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Abstract

We provide a general framework for the analysis of dynamics of institutional change (e.g., democra-

tization, extension of political rights or repression), and how this dynamics interacts with (anticipated

and unanticipated) changes in the distribution of political power and changes in economic structure (e.g.,

social mobility or other changes affecting individuals’preferences over different types of economic policies

and allocations). We focus on the Markov voting equilibria, which require that economic and political

changes should take place if there exists a subset of players with the power to implement such changes

and who will obtain higher expected continuation utility by doing so. Under the assumption that differ-

ent economic and social institutions/policies as well as individual types can be ordered, and preferences

and the distribution of political power satisfy “single crossing” condition, we prove the existence of

pure-strategy equilibrium and provide conditions for its uniqueness. Despite its generality, we show that

the framework yields a number of comparative static results. For example, we show that if there is a

change from one environment to another (with different economic payoffs and distribution of political

power) but the two environments coincide up to a certain state s′ and before the change the steady state

of equilibrium was that some state x ≤ s′, then the new steady state that emerges after the change in

environment can be no smaller than x. We also show how this framework can be applied to the study of

the dynamics of political rights and repression, and derive a range of additional comparative statics for

this more specific application.
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1 Introduction

An idea going back at least to De Tocqueville (1835) relates the emergence of a stable demo-

cratic system to an economic structure with relatively high rates of social mobility and limited

inequality.1 When different groups in society have similar preferences and also expect their

preferences to change in the future, it is intuitive to presume that each will be more willing to

recognize the political rights of others and less willing to repress them or exclude them from

political decision-making. The reasoning in this case is that an individual would not like to

support institutions that restrict the political or social rights of another social group because

she expects that she may transition to that social group at some point in the near future.2 In

contrast to this intuition, dynamic political economy models also tend to imply that anticipa-

tion of future changes in economic or political conditions can often trigger conflict and even

undermine democracy (Acemoglu and Robinson, 2000, 2001). This is because the expectation

of a shift in political power tomorrow often motivates costly actions to undermine this shift or

repress or disenfranchise the groups that would be its beneficiaries. We next illustrate how both

of these possibilities can arise in the context of a simple example.

Example 1 Consider a society consisting of two groups, the poor and the middle class. Suppose

that currently the middle class hold political power and implement their preferred policy, giving

them per period u∗m, but with probability q, power may shift to the poor (for example because

they will be able to solve the collective action problem and exercise power commensurate with

their numbers). Suppose that in this case political power stays with the poor forever and they

will implement their preferred policy which will give per period utility u′m < u∗m to the middle

class. The middle class can prevent this outcome by using repression against the poor, which

essentially takes away their political rights and prevents the power ever shifting to them. Then

it is straightforward to see that if such repression is not very costly for the middle class, they

would choose such repression. The underlying reason for repression is the one discussed in the

previous paragraph: the middle class holds political power today but anticipates (and fears)

1This is also consistent with Barrington Moore (1966) and Lipset (1960). See also Erikson and Goldthorpe

(1992).
2This might, for example, contribute to an explanation for why members of the landed aristocracy have

typically been less likely to support the extension of political rights the poorer segments of society than have

merchants and professional classes.
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change in the balance of power in the future, away from itself towards the poor.

Now let us augment this model with social mobility. In particular, suppose that each middle-

class agent also expects to become poor with some probability q′. To simplify this example,

suppose that the repression decision is irreversible. Then it is again evident that if q′ is suffi ciently

high, the middle class would not favor repression even if they expect political power to shift away

from themselves towards the poor, because they themselves expect to be in the poor’s shoes in

the future.

A systematic study of both intuitions discussed in the first paragraph and illustrated in

Example 1 requires a dynamic and stochastic framework where individuals make political de-

cisions anticipating how current decisions will impact the future distribution of political power

and future choices. Such a framework would be useful not only for an in-depth analysis of the

relationship between social mobility, changes in the balance of political power and repression (or

more generally, the willingness of different individuals to recognize the political rights of others,

and the emergence of democracy) but also to understand the dynamics of political regimes in

general and the stability of democracy in particular. In fact, our above description already re-

veals that dynamic considerations complicate the reasoning isolated in Example 1. For example,

it may well be that if there is also a third social group, the rich, the middle class may refrain

from repressing the poor, because this is a “slippery slope”: once repression is used against the

poor, the middle class itself becomes weakened against the rich, which may then use repression

against the middle class.3 The same considerations are relevant in thinking about social mo-

bility, since such mobility not only changes the economic interests of the individuals who have

political power today but the identity of who will have political power tomorrow and thus how

this power will be exercised. As a result, we will see that, in contrast to the intuition above,

social mobility might also increase incentives for repression under certain circumstances.

In this paper, we develop and systematically analyze such a framework, and then apply it

to the study of social mobility, changes in the balance of political power and repression. The

first part of the paper introduces this framework and provides general characterization and

comparative static results. In particular, we consider a society consisting of i = 1, 2, ..., n types

3Such “slippery slope”arguments are advanced in the literature by Schauer (1985), and have been formalized

by Acemoglu, Egorov and Sonin (2008, 2010) in different contexts. See also Schwarz and Sonin (2008) and

Hirschleifer, Boldrin, and Levine (2009).
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of individuals and s = 1, 2, ...,m states, which represent both different economic arrangements,

with varying payoffs for different types of individuals, and different political arrangements and

institutional choices. Stochastic shocks may both change preferences and the distribution of

political power (e.g., by increasing the number of people of a certain type or by resolving their

collective action problem) and potentially shuffl e individuals across different types in a way that

corresponds to social mobility in society. Individuals care about the expected discounted sum

of their utility, and may also suffer some costs when there are political transitions. We impose

“single crossing” in economic preferences and political power. In particular, we assume that

the types of individuals and states are “ordered,”and assume that higher-indexed individuals

relatively prefer higher-indexed states and also tend to have greater political power in such states.

We then define a notion of Markov voting equilibrium, capturing two natural requirements of

equilibria in this environment: (1) that changes in states should take place if there exists a

subset of players with the power to implement them and will obtain higher continuation utility

(along the equilibrium path) by doing so; (2) that strategies and continuation utilities should

only depend on payoff-relevant variables and states. Under these assumptions, we establish the

existence of pure strategy equilibria. Furthermore, we show that the stochastic path of states in

any Markov voting equilibrium ultimately converges to a steady state– i.e., to a state that does

not induce further changes once reached (Theorems 1 and 3). Although Markov voting equilibria

are not necessarily unique, we provide suffi cient conditions that ensure uniqueness (Theorems 2

and 4). We also establish a close correspondence between these Markov voting equilibria and

the pure-strategy Markov perfect equilibria of the dynamic game described above (Theorem 5).

Despite the generality of the framework described here, we also show that some strong

comparative static results always hold. Most notably, we establish the following results. First,

suppose that when the environment changes in anticipated or unanticipated manner (either

because preferences or political power changes or because there is social mobility) but this does

not change preferences or the allocation of political power in any of the states s = 1, ...s′, but

potentially changes them in states s = s′ + 1, ...,m. The result is that if the steady state of

equilibrium dynamics described above, x, was at a state that did not experience change (i.e.,

x ≤ s′), then the new steady state emerging after the change in environment can be no smaller

than this steady state (Theorem 6). Intuitively, a transition to any of the smaller states, s ≤ x,

could have been chosen, but was not, before the change. Now, given that preferences and political
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power did not change for these states, they have not become more attractive. In contrast, some

of the higher-ranked states may have become more attractive, thus inducing a transition to a

higher state. In fact, perhaps somewhat surprisingly, transition to a state s ≥ s′ + 1 can take

place even if all states s = s′ + 1, ...,m become less attractive for all agents in society. An

interesting and novel implication of this result is that in some environments, there may exist

critical states such that if they are reached before certain major shocks or changes take place,

then there will be no turning back. One application would be to a situation in which this critical

state can be interpreted as “stable democracy”(see Corollary 1). Then, if it is reached before

some major shocks take place, it will never collapse (though the entire democratic system might

have collapsed if such a shock arrived before stable democracy was reached).

Second, our framework also implies a related result on dynamic equilibrium trajectories

(Theorem 7). Consider a similar change to that discussed in the previous paragraph, leaving

preferences and the distribution of the power the same in states s = 1, ..., s′. However, suppose

that this change arrives before the steady state x ≤ s′ is reached. The result is that when all

agents in society have discount factor suffi ciently small (smaller than some threshold β0), then

the direction of changes states will remain the same as before (i.e., if there were transitions to-

wards higher states before, this will continue, and vice versa). Intuitively, this happens because,

with suffi ciently small discount factor, all agents care about the payoffs in the next period most,

and by assumption, these payoffs have not changed (though payoffs of states to the right of s′

may have changed very significantly). This result again has a range of important and novel

implications. Consider an application to a model of democratization, where those currently

holding power were considering extending the franchise to some of the poorer segments of soci-

ety cards excluded from voting rights. The shock may now correspond to a greater likelihood

of more radical policies or even revolution in the future if enfranchisement takes place. This

result states that such a change will not deter enfranchisement provided that agents are not very

forward-looking, but may do so if they are suffi ciently forward-looking (have very high discount

factors).

Third, suppose that a change in environment makes extreme states “sticky,” for example,

high-indexed individuals, which prefer the highest-indexed states, increase their political pow-

ers (but preferences remain unchanged). Our next comparative static shows that if the shock

happened when the society was away from these extreme states (in this example, in the suffi -
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ciently low-indexed state), then the equilibrium trajectory is not affected (Theorem 8). This

once again has interesting implications. For example, suppose that in a democracy the poor

become suffi ciently more powerful that any move away from democracy becomes impossible if

the poor oppose it. Then our result implies that this change will only impact the equilibrium if

we were currently in democracy and considering a move away from it. If the equilibrium, before

the change, involved a transition from limited democracy to a more democratic state, then this

change in environment does not affect the equilibrium path (Corollary 2).

It is notable that the comparative static results mentioned in the previous three paragraphs

hold despite the generality of the framework we consider. This highlights that they do indeed

reflect quite powerful forces in this class of dynamic political economy models (with single-

crossing properties).

The second part of the paper applies the general framework and these ideas to the study of

the relationship between social mobility, changes in the balance of power and repression. The

model we adopt for this analysis is summarized in the next example.

