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Abstract

In Condorcet’s model of information aggregation, a group of people decides among two

alternatives, with each person getting an independent bit of evidence about which alterna-

tive is objectively superior. I define the “supermajority penalty” (SP) procedure and show

that it is incentive compatible for all possible preferences and prior beliefs and is in this

sense completely robust. I also show that for an unbiased person, the SP procedure is the

optimal anonymous incentive compatible procedure when there are significant biases in both

directions (when at least one person is biased toward one alternative and at least one person

is biased toward the other). The SP procedure is not monotonic, but this is not unusual:

I show that when there are significant biases in both directions, all nontrivial anonymous

incentive compatible procedures are non-monotonic.

Keywords: Condorcet jury theorem, information aggregation, mechanism design, anonymous
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1. Introduction

People often make important decisions collectively because they believe that by combin-

ing their judgement, they are more likely to make the correct decision. Examples include

juries who collectively decide whether to find a person guilty or innocent, journal editors

and referees who collectively decide whether to accept a manuscript, and consulting doctors

who collectively decide how to treat a patient. In these situations, people’s prior beliefs or

inclinations might differ, but their interests do not fundamentally conflict; if it were known

for certain whether a person was guilty or innocent, or what the best treatment for a patient

would be, then all would agree.

A mathematical representation of this kind of collective decision-making was introduced

by Condorcet (1785). In his model, there are a group of people who have to decide among two

alternatives a and b, and each gets an independent bit of evidence about which alternative

is objectively best. Each person’s evidence either favors a or b, and each person’s evidence is

assumed to be correct with probability q, which is the same for everyone. Condorcet showed

that the collective procedure which is most likely to yield the best alternative is majority

rule: each person reports their evidence, and the alternative which gets the most reports is

chosen. If we think of democratic elections as a way of divining a group’s collective wisdom,

then Condorcet’s result can be understood as an argument for majority rule voting.

Starting from Condorcet’s original model, a recent line of research has considered whether

people want to report their evidence truthfully. This is a practical consideration; for example,

in Olympic diving competitions, if the US judge always scores US divers highly regardless of

their true performance, the Russian judge might respond by always scoring non-US divers

highly regardless of their true performance, thereby degrading the quality of the collective

decision for everyone. In Olympic diving, the highest and lowest scores of a panel of judges

are discarded and only the remaining scores are averaged to obtain a diver’s final score,

thereby limiting the ability of a single judge to influence the final score. A procedure is

called “incentive compatible” if each person wants to report her information truthfully given

the procedure and given that everyone else is reporting truthfully.

If everyone is identical, strategic considerations do not arise (McLennan 1998): no in-

dividual wants to deviate from a socially optimal procedure because socially optimal is

synonymous with individually optimal. The model becomes nontrivial, and more realistic,

when people have different “biases.” People might have different prior beliefs over which
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alternative is best. People might also have different preferences: for example, choosing b

when we should have chosen a might be not so bad for you but disastrous for me, and thus

I might require a higher “burden of proof” for choosing b. Given people’s biases, and given

a voting procedure such as majority rule or unanimity rule, we can model the situation as a

game in which each person chooses what to report given her evidence.

The usual approach in this line of research on Condorcet’s model is to find Nash equilibria

of this game, in other words to predict voting behavior given a particular voting procedure.

This paper takes the mechanism design approach and asks instead which is the best pro-

cedure. This paper restricts itself to anonymous procedures in which the only thing which

affects the group’s choice of a or b is the total number of people who report a, not who

these people are. We also consider only equilibria in which everyone reports their evidence

truthfully, and hence everyone’s evidence affects the decision equally. Equality is a well-

known argument for anonymous procedures (Riker 1982). Another argument is in terms of

simplicity: in a group of n people, since each person’s evidence favors either a or b, a general

procedure must consider 2n cases, while an anonymous procedure considers only n+1 cases,

since the total number of people whose evidence favors a ranges from 0 to n.

This paper defines the supermajority penalty (SP) procedure and shows that it is incen-

tive compatible for all possible biases. In this sense, it is completely robust: any individual

would report truthfully given this procedure. The SP procedure is anonymous and when

there are significant biases in both directions, the SP procedure is in fact the optimal anony-

mous incentive compatible procedure. Here “optimal” means maximizing the utility of a

completely unbiased person, whose priors or preferences do not ex ante favor either alterna-

tive, and “both directions” means that at least one person is biased toward a and at least

one toward b.

In other words, one can approach Condorcet’s situation with no knowledge of the priors

and preferences of the people involved and be confident in the SP procedure. Assuming that

there is at least one person significantly biased in each direction, from the point of view of

an unbiased person, the SP procedure is the optimal anonymous procedure. Even if this

assumption is not true, the SP procedure is incentive compatible and still “works.”

The SP procedure is called the “supermajority penalty” procedure because if a weak

majority of people report a, then the procedure chooses a, but if too many people, a su-

permajority, report a, then the other alternative b is chosen with some probability, thereby
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“penalizing” the supermajority. The SP procedure is not monotonic: when the number of

reports for an alternative increases, the probability of choosing that alternative sometimes

decreases. This non-monotonicity is not intuitive, but the SP procedure is not special in this

regard. This paper shows that when there is at least one person significantly biased in each

direction, all nontrivial incentive compatible anonymous procedures are non-monotonic. In

other words, anonymity and incentive compatibility alone imply non-monotonicity.

2. The model

Condorcet’s model has been presented in many papers (here we follow the notation in

Chwe 1999). There is a group of people N = {1, 2, . . . , n}, where n is odd and at least 3.

The group chooses between alternatives a or b. Each person receives private evidence on

whether a or b is objectively superior. Each person i ∈ N has a prior belief that a is superior

with probability πi(a) and b is superior with probability πi(b), where πi(a), πi(b) ∈ [0, 1] and

πi(a) + πi(b) = 1. Each person’s private evidence is correct with probability q ∈ (1/2, 1).

Let g(d, e) be the probability that a person’s private evidence supports e when the superior

alternative truly is d; thus we have g(d, e) = q if d = e and g(d, e) = 1− q if d 6= e.

Each person reports her private evidence to the procedure, which outputs the group’s

decision. The decision procedure is thus a function f : {a, b}n × {a, b} → [0, 1], where

f(r1, . . . , rn, a) is the probability of choosing a and f(r1, . . . , rn, b) is the probability of choos-

ing b given the reports r1, . . . , rn ∈ {a, b}, and of course f(r1, . . . , rn, a)+f(r1, . . . , rn, b) = 1.

After the decision is made, each person gets utility ui(d, c) when the superior alternative truly

is d and the alternative chosen is c. We assume that ui(a, a) > ui(a, b) and ui(b, b) > ui(b, a);

in other words, everyone prefers the superior alternative.

Each person’s strategy is a choice of what to report given his evidence, a function si :

{a, b} → {a, b}. The identity function id, where id(a) = a and id(b) = b, is the strategy in

which a person always reports his evidence truthfully. Let saa be the strategy of reporting

a all the time (saa(a) = saa(b) = a) and let sbb be the strategy of reporting b all the time

(sbb(a) = sbb(b) = b).

Given the procedure f and strategies s1, . . . , sn, the probability that the group

chooses alternative c given that the superior alternative truly is d is pdc(f, s1, . . . , sn) =∑
(e1,...,en)∈{a,b}n g(d, e1) · · · g(d, en)f(s1(e1), . . . , sn(en), c). Here e1, . . . , en is the evidence,

s1(e1), . . . , sn(en) are the reports given this evidence, and f(s1(e1), . . . , sn(en), c) is the
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probability of choosing c given the reports. Hence, given strategies s1, . . . , sn, and the pro-

cedure f , person i’s expected utility is EUi(f, s1, . . . , sn) = πi(a)paa(f, s1, . . . , sn)ui(a, a) +

πi(a)pab(f, s1, . . . , sn)ui(a, b) + πi(b)pba(f, s1, . . . , sn)ui(b, a) + πi(b)pbb(f, s1, . . . , sn)ui(b, b).

Because we know pab(f, s1, . . . , sn) = 1 − paa(f, s1, . . . , sn) and pba(f, s1, . . . , sn) = 1 −
pbb(f, s1, . . . , sn), we have EUi(f, s1, . . . , sn) = πi(a)ui(a, b) + πi(b)ui(b, a) + πi(a)(ui(a, a)−
ui(a, b))paa(f, s1, . . . , sn)+πi(b)(ui(b, b)−ui(b, a))pbb(f, s1, . . . , sn). The first two terms here

are constants and can be dropped. We can then normalize and write

EUi(f, s1, . . . , sn) = φi(a)paa(f, s1, . . . , sn) + φi(b)pbb(f, s1, . . . , sn) (∗)

where φi(a), φi(b) are defined by

φi(a) =
πi(a)(ui(a, a)− ui(a, b))

πi(a)(ui(a, a)− ui(a, b)) + πi(b)(ui(b, b)− ui(b, a))

φi(b) =
πi(b)(ui(b, b)− ui(b, a))

πi(a)(ui(a, a)− ui(a, b)) + πi(b)(ui(b, b)− ui(b, a))
.

Note that φi(a), φi(b) ∈ [0, 1] and φi(a) + φi(b) = 1.

The parameters φi(a), φi(b) represent the “bias” of person i. If everyone has the same

prior belief πi(a) = πi(b) = 1/2, then φi(a), φi(b) correspond to the relative magnitudes of

ui(a, a)−ui(a, b) and ui(b, b)−ui(b, a). For example, if πi(a) = πi(b) = 1/2 and ui(a, a) = 2,

ui(a, b) = 0, ui(b, a) = 0, ui(b, b) = 1, then φi(a) = 2/3 and φi(b) = 1/3; person i is biased

toward a because her payoff from choosing a correctly is twice that of choosing b correctly.

If one has the “standard” utility function ui(a, a) = 1, ui(a, b) = 0, ui(b, a) = 0, ui(b, b) = 1,

then φi(a) = πi(a) and φi(b) = πi(b); the bias φi is simply the prior belief πi. If φi(a) > φi(b),

either because of ui or πi, then we say that person i is “biased toward” a. If a person has

bias φi(a) = φi(b) = 1/2, we call that person unbiased.

The sum of everyone’s utility is simply∑
i∈N

EUi(f, s1, . . . , sn) =
[∑
i∈N

φi(a)
]
paa(f, s1, . . . , sn) +

[∑
i∈N

φi(b)
]
pbb(f, s1, . . . , sn).

Thus utility averaged over the group is equal to the utility of a person who has an average

bias. If average bias in a group is φi(a) = φi(b) = 1/2, then maximizing the sum of everyone’s

utility is the same as maximizing the utility of an unbiased person.

We say that the procedure f is incentive compatible for person i if EUi(f, id, . . . , id) ≥
EUi(f, id, . . . , saa, . . . , id) and EUi(f, id, . . . , id) ≥ EUi(f, id, . . . , sbb, . . . , id). In other
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words, reporting truthfully is at least as good as reporting a always or reporting b always. We

do not have to consider the “always lie” strategy sba, defined by sba(a) = b and sba(b) = a,

because it is easy to show that if one does not gain by deviating from id to either saa or sbb,

then one does not gain by deviating to sba. If one does not gain by misreporting when one’s

evidence is for b and one does not gain by misreporting when one’s evidence is for a, then

one cannot gain by always misreporting. We say the procedure f is incentive compatible if

it is incentive compatible for all i ∈ N ; in other words, (id, . . . , id) is a Nash equilibrium.

