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Abstract

We study a game in which candidates for elected office first choose platforms and
then invest in costly valences (through, for example, campaign spending). The marginal
return to valence accumulation depends on the degree of platform polarization—the
closer together are the platforms, the more valence affects the election outcome. Conse-
quently, even though candidates have no policy preferences, they diverge in equilibrium
to soften valence competition. Moreover, exogenous increases in incentives for valence
accumulation lead to both increased valence and increased polarization—the latter as a
result of candidates seeking to avoid the costs of extra valence. As a result, the increase
in valence is smaller in equilibrium than it would have been with exogenous platforms.
Finally, the model highlights the overlooked substantive importance of common mod-
eling assumptions. In particular, changing the source of uncertainty in our model from
noise around the median voter’s ideal point to a stochastic shock to one candidate’s
valence (as is common in the literature) leads to complete platform convergence for all
parameter values.
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Candidates for elected office devote significant attention to at least two distinct types
of campaign activities: establishing platform positions on issues, and building support on
non-policy grounds (valence) by spending money on impressionistic advertising or building
reputations for charisma. Most existing models have treated these activities in isolation.
(Stokes (1963) was an early critic of Downs (1957) on exactly this ground.) But this ana-
lytical approach runs the risk of missing important complementarities or substitutabilities
between the two kinds of activity. This paper provides an example: the incentives to accu-
mulate valence (through, for example, campaign spending) are likely to be sensitive to the
degree of platform polarization. Thus a candidate might change her platform with an eye
toward manipulating subsequent choices about valence accumulation.

The first strand of the literature examining interactions between platforms and va-
lence focused on how a fixed valence advantage affects platform choices (Aragones and
Palfrey, 2002; Ansolabehere and Snyder, 2000; Groseclose, 2001; Londregan and Romer,
1993; Schofield, Forthcoming). More recently, scholars have started to consider the joint
determination of platforms and valences in equilibrium (Carrillo and Castanheira, 2006;
Dickson and Scheve, 2006; Eyster and Kittsteiner, 2007; Herrera, Levine and Martinelli,
2005; Meirowitz, 2004; Morton and Myerson, 1992; Schofield, 2003; Zakharov, 2005). We
contribute to this latter project. (In section 7.3, we relate our model to these other models
of endogenous valence and platforms.) Because of the timing of our game, in which va-
lence accumulation follows platform choices, investment in valence here is best thought of
as something like campaign spending that buys name recognition.1

We study a game in which candidates first choose platforms and then choose valences.
The voter’s utility is additively separable between valence and policy, and the policy com-
ponent is strictly concave in the distance between the implemented policy and the voter’s
ideal point. This implies that the marginal return to valence accumulation depends on the
degree of platform polarization—the closer together are the platforms, the more the voter
responds to valence. This endogenous weighting of valence and policy is the key innovation
of the paper relative to the existing literature on the joint determination of valence and
platforms.

Our first result is that, even though they have no policy preferences, parties diverge
in equilibrium, to soften valence competition. Intuitively, a candidate may be unwilling to

1The literature has discussed several different interpretations of valence. One prominent interpretation
is that valence is built up by advertising or other campaign activities (Erikson and Palfrey, 2000). Polo
(1998) studies a model in which politicians commit to levels of rent extraction prior to the election. In this
case, valence is the inverse of corruption. Another interesting interpretation of valence is provided by Snyder
and Ting’s (2002) model of party discipline. In their model, discipline screens potential members of a party
on the basis of ideology. Thus more disciplined parties have less dispersed distributions of candidate ideal
points. Holding the mean ideology constant, this reduced dispersion acts as a valence term for risk-averse
voters.
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move toward the median voter because the increased probability of winning is too small to
compensate the candidate for the greater valence expenditures that will follow.

To see why this matters, consider the extreme case of complete convergence. In this case,
whichever candidate chooses the higher valence wins. Thus an arbitrarily small increase in
valence can make the difference between losing and winning. This gives extreme incentives
for valence accumulation. With divergence, on the other hand, a candidate’s expected payoff
is a continuous function of her valence, so a small increase in valence yields only a small
increase in the chance of winning. More generally, greater platform polarization decreases
the marginal benefit of valence accumulation.

The idea that candidates diverge to soften incentives for valence accumulation is rem-
iniscent of the classical industrial organization finding that firms might differentiate their
products to soften price competition (Tirole, 1988, ch. 7). But there are some new subtleties
involved in extending this idea to an electoral context. First, the winner-take-all nature of
elections means that we must work with mixed-strategy equilibria in the valence subgames.
While pure-strategy equilibria can fail to exist in Hotelling’s pricing game for some specifi-
cations of transportation costs, pure-strategy existence can be guaranteed by appropriately
choosing the functional form of transportation costs (d’Aspremont, Gabszewicz and Thisse,
1979; Anderson, 1988). Moreover, in the only paper we are aware of that treats the mixed
strategy case, Osborne and Pitchik (1987) are unable to give a complete treatment of the
subgame-perfect equilibria. Consequently, most of the IO literature focuses on the case of
quadratic transportation costs, where pure-strategy existence is guaranteed.2 Such a move
is not open to us—there is no way to vary the functional forms to avoid mixed strategies in
our model.

Second, extending the intuition about divergence highlights the substantive importance
of choices about how to model probabilistic voting in models of elections. Our result that
polarization reduces the incentives to accumulate valence relies critically on the fact that
uncertainty in our model is about the median voter’s ideal point (what Duggan (2005) calls
the “stochastic preference” model). Most of the political economy literature, on the other
hand, uses a model in which uncertainty comes from an exogenous valence shock to one of
the candidates (what Duggan calls the “stochastic partisanship” model). The literature’s
preference for the stochastic partisanship model is largely driven by the ease of working
with it relative to the less well-behaved stochastic preference model. Our analysis certainly
illustrates that the stochastic preference model can be hard to work with, but it also shows
that the choice is not simply one of analytic convenience—substantive conclusions can be
radically different between the two models. In particular, as we demonstrate formally in
the section 7.1, changing our model from stochastic preferences to stochastic partisanship

2Recent contributions in this vein are Anderson and Goeree (1997) and Meagher and Zauner (2004).
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leads to complete platform convergence for all parameter values.
We also study how the joint determination of valence and platforms affects the compar-

ative statics of valence accumulation and platforms. Holding platforms fixed, an exogenous
increase in the marginal benefit-to-cost ratio of valence accumulation would increase the
amount of valence accumulated. However, platforms are not fixed in the model. In equi-
librium, candidates, anticipating the greater investment in valence caused by an increase
in the marginal benefit-to-cost ratio, may diverge more to soften valence competition. We
show that, despite this countervailing effect associated with endogenous platforms, total
equilibrium valence accumulation is increasing in the benefit-to-cost ratio of valence. How-
ever, endogenous platforms do have an important effect. In particular, the increase in
valence accumulation is less than it would have been with exogenous platforms. Moreover,
these two comparative statics suggest that, even though increased polarization decreases
incentives for valence, we might observe a positive correlation between polarization and
valence—exogenous changes that increase incentives for valence also increase incentives for
polarization.

The paper proceeds as follows. Section 1 introduces the formal model. Section 2 derives
the voter’s optimal voting rule and uses it to calculate the probability that a candidate wins
for any profile of platforms and valences. Section 3 characterizes a particularly tractable
class of mixed strategy equilibria in the valence accumulation subgame and demonstrates
that, given platform locations, all such equilibria give rise to the same payoffs, which we
calculate. Section 4 characterizes equilibrium platform locations. Section 5 discusses sev-
eral comparative statics and Section 6 answers some welfare questions. Finally, Section 7
explores robustness and situates our model in the literature.

1 Model

A voter must choose one of two candidates. The voter cares about two attributes of a
candidate: her policy platform x ∈ R and her valence v ∈ R+. The voter evaluates these
two attributes according to the payoff function u(x, v) = v − (x∗ − x)2, where x∗ is the
voter’s ideal point. This ideal point is unknown ex-ante—the common belief is that it is
distributed uniformly on [−γ

2 , γ
2 ]. The voter randomizes 50–50 if he is indifferent between

the two candidates.
Denote the two candidates by L and R. Because the candidates do not have policy

preferences, the labels are arbitrary. We always choose labels so that xL ≤ xR.
A candidate, c, chooses both her platform and her valence to maximize

B Pr(c wins)− vc.
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It is worth commenting on the interpretation of the candidates’ payoffs. Since payoffs
are unique only up to an affine transformation, B can be interpreted as the ratio of benefit
from winning office to the marginal cost of accumulating valence. Moreover, B can also be
interpreted in terms of the voter’s trade-off between valence and ideological congruence with
the winner. To see this, imagine a related model in which the voter’s payoffs are as above,
except that the value of valence is multiplied by a parameter, η, so that the voter’s payoff
from a candidate with valence vc and position xc is ηvc − (x∗ − xc)2 . Reparamaterizing as
v′c = ηvc, the voter’s payoffs are v′c − (x∗ − xc)2 and, after taking an affine transformation
candidate c’s are ηB Pr(c wins)−v′c. This shows that the new model is isomorphic to the one
we study, so comparative statics on B in our model can be interpreted as comparative statics
on η—the voter’s marginal rate of substitution between valence and ideological congruence.

The timing of the game is as follows:

1. The candidates simultaneously choose platforms xc.

2. The candidates observe both platforms, and simultaneously choose valences vc.

3. Nature determines the ideal point of the voter.

4. The voter observes the platforms, the realized valances, and his ideal point, and
chooses a candidate.

This order of play is consistent, for example, with a model in which parties choose platforms
at conventions and then candidates expend resources (i.e., accumulate valence) during cam-
paigns that follow the conventions. Of course, other orders of play might also be interesting.
In section 7.2, we discuss simultaneous choice of platforms and valences.