Example 2 We now give a brief overview of our model of repression, which is described in

greater detail in Section 4. The society consists of N = {1, 2, ..., n} types of individuals (with

individuals of each type sharing the same economic interests and preferences). We represent

these by

ui = − (p− bi)2 − cost of repression, (1)

where bi is the political bliss point of type i agents, and the cost of repression represents the costs

that agents encounter due to repressive activities or other choices that restrict the political rights

of some subgroup of agents. Let us order types such that bi’s are an increasing sequence (and

we assume it to be strictly increasing). Social mobility is captured by allowing agents’ types to

change over time. The number of agents of type i is denoted by γi, and this is allowed to change

over time as well. We model repression by allowing those who hold political power at the moment

from banning the political participation of some subset of types. Policies and repression decisions

are voted over, and are decided by a majority (the results can also be extended to supermajority

rules). In particular, letting αi be an indicator for whether a group has political rights (thus

αi = 0 stands for that group being repressed), a policy can be implemented if it is supported by
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collection of groups X such that

∑
i∈X

αiγi >
∑

i∈N\X
αiγi. (2)

After showing that all of the general results of our framework can be applied in the context

of the model described in the previous example (and thus to the study of the interplay between

social mobility, changes in the balance of power and repression), we derive further results that

shed light on the questions raised above, including why both of the perspectives about the

effects of anticipated future changes on democracy and distribution of political rights may be

true, but they both require further refinement. More specifically, we establish the following

results. First, we clarify the conditions under which social mobility, captured by shuffl ing of

individuals across different economic positions and preferences, reduces repression and makes

democracy more stable. In particular, Proposition 2 shows that if currently powerful groups are

suffi ciently forward-looking, expect to change their economic interests due to social mobility,

and median preferences are close to mean preferences, then starting with any distribution of

political rights, society will transition to full democracy. This is because full democracy is the

best guarantee that future policies will not be too far from the preferences of individuals that

are currently powerful, regardless of how their preferences change. This result thus provides a

simple formalization of the de Tocqueville hypothesis outlined in the first paragraph.

Second, and in contrast to the first, we also show that anticipation of social mobility can

be a force towards greater repression. This happens when the current median voter expects

social mobility to change its status in one direction (in expectation) and may wish to change

the identity of future median voters (Proposition 3). For example, a median voter who expects

to become richer may wish to increase repression so as to shift future median voters to the right

and have more pro-rich policies in the future (which would not otherwise be chosen by a median

voter in the same status as the current one).

Third, we also provide a partial characterization of which groups benefit from the shift in

policies due to social mobility. In particular, we show that the political response to social

mobility tends to shift policies in favor of those who are likely to move up due to social mobility

and also make those that are not part of this mobility process worse off (Proposition 4).

Fourth, we also establish that, in line with the intuition of the first paragraph, anticipated

changes in environments that will alter the distribution of political power in society will indeed
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induce more repression and tend to undermine democratic institutions. In particular, Proposi-

tion 5 shows that, with suffi ciently forward-looking agents, the anticipation that political power

will shift at some point in the future is suffi cient to induce repression. Moreover, both lower

costs of repression and a higher likelihood of future changes in the balance of political power

make such repression more likely.

Fifth, we complement the previous result by showing that early revelation of news about the

realization of the distribution of future political power tends to reduce repression (Proposition

1). Intuitively, part of the reason why repression takes place is to prevent the political adverse

effects of changes in the distribution of political power. Once this change is realized, there is

less need for such repression.

Finally, we identify a new source of strategic complementarity in repression: an increase in

the cost of repression of a group tends to discourage repression by other groups (Proposition 7).

The reason for this is that repression is partly driven by the fear that other groups will come

to power and will engage in repression to preserve their newly-gained political position. When

repression becomes more costly for them, this fear is diminished, and the reason for the initial

repression becomes less strong. This result is more broadly interesting, because it also provides

a perspective on why repression differs markedly across societies. For example, Russia before the

Bolshevik Revolution repressed leftist views, and after the Bolshevik Revolution systematically

repressed rightist and centrist views, while the extent of repression of either extreme has been

more limited in the United Kingdom. Such differences are often treated to differences in “political

culture”. Proposition 7 suggests that small differences in economic interests or political costs of

repression (which were of course quite different between Russia and the United Kingdom) can

lead to significantly different repression outcomes: in one of two similar societies, very different

parts of the political spectrum may be repressed at different points in time, while the experiences

much more limited repression of similar positions because of the strategic complementarities in

the incentives to repress of different groups.

Our paper is related to a large political economy literature. First, our previous work, in

particular Acemoglu, Egorov and Sonin (2011), takes one step in this direction by introducing a

model for the analysis of the dynamics and stability of different political rules and constitutions.

However, that approach not only heavily relies on deterministic and stationary environments

(thus ruling out both social mobility and anticipated changes in political power) but also focuses
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on environments in which the discount factor is suffi ciently close to 1 that all agents just care

about the payoff from a stable state (that will emerge and persists) if such a state exists. Here,

in contrast, it is crucial that political change and choices are motivated by potentially short-term

gains.4

Second, a diverse range of papers in dynamic political economy and in dynamics of clubs

emerge as special cases of our paper. Among these, Roberts (1999) deserves special mention

as important precursors of our analysis.5 Roberts studies a dynamic model of club formation

in which current members of the club vote about whether to admit new members and whether

to contract the club. Roberts also makes single-crossing type assumptions and focuses on non-

stochastic environments and majoritarian voting (see also Barberà, Maschler, and Shalev, 2001,

for a related setup). Both our framework and characterization results are more general, not

only because they incorporate stochastic elements but also because we provide conditions for

uniqueness, convergence to steady states and general comparative static results. Furthermore,

in the context of our leading application, we isolate the different effects of social mobility and

changes in future political power, which do not have equivalents in Roberts. In addition, Gomes

and Jehiel’s (2005) paper, which studies dynamics in a related environment with side transfers,

is also noteworthy. This paper, however, does not include stochastic elements or similar general

characterization results either.6 Strulovici (2010) studies a voting model with stochastic arrival

of new information. In that paper, the focus is on information leading to ineffi cient dynamics,

and changes in political institutions or voting rules are not part of the model.

Third, our motivation is also related to the literature on political transitions. Acemoglu

and Robinson (2000a, 2001) considered environments in which institutional change is partly

4 In Acemoglu, Egorov and Sonin (2010), we study political selection and government formation in a population

with heterogeneous abilities and allow stochastic changes in the competencies of politicians. Nevertheless, this is

done under two assumptions, which significantly simplify the analysis and make it inapplicable to the general sets

of issues we are interested in here: stochastic shocks are assumed to be very infrequent and the discount factor is

again taken to be large (close to 1).
5Other important contributions here include Barberà and Jackson (2004), Burkart and Wallner (2000), Jehiel

and Scotchmer (2001), Alesina, Angeloni, and Etro (2005), Bordignon and Brusco (2003), Lizzeri and Persico

(2004), and Lagunoff (2006).
6We also differ from Roberts (1999) as we look at (Markov perfect) equilibria of a fully specified dynamic game,

while Roberts’s analysis imposes that, under the assumption of majoritarian voting, at each stage the choices of

the “median voter”will be implemented.
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motivated by a desire to reallocate political power in the future to match the current distribution

of power. Acemoglu and Robinson’s analysis is simplified by focusing on a society consisting

of two social groups (and in Acemoglu and Robinson, 2006, with three social groups). Social

mobility and issues related to how current changes pave the way for future changes are not

studied.

Fourth, in Acemoglu and Robinson (2001), Fearon (2005), Powell (2005), and Acemoglu,

Ticchi and Vindigni (2010) anticipation of future changes in political power leads to ineffi cient

policies, civil war or collapse of democracy. There is a growing literature that focuses on situa-

tions where decisions of the current policy makers affect the future allocation of political power.

Some of these issues are discussed in Besley and Coate (1998). In Acemoglu and Robinson

(2000a), the current elite decides whether to extend the franchise to change the future distri-

bution of political power as a commitment to future policies (and thus potentially staving off

costly social unrest or political revolution). In Bourguignon and Verdier (2000), the choice of

educational policy today affects political participation in the future. This might result in an

inferior growth path: the elite deny the poor majority a proper education as it fears their in-

creased political participation in the future. In Dolmas and Huffman (2004), immigration policy

plays a similar role. Glaeser and Shleifer (2005) consider a politician who chooses policy to trim

the electorate to increase his re-election prospects. Wright (1986), Piketty (1995) and Benabou

and Ok (2001) discuss the relationship between social mobility and redistribution. For exam-

ple, Benabou and Ok provide an explanation for why a poor median voter may not necessarily

support high redistribution (because he expects to suffer from redistribution in the next period

in case he becomes richer). None of these papers studied the general theoretical issues that we

focus on here.

Fifth, there is a small literature on strategic use of repression, which includes Acemoglu

and Robinson (2000b), Gregory, Schroeder, and Sonin (2010) and Wolitzky (2011). In Wolitzky

(2011), different political positions (rather than different types of individuals) are repressed

in order to shift the political equilibrium in the context of a two-period model of political

economy. In Acemoglu and Robinson (2000b), repression arises because political concessions

can be interpreted as a sign of weakness. Issues related to social mobility, changes in the future

distribution of political power and dynamics of institutions do not arise in these models.
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The rest of the paper is organized as follows. In Section 2, we formulate a general framework

of political economy with institutional changes and shocks: the environment, assumptions and

definitions we will use throughout the paper, and the concept of Markov Voting Equilibirum.

Section 3 contains the analysis of Markov Voting Equilibria. We start with the stationary case

(without shocks), then extend the analysis to the general case where shocks are possible, and then

compare the concepts of Markov Voting Equilibrium to Markov Perfect Equilibrium in a properly

defined dynamic game. We establish several comparative statics results that hold even at this

level of generality; this allows us to study the society’s reactions to shocks in applied models.

Section 4 applies the general model to issues of social mobility and dynamic (dis)enfranchisement.

Section 5 discusses possible extensions and limitations of the general framework. Section 6

concludes.

2 General Framework

Time is discrete and infinite, indexed by t ≥ 1. The society consists of n agents, N = {1, . . . , n}.

The set of agents is ordered, and the order reflects the initial distribution of some variable of

interest: agents with lower numbers may be the elite (and pro-authoritarian rule), while those

with higher numbers may be workers or peasants favoring democracy; other possible scales

include rich-vs.-poor or secular-vs.-religious. In each period, the society may find itself in one of

the h environments E1, . . . , Eh; we denote the set of environments by E . The environment that

the society finds itself in encapsulates agent’s economic payoffs and political rules, which are

described below in detail. Most importantly, the transitions between environments are stochastic

and follows a Markov chain: the probability that the society which lived period t in environment

E will find itself in environment E′ equals

π
(
E,E′

)
. (3)

Naturally, ∑
E′∈E

π
(
E,E′

)
= 1.

Importantly, changes between environments are beyond the control of agents, and transitions

between them are intended to capture the stochastic processes in the world, to which the society

would respond within an environment. For example, Nature cannot abolish a constitution in
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favor of another one, nor it can depose a tyrant, but it may change the economic payoffs or

reallocate political or military power so that powerful agents in the society decide to undertake

these acts.

We want the model to capture the possibility that poor become rich and vice versa, i.e.,

that the relative order of individuals changes over time as a result of a shock. To do this, with

each shock we associate a probability distribution over permutations η ∈ Sn (symmetric group).

Namely, for any pair E,E′ ∈ E we take a probability distribution µE,E′ (η), interpreting this as

the probability that if the environment changes from E to E′, agents are reordered according

to η (so, if before the shock player i ∈ N was ranked ρ (i), after the shock he is ranked η ◦ ρ (i)

with probability µE,E′ (η)). By definition of probability distribution, for all E,E′ ∈ E ,

∑
η∈Sn

µE,E′ (η) = 1.