For r ∈ {a, b}n, define α(r) = #{i ∈ N : ri = a}; in other words, given the vector

of reports r, α(r) is the number of people who report a. We say that the procedure f is

anonymous if α(r) = α(r′) ⇒ f(r, a) = f(r′, a). In other words, an anonymous procedure

depends only on the number of people who report a or b, not their identities. An anonymous

procedure f can be represented by the numbers γ(0), γ(1), . . . γ(n), where γ(α(r)) = f(r, a);

in other words, γ(j) is the probability that a is chosen given that there are j reports of a.

We say that a procedure f is symmetric if f(r, a) = f(r′, b) for all r, r′ such that ri =

a ⇔ r′i = b. In other words, if r, r′ are exact “opposites” in that each person’s report in r

is the opposite of her report in r′, then the probability of choosing a given r is the same as

the probability of choosing b given r′. If a procedure f is both anonymous and symmetric,

then the probability of choosing a given 3 reports of a is the same regardless of who reports

a, and is equal to the probability of choosing b given 3 reports of b.

3. Results

Given q, the probability that an individual’s evidence is correct, and given n, the number

of people in the group, we define the SP procedure fSP . Lemma 1 provides two numbers k

and z, which are parameters of fSP (all proofs are in the appendix).

Lemma 1. Given q and n, there uniquely exists k ∈ {0, 1, . . . , (n− 3)/2} such that

z =
Dky

(n−1)/2 − k(yk−1 + yn−k)

(n− k)(yk + yn−1−k)− k(yk−1 + yn−k)
∈ (0, 1]

where y = q/(1 − q) and Dk = (k!(n − k)!)/(((n − 1)/2)!)2. Also, k is nonincreasing in q,

k < (1−q)n, and k/n → ρ as n →∞, where ρ log ρ+(1−ρ) log(1−ρ)+log 2 = (1/2−ρ) log y.
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Definition. Given q and n, define the SP procedure fSP as

fSP (r, a) =


1 if α(r) < k
z if α(r) = k
0 if k < α(r) ≤ (n− 1)/2
1 if (n + 1)/2 ≤ α(r) < n− k
1− z if α(r) = n− k
0 if α(r) > n− k

where α(r) = #{i ∈ N : ri = a}, k ∈ {0, 1, . . . , (n − 3)/2} and z ∈ (0, 1] are defined as in

Lemma 1, and fSP (r, b) = 1− fSP (r, a).

In other words, if a weak majority of the reports are for a, then a is chosen with probabil-

ity 1. However, if the number of reports for a is greater than n− k, then this supermajority

is “penalized” and a is chosen with probability 0. If the number of reports for a is equal

to n − k, then a is chosen with probability 1 − z. For example, when n = 7 and q = 2/3,

Lemma 1 gives us k = 1 and z = 95/139, and the SP procedure fSP is shown in Figure 1.
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Figure 1. fSP when n = 7 and
q = 2/3 (thus k = 1 and z = 95/139)

We have two main propositions. Proposition 1 shows the robustness of the SP procedure.

Proposition 2 shows its optimality when there is at least one person biased in each direction.

Proposition 1. The procedure fSP is incentive compatible for any φ1, . . . , φn. In fact, the

incentive compatibility constraints hold with equality.

Proposition 2. Say that there exist i, j ∈ N such that φi(a) < 1 − q and φj(a) > q.

Then fSP is an anonymous incentive compatible procedure which maximizes EU0, where
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φ0(a) = φ0(b) = 1/2. Also, fSP is the unique maximum for almost all q (all but fewer than

(n− 1)/2 values of q).

What does it mean for a person to have bias outside the interval [1− q, q]? If a person’s

bias is inside this interval, then it is easy to verify that she reports truthfully under the

majority rule procedure given that everyone else reports truthfully. So if φi(a) ∈ [1 − q, q]

for all i ∈ N , then the optimal anonymous incentive compatible procedure, from the point

of view of an unbiased person, is majority rule. But if a person’s bias is outside the interval,

then majority rule is no longer incentive compatible. If some people have φi(a) slightly

greater than q and everyone else has φj(a) ∈ [1−q, q], then the optimal anonymous incentive

compatible procedure allows a to be chosen with some probability when it gets one report

short of a majority (Chwe 1999). If one person has φi(a) < 1− q and another has φj(a) > q,

then Proposition 2 applies and the optimal anonymous incentive compatible procedure is the

SP procedure. The SP procedure is the unique optimum for almost all q ∈ (1/2, 1); there are

at most (n− 1)/2 values of q in the interval (1/2, 1) for which I have not proved uniqueness.

I believe that the SP procedure is the unique maximum for all q, but I have not yet proved

this slightly stronger statement.

To understand why the SP procedure is incentive compatible for any bias, Lemma 2

is helpful. Say that f is anonymous, and thus can represented by γ(j), the probability of

choosing a given j reports of a. If f is symmetric as well, and at least one person is signifi-

cantly biased, it turns out that all of the incentive compatibility constraints boil down to a

single equality constraint, which does not depend on φ. In other words, as long as someone

is significantly biased, people’s exact biases do not affect the set of incentive compatible

anonymous symmetric procedures. Roughly speaking, fSP is incentive compatible for any

belief φ because incentive compatibility does not depend on the precise value of φ.

Lemma 2. Say that there exists i ∈ N such that either φi(a) > q or φi(b) > q, and say that

f is anonymous and symmetric. Then f is incentive compatible if and only if W (q, γ) = 0,

where γ(α(r)) = f(r, a) and W (q, γ) = Cn−1
(n−1)/2

q(n−1)/2(1− q)(n−1)/2(2γ((n − 1)/2)− 1) +∑(n−3)/2
j=0 Cn−1

j (qj(1− q)n−1−j + qn−1−j(1− q)j)(γ(j)− γ(j + 1)), where Cn
j is the binomial

coefficient Cn
j = n!/((n− j)!j!).
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Proposition 1 says that the SP procedure satisfies all incentive compatibility constraints

with equality: a person does not gain by misreporting, but also does not lose. The SP

procedure might seem unusual in this respect. However, Lemma 3 shows that when there

is at least one person biased in each direction, incentive compatibility constraints hold with

equality for any anonymous incentive compatible procedure, including procedures which are

not symmetric. In other words, if this is a concern, it applies to all anonymous incentive

compatible procedures, not just the SP procedure.

Lemma 3. Say that there exist i, j ∈ N such that φi(a) < 1 − q and φj(a) > q. If

f is anonymous and incentive compatible for persons i and j, then person l’s incentive

compatibility constraints hold with equality for any φl.

These lemmas allow us to prove Proposition 3. We say that a procedure f is trivial if

there exists a constant κ ∈ [0, 1] such that f(r, a) = κ for all r ∈ {a, b}n. In other words,

a trivial procedure chooses a with the same probability regardless of the reports. We say

that a procedure f is monotonic if α(r) ≤ α(r′) ⇒ f(r, a) ≤ f(r′, a), where α(r) = #{i ∈
N : ri = a}. In other words, a procedure is monotonic if the probability it chooses a weakly

increases in the number of reports for a. Proposition 3 says that when there are biases in both

directions, a nontrivial anonymous incentive compatible procedure cannot be monotonic.

Proposition 3. Say that there exist i, j ∈ N such that φi(a) < 1− q and φj(a) > q. Say f is

an anonymous incentive compatible procedure which is not trivial. Then f is not monotonic.

In other words, when there are biases in both directions, in any nontrivial anonymous

incentive compatible procedure, there is at least one scenario in which an additional report

for a makes the probability that a is chosen strictly decrease. The non-monotonicity of

the SP procedure is nothing special. Non-monotonicity results directly from anonymity and

incentive compatibility and does not result from any particular procedure (for a similar result

in a different context, see Li, Rosen, and Suen 2001).
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4. Example

An example is helpful in explaining the results and how they are proved. Say that n = 3

and q = 2/3. Say we have biases φ1(a) = 1/4, φ2(a) = 4/7, and φ3(a) = 10/11. Note that

φ1(a) < 1 − q and φ3(a) > q, and of course φi(b) = 1 − φi(a). Say we have an anonymous

procedure γ, which we write as four numbers γ(0), γ(1), γ(2), γ(3), where γ(j) ∈ [0, 1] is the

probability that the group chooses a given j reports for a.

Remember that a person’s expected utility is given by the formula (∗) earlier. The

first incentive compatibility constraint is that whenever a person receives evidence for b, she

should rather report b than report a. Given that she receives evidence for b, her expected

utility from reporting b is

φ(a)(1
3)

[
(2
3)2γ(2) + 2(2

3)(1
3)γ(1) + (1

3)2γ(0)
]

+φ(b)(2
3)

[
(1
3)2(1− γ(2)) + 2(1

3)(2
3)(1− γ(1)) + (2

3)2(1− γ(0))
]
.

The first line is her bias φ(a) times the probability that a is chosen when a is truly the

superior alternative. When a is truly the superior alternative, the probability that she gets

evidence b is 1
3 , and we have three cases. In the first case, two other people get evidence

a, which happens with probability (2
3)2, and the procedure chooses a with probability γ(2),

and so forth. The second line is her bias φ(b) times the probability that b is chosen when

b truly is the superior alternative. When b is truly the superior alternative, the probability

that she gets evidence b is 2
3 , and we similarly have three cases.

If when she receives evidence for b she reports a instead, her expected utility becomes

φ(a)(1
3)

[
(2
3)2γ(3) + 2(2

3)(1
3)γ(2) + (1

3)2γ(1)
]

+φ(b)(2
3)

[
(1
3)2(1− γ(3)) + 2(1

3)(2
3)(1− γ(2)) + (2

3)2(1− γ(1))
]
,

which is the same as before except that all the arguments of γ increase by 1. By reporting

a instead of b, she increases the number of a reports by 1.

So the incentive compatibility constraint is simply that the first expression is greater

than or equal to the second; given that φ(b) = 1− φ(a), this inequality is

[ 9
27φ(a)− 8

27 ]γ(0) + 3
27φ(a)γ(1) + 6

27(1− φ(a))γ(2) + [ 2
27 −

6
27φ(a)]γ(3) ≥ 0.
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The second incentive compatibility constraint is that whenever a person receives evidence

for a, he should report a rather than b. In a similar manner, we find this constraint to be

[ 6
27φ(b)− 2

27 ]γ(0)− 6
27(1− φ(b))γ(1)− 3

27φ(b)γ(2) + [ 8
27 −

9
27φ(b)]γ(3) ≥ 0.

We call these two constraints our IC constraints (for “incentive compatibility”). A procedure

γ which satisfies the two IC constraints is incentive compatible for a person with bias φ.