We look for subgame-perfect equilibria (SPE). Anticipating the results (where, in equi-
librium, platforms are in pure strategies and valences are in mixed strategies), a strategy
for a candidate is a pair (xc, σc), where xc is a platform and σc(xL, xR) is a map

σc : R2 → ∆(R+)

giving candidate c’s possibly random choice of valence in the valence subgame when xL and
xR have been chosen as the platforms. We abuse notation and let (y, z) denote the subgame
in which platforms are fixed at y for L and z for R. Then we write σy,z

c for candidate c’s
measure on valences in the subgame (y, z).

We focus on SPE that are symmetric in the sense that xL = −xR and σy,z
L = σ−z,−y

R .
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2 The Voting Subgame

The voter prefers L to R if

vL − (x∗ − xL)2 > vR − (x∗ − xR)2, (1)

prefers R to L if the inequality is reversed and is indifferent if the two payoffs are equal.
Consider first the case of convergent platforms, xL = xR. If the valances are equal, then

the voter is indifferent and randomizes 50–50. If the valances are not equal, then the voter
votes for the advantaged candidate with probability 1.

Now consider profiles with xL 6= xR. Since the voter’s payoff is supermodular in x∗

and x, the optimal rule is a cutoff rule: vote L if and only if x∗ ≤ x̂(xL, xR, vL, vR).
Straightforward algebra shows that

x̂(xL, xR, vL, vR) =
1
2
(xR + xL) +

vL − vR

2(xR − xL)
. (2)

Notice that a valence advantage has more impact on the cutoff when the platforms
are closer together. This is the key insight from this section. This result does not rely
on our specific functional form assumptions—a utility function that is additively separable
in valence and the distance between the platform and ideal point has this implication as
long as the utility is strictly concave in the distance between the platform and the ideal
point.3 We use the special quadratic form because it leads to a tractable solution that lets
us explicitly construct the full equilibrium.

With this voting rule in hand, we can calculate the candidates’ probabilities of winning
given any configuration of platforms and valances. Let λ(xL, xR, vL, vR) be L’s probability
of winning, and let 1− λ(xL, xR, vL, vR) be R’s probability of winning. Also let Fγ be the
cdf of a uniform [−γ

2 , γ
2 ] random variable:

Fγ(x) =





1 if x > γ/2
x+γ/2

γ if x ∈ [−γ/2, γ/2]

0 if x < −γ/2.

3To see this, imagine that payoffs to the voter for candidate c are defined by vc − u(|x∗ − xc|) with u(·)
increasing and strictly concave. The cutpoint x̂ is implicitly defined by vL − u(|x̂− xL|) = vR − u(|x̂− xR|).
To see the intuition, suppose that x̂ ∈ (xL, xR). Then we can rewrite the implicit definition of x̂ as u(xR −
x̂)−u(x̂−xL) = vR−vL. Implicitly differentiating shows that ∂x̂

∂(vR−vL)
= −1

u′(xR−x̂)+u′(x̂−xL)
< 0 and ∂x̂

∂xL
=

u′(x̂−xL)
u′(xR−x̂)+u′(x̂−xL)

= 1− ∂x̂
∂xR

. Differentiating again yields ∂2x̂
∂(vR−vL)∂xR

=
u′′(xR−x̂)(1− ∂x̂

∂xR
)+u′′(x̂−xL) ∂x̂

∂xR
(u′(xR−x̂)+u′(x̂−xL))2

<

0 and ∂2x̂
∂(vR−vL)∂xL

= −u′′(xR−x̂) ∂x̂
∂xL

+u′′(x̂−xL)(1− ∂x̂
∂xL

)

(u′(xR−x̂)+u′(x̂−xL))2
> 0 (where the inequalities follow from u′′ < 0 and

0 < ∂x̂
∂xL

= 1− ∂x̂
∂xR

< 1). Thus, increasing xR or decreasing xL (i.e., increasing polarization) diminishes the
impact of valence on x̂.
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Then we have

λ(xL, xR, vL, vR) =





1
2 if xL = xR and vL = vR

1 if xL = xR and vL > vR

0 if xL = xR and vL < vR

Fγ(x̂(xL, xR, vL, vR)) if xL 6= xR.

The case of xL 6= xR will be particularly important. We can substitute from equation 2
to get an explicit expression for the probability that L wins (assuming it is interior):

λ(xL, xR, vL, vR) =
1
2

+
xL + xR

2γ
+

vL − vR

2γ(xR − xL)
,

if xL 6= xR and x̂(xL, xR, vL, vR) ∈ [−γ/2, γ/2].

3 Valence Subgame

The next step in rolling back is the valence accumulation subgame. In thinking about
candidate L’s incentives to accumulate valence, it is useful to consider a rearrangement
of inequality 1. In particular, L wins the election if her valence satisfies the following
inequality:

vL > 2(xR − xL)x∗ + x2
L − x2

R + vR ≡ H. (3)

Thus, there is “hurdle” (H) over which L’s valence must lie in order for L to win. This
hurdle is stochastic, because x∗ is stochastic and vR is stochastic if R plays a mixed strategy.

The variance ofH affects the marginal benefit to L associated with increased valence. To
see the intuition, consider the special case of a fixed vR, so that the only source of variance
in H is from x∗. In this case, H has a uniform distribution. Increasing the variance of H
(i.e., increasing its support) decreases its density everywhere on the original support. As
a result, when the variance of H increases, the marginal benefit of valence (in terms of
increased probability of winning the election) is reduced. This point is illustrated in Figure
1, where the first panel shows benefit of increased valence with low variance and the second
panel shows the (smaller) benefit of increased valence with higher variance.

Of course, vR need not be fixed, since candidate R can play a mixed strategy. And for an
arbitrary mixed strategy by R, the distribution of H will not be uniform. Nonetheless, the
intuition developed above is useful. We show below that, in the class of equilibria we study,
candidate R does play a mixed strategy that results in H having a uniform distribution.

Given the intuition illustrated in Figure 1, equation 3 makes clear why platform diver-
gence affects incentives for accumulating valence. The variance of H includes the variance
of 2(xR − xL)x∗, which is increasing in polarization. Thus, the marginal benefit of valence
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Figure 1: The marginal benefit of increased valence is decreasing in the variance of H.
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is decreasing in polarization.
This fact gives rise to following intuitions. For fully convergent platforms, candidates

have strong incentives for valence accumulation. We will see, in fact, that the valence
subgame with full convergence gives each candidate a payoff of 0. For platforms that are
highly diverged, players have no incentive to accumulate valence at all. And at moderate
levels of divergence, players have incentives to accumulate valence, but those incentives are
weaker than in the case of complete convergence. The rest of this section formally examines
exactly how these incentives play out.

We name accumulation subgames by the platform choices that lead to them.

Definition 1 A Nash equilibrium in the subgame (xL, xR) is a pair of probability measures
on R+, denoted (σxL,xR

L , σxL,xR
R ), such that:

v ∈ suppσxL,xR
L ⇒ v ∈ arg max

∫ (
Bλ(xL, xR, v, v′)− v

)
dσxL,xR

R (v′)

and

v ∈ suppσxL,xR
R ⇒ v ∈ arg max

∫ (
B

(
1− λ(xL, xR, v′, v)

)− v
)

dσxL,xR
L (v′).

The equilibrium characterization has three cases, covered in the next three subsections.

3.1 Complete Platform Convergence

Consider xL = xR. In this case, a candidate wins for sure if she chooses greater valence
than the other candidate, and they both win with probability 1/2 if they choose the same
valence. This subgame does not have a pure-strategy equilibrium. Any choice of valence
strictly greater than B is strictly dominated. No profile with both valences strictly less than
B can be an equilibrium because there must be at least one player who does not win for
sure, and she could do better by increasing her valence to something slightly higher than
her opponent’s. No profile with unequal valences can be an equilibrium, because the high
bidder can decrease her valence slightly and still win. Finally, both choosing B is not an
equilibrium because the candidates then share the prize, and get a strictly negative payoff,
whereas deviating to zero valence assures a payoff of at least zero.

Lemma 1 Assume xL = xR. Then the unique equilibrium in the subgame has each can-
didate choosing valances according to a uniform distribution on [0, B]. Each candidate’s
payoff is 0.

Proof This follows immediately from results in Hillman and Riley (1989), Baye, Kovenock
and de Vries (1993), and Meirowitz (2004). 2
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3.2 Highly Diverged Platforms

Whenever the platforms are not perfectly converged, the expected benefits to valence are

BFγ

(
1
2
(xR + xL) +

vL − vR

2(xR − xL)

)

for L and
B

(
1− Fγ

(
1
2
(xR + xL) +

vL − vR

2(xR − xL)

))

for R. These benefits are illustrated by the dashed line in Figure 2. These benefits can be
thought of as the probability of winning given a level of valence (holding polarization and
the other candidate’s valence fixed) times the benefit of winning (B). The cost of valence
is simply the level of valence chosen, illustrated by the solid 45-degree line in the figure.

As we discussed above, the size of the benefit to accumulating valence is a function of the
level of platform divergence. The more diverged are the platforms, the smaller the return
to valence (i.e., the shallower the slope of the dashed line). Thus, as platforms converge,
the dashed line in Figure 2 rotates counter-clockwise.