Let us denote the probability that an agent ranked i will become ranked j as a result of a shock

that changes E to E′ by

λE,E′ (i, j) =
∑

η∈Sn
µE,E′ (η) Iη(i)=j ;

then λE,E′ (i, ·) is a probability distribution on N for any i ∈ N . The following assumption is

assumed to hold throughout the paper.

Assumption 1 The probability distributions
{
µE,E′

}
E,E′∈E satisfy the following:

1. For any E ∈ E and any i ∈ N , λE,E (i, i) = 1 (equivalently, µE,E (id) = 1, where id ∈ Sn

is the indentity permutation).

2. For E,E′ ∈ E and any two agents i, j ∈ N such that i < j, the distribution λE,E′ (i, ·) is

(weakly) first-order stochastically dominated by λE,E′ (j, ·).

Clearly, Assumption 1 is satisfied if λE,E′ (i, i) ≡ 1, i.e., if there is no reshuffl ing ever. More

generally, part 1 requires that reshuffl ing cannot happen when there is no shock, while part 2

means that there is no reversal on average: a poor person is more likely to stay poor than a rich

person is to become poor. Both parts are very natural.

Most of the time we will make the following assumption on the probabilities of transitions

between environments:
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Assumption 2 If 1 ≤ x < y ≤ h, then

π (Ey, Ex) = 0. (4)

In other words, Assumption 2 stipulates only a finite number of shocks.7 Moreover, it assumes

that environments are numbered so that only transitions to higher-numbered environments are

possible; this, however, is without loss of generality.

Fix an environment E. In this environment, there is a finite set of states S = SE = {1, . . . ,m}

(the number of states is m = mE). By states we mean political or social arrangements, dis-

tribution of political power or of means of production, over which the society, in principle, has

control, at least if it gets support of suffi ciently many powerful agents. The set of states may

be the same in all environments E ∈ E , or, possibly, shocks may make new states available or

change the set of states altogether. More importantly, the set of states is ordered : this may

be interpreted as a sequence of political arrangements which gives less and less power to the

poor and more and more power to the elite as s ∈ S increases. To each state we assign stage

payoff ui (s) = uE,i (s), which individual i gets in a period which ends at state s if the current

environment is E.

Definition 1 (Increasing Diff erences) Vector {wi (s)}s∈Bi∈A , where A,B ⊂ R, satisfies Weak

Increasing Differences condition (WID), if for any agents i, j ∈ A such that i > j and any states

x, y ∈ B such that x > y,

wi (x)− wi (y) ≥ wj (x)− wj (y) . (5)

It satisfies Strict Increasing Differences condition (SID), if for any agents i, j ∈ N ′ such that

i > j and any states x, y ∈ S′ such that x > y,

wi (x)− wi (y) > wj (x)− wj (y) . (6)

We assume that the stage payoffs, with properly ordered individuals, satisfy the WID prop-

erty.

Assumption 3 In every environment E ∈ E, the vector of utility functions, {uE,j (s)}s∈Sj∈N ,

satisfies SID property.
7Notice that Assumption 2 does not preclude the possibility that the environment returns to the state where it

was before, but requires that it happens a finite number of times. Indeed, to model the possibility of q transitions

between E1 and E2, we can define E3 = E1, E4 = E2, etc.
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In the model, payoffs {ui (s)} are assigned to combinations of environments, states and

individuals rather than endogenously determined; this is made to simplify notation and the

game. Implicitly, we think that in every state there is some economic interaction that results

in (expected) payoffs {ui (s)}. Any such interaction is permissible in our model, as long as

Assumption 3 is satisfied. Most of the results would hold if we required that only WID property

held.

Apart from stage payoffs, states are characterized by political power. We capture this by

the set of winning coalitions, Ws = WE,s. As standard, we make the following assumption:

Assumption 4 (Winning Coalitions) For environment E ∈ E and state s ∈ S, the set of

winning coalitions Ws = WE,s satisfies:

1. (monotonicity) if X ⊂ Y ⊂ N and X ∈Ws, then Y ⊂Ws;

2. (properness) if X ∈Ws, then N \X /∈Ws;

3. (decisiveness) Ws 6= ∅.

The first part of Assumption 4 states that if some coalition has the capacity to implement

(social or political) change, then a larger coalition also does. The second part ensures that if

some coalition has the capacity to implement change, then the coalition of the remaining players

(its complement) does not have one. Finally, the third part, in the light of monotonicity propery,

is equivalent to N ∈Ws, and it thus states that if all players want to implement a change, they

can do so.

Assumption 4 puts minimal and natural restrictions on the set of winning coalitions Ws in

each given state s ∈ S. We next impose a between-state (albeit still within-environment) restric-

tion on the sets of winning coalitions. We do so to capture the idea that states ranked higher

are also likely to be governed by people ranked higher. More formally, we adopt the following

definition of quasi-median voter from Acemoglu, Egorov, and Sonin (2011, forthcoming).

Definition 2 (Quasi-Median Voter) Player ranked i is a quasi-median voter (QMV) in

state s (in environment E) if for any winning coalition X ∈Ws, minX ≤ i ≤ maxX.

Equivalently, player ranked i is a QMV if for any X ∈ Ws, {j ∈ N : j < i} /∈ Ws and

{j ∈ N : j < i} /∈Ws, or if i belongs to any “connected”winning coalition (we sayX is connected
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if X contains individuals ranked from a to b for some a ≤ b. If we let Ms = ME,s denote the

ranks of QMV in state s in environment E then, by Assumption 4, Ms 6= ∅ for any s ∈ S and

E ∈ E ; moreover, the set Ms is itself connected. In many cases, the set of quasi-median voters

is a singleton, |Ms| = 1. This will hold whenever one individual is the dictator, i.e., X ∈ Ws if

and only if i ∈ X (and then Ms = {i}), but it will also be true in other remarkable cases such as

majority voting with odd number of players, or even majority voting among a subset of players.

If this holds, we would be able to prove stronger uniqueness results. An example when Ms is

not a singleton is unanimity rule, provided that there are at least two players.

The monotonicity assumption we impose is the following.

Assumption 5 (Monotone Quasi-Median Voter Property, MQMV) The sequences

{minMs}s∈S and {maxMs}s∈S are non-decreasing in S.8

Assumption 5 is mild and very intuitive; it ensures that states are ordered consistently with

agents’ power. It suggests that if a certain number of higher-ranked agents is suffi cient to

implement a change in some state, then they are enough to implement a change in an even

higher state. As we will show, it holds in a wide variety of examples. Trivially, if Ms is a

singleton in every state, it is equivalent to Ms being nondecreasing (where Ms is treated as the

single element).

While we allow the players to change their relative positions, e.g., for poor to become rich

or vice versa, we assume that it does not happen too often.

Each environment is also characterized by transition costs. We stress that all results hold

if all transition costs are zero. However, we want to be able to capture situations where only

transitions to adjacent states are possible, or other transitions are possible but quite costly, or

where all transitions involve some cost the the members of the society. Fortunately, we can

study all these cases together. To do so, we denote the cost of transition from state x to state

y (in environment E) by c (x, y) = cE (x, y) and impose the following simple assumption.

Assumption 6 The costs of transition satisfy the following assumptions:

1. For any x, y ∈ S, c (x, y) ≥ 0;

8Equivalently, the set-valued function Ms is monotone nondecreasing on S (with respect to the strong set

order); see Milgrom and Shannon (1994).
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2. For x ∈ S, c (x, x) = 0;9

3. Vector {−c (x, y)}y∈Sx∈S satisfies WID property.

Both nonnegativity (part 1) and normalization (part 2) of Assumption 6 are natural, given

the interpretation of c (x, y) as costs. Part 3 is a compact way of formulating the idea that longer

transitions are costlier than shorter ones. It does so in two ways. First, notice that it implies

the “reverse triangle inequality”: if either x < y < z or x > y > z, then

c (x, y) + c (y, z) ≤ c (x, z) .10 (7)

Reverse triangle inequality (7) implies, given nonnegativity of costs, that transitions to more

distant states are more costly than transitions to closer states, and that moving to a distant

state at once costs at least as much as the cumulative cost of a more gradual move.

Second, part (3) implies that for any y < z, the difference

c (x) ≡ c (x, z)− c (x, y) . (8)

is a decreasing function of state x. Consider this statement on the following three intervals

separately. If x ≤ y, then c (x) ≥ 0 as follows from the reverse triangle inequality (7), and c (x)

decreasing means that the longer it takes to travel from x to y, the (weakly) more costly is the

additional segment from y to z, which is natural. If y ≤ x ≤ z, then c (x) decreasing is a trivial

assumption in the light of (7), as on this interval, c (x, z) is decreasing and c (x, y) is increasing

in x. Finally, if x ≥ z, c (x) ≤ 0, and the assumption means the same as in the first case: the

greater the distance from x to z, the (weakly) more costly it is to travel the remaining segment

from z to y. In other words, part (3) is equivalent to two natural requirements: reverse triangle

inequality (7) and the requirement that transition cost is “convex”in the sense that additional

segments are more costly if the overall length of transition is larger.1112

9We could allow for c (x, x) > 0; in fact, we could reduce that to the current case by setting ũi (x) = ui (x)−

c (x, x) and c̃ (x, x) = 0; we avoid doing this as we interpret c (x, y) as the costs of transitions.
10The WID property means that for x1, x2, y1, y2 ∈ S such that x1 < x2 and y1 < y2, c (x2, y2) − c (x2, y1) ≤

c (x1, y2)−c (x1, y1). Now, for the case x < y < z we plug x1 = x, x2 = y1 = y, y2 = z, and for the case x > y > z,

we plug x2 = x, x1 = y2 = y, y1 = z and use c (y, y) = 0 to get the result.
11A broad class of cost functions for which Assumption 6 is satisfied is where cost is a convex function of

distance, i.e., if there is a (weakly) convex function c̃ (·) such that c (x, y) = c̃ (|x− y|) and c̃ (0) = 0.
12We could allow extra generality by allowing the cost to be different for different individuals, so that cE,i (x, y)
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The last part of environment characterization is the discount factor, β = βE , which we

assume to be the same for all players. We require that β ∈ [0, 1) and we assume that β is the

same for all environments. To summarize, the full description of each environment E ∈ E is

E =
(
N,S, β, {ui (s)}s∈Si∈N , {c (x, y)}x,y∈S , {Ws}s∈S

)
. (9)

In the game, each period t starts with environment Et−1 ∈ E and with state st−1 inherited

from the previous period; then Nature determines Et according to the Markov chain rule (3)

and perhaps reshuffl es players according to permutation ηt and the society decides on st. The

game starts with the initial environment E0 ∈ E and with state s0 ∈ S exogenously given. The

society may face a shock (change of the environment) and then decides which state to move to,

thereby determining state st. At the end of period t, an individual ranked i gets instantaneous

payoff

vti = uEt,i (st)− cEt (st−1, st) . (10)

Denoting the expectation at time t by Et, the expected discounted payoff of individual ranked

i by the end of period t can be written as

V t
i = Et

∑∞

k=0
βk
(
uEt+k,ηt+k◦···◦ηt+1(i) (st+k)− cEt+k (st+k−1, st+k)

)
. (11)

The following sums up the within-period timing in period t.