Assume for a moment (this will be justified later) that γ is symmetric: γ(3) = 1− γ(0)

and γ(2) = 1− γ(1). In other words, the probability that a is chosen given 2 reports of a is

the same as the probability that b is chosen given 2 reports of b. We can then simplify to get

[59φ(a)− 10
27 ]γ(0) + [13φ(a)− 10

27 ]γ(1) + [−4
9φ(a) + 8

27 ] ≥ 0

[59φ(b)− 10
27 ]γ(0) + [13φ(b)− 10

27 ]γ(1) + [−4
9φ(b) + 8

27 ] ≥ 0.

Now we can factor out the term φ(a)− 2
3 in the first constraint and the term φ(b)− 2

3 in

the second constraint and get

[φ(a)− 2
3 ](5

9γ(0) + 1
3γ(1)− 4

9) ≥ 0

[φ(b)− 2
3 ](5

9γ(0) + 1
3γ(1)− 4

9) ≥ 0.

Note that if φ(a), φ(b) < 2/3, then the IC constraints boil down to a single inequality:

5
9γ(0) + 1

3γ(1) − 4
9 ≤ 0. It is easy to verify that majority rule (γ(0) = γ(1) = 0) satisfies

this inequality and thus is incentive compatible when a person is not too biased. But when

φ(a) > 2/3, the terms φ(a) − 2
3 and φ(b) − 2

3 have different signs, and similarly when

φ(b) > 2/3. Then the IC constraints boil down to a single equality, 5
9γ(0) + 1

3γ(1) − 4
9 = 0

(this is Lemma 2). It is easy to see that majority rule does not satisfy this equality. It is also

easy to see that if γ satisfies the IC constraints for one particular φ(a) > 2/3 or φ(b) > 2/3,

then γ satisfies the IC constraints with equality for any φ (this is Lemma 3).

Remember that in our example, we have φ1(a) = 1/4, φ2(a) = 4/7, and φ3(a) = 10/11.

An incentive compatible procedure γ must satisfy six inequalities: the two IC inequalities

for each of the three values of φ(a) = 1/4, 4/7, 10/11. But since φ1(b) = 3/4 > 2/3, these

six inequalities all reduce down to a single equality, 5
9γ(0) + 1

3γ(1)− 4
9 = 0.

Now consider the objective function. Using the formula (∗), and assuming again

that γ is symmetric, an unbiased person with φ(a) = φ(b) = 1/2 has expected utility

10



− 7
27γ(0) − 2

9γ(1) + 20
27 . Therefore, the incentive compatible procedure which maximizes the

expected utility of an unbiased person is the solution to the following constrained optimiza-

tion problem:

Maximize − 7
27γ(0)− 2

9γ(1) such that 5
9γ(0) + 1

3γ(1)− 4
9 = 0

where γ(0), γ(1) ∈ [0, 1].

To maximize the objective, we would like to set γ(0) = γ(1) = 0, but this would not

satisfy the constraint. At least one of the variables γ(0), γ(1) must be made positive. Which

one? It depends on how much a variable hurts the objective relative to how much it helps

satisfy the constraint. If we look at the ratios of the coefficients on γ(0) and γ(1), we find

that the ratio for γ(0) is (− 7
27)/(5

9) = − 7
15 and the ratio for γ(1) is (−2

9)/(1
3) = −2

3 . Since the

ratio for γ(0) is less negative, making γ(0) positive is the better “deal,” and the maximum

is obtained at γ(0) = 4/5 and γ(1) = 0.

This is the proof of Proposition 2 in a nutshell. Proposition 1, that γ is incentive

compatible for any φ, is clear from our observation above that if 5
9γ(0)+ 1

3γ(1)− 4
9 = 0, then

γ satisfies the IC inequalities for any φ. To prove Proposition 3, that any incentive compatible

procedure is not monotonic, simply write 5
9γ(0)+ 1

3γ(1)− 4
9 = 4

9(2γ(1)−1)+ 5
9(γ(0)−γ(1)) =

4
9(γ(1)− γ(2))+ 5

9(γ(0)− γ(1)). Since this expression equals zero, the terms γ(1)− γ(2) and

γ(0)− γ(1) cannot both be negative.

The only thing remaining is to justify the assumption that γ is symmetric. The argument,

roughly speaking, proceeds like this. Say that γ is no longer assumed to be symmetric. In

our example, φ(a) takes on the values 1/4, 4/7, 10/11. Note that the IC constraints are linear

in φ(a). Hence if γ satisfies the IC constraints for φ(a) = 1/4 and for φ(a) = 10/11, then

they satisfy the IC constraints for all convex combinations of 1/4 and 10/11, or in other

words all φ(a) ∈ [1/4, 10/11]. Note that since 3/4 ∈ [1/4, 10/11], any incentive compatible

γ satisfies the IC constraints for φ(a) = 1/4 and φ(a) = 3/4.

Define a new procedure γ′′ as γ′′(j) = 1− γ(3− j). In other words, the probability that

γ′′ chooses a given 2 reports of a is the same as the probability that γ chooses b given 2

reports of b. It is not difficult to show, either through a bit of computation (see Fact 7 in the

appendix) or by simply exchanging the names of a and b, that if γ satisfies the IC constraints

for φ(a) = r, then γ′′ satisfies the IC constraints for φ(a) = 1 − r. Since γ satisfies the IC

constraints for φ(a) = 1/4 and φ(a) = 3/4, we know that γ′′ satisfies the IC constraints for

11



φ(a) = 3/4 and φ(a) = 1/4. So both γ and γ′′ satisfy the IC constraints for φ(a) = 1/4

and φ(a) = 3/4. Since the IC constraints are linear in γ, if we define another procedure γ′

as γ′(j) = (γ(j) + γ′′(j))/2, we know that γ′ satisfies the IC constraints for φ(a) = 1/4 and

φ(a) = 3/4.

Note that the procedure γ′ is symmetric. We can think of γ′ as a “symmetrized” version

of γ. Since γ′ is symmetric and satisfies the IC constraints for φ(a) = 3/4 > 2/3, by our

earlier argument, γ′ satisfies the IC constraints for all φ(a) and hence is incentive compatible.

So any incentive compatible γ has a symmetric version γ′ which is incentive compatible.

Remember that our objective function is the expected utility of an unbiased person,

with φ(a) = 1/2. It is easy to show that an unbiased person gets the same expected utility

from γ and γ′′, and thus by convexity gets the same expected utility from γ′. We can thus

safely restrict ourselves to symmetric γ, because for any incentive compatible γ which is not

symmetric, there is a symmetric version γ′ which yields the same expected utility. Hence we

are done.

To summarize, what makes things simple is that for anonymous and symmetric proce-

dures, the terms φ(a)− q and φ(b)− q always factor out of the IC constraints, as illustrated

in our example. Hence whether a procedure is incentive compatible depends in a very crude

way on φ(a): for all biases, incentive compatibility boils down to the sign of W (q, γ), which

is defined in Lemma 2. To understand intuitively “why” the SP procedure has the shape

that it does in general, one simply looks at the ratio of the coefficient of γ(j) in the objective

function EU0 to the coefficient of γ(j) in the constraint W (q, γ). This ratio always decreases

(becomes more negative) in j, as illustrated in our example: the ratio for γ(0) is − 7
15 and

the ratio for γ(1) is −2
3 . Making γ(0) positive is always the best “deal,” and when this is

maxed out at γ(0) = 1, we resort to the next best deal, γ(1), until this is maxed out, and so

forth.

5. Comparative statics

The SP procedure depends only on the parameters q and n. How does the SP procedure

change as these parameters change? Lemma 1 says that k is nonincreasing in q: as q

increases, k stays the same or decreases. Figure 2 shows this for n = 9 and q going from

0.501 to 0.8. As q increases, each person’s evidence gets stronger and people’s biases become
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relatively less important; thus the “distortion” in the procedure necessary to deal with the

biases lessens, and the supermajority penalty regions shrink.
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Figure 2. fSP when n = 9 and q = 0.501, 0.6, 0.7, 0.8

As q approaches 1, we know k = 0 because Lemma 1 says that k < (1 − q)n, and it is

also easy to see from the definition of z in Lemma 1 that as q approaches 1, z approaches

0. Hence as q approaches 1, the SP procedure approaches majority rule and its welfare

performance approaches that of majority rule. Figure 3 shows EU0, the expected utility for

an unbiased person, as a function of q, for the SP procedure fSP and for majority rule fMR,

when n = 9. The expected utility from majority rule fMR is the “first best,” the best the

unbiased person could get if people have no choice but to report truthfully and there were

no incentive compatibility problem. For q close to 1, the evidence is very good and the SP

procedure performs very close to majority rule. As q decreases below around 0.8, the welfare

gap between the two procedures becomes larger as the supermajority penalty regions grow,

as shown in Figure 2. For q close to 0.5, the evidence becomes so bad that no procedure is

much better than simply choosing a all the time regardless of the evidence, which yields an

expected utility of 0.5.
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Figure 3. An unbiased person’s expected utility EU0 given
fSP and fMR when n = 9 and q = 0.51, 0.52, . . . , 0.99

How does the SP procedure change as n changes? Lemma 1 says that as n grows large,

k/n → ρ, where ρ is a constant which does not depend on n. Also, note that in expectation

we either have qn reports for a (if a is the objectively superior alternative) or (1−q)n reports

for a (if b is the objectively superior alternative). By Lemma 1, k < (1− q)n, and thus the

supermajority penalty regions are not reached in expectation, and are rarely reached as n

grows large. Figure 4 shows how the SP procedure changes when q = 2/3 and n varies from

5 to 101. When n = 101 for example, given that q = 2/3, the number of reports for a cluster

around 34 (if b is superior) or 67 (if a is superior) and the supermajority penalty rarely

occurs.
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Figure 4. fSP when q = 2/3 and n = 5, 9, 25, 101
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Since the supermajority penalty regions are rarely reached as n grows large, the welfare

performance of the SP procedure approaches that of majority rule. Figure 5 shows EU0 as

a function of n, for the SP procedure fSP and for majority rule fMR, when q = 2/3.

3 11 21 31 41 51
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0.8

0.9

1
fMR

fSPEU0

n

Figure 5. An unbiased person’s expected utility EU0

given fSP and fMR when q = 2/3 and n = 3, 5, . . . , 51

6. Discussion

The results in this paper are based on three main assumptions: the welfare criterion is

the utility of an unbiased person, the procedure is anonymous in the sense that each person’s

evidence affects the decision equally, and the procedure is incentive compatible. We discuss

these three assumptions in turn.

First, the optimality result of Proposition 2 is from the point of view of an unbiased

person. An unbiased person might be considered “objective” in that she cares only about

the total probability of “getting it right,” the sum of the probability of choosing a when a

is superior and the probability of choosing b when b is superior. The utility of an unbiased

person is also the objective function assumed by Condorcet in his original model; for example,

a person very biased toward a in Condorcet’s model would be happiest not with majority

rule but with a procedure which chooses a unless a supermajority of reports are for b.

