= Cm �Am > B �A:

Since we have Am < Bm < B � Cm the last inequality above is due to the fact that Am < A < B: We

re-write the good signaling e¤ects term from Equation 5 as

m�1X
k=0

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)�

=

am�1X
k=0

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)�

+

bmX
k=am

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)�

+
m�1X

k=bm+1

�
2m

k

�
(1� pm)2m�k pmk

�

(

����F�1median�12 jk;xm
�
� xm

����)� 
(����F�1median�12 jk + 1;xm
�
� xm

����)� :
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Because B < Z and 
(�) is convex the slope of the utility di¤erence to i with vi > Z+B
2 for points in

[0; B] is at least 
 := 
0(Z�B2 ): Since 
(�) is strictly increasing 
0(Z�B2 ) > 0: Because xm is assumed

to converge to Z; for m su¢ ciently large vi > Z+B
2 : Thus, the good signaling e¤ects term is eventually

greater than

bmX
k=am

�
2m

k

�
(1� pm)2m�k pmk

�����F�1median�12 jk;xm
�
� xm

����� ����F�1median�12 jk + 1;xm
�
� xm

����� 
:
Since M < Am < Cm and pm < 1=2; we know from monotonicity of the binomial expansion that the

event in which bm others vote for R is the least likely of the set of pro�les of the 2m other voters in

which i�s vote can result in a policy in the interval [Am; Cm]. Thus the above expression is greater than�
2m

bm

�
(1� pm)2m�bm pbmm

bmX
k=am

�����F�1median�12 jk;xm
�
� xm

����� ����F�1median�12 jk + 1;xm
�
� xm

����� 
: (8)
Note that because 8k 2 fam; am + 1; :::; bmg ; F�1median

�
1
2 jk;xm

�
< F�1median

�
1
2 jk + 1;xm

�
< xm;

bmX
k=am

�����F�1median�12 jk;xm
�
� xm

����� ����F�1median�12 jk + 1;xm
�
� xm

�����

= F�1median

�
1

2
jbm + 1;xm

�
� F�1median

�
1

2
jam;xm

�
= Cm �Am

> B �A:

Thus, we can rewrite Equation 8 to get the following lower bound for good signaling e¤ects:


 (B �A)
�
2m

bm

�
(1� pm)2m�bm pbmm : (9)

Having derived bounds on pivot e¤ects, bad signaling e¤ects, and good signaling e¤ects (Equations 6,

7, and 9, respectively) we now substitute these bounds into the utility di¤erence expression in Equation

5 to get

umdif (xm) > �
�
2m

m

�
(1� pm)m pmm�(m+ 1)

�
2m

m

�
(1� pm)m pmm+
 (B �A)

�
2m

bm

�
(1� pm)2m�bm pbmm :

To show that there exists an �m, such that for m > �m; umdif (xm) > 0, it is su¢ cient to show that

lim
m!1

�
2m
m

�
(1� pm)m pmm + (m+ 1)

�
2m
m

�
(1� pm)m pmm


 (B �A)
�
2m
bm

�
(1� pm)2m�bm pbmm

= 0:
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Combining terms in the numerator, and noting that 
 (B �A) is strictly greater than zero and unaf-

fected by m; it is su¢ cient to show that limm!1 (m+ 2)
(2mm )(1�pm)

mpm
m

(2mbm)(1�pm)
2m�bmpbmm

= 0: For convenience,

de�ne 	m = (m+ 2)
(2mm )(1�pm)

mpm
m

(2mbm)(1�pm)
2m�bmpbmm

: Rearranging yields

	m = (m+ 2)

�
pm

1� pm

�m�bm �2m
m

��
2m
bm

�
= (m+ 2)

�
pm

1� pm

�m�bm 2m!
m!m!
2m!

bm!(2m�bm)!

= (m+ 2)

�
pm

1� pm

�m�bm bm!(2m� bm)!
m!m!