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. Shock which determines Et may occur: Et = E ∈ E with probability π (Et−1, E), and the

permutation of ranks ηt is chosen from µE,E′ .

3.—5. The society (collectively) decides on state st.

6. Each individual gets instantaneous payoff given by (10).

We deliberately do not describe in detail how the society makes collective decisions as this is

not required for the Markov Voting Equilibrium concept; we introduce the detailed steps when

we study the noncooperative foundations of MVE.

could be different for different i. Our results may be proved under the following additional assumption: for

any s ∈ S, vectors {−ci (s, x)}s∈Si∈N and {−ci (x, s)}s∈Si∈N satisfy WID property. In words, this would suggest that

transitions between higher states is less costly for higher-ranked agents, and transitions between lower states is

less costly for lower-ranked ones.
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The equilibria will be characterized by a family of transition mappings φ = {φE : S → S}E∈E .

We let φkE be kth iteration of φE , and we denote throughout φ
0
E (s) = s for any s ∈ S. With

each family of transition mappings we can associate continuation payoffs V φ
E,i (s) for individual

ranked i if the state is s, which are recursively given by

V φ
E,i (s) = uE,i (s) + βE

∑
E′∈E

∑
j∈N

π
(
E,E′

)
λE,E′ (i, j)

(
−cE′ (s, φE′ (s)) + V φ

E′,j (φE′ (s))
)
. (12)

(as 0 < βE < 1, the values V φ
E,i (s) are uniquely defined by (12)). We can incorporate the cost

of transition from x to s:

V φ
E,i (s | x) = V φ

E,i (s)− cE (x, s) . (13)

Definition 3 (Markov Voting Equilibrium, MVE) A set of transition mappings φ =

{φE : S → S}E∈E is a Markov Voting Equilibrium if the two properties hold:

1. (core) for any environment E ∈ E and for any states x, y ∈ S,{
i ∈ N : V φ

E,i (y | x) > V φ
E,i (φE (x) | x)

}
/∈WE,x. (14)

2. (persistence) for any environment E ∈ E and for any state x ∈ S,{
i ∈ N : V φ

E,i (φE (x))− cE (x, φE (x)) ≥ V φ
E,i (x)

}
∈WE,x. (15)

Property 1 is satisfied if no alternative y 6= φ (x) is supported by a winning coalition in x

over φ (x) prescribed by the transition mapping φE . This is analogous to a “core” property:

no alternative should be both preferred to the proposed transition by some coalition of players

and at the same time enforceable by this coalition. Property 2 requires that it takes a winning

coalition to move from any state to some alternative. This requirement singles out the status

quo if there is no alternative which some winning coalition would prefer. To put it another way,

it takes a winning coalition to move away from a status quo. Both properties will be required

for Markov Perfect Equilibria of noncooperative game that we study below.

Throughout the paper, we focus on monotone MVE, i.e., MVE with monotone transition

mappings for each E ∈ E . (Theorem 9 states suffi cient conditions for when all MVEs are

monotone, and Example 7 shows that a nonmonotone MVE may exist if these conditions fail.)

17



3 Analysis

In this section, we analyze the structure of equilibria and a general framework introduced in

Section 2. We first (Subsection 3.1) prove existence of monotone MVE in a stationary (deter-

ministic) environment. We then (Subsection 3.2) extend these results to situations in which

there are stochastic shocks and non-stationary elements. In Subsection 3.3, we study the rela-

tion between MVE and Markov Perfect Equilibria (MPE) of a dynamic game representing the

framework of Section 2. We then derive a number of comparative static results for the general

model in Subsection 3.4. After that, in Subsection 3.5, we formulate the (simple and relatively

mild) conditions under which all MVE are monotone. This justifies our focus on monotone

MVE in the first place. At the end of this section, in Subsection 3.6, we show how this paper

generalizes Roberts (1999) on voting in clubs, which would suggest that this framework may be

useful for club theory with dynamic collective decision-making and stochastic changes in power

and/or preferences.

3.1 Stationary environment

We first study the case of only one environment (|E| = 1); this will form the induction base later.

For this part, we drop the index for the environment.and thus the only environment persists.

For any mapping φ : S → S, the continuation utility of player i after a transition to s has

taken place (and the transition cost c (·, s), if any, has been deducted) is given by

V φ
i (s) = ui (s) +

∑∞

k=1
βk
(
ui

(
φk (s)

)
− c

(
φk−1 (s) , φk (s)

))
. (16)

The continuation utility that takes into account the cost of transition to state s from x is

V φ
i (s | x) = V φ

i (s)− c (x, s) . (17)

We start our analysis with some preliminary lemmas which we think are of independent

interest. The next lemma emphasizes the critical role of quasi-median voters (QMV) in our

theory.

Lemma 1 Suppose that vector {wi (s)} satisfies Weak Increasing Differences property for S′ ⊂

S. Take x, y ∈ S′, s ∈ S and i ∈ N and let

P = {i ∈ N : wi (y) > wi (x)} .
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Then P ∈Ws if and only if Ms ⊂ P . A similar statement is true for relations ≥, <, ≤.

Lemma 1 is an immediate consequence of WID property. If wi (y) > wi (x) for members of

Ws, then this holds for all i ≤ maxMs if y < x and for all i ≥ minMs if y > x. In either case,

this holds for members of some winning coalition. The “only if” part also follows from WID

property: it implies that wi (y) > wi (x) must hold for a connected coalition, and therefore it

holds for all members of Ms by the Definition 2 of quasi-median voter.

For each s ∈ S, let us introduce the binary relation >s on the set of n-dimensional vectors:

w1 >s w
2 ⇔

{
i ∈ N : w1

i > w1
2

}
∈Ws,

and let us introduce notation ≥s in a similar way. Lemma 1 now implies that if a vector {wi (x)}

satisfies WID, then for any s ∈ S, the relations >s and ≥s are transitive on {w· (x)}x∈S .

The next result shows that if φ is monotone, then continuation utilities
{
V φ
i (s)

}s∈S
i∈N

and{
V φ
i (s | x)

}s∈S
i∈N

satisfy SID property, provided that Assumption 3 and Assumption 6 are satis-

fied.

Lemma 2 For a mapping φ : S → S, vectors
{
V φ
i (s)

}s∈S
i∈N

and
{
V φ
i (s | x)

}s∈S
i∈N

(for any fixed

x), given by (16) and (17), respectively, satisfy WID, if at least one of the two properties hold:

1. φ is monotone;

2. for all x ∈ S, |φ (x)− x| ≤ 1.

Moreover, if the utilities satisfied SID, the same is true for the continuation utilities.

This result is trivial but critical for what follows. Part 1 will allow us to establish that

continuation utilities are monotone. Part 2 is helpful in studying the properties of one-stage

transitions.

The next Lemma is of great separate interest. It says that if a monotone mapping is not

MVE because the ‘core’property (1) of Definition 3 is violated, then there must exist a monotone

deviation (i.e., a deviation such that the resulting mapping is also monotone).

Lemma 3 (Monotone Deviation Principle) Suppose that mapping φ : S → S is monotone,

but property 1 of the Definition of MVE is violated, i.e., for some x, y ∈ S,

V φ (y)− c (x, y) >x V
φ (φ (x))− c (x, φ (x)) . (18)
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Then one can pick x, y ∈ S such that (18) holds and the mapping φ′ : S → S given by

φ′ (s) =

 φ (s) if s 6= x

y if s = x
(19)

is monotone.

Monotone Deviation Principle suggests that if φ is monotone but not a MVE because the

‘core’property is violated, then there is a “deviation”which preserves monotonicity of mapping.

This result is extremely helpful: to show that some φ is a MVE, one has to consider only

(relatively few) monotone deviations. Throughout the proofs, the result of Lemma 3 will be

heavily used. The idea of proof is to take the “shortest” deviation, i.e., a pair (x, y) with

minimal |y − φ (x)| such that (18) holds. Without loss of generality, y > φ (x). Since φ is

monotone and φ′, given by (19), is not, there must be some z < x such that y < φ (z) ≤ φ (x);

take the minimal of such z. A deviation at z from φ (z) to y is monotone, and by assertion must

hurt at least one QMV at z, and thus by Assumption 3 it would hurt individual i = maxMx

as z < x. If so, this individual i should benefit not only from deviation from φ (x) to y at

state x, but also from φ (x) to φ (z). Now, φ (z) ≤ φ (x) implies that a winning coalition at x

benefits from such deviation. But |φ (z)− φ (x)| < |y − φ (x)|, which contradicts that we took

the shortest deviation.

This result, Monotone Deviation Principle, makes the following result easy to prove.

Lemma 4 (No Double Deviation) Let a ∈ [1,m− 1], and let φ1 : [1, a] → [1, a] and φ2 :

[a+ 1,m]→ [a+ 1,m] be two monotone mappings which are MVE on their respective domains.

Let φ : S → S be defined by

φ (s) =

 φ1 (s) if s ≤ a

φ2 (s) if s > a
(20)

Then exactly one of the following is true:

1. φ is a MVE on S;

2. there is z ∈ [a+ 1, φ (a+ 1)] such that V φ (z | a) >a V
φ (φ (a) | a);

3. there is z ∈ [φ (a) , a] such that V φ (z | a+ 1) >a+1 V
φ (φ (a+ 1) | a+ 1).
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The question addressed here is whether or not mapping φ : S → S, obtained by combining

monotone mappings on smaller domains, will be a MVE. If φ is satisfies the ‘core’property in

the definition of MVE, then one immediately gets that it is MVE, because the second property

(‘persistence’) is satisfied for φ1 and φ2 on S1 and S2 as those are MVE. Otherwise, then Lemma

3 tells us to look for a monotone deviation, and since φ1 and φ2 are MVE on there domains,

there may only be a deviation in state a to some state z ∈ S2 (more precisely, to the segment

[a+ 1, φ (a+ 1)]), or a deviation in state a + 1 to some state z ∈ S1. It remains to prove that

the last two possibilities are mutually exclusive, and we do so in the Appendix.

The last Lemma allows for a simple corollary, when either S1 or S2 is a singleton.

Lemma 5 (Extension of Equilibrium) Let S1 = [1,m− 1] and S2 = {m}. Suppose that

φ : S1 → S1 is a monotone MVE. Let

a = min

(
arg max

b∈[φ(m−1),m−1]
V φ

maxMm
(b | m)

)
. (21)

If

V φ (a | m) >m u (m) / (1− β) , (22)

then mapping φ′ : S → S defined by

φ′ (s) =

 φ (s) if s < m

a if s = m
(23)

is MVE.