Still, it is natural to ask whether the optimality of the SP procedure depends in a fragile

way on the objective function being the utility of a person who is exactly unbiased. Numerical

computations show that this is an issue only for q near 0.5. Figure 6 shows the region in

which the SP procedure is optimal, in terms of q and φ0(a), when n = 9. Figure 6 also shows

the regions in which the trivial procedures fA and fB are optimal, where fA is the procedure
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which chooses a with probability 1 regardless of the reports and fB is the procedure which

chooses b with probability 1 regardless of the reports. For q close to 0.5, the optimality of

fSP is not very robust. Part of the reason for this is that for low q, the quality of evidence

is very low, and hence someone with even the slightest bias toward a finds fA optimal and

someone with even the slightest bias toward b finds fB optimal. For q greater than around

0.6, fSP is optimal for people whose biases are in a significant band around 0.5. For q greater

than around 0.9, fSP is optimal for almost all biases.
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Figure 6. Anonymous incentive compatible
procedures which maximize EU0 given φ0(a) ∈ [0, 1]

and q = 0.51, 0.52, . . . , 0.99, where n = 9

It is also natural to consider other welfare criteria such as total social welfare. Recall

that average social welfare is equal to the utility of an individual whose bias is the average of

biases in the group. Thus if biases are symmetric around φ(a) = φ(b) = 1/2 or simply have

average φ(a) = φ(b) = 1/2, then maximizing total social welfare is equivalent to maximizing

the utility of an unbiased person. Similarly, maximizing the weighted sum of utilities is

equivalent to maximizing the utility of an individual whose bias is the weighted average

of biases. Thus in Figure 6, for q greater than around 0.9, fSP is optimal for almost any

weighted sum of individual utilities; in other words, most of the Pareto frontier is fSP .

Second, we assume that everyone’s evidence matters equally in the decision. Thus we

consider only anonymous procedures. But even with an anonymous procedure, if people have

different reporting strategies, then each person’s evidence does not influence the decision

equally. For example, if a person always reports a regardless of her evidence, then her
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evidence does not affect the decision. Thus in addition, we consider only the equilibrium in

which everyone reports truthfully.

But other Nash equilibria are possible. Consider a three person example in which q =

2/3. As shown in our example earlier, the SP procedure is given by γ(0) = 4/5, γ(1) =

0, γ(2) = 1, γ(3) = 1/5, where γ(j) is the probability of choosing a given j reports of a.

Say φ1(a) = 3/4, φ1(b) = 1/4, φ2(a) = 1/4, φ1(b) = 3/4, and φ3(a) = 1/2, φ1(b) = 1/2.

In other words, person 1 is biased toward a, person 2 is biased toward b, and person 3 is

unbiased. Note that since the average bias is φ(a) = φ(b) = 1/2, maximizing total expected

utility is equivalent to maximizing person 3’s expected utility. By Proposition 1 we know

that (id, id, id) is a Nash equilibrium, which gives everyone expected utility 8/15 ≈ 0.533.

However, it turns out that (saa, sbb, id) is also a Nash equilibrium, which gives everyone

expected utility 2/3 ≈ 0.667. Here person 1 reports a all the time, and person 2 reports b

all the time, and thus their evidence does not affect the decision. This is equivalent to a

procedure in which only person 3’s vote is counted and thus person 3 acts as a dictator.

The existence of multiple equilibria is of course an issue not just for the SP procedure but

for other procedures. For example, if n = 3 and everyone is unbiased, given majority rule,

the set of Nash equilibria includes (id, id, id), (saa, sbb, id), (saa, saa, saa), and (sbb, sbb, sbb).

To make the seemingly obvious argument that majority rule is the optimal procedure when

people are all unbiased, we also have to assume outright the truthful equilibrium.

To fully evaluate a procedure, one should ideally find all equilibria given the procedure.

But this is difficult especially when considering all possible procedures. The mechanism

design approach allows us to find the best possible procedure together with the best possi-

ble equilibrium. We employ the mechanism design approach here, but with the simplifying

assumption that everyone’s evidence matters equally (the procedure is anonymous and ev-

eryone tells the truth). Without this simplifying assumption, finding optimal procedures is

not mathematically difficult, but specifying them can require a great deal of detail (since

they are defined on 2n cases) and they also typically depend precisely on people’s biases (see

for example Chwe 1999). With this simplifying assumption, we find an optimal procedure

which is simple, does not depend precisely on people’s biases, and is incentive compatible

for all biases.

One might say that requiring that everyone’s evidence matters equally in the decision is

not reasonable; we should expect that a very biased person always reports her bias, and it
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is simply unrealistic to ask that a procedure encourage truthful reports from even the most

biased people. From this point of view, what is interesting about the SP procedure is not

so much its optimality but the fact that it even exists. It is a difficult task to get truthful

revelation from both a person very biased toward a and a person very biased toward b without

being able to tell the two apart. To accomplish this task, naturally the procedure must be

substantially “distorted,” and the supermajority penalty regions represent this distortion.

As shown earlier, the welfare effect of this distortion goes to zero as q and n grow large.

What are optimal incentive compatible procedures if we do not require anonymity? In our

three person example, the best procedure for the unbiased person 3 is the same as majority

rule except that f((a, b, b), a) = 4/7 and f((a, b, a), b) = 4/7. In other words, person 1, who

is biased toward a, gets to “enforce” her favorite with probability 4/7 even when everyone

else votes for b, and similarly person 2, who is biased toward b, gets to “enforce” her favorite

with probability 4/7 even when everyone else votes for a. This procedure is in the same spirit

as the procedures in Chwe (1999), in that biased individuals are given “special powers.” The

expected utility of person 3 given this optimal nonanonymous procedure, which is the highest

expected utility that an unbiased person can attain in any equilibrium of any procedure, is

44/63 ≈ 0.698.

To summarize our three person example, we can make some welfare comparisons, again

from the point of view of an unbiased person. The best incentive compatible procedure

assuming that everyone’s evidence matters equally (everyone reports truthfully and the pro-

cedure is anonymous) is the SP procedure, which yields expected utility 8/15 ≈ 0.533. As

mentioned before, given the SP procedure, there exists an equilibrium in which only person 3

reports truthfully, and this yields expected utility 2/3 ≈ 0.667. The procedure in which per-

son 3 is a dictator also yields 2/3 ≈ 0.667. The best incentive compatible procedure among

all possible procedures (not assuming anonymity) gives persons 1 and 2 “special powers”

and yields expected utility 44/63 ≈ 0.698. For the sake of comparison, the “first best,” the

best possible procedure if we do not require incentive compatibility, is majority rule, which

yields expected utility 20/27 ≈ 0.741. The worst possible procedure, which for example

chooses a always regardless of anyone’s report, yields expected utility 1/2 = 0.500. This

example shows that our requirement that everyone’s evidence matters equally (the proce-

dure is anonymous and we look only at the truth-telling equilibrium) can impose significant
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welfare losses. Interestingly, to increase total welfare, one should give persons 1 and 2 no

power and shut them out entirely, or even better give them “extra” power.

Figure 7 shows nine more examples, where n = 3, 5, 7 and q = 0.6, 0.7, 0.8. In each exam-

ple, we assume biases are quite divergent: one person is unbiased, (n−1)/2 people have bias

φ(a) = 1/10 and (n− 1)/2 people have bias φ(a) = 9/10. Figure 7 shows EU0, the expected

utility of an unbiased person, or equivalently the average expected utility of the group, for

three procedures: the supermajority penalty procedure SP, the optimal nonanonymous in-

centive compatible procedure NA, and majority rule MR. In other words, majority rule MR

is the “first best,” the best possible procedure if incentive incompatibility is not an issue. The

nonanonymous procedure NA is the “second best,” the best incentive compatible procedure.

The SP procedure is the “second best” under the additional assumption that each person’s

evidence matters equally. For all three procedures, we assume the truth-telling equilibrium.

In these examples, we calculate the NA procedure with a computer, by numerically solving

an optimization problem with 2n variables. This is why we stop at n = 7, which involves

128 variables. Even writing down the NA procedure when n = 7 would take a lot of space.

Figure 7 shows that the welfare performance of the SP procedure can be poor; when

q = 0.6 for example, the expected utility is only slightly higher than 0.5, which one would

get from the worst possible procedure. Also, the gap between the SP procedure and the

optimal nonanonymous procedure NA is largest when n = 3 and also when q = 0.6. In

other words, the welfare loss from the anonymity assumption is largest for small n and

low q. As n increases and q increases, the welfare loss from the anonymity assumption

becomes less severe. As mentioned earlier, as n grows large or as q approaches 1, the SP

procedure’s welfare performance approaches that of majority rule and thus the welfare loss

from anonymity goes to zero.
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Figure 7. EU0 under the supermajority penalty
procedure (SP), the optimal nonanonymous procedure
(NA), and majority rule (MR) when (n − 1)/2 people
have bias φ(a) = 1/10, (n − 1)/2 people have bias
φ(a) = 9/10, and one person has bias φ(a) = 1/2

Thirdly, incentive compatibility is an important assumption in this paper. If we simply

assume that people report truthfully and do not worry about their incentives for doing

so, then a person’s optimal procedure is simply one which chooses a if the total number of

reports for a exceeds some cutoff value. This cutoff value is higher if the person’s bias toward

a is higher; if for example the person is unbiased, the cutoff value is n/2 and the optimal

procedure is majority rule. Also, as discussed earlier, by assuming incentive compatibility we

assume that everyone reports truthfully, which along with our anonymous procedure means

that everyone’s evidence matters equally. A more comprehensive approach would consider a

wide variety of equilibria in which not everyone reports truthfully, but as discussed earlier,

doing so would make our inquiry much more complicated. Finding all equilibria for a single

specific procedure like majority rule is not trivial; finding all equilibria for a large set of

procedures, such as all anonymous procedures, would be a challenge.

In our definition of a procedure, people report either a or b simultaneously and thus

it might be thought that we are ruling out some procedures, for example procedures with
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multiple rounds, in which people can condition their own messages on the previous messages

of others, or procedures in which people can report a greater variety of messages other

than just plain a or b. However, our approach does indeed include such procedures and in

fact all possible procedures, again assuming that each person’s evidence affects the decision

equally. The reason for this is often referred to as the “revelation principle” (see for example

Myerson 1991, p. 260). Say we have a possibly quite complicated procedure and say that

people’s strategies, which are also possibly quite complicated, are an equilibrium. Then

their strategies and the procedure together create a function which assigns to every evidence

profile r ∈ {a, b}n a probability that a is finally chosen. Call this function f(r, a) (and of

course define f(r, b) = 1−f(r, a)). Then f must be incentive compatible. If f is not incentive

compatible, then a person with evidence a (for example) could gain by acting as if she had

evidence b. This is not possible because we are in an equilibrium and no one can gain by

deviating. In other words, any possible equilibrium of any possible procedure must result in

an incentive compatible f . Thus in this paper, we are considering all possible equilibria of

all possible procedures (again, under the assumption that each person’s evidence affects the

decision equally).