= (m+ 2)

�
pm

1� pm

�m�bm Qm�bm
j=1 (2m� bm � j + 1)Qm�bm

j=1 (m� j + 1)
:

Taking the largest of the m� bm terms on the top of the product and the smallest of the m� bm terms

on the bottom we see that

	m < (m+ 2)

�
pm

1� pm

�m�bm Qm�bm
j=1 (2m� bm)Qm�bm
j=1 (bm + 1)

= (m+ 2)

��
pm

1� pm

��
2m� bm
bm + 1

��m�bm
: (10)

To �nd limm!1	m we establish results about the terms
�

pm
1�pm

��
2m�bm
bm+1

�
and the exponent m� bm.

Two intermediate limiting results will be established. The �rst is the fact that Bm ! B 2 (M;Z).

The second, which builds on the �rst, is that limm!1
bm
2m 2 (0; 12 ]:

Recall that Bm is the largest number less than B such that for some integer bm < 2m + 1

it is the case that Bm = F�1median
�
1
2 jbm;xm

�
: We now claim that Bm ! B: To see this note

that if for some " > 0;
��F�1median � 12 jbm;xm��B�� > " in�nitely often we obtain the following con-

tradiction. Since maxx2[0;1] jFmedian (xjbm;xm)� Fmedian (xjbm + 1;xm)j ! 0 there is some m0 s.t.��F�1median � 12 jbm0 ;xm0
�
� F�1median

�
1
2 jbm0 + 1;xm0

��� < " and thus F�1median
�
1
2 jbm0 + 1;xm0

�
< B; contra-

dicting the de�nition of Bm0 . We have, thus, shown that Bm = F
�1
median

�
1
2 jbm;xm

�
is converging to B;

which is in (M;Z): This implies that bm must also have a limit.

We use this fact to establish eventual bounds on the ratio bm
2m : Suppose now that

bm
2m converges to a

number greater than 1
2 . By Remark 1, bm > m+1 implies that F

�1
median

�
1
2 jbm;xm

�
> xm and since we

have assumed that xm ! Z, and we have F�1median
�
1
2 jbm;xm

�
! B we must have B � Z contradicting

the de�nition of B (that B < Z). Also it is clear that bm ! 0 is not possible since B > 0 and Bm ! B:

Thus c1 := lim bm
2m 2 (0; 12 ].

23



We now work on the limit of the terms in brackets from equation 10, using the fact that limm!1 pm =

1� F (Z) and limm!1
bm
2m = c1,

lim
m!1

�
pm

1� pm

��
2m� bm
bm + 1

�
= lim

m!1

�
pm

1� pm

� 
1� bm

2m
bm+1
2m

!

=
1� F (Z)
F (Z)

� 1� c1
c1

: (11)

We wish to show that 1�F (Z)
F (Z) � 1�c1c1

2 (0; 1) ; and because maxf1 � F (Z) ; c1g � 1
2 it su¢ ces to show

that c1 > 1� F (Z). We show that if c1 � 1� F (Z) then B �M:

First, from Theorem 2.5 in David and Nagaraja (2003, p. 17) the distribution of the (m+ 1)�th ideal

point (i.e. the median) from 2m+ 1 (i.e. n) draws from F (�) conditional on the fact that bm < m+ 1

realized ideal points are greater than xm is just the distribution of the (m+ 1)�th draw from 2m+1�bm

draws from the distribution F (�)
F (xm)

on [0; xm]; which we denote as Xm+1;2m+1�bm :

To disprove the possibility that c1 � 1� F (Z) we assume that there is a � � 0 such that c1 + � =

1 � F (Z): We use a very weak consequence of Sen�s result on the asymptotic normality of sample

quantiles for non i.i.d. draws (Sen 1968, p. 1725, Theorem 2.1).5 to conclude that Xm+1;2m+1�bm

is asymptotically normal with mean � where � solves F (�)
F (Z) =

1
2F (Z)+2� <

1
2 : This is true since we

have just established that Xm+1;2m+1�bm is an order statistic from
F (�)
F (xm)