Similarly, let S1 = {1} and S2 = [2,m] and suppose that φ : S2 → S2 is a monotone MVE. Let

a = min

(
arg max

b∈[2,φ(2)]
V φ

minM1
(b | 1)

)
. (24)

If

V φ (a | 1) >1 u (1) / (1− β) , (25)

then mapping φ′ : S → S defined by

φ′ (s) =

 a if s = 1

φ (s) if s > 1
(26)

is MVE.
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Essentially, Lemma 5 assumes that one of S1 and S2 is a singleton. If S1 is a singleton {1},

then the only mapping φ1 : S1 → S1 is MVE. If there is a deviation from state 1 to S2, then, as

Lemma 4 suggests, there is no deviation from S2 to {1}, and therefore it is easy to verify that

the ‘core’property holds. By taking the appropriate φ′ (1), one can ensure that φ′ is MVE.

We are now ready to prove the existence result.

Theorem 1 (Existence) There exists a monotone MVE. Moreover, if φ is a monotone MVE,

then evolution s0, s1 = φ (s1) , s2 = φ (s2) , . . . is monotone, and there exists a limit state sτ =

sτ+1 = . . . = s∞.

The idea of the proof is to use induction by the number of states. If m = 1, then φ : S → S

given by φ (1) = 1 is MVE for trivial reasons. For m > 1, we assume, to obtain a contradiction,

that there is no MVE. Take any of m − 1 possible splits of S into nonempty Ca = {1, . . . , a}

and Da = {a+ 1, . . . ,m}, where a ∈ {1, . . . ,m− 1}, and any equilibrium φa1 on Ca and φ
a
2 on

Da. Lemma 4 suggests that, since φa obtained by combining φa1 and φ
a
2 is not MVE, then only

case 2 —deviation from a to [a+ 1, φa2 (a+ 1)] or case 3 —deviation from a + 1 to [φa1 (a) , a] is

possible. Let us say that g (a) = r (from “right”) if case 2 holds, and that g (a) = l otherwise.

(For function g to be well-defined, we need to specify a particular way of choosing φa1 and φ
a
2

if there are multiple equilibria. We do so in the formal proof in the Appendix; for now, let us

assume that equilibria on Ca and Da were unique.) We then have the following possibilities.

If g (1) = r, then we can use Lemma 5 to construct MVE φ on S. The same is true

if g (m− 1) = l. In the remaining case, if g (1) = l and g (m− 1) = r, there must exist

a ∈ {2, . . . ,m− 1} such that g (a− 1) = l and g (a) = r. We take equilibria φa−1
1 on [1, a− 1]

and φa2 on [a+ 1,m]. Since there were deviations from a both to
[
φa−1

1 (a− 1) , a− 1
]
and to

[a+ 1, φa2 (a+ 1)], let us define φ : S → S by

φ (s) =


φa−1

1 (s) if s < a

b if s = a

φa2 (s) if s > a

, (27)

where b ∈
[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)] is picked in a way that MVE conditions are

satisfied at s = a. Suppose, without loss of generality, that b < a, then φ|[1,a] is a MVE on

[1, a]. By Lemma 3, it suffi ces to check that there is no deviation from a+ 1 to [b, a], but this is
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implied by g (a) = r. Thus, with the help of Lemma 3, we establish that there are no monotone

deviations. By construction the second part (‘persistence’) also holds, and thus φ (s) is MVE.

We now study, under which conditions there is only one monotone MVE. To formulate the

uniqueness result, we need the following definitions.

Definition 4 Individual preferences are single-peaked if for every i ∈ N there is x ∈ S such

that for states y, z ∈ S such that z < y < x or z > y > x, ui (z) < ui (y) < ui (z).

This definition is standard. The next definition defines precisely what we mean by one-step

transitions.

We say that only one-step transitions are possible if

∀E ∈ E , x, y ∈ S : |x− y| > 1⇒ cE (x, y) >
2

1− β max
E′∈E,i∈N,s∈S

∣∣uE′,i (s)
∣∣ . (28)

The next examples shows that equilibrium is not always unique.

Example 3 (Example with two MVE) There are three states A,B,C, and two players 1 and

2. The decision-making rule is unanimity in all states. Payoffs are given by

id A B C

1 20 5 10

2 10 5 20

Suppose that β is suffi ciently close to 1, e.g., β = 0.9. Then there are two MVE. In one,

φ1 (A) = φ2 (B) = A and φ1 (C) = C. In another, φ2 (A) = A, φ2 (B) = φ2 (C) = C. This is

possible because preferences are not single-peaked, and there are more than one quasi-median

voters in all states.

However, single-peakedness alone is not enough, as the next example shows.

Example 4 (Example with single-peaked preferences and two MVE) There are three states

A,B,C, and two players 1 and 2. The decision-making rule is unanimity in state A and dicta-

torship of player 2 in states B and C. Payoffs are given by

id A B C

1 2 25 20

2 1 20 25
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Then φ1 given by φ1 (A,B,C) = (B,C,C) and φ2 given by φ2 (A,B,C) = (C,C,C) are both

MVE when the discount factor is any β ∈ [0, 1).

The following theorem presents cases where equilibrium is (generically) unique.

Theorem 2 (Uniqueness) The monotone MVE is (generically) unique if at least one of the

following conditions holds:

1. for every s ∈ S, Ms is a singleton;

2. only one-step transitions are possible and preferences are single-peaked.

In other words, we can prove uniqueness essentially for the same set of assumptions for

which we can establish that any MVE is monotone (Theorem 9 below), and in the second case

we require, in addition, that preferences are single-peaked. This means that if either of the

conditions in Theorem 2 holds, then there is a unique MVE, and this MVE is monotone.

3.2 Stochastic environment

We now extend our analysis to the case in which there are stochastic shocks. As our analysis

will clarify, this also enables us to deal with potentially “nonstationary” problems where the

distribution of political power or economic preferences will change in a specific direction in the

future. By Assumption 2, environments are ordered as E1, E2, . . . , Eh so that π (Ex, Ey) = 0

if x > y. This means that if we reached environment Eh, there are no further shocks, and the

analysis from Section 3.1 is applicable. In particular, we get the same conditions for existence

and uniqueness of MVE. We now use backward induction to find equilibrium transition mappings

in earlier environments.

The following Lemma is crucial for the analysis.

Lemma 6 Suppose φ is a monotone MVE in a stationary environment. Then continua-

tion payoff vectors {Vi (s)}s∈Si∈N and {Vi (φ (s) | s)}s∈Si∈N satisfy WID condition, and so does{∑
j∈N λE,E′ (i, j)V

φ
j (φ (s) | s)

}s∈S
i∈N

for any E,E′ ∈ E.

Lemma 6 is the cornerstone in our study of stochastic environments. It suggests that if

utility functions satisfied WID, then for any monotone MVE φ, certain continuation payoffs
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under do as well. This makes the backward induction argument in the proof of Theorem 3 and

4 possible: we will know that after a shock, continuation utilities satisfy the same properties as

ones we required from instantaneous utilities, which will make much of the argument we made

in the stationary case applicable. This is not true for single-peakedness, so uniqueness is slighly

more diffi cult to prove. In the case without reshuffl ing, however, this holds nevertheless.

To proceed by backward induction, let us take MVE φEh in the environment E
h; its existence

is guaranteed by Theorem 1. Suppose that we have found MVE {φE}E∈{Ek+1,...,Eh} for k =

1, . . . , h−1; let us construct φEk which would make {φE}E∈{Eh,...Eh} MVE in the environments{
Ek, . . . , Eh

}
. Suppose that as long as the environment is Ek, transition mappings are given

by φEk . In this case, continuation utilities of agent i are given by

V φ
Ek,i

(s) = uEk,i (s) + βEk
∑

E′∈{Ek,...,Eh}

∑
j∈N

π
(
Ek, E′

)
λEk,E′ (i, j)V

φ
E′,j (φE′ (s) | s)

= uEk,i (s) + βEk
∑

E′∈{Ek+1,...Eh}
π
(
Ek, E′

)
λEk,E′ (i, j)V

φ
E′,j (φE′ (s) | s) (29)

+ βEkπ
(
Ek, Ek

)
V φ
Ek,i

(φEk (s) | s) ,

where

V φ
E′,i (φE′ (s) | s) = V φ

E′,i (φE′ (s))− cE′ (s, φE′ (s)) ; (30)

we also used part 1 of Assumption 1. By induction, we know φE′ , cE′ (s, φE′ (s)), V
φ
E′ (φE′ (s))

for E′ ∈
{
Ek+1, . . . Eh

}
. If suffi ces, therefore, to show that there exists mapping φEk such that

continuation values
{
V φ
Ek,i

(s)
}
s∈S
, determined from (29), would make φEk a MVE. Denote

ũEk,i (s) = uEk,i (s) + βEk
∑

E′∈{Ek+1,...Eh}

∑
j∈N

π
(
Ek, E′

)
λEk,E′ (i, j)V

φ
E′,j (φE′ (s) | s) ,(31)

β̃Ek = βEkπ
(
Ek, Ek

)
(32)

Then equation (29) may be rewritten as

V φ
Ek,i

(s) = ũEk,i (s) + β̃Ek
(
V φ
Ek,i

(φEk (s))− cEk
(
s, φEk (s)

))
. (33)

Notice that
{
ũEk,i (s)

}s∈S
i∈N satisfy WID; this follows from Lemma 6 and from the additivity

of the WID property. We also have that β̃Ek ∈ [0, 1). This means that if we consider a game

without shocks, with the environment given by

E =
(
N,S, β̃Ek ,

{
ũEk,i (s)

}s∈S
i∈N , {cEk (x, y)}x,y∈S ,

{
WEk,s

}
s∈S

)
, (34)
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then the recursive equation for continuation values under the transition mapping φEk would

be given precisely by (33). This makes Theorem 1 applicable; therefore, there is a transition

mapping φEk which constitutes a MVE in the environment E. But then by definition of MVE,

since {φE}E∈{Ek+1,...,Eh} was MVE, we have that {φE}E∈{Ek,...Eh} is MVE in the environments{
Ek, . . . , Eh

}
. This proves the induction step, and proceeding likewise, we can obtain the entire

MVE φ = {φE}E∈{E1,...Eh}.

Notice that this reasoning used backward induction, and thus Assumption 2 was indispens-

able. In Section 5 below, we study the possibility of an infinite number of shocks. For now, we

formally state the result we have just proved.

Theorem 3 (Existence) Suppose that all environments E ∈ E satisfy the assumptions of the

paper, and Assumption 2 holds. Then there is a MVE φ = {φE}E∈E . The evolution s0, s1 =

φE1 (s0) , s2 = φE2 (s1) , . . . results in a limit state sτ = sτ+1 = . . . = s∞, but need not be

monotone. The limit state may depend on the time of arrival of shocks.

Now that we have established existence of MVE in a stochastic environment, a natural

question is whether or not it is unique. Our approach to this question is similar: using backward

induction, we reduce the problem to studying uniqueness of MVE in the environment E given by

(34), where the utilities are given by (31) and the discount factor is given by (32). However, this

is not straightforward, because single-crossing condition need not be preserved for continuation

utilities, as the next example shows (and it also need not be additive).

