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1 Introduction

A large class of problems can be understood using models of bargaining with a dis-

agreement point. Countries that cannot reach a settlement over disputed territory

can go to war. Firms that fail to reach an agreement can use the courts, bureaucracy,

or a legislature to try and resolve the dispute. In each of these contexts the parties can

influence–usually at a cost–their odds of success in a war, court trial, agency hearing,

or lobbying battle. It is well known that the institution governing the interaction can

influence the probability of disagreement as well as the likely settlements. When play-

ers posses asymmetric information about the disagreement point the particular form

of this uncertainty can also influence the odds of bargaining failure and lotteries over

settlements. In most contexts, however, the utility of disagreement depends, at least

partially, on actions that the parties take prior to disagreement. Countries can invest

in military capacity, firms can experience and document losses, collect evidence, or

establish relationships with corrupt government officials. Accordingly, it makes sense

to think about disagreement payoffs as endogenous– the result of investment decisions

that are made prior to negotiating.

To illustrate the point we begin with an example where our problem has traction.

Consider two countries involved in a dispute over a prize of value 1. Each country

can have high or low capacity to fight. Typically, one would model the situation by

assuming that each nation had a “type” that was either high or low. In our example,

the countries interact in a simple institution. The institution has proposal power

and is able to offer a single settlement of 1/2 to each country. If both countries

accept this settlement then they receive their share and the game ends. If either (or

both) countries refuses the settlement, then both countries fight. We assume that the

expected payoffs from conflict are given by a contest function that is represented in

the following matrix

capacity l h

l s, s l, w

h w, l b, b

with the first and second entries corresponding to the payoff of coutries 1 and 2

respectively. Assume that 0 < l < b < s < 1
2
< w < w + l < 1. This structure
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captures the ideas that wars are always inefficient (as they destroy resources), wars

between strong states are more destructive than wars between weak states, and that

it is better to be strong than weak if you are going to fight. A natural way to proceed

would be to assume that the types are generated by an exogenous distribution; for

simplicity we might assume that each nation has high capacity with probability 1/2

and that the types are independent. We might wonder if their is an equilibrium

in which high types chose to reject the settlement and low types decide to accept

the settlement. In fact this behavior is sequentially rational as long as s ≤ 1
2
≤

w. This last conclusion is obtained by noting that a country’s decision to reject a

settlement is only payoff relevant when the other country is a low type (given the

conjectured strategy profile). So when the above inequality holds neither type has

an incentive to deviate from the proposed strategy profile. Given that the types

occur with equal probability and this strategy, the expected payoff of each country

is just 1
4

[
1
2

+ l + w + b
]
. Moreover, the probability of not reaching a settlement (i.e.

the probability of war) is 3
4
. Two comparative statics are immediate: equilibrium

expected payoffs are increasing in the terms, l, w, b and the probability of war is

constant (as long as changes in the parameters don’t alter the validity of the inequality

above). Now, suppose the probability that each state has high capacity is the result of

strategic (equilibrium) play predicated on the expectation that countries make arming

decisions which are hidden actions and then play the game described above. In this

case, it seems natural to assume that selection of h imposes a cost of c on a nation.

In this case, for a country to be willing to randomize over the types it must be the

case that the expected payoff from l is exactly c less than the expected payoff from h.

Here, we say expected payoff because a country does not know which level the other

country will select. A little algebra leads to the conclusion that the probability that

h is chosen must be p = 1−2(w−c)
1−2(w−b+l) . Since our verification that neither state had an

incentive to deviate did not hinge on the probability of h the conjectured strategies for

playing the negotiation game are still sequentially rational. One observation is that

the equilibrium value of p is now not typically 1/2. In other-words the assumption

that the types are generated by any particular lottery is typically not consistent with

the assumption that the investments are generated by equilibrium behavior. Of

course if the parameters c, w, b, l all happen to solve the equation 1
2

= 1−2(w−c)
1−2(w−b+l) the
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assumption would be fine; but this is a rather knife edged assumption. Here (using

the fact that a nation must be indifferent across the strategies of l and h) we can

write the equilibrium expected utility of the game for a country as(
1− 2(w − c)

1− 2(w − b+ l)

)
l +

(
1− 1− 2(w − c)

1− 2(w − b+ l)

)
s.

This expression simplifies to

s+ (l − s)
(

1− 2(w − c)
1− 2(w − b+ l)

)
.

A few observations surface if we think about the consequences of varying some of the

parameters. Observe that this payoff depends on s while the equilibrium payoff in

the game with exogenous types does not. Moreover this expression is not linear, or

even increasing, in the parameters l, w, b in the model that treated the lotteries over

types as exogenous the equilibrium payoffs are linear in these parameters. Finally,

the probability of war is [
1−

(
1− 2(w − c)

1− 2(w − b+ l)

)]2

which depends on the features of the contest function (l, w, b).This is in contrast to the

game with exogenous types, where the probability of war does not vary (locally) with

the parameters of the game. This toy example, serves only to illustrate the motivation

for and potential bite of considering choices that influence a country/player’s outside

option as being endogenous–determined by equilibrium play– and thus potentially

dependent on expectations about downstream play.

It is not entirely surprising that expectations about the negotiating process can

influence investment decisions. The literature on the hold-up problem considers in-

vestment by buyers and or sellers prior to trade (Gul, 2001; Segal and Whinston,

2002). In the hold-up problem the investments typically influence the value of agree-

ment, not the value of the outside option and investment by the seller typically only

influences the seller’s value of agreement and not the buyer’s. Here, we consider

problems where the investments influence the value of the disagreement payoffs, or
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outside option, and influence both players’ payoffs for disagreement. The closest

connection we are aware of in the literature is Plott (1987). In that article Plott

considers a model in which two parties invest in legal fees and then a contest function

determines the trial winner. He shows that the choice of legal rules, in particular who

pays the legal fees after a trial, can influence the quantity of legal expenses that the

parties absorb and points out that the English rule may be inefficient. The Plott

model differs from ours in that it does not model interactions in the trial or allow for

settlements to be reached. In this way the Plott model is a special mechanism in our

set-up where the probability of disagreement is always one. The papers by Plott and

Gul, as well as the example described above, illustrate that institutions governing how

conflicts are resolved can have systematic upstream effects on investment decisions.

In other words, when the outside options depend on decisions which might depend

on the bargaining game, additional restrictions on beliefs about outside options and

play in these games may surface. We investigate this link between game forms and

investments using a mechanism design approach. Specifically, we consider situations

where players can make “hidden action” investments in anticipation of their play in

a bargaining game that can either divide a pie or end in the outside options. In this

paper we focus on characterizing restrictions that necessarily follow from equilibrium

play, but do not focus on characterizing equilibrium play or even expressing sufficient

conditions for equilibria of a particular form. It is interesting, however, that necessity

implies significant amounts of structure for this problem.

The current paper draws on progress made in a few related papers. Meirowitz

and Sartori (2008) consider models in which investment decisions are hidden actions

and players bargain after making their investment decisions. They find a strong

condition that is necessary and sufficient for the existence of equilibria in which dis-

agreement/war is avoided. Moreover, the possibility of disagreement in equilibrium

and the presence of investment strategies that involve randomizing are shown to be

equivalent. This finding justifies our focus on restrictions that must hold in an equi-

librium in which the players randomize in their effort choices. In our context, many

standard bargaining games will only posses equilibria in which the investments are

in pure strategies if probability of bargaining failure is 0. Given this result, analysis

of interesting problems (in which the threat of war is real) involves randomization in
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effort choices. The Meirowitz and Sartori paper, however, is limited as it does not

provide tight characterizations of equilibrium play, they instead focus on whether or

not war can be avoided. As a consequence the paper does not tell us much about

the relationship between institutional choice and equilibrium behavior. Another

literature that is relevant to this study involves the use of mechanism design to es-

tablish “game free” results. One of the most influential applications of this approach

is Myerson and Satterthwaite (1983) in which it is shown that agreement cannot be

guaranteed in problems of bilateral trade. In the study of negotiations and war

fighting Banks (1990) shows that in problems with one sided asymmetric informa-

tion, the equilibrium settlements and probability of fighting must be monotone in

the unobserved capacity of the privately informed nation in any equilibrium to any

bargaining game. More recently, Fey and Ramsay (2008) consider problems in which

both players posses private information and investigate when it is possible to con-

struct institutions possessing equilibria in which the probability of war is 0. A key

finding of Fey and Ramsay is that with interdependent values it is not possible to

construct mechanisms with equilibria in which the probability of war is zero. In these

papers a nation or both players has private information, but the beliefs about these

types are exogenous. Together, the conclusions from Fey and Ramsay and Meirowitz

and Sartori, justify a focus on problems with interdependent values and investment

decisions that are not predictable (involve mixed strategies).

The paper begins by defining the general bargaining problem and characterizing

a coherent view of institutions in this setting. Our analysis proceeds by first taking

as given a fixed lottery over types and analyzing the induced problem of mechanism

design with interdependent values. In an approach analogous to backward induction,

we then use the results from this analysis to characterize equilibrium investment

strategies and ultimately state and prove our main result.

2 The model

The first step is to define the set of situations for which our analysis applies. Consider

the interaction between two players in anticipation of a negotiation. Each player,

i ∈ {1, 2} must first select a level of investment ai ∈ R+ that will contribute to their
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disagreement payoff. In the case of international conflict, for example, this investment

may be spent on arms. To allow investments to be in mixed strategies we write Fi(·)
to capture the distribution function of ai. We assume that the cost of investment

ai is given by ci(ai) where ci(·) is a strictly increasing and differentiable function.

By c′i(ai) we denote the first derivative of the cost at ai and by c−1
i (·) we denote

the inverse of the cost function. The investment choices are assumed to be hidden

actions–player i knows its choice of ai but it does not observe the choice by player −i.
The players then negotiate over a resource or prize that is under dispute. Without loss

of generality we assume the prize is of size 1. Below we will discuss how to think about

the details of a negotiation process and for now we just observe that the result of a

successful negotiation is a pair of settlement payoffs (t1, t2). Given a settlement t1, t2

and a pair of investments a1, a2 the payoffs are t1− c1(a1) and t2− c2(a2) respectively.

If the players fail to reach an agreement they can invoke the costly outside option.

If they do so, investment levels will influence the payoffs from disagreement. Rather

than specifying a particular functional form for these payoffs, we just assume that

the expected payoff to player i from a disagreement when its investment level is ai,

and the investment level of the other player is a−i, is given by pi(ai, a−i)− ci(ai). We

impose the natural assumption that pi(·, ·) is strictly increasing in the first argument

and strictly decreasing in the second argument. Throughout, we assume that these

functions are twice continuously differentiable. In order to connect with the literature

on inefficient bargaining failure, it is natural to assume that p1(a) + p2(a) < 1 for all

a ∈ R2
+. None of the results in this paper, however, actually require this assumption.

The arguments do, however, hinge on this sum having an upper bound.

Our approach to the analysis proceeds without imposing or assuming any par-

ticular model of negotiation. We think of a negotiation procedure, protocol, game

or “institution” as a sequence of interactions that must eventually either distribute

settlements to players or result in the disagreement outcome. We impose one impor-

tant restriction on the class of mechanisms. We assume that the mechanism cannot

monitor the players private information. We draw upon the revelation principle to

establish results about a large class of games or strategic interactions in which the

investment decisions are hidden actions by focusing on direct revelation mechanisms

in which the reports are unverifiable.
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Formally we say a direct revelation mechanism is a pair of message spaces M1,M2

and a triple of mappings

t1 : M1 ×M2 → R+

t2 : M1 ×M2 → R+

q : M1 ×M2 → [0, 1].

So a direct revelation mechanism in our setting is then a cheap talk game where

Mi is player i’s possible hidden actions, q is the probability of disagreement, and ti

is i’s report contingent “transfer” or “payoff.” We could assume that transfers are

only positive when q is zero, but as ti can depend on reports, our simpler description

is without loss of generality. We also note that in our setting the outcome of a

disagreement, i.e., its payoff to the players, depends on the level of investment that

each player has made in the investment stage but not on the reports of the players.

If we think of the problem without the revelation principle, then the assumption is

that outside options depend on investments but not on how the players bargain.

Before turning to the analysis an observation is worth making. We do not re-

quire that the transfers or payoffs satisfy budget balance. We also do not require

that transfers are non-negative. Finally, we do not require that the players are will-

ing to accept settlements that are distributed by the mechanism. To be clear we

remain agnostic about these issues. We take this approach because the current paper

highlights consequences of incentive compatibility and optimality of investments. Ad-

ditional structure and concern about participation constraints, or ex-post individual

rationality constraints would impose additional restrictions and might involve condi-

tions that are even stronger than the incentive compatibility conditions that we work

with. Importantly, however, the results we prove cannot be relaxed by adding more

structure of this form. Since we do not focus on sufficient conditions for particular

types of equilibria (or even existence of equilibria) this additional structure is not

needed. Subsequent work that proceeds in the other direcetion will surely need to

deal with these added complications.
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3 Results

The analytic convenience of the revelation principle is that it allows us to learn about

equilibria to any mechanism by focusing on just “truthful” equilibria to direct mech-

anisms. The latter are studied by way of incentive compatibility conditions, which

ensure that players are willing to truthfully report their private information to the me-

diator in a direct mechanism. We begin with a fairly standard description of incentive

compatible behavior in a direct mechanism, treating the distribution functions Fi(·)
as fixed. Let Fi be player i’s mixed strategy equilibrium distribution over the hidden

action. Recall our direct mechanism is a pair of functions ti(mi,mj) : R2
+ → [0, 1] that

describes the report contingent transfer to i and a function q(mi,mj) : R2
+ → [0, 1]

that determines the probability of disagreement. Expected utility to i of making a

report mi in this direct mechanism, given investment ai , can then be written as

Ui(mi|ai) =

∫
[ti(mi,mj) + q(mi,mj)p(ai,mj)]dFj(mj).

It is convenient to define

Ti(mi) =

∫
Ti(mi,mj)dFj(mj),

Pi(mi|ai) =

∫
q(mi,mj)p(ai,mj)dFj(mj),

where Ti(mi) is the expected transfers when player i reports mi and Pi(mi|ai) is the

expected value of disagreement, including the chance it happens, conditional on ai.

Thus we can describe a player’s interim expected utility of a report mi as

Ui(mi|ai) = Ti(mi) + Pi(mi|ai)

In a slight abuse of notation, we let Ui(ai) = Ui(ai|ai). While we will impose no

particular structure on q(·, ·) and F1, F2 as our goal is to determine things that must

be true in any equilibrium, we will require that equilibrium is well defined in the

sense that a mechanism is sufficiently well behaved so that expected utilities are

well-defined. In particular, we will assume that q(mi,mj)p(ai,mj) is integrable (in

8



particular that

∫
q(mi,mj)p(ai,mj)dFj(mj) is a real number). Note that this also

implies that

∫
q(mi,mj)dFj(mj)isarealnumber.

1

The direct revelation mechanism framework is useful as it allows us to characterize

incentives across game forms and various equilibria. Throughout the paper we invoke

the following revelation principle.

Revelation Principle (Myerson, 1979) If there exists a game with equilibrium

investing decisions given by the mixtures F1 and F2 and the lottery G(t1, t2, p1, p2)

over transfers and disagreement payoffs, then there is a direct mechanism possessing

an equilibrium in which investing strategies are given by F1 and F2 and the states

report truthfully mi(ai) = ai, which induces the same lottery over the outcomes.

For fixed investment strategies the argument involves the standard composition

strategy as found in Myerson (1979). Since investment decisions are privately ob-

served and reports are unverifiable this first stage introduces no additional complica-

tions. Without loss of generality we will proceed by looking at equilibrium incentives

in direct mechanisms and focus on Bayesian Nash equilibria to the induced games.

It is important to notice what a direct mechanism represents. The theorem states

that in our study of lotteries over settlements and bargaining failure it is sufficient

describe an equilibrium to a game as a triple < t1, t2, q >. This means two triples

< t1, t2, q > and < t′1, t
′
2, q
′ > can represent equilibria from completely different game

forms or two different equilibria selected from a given game form. Our results apply

either way. The fact that these results are relevant for both constructions is im-

portant. This is because when we talk about triples as “institutions” we speak to

two distinct visions of institutions in the literature. In the applied literature com-

parison of institutions is usually a statement about the equilibrium correspondence

of two distinct extensive form games. For example, we may consider the difference

of equilibrium payoffs and the probability of war across game forms where countries

negotiate bilaterally and when they negotiate within a framework of a third party

organization like the African Union. Similarly, in the law and economics literature

1This connection follows from the dominated convergence theorem and the fact that since p(·, ·)
is bounded by 1 the latter is bounded by 1 plus the former integral.
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one might compare litigation games under American and English rules for fees. In

each case, we can describe an equilibrium of each game form with its own mappings

< t1, t2, q >.

There is also another view, more common in political economy, which takes in-

stitutions to be an equilibrium to some game or super-game, where there may exist

opportunities for renegotiation or focal equilibrium selection (Calvert, 1995). Here,

when comparing two different equilibria to such a game, we also have two different sets

of mappings. That is, the method works equally well for comparing across equilibria

of a single game and comparing equilibria across different games. It is prudent to be

careful in deciding which interpretation one wishes to invoke as the interpretations of

the results depends on this choice.

A second observation that we make regards the supports of investment strate-

gies. Since investments matter only in that they influence the payoff pi(·, ·) from

bargaining failure, and they impose a cost ci(·), any investment ai with ci(ai) > 1 ≥
maxai

pi(ai, 0) is strictly dominated by a′i = 0. Accordingly, we know that in any

equilibrium the investments will be bounded between 0 and c−1
i (1) = b. Accordingly,

when proving results about equilibria we know that the investments have a support

that is compact. In particular, we can assume that the investments have a support

contained in some interval [ai, ai] ⊆ [0, b].

We can now proceed with our results. Our first result characterizes the value of

playing a bargaining game as a function of the pre-play investment choices. Before

proving the formal result it is useful to describe the intuition behind the result and

howit follows from incentive compatibility conditions. For a fixed pair of distributions

F1, F2 suppose < t′1, t
′
2, q
′ > is an equilibrium to a game. By the Revelation Principle

there is a direct mechanism < t1, t2, q > such that players truthfully report and the

mechanism induces the same lottery over outcomes. Consider player i’s strategy. In

this direct mechanism incentive compatibility implies that for any ai > a′i

Ui(ai) = Ti(ai) + Pi(ai|ai) ≥ Ti(a
′
i) + Pi(a

′
i|ai)

and

Ui(a
′
i) = Ti(a

′
i) + Pi(a

′
i|a′i) ≥ Ti(ai) + Pi(ai|a′i).
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By standard arguments, if at a′i the function q(·, aj) is continuous for almost every

aj in the support of Fj then

∂Ui(a
′
i)

∂ai
=

∫ [
∂pi(a

′
i, aj)

∂ai

]
q(a′i, aj)dFj(aj).

It is not unreasonable to worry that, given the complications that may arise from

mixtures that do not have densities, this envelope theorem result will not hold. The

following theorem builds on this intuition and illustrates that this relationship holds

for almost every ai even for our slightly more complicated case. The proof shows

that the well know envelope theorem of Milgrom and Segal (2002) applies to our

environment with probability distributions that arise from mixed strategies and q

functions that need not be continuous.

Theorem 1 If < t1, t2, q, F1, F2 > is an equilibrium then (1) for almost every ai in

[0, b] ⊆ [ai, ai] the derivitive of the value function exists and is given by

U ′i(ai) =

∫ aj

aj

[
∂pi(ai, aj)

∂ai

]
q(ai, aj)dFj(aj)

and (2) net of costs, the value function is given by

Ui(âi) = Ui(ai) +

∫ bai

ai

∫ aj

aj

[
∂pi(ai, aj)

∂ai

]
q(ai, aj)dFj(aj)dai

Proof. Fix F1, F2 and suppose < t′1, t
′
2, q
′ > is an equilibrium to such a game. By

the Revelation Principle there is a direct mechanism < t1, t2, q > such that players

truthfully report and the mechanism induces the same lottery over outcomes. We use

Milgrom and Segal (2002, Thrm 2) to establish claims (1) and (2).

Milgrom and Segal state three sufficient conditions (which we state in our nota-

tion):

(i) Ui(ai) = Ui(mi|ai) is absolutely continuous and differentiable in ai for all mi;

(ii) there exists an integrable function g : [ai, ai]→ R such that
∣∣∣∂Ui(mi|ai)

∂ai

∣∣∣ ≤ g(ai)

for all mi and almost every ai; and
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(iii) that an optimal response, mi, exists for each type ai.

Condition (iii) is satisfied in any incentive compatible direct mechanism. The

rest of the proof focuses on verifying that the first two conditions are satisfied and

proceeds in in three steps. First we show that

∂Ui
∂ai

(mi|ai) =
∂

∂ai

∫ āj

aj

pi(ai, t)q(ai, t)dFj(t) =

∫ āj

aj

∂pi
∂ai

(ai, t)q(ai, t)dFj(t).

Second we show that Ui(mi|ai) is Lipschitz continuous in ai, which reduces to showing

that the derivative of Ui with respect to ai is bounded. We then use these conclusions

to show that Ui(mi|ai) is absolutely continuous in ai and bounded by a linear function

and thus equal to the integral of its derivative almost everywhere.

To begin, recall that we have assumed that q and F1, F2 are sufficiently well

behaved that all of the relevant integrals exist. Second observe that the investment

level only enters Ui(mi|ai) through the term Pi(mi|ai), so we can ignore the term

Ti(mi). We now characterize the derivative of Ui(mi|ai) with respect to ai.

Lemma 1 ∂Ui

∂ai
(mi|ai) =

∫
∂p(ai,mj)

∂ai
q(mi,mj)dFj(mj) at every ai,mi.

Proof. We verify that standard conditions for interchanging the order of integration

and differentiation are satisfied. We use the versions presented in Durrett (1995, Thrm

9.1):

(a)

∫
|q(mi,mj)p(ai,mj)| dFj(mj) <∞;

(b)
∂p(ai,mj)

∂ai
q(mi,mj) exists and is continuous in ai for each mi,mj;

(c)

∫
∂p(ai,mj)

∂ai
q(mi,mj)dFj(mj) is continuous in ai for every mi;

(d) and for each ai,mi there is some δ > 0 s.t.∫ ∫ δ

−δ

∣∣∣∣∂p(ai + θ,mj)

∂ai
q(mi,mj)

∣∣∣∣ dθdFj(mj) <∞.
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Condition (a) holds as both p and q are non-negative so∫
|q(mi,mj)p(ai,mj)| dFj(mj) =

∫
q(mi,mj)p(ai,mj)dFj(mj)

where we have assumed that the latter is finite.

Conditions (b) and (c) follow from the assumption that p is continuously differ-

entiable.

Condition (d) is verified as follows. Since p is twice continuously differentiable in

all its arguments, we know that the first derivative of p is continuous. Since we are

focusing on a compact set this derivative attains a finite maximum. Thus we may

concluded that the derivative of p is bounded and p is Lipshitz continuous. As q is

also bounded above by 1 and the mixed strategy dFj integrates to 1, there exists a

constant M s.t.

∫ ∫ δ

−δ

∣∣∣∣∂p(ai + θ,mj)

∂ai
q(mi,mj)

∣∣∣∣ dθdFj(mj) <∫ ∫ δ

−δ
MθdθdFj(mj) =∫
2δMdFj(mj) = 2δM <∞,

satisfying the last condition of Durrett, proving our identity.

Next we show that Ui(mi, ai) is also Lipschitz continuous.

Lemma 2 Ui(mi|ai) is Lipshitz continuous.

Proof. Because p is Lipschitz continuous, there exists a number k such that

∂p

∂ai
(ai,mj) < k.

Moreover since 0 ≤ q(mi,mj) ≤ 1, Fj integrates to 1, and we have the derivative of
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Ui(mi|ai) as described in Lemma 1, we get

∂Ui
∂ai

(mi|ai) =

∫ āj

aj

∂p

∂ai
(ai, t)q(mi, t)dFj(t) < k

∫ āj

aj

q(mi, t)dFj(t) < k[āj − aj]

and Ui(mi|ai) is thus Lipshitz continuous.

So Lemma 2 implies that (ii) is satisfied with g(ai) = Kai for some constant

K. Moreover, since Lipshitz continuity implies absolute continuity on the interval

and Lemma 1 establishes the differentiability of Ui(mi|·) for each mi condition (i) is

satisfied, completing the proof.

With these results we see that treating the distribution over investment levels

as fixed we can now focus on the study of what types of investment strategies are

actually possible in an equilibrium. What we find is that the equilibrium conditions

from strategic investment pin down a number of characteristics of the equilibrium.

Theorem 2 In any equilibrium to any game, if ai is in the support of i’s mixed

strategy then

c′i(ai) =

∫
∂pi(ai, aj)

∂ai
q(ai, aj)dFj(aj) (1)

Proof. Suppose < t′1, t
′
2, q
′, F1, F2 > is an equilibrium. By the Revelation Principle

there is a direct mechanism (t, q) such that players truthfully report and the mecha-

nism induces the same lottery over outcomes. We focus on such a direct mechanism.

For F1, F2 to constitute equilibrium mixed strategies it must be the case that for every

pair of arming levels , ai and a′i in a set that occurs with probability one under Fi

Ui(ai)− Ui(a′i) = ci(ai)− ci(a′i). Taking limits and applying Theorem 2 we obtain∫
∂pi(ai, aj)

∂ai
q(ai, aj)dFj(aj) = c′i(ai)

This means there is a clear relationship between q and F whenever ai is in the

support of player i’s mixed strategy. To make the exposition slightly more natural

we write every ai when we should say something like Fi-almost every ai. As p and
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c are exogenous, we conclude that q andFj have to be “offsetting” in a very specific

sense for any two equilibria that use the same investment levels for a fixed p and c.

3.1 Comparative Statics and Separability

Suppose we have two equilibria < t1, t2, q, F1, F2 > and < t1, t2, q, F1, F2 > in which

investment level ai is in the supports of both Fi and F̂i. Then Theorem 2 implies that∫
∂pi(ai, aj)

∂ai
q(ai, aj)dFj(aj) =

∫
∂pi(ai, aj)

∂ai
q̂(ai, aj)dF

′
j(aj).

Multiplying both sides by 1 yields

∫
q(ai, aj)dFj(aj)

∫ ∂pi(ai,aj)

∂ai
q(ai, aj)dFj(aj)∫

q(ai, aj)dFj(aj)
=

∫
q̂(ai, aj)dFj(aj)

∫ ∂pi(ai,aj)

∂ai
q̂(ai, aj)dF̂j(aj)∫

q̂(ai, aj)dF̂j(aj)
.

Letting disagreemnt and ̂disagreement denote the events in which a settlement is

not reached in the two equilibria, and Pr(disagreement | ai) and Pr( ̂disagreement |
ai) denote the equilibrium probabilities of disagreement conditional on investing at

level ai in the two equilibria we have

Pr(disagreement | ai)
Pr( ̂disagreement | ai)

=
E(

∂pi(ai,aj)

∂ai
| ̂disagreement)

E(
∂pi(ai,aj)

∂ai
| disagreement)

.

In other words, the likelihood of disagreement and the marginal value of investing

given no settlement are in some sense compliments. That is, if the probability of no

settlement given ai is higher in one equilibrium than the other, than the expected

marginal effect from ai must be ordered in the opposite way across these equilibria.

The strength and implications of this relationship can be most easily seen if we

impose some assumptions on the exogenous functions, p and c. Specifically if the

cross partial derivative of p is 0, i.e pi(ai, aj) is of the form g(ai) + h(aj) then the

probability of no settlement given ai is constant. In particular, in this seperable case,

Theorem 2 implies the following result:
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Corollary 1 If pi(ai, aj) = g(ai) + h(aj) then the probability of disagreement given

investment level ai is the same in every equilibrium in which investment level ai is in

the support of i’s investment strategy. In particular, the following formula holds

Pr(disagreement | ai) =
c′i(ai)

g′(ai)
.

In this separable case an increase in the marginal cost of investing at level ai or a

decrease in in the marginal value of ai from disagreement must result in an increase

in the probability of no settlement given ai. For the seperable case, this means

that holding fixed technology c, p variation in the game form q, t only effects the

likelihood of bargaining failure through its effect on the investment strategies. The

law of iterative expectations tells us that

Corollary 2 In the separable case, if both < t1, t2, q, F1, F2 > and < t′1, t
′
2, q
′, F1, F2 >

are equilibria then they both induce the same probability of disagreement.

In particular in this case we have Pr(disagreement) =
∫ ci(ai)

g(ai)
dFi(ai).

While the separable case is knife-edged, this result illustrates that the pathway

by which the choice of game form, q and t, can influence the conditional probability

of bargaining failure depends on the investments being compliments or substitutes

(at least locally). We find the effect of institutions on conditional probabilities of no

settlement is continuous in the magnitude of the cross partial of p. In particular, let

P(ai) = maxaj

∂pi(ai,aj)

∂ai
− minaj

∂pi(ai,aj)

∂ai
. This value is finite since p is continuously

differentiable and the support is compact. This value is 0 in the seperable case.

Moreover, let Ep(ai) =
∫ ∂pi(ai,aj)

∂ai
dFj(aj) and Ep̂(ai) =

∫ ∂pi(ai,aj)

∂ai
dF̂j(aj). Define,

the difference in conditional probability of war between two equilibria as

∆(ai) :=

∣∣∣∣∫ ∂pi(ai, aj)

∂ai
q(ai, aj)dFj(aj)−

∫
∂pi(ai, aj)

∂ai
q̂(ai, aj)dF̂j(aj)

∣∣∣∣ .
Recall that q and F are bounded between 0 and 1, implying that the following

three inequalities hold,
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∣∣∣∣∫ ∂pi(ai, aj)

∂ai
q(ai, aj)dFj(aj)− Ep(ai)

∫
q(ai, aj)dFj(aj)

∣∣∣∣ < P(ai),∣∣∣∣∫ ∂pi(ai, aj)

∂ai
q̂(ai, aj)dF̂j(aj)− Ep̂(ai)

∫
q̂(ai, aj)dF̂j(aj)

∣∣∣∣ < P(ai),

|Ep(ai)− Ep̂(ai)| < P(ai).

The first two of these inequalities imply that

∆(ai) <

∣∣∣∣Ep(ai)∫ q(ai, aj)dFj(aj)− Ep̂(ai)
∫
q̂(ai, aj)dF̂j(aj)

∣∣∣∣+ 2P(ai),

and the third implies that

∣∣∣∣Ep(ai)∫ q(ai, aj)dFj(aj)− Ep̂(ai)
∫
q̂(ai, aj)dF̂j(aj)

∣∣∣∣ <
P(ai)

∣∣∣∣(∫ q(ai, aj)dFj(aj)−
∫
q̂(ai, aj)dF̂j(aj)

)∣∣∣∣ .
Combining these last two inequalities we obtain

∆(ai) < P(ai)∆(ai) + 2P(ai),

∆(ai)(1− P(ai)) < 2P(ai),

∆(ai) <
2P(ai)

(1− P(ai))
.

Thus we see that as P(ai) vanishes so too does ∆(ai). This bounding condition is

summarized in the following proposition.

Theorem 3 As the cross partial of p as parameterized by P(ai) vanishes, so does the

difference in conditional probability of bargaining failure across equilibria, ∆(ai).
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3.2 Admissability

To summarize, thus far we have focused on necessary conditions that must hold

in situations where mixing over investments is optimal given rational expectations

about bargaining behavior and bargaining behavior constitutes an equilibrium given

“correct” beliefs about the investment strategies. In particular, Theorem 2 shows

that there is a very specific relationship between the probability of settlements and

the investment strategies used in equilibrium. Moreover, this relationship depends on

the exogenous technology p and c. In this section we elaborate on the structure of this

relationship and consider a slightly different aspect of the problem. What must be

true about mixed strategies over investments that will fulfill the necessary conditions

of equilibrium strategies? What must be true about the technology and function

determining the probability of settlement, q, in order for it to be possible that some

equilibrium involves this function q. The approach here, then builds on the insight

that both q and F1, F2 are endogenous and so the existence of equilibria in which a

particular function q obtains hinge on the possibility of finding some functions F1, F2

that satisfy the condition in Theorem 2 with this particular q.

Recall from above that Theorem 2 states that if < t1, t2, q, F1, F2 > is an equilib-

rium then F1 and F2 solve the following integral equations

∫
∂p1(a1, a2)

∂a1

q(a1, a2)dF2(a2) = c′1(a1) for each a1 in the support of F1∫
∂p2(a2, a1)

∂a2

q(a1, a2)dF1(a1) = c′2(a2) for each a2 in the support of F2

It is instructive to rewrite these conditions as an orthogonality condition. Then

most of the intuition behind our characterization can be gleamed from the follow-

ing heuristic argument. If we pretended that the supports were finite and could

still use the condition in Theorem 2, then the mixtures over effort would be a non-

trivial solution to a homogeneous system of linear equation. In particular, we could

think about the linear algebra problem where the existence of solutions to the system

would hinge on finding a lottery (vector) that is orthogonal to the vectors capturing
∂pi(ai,aj)

∂ai
q(ai, aj) − c′i(ai) for each ai. Since we are working with functions instead of
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vectors, results about codimension do not directly apply, but much of our intuition

from finite dimensional vector spaces does carry through.

To proceed we let bi = c−1
i (1). So in any undominated investment strategy by i

the support, Si is a subset of [0, bi]. When it is clear that we are focusing on just

the condition for one player, we drop the subscript on bi. Let L2 denote the set of

square-integrable functions from [0, b] into R1. Then for any two functions x, y ∈ L2

the mapping 〈x | y〉 =
∫ b

0
x(t)y(t)dt is an inner product. Accordingly, with the norm

‖x‖ =
√
〈x | x〉 we have a Hilbert Space. For convenience we focus on distributions

over investments that have densities, f1, f2 on supports contained in [0, b1], [0, b2]

respectively. The case of densities is particularly interesting given that most applied

models assume that types are drawn from a density. This analysis then seeks to

provide foundations for this common modeling assumption. For any set A ⊂ L2, the

orthogonal complement of A, denoted A⊥ is the set {y ∈ L2 : ∀x ∈ A, 〈x | y〉= 0}.
This is the set of elements of L2 that are orthogonal to each element of A.

We treat payoff functions (p1, p2), cost functions (c1, c2), and incentive com-

patible mechanisms (t1, t2, q) as parameters and define a new function of (ai, a−i),

hi(ai, a−i|q, p, c) =
∂pi(ai,aj)

∂ai
q(ai, aj) − c′i(ai). So hi(ai, ·|q, p, c) is a function in L2.

For fixed q, p, c we can then think about the set of such functions, Hi(q, p, c) =⋃
ai∈Si

hi(ai · |q, p, c). To recap, we will restate the condition in Theorem 2 as a system

of inner product conditions, just as a system of linear equations of the form Ax = 0

can be conceived of a finite number of orthogonality conditions. The analogue to the

matrix A is the set Hi(q, p, c). Our analysis is then analogues to the study of how

elements of the matrix A influence solutions to the system. Next let Hi(q, p, c) denote

the subspace of L2 spanned by Hi(q, p, c). We then have the following necessity result.

Theorem 4 For a fixed set of primitives, p1(·, ·), p2(·, ·), c1(·), c2(·) the following are

true:

(a)If < t1, t2, q, f1, f2 > is an equilibrium then

(i) H1(q, p, c) and H2(q, p, c) cannot be equal to L2

(ii) for i = 1, 2, fi ∈ H⊥−i(q, p, c) and H−i(q, p, c) is in the orthogonal com-

plement of the span of fi

(iii) if in addition the function q is never 0 or 1, then for any ε > 0 there
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exists a functions q′ such that ‖q − q′‖ < ε and there are no equilibria with these

primitives and q′

(b) if for fixed q, there are equilibria with two different densities, fi and f ′i then

there is also an equilibrium with αfi + (1− α)f ′i for any α ∈ (0, 1).

Proof. Observe that the conditions in Theorem 2 is equivalent to

〈hi(ai, ·|q, p, c) | f−i(·)〉 = 0 for each ai ∈ Si.

(a):

(i) If Hi(q, p, c) = L2 then H⊥i (q, p, c) is empty and there are no functions f−i

satisfying the necessary condition in the theorem.

(ii) This characterization of the solutions is definitional.

(iii) A well known result of Hilbert spaces (stated in our notation) is that if A ⊂ L2

and A contains an open ball then A⊥ = {0} where the 0 element does not integrate

to 1 and thus cannot be a density. This implies that if < t1, t2, q, f1, f2 > is an

equilibrium there is a function q′ arbitrarily close to q for which f−i does not solve

〈hi(ai, ·; q′, p, c) | f−i〉 = 0. But this only implies that any particular solution will

no longer be a solution after some small perturbation of q. To see that there are

some small perturbations that result in no solutions the argument differs. The finite

dimensional analogue of the following argument is simple: arbitrarily close to every

n by n matrix of rank less than n is a matrix of full rank. We start with the fact

that since L2 is separable any total set (orthonormal basis) of a subspace of L2 is

countable.2 So let Fi ⊂ H⊥i (q, p, c) be a total set of H⊥i (q, p, c). The key here is that

F forms a a set that is dense in H⊥i (q, p, c) and it is countable. Using diagonalization

we can define a function W (·)(a−i) : [0, b] → Fi with the property that on each

interval in [0, b] the function is surjective. So for each value of a−i, W (·)(a−i) is a

function in the H⊥i (q, p, c), and over any interval O in [0, b], W (O)(a−i) is a total set

of H⊥i (q, p, c). For δ > 0 let

qδ(ai, a−i) = q(ai, a−i) + δ

(
∂pi(ai, a−i)

∂ai

)−1

W (ai)(a−i).

2See theorem 3.6-4 of Kreyszig (1978). A convenient example of a total set is the polynomials
with rational coefficients.
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By continuity of the inner product (and norm), for each ε > 0 there is some δ s.t.∥∥hi(ai, ·; qδ, p, c)− hi(ai, ·; q, p, c)∥∥ < ε. Moreover, since q is in the interior of (0, 1) for

small enough δ, qδ is still in [0, 1]. But we assert that the orthogonal complement

of Hi(q
δ, p, c) is empty. This conclusion implies (by way of part (ii) of this theorem)

that there are no densities with supports contained in [0, b−i] that solve the condition

in Theorem 2 with qδ and these primitives. To prove this assertion we now show that

there are no functions in L2 satisfying

〈
h−i(ai, ·; qδ, p, c) | f

〉
= 0

for each ai in any interval. We focus on the conditions that have to hold for an

arbitrary interval O of values of ai.

By linearity we have

〈
hi(ai, ·; qδ, p, c) | f

〉
=∫ b−i

0

[
∂pi(ai, aj)

∂ai
q(ai, aj)− c′i(ai)

]
f(t)dt+ δ

∫ 1

0

W (ai)(a−i)f(t)dt.

There are two cases: either an arbitrary function f is in H⊥i (q, p, c) or it is not. In

the former case we know that the first term of the right hand side is 0 but the second

term is not always 0–as f ∈ H⊥i (q, p, c) implies that f /∈ H⊥i (q, p, c)⊥ and thus since

Fi is a total set any density (thus not the 0 function), f cannot be orthogonal to every

function in Fi. And thus since W (·)(a−i) is surjective on each interval O, the second

term of the right hand side is strictly positive for some value of ai in each interval

(and the first term is non negative). This means that f is not in H⊥i (qδ, p, c). In the

latter case, the first term of the right hand side is not always 0 (otherwise f would

have been a solution with q). Moreover, f /∈ H⊥i (q, p, c) implies that f ∈ Hi(q, p, c)

and is orthogonal to every function in Fi so the second term is 0, so again f is not in

H⊥i (qδ, p, c).

(b) The result follows from the linearity of orthogonal compliments and the fact

that if fi and f ′i are non negative and integrate to 1, then any convex combination of

these functions also satisfies these conditions.
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3.2.1 Example

From our result we observe that there are a substantial number of constrains regarding

the relationship between an equilibrium probability of bargaining failure, the cost

function, the technology of disagreement payoffs, and the mixing strategies. Starting

with the equation from Theorem 2, we have∫
S2

∂p

∂a1

(a1, t)q(a1, t)f2(t)dt = c, (2)

whenever the mixed strategy can be represented by a smooth density and costs are

linear. We may use this equation answer several types of questions. For example,

what must q and pi be like in an equilibrium where player j mixes uniformly over an

interval of investments? Or, what p and f would support a particular equilibrium

probability of bargaining failure for particular levels of investment?

To illustrate how one might conduct this type of analysis, we see what types

of technology and densities could support a mechanism with an “upper-triangle”

probability of disagreement, where bargaining failure occurs with probability 1 if the

sum of investments exceeds 1 and zero otherwise. Consider the case where types are

drawn from densities over an interval of investments [0, b] with b > 2. In this example,

b is the supremum of the un-dominated arming strategies. Recall an investment level

that costs more than the value of the outside option obtained when the other player

invests 0 is dominated. With this q and a smooth mixture with support on all un-

dominated strategies we can then rewrite (2) such that∫ b

1−a

∂p

∂a1

(a1, t)f2(t)dt = c (3)

for all a in the support of the mixed strategy. Next observe that if ∂p
∂a1

(a1, t)f2(t)dt =
c

(b−1+a)
, then (3) will hold.3 Thus one possible density is given by

f2(t) = (
∂p

∂a1

(a1, t))
−1 c

(b− 1 + a)
.

3Other representations of f2 are feasible.
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Figure 1: Example of an upper triangle equilibrium q(a1, a2).

But obviously f2 cannot depend on a1 implying that our p for this q must satisfy

∂

∂a1

[ ∂p
∂a1

(a1, t)(b− 1 + a1)
]

= 0,

The product rule yields

∂2p

∂a2
1

(a1, t)(b− 1 + a1) +
∂p

∂a1

= 0, for all t, a1. (4)

This last equation is a partial differential equation in a1 with a family of solutions

p(a, t) = g(t) + h(t) ln(b− 1 + a1). (5)

To continue with our example, but account for this constraint, let

g(t) = α, h(t) = β(b+ 1− a1) (6)

giving

p(a1, t) = α + β(b+ 1− a1) ln(b− 1 + a1) (7)

∂p

∂a1

(a1, t) =
β(1 + b− t)
b− 1 + a1

. (8)
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Given this function, f2 integrates to one if

β = k ln(1 + b)

and thus we have a candidate solution,

f2(t) =
1

ln(b+ 1)(1 + b− t)
. (9)

Assuming a symmetric equilibrium, we can write down the probability of bargaining

failure as

1−
∫ 1

0

∫ 0

1−j

1

ln(b+ 1)(b− i+ 1)

1

ln(b+ 1)(b− j + 1)
didj, (10)

with the closed form solution

1− 1

ln(b+ 1)2
[Li2(

b+ 1

2b+ 1
)− Li2(

b

2b+ 1
)

+ ln(b) ln(
b+ 1

2b+ 1
)− ln(

b

2b+ 1
) ln(b+ 1)],

where Li2(z) =
∫ 0

z
ln(1−t)

t
dt is the dilogarithm. Figure (2) presents graphically the

probability of bargaining failure as a function of the upper bound of the support (b).4

Similar exercises can be done by assuming a particular distribution of actions or

a particular technology leading to disagreement payoffs as a function of investment.

4 Conclusion

In many applied contexts the choice of bargaining institutions may also influence ac-

tions that the agents take in order to influence their outside options. For example

when bargaining failure is likely, an agent has a stronger incentive to invest in making

her outside option better, and this investment in turn can make the outside option

more attractive –and, thus, influence the incentives while bargaining. As this sim-

4We should point out the while the marginal cost c does not appear in the formula for the
probability of failure, it implicetely appears as the dominance bound b depends on the cost c.
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Figure 2: Probability of bargaining failure as a function of the upper bound of support
(b).

ple statement suggests, equilibrium investment decisions and equilibrium bargaining

behavior are linked. In contrast, much of the literature applying bargaining theory

to topics like negotiating in the shadow of war posits an exogenous distribution over

types. Here, we seek to uncover constraints on the types of lotteries over types and

expectations over equilibrium play that are consistent with equilibrium play to a

game in which the investments are endogenous. The paper focuses on problems in

which two players can each make investment decisions which are hidden actions and

the outside option of each player is assumed to depend on the investments of both

players.

Using the envelope theorem to reach a convenient representation of any equilib-

rium payoffs as a function of investments, and the fact that if players randomize over

investment levels in equilibrium they must be indifferent between these decisions, we

obtain a system of equations that are necessary for equilibrium play. The system

relates features that we treat as exogenous, like the technology relating investments

to outside values and the cost function for investment, to features that we treat as
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endogenous, like lotteries over investments and behavior in the bargaining game. For

the case of a separable outside value technology–where players have interdependent

values, but investments are both weak compliments and weak substitutes–the prob-

ability of war conditional on a level of investment is the same in all equilibria to

all games (holding fixed the exogenous features). This result is robust in the sense

that small departures from separability result in small departures from the constant

conditional probability of war result.

The structure of the relationship between the exogenous and endogenous features

can be interpreted in a convenient manner. Equilibrium lotteries over investment

must solve a continuum of inner product problems in a functional space. The struc-

ture of this type of problem allows us to conceive of ways to determine what types

of lotteries are needed to support a particular type of equilibrium mapping from in-

vestments levels into bargaining failure for any particular set of exogenous features.

Alternatively, we can evaluate what types of exogenous features must hold to support

a particular description of endogenous features.

We hope the results here will cause applied theorists to give more thought to the

relationships between beliefs about types and equilibrium play. Going forward, the

structure of the relationships between equilibrium investments and bargaining behav-

ior might be incorporated into design problems by considering a Bayesian mechanism

design problem in which the lotteries over type are no longer exogenous but instead

constrained by the equalities characterized here. A second avenue of closely related

work pertains to sufficiency. We have focused only on necessary conditions that stem

from incentive compatibility and optimality of investment decisions and in some re-

sults we have focused on necessary conditions for equilibria in which investments have

densities. Equilibria of this form, of course need not exist (as is proven in the last

corollary). Sufficiency results that provide much leverage may, however, require a bit

more structure than we have currently imposed, but in general this direction has yet

to be pursued.
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