The net expected benefit of any given level of valence is simply the dashed line minus
the solid line. When platforms are sufficiently diverged (as in Figure 2) this net benefit
is decreasing as valence increases. Consequently, the optimal choice is to accumulate no
valence. This is true for any platform profile that is sufficiently diverged that the benefit
line crosses the cost line from above.

As we will see in the next section, when platforms become sufficiently converged so that
the benefit line crosses from below (what we refer to as “moderately diverged”), there will
be incentives to accumulate valence.

The following result formalizes the intuition that highly diverged platforms lead to
zero valence and establishes the precise level of divergence where the incentives switch
(xR − xL = B

2γ ).

Lemma 2 If 2γ(xR − xL) ≥ B, then vL = vR = 0 is an equilibrium in the subgame. If the
inequality is strict, then the equilibrium is unique.

(All proofs not in the text are in the appendix.)

3.3 Moderately Diverged Platforms

When platforms are either convergent or highly divergent, play in the valence-accumulation
subgame was easy to characterize. When platforms are divergent but only moderately so,
on the other hand, no such simple characterization is available. In particular, we have:
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valence

Cost of

valence

Utility

Figure 2: For highly diverged platforms, the payoff is decreasing in valence.

Lemma 3 If 2γ(xR − xL) < B and xR 6= xL, then

1. An equilibrium of the valence subgame exists;

2. There is no pure strategy equilibrium in the valence subgame;

3. There is no non-atomic mixed strategy equilibrium.

Figure 3 illustrates both the intuition for the non-existence of a pure-strategy equilibrium
and the intuition for the atomic mixed-strategy equilibrium that we construct below. With
platforms only moderately diverged, the line representing the benefit of valence is rotated
sufficiently far in the counter-clockwise direction that the net benefit of valence is increasing
in the level of valence (whereas it was decreasing in Figure 2). There are also flat regions
on both the left and right tails of the benefit line. These flat regions reflect the bounded
support of the median voter’s ideal point—for sufficiently low valence accumulation by the
left-wing candidate, there is no ideal point that the voter could have that would lead him
to vote for the left candidate. This is represented by the flat region on the benefit line’s
left tail. Similarly, for sufficiently large levels of valence accumulation, there is no ideal
point that the voter could have that would lead him to vote against the left candidate.
This is represented by the flat region on the benefit line’s right tail. Between these two
flat regions, the left candidate wins with increasing probability as she increases her valence
accumulation.
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Cost of

valence

Benefit of

valence

vLv̂L B

B

Utility

Figure 3: For moderately diverged platforms, the payoff from valence is maximized at v̂L,
the valence where the candidate just wins for certain (holding the other candidate’s valence
fixed).

Given this, it is fairly straightforward to see why there are no pure strategy equilibria.
When platforms are moderately diverged, as in Figure 3, the net benefit of valence accu-
mulation is strictly increasing for any valence that gives any non-degenerate probability of
winning. Moreover, it is maximal at the point where valence is just great enough that the
candidate wins for certain, holding the other candidate’s valence fixed (i.e., at the point
where the right tail flat region begins). This point is labeled v̂L. Hence, each candidate
wishes to accumulate just enough valence that she wins for certain, holding fixed the other
candidate’s valence. Clearly, it is not possible for both candidates to do this. Thus, there
cannot be a pure strategy equilibrium.4

We can begin to build some intuition for what a mixed-strategy equilibrium looks like
by considering the first-order condition that must be satisfied by any v > 0 in the support

4The intuition here is not limited to the uniform distribution of shocks. What’s needed for the result
to go through is that, when platforms are close enough together, a candidate can change her probability of
winning from very close to zero to very close to 1 at a cost close to zero. And this condition holds for any
distribution of x∗ and any continuous cost of effort function. To see this, differentiate the probability that
L wins with respect to vL to get

1

2(xR − xL)
f

(
xR + xL

2
+

vL − vR

2(xR − xL)

)
,

where f is the density of x∗. From this, it’s clear that, as |xR − xL| → 0, the marginal benefit of vL either
converges to 0 or diverges to ∞. This suffices to recover the intuition in the text that leads to Lemma 3.
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of candidate L’s mixed strategy. This first order condition is

∂

∂vL

∫ (
BFγ

(
1
2
(xR + xL) +

vL − vR

2(xR − xL)

)
− vL

)
dσxL,xR

R (vR) = 0.

It will be useful to introduce a bit more notation. In particular, let I(vc, xL, xR) be
the interval such that, for a given vc, xL, and xR, a choice of v−c in I(vc, xl, xR) implies
that both candidates win with positive probability. For example, the interval between the
vertical dashed lines in Figure 3 is I(vR, xL, xR). That is, for the vR fixed in the figure,
any choice of vL between the vertical dashed lines leads to a positive probability of either
candidate winning.

If vL is a best response and R’s mixture assigns probability zero to neighborhoods of
the endpoints of I, then we can differentiate under the integral and use the definition of Fγ

to rewrite the first order condition as

Pr (vR ∈ I(vL, xL, xR))
B

2γ(xR − xL)
= 1.

Thus, if vL is in the support of L’s mixed strategy, then R’s mixed strategy must assign
probability of exactly 2γ(xR−xL)

B to the interval I(vL, xL, xR).
Let α ≡ 2γ(xR − xL) be the length of this interval. It represents the smallest increase

in valence that can change a candidate from being a sure loser into a sure winner. Notice,
again, the more polarized are the parties (the greater is xR−xL), the more valence it takes
for a candidate to swing the election in his favor.

We will construct an equilibrium by having each player assign probability exactly α
B to

a finite series of vs. There is a complication to this plan—since the number of vs must be
an integer, and each receives probability α

B , this procedure yields probabilities that add up
to 1 only if B/α is an integer. To solve this problem, we fill up as much of the probability
as we can with interior atoms, and put the rest somewhere where the first-order condition
does not have to hold with equality—at v = 0.5

With this intuitive background in mind, we can turn to the formal development. We
look for mixed-strategy equilibria in a particularly tractable class of profiles.

Definition 2 A profile is non-overlapping in the valence subgame if

1. it has finite support;

2. puts positive mass on zero;

3. each interval I(vL, xL, xR) with vL > 0 contains exactly one v in the support of R’s
mixed strategy and;

5As we will see, there is not a unique way to carry out the construction.
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4. each interval I(vR, xL, xR) with vR > 0 contains exactly one v in the support of L’s
mixed strategy.

This definition imposes the requirement that there be positive mass on zero even if it were
to happen that there was no left-over probability (i.e., if B/α was an integer). Without this
requirement, the function mapping platform choices into payoffs in the subgame could fail
to be upper semi-continuous.

Definition 3 A profile is non-overlapping in the overall game if, for every valence accu-
mulation subgame that does not have convergent platforms, play is non-overlapping in the
valence subgame.

The next result shows that this definition does correspond to the the intuitive procedure
outlined above. We use the following notation to deal with the extra probability left over
after we have created as many atoms of probability α/B as possible: let dxe be the least
integer greater than or equal to x, and let T (x) = dxe − 1.6

Lemma 4 Let (σL, σR) be a non-overlapping mixed strategy equilibrium of the subgame
(xL, xR). Then

1. Each non-zero atom of a candidate’s mixture has probability α
B ;

2. Each mixture has n = T (B/α) + 1 points in its support; and

3. Each mixture gives acquiring zero valence probability p satisfying

0 < p = 1− α

B
T

(
B

α

)
≤ α

B
.

To complete the characterization, we need to find out how to space the atoms in each
mixed strategy. Label the elements of the support of a candidate’s mixed strategy Vc =
{v1

c , v
2
c , . . . , v

n
c }, where

0 = v1
c < v2

c < · · · < vn
c .

Further, label the probability measure on V that constitutes a candidate’s mixed strategy
(p1

c , p
2
c , . . . , p

n
c ) =

(
1− α

B T
(

B
α

)
, α

B , α
B , . . . , α

B

)
, where the equality follows from Lemma 4.

In a mixed strategy equilibrium, each candidate must be indifferent over all of these
possible valences. This implies a precise relationship between the pace at which valences
increase and the various probabilities that L wins.

6We use T (x) rather than bxc to ensure that the payoff function we derive later is upper semi-continuous.
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Lemma 5 Let βk be the probability that L wins when the valences are vk
L and vk

R. In a
non-overlapping mixed strategy equilibrium, the following conditions must hold:

1. v2
L = Bp1

Lβ1 + α(1− β1)

2. v2
R = Bp1

R(1− β1) + αβ1

3. k > 1 implies
vk+1
L − vk

L = α + α(βk+1 − βk)

and
vk+1
R − vk

R = α− α(βk+1 − βk).

In any non-overlapping equilibrium, each candidate plays zero with strictly positive
probability. By the indifference property of mixed strategy equilibria, the equilibrium payoff
must be the payoff to playing zero, and non-overlappingness implies that this payoff is just
the probability that the other player plays zero times the probability of victory given no
valence is accumulated at all. And that quantity is pinned down independently of the
details of the rest of the equilibrium. This argument is used to prove the second part of the
following result.

Proposition 1 1. For any xL 6= xR with α = 2γ(xR − xL) < 1, there exists a non-
overlapping mixed strategy equilibrium in the subgame (xL, xR).

2. In any non-overlapping mixed strategy equilibrium of the subgame (xL, xR), payoffs
are

πL(xL, xR) = B

(
1
2

+
xR + xL

2γ

)(
1− 2γ(xR − xL)

B
T

(
B

2γ(xR − xL)

))

to candidate L and

πR(xL, xR) = B

(
1
2
− xR + xL

2γ

)(
1− 2γ(xR − xL)

B
T

(
B

2γ(xR − xL)

))
.

to candidate R.