, which is converging to F (�)
F (Z)

by assumption, and lim m+1
2m+1�bm = 1

2(1�c1) =
1

2(F (Z)+�) : Thus Xm+1;2m+1�bm has the same limiting

distribution as X n
2F (Z)+2�

;n: This means that Xm+1;2m+1�bm is asymptotically normal with mean �

where � solves F (�)
F (Z) =

1
2F (Z)+2� �

1
2 and thus since F (�) is strictly increasing on its support, F (�) �

1
2

implies that � �M: But this means that B �M; which is not possible. Given that we have established

1
2 � c1 > 1� F (Z), we conclude that

1�F (Z)
F (Z) � 1�c1c1

2 (0; 1):

5Sen extends Bahadur�s (1966) result on the asymptotic normality of a qauntile of a sample to the case of non i.i.d random

variables. Bahadur�s result states that if F (x) is a probability distribution that is twice di¤erentiable and F (�) = p (with

density f(�) > 0) and Xr;n is the r th order statistic from n draws and Zn is the number of observations greater than � then

for r=n! p 2 (0; 1) the random variable Xr;n is equal to �+
Zn�n(1�p)

nf(�)
+Rn; where Rn vanishes, and this random variable is

asymptotically normal. Sen�s generalization goes well beyond but includes the case of independent draws from distributions

that vary with n; Fn(�). This is the only part of the extension we need. The challenge of these results is pinning down the

rate of convergence of Rn. We care only about the fact that Xr;n is asymptotically normal with mean �:
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We now �nd a lower bound, as a function of m; on the exponent m � bm in Equation 10. We

�rst tighten the bound on c1 showing that in fact c1 < 1
2 . By way of a contradiction suppose now

that bm
2m ! 1

2 : We can divide this sequence into two subsequences. The �rst subsequence contains

f bt2tg
1
t=1 with t satisfying bt � t; and the second contains f bj

2j+1g
1
j=1 with t satisfying bj > j: So the

�rst subsequence consists of the cases where the median ideal point is an intermediate order statistic of

the form Xbt;t from the parent distribution F (�)
F (xm)

on [0; xm] with kt
t ! 1 and the second subsequence

consists of the cases where the median ideal point is an intermediate order statistic of the form Xbj�j;j

from the parent distribution F (y)�F (xm)
1�F (xm) on [xm; 1] with

bj�j
j ! 0: For intermediate order statistics, the

relevant analogue to the result by Sen used above is due to Watts (1980). To apply Watts�s Theorem

1 we �rst consider a slight modi�cation of the subsequences with the parent distributions F (�)
F (Z�") on

[0; Z�"] and F (y)�F (Z+")
1�F (Z+") on [Z+"; 1] respectively. Here " is chosen to satisfy Z�B > 2":Watts�s result,

restated in our notation, states that as long as the convergence of ktt ! 1 and bj�j
j ! 0 is slow enough,

the relevant order statistics converge to Z � "+ �t and Z + "+ �j in probability (where both �t and �j

vanish at a known rate).6 These two convergence results imply that even when kt
t ! 1 and bj�j

j ! 0

converge slowly Fmedian (Z � 2"jbt;Z � ") ! 0 and Fmedian (Z + 2"jbj ;Z + ") ! 1: Accordingly it is

not possible for Bm to converge to B with B < Z�2": Now we relax the assumption that the sequence

of draws is from identical parent distributions and allow for the fact that the draws are from F (�)
F (xm)

on

[0; xm] and
F (y)�F (xm)
1�F (xm) on [xm; 1]: To accommodate this fact it is su¢ cient to observe that the actual

order statistics in the subsequence f bt2tg
1
t=1 (as well as f

bj
2j+1g

1
j=1) �rst order stochastically dominate the

subsequence f bt2tg
1
t=1 with parent distribution

F (�)
F (Z�") on [0; Z � "] .