By the way, in our model we allow people to have different prior beliefs, and the revelation

principle is more typically used when prior beliefs are identical. The revelation principle

simply says that in any equilibrium of any procedure, a person with evidence a cannot gain

by acting as if she had evidence b. This simple fact is true regardless of whether priors are

identical or not. However, I should clarify the claim that the revelation principle allows us to

consider all possible procedures. One interpretation of heterogeneous priors is that they arise

because of differential information: I might be more biased toward a than you because I have

some idiosyncratic information favoring a. Under this interpretation, people with different

priors might usefully share this idiosyncratic information. This idiosyncratic information is

not in our model and we do not consider procedures in which this unspecified idiosyncratic

information is shared. The only information which people can share is the information

explicitly specified in the model: each person’s evidence, which is correct with probability q.

Of course, to avoid any interpretive issues about heterogeneous priors, as mentioned earlier,

one can assume identical priors and say that biases come from heterogeneous preferences.
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7. Conclusion

This paper starts with Condorcet’s original model, adds strategic voting and hetero-

geneous prior beliefs and preferences, and finds an optimal and surprisingly robust voting

procedure. This robustness is not due to our particular procedure, but is an “artifact” of

Condorcet’s model itself. Other extensions of Condorcet’s model include giving each person

a continuous, not binary, signal about which alternative is superior (for example Duggan

and Martinelli 2001 and Li, Rosen, and Suen 2001) and giving some people more informa-

tive signals than others (for example Ben-Yashar and Milchtaich 2006). The assumption

of binary signals in our paper greatly simplifies the consideration of anonymous procedures.

When signals are binary, an anonymous procedure is simply a function of the total number of

reports for a. With continuous signals, an anonymous procedure is a function of everyone’s

continuous signals which is symmetric in its arguments, a much more complicated mathe-

matical object. If we allow continuous signals, we might get similar results: for example,

in a two person model with continuous signals, one can show that a monotonic procedure

cannot be incentive compatible (Li, Rosen, and Suen 2001). If people have different quality

evidence, which we would represent in our model by letting each person have a different

value of q, then of course the results here would not hold; the SP procedure does depend on

the specific value of q (in fact q and n are the only parameters the SP procedure does depend

on). Finding optimal incentive compatible procedures when signals are continuous or when

people have different quality evidence is a question for future work. Another line of research

explicitly models uncertainty in people’s biases; it is possible that uncertainty about biases

can help in getting people to truthfully reveal their evidence (Austen-Smith and Feddersen

2006). Since the SP procedure is incentive compatible for all biases, it provides a minimum

level of performance when biases are uncertain.

Despite its power, surprisingly few papers have used the mechanism design approach

to analyze Condorcet’s model (examples are Chwe 1999, Li, Rosen, and Suen 2001, and

Wolinsky 2002). The mechanism design approach has several substantive advantages over

starting with a single particular procedure like majority rule or unanimity rule. For example,

since in real life people discuss and argue before voting, “pre-play communication” should

be considered. But allowing this changes the strategic situation dramatically (Coughlan

2000). In fact, if pre-play communication is unrestricted, then it really doesn’t matter

what the voting rule is: all voting rules except for unanimity rules generate the same set of
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equilibrium outcomes (Gerardi and Yariv 2006). Thus pre-play communication should be

considered an integral part of the procedure itself. Since there are many possible kinds of

pre-play communication, including bilateral conversations, group announcements, and straw

polls, it might seem almost impossible to find which procedure is socially optimal. But the

mechanism design approach does exactly this. Also, the mechanism design approach asks

the more profound question of what is the best possible procedure, not what behavior is

given a particular procedure. But it is mathematically simpler, just a linear programming

problem.

Most of the existing work on Condorcet’s model is “conservative” in that it considers

already well-known procedures such as majority rule and unanimity rule. But the entire

point of Condorcet’s original argument is to derive the optimal procedure, not assume it.

When we add strategic voting, mechanism design allows us to keep the spirit of Condorcet’s

original question. This paper shows that if we assume strategic voting and anonymity in

the sense of everyone’s evidence affecting the decision equally, Condorcet’s model cannot be

understood as supporting well-known procedures such as majority rule as long as there is

at least one person biased in each direction. The SP procedure is the optimal anonymous

procedure for a very large set of biases (when there is at least one person biased in each

direction) and is incentive compatible for all biases. The SP procedure is not monotonic,

but no incentive compatible anonymous procedure is monotonic when there is at least one

person biased in each direction.

Would anyone actually use a non-monotonic procedure in practice? Non-monotonic

procedures are not that unusual. In a similar model in which experts who all have similar

biases report to a decision maker with a different bias, the optimal procedure for the decision

maker is non-monotonic (Wolinsky 2002). When deciding among more than two alternatives,

some popular procedures are non-monotonic, such as plurality voting with a runoff among the

top two candidates (Riker 1982). If one is wedded to monotonicity, the results here might

be understood as showing the limitations of procedures which treat everyone’s evidence

equally: given biases in both directions, one cannot retain monotonicity without treating

some people’s evidence differently from others. As discussed earlier, procedures which treat

everyone’s evidence equally can also be quite limited in terms of social welfare. Perhaps

our results illustrate the limitations of Condorcet’s model itself; although it has been used
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often as a foundation for modeling voting and decision making, it can yield surprisingly

nonintuitive results.
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Appendix

Lemma 1. Given q and n, there uniquely exists k ∈ {0, 1, . . . , (n− 3)/2} such that

z =
Dky

(n−1)/2 − k(yk−1 + yn−k)

(n− k)(yk + yn−1−k)− k(yk−1 + yn−k)
∈ (0, 1]

where y = q/(1 − q) and Dk = (k!(n − k)!)/(((n − 1)/2)!)2. Also, k is nonincreasing in q,

k < (1−q)n, and k/n → ρ as n →∞, where ρ log ρ+(1−ρ) log(1−ρ)+log 2 = (1/2−ρ) log y.

Proof. We write z as a function of k and y and multiply numerator and denominator by

y−(n−1)/2 to get zk(y) = numk(y)/denk(y), where numk(y) and denk(y) are defined as

numk(y) = Dk − k(yk−n/2−1/2 + yn/2−k+1/2)

denk(y) = (n− k)(yk−n/2+1/2 + yn/2−k−1/2)− k(yk−n/2−1/2 + yn/2−k+1/2).

Note that numk(y) is strictly decreasing in y for y > 1 and k ∈ {1, . . . , (n− 3)/2}, because

(d/dy)(numk(y)) = −(k/y)(n/2− k + 1/2)(−yk−n/2−1/2 + yn/2−k+1/2) < 0.

We prove five useful facts. Fact A is numk+1(y) ≤ 0 ⇔ numk(y) ≤ denk(y). This

is because numk+1(y) ≤ 0 is equivalent to Dk+1/(k + 1) ≤ yk−n/2+1/2 + yn/2−k−1/2 and

numk(y) ≤ denk(y) is equivalent to Dk/(n− k) ≤ yk−n/2+1/2 + yn/2−k−1/2, and it is easy to

verify from the definition of Dk that Dk+1/(k + 1) = Dk/(n − k). Similarly, we have Fact

B: numk+1(y) > 0 is equivalent to numk(y) > denk(y).

Fact C is that numk(y) ≥ 0 is equivalent to

n− k

k
· n− k − 1

k + 1
· · · (n + 1)/2

(n− 1)/2
≥ yk−n/2−1/2 + yn/2−k+1/2.

To see this, note that numk(y) ≥ 0 is equivalent to Dk/k ≥ yk−n/2−1/2 + yn/2−k+1/2 and

Dk/k =
(n− k)!

((n− 1)/2)!

(k − 1)!

((n− 1)/2)!
=

n− k

k
· n− k − 1

k + 1
· · · (n + 1)/2

(n− 1)/2
.

Similarly, we have Fact D: numk(y) > 0 is equivalent to

n− k

k
· n− k − 1

k + 1
· · · (n + 1)/2

(n− 1)/2
> yk−n/2−1/2 + yn/2−k+1/2.

Fact E is numk+1(y) ≥ 0 ⇒ numk(y) > 0 for k ∈ {0, . . . , (n− 3)/2}. If numk+1(y) ≥ 0,

from Fact C we have

n− k − 1

k + 1
· n− k − 2

k + 2
· · · (n + 1)/2

(n− 1)/2
> yn/2−k−1/2
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since yk−n/2+1/2 > 0. Note that there are n/2− k − 1/2 terms on the left hand side of this

inequality; it is also easy to see that these terms n−k−1
k+1 , . . . , (n+1)/2

(n−1)/2 are all less than (n−k)/k.

Hence [(n−k)/k]n/2−k−1/2 > yn/2−k−1/2 and thus we get the inequality (n−k)/k > y. Fact

C gives us the inequality

n− k − 1

k + 1
· n− k − 2

k + 2
· · · (n + 1)/2

(n− 1)/2
≥ yk−n/2+1/2 + yn/2−k−1/2.

We multiply these inequalities together and get

n− k

k
· n− k − 1

k + 1
· n− k − 2

k + 2
· · · (n + 1)/2

(n− 1)/2
> yk−n/2+3/2 + yn/2−k+1/2.

But yk−n/2+3/2 > yk−n/2−1/2 since y > 1 and thus by Fact D we have numk(y) > 0.

Since q ∈ (1/2, 1), we have y = q/(1− q) ∈ (1,∞). Let y ∈ (1,∞) and show that there

uniquely exists k ∈ {0, 1, . . . , (n− 3)/2} such that zk(y) ∈ (0, 1].

Note that num0(y) = D0 > 0. Since num(n−1)/2(1) = D(n−1)/2 − (n − 1) = (n +

1)/2− (n− 1) = (3− n)/2 ≤ 0 and num(n−1)/2(y) is strictly decreasing for y > 1, we know

num(n−1)/2(y) < 0. Hence there exists k ∈ {0, . . . , (n − 3)/2} such that numk(y) > 0 and

numk+1(y) ≤ 0. Note that this k is unique: say numk(y) > 0, numk+1(y) ≤ 0, numk′(y) > 0

and numk′+1(y) ≤ 0 for k < k′. Then we have numk+1(y) ≤ 0 and numk′(y) > 0, which

contradicts Fact E.

Show zk(y) ∈ (0, 1]. Since numk+1(y) ≤ 0, we know numk(y) ≤ denk(y) by Fact A.

Since numk(y) > 0, we know zk(y) = numk(y)/denk(y) ∈ (0, 1].

Show zj(y) /∈ (0, 1] or is undefined for j ∈ {0, . . . , (n − 3)/2}, j 6= k. Since j 6= k,

we have three possible cases: (i) numj(y) > 0 and numj+1(y) > 0, (ii) numj(y) ≤ 0 and

numj+1(y) ≤ 0, and (iii) numj(y) ≤ 0 and numj+1(y) > 0. By Fact E, (iii) cannot happen.

Also by Fact E, if numj+1(y) = 0, then numj(y) ≤ 0 is impossible and hence case (ii)

reduces to numj(y) ≤ 0 and numj+1(y) < 0. In case (i), we have numj(y) > denj(y) by

Fact B; since numj(y) > 0, if denj(y) > 0, then zj(y) > 1, if denj(y) < 0, then zj(y) < 0,

and if denj(y) = 0, then zj(y) is undefined. In case (ii), we have numj(y) < denj(y) by Fact

A; since numj(y) ≤ 0, if denj(y) > 0, then zj(y) ≤ 0, if denj(y) < 0, then zj(y) > 1, and if

denj(y) = 0, then zj(y) is undefined.