3. These payoffs (πL and πR) are strictly positive.

Although non-overlappingness uniquely pins down payoffs in the subgame, it does not
pin down a unique non-overlapping mixed strategy equilibrium. To get a sense of how

14



we construct an equilibrium and why it is not unique, consider an example of the valence
accumulation subgame in which xL + xR = 0, α = 2/5, and B = 1. This example will show
the steps we use in constructing an equilibrium. It will also demonstrate exactly where
multiplicity can occur, why the payoffs are the same for any non-overlapping equilibrium,
and what choice we make for constructing our particular equilibrium.

Lemma 4 implies that if α = 2/5 and B = 1, then p1
c = 1/5, v1

c = 0, and p2
c = p3

c = 2/5
for both candidates. This further implies that β1 = 1/2. Points 1 and 2 of Lemma 5 and
the definition of β2 now yield the following system of three equations with three unknowns:

v2
L = Bp1

L

(
1
2
− xR + xL

2γ

)
+ Bp2

Lβ2

=
1
10

+
2β2

5
,

v2
R = Bp1

R

(
1
2

+
xR + xL

2γ

)
+ Bp2

R(1− β2)

=
1
10

+
2(1− β2)

5
,

and

β2 =
1
2

+
xR + xL

2γ
+

v2
L − v2

R

α

=
1
2

+
5(v2

L − v2
R)

2
.

Solving this system gives v2
L = v2

R = 3
10 and β2 = 1

2 .
So far, we know that in any non-overlapping mixed strategy equilibrium, both candidates

choose p1
c = 1/5, p2

c = p3
c = 2/5, v1

c = 0, and v2
c = 3/10. However, this does not pin down

the choice of v3
c .

From point 3 of Lemma 5, we know that

v3
L − v2

L = α + α(β3 − β2),

and
v3
R − v2

R = α− α(β3 − β2),

15



Substituting and rearranging yields:

v3
L =

1
2

+
2
5
β3,

and
v3
R =

1
2

+
2
5
(1− β3).

Adding the two conditions together we have

v3
L + v3

R =
7
5
.

Since we are looking for non-overlapping equilibria, we also need

v3
L ≥ max I(v2

R, xL, xR) = v2
R +

α

2
+ (x2

R − x2
L) =

3
10

+
2
5
· 1
2

=
1
2

and
v3
R ≥ max I(v2

L, xL, xR) =
1
2
.

Now it is clear that for any v3
L ∈ [1/2, 9/10], the pair (v3

L, 7/5− v3
L) completes the specifica-

tion of a mixed strategy equilibrium. In the proof of Proposition 1, we construct the MSE
in which β3 = β2, which, in this case, implies that v3

L = v3
R = 7/10. The important point,

however, is that all equilibria in this family produce the same expected payoffs, 1/10 for
each candidate.

The above example highlights that, in addition to being able to characterize equilib-
rium valence accumulation, we can also calculate the total valence accumulated by the two
candidates. Such a result will be interesting later because it will allow us to think about
how exogenous changes to the electoral environment affect the interaction between platform
divergence and valence.

Proposition 2 Fix B, γ, and platforms xL and xR = −xL such that B > 2γ(xR−xL) > 0.
Then the expected sum of valences in any non-overlapping, mixed strategy, Nash equilibrium
of the subgame is

2γ(xR − xL)T
(

B

2γ(xR − xL)

)
.

It is worth noting that our characterization of equilibrium in the valence accumulation
subgame is similar to the equilibrium for the linear contest characterized by Che and Gale
(2000). The key difference is as follows. Since platform choices are potentially asymmetric,
the probability of victory in the valence subgame of our model can be asymmetric. Hence, in
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order to characterize equilibrium in all valence subgames, we have to consider asymmetries
that do not appear in Che and Gale (2000), which does not have a previous stage and,
hence, focuses on contests where the probability of winning function is symmetric.

4 Platforms

The final step in finding an equilibrium is to characterize the candidates’ platform choices,
given equilibrium behavior in the subgames.

4.1 Divergence

Our first result is that no equilibrium has convergent platforms, even though the candidates
have no policy preferences. The reason is apparent from looking at the voter’s optimal
election rule. When the platforms are very close together, even small valence differences
loom large in the voter’s decision. In the case of complete convergence, any difference in
valances completely determines the election. This leads the competition over valence to be
so intense that all of the gains are dissipated, and the candidates end up with payoffs of
zero. Anticipating this, they will not converge. (Meirowitz (2004) proves a similar result
with a three-point policy space.)

Proposition 3 There is no subgame-perfect equilibrium with convergent platforms (xL =
xR).

Proof Recall that the unique equilibrium has each candidate choosing valances according
to a uniform distribution on [0, B]. Since the distributions are atomless, the lowest bid loses
for sure. This pins down the payoffs at 0. But the payoff functions given in Proposition
1 are strictly positive, so a sufficiently small move away from convergence is a profitable
deviation. 2

4.2 Characterization

We have established a result about what cannot happen in equilibrium—the parties do not
converge, even though they have no policy preferences. The key to understanding which
platforms are chosen in equilibrium is to get a good understanding of the payoff function

πL(xL, xR) = B

(
1
2

+
xR + xL

2γ

)(
1− 2γ(xR − xL)

B
T

(
B

2γ(xR − xL)

))
.

(By symmetry, it suffices to look only at the left-most candidate.) The first factor, B(1/2+
(xR +xL)/2γ), is increasing in xL. Furthermore, the second factor is “usually” increasing in
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Figure 4: As the left candidate’s platform increases, his equilibrium payoff is increasing
except at a countable number of discontinuities, where it jumps down.

xL as well. To see this, notice that xR+xL
2γ (1−2γ(xR−xL)

B ) is increasing in xL and T (B/2γ(xR−
xL)) is constant in xL at every point where B/(2γ(xR−xL)) is not an integer. However, as
xL increases, at each integer point of B/(2γ(xR − xL)), the function T

(
B

2γ(xR−xL)

)
jumps

down discontinuously. Thus, the payoff function is almost everywhere increasing, but has a
series of discontinuous jumps down, as illustrated in Figure 4.

As the figure makes clear, it is precisely at the platform locations that coincide with
the discontinuity points (i.e., that make B/(2γ(xR − xL)) an integer) that the candidates’
payoffs reach local maxima. This observation gives us the following fact about equilibrium
platforms.

Lemma 6 If xL is a best response to xR, then B
2γ(xR−xL) is an integer.

The fact that the possible optimal platform choices all coincide with the discontinuity
points suggests a way to identify optimal platforms without having to work directly with
the poorly-behaved payoff function. In particular, we can define a function f(xL, xR) that
bounds the payoff function from above and is equal to the payoff function at each local
maximum. This function turns out to be the following well-behaved function:

f(xL, xR) =
(

1
2

+
xR + xL

2γ

)
(2γ(xR − xL)).

Note that f is strictly concave in xL.
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Figure 5: The payoff function (πL) is bounded above by the strictly concave function
f . Moreover, because the discontinuities occur precisely when πL = f , all platforms for
candidate L that are potential best responses lie on f .

Lemma 7 Assume that candidate L wins with strictly positive probability when both va-
lences are zero (xL ≥ −γ − xR). Then

1. πL(xL, xR) ≤ f(xL, xR)

2. πL(xL, xR) = f(xL, xR) if and only if B
2γ(xR−xL) is an integer.

As illustrated in Figure 5, the previous two lemmata show that all potential best re-
sponses are points on a strictly concave function.7 This makes the task of checking for
equilibrium in platforms relatively simple—we only need to check for deviations to adjacent
candidates for a best response.

Now we have all of the ingredients we need to construct an equilibrium in platforms.
By Lemma 6, the distance between the platforms, xR − xL, must make the ratio B

2γ(xR−xL)

an integer, say n. Thus the platforms must be B
2γn apart. And since we are looking for a

symmetric equilibrium, the platforms must be

xL = − B

4γn
and xR =

B

4γn
.

7Recall that, in a non-overlapping equilibrium, a candidate’s payoff in a subgame is her payoff from
choosing zero valence in that subgame. Thus it cannot be a best response to choose a platform that makes
Lemma 7 not apply.
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Proposition 4 For any values of the parameters, there exists a non-overlapping equilibrium
of the overall game. If B ≥ 2γ2, then there is a non-overlapping equilibrium of the overall
game with moderately diverged platforms, and if B > 4γ2, then all non-overlapping equilibria
of the overall game have moderately diverged platforms.

Proof The key step in the proof is the following construction.

Lemma 8 Fix a positive integer n. The profile in which:

1. the platforms are

x∗L = − B

4nγ
and x∗R =

B

4nγ
;

2. candidate play the valence subgame as follows:

• if xL = xR, each candidate chooses valances according to a uniform distribution
on [0, B];

• if xL 6= xR and 2γ(xR−xL) > B, then the candidates choose valences vL = vR =
0;

• otherwise, the candidates choose valence according to the profile constructed in
the proof of Proposition 1;

3. the voter votes for candidate L if an only if x∗ ≤ x̂, where x̂ is defined in equation (2)

is a subgame perfect equilibrium if and only if

1
2

B

γ2
− 1 ≤ n ≤ 1

2
B

γ2
+ 1.

Furthermore, any symmetric non-overlapping equilibrium must have platforms as in 1.) for
some integer n ≥ 1.