7 Thus, we cannot have Bm ! B if

bm
2m ! 1

2 , so it cannot be that
bm
2m ! 1

2 ; so c1 2 (0;
1
2 ). Thus limm!1

m�bm
2m = 1

2 � c1, and if we �x a

� =
1
2�c1
2 there exists a m1 such that for all m > m1;

m�bm
2m > 1

2 � c1 � �; i.e.;

m� bm >
�
1

2
� c1

�
2m: (12)

6Bounds on the rate of kt
t
! 1 and bj�j

j
! 0 are critical to showing that a limiting distribution exists. For example

when bj�j
log3 j

has a �nite limit the intermediate order statistic behaves like an extreme value and may not possess a limiting

distribution. For our purposes the worst case scenarios are the ones when the convergence is slow. If bm
2m

! 1
2
more quickly,

it is even harder to support Bm ! B with B 6= Z while xm ! Z:
7This additional, rather trivial, step is neccesitated by our inability to �nd an extension of Watts�s result to the case of

non i.i.d draws from a parent distribution.
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To conclude the argument we can combine results from Equations 10, 11, and 12 to get our result:

lim
m!1

	m � lim
m!1

(m+ 2)

�
1� F (Z)
F (Z)

� 1� c1
c1

�( 12�c1)2m
= 0:

This last step follows from the observation that the relevant limit is of the form limm!1 (m+ 2) (�(m))
�(m)

where limm!1 �(m) 2 (0; 1) and limm!1 �(m) =1:�

7 Discussion

One can imagine other signaling motivations in elections.8 In fact Razin (2003) discusses a model in

which the signaling motivation is exogenous. The goal of our paper, in contrast, is to consider a game

where the signaling motivation is endogenous and see which e¤ect �pivot or signaling �dominates.

A natural extension of our analysis would be a model in which the second period candidates do not

converge in equilibrium, e.g., because they face uncertainty about voter preferences and have policy

motivations. We conjecture that the proof technique employed in establishing Proposition 2 could be

extended to address this case, but such an analysis is beyond the scope of this paper.

At a broader level, our result has important implications for theories of elections. Put bluntly, it

may be the case that existing electoral models� focus on pivot events is misplaced. Of course, the

purely pivot-based variant of our model is substantially more simpli�ed than the sophisticated one-shot

pivot-based models that other authors have used to analyze issues such as turnout, multiple candidates,

sequential versus simultaneous voting, and voters�correlated private information. However, all of these

analyses are fundamentally based on low-probability pivot events, so our main result suggests that it

might be fruitful to rethink some of the more sophisticated pivot-based models, as well as the insights

about representation and e¢ ciency that they yield, when there is a large electorate and a signaling

motivation is present.

8We should note that at least two authors have conjectured that signaling may remain important in large elections. Fowler

and Smirnov (2007) analyze a decision theoretic model of voting in situations where vote totals a¤ect future policies via an

exogenously set reaction function. Although Fowler and Smirnov are interested in the importance of the signaling motivation

they assume the problem away by hard wiring the pivot probability at zero so their model cannot be used to analyze the

relative importance of pivot and signaling e¤ects. Our �nding breathes additional life into the relevance of their conclusions.
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8 Appendix

The following lemma is used in the proof of Proposition 1.

Lemma 2:

(1) udif (vi) is continuous and weakly increasing in vi:

(2) [Lipschitz property] 8~vi; v̂i 2 [0; 1], judif (~vi)� udif (v̂i)j � 4 j~vi � v̂ij.

(3) udif (0) � 0 and udif (1) � 0.

Proof: We �rst prove separate versions of this result for udif1 (vi) and udif2 (vi), then combine them

to get the desired result for udif (vi) = udif1 (vi) + udif2 (vi) :

For udif1 (vi) ; note that 
 (jL� vij) � 
 (jR� vij) is continuous and weakly increasing in vi since


 is continuous and strictly increasing and L � R: Thus, because
�
2m
m

�
(F (xc))

m
(1� F (xc))m 2 [0; 1] ;

udif1 (vi) is continuous and weakly increasing in vi: For the Lipschitz property, note that

judif1 (~vi)� udif1 (v̂i)j = j
(jL� ~vij)� 
(jR� ~vij)� 
(jL� v̂ij) + 
(jR� v̂ij)j

= j
(jL� ~vij)� 
(jL� v̂ij)� 
(jR� ~vij) + 
(jR� v̂ij)j

which is less than or equal to 2 j~vi � v̂ij because 
0(1) = 1 and 
(�) is convex. Finally, since L � R,

udif1 (0) � 0 and udif1 (1) � 0.