To show that k is nonincreasing in q, it suffices to show that k is nonincreasing in y,

since y = q/(1 − q). Let y < y′. Remember that k is chosen so that numk(y) > 0 and

numk+1(y) ≤ 0. Choose k′ so that numk′(y′) > 0 and numk′+1(y
′) ≤ 0. We show k ≥ k′
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by contradiction. Say that k < k′. Since numk′(y′) > 0 and k + 1 ≤ k′, by Fact E we have

numk+1(y
′) > 0. Hence by Fact D we have

n− k − 1

k + 1
· · · (n + 1)/2

(n− 1)/2
> (y′)k−n/2−1/2 + (y′)n/2−k+1/2.

But numk+1(y) ≤ 0, and hence by Fact D we have

n− k − 1

k + 1
· · · (n + 1)/2

(n− 1)/2
≤ yk−n/2−1/2 + yn/2−k+1/2.

Thus we have (y′)k−n/2−1/2 + (y′)n/2−k+1/2 < yk−n/2−1/2 + yn/2−k+1/2, which contradicts

y < y′ since y, y′ > 1.

Since numk(y) > 0, by the reasoning in the proof of Fact E, we have (n− k)/k > y and

thus k < n/(y+1) = (1−q)n since y = q/(1−q). To show k/n → ρ as n →∞, note that as n

grows large, k is given by numk(y) = 0, which is (k−1)!(n−k)! = (((n−1)/2)!)2yn/2−k+1/2

as n grows large. Using Stirling’s approximation log m! ≈ m log m−m, we have

(k − 1) log(k − 1) + (n− k) log(n− k) = (n− 1) log((n− 1)/2) + (n/2− k + 1/2) log y.

If we let k = ρn, we get

(ρn−1) log(ρn−1)+(1−ρ)n log((1−ρ)n) = (n−1) log((n−1)/2)+(n/2−ρn+1/2) log y.

As n grows large, we have ρn log(ρn)+(1−ρ)n log((1−ρ)n) = n log(n/2)+n(1/2−ρ) log y,

and thus ρ log(ρn) + (1 − ρ) log((1 − ρ)n) = log(n/2) + (1/2 − ρ) log y. We simplify to get

ρ log ρ + (1− ρ) log(1− ρ) + log 2 = (1/2− ρ) log y. �

To prove the remaining lemmas and the propositions, we need the following notation.

Since we consider anonymous procedures f , we write f(r, a) = γ(α(r)), where γ(j) is the

probability that the procedure choses a given that there are j reports of a. Given biases φ,

define

hφ(j) = φ(a)qj(1− q)n−j − φ(b)qn−j(1− q)j .

We write h(j) when there is no ambiguity about φ. Let Cn
j be the binomial coefficient

Cn
j = n!/((n− j)!j!).

Let A(φ, γ) = EUi(f, id, id−i)−EUi(f, saa, id−i) be person i’s utility difference between

playing id and saa given that everyone else plays id. By our formula (∗), we have A(φ, γ) =

φ(a)[paa(f, id, id−i)− paa(f, saa, id−i)] + φ(b)[pbb(f, id, id−i)− pbb(f, saa, id−i)].
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Show that paa(f, id, id−i)− paa(f, saa, id−i) =
∑n−1

j=0 Cn−1
j qj(1− q)n−j(γ(j)− γ(j + 1)).

To see this fact, note that paa(f, id, id−i) and paa(f, saa, id−i) are different only when ei = b

(when ei = a, in both id and saa, person i makes the same report, a). Since the superior

alternative is truly a, the probability that ei = b is 1 − q. The probability that j other

people have evidence a is Cn−1
j qj(1 − q)n−1−j . Hence the probability that ei = b and

that j people in total have evidence a is Cn−1
j qj(1 − q)n−j . Given this, if person i plays

id, then the group chooses a with probability γ(j); if person i plays saa, then the group

chooses a with probability γ(j + 1); thus the fact is demonstrated. Similarly, we find that

pbb(f, id, id−i)− pbb(f, saa, id−i) =
∑n−1

j=0 Cn−1
j (1− q)jqn−j(γ(j + 1)− γ(j)).

Thus A(φ, γ) =
∑n−1

j=0 Cn−1
j hφ(j)(γ(j)− γ(j +1)). If we let B(φ, γ) = EUi(f, id, id−i)−

EUi(f, sbb, id−i), in a similar manner we find B(φ, γ) =
∑n

j=1 Cn−1
j−1 hφ(j)(γ(j) − γ(j − 1)).

Thus our two incentive constraints are simply A(φ, γ) ≥ 0 and B(φ, γ) ≥ 0.

We need eight facts. We have Fact 1: h((n − 1)/2) = (φ(a) − q)q(n−1)/2(1 − q)(n−1)/2.

This is true because

h((n− 1)/2) = φ(a)q(n−1)/2(1− q)(n+1)/2 − (1− φ(a))q(n+1)/2(1− q)(n−1)/2

= (φ(a)(1− q)− (1− φ(a))q)q(n−1)/2(1− q)(n−1)/2

= (φ(a)− q)q(n−1)/2(1− q)(n−1)/2.

Next we have Fact 2: h(j) + h(n− 1− j) = (φ(a)− q)[qj(1− q)n−1−j + qn−1−j(1− q)j ].

To see this, note that h(j) + h(n− 1− j) =

φ(a)qj(1−q)n−j− (1−φ(a))qn−j(1−q)j +φ(a)qn−1−j(1−q)j+1− (1−φ(a))qj+1(1−q)n−1−j

= φ(a)[qj(1−q)n−j+qn−j(1−q)j+qn−1−j(1−q)j+1+qj+1(1−q)n−1−j ]−qn−j(1−q)j−qj+1(1−q)n−1−j

= φ(a)[qj(1− q)n−1−j((1− q)+ q)+ qn−1−j(1− q)j(q +(1− q))]− q(qn−1−j(1− q)j + qj(1− q)n−1−j)

= (φ(a)− q)[qj(1− q)n−1−j + qn−1−j(1− q)j ].

Next we have Fact 3: h((n+1)/2) = (q−φ(b))q(n−1)/2(1−q)(n−1)/2. This is true because

h((n + 1)/2) = (1− φ(b))q(n+1)/2(1− q)(n−1)/2 − φ(b)q(n−1)/2(1− q)(n+1)/2

= ((1− φ(b))q − φ(b)(1− q))q(n−1)/2(1− q)(n−1)/2

= (q − φ(b))q(n−1)/2(1− q)(n−1)/2.
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We have Fact 4: h(j) + h(n + 1− j) = (q − φ(b))[qj−1(1− q)n−j + qn−j(1− q)j−1]. We

get this because h(j) + h(n + 1− j) =

(1−φ(b))qj(1− q)n−j−φ(b)qn−j(1− q)j +(1−φ(b))qn+1−j(1− q)j−1−φ(b)qj−1(1− q)n+1−j

= −φ(b)[qj(1−q)n−j+qn−j(1−q)j+qn+1−j(1−q)j−1+qj−1(1−q)n+1−j ]+qj(1−q)n−j+qn+1−j(1−q)j−1

= −φ(b)[qj−1(1− q)n−j((q +(1− q))+ qn−j(1− q)j−1((1− q)+ q)]+ q(qj−1(1− q)n−j + qn−j(1− q)j−1)

= (q − φ(b))[qj−1(1− q)n−j + qn−j(1− q)j−1].

We have Fact 5: if γ(j) = 1− γ(n− j), then A(φ, γ) = (φ(a)− q)W (q, γ), where

W (q, γ) = Cn−1
(n−1)/2

q(n−1)/2(1− q)(n−1)/2(2γ((n− 1)/2)− 1)

+

(n−3)/2∑
j=0

Cn−1
j (qj(1− q)n−1−j + qn−1−j(1− q)j)(γ(j)− γ(j + 1)).

We can write

A(φ, γ) = Cn−1
(n−1)/2

h((n− 1)/2)(γ((n− 1)/2)− γ((n + 1)/2))

+
((n−3)/2∑

j=0

+
n−1∑

j=(n+1)/2

)
Cn−1

j h(j)(γ(j)− γ(j + 1))

= Cn−1
(n−1)/2

h((n− 1)/2)(γ((n− 1)/2)− γ((n + 1)/2))

+

(n−3)/2∑
j=0

Cn−1
j h(j)(γ(j)− γ(j + 1)) + Cn−1

n−1−jh(n− 1− j)(γ(n− 1− j)− γ(n− j)).

We know that Cn−1
j = Cn−1

n−1−j . We also know that γ(n−1−j)−γ(n−j) = 1−γ(j+1)−(1−
γ(j)) = γ(j)−γ(j +1) and γ((n−1)/2)−γ((n+1)/2) = γ((n−1)/2)− (1−γ((n−1)/2)) =

2γ((n− 1)/2)− 1. Thus

A(φ, γ) = Cn−1
(n−1)/2

h((n− 1)/2)(2γ((n− 1)/2)− 1)

+

(n−3)/2∑
j=0

Cn−1
j (h(j) + h(n− 1− j))(γ(j)− γ(j + 1)).

But by Facts 1 and 2, this is equal to (φ(a)− q)W (q, γ).
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We have Fact 6: if γ(j) = 1 − γ(n − j), then B(φ, γ) = (φ(b) − q)W (q, γ), where W (q, γ) is

defined as in Fact 5. We can write

B(φ, γ) = Cn−1
(n−1)/2

h((n + 1)/2)(γ((n + 1)/2)− γ((n− 1)/2))

+
((n−1)/2∑

j=1

+
n∑

j=(n+3)/2

)
Cn−1

j−1 h(j)(γ(j)− γ(j − 1))

= Cn−1
(n−1)/2

h((n + 1)/2)(γ((n + 1)/2)− γ((n− 1)/2))

+

(n−1)/2∑
j=1

Cn−1
j−1 h(j)(γ(j)− γ(j − 1)) + Cn−1

n−j h(n + 1− j)(γ(n + 1− j)− γ(n− j)).

We know that Cn−1
j−1 = Cn−1

n−j . We also know that γ(n+1− j)−γ(n− j) = 1−γ(j−1)− (1−
γ(j)) = γ(j)− γ(j− 1) and γ((n + 1)/2)− γ((n− 1)/2) = 1− γ((n− 1)/2)− γ((n− 1)/2) =

1− 2γ((n− 1)/2). Thus

B(φ, γ) = Cn−1
(n−1)/2

h((n + 1)/2)(1− 2γ((n− 1)/2))

+

(n−1)/2∑
j=1

Cn−1
j−1 (h(j) + h(n + 1− j))(γ(j)− γ(j − 1)).

By Facts 3 and 4, this is equal to (q − φ(b))(−W (q, γ)).