The proof of Lemma 8 is in the appendix.
To prove the existence assertion, notice that the interval [B/(2γ2)− 1, B/(2γ2) + 1] has

length 2, and is thus guaranteed to contain an integer n, and that

inf
B≥0,γ≥0

B

2γ2
+ 1 = 1,

so we can take n ≥ 1. Since the profile constructed in the Lemma is a non-overlapping
equilibrium, such an equilibrium exists for any parameter values.

Finally, note that a profile of the form 1–3 has moderately diverged platforms if and
only if n ≥ 2. Thus there exists a moderately diverged non-overlapping equilibrium if

B

2γ2
+ 1 ≥ 2,
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or B ≥ 2γ2. Similarly, all non-overlapping equilibria are moderately diverged if

B

2γ2
− 1 > 1,

or B > 4γ2. 2

5 Comparative Statics

In this section we explore the joint comparative statics of valence accumulation and platform
choice. In doing so, we highlight the way that allowing both valence and platforms to be
endogenous changes the empirical predictions based on models with exogenous platforms.

In models with endogenous valence, but exogenous platforms, a condition like equation 3
still characterizes the voter’s strategy. As is clear from that equation, an exogenous increase
in platform divergence decreases incentives for valence accumulation. Thus, Ashworth and
Bueno de Mesquita (2006) and Ashworth and Bueno de Mesquita (forthcoming) find that
exogenous increases in platform divergence decrease incentives for local public goods pro-
vision and for investing in an informative party label (both forms of endogenous valence
advantages).

It remains true here that platform divergence dampens incentives for valence accumu-
lation. However, in contrast to models with exogenous platforms, the model in this paper
suggests that we may expect to see a positive, rather than a negative, correlation between
platform divergence and valence. The reason is that, as shown below, an exogenous increase
in B increases incentives for divergence as well as for valence. The increase in divergence
dampens but does not completely offset the incentives for increased valence. Thus, as B

increases, both valence and divergence tend to increase in equilibrium.
The key point here is not that our model definitively demonstrates that the correlation

between platforms and valence is expected to be positive. Rather, there are competing
effects, and which one dominates empirically remains uncertain.

The comparative statics reported below all explore the effect of a change in B, which
we have interpreted as the ratio of benefits to winning office over the marginal cost of
accumulating valence. It is worth recalling, however, that Section 1 shows how to interpret
an increase in B can also be interpreted as an increase in the extent to which the voter
values valence relative to ideological congruence.
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Figure 6: As the ratio of benefits to winning office over marginal costs of valence accumula-
tion increases, total expected valence accumulation increases. This increase is larger when
platforms are fixed than when platforms are endogenous.

5.1 Comparative Statics of Valence

Proposition 2 reports the total expected valence accumulation in any symmetric, subgame
perfect equilibrium with a non-overlapping equilibrium in the valence accumulation sub-
game. From this calculation, it is clear that, for fixed platforms, the expected amount of
valence accumulated is nondecreasing in B.

Of course, in equilibrium, platforms are not fixed—they change endogenously as B

changes. In particular, as B increases, the candidates may diverge further in order to di-
minish the anticipated increase in valence spending caused by an increase in B. Nonetheless,
the fact that valence accumulation is non-decreasing in B remains true with endogenous
platforms. However, the fact that the candidates can endogenously diverge implies that an
increase in B leads to a smaller increase in valence than would have occurred if platforms
were fixed. The differing effects of an increase in B on total expected valence accumulation
with fixed and endogenous platforms are illustrated in Figure 6.

To see a somewhat more technical intuition, consider parameters B and γ and platforms
xL and xR that are part of a symmetric, non-overlapping subgame perfect equilibrium for
those parameters. By Proposition 2, the expected valence is

2γ(xR − xL)T
(

B

2γ(xR − xL)

)
.
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If B increases slightly, equilibrium platforms adjust so that B/2γ(xR − xL) stays constant.
In particular, point 3 of Lemma 8 shows that, in equilibrium, xR − xL = B

2γn . Substituting
for these equilibrium platforms shows that total equilibrium valence accumulation is

n− 1
n

B.

Thus, an increase from B to B + ε, for ε small, leads to an increase in valence of

ε
n− 1

n
.

What would happen if platforms could not adjust? Recall that equilibrium platforms make
the ratio B

2γ(xR−xL) an integer. Thus, without endogenous platforms, increasing B slightly

makes T
(

B
2γ(xR−xL)

)
step up by 1, and the increase in valence accumulation is

2γ(xR − xL).

Clearly, for small ε, εn−1
n < 2γ(xR−xL), so valence increases less with endogenous platforms

than it would with exogenous platforms.

5.2 Comparative Statics of Platforms

The discussion above suggests that as the benefit to cost ratio of valence increases, plat-
forms diverge in order mitigate the increase in valence accumulation. However, just as
there are discontinuities in the comparative static on valence accumulation, there are also
discontinuities in the comparative static on platforms.

In particular, platform divergence in any given equilibrium is given by B
2nγ . As B in-

creases, as long as n stays fixed, divergence increases continuously. However, for the same
reason that we had the discontinuities above, at some point B increases so much that n

increases discontinuously. Thus, at these points, we have a continuous increase in the numer-
ator and a discontinuous increase in the denominator, leading to a discontinuous decrease
in divergence. Of course, after this jump toward convergence, as B continues to increases,
divergence returns to increasing until the next discontinuity.

The question remains whether the discontinuous jumps toward convergence are large
enough that, as B gets very large, platforms tend toward convergence or divergence. It
turns out that they tend toward divergence.

To see this, first notice that divergence is decreasing in n. Moreover, Lemma 8 shows that
in any equilibrium n ≤ 1

2
B
γ2 + 1. Thus, platform convergence is maximized by selecting the

equilibrium that keeps n as close to its upper bound as possible. We study this equilibrium
and show that even in this worst case, as B gets large, platforms tend toward greater
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divergence.
In this equilibrium, the variable n jumps from k − 1 to k at B = 2γ2(k − 1). We want

to compare the level of divergence at the discontinuity where n moved from k − 2 to k − 1
to the level of divergence at the discontinuity where n moved from k − 1 to k. If the latter
is larger, that means that as B increases, the discontinuous jump in convergence does not
make up for the previous increase in divergence. At the point where n moves from k− 2 to
k− 1, we can substitute the value of B at the discontinuity into the formula for divergence
to find that divergence is given by:

γ
k − 2
k − 1

.

At the point where n moves from k − 1 to k, divergence is given by:

γ
k − 1

k
.

The latter is clearly larger, so the discontinuous jumps toward convergence are not making
up for the earlier increases in divergence.

We can also calculate whether there is a trend in the maximal level of divergence reached
on each component. We can calculate the supremum of divergence on a component by taking
the same value of B for which divergence has a discontinuous jump, but not increasing the
value of n. At any such supremum, the level of divergence, then, is given by

B

2(n− 1)γ
=

2(n− 1)γ2

2(n− 1)γ
= γ.

Thus, the supremum of divergence is a constant.
These relationships are illustrated in Figure 7.

6 Welfare Implications of Endogenous Valence

One interpretation of valence accumulation in our model is campaign spending. This sug-
gests a natural policy question: What are the welfare implications of forbidding candidates
from spending to accumulate valence?

First consider the candidates. In an equilibrium of our model, each candidates wins
with probability one half. In a model analogous to ours, but with valences restricted to
equal zero, the median voter theorem applies, so candidates converge, and each still wins
with probability one half. So restricting valence accumulation does not affect the equilib-
rium probability a given candidate wins. Because accumulating valence is costly, and the
candidates do so in the equilibrium of our game, we see that the candidates are better off
is accumulation is prohibited.
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Figure 7: As the ratio of benefits to winning office over marginal costs of valence accumula-
tion increases, platform divergence increases, except at a countable number of discontinuity
points, where divergence decreases discontinuously.
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Now consider the voter. Eliminating valence affects the voter’s welfare in two ways.
First, valence enters directly into the voter’s payoffs. Second, eliminating valence changes
the equilibrium platforms. The first effect of eliminating valence is obviously bad for the
voter. The second effect also reduces the voter’s welfare. The reason is that, when valence
accumulation is forbidden, platform’s converge, whereas when valence accumulation is al-
lowed platforms diverge, which is good for the risk-averse voter as long as the divergence is
not too large.

To see this formally, suppose we are at an equilibrium of our game in which candidates
choose platforms x∗R and x∗L = −x∗R and accumulate positive expected valence accumulation
along the equilibrium path. Recall that in such an equilibrium, the voter voters for candidate
L if and only if his ideal point is less than some cut-point (that need not equal zero).
Suppose, now, that all else remains equal, but the voter switches to a voting rule where he
votes for candidate L if and only if his ideal point is less than or equal to zero. This leaves
the voters weakly worse off. Now, suppose we leave platforms fixed, but restrict valences to
be equal to zero. This makes the voter strictly worse off. The voter’s expected payoffs in
this situation are:

E(−(xw − x∗)2) = Pr(x∗ < 0)E(−(xL − x∗)2 | x∗ < 0) + Pr(x∗ > 0)E(−(xR − x∗)2 | x∗ > 0)

= E(−(xR − x∗)2 | x∗ > 0)

= −
(
xR − γ

4

)2
− γ2

48
,

where the first equality follows from the voting rule, the second equality follows from symme-
try, and the third equality follows from the fact that quadratic utility implies mean-variance
preferences and some easy calculations.