For udif2 (vi) ; note that by part 3 of Lemma 1, 8k 2 f1; :::; 2mg ; F�1median
�
1
2 jk;xc

�
� F�1median

�
1
2 jk + 1;xc

�
;

so 
(
��F�1median � 12 jk;xc�� vi��) � 
(��F�1median � 12 jk + 1;xc�� vi��) is continuous and weakly increasing in

vi. Thus the probability-weighted sum,

2mX
k=0

�
2m

k

�
(F (xc))

2m�k
(1� F (xc))k

�

(

����F�1median�12 jk;xc
�
� vi

����)� 
(����F�1median�12 jk + 1;xc
�
� vi

����)�
is continuous and weakly increasing in vi: For the Lipschitz property, note that judif2 (~vi)� udif2 (v̂i)j

equals�������
P2m

k=0

�
2m
k

�
(F (xc))

2m�k
(1� F (xc))k

�

(
��F�1median � 12 jk;xc�� ~vi��)� 
(��F�1median � 12 jk + 1;xc�� ~vi��)��P2m

k=0

�
2m
k

�
(F (xc))

2m�k
(1� F (xc))k

�

(
��F�1median � 12 jk;xc�� v̂i��)� 
(��F�1median � 12 jk + 1;xc�� v̂i��)�

�������
which simpli�es to�������
2mX
k=0

�
2m

k

�
(F (xc))

2m�k
(1� F (xc))k

0B@ 
(
��F�1median � 12 jk;xc�� ~vi��)� 
(��F�1median � 12 jk;xc�� v̂i��)

�
(
��F�1median � 12 jk + 1;xc�� ~vi��) + 
(��F�1median � 12 jk + 1;xc�� v̂i��)

1CA
������� :
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Recall that 
0(1) = 1 and 
(�) is convex, so the above less than or equal to

2mX
k=0

�
2m

k

�
(F (xc))

2m�k
(1� F (xc))k � 2 j~vi � v̂ij � 2 � j~vi � v̂ij

For udif2 (0) � 0; recall from part 3 of Lemma 1 that 8k; F�1median
�
1
2 jk;xc

�
� F�1median

�
1
2 jk + 1;xc

�
so

udif2 (0) =
2mX
k=0

�
2m

k

�
(F (xc))

2m�k
(1� F (xc))k

�
F�1median

�
1

2
jk;xc

�
� F�1median

�
1

2
jk + 1;xc

��
� 0

By a similar argument udif2 (1) � 0:

Because udif1 (vi) and udif2 (vi) are continuous and weakly increasing in vi; so is udif (vi) =

udif1 (vi) + udif2 (vi) : And because judif1 (~vi)� udif1 (v̂i)j � 2 j~vi � v̂ij and judif2 (~vi)� udif2 (v̂i)j �

2 j~vi � v̂ij ; we have judif (~vi)� udif (v̂i)j � 4 j~vi � v̂ij : Finally, udif1 (0) � 0 and udif2 (0) � 0 imply

that udif (0) � 0; and likewise udif1 (1) � 0 and udif2 (1) � 0 imply udif (1) � 0:�

Proposition 1: There exists an equilibrium in which voters use a symmetric cutpoint strategy in

the �rst period.