Example 5 (Continuation utilities need not satisfy single-peakedness) There are four states

and three players, player 1 is the dictator in state A, player 2 is the dictator in state B, and

player 3 is the dictator in states C and D. The payoffs are given by the following matrix:

id A B C D

1 20 30 90 30

2 5 20 85 90

3 5 25 92 99

.

All payoffs are single-peaked. Suppose β = 0.5; then the unique equilibrium has φ (A) = C,

φ (B) = φ (C) = φ (D) = D. Let us compute the continuation payoffs of player 1. We have:

V1 (A) = 40, V1 (B) = 30, V1 (C) = 50, V1 (D) = 30; the continuation utility of player 1 is thus

not single-peaked.
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Nevertheless, we can establish uniqueness under one of the following conditions.

Theorem 4 (Uniqueness) The monotone MVE is (generically) unique if at least one of the

following conditions holds:

1. for every environment E ∈ E and any state s ∈ S, Ms is a singleton;

2. there is no reshuffl ing after any transition; in each environment, only one-step transitions

are possible; each player’s preferences are single-peaked; and, moreover, for each state s

there is a player i such that i ∈ ME,s for all E ∈ E and the peaks (for all E ∈ E) of i’s

preferences do not lie on different sides on s.

The first case is the same as in the stationary environment studied above. The second is more

demanding, but nevertheless worth stating. The last complex condition holds automatically if

political rules do not change as a result of shocks, and neither do players’ideal states under each

environment.

The ‘no reshuffl ing’ condition in the second part is important, as the following example

shows.

Example 6 (Example with multiple equilibria with reshuffl ing) There are two environments,

E1 and E2, with identical payoffs and ruling coalitions. We consider π
(
E1, E2

)
a parameter.

If a shock arrives, assume that there is full reshuffl ing, so the chance for each player to occupy

each position is 0.25. There are three states and two players, and the rule is unanimity. The

payoffs are given by the following matrix:

id A B C

1 90 30 10

2 10 30 90

.

Then the weak regularity property holds. The equilibrium is unique if either β is close to 0 or

π
(
E1, E2

)
is close to 0, and this equilibrium is given by φE1 (x) = φE2 (x) = x for each state x.

Suppose, however, that β = 0.9 and π
(
E1, E2

)
= 0.9. Then in environment E2 the equilib-

rium is still unique and given by φE2 (x) = x for each state x. One can check that then there

are two mappings φE1 that would form a monotone MVE with φE2 : φ
1
E1 (A) = φ1

E1 (B) = A,

φ1
E1 (C) = C, and φ2

E1 (A) = A, φ2
E1 (B) = φ2

E1 (C) = C. The reason for multiplicity is that
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both players expect reshuffl ing, and this justifies the risk-taking behavior, i.e., choosing C over

B by player 1 or choosing A over B by player 2.

3.3 Noncooperative game

So far, we have not specified a noncooperative game which would substantiate MVE. We do

so in this section, and first we describe the game fully. For all environments E ∈ E and states

s ∈ S, we introduce a protocol θE,s, which is a finite sequence of all states in S \ {s}.

1. The environment Et−1 and state st−1 are inherited from period t− 1.

2. Shock which determines Et may occur: Et = E ∈ E with probability π (Et−1, E), and the

permutation of ranks ηt is chosen from µE,E′ .

3. Let b1 = st−1. In the subsequent stages, alternative bj , j = 1, . . . ,m− 1, is voted against

θEt,st−1 (j). That is, all agents are ordered in a sequence and must support either bj or

θEt,st−1 (j). If the set of those who supported θEt,st−1 (j) is a winning coalition, i.e., is in

WEt,st−1 , then bj+1 = θEt,st−1 (j); otherwise, bj+1 = bj . When all alternatives have been

voted, the new state is st = bm.

4. Each individual gets instantaneous payoff given by (10).

We study Markov Perfect equilibria of this game.13 Naturally, with every MPE, a set of

transition mappings φ = {φE}E∈E is associated: φE (s) is the state with which period which

started with state st−1 and where there was a shock leading to state E ends. We can get the

following results.

Theorem 5 The following is true:

1. For any MVE φ (monotone or not) there exists a set of protocols {θE,s}s∈SE∈E such that there

exists a Markov Perfect equilibrium of the game above which implements φ. Moreover, if

φ is the unique MVE, then protocol

{θE,s (j)}m−1
j=1 = (s+ 1, s+ 2, . . . ,m, s− 1, s− 2, . . . , 1) (35)

13To avoid the usual problems with equilibria in voting games, we assume sequential voting for some fixed

sequence of players. See Acemoglu, Egorov, and Sonin (2009) for a solution concept which would refine out

unnatural equilibria in voting games with simultaneous voting.
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may be used;

2. Conversely, if for some set of protocols {θE,s}s∈SE∈E and some MPE σ, the corresponding

transition mapping φ = {φE}E∈E is monotone, then it is MVE.

3. Under either of the assumptions of Theorem 9, a nonmonotone MPE cannot exist for any

set of protocols.

This theorem establishes the relation between the cooperative and noncooperative ap-

proaches. On the one hand, any MVE may be made an MPE of the game, if a protocol is

taken appropriately. If the equilibrium is unique, such protocol is easy to describe, and one

possible variant is given by (35). In fact, a stronger result is true: the protocol given by (35)

always has a monotone MPE. On the other hand, an MPE gives rise to an MVE, provided

that the transition mapping is monotone. Part 3 of Theorem 5 gives suffi cient conditions which

ensure that any MPE is monotone.

3.4 Comparative statics

In this section, we compare different environments, and study properties that must hold. Com-

parative statics results are strongest when equilibrium is unique; hence, throughout this section,

we assume that either of Theorem 4, which guarantee uniqueness of MVE, holds. Assume,

furthermore, that parameter values are generic.

Definition 5 We say that environments E1 and E2, defined for the same set of players and set

of states, coincide on S′ ⊂ S, if for each i ∈ N and for any states x, y ∈ S′, uE1,i (x) = uE2,i (x),

cE1 (x, y) = cE2 (x, y), and WE1,x = WE2,x.

Consider two environments, E1 and E2 that coincide on a subset of states (and differ arbi-

trarily on other states). We next show that there is on him because relationship between the

MVEs in these environments represented by the transition functions φE1 and φE2 .

Theorem 6 Suppose that environments E1 and E2 coincide on S′ = [1, s] ⊂ S and βE1 = βE2,

φ1 and φ2 are MVE in these environments. Suppose x ∈ S′ is such that φ1 (x) = x. Then

φ2 (x) ≥ x.

29



The idea of the proof is simple. To explain it, let us introduce the notation φ|S′ to represent

the transition function φ restricted to the subset of states S′. Now, if we had that φ2 (x) < x,

then φ1|S′ and φ2|S′ would be two different mappings both of which would be MVEs on S′. But

this would contradict the uniqueness of MVE. Of course, if y ∈ S′ is such that φ2 (y) = y, then

φ1 (y) ≥ y. This proposition does not say anything about the existence of a stable point in S′

for either of the mappings, however, if it does, then it must either be a stable point for the other

mapping, or the other mapping should move it right. Obviously, these results generalize for the

case where S′ = [s,m] rather than [1, s].

Theorem 6 implies the following simple corollary.

Corollary 1 Suppose that E =
{
E1, E2

}
and there is no reshuffl ing. Suppose, furthermore,

that E1 and E2 coincide on S′ = [1, s] ⊂ S, and βE1 = βE2. Suppose that, in the unique MVE

φ, φE1 (x) = x for some x ∈ S′. Suppose also that this state x is reached before the shock arise.

Suppose the shock arrives at time t. Then for all τ ≥ t, sτ ≥ x.

This result seems particularly interesting, because it is so general. Suppose that before the

shock, the society had found itself in a stable point, and as a result of the shock, only higher

states were affected (agents’ utilities, costs of transition, or sets of winning coalitions could

change). Corollary 1 implies that this could only make the society move towards the direction

where shock happened or stay where it was. In other words, the only possibility for the society

to stay in the region [1, x− 1] is not to leave it before the shock arrives.

Interestingly, this result is not affected by the nature of the shock. Nevertheless, the impli-

cations of the result become clearer when we focus on a particular type of shock. Suppose, for

example, that preferences change such that utilities of all agents become higher in some state

on the right of where the society is before the shock. Then it would be intuitive that transitions

take place towards that state. But in contrast, the corollary implies that even when the utilities

of all agents become lower in one of the states on the right, the society may still decide to move

to the right. Intuitively, it is possible that some transition to the right would benefit the current

decision-makers, but the possibility of further transitions to the right made them prefer the

status quo. The shock removed this last threat by making it empty, and now the society may

be willing to make a transition to the right. Of course, it is possible that the society will stay

where it was; this would be the case, for example, if the shocks was minor.
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Corollary 1 was formulated under the assumption that stable state x was reached before the

shock occurred. The next result removes this constraint, but only under the assumption that

the discount factor is low enough, i.e., that players are suffi ciently myopic.

Theorem 7 Suppose that E =
{
E1, E2

}
, 0 < π

(
E1, E2

)
< 1, π

(
E2, E1

)
= 0, and E1 and E2

coincide on S′ = [1, s] ⊂ S. Then there exists β0 > 0 such that if βE1 < β0 and βE2 < β0,

then in the unique MVE φ, if the initial state is s0 ∈ S′ such that φE1 (s0) ≥ s0, then the entire

path s0, s1, s2, . . . (induced both under environment E1 and after the switch to E2) is monotone.

Moreover, if the shock arrives at time t, then for all τ ≥ t, sτ ≥ s̃τ , where s̃τ is the hypothetical

path if the shock never arrives.

If we lay some restrictions on the nature of shock, then we can make even stronger conclusions

about the effects of shocks. In the next Theorem, we allow for the set of quasi-median voters to

change while keeping instantaneous payoffs fixed.

Theorem 8 Suppose that environments E1 and E2 have the same payoffs, uE1,i (x) = uE2,i (x),

the same transition costs, cE1 (x, y) = cE2 (x, y), the same discount factors βE1 = βE2, and

suppose that ME1,x = ME2,x for x ∈ [1, s] and minME1,x = minME2,x for x ∈ [s+ 1,m]. Let

φ1 and φ2 be MVE in these environments. Then φ1 (x) = φ2 (x) for any x ∈ [1, s].

This result suggests that if in some right states the sets of winning coalition change in a way

that the sets of quasi-median voters change on the right without changes on the left, then the

mapping is unaffected for states on the left (i.e., those states that are not directly affected by the

change). For example, applied to the dynamics of democratization, this theorem implies that

an absolute monarch’s decision of whether to move to a constitutional monarchy is not affected

by the power that the poor will able to secure– provided that the middle class is still a powerful

player.

This theorem also has an interesting corollary, which is take next.