The argument in the preceding paragraph demonstrates that:

Payoff in game with valence > −
(
x∗R −

γ

4

)2
− γ2

48
. (4)

Further, notice, that the payoffs in the game without valence accumulation are:

−
(
0− γ

4

)2
− γ2

48
. (5)

It is clear that the right-hand side of equation 4 is greater than equation 5 as long as
x∗R ∈ (0, γ/2). Thus, the voter is better off in the game with valence as long as platforms
are not too divergent.

26



7 Discussion

In this section we discuss the robustness of the model to alternative assumptions and situate
our results in the existing literature.

7.1 Forms of Probabilistic Voting

Our model highlights the substantive importance of how one models uncertainty about voter
preferences. Most of the applied literature employs the “stochastic partisanship” model, in
which there is a stochastic shock to one of the candidate’s valences. We, however, use the
“stochastic preference” model, where there is uncertainty about the median voter’s ideal
point. With stochastic preferences, changes in polarization change the voter’s responsiveness
to increased valence accumulation, the key force at work in our model. With stochastic
partisanship, no such interaction occurs. Thus, moving to stochastic partisanship would lead
to two important changes in the model’s predictions: (i) platform polarization would have
no effect on valence accumulation8 and (ii) there would be complete platform convergence
in equilibrium.

To be more precise, consider a model in which there is no uncertainty about the voter’s
ideal point (which is fixed at x∗), but that before voting (but after platforms and valences
are set) the voter’s payoff for electing candidate L is changed by κ, a random variable
distributed uniformly on [−1, 1].

The voter votes for candidate L if and only if

κ ≥ vR − vL + 2(xR − xL)
(

x∗ − xR + xL

2

)
.

Thus, the probability that the L candidate wins is

1− 1
2

(
vR − vL + 2(xR − xL)

(
x∗ − xR + xL

2

))
.

In the valence subgame, the L candidate solves

max
vL

(
1− 1

2

(
vR − vL + 2(xR − xL)

(
x∗ − xR + xL

2

)))
B − vL.

The marginal benefit of valence is B
2 and the marginal cost is 1. Polarization, thus, has

no effect on valence choices. Moreover, if B < 2, the unique equilibrium has no valence
accumulation (i.e., vL = vR = 0). In this event, the game reduces to standard Downsian
competition and there is complete convergence of platforms. Alternatively, if B > 2, then

8Unless one also introduces policy oriented politicians, as in Herrera, Levine and Martinelli (2005).
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there are only mixed strategy equilibria in the valence subgame and they are of exactly the
form solved for in our model. Thus, the equilibrium payoff for candidate L in the valence
subgame is the payoff if both candidates choose zero valence:

(
1− x∗(xR − xL) +

x2
R − x2

L

2

)
B,

which is clearly maximized at xL = x∗. A similar argument follows for candidate R. Thus,
even with positive valence accumulation, assuming a stochastic shock to valence, rather
than uncertainty about the voter’s ideal point, yields complete platform convergence.

7.2 Simultaneous Choice of Platforms and Valence

An important assumption of our model is that valence is chosen after platforms. Indeed, it
might seem that this assumption is critical for our platform divergence result, since it is the
anticipation of future valence competition that creates incentives for divergence. Thus, a
natural question is the following: with simultaneous choice of platforms and valences does
the equilibrium reduce to complete convergence?

The answer is no. While a complete characterization of equilibrium in the simultaneous
move game is beyond the scope of this paper, we can demonstrate incentives for divergence
when there is endogenous valence are robust to simultaneous moves.

Consider a game identical to the one we study, except that valences and platforms are
chosen simultaneously. In any Nash equilibrium of this game, at least one candidate must
choose a strategy that induces a non-degenerate lottery over platforms. Thus, there cannot
be a convergent equilibrium.

To see why this is true, consider a strategy profile in which each candidate assigns
probability one to some platform and these platforms are different from one another. For
standard “Downsian” reasons, a candidate wants to deviate to a new strategy that holds
her marginal over valences constant but moves her platform closer to the other candidate’s.

This confirms that there cannot be pure platform choices when the platforms are di-
verged. However, we also need to show that pure converged platforms cannot be part of an
equilibrium. We do this in two steps. First, consider a strategy profile with convergent plat-
forms. If this strategy profile is an equilibrium, the candidates must be playing the uniform
mixed strategy equilibrium over valences from Lemma 1. This implies that the candidates
are getting expected payoffs of zero. Second, consider the deviation to a strategy where a
candidate chooses zero valence with certainty and a platform that is slightly diverged (in
the direction of the median voter’s expected ideal point, if they were not already converged
there). Here, the cost of valence is zero. However, the deviating candidate still wins with
positive probability. This is because the non-deviating candidate assigns positive probabil-
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ity to very small amounts of valence, the platforms are close to each other, and there is
probabilistic voting. Thus, the deviating player is now getting positive expected payoffs.

7.3 Other Mechanisms Linking Divergence and Endogenous Valence

The papers most closely related to this one are Zakharov (2005) and Eyster and Kittsteiner
(2007). Zakharov (2005) studies a model similar to ours, but restricts attention to local
equilibria. In work done simultaneously and independently Eyster and Kittsteiner (2007),
like us, apply the logic of differentiation to soften competition to an electoral context. In
their model, political parties that run candidates in a continuum of districts must choose a
common platform for all candidates. Then each candidate has the option of tailoring the
platform to her own district at some cost. They find that, for some parameter values, the
parties choose divergent platforms so that the subsequent tailoring game will be less costly.

Although the basic intuition leading to divergence is the same in their and our papers, we
view the contributions as complementary. One important difference is that in their model
both the first and second stage choices for the politicians are about platforms whereas is our
model the first stage is platforms and the second stage is valence. This has two interesting
implications. First, they get divergence focusing solely on platform choices, whereas, for
us, divergence depends on the introduction of an orthogonal dimension of competition.
Second, in their model, the second stage cost is bounded by the fact that moving beyond
the district’s median voter is dominated. In our model, the only dominance consideration
is that a candidate not choose a valence that costs more than the benefit from winning.
Thus there is never convergence in our model, while they do find exact convergence for a
sufficiently great benefit of winning election.

There are also a couple of smaller differences. First, our model works in a single district
while, in their main model, it is crucial that there are many districts.9 Second, the sub-
games in their model are essentially (potentially asymmetric) all-pay auctions with bid caps,
while our subgames are essentially (potentially asymmetric) all-pay auctions with stochastic
allocation rules. This difference leads to interesting differences in the equilibria.

Three other approaches also explore the relationship between endogenous valence and
platform divergence, but based on significantly different intuitions.

Meirowitz (2004) studies a model in which the order of play is the opposite from ours—
candidates first compete to accumulate valence and then choose platform locations. He
finds that the platform choices are the same as those found by Aragones and Palfrey (2002)
in a model with exogenous valence advantages.

9In their conclusion, they mention an extension that works in a single district. In that extension, platforms
are selected prior to an informative signal about the median voter’s ideal point, with the possibility of
modifying the platform after the signal. Again, this contrasts with our model, where both platform and
valence decision are made with the same information about the voter.
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Herrera, Levine and Martinelli (2005) study a model with the same order of play as our
model. Their model differs from ours in two important ways—they have policy motivated
politicians and they employ the stochastic partisanship model (i.e., uncertainty is due to a
valence shock to one of the candidates). They find that when candidates are better able to
target specific voters, platforms become less polarized while campaign spending increases.

Schofield (2003) and Carrillo and Castanheira (2006) have another set of intuitions. In
these models politicians diverge because doing so increases valence. In Schofield (2003) it
does so by motivating outside activists. In Carrillo and Castanheira (2006) the politicians
themselves invest in valence and divergence in a previous stage makes the implicit promise
to do so credible.

These various approaches to modeling endogenous platforms and endogenous valence
lead to differing results about the relationship between these two choices and capture differ-
ent intuitions. However, they also share certain important commonalities. In particular, like
the earlier literature on platform choice with exogenous valence, they all confirm that, at
least for some parameter values, allowing candidates to endogenously choose both platforms
and valence leads to a robust prediction of platform divergence in elections.
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A Proofs

A.1 Proof of Lemma 2

First we handle the case of 2γ(xR − xL) > B. Assume that a candidate, say L, has vL > 0
in the subgame. Then she must satisfy the first-order condition

∂

∂vL

(
B

(
1
2

+
xR + xL

2γ
+

vL − vR

2γ(xR − xL)

)
− vL

)
≥ 0.

(Any optimal choice that leads her to win with probability 1 must be the least costly such
choice.) Taking the derivative gives

B

2γ(xR − xL)
≥ 1,

which is clearly inconsistent with the hypothesis.
Note that mixing by the opponent makes vL > 0 look even worse. Thus there is no

equilibrium in which vL > 0 with positive probability. By symmetry, there is no equilibrium
in which vR > 0 with positive probability.

Glicksberg’s theorem tells us that there is an equilibrium, and the argument above
implies it must be vL = vR = 0.

Second, when 2γ(xR − xL) = B, there are many pure-strategy equilibria, one of which
is (vl, vR) = (0, 0). 2

A.2 Proof of Lemma 3

Part 1

The payoff functions are continuous, so we have existence by Glicksberg’s theorem.

Part 2

We start by showing that there is no pure strategy equilibrium in the subgame in which
both candidates win with positive probability. If there were such an equilibrium, then the
marginal benefit of valence would have to be less than the marginal cost for both players.
That is, B

2γ(xR−xL) ≤ 1. But that is impossible because the assumption of the Lemma is the
opposite.