Proof: Consider the correspondence

�(xc) = fvi 2 [0; 1] : udif (vi) = 0 when Nni use the symmetric cutpoint strategy speci�ed by xcg

Note that �(xc) : [0; 1] ! [0; 1] is nonempty for all xc 2 [0; 1]; by parts 1 and 3 of Lemma 2 and the

Intermediate Value Theorem. Also, since udif (x) is continuous and weakly increasing, �(xc) is convex-

valued. So, to apply Kakutani�s �xed point theorem, and conclude that there exists an equilibrium,

i.e., an x�c 2 � (x�c) ; all we need to do is to establish that �(xc) is upper hemi-continuous.

Consider a sequence of points fxtcg ! ~xc and a sequence fytg ! ~y where yt 2 �(xtc);8t:We need to

show that ~y 2 �(~xc):

For each t; following the de�nition of udif (vi) in Equation 1, let utdif (vi) be the utility di¤erence

function given cutpoint xtc and let ~udif (vi) be the utility di¤erence function given cutpoint ~xc:

We �rst note that
n
utdif (vi)

o
converges pointwise to ~udif (vi) : The �rst part of the utility di¤erence

function is

utdif1 (vi) =

�
2m

m

��
F (xtc)

�m �
1� F (xtc)

�m
(
(jL� vij)� 
(jR� vij))
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which converges pointwise to

~udif1 (vi) =

�
2m

m

�
(F (~xc))

m
(1� F (~xc))m (
(jL� vij)� 
(jR� vij))

since fxtcg ! ~xc: The second part is

utdif2 (vi) �
2mX
k=0

�
2m

k

��
F (xtc)

�2m�k �
1� F (xtc)

�k
�
�

(

����F�1median�12 jk;xtc
�
� vi

����)� 
(����F�1median�12 jk + 1;xtc
�
� vi

����)�
which (by part 5 of Lemma 1, continuity of 
(�), and the fact that fxtcg ! ~xc) converges pointwise to

~udif2 (vi) �
2mX
k=0

�
2m

k

�
(F (~xc))

2m�k
(1� F (~xc))k

�
�

(

����F�1median�12 jk; ~xc
�
� vi

����)� 
(����F�1median�12 jk + 1; ~xc
�
� vi

����)� :
Now we suppose that ~y =2 �(~xc); and derive a contradiction. If ~y =2 �(~xc) then either ~udif (~y) > 0 or

~udif (~y) < 0:Without loss of generality suppose the former. Then since utdif (vi) converges pointwise to

~udif (vi) there exists T such that for all t > T; utdif (~y) >
~udif (~y)

2 : By the Lipschitz property in part 2 of

Lemma 2, for all t > T; utdif (~y)� utdif (~y � �) � 4� for any � > 0: Setting � =
~udif (~y)

8 we have that for

t > T; utdif (~y) � utdif (~y � �) <
~udif (~y)

2 , so utdif (~y � �) > utdif (~y) �
~udif (~y)

2 > 0: Thus, since yt 2 �(xtc)

or, equivalently, utdif (y
t) = 0; and utdif (vi) is weakly increasing in vi, we conclude that y

t < ~y � � for

all t > T; which means that fytg cannot converge to ~y; a contradiction.�
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Figure 1:  Equilibrium in Example 2, Combined Model

First period candidates:  L=1/2, R=1

First period voter 
strategy, as a function 
of voter’s ideal point

Second period policy, 
as a function of first 

period votes

0.325           0.463                     0.756      0.825
{L,L,L}           {L,L,R}                     {L,R,R}     {R,R,R}

Vote L Vote Rxc = 0.65



Figure 2

Examples of H-(y;xc ) for values of xc in {0,0.65,1}

0 1

H-

1

y

xc0.65

H-(y;0)

H-(y;0.65)

H-(y;1)



Figure 3

Examples of H-
m+1,n - #R (y;xc ) for xc = 0.65

N=11, m+1=6, and #R is either 2 (for the left dashed line) or 
3 (for the right dashed line)

For #R = 3, F-1
median (1/2|#R;xc ) = 0.39

For #R = 4, F-1
median (1/2|#R;xc ) = 0.44

0

0.5

1

0 10.39  0.44                     0.65

H -6, 9 (y;xc )

H -6, 8 (y;xc )
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