We have Fact 7: Say φ′′(a) = φ(b) and φ′′(b) = φ(a) and γ′′(j) = 1 − γ(n − j). Then

A(φ, γ) = B(φ′′, γ′′) and B(φ, γ) = A(φ′′, γ′′). From the definition of B(φ, γ), we have

B(φ′′, γ′′) =
n∑

j=1

Cn−1
j−1 hφ′′(j)(γ′′(j)− γ′′(j − 1))

=
n∑

j=1

Cn−1
j−1 hφ′′(j)(1− γ(n− j)− (1− γ(n− j + 1)))

=
n∑

j=1

Cn−1
j−1 hφ′′(j)(γ(n− j + 1)− γ(n− j)).

It is easy to show that hφ′′(j) = −hφ(n − j) and that Cn−1
j−1 = Cn−1

n−j , and thus B(φ′′, γ′′) =∑n
j=1 Cn−1

n−j hφ(n − j)(γ(n − j) − γ(n − j + 1)). We change variables to get B(φ′′, γ′′) =∑n−1
j=0 Cn−1

j hφ(j)(γ(j)− γ(j + 1)) = A(φ, γ). We show B(φ, γ) = A(φ′′, γ′′) similarly.

Finally, we have Fact 8: if y > 1 and x > 0, y2x − xyx log y − 1 > 0. Since this

holds with equality when x = 0, it suffices to show that (d/dx)(y2x − xyx log y − 1) =

yx(2yx log y− logy−x(log y)2) > 0, or in other words 2yx log y− log y−x(log y)2) > 0. This
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is true when x = 0; since (d/dx)(2yx log y− logy−x(log y)2) = (log y)2(2yx− 1) > 0, we are

done.

Lemma 2. Say that there exists i ∈ N such that either φi(a) > q or φi(b) > q, and say that

f is anonymous and symmetric. Then f is incentive compatible if and only if W (q, γ) = 0,

where γ(α(r)) = f(r, a) and W (q, γ) = Cn−1
(n−1)/2

q(n−1)/2(1− q)(n−1)/2(2γ((n − 1)/2)− 1) +∑(n−3)/2
j=0 Cn−1

j (qj(1− q)n−1−j + qn−1−j(1− q)j)(γ(j)− γ(j + 1)), where Cn
j is the binomial

coefficient Cn
j = n!/((n− j)!j!).

Proof. Since f is symmetric, we have γ(j) = 1 − γ(n − j) and hence by Facts 5 and 6 we

have A(φ, γ) = (φ(a) − q)W (q, γ) and B(φ, γ) = (φ(b) − q)W (q, γ). Say φi(a) > q. It is

clear that φi(b) < q. If f is incentive compatible, we have A(φi, γ) = (φi(a)− q)W (q, γ) ≥ 0

and B(φi, γ) = (φi(b) − q)W (q, γ) ≥ 0. Since φi(a) − q > 0 and φi(b) − q < 0, we have

W (q, γ) = 0. To show the other direction, say W (q, γ) = 0. By Facts 5 and 6, we have

A(φ, γ) = 0 and B(φ, γ) = 0 for all φ. Hence f is incentive compatible. If φi(b) > q, the

proof is similar. �

Lemma 3. Say that there exist i, j ∈ N such that φi(a) < 1 − q and φj(a) > q. If

f is anonymous and incentive compatible for persons i and j, then person l’s incentive

compatibility constraints hold with equality for any φl.

Proof. Let r = min{φi(b), φj(a)}. We know r > q. Define biases φr and φ1−r as φr(a) = r,

φr(b) = 1 − r and φ1−r(a) = 1 − r, φ1−r(b) = r. It is easy to see that φr(a), φ1−r(a) ∈
[φi(a), φj(a)]. Since f satisfies A(φi, γ) ≥ 0, B(φi, γ) ≥ 0, A(φj , γ) ≥ 0, B(φj , γ) ≥ 0, since

A(φ, γ) and B(φ, γ) are linear in φ(a), and φr(a), φ1−r(a) ∈ [φi(a), φj(a)], we know f satisfies

A(φr, γ) ≥ 0, B(φr, γ) ≥ 0 and A(φ1−r, γ) ≥ 0, B(φ1−r, γ) ≥ 0.

Define γ′′(j) = 1 − γ(n − j). By Fact 7 we have A(φr, γ
′′) = B(φ1−r, γ) ≥ 0 and

A(φ1−r, γ
′′) = B(φr, γ) ≥ 0. Define γ′(j) = (γ(j) + γ′′(j))/2. It is easy to see that γ′(j) is

symmetric and hence by Facts 5 and 6, we have A(φr, γ
′) = (r−q)W (q, γ′) and A(φ1−r, γ

′) =

(1− r − q)W (q, γ′).

Now A(φr, γ
′) = (A(φr, γ) + A(φr, γ

′′))/2 ≥ 0 and A(φ1−r, γ
′) = (A(φ1−r, γ) +

A(φ1−r, γ
′′))/2 ≥ 0. Hence (r− q)W (q, γ′) ≥ 0 and (1− r− q)W (q, γ′) ≥ 0. Since r− q > 0

and 1− r − q < 0, we have W (q, γ′) = 0. Hence A(φr, γ
′) = 0. But since A(φr, γ) ≥ 0 and
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A(φr, γ
′′) ≥ 0, we have A(φr, γ) = A(φr, γ

′′) = 0. Similarly, we conclude that A(φ1−r, γ) = 0

and also that B(φr, γ) = 0 and B(φ1−r, γ) = 0.

Now for any φl, we have φl(a) = λφr(a) + (1 − λ)φ1−r(a), where λ ∈ < (that is, φl(a)

is a linear, not necessarily convex, combination of φr(a) and φ1−r(a)), and thus A(φl, γ) =

λA(φr, γ) + (1− λ)A(φ1−r, γ) = 0 and similarly B(φl, γ) = 0. �

Proposition 1. The procedure fSP is incentive compatible for any φ1, . . . , φn. In fact, the

incentive compatibility constraints hold with equality.

Proof. Since fSP is anonymous and symmetric, by Lemma 2 it suffices to show that

W (q, γSP ) = 0, where γSP (α(r)) = fSP (r). We compute

W (q, γSP ) = Cn−1
(n−1)/2

q(n−1)/2(1− q)(n−1)/2(−1)

+ Cn−1
k−1 (qk−1(1− q)n−k + qn−k(1− q)k−1)(1− z)

+ Cn−1
k (qk(1− q)n−1−k + qn−1−k(1− q)k)(z).

It is easy to show that this is zero given the definition of z and k in Lemma 1. �

Proposition 2. Say that there exist i, j ∈ N such that φi(a) < 1 − q and φj(a) > q.

Then fSP is an anonymous incentive compatible procedure which maximizes EU0, where

φ0(a) = φ0(b) = 1/2. Also, fSP is the unique maximum for almost all q (all but fewer than

(n− 1)/2 values of q).

Proof. Let F be the set of anonymous incentive compatible procedures. Let F ′ ⊂ F be

the set of symmetric anonymous incentive compatible procedures. First show that fSP

maximizes EU0 over F ′. By Lemma 2, if f is symmetric and anonymous, then f is incentive

compatible if and only if W (q, γ) = 0. Hence we have the single constraint W (q, γ) = 0,

along with the constraints γ(j) ∈ [0, 1]. Since f is symmetric, our choice variables are

γ(0), γ(1), . . . , γ((n− 1)/2).
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From our formula (∗), we have

EU0 = φ0(a)paa(f, id, . . . , id) + φ0(b)pbb(f, id, . . . , id)

= φ0(a)
n∑

j=0

Cn
j qj(1− q)n−jγ(j) + φ0(b)

n∑
j=0

Cn
j (1− q)jqn−j(1− γ(j))

=
n∑

j=0

Cn
j (1− q)jqn−j +

n∑
j=0

Cn
j [φ0(a)qj(1− q)n−j − φ0(b)(1− q)jqn−j ]γ(j)

=
n∑

j=0

Cn
j (1− q)jqn−j +

n∑
j=0

Cn
j h0(j)γ(j).

Since this first term is constant in γ(j), maximizing EU0 is equivalent to maximizing∑n
j=0 Cn

j h0(j)γ(j). But

n∑
j=0

Cn
j h0(j)γ(j) =

(n−1)/2∑
j=0

Cn
j h0(j)γ(j) + Cn

n−jh0(n− j)γ(n− j)

=

(n−1)/2∑
j=0

Cn
j h0(j)(2γ(j)− 1)

because Cn
j = Cn

n−j , h0(n−j) = −h0(j) from the definition of hφ(j), and γ(n−j) = 1−γ(j)

since f is symmetric.

We write the Lagrangian

L =

(n−1)/2∑
j=0

Cn
j h0(j)(2γ(j)− 1) + λW (q, γ) +

(n−1)/2∑
j=0

(µ(j)− ν(j))γ(j).

By the Kuhn-Tucker theorem, if we can find λ ∈ < and µ(j), ν(j) ≥ 0 such that ∂L/∂γ(j) =

0, where µ(j) = 0 if γ(j) > 0 and ν(j) = 0 if γ(j) < 1, then fSP maximizes EU0 over F ′. In

other words, if we let

M =

(n−1)/2∑
j=0

Cn
j h0(j)(2γ(j)− 1) + λW (q, γ)

it suffices to find λ ∈ < such that ∂M/∂γ(j) ≥ 0 if γ(j) > 0, ∂M/∂γ(j) ≤ 0 if γ(j) < 1, and

∂M/∂γ(j) = 0 if γ(j) ∈ (0, 1).

We have ∂M/∂γ(j) =

2Cn
j h0(j)+λ[Cn−1

j (qj(1−q)n−j−1+qn−j−1(1−q)j)−Cn−1
j−1 (qj−1(1−q)n−j +qn−j(1−q)j−1)].
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Since h0(j) = (1/2)(qj(1−q)n−j−qn−j(1−q)j), and by simplifying further, we have the formula

∂M

∂γ(j)
=

Cn
j

n

(
n(qj(1− q)n−j − qn−j(1− q)j)

+λ[(n− j)(qj(1− q)n−j−1 + qn−j−1(1− q)j)− j(qj−1(1− q)n−j + qn−j(1− q)j−1)]
)
.

If we let y = q/(1− q) > 1, we can write this as

∂M

∂γ(j)
=

Cn
j

n
(1− q)n−1

(
n(1− q)(yj − yn−j) + λ[(n− j)(yj + yn−j−1)− j(yj−1 + yn−j)]

)
.

Define

θ(j) =
yn−j − yj

(n− j)(yj + yn−j−1)− j(yj−1 + yn−j)
.

We show that θ(j) is positive and strictly increasing for j ∈ [0, n/2). Note that θ(0) =

(yn−1)/(n(1+yn+1)) > 0 since y > 1. It suffices to show that ∂θ(j)/∂j > 0 for j ∈ [0, n/2).

We can write

θ(j) =
yn − y2j

(n− j)(y2j + yn−1)− j(y2j−1 + yn)
.