Corollary 2 Let E =
{
E1, . . . , Eh

}
. Suppose that:

1. for all environments E,E′ ∈ E and for all states x, y ∈ S and individuals i ∈ N , we have

uE,i (x) = uE′,i (x), cE (x, y) = cE′ (x, y), βE = βE′ and minME,x = minME′,x;

2. if x ∈ [1, s], then maxME,x = maxME′,x;
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3. there is no reshuffl ing.

Then if φ = {φE}E∈E is the unique MVE, we have that φE1 (x) = · · · = φEh (x) for all

x ∈ [1, s]. Thus if s0 ∈ [1, s] and there is a stable x ∈ [s0, s], then arrival of shocks does not alter

the equilibrium paths.

We thus have identified a class of shocks which do not change the evolution of the game. A

priori, one could imagine, for example, that if the poor lose the ability to protect democracy,

and instead the elite will be able to stage a coup, then this consideration may affect the desire

of the elite to extend the franchise and move to democracy, or that it may affect the desire of

the monarch to grant more power to the broad elite in the first place. Corollary 2 suggests,

however, that unless something else is going on, these shocks and these considerations alone are

not suffi cient to change the equilibrium path (unless, of course, the society starts the game in

democracy with the elite dreaming of staging a coup).

3.5 Monotone vs nonmonotone MVE

So far, we focused on monotone MVE. In many interesting cases this is without loss of generatlity,

as the following theorem establishes.

Theorem 9 The following are suffi cient conditions for any MVE φ to be (generically)

monotone:

1. In all environments, the sets of quasi-median voters in two different states have either none

or exactly one individual in common: ∀E ∈ E , x, y ∈ S : x 6= y ⇒ |ME,x ∩ME,y| ≤ 1.

2. In all environments, only one-step transitions are possible.

This theorem is quite general. Part 1 covers, in particular, all situations where the sets of

quasi-median voters are singletons in all states. This implies that whenever in each state there is

a dictator (which may be the same for several states), or there is majority voting among sets of

odd numbers of players, any MVE is monotone, and thus all results in the paper are applicable

to all MVEs. The second part suggests that if only one-step transitions, i.e., transitions to

adjacent states are possible, then again any MVE is monotone. This means that our focus on

monotone MVE is without any loss of generality for many interesting and relevant cases. Also,
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coupled with the result that monotone MVE always exist, this justifies our focus on monotone

MVE even if the conditions of Theorem 9 fail.

In addition, inspection of the conditions in Theorem 9 reveals that they are weaker than

conditions in Theorem 2 and 4. Consequently, when these theorems guarantee the uniqueness

of a monotone MVE, they, in fact, guarantee that it is unique in the class of all possible MVEs.

Moreover, if MVE is unique, it is monotone.

The next example shows that nonmonotone MVE are possible, if both conditions in Theorem

9 fail.

Example 7 There are three states A,B,C, and two players 1 and 2. The decision-making rule

is unanimity in all states. Payoffs are given by

id A B C

1 30 50 40

2 10 40 50

Suppose β is relatively close to 1, e.g., β = 0.9. Then there is a nonmonotone MVE φ (A) =

φ (C) = C, φ (B) = B. (There is also a monotone equilibrium with φ (A) = φ (B) = B,

φ (C) = C.)

The next example shows that genericity is also an important requirement.

Example 8 (Example with nonmonotone equilibrium due to nongeneric preferences.) There

are two states A and B and two players 1 and 2. Player 1 is the dictator in both stattes. Payoffs

are given by

id A B

1 20 20

2 15 25

Take any discount factor β, e.g., β = 0.5, and any protocol. Then φ given by φ (A) = B and

φ (B) = A is nonmonotone (in fact, cyclic). This equilibrium is only possible for measure 0 of

preferences.

However, even if nonmonotone MVE exist, they still possess a certain degree of monotonicity,

namely, “monotone paths”, as the next results show.
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Definition 6 A mapping φ = {φE}E∈E has monotone paths if for any E ∈ E and x ∈ S,

φ (x) ≥ x implies φ2
E (x) ≥ φE (x).

In other words, all equilibrium paths that this mapping generates, as long as the environment

does not change, are weakly monotone. We have the following result:

Theorem 10 Any MVE φ (not necessarily monotone) has, generically, monotone paths.

3.6 Relationship to Roberts’s model

As discussed in the Introduction, our paper is most closely related to Roberts (1999). Our notion

of MVE extends Roberts’s notion of equilibrium, who also looks at a dynamic equilibrium in

an environment that satisfies single-crossing type restrictions. More specifically, in Roberts’s

model, the society consists of n individuals, and there are n possible states sk = {1, . . . , k} ,

1 ≤ k ≤ n. Each state sk describes the situation where individuals {1, . . . , k} are members of

the club, while others are not. There is the following condition on individual payoffs:

for all l > k and j > i, uj (sl)− uj (sk) > ui (sl)− ui (sk) , (36)

which is the same as the strict increasing differences condition we imposed above (Definition 1).

Roberts (1999) focuses on deterministic environments with majoritarian voting among club

members. He then looks at a notion of Markov Voting Equilibrium (defined as an equilibrium

path where there is a transition to a new club whenever there is an absolute majority in favor of

it) and a median voter rule (defined as an equilibrium path where at each point current median

voter chooses the transition for the next step). Roberts proves existence for mixed-strategy

equilibria for each of the voting rules; they define the same set of clubs that are stable under

these rules.

Roberts’s notion of Markov Voting Equilibrium is closely related to ours, only differing from

ours in the way that he treats clubs that have even numbers of members and thus might have

ties. In any case, the two notions coincide for generic preferences.

This description clarifies that Roberts’s setup is essentially a special case of what we have

considered so far. The dimensions in which our framework is more general are several: first,

Roberts focuses on the deterministic and stationary environment, whereas we allow for nonsta-

tionary elements and arbitrary stochastic shocks. Second, we allow for a much richer set of states
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and richer distributions of political power across states (e.g., instead of majority rule, we allow

weighted supermajority rule, which could be different across states, or dictatorial rule). Third,

we prove existence of pure strategy equilibria and provide conditions for uniqueness. Fourth,

we provide general conditions for equilibria to be characterize by monotone transition maps and

to exhibit monotone sample paths. Fifth, we show the relationship between this equilibrium

concept and MPE of a fully specified dynamic game.

Most importantly, however, we provide a fairly complete characterization of the structure of

transitions and steady states, and show that at this level of generality, the range of comparative

static results can be derived. Such comparative statics are not only new but, thanks to their

generality, quite widely applicable. We also show how the framework can be applied in a

somewhat more specific but still general analysis of dynamics of political rights and repression,

and derive additional results in this context.

4 Application: Repression and Social Mobility

In this section, we apply our general framework and the results derived so far to the study of

the dynamics of the political rights and repression.

4.1 Preferences and distribution of political power

In what follows, we use the language and formalism of Section 2. There is a fixed set of players

N = {1, . . . , n}, which we interpret as groups of (potentially large numbers of) individuals with

the same preferences (e.g., ethnicities or classes). When there is “reshuffl ing,”this will capture

social mobility, and we interpret this as each one of the individual’s within a group facing an

independent probability of moving up or down to another group. The order of groups here can be

interpreted as preferences on some social policy dimension (e.g., from religiosity to secularism)

or as representing some economic interests (e.g., from rich to poor). The weight of each group

i ∈ N is denoted by γi and represents the number of people within the group, and thus the

group’s political power. This this may change over time due to social mobility or other factors,

also potentially changing the balance of political power.

Preferences are represented as follows. Individuals of group i have bliss point bi and thus
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the utility over policies of the form when policy p is implemented

− (p− bi)2 . (37)

Our single-crossing assumptions here implies that the sequence {bi} is increasing in i.

States here correspond to different combinations of political rights. We think of repression

as a way of reducing the political rights of certain groups. In particular, there are 2n− 1 states

corresponding to different sets of individuals who are repressed, and only those not repressed are

eligible to vote.14 We assume that repression is costly. In particular, repressing agents of type

j costs Cj , and that this cost is incurred by all agents within society (e.g., economic effi ciency

is reduced or taxes have to be raised to support repression).

Let us denote the set of players who are not repressed in state s by Hs; then Hs = {1, . . . , s}

for s ≤ n and Hs = {s− n+ 1, . . . , n} for s > n. In other words, the first n−1 states correspond

to repressing– taking away the political rights of– players with have right-wing views, and the

last n + 1 states correspond to repressing players with left-wing views; the middle state s = n

involves no repression. States effectively differ by voting rules: in each state, the voting rule

is majoritarian among those who are not repressed or who have been granted clinical right.

(This implies that the share of population within each group acts like a weight in a weighted

majoritarian system, with each player’s weight being proporional to his share in the population).

More specifically, in state s, coalition X is winning if and only if∑
i∈Hs∩X

γi >
1

2

∑
i∈Hs

γi. (38)

For generic sequences of proportions across groups, {γi}, the quasi-median voter will be in a

single group, and this is equivalent to having a singleton set of quasi-median voters in terms

of the analysis so far. In this section, we will, interchangeably, refer to a quasi-median voter

(QMV), median voter or quasi-median group.

There are two decisions made in each period. First, the current period state s (i.e., the

repression policy) is decided. Second, in the end of the period, the payoffs are determined. Since

decision-making is by weighted majority, the policy which determines the payoffs is given, in

state s, by bMs , where Ms is the (generically unique) quasi-median voter.

14We can allow for “partial”repression, where the votes of players who are repressed are discounted with some

factor. This would correspond to, say, repressing only a certain fraction of some population group. Ultimately,

this would complicate the notation without delivering major insights.
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Given the above description, the stage payoff of individuals in group i in state s can be

written as:

ui = − (bMs − bi)
2 −

∑
j /∈Hs

γjCj . (39)

Until the last result we present in this section, the reader may focus on the case in which Cj = C

for all j ∈ N .

4.2 Characterization and comparative statics

For most results below, we assume there are two environments E1 and E2, and the society

starts in E1. The results can be extended to more environments. Focusing on two environments

simplifies and clarifies the results. We assume that the environments coincide in everything that

we do not mention explicitly to be different. A shock is then interpreted as changes of only

those parameters that need to be changed. Also for clarification, we will often focus on shocks

that only change the distribution of political power and shocks that correspond to “pure”social

mobility, i.e., reshuffl e individuals but do not change the distribution of political power across

different groups. Moreover, we will also take pure social mobility shocks to take a simple form:

in particular, for some interval of groups X = [a, b] ⊂ [1, n], each individual within this interval

is interpreted as equally likely to move to one of the other groups within the interval (once

again, it is possible to allow a richer structure of transitions across groups that still correspond

to social mobility, but our choice here simplifies the exposition and notation).15

Our first proposition characterizes the structure of stationary equilibrium (without stochastic

shocks).

Proposition 1 There exists a unique MVE. In this equilibrium, the state s = n (corresponding

to no repression) is stable, and for any s, |φ (s)− n| ≤ |s− n|.

In other words, in the absence of shocks, repression will not arise if it was not present from the

beginning, and if it was, then there will not be more repression and, perhaps, there will be less.