Observe that this means at most one player can accumulate any valence in a pure-
strategy equilibrium—one candidate must lose with probability 1, and that candidate opti-
mizes by setting v = 0.
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Next we show that there is no pure-strategy equilibrium in which both players choose
v = 0. Again we argue by contradiction, so assume that the profile (vL, vR) = (0, 0) is a
Nash equilibrium. Recall that there is no pure equilibrium in which both candidates win
with positive probability, so one candidate wins for sure.

To get a contradiction, we need to show that one of the players has a profitable deviation.
Since a player who wins with probability 1 at zero valence cannot possibly have a profitable
deviation, we only need to look at deviations by the player who wins with probability 0. If
x2

R− x2
L > 0, then this is player R, while if x2

R− x2
L < 0, then this is player L. (If x2

R = x2
L,

then the players each have probability 1/2 of winning when both choose 0 valence.)
So consider the case where x2

R − x2
L < 0. We introduce the notation α = 2γ(xR − xL).

(Note that we are suppressing the functional dependencies.) Also, let ε = x2
R − x2

L.
Candidate L’s best deviation is to the v that solves

1
2

+
ε

α
+

v

α
= 1,

or
v =

α

2
− ε.

To see that this is the best deviation, notice that a profitable deviation must involve a
positive probability of winning, and the impossibility of the first order condition holding
with equality means that the best deviation has probability 1 of winning. Clearly, this
probability should be achieved at least cost, giving the condition. To be profitable, this
deviation must lead to a greater payoff than v = 0. The deviation is profitable if

B − v = B − α

2
+ ε > 0,

or
B − γ(xR − xL) > (x2

R − x2
L).

But our assumptions imply that the LHS is greater than zero while the RHS is less than
zero. Thus L does have a profitable deviation.

A similar argument for the case of x2
R−x2

L > 0 shows that R has a profitable deviation.
Thus at least one player always has a profitable deviation, contradicting the assumption
that we were at an equilibrium.

Finally, we have to rule out equilibria in which the player who wins with probability 1
chooses v > 0. For concreteness, assume that this player is candidate L. As before, the
only possibility for vL is vL = α/2 − ε. But at this vL, candidate R wins with positive
probability when she chooses vR small and positive. Thus she can only choose 0 if the
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first-order condition
B

2γ(xR − xL)
≤ 1

is satisfied, which is impossible.

Part 3

We prove the result by contradiction. So assume that there are platforms xL 6= xR such that
the subgame (xL, xR) has an equilibrium in which the strategies are given by cdfs (FL, FR)
that are continuous and strictly increasing on their supports.

Let vc = sup suppFc, the “top” of candidate c’s support. In addition, let

v∗c = inf{v | Pr(c wins at (v, v−c)) > 0}.

We can calculate these as follows:

1
2

+
ε

α
+

v∗L − vR

α
= 0

implies
v∗L = vR − α

2
− ε;

and
1
2

+
ε

α
+

vL − v∗R
α

= 1

implies
v∗R = vL − α

2
+ ε.

We claim that equilibrium implies vL ≤ v∗L and vR ≤ v∗R. From there, it’s easy to deduce
a contradiction: we have

vL ≤ v∗L
= vR − α

2
− ε

≤
(
vL − α

2
+ ε

)
− α

2
− ε

= vL − α

2
,

a contradiction because α > 0.
Finally, we prove the claim. (We do so only for candidate L; the proof for R is analogous.)
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If L chooses v > v∗L, then her payoff against FR is

B

(∫ vR

v−α/2+ε

(
1
2

+
ε

α
+

v − ṽR

α

)
fR(ṽR) dṽR + FR

(
v − α

2
+ ε

))
− v.

If v is a best response, then it must satisfy the first-order condition

B

(∫ vR

v−α/2+ε

1
α

fR(ṽR) dṽR − fR

(
v − α

2
+ ε

)
+ fR

(
v − α

2
+ ε

))
− 1 = 0,

or
1− FR

(
v − α

2
+ ε

)
=

α

B
.

But strict monotonicity of FR implies that this equation has a unique solution, so there can
be at most one best response for L greater than or equal to v∗L. And since FL is strictly
increasing on its support, that means vL ≤ v∗L. 2

A.3 Proof of Lemma 4

We’ve already seen that R’s mixture must assign probability α
B to the interval I(vL, xL, xR).

Since a non-overlapping profile assigns positive probability to exactly one point in that
interval, it must assign that point probability exactly α

B .
We’ve also seen that all of the probability not devoted to non-zero atoms is assigned to

the valence of zero. At that point, the first order condition for L is

Pr(vR = 0)
B

α
− 1 ≤ 0,

so Pr(vR = 0) must not exceed α
B . (A similar argument holds for Pr(vL = 0).) Thus we must

create as many non-zero atoms as possible. The next Claim implies that the probability
assignment described in points 1–3 in fact uses up all of the “space” for non-zero atoms. It
also implies the bounds in point 2.

Claim 1

(1− x T (1/x)) ≤ x,

with equality if and only if 1/x is an integer. Furthermore, the expression is decreasing at
every continuity point.

Proof Consider an x such that
1

n + 1
< x ≤ 1

n
.

34



This holds if and only if

n ≤ 1
x

< n + 1,

so T (1/x) = n for all x ∈ (1/(n + 1), 1/n]. Thus

(1− x T (1/x)) = (1− xn)

is decreasing in x on (1/(n + 1), 1/n]. Finally, we have

x T (1/x) = xn ≤ 1
n

n = 1

with equality if and only if x = 1/n, so the claimed inequality holds. 2

A.4 Proof of Lemma 5

Note that, when valences are vL and vR, each candidate wins with positive probability only
if vR ∈ I(vL, xL, xR). (This follows from the construction of I.) This probability is

βk =
1
2

+
ε

α
+

vk
L − vk

R

α
.

Furthermore, L wins for sure if vR ≤ min I(vL, xL, xR), and R wins for sure if vR ≥
max I(vL, xL, xR). Thus we can write the payoff to L when she chooses valence vk

L as

πk
L =

∑

j<k

Bpj
R + Bpk

Rβk − vk
L. (6)

To establish the first two points of the lemma, notice that in a mixed strategy equilib-
rium, the interior valences all must give equal expected payoffs. Then we need to choose
v2
L and v2

R so that this common payoff is also the payoff to choosing v1
L = v1

R = 0. Again
by construction of I, candidate c loses if he chooses zero valence and the other candidate
chooses a positive amount of valence in V. Thus, the payoff to candidate c of choosing zero
valence is simply the probability the other player chooses zero valence times the probability
candidate c wins when they both choose zero valence, times B. This payoff must be the
same as the payoff from choosing the interior valence v2

c . Using the fact (from Lemma 4)
that p2

c = α
B , this yields the following two equalities:

Bp1
Lβ1 = Bp1

L + Bp2
Lβ2 − v2

L

= Bp1
L + αβ2 − v2

L
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and

Bp1
R

(
1− β1

)
= Bp1

R + Bp2
R(1− β2)− v2

R

= Bp1
R + α(1− β2)− v2

R.

By the definition of β2, we have

β2 =
1
2

+
xR + xL

2γ
+

v2
L − v2

R

α
.

Further note that since p1
c = 1− n α

B , we have p1
L = p1

R ≡ p1.
Rearrangement shows that these three equations with three unknowns have a unique

solution in which
v2
L = Bp1

Lβ1 + α(1− β1), (7)

v2
R = Bp1

R(1− β1) + αβ1, (8)

and

β2 =
Bp1

α
(2β1 − 1) + 1− β1. (9)

To establish the third point, subtract πk
L from πk+1

L (see equation 6) to get

πk+1
L − πk

L =
∑

j<k+1

Bpj
R + Bpk+1

R βk+1 − vk+1
L −


∑

j<k

Bpj
R + Bpk

Rβk − vk
L




= Bpk+1
R βk+1 + Bpk

R(1− βk)− (vk+1
L − vk

L).

In a mixed strategy equilibrium, this difference must be zero. Thus, if k > 1, we have

α(βk+1 + 1− βk) = vk+1
L − vk

L.

Rearrangement now gives the result. A similar calculation works for R.

A.5 Proof of Proposition 1

We prove existence by constructing an equilibrium. After doing so, we prove that all non-
overlapping provide the same equilibrium payoffs (as specified in point two of the proposi-
tion).
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A.5.1 Existence

Again, we use the notation α = 2γ(xR − xL) and ε = x2
R − x2

L. Then the probability that
L wins is

1
α

(α

2
+ ε + vL − vR

)
,

assuming that this leads to an interior probability.
Let n = T (B/α) + 1, v1

c = 0, and vk+1
c − vk

c = α for all k ≥ 1. Candidate c chooses a
valence from the finite set

Vc = {v1
c , v

2
c , . . . , v

n
c }

according to the probability measure

(p1
c , p

2
c , . . . , p

n
c ) = (1− (α/B) T (B/α), α/B, . . . , α/B) ,

where the equality is established by Lemma 4.
Further, by Lemma 5, the fact that vk+1

c − vk
c = α implies that βk = βk+1 ≡ β for all

k > 1.
Now from equations (7)-(9) in the proof of Lemma 5, we have

v2
R = Bp1(1− β1) + αβ1

v2
L = Bp1β1 + α(1− β1)

β =
Bp1

α
(2β1 − 1) + 1− β1.

To constitute an mixed strategy equilibrium, several other conditions must be satisfied.
First, β must be a probability, else our specification of the payoffs is wrong. Second, the
v2’s must be far enough from zero that they do not upset the first order conditions for zero
valence. This requires

1
2

+
ε

α
− v2

R

α
≤ 0 ⇒ v2

R ≥ αβ1

and
1
2

+
ε

α
+

v2
L

α
≥ 1 ⇒ v2

L ≥ α(1− β1).