After some computation, we find

∂θ(j)

∂j
=

(1 + y)y4j−1(y2n−4j − (2n− 4j)yn−2j − 1)

((n− j)(y2j + yn−1)− j(y2j−1 + yn))2

which has the same sign as y2n−4j − (2n − 4j)yn−2j − 1. This is positive by Fact 8 (let

x = n − 2j > 0). Also note that the numerator of θ(j) is positive for j ∈ [0, n/2) and thus

the denominator of θ(j) is positive for j ∈ [0, n/2).

We can write

∂M

∂γ(j)
=

Cn
j

n
(1− q)n−1

(
−n(1− q)θ(j) + λ

)
[(n− j)(yj + yn−j−1)− j(yj−1 + yn−j)].

Note that the first two factors are positive and the last factor is the denominator of θ(j) and

thus positive for j ∈ [0, n/2). Hence the sign of ∂M/∂γ(j) is the sign of −n(1− q)θ(j) + λ.

Let λ = n(1− q)θ(k). From the definition of fSP , we have γSP (j) = 1 for 0 ≤ j ≤ k− 1,

γ(k) = z, and γSP (j) = 0 for k + 1 ≤ j ≤ (n − 1)/2. It thus suffices to show that

−n(1− q)θ(j)+λ ≥ 0 for 0 ≤ j ≤ k−1 and −n(1− q)θ(j)+λ ≤ 0 for k +1 ≤ j ≤ (n−1)/2.

But this is true because θ(j) is strictly increasing for j ∈ [0, n/2).

Now show that fSP uniquely maximizes EU0 over F ′. Say that another procedure

f maximizes EU0 over F ′. By the Kuhn-Tucker theorem, there exists λ ∈ < such that
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∂M/∂γ(j) ≥ 0 if γ(j) > 0, ∂M/∂γ(j) ≤ 0 if γ(j) < 1, and ∂M/∂γ(j) = 0 if γ(j) ∈
(0, 1), where M is defined above. Recall that the sign of ∂M/∂γ(j) ≥ 0 is the sign of

−n(1 − q)θ(j) + λ and strictly decreases for j ∈ [0, n/2) because θ(j) strictly increases

for j ∈ [0, n/2). Hence there are three possible cases: −n(1 − q)θ(j) + λ < 0 for all j,

−n(1− q)θ(j) + λ > 0 for all j, or

∃k ∈ {0, 1, . . . , (n− 1)/2} such that − n(1− q)θ(j) + λ > 0 for j < k,

− n(1− q)θ(k) + λ ≥ 0,

− n(1− q)θ(j) + λ < 0 for j > k.

In the first case, we have γ(j) = 0 for all j ∈ {0, 1, . . . , (n − 1)/2}, which violates

W (q, γ) = 0 and is thus not feasible. In the second case, we have γ(j) = 1 for all j ∈
{0, 1, . . . , (n − 1)/2}, which violates W (q, γ) = 0 and is thus not feasible. In the third

case, we have γ(j) = 1 for j ∈ {0, 1, . . . , k − 1}, γ(k) = z ∈ (0, 1], and γ(j) = 0 for

j ∈ {k+1, . . . , (n−1)/2}. By Lemma 1, there is a unique k and z which makes W (q, γ) = 0,

so we are done.

Now show that fSP uniquely maximizes EU0 over F for all but fewer than (n − 1)/2

values of q. Say that γ maximizes EU0 over F . Define γ′′ as γ′′(j) = 1− γ(n− j) and show

γ′′ is incentive compatible. Given φ, it suffices to show that A(γ′′, φ) = 0 and B(γ′′, φ) = 0.

Define φ′′ as φ′′(a) = φ(b) and φ′′(b) = φ(a). Since γ is incentive compatible, by Lemma 3

we have A(γ, φ′′) = 0 and B(γ, φ′′) = 0. By Fact 7 we have A(γ′′, φ) = B(γ, φ′′) = 0 and

B(γ′′, φ) = A(γ, φ′′) = 0.

Define γ′ as γ′(j) = (γ(j) + γ′′(j))/2. Since γ and γ′′ are incentive compatible, by

convexity, γ′ is incentive compatible. It is easy to see that EU0 given γ is equal to EU0

given γ′′, and thus by convexity, EU0 given γ′ is equal to EU0 given γ. Since γ′ is symmetric

and γ maximizes EU0 over F , γ′ maximizes EU0 over F ′. Since γSP uniquely maximizes

EU0 over F ′, we have γ′ = γSP , in other words (γ(j)+1− γ(n− j))/2 = γSP (j). Show that

γ = γSP . Note that for j such that γSP (j) = 0, we must have γ(j) = 0 and γ(n−j) = 1, and

hence γSP (j) = γ(j). For j such that γSP (j) = 1, we must have γ(j) = 1 and γ(n− j) = 0,

and hence γSP (j) = γ(j). Hence it suffices to show that γ(k) = z and γ(n− k) = 1− z.
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We know (γ(k) + 1− γ(n− k))/2 = γSP (k) = z, and hence 1− γ(n− k)− z = z− γ(k).

Since γ is incentive compatible, by Lemma 3 we have 0 = A(φ, γ). In other words,

0 = Cn−1
k−1 (h(k − 1)(1− γ(k)) + h(n− k)γ(n− k))

+ Cn−1
k (h(k)γ(k) + h(n− k − 1)(1− γ(n− k)))

− Cn−1
(n−1)/2

h((n− 1)/2).

Since γSP is incentive compatible, we have 0 = A(φ, γSP ), or in other words

0 = Cn−1
k−1 (h(k − 1)(1− z) + h(n− k)(1− z))

+ Cn−1
k (h(k)z + h(n− k − 1)z)

− Cn−1
(n−1)/2

h((n− 1)/2).

We can subtract these two equations to get

0 = Cn−1
k−1 (h(k − 1)(z − γ(k)) + h(n− k)(γ(n− k)− 1 + z))

+ Cn−1
k (h(k)(γ(k)− z) + h(n− k − 1)(1− γ(n− k)− z)).

Since 1− γ(n− k)− z = z − γ(k), we have

0 = (z − γ(k))[Cn−1
k−1 (h(k − 1)− h(n− k)) + Cn−1

k (−h(k) + h(n− k − 1))].

It suffices to show that Cn−1
k−1 (h(k− 1)− h(n− k)) + Cn−1

k (−h(k) + h(n− k− 1)) 6= 0 for all

but fewer than (n − 1)/2 values of q, because then we can conclude that z − γ(k) = 0 and

thus γ(k) = z and γ(n− k) = 1− z.

Since Cn−1
k−1 (h(k − 1)− h(n− k)) + Cn−1

k (−h(k) + h(n− k − 1))

=
(n− 1)!

k!(n− k)!
[k(h(k − 1)− h(n− k)) + (n− k)(−h(k) + h(n− k − 1)]

it suffices to show that k(h(k − 1) − h(n − k)) + (n − k)(−h(k) + h(n − k − 1)) = 0 for at

most (n − 1)/2 values of q. With some calculation, we find that this expression is equal to

Vk(y)yk(1 − q)n(φ(a)(1/y − 1) + 1), where Vk(y) = yn−2k(n − k − ky) + k − (n − k)y and

y = q/(1 − q) > 1. We have φ(a)(1/y − 1) + 1 6= 0, and since there are at most (n − 1)/2

possible values of k, it suffices to show that Vk(y) = 0 for at most one value of y such

that y > 1. We calculate V ′
k(y) = yn−2k−1((n− k)(n− 2k)− k(n− 2k + 1)y)− (n− k) and

V ′′
k (y) = yn−2k−2(n−2k)((n−k)(n−2k−1)−k(n−2k+1)y). Show that for y > 1, if V ′

k(y) ≤ 0,

then V ′′
k (y) < 0. If V ′

k(y) ≤ 0, we have yn−2k−1((n− k)(n− 2k)− k(n− 2k + 1)y) ≤ n− k.

37



If the left hand side of this inequality is negative or zero, then (n− k)(n− 2k − 1)− k(n−
2k + 1)y < 0, and thus V ′′

k (y) < 0. If the left hand side of this inequality is positive, then

(n − k)(n − 2k) − k(n − 2k + 1)y < yn−2k−1((n − k)(n − 2k) − k(n − 2k + 1)y) and so

(n− k)(n− 2k)− k(n− 2k + 1)y < n− k, and thus (n− k)(n− 2k− 1)− k(n− 2k + 1)y < 0

and so V ′′
k (y) < 0.

Hence for y > 1, if V ′
k(y) ≤ 0, then V ′

k(y
′) < 0 for all y′ > y. Note that Vk(1) = 0. If

V ′
k(1) ≤ 0, then V ′

k(y) < 0 for all y > 1, and so Vk(y) < 0 for all y > 1. If V ′
k(1) > 0, then

either Vk(y) > 0 for all y > 1 or there exist roots of Vk(y) which are greater than 1. Let y∗

be the smallest such root (there are a finite number of roots since Vk(y) is a polynomial in

y). Since V ′
k(1) > 0, we cannot have V ′

k(y
∗) > 0 because then (since Vk(y) is continuous)

y∗ would not be the smallest root. So we must have V ′
k(y

∗) ≤ 0. Hence V ′
k(y

′) < 0, and

therefore Vk(y) < 0, for y′ > y∗. Hence Vk(y) has at most one root greater than 1. �

Proposition 3. Say that there exist i, j ∈ N such that φi(a) < 1− q and φj(a) > q. Say f is

an anonymous incentive compatible procedure which is not trivial. Then f is not monotonic.

Proof. Say f is anonymous, incentive compatible, and not trivial. Let γ(α(r)) = f(r, a). Say

f is monotonic, in other words γ(j) ≤ γ(j + 1) for all j. As in the proof of Lemma 3, define

γ′′(j) = 1−γ(n−j) and define γ′(j) = (γ(j)+γ′′(j))/2. Note that γ′ is symmetric. It is easy

to see that γ′ is monotonic: since γ(n−j) ≥ γ(n−j−1), we have 1−γ(n−j) ≤ 1−γ(n−j−1)

and thus γ′′(j) ≤ γ′′(j + 1), and since γ(j) ≤ γ(j + 1), we have γ′(j) ≤ γ′(j + 1). Since

f is not trivial, there exists k such that γ(k) < γ(k + 1). Since f is monotonic, we have

γ(n− k − 1) ≤ γ(n− k) and thus γ′′(k) ≤ γ′(k + 1). Therefore γ′(k) < γ′(k + 1).

The proof of Lemma 3 shows that W (q, γ′) = 0. We have W (q, γ′) = Cn−1
(n−1)/2

q(n−1)/2(1−
q)(n−1)/2(γ′((n − 1)/2) − γ′((n + 1)/2))) +

∑(n−3)/2
j=0 Cn−1

j (qj(1 − q)n−1−j + qn−1−j(1 −
q)j)(γ′(j) − γ′(j + 1)). This expression is the weighted sum of γ′(j) − γ′(j + 1) terms,

where all of the weights are greater than zero. Since γ′(j)− γ′(j + 1) ≤ 0 for all j, it must

be that γ′(j)− γ′(j + 1) = 0 for all j, which contradicts γ′(k) < γ′(k + 1). �
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