Intuitively, the quasi-median voter can choose the preferred policy anyway, and since repression

15Naturally, the general comparative static results contained in Theorems 6-8 and their corollaries also apply

in this more specific environment without restricting the type of shocks any further. Since the insights that they

imply are in line with our discussion within the general framework, we do not spell those out here.
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is costly, choosing more of it makes no sense. On the other hand, having less repression may

change the balance of power, but it may be worth it if the savings are suffi cient.

Our next result formalizes one version of the De Tocqueville hypothesis mentioned in the

first paragraph of the paper, that anticipated social mobility makes democracy more likely (and

the limiting of political rights and repression less likely). It shows that under some additional

conditions, social mobility (anticipation of social mobility) reduces repression.

Proposition 2 Let x be the quasi-median group (QMV) under full democracy, and suppose that

the most preferred policies {bi} by different groups are such that

bx =
∑

i∈N
γibi.

In other words, the average weighted policy coincides with the median one. Consider a change

from E1 to E2 that leaves the distribution of political power unchanged and thus corresponds to

pure social mobility across all groups in society. Then, for any π
(
E1, E2

)
∈ (0, 1), there exists

β̄ < 1 such that for β ≥ β̄, society will transit from any initial state to full democracy (no

repression) immediately (i.e., at t = 1).

The intuition for this result is simple: the current (quasi-)median voter, with preferences bE1

(which is not necessarily equal to bx), realizes that in the long run (which is what he cares about

given the high discount factor), his preferences may change, and thus removing repression and

transiting into full democracy is preferable to repressing some groups– such repression would

have led to some policy different than bx, but social mobility makes the current median voter

prefer, in expectation, bx. It is worth noting that the condition that β is above a certain threshold

β̄ is important. Otherwise, the currently powerful group would put a high weight on the policies

that will be implemented before the shock arrives, and this may lead to perverse results.

The key to this proposition is that social mobility not only leaves the distribution of put

the power across groups unchanged, but also does not create a situation in which the current

median voter expects to relinquish that position to somebody else and would like to influence

the future median voter’s identity. Notably, this can happen even if there are no shocks to

change the distribution of political power across different social groups, i.e., simply as a result

of anticipated social mobility. The next proposition studies the stability of perfect democracy

in the presence of different kinds of shocks.

38



Proposition 3 Suppose that we start with full democracy and let x be the initial QMV, and the

change from E1 to E2 leaves the distribution of political power unchanged and thus corresponds

to pure social mobility. Then:

1. If x /∈ [a, b], then repression will not occur under either E1 or E2.

2. On the other hand, if x = a or x = b, repression in environment E1 (in anticipation

of future social mobility, i.e., the switch to E2) is possible and this repression may also

continue after the switch to E2. In particular, if x = a, it is left wing groups and if x = b,

it is right wing groups that will be repressed.

3. Repression is more likely (in part 2) if it is less costly (cost of repression C is low) and if

the shock is expected to happen soon (π
(
E1, E2

)
is high).

This result thus shows the limits of the De Tocqueville hypothesis. Social mobility creates

a force towards tolerance to other groups because individuals expect to switch to those other

groups in the future. However, it also creates a desire for repression because the current (quasi-

)median voter x anticipates that there is a chance that he will not be one in the future, and

would like to ensure that the new QMV is closer, on average, to his expected future preferences.

As a result, if x expects to move to the left, he may opt to repress right-wing voters, and if

he expects to move to the right, he may opt to repress left-wing. On the other hand, there are

several counterveiling forces. First, repression is costly. Second, the point of repression is to

make another group responsible for the decisions, but when it happens, this group may decide to

delegate decision making even further, which need not be in the original QMV’s best interests.

Third and relatedly, delegation of political decision-making has a direct cost as well, as the

new group will make economic decisions as well. Perhaps the most important result contained

in Proposition 3 is part 3, which shows that repression is more likely if it is less costly (as

this mitigates the first counterveiling force), and if the shock is expected to happen soon (this

mitigates the second and the third, and also perhaps the first forces).

The next proposition shows that social mobility shifts policies towards the groups that cur-

rently have little political power but are part of the social mobility process.

Proposition 4 Let x be the initial QMV, and suppose that change from E1 to E2 leaves the

distribution of political power unchanged and thus corresponds to pure social mobility among
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players [1, x]. Then the anticipation of social mobility shifts policy from bx (weakly) to the left.

Individuals in groups x+ 1, ..., n, who are not part of social mobility, are made worse off by the

prospect of social mobility.

We next show that the second hypothesis discussed in the first paragraph, that anticipation

of future changes in the distribution of political power can induce repression and moves away

from democracy, receives support from this environment (under certain conditions).

Proposition 5 Suppose that we start with full democracy and change from E1 to E2 potentially

changes the distribution of political power but does not involve reshuffl ing (social mobility). Let

MEk be the quasi-median voter in environment E
k (under full democracy), and assume that

bME1
6= bME2

. Suppose also that β is greater than some β̄. If the costs of repression, the

Cj’s, are suffi ciently low, then the median voter ME1 will choose to repress the same side of

the political spectrum as ME2. Moreover, lower costs of repression and higher π
(
E1, E2

)
make

repression more likely.

This proposition shows that anticipation of a change that will alter the distribution of polit-

ical power may lead to repression of groups that would get more powerful from this shift if this

change is viewed as suffi ciently likely and the costs of repression are not too high. It therefore

formalizes the idea that expectation of future changes in the distribution of political power is

a force towards repression and move away from democracy. The next proposition shows that,

for related reasons, once change happens. repression never increases. Intuitively, repression was

largely driven by the anticipation of future change, and thus once change occurs, there is less

reason for repression

Proposition 6 Suppose that change from E1 to E2 potentially changes the distribution of po-

litical power but does not involve reshuffl ing (social mobility). Then repression never increases

after the shock has happened, but it may decrease.

Finally, we show that repression decisions are “strategic complements”. To state this result,

recall that Cj is the cost of repressing group j.

Proposition 7 Suppose that group x is the (quasi-)median voter in environment E1 and change

from E1 to E2 potentially changes the distribution of political power and may bring groups to
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the right of x to power. If the cost of repressing group x, Cx, increases, then repression on all

groups decreases or remains the same (does not increase).

The intuition for this result is instructive. Repression is partly driven by the fear that some

other group will come to power in the future and will use repression against those who are now

(quasi-)median voters or support their positions. If the cost of repressing this group increases,

then it fears future repression less, and this reduces its incentives to use repression in order

to maintain its position. This result suggests that repression against all groups may become

more likely when political, economic or social factors make repressing a particular social group

or viewpoint easier. It might also contribute to an understanding for why, in some societies,

very different parts of the political spectrum are repressed at different points in time, while

other societies, with only small differences, experience much more limited repression of similar

positions.

5 Extensions

In this section, we relax some of the assumption made in Section 2. In particular, we study the

possibility that there is an infinite number (a continuum) of states and/or agents and establish an

existence of MVE. We allow for the possibility of an infinite number of shocks and establish the

existence of a “mixed-strategy”MVE. Finally, we show that our approach to stochastic shocks

allows for studying situations where the probabilities of transitions, π (E,E′), may depend on the

state of the world. This would be realistic, for example, when studying political experimentation.

5.1 Continuous space

Here, we assume that states, and perhaps individuals, are taken from a continuous set. We study

Markov Voting equilibria in such environments. Namely, we study Markov Voting equilibria in

discrete environments obtained by sampling a suffi ciently dense but finite set of points.

More precisely, assume that the set of states is S = [sl, sh], and the set of individuals is given

by a unit continuum N = [il, ih]. (The construction and reasoning below are easily extendable

to the case where the are a finite number of individuals but a continuum of states, or vice versa.)

We assume that each individual has a utility function ui (s) : S → R, which is continuous as a

function of (i, s) ∈ N × S and satisfies the SID condition: for all i > j, x > y,
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ui (x)− ui (y) > uj (x)− uj (y) . (40)

Cost function is given by c (x, y) and is assumed to be continuous on S × S and to satisfy

Assumption 6. Finally, for each state s there is a set of winning coalitions Ws, which are

assumed to satisfy Assumption 4. As before, for each state s, we have a non-empty set of quasi-

median votersMs (which may nevertheless be a singleton). We make the following monotonicity

of quasi-median voters assumption: functions inf Ms and supMs are continuous and increasing

functions of s.

For simplicity, we assume there are no shocks, so the environment is fixed. Time is discrete

as before. We are interested in monotone transition functions φ : S → S; however, we do not

impose additional restrictions, e.g., continuity (it may be possible that there is no equilibrium

with a continuous transition function). The notions of MVE is the same as before, i.e., it is

given by Definition 3.

In this environment, we can establish the following existence result.

Theorem 11 (Existence) In the environment with continous set of states and/or continuous

set of individuals, there exists a MVE φ. Moreover, take any sequence of sets of states S1 ⊂

S2 ⊂ · · · and any sequence of individuals N1 ⊂ N2 ⊂ · · · such that
⋃∞
j=1 Sj is dense in S and⋃∞

j=1Nj is dense in N . Consider any sequence of monotone functions
{
φj : Sj → Sj

}∞
j=1

which

are MVE (not necessarily unique) in the environment

Ej =
(
N,S, β, {ui (s)}s∈Sji∈Nj , {c (x, y)}x,y∈Sji∈Nj , {Ws}s∈Sj

)
(41)

(existence of such MVE is guaranteed by Theorem 1, as all assumptions are satisfied). Then

there is a subsequence {jk}∞k=1 such that
{
φjk
}∞
k=1

converges, pointwisely on
⋃∞
j=1 Sj, to some

MVE φ : S → S.

While this existence result does not characterize the set of equilibria in full, it guarantees

existence, and also shows that a MVE may be found as a limit of equilibria for finite sets of

states and individuals. The idea of the proof is simple. Take an increasing sequence of sets of

states , S1 ⊂ S2 ⊂ · · · and an increasing sequence of sets of individuals N1 ⊂ N2 ⊂ · · · such

that S∞ =
⋃∞
j=1 Sj is dense in S and N∞ =

⋃∞
j=1Nj is dense in N . For each Sj , take MVE

φj . We know that φi is a monotone function on Si; Since let us complement it to a monotone
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(not necessarily continuous) function on S which we denote by φ̃i for each i. Since S∞ and N∞

are countable, there is a subsequence φjk which converges to some φ : S∞ → S∞ pointwisely.

(Indeed, we can pick a subsequence which converges on S1, then a subsequence converging on

S2 etc; then use a diagonal process.) We then complete it to a function φ : S → S by demanding

that φ is either left-continuous or right-continuous at any point; in the Appendix, we show that

we can do that so that the continuation values are either left-continuous or right-continuous as

well). Then this continuity of continuation values will ensure that φ is MVE.

5.2 Infinitely many shocks

Suppose that there is a finite set of states E , but we relax Assumption 2. This allows for

the possibility that an infinite number of shocks happens during the game. In this case, the

question about existence of MVE as defined earlier is open. Nevertheless, we can prove existence

of a “mixed”equilibrium. Suppose, indeed, that for each environment E ∈ E we have several

mappings {φE} which may