The first says that if L chooses 0 and R chooses v2
R, then L loses for sure, while the second

says that if L chooses v2
L and R chooses 0, then L wins for sure. Third, the strategies must

not imply anyone is playing a strictly dominated strategy, so we need vn
L and vn

R to not
exceed B.
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Thus we look for a solution (β, v2
L, v2

R) to the system

β =
1
2

+
ε

α
+

vk
L − vk

R

α
(10)

v2
R = Bp1(1− β1) + αβ1 (11)

v2
L = Bp1β1 + α(1− β1) (12)

β ∈ [0, 1] (13)

v2
R ≥ αβ1 (14)

v2
L ≥ α(1− β1) (15)

B ≥ v2
R + (n− 2)α (16)

B ≥ v2
L + (n− 2)α. (17)

Lemma 9 If (β, v2
L, v2

R) solve 8–15, then the implied mixed strategies are an equilibrium.

Proof Each candidate is indifferent across all of her choices by construction, and the first
order conditions guarantee that she cannot do better from deviations in the “scope” of the
played strategies. Thus the only deviations to worry about are those where

1
2

+
ε

α
+

v − vn
R

α
≥ 1

or v > 0 and
1
2

+
ε

α
+

v − v2
R

α
≤ 0.

(Clearly, the focus on L is without loss of generality.) But such choices are dominated by
choices that are covered by the previous arguments. 2

Now all we have to do is check the inequalities. First we show that v2
R ≥ αβ1. Substitute

in the solution for v2
R to see that this inequality is equivalent to

Bp1(1− β1) + αβ1 ≥ αβ1,

which is clearly true. A similar argument shows that v2
L ≥ α(1− β1).

Second we check that β is between 0 and 1. Recall that

β =
Bp1

α
(2β1 − 1) + 1− β1.

There are three subcases to consider:
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1. β1 > 1/2. Here the first term is positive. Since p1 ∈ [0, α/B) we have

1− β1 = inf
p1

Bp1

α
(2β1 − 1) + 1− β1 ≤ β ≤ sup

p1

Bp1

α
(2β1 − 1) + 1− β1 = β1,

and β is a probability.

2. β1 = 1/2. Here we have β = 1− β1, a probability.

3. β1 < 1/2. Here the first term is negative. Thus we have

β1 = inf
p1

Bp1

α
(2β1 − 1) + 1− β1 ≤ β ≤ sup

p1

Bp1

α
(2β1 − 1) + 1− β1 = 1− β1,

and β is a probability.

Third we check the constraint that no valence in the support of either mixed-strategy
exceeds B. Clearly it suffices to check that vn

L ≤ B and vn
R ≤ B. We have

vn
R = v2

R + (n− 2)α = Bp1(1− β1) + αβ1 + (n− 2)α.

Claim 1 says p1 ≤ α/B, so we have

Bp1(1− β1) + αβ1 + (n− 2)α ≤ α + (n− 2)α

= α(n− 1)

≤ B,

where the last inequality follows from the definition of n. Next, we have

vn
L = v2

L + (n− 2)α = Bp1β1 + α(1− β1) + (n− 2)α/B.

Now a similar argument gives us vn
L ≤ B. This establishes equilibrium existence.

A.5.2 Equilibrium Payoffs

In any non-overlapping equilibrium, each candidate plays zero with positive probability. By
the indifference property of mixed strategy equilibria, the equilibrium payoff must be the
payoff to playing zero. Non-overlappingness implies that this payoff is just the probability
that the other player plays zero times the probability of victory given no valence is accu-
mulated at all. And that quantity is pinned down independently of the details of the rest
of the equilibrium.
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In particular, the probability that either party chooses zero valence is

p1 = 1− n
α

B

= 1− α

B
T

(
B

α

)

= 1− 2γ(xR − xL)
B

T

(
B

2γ(xR − xL)

)
.

The probability that party L wins, given that both candidates choose valence equal to zero
is

β1
L =

1
2

+
ε

α

=
1
2

+
xR + xL

2γ
.

The probability that party R wins when both choose zero valence is 1 − β1
L. Finally, the

payoff off victory given no valence is simply B.
Combining these, the expected payoffs from choosing zero valence (and, thus, the ex-

pected equilibrium payoffs) are

πL(xL, xR) = B

(
1
2

+
xR + xL

2γ

)(
1− 2γ(xR − xL)

B
T

(
B

2γ(xR − xL)

))

to candidate L and

πR(xL, xR) = B

(
1
2
− xR + xL

2γ

)(
1− 2γ(xR − xL)

B
T

(
B

2γ(xR − xL)

))
.

to candidate R, establishing the result.

A.6 Proof of Proposition 2

Recall from Lemma 5 that the valences in the supports of the equilibrium mixtures satisfy

vk+1
L − vk

L = α + α(βk+1 − βk)

and
vk+1
R − vk

R = α− α(βk+1 − βk)

with the initial conditions
v1
L = v1

R = 0,

v2
L = Bp1β1 + (1− β1)α,
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and
v2
R = Bp1(1− β1) + β1α.

Because the platforms are symmetric, β1 = 1/2.
The solutions to these difference equations are

vL
k = v2

L + (k − 2)α + δk

and
vR
k = v2

R + (k − 2)α− δk

for some common sequence {δk}. Thus we have

E(vL) = E(v2
L + (k − 2)α) + E(δk)

and
E(vR) = E(v2

R + (k − 2)α)− E(δk).

Then independence of the players’ mixtures and the fact that the δ have the same distribu-
tion across players imply that

E(vL + vR) = 2E(v2
L + (k − 2)α).

We complete the proof by calculating:

E(v2
L + (k − 2)α) =

n∑

k=2

pk
(
v2
L + (k − 2)α

)

=
α

B
(n− 1)v2

L +
α2

B

n∑

k=2

(k − 2)

= (n− 1)
α

B

(
1
2
Bp1 +

1
2
α +

1
2
α(n− 2)

)

= T (B/α)
α

B

(
1
2
B

(
1− α

B
T (B/α)

)
+

1
2
α +

1
2
α(T (B/α)− 1)

)

= T (B/α)
α

B

(
1
2
B − 1

2
αT (B/α) +

1
2
α +

1
2
αT (B/α)− 1

2
α

)

=
1
2
αT

(
B

α

)
.

A.7 Proof of Lemma 7

Immediate from Claim 1.
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A.8 Proof of Lemma 8

Consider the stated profile for n > 0. Accumulation behavior is a non-overlapping equi-
librium for every subgame by Lemmata 1, 2, and Proposition 1, while any selection of
non-overlapping equilibria in the accumulation subgames yields the same payoffs as the one
specified by Proposition 1. Voter behavior is an equilibrium for every subgame if and only
if condition 3 holds by the discussion surrounding equation (2).

Lemma 6 says implies that, to have a non-overlapping equilibrium, the distance between
the platforms, xR − xL, must make the ratio B

2γ(xR−xL) an integer. Here we have

B

2γ
(

B
2nγ

) = n,

and the condition is satisfied. And by Lemma 6, the distance between the platforms, xR−xL,
must make the ratio B

2γ(xR−xL) an integer, say n. Thus the platforms must be B
2γn apart.

And since we are restricting attention to symmetric equilibria, the platforms must be

xL = − B

4γn
and xR =

B

4γn
.

So far, we have shown that any symmetric non-overlapping equilibrium has the form of
1–3, and that, for any n, play according to 2 and 3 is an equilibrium in the proper subgames.
Thus all we need to establish is that the platforms are in equilibrium if and only if the n

satisfies the bounds.
By symmetry, it suffices to check for profitable deviations for just one candidate, say

L. Lemma 6 implies that we only need to rule out deviations that make B
2γ(xR−xL) and

integer, and Lemma 7 implies that we only need to check deviations to “adjacent” platforms:
candidate L must not want to deviate in the direction of candidate R’s location to the
platform x′L that satisfies B/2γ(xR − x′L) = n + 1, or

x′L = −B
n− 1

4n(n + 1)γ
. (18)

Similarly, she must not want to deviate away from candidate R’s location to the platform
x′′L that satisfies B/2γ(xR − x′′L) = n− 1, or

x′′L = −B
n + 1

4n(n− 1)γ
. (19)

This gives two conditions to check:

1. f
(
− B

4nγ , B
4nγ

)
≥ f

(
B−n

4n(n+1)γ , B
4nγ

)
, and
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2. f
(
− B

4nγ , B
4nγ

)
≥ f

(
−B−n

4n(n−1)γ , B
4nγ

)
.

We consider each of these in turn.

1. Expanding an earlier expression for f , we need

γxR − γxL + x2
R − x2

L ≥ γxR − γx′L + x2
R − (x′L)2,

or
γ(x′L − xL) + (x′L)2 − x2

L ≥ 0.

Substitute to get

γB

(
1− n

4n(n + 1)γ
+

1
4nγ

)
+ B2(

1− n

4n(n + 1)γ
)2 −B2 1

16n2γ2
≥ 0,

which simplifies to
1
2

B

γ2
− 1 ≤ n.

2. This time we need
γ(x′′L − xL) + (x′′L)2 − x2

L ≥ 0.

Substitute to get

γB

( −1− n

4n(n− 1)γ
+

1
4nγ

)
+ B2

( −1− n

4n(n− 1)γ

)2

−B2 1
16n2γ2

≥ 0,

which simplifies to

n ≤ 1
2

B

γ2
+ 1.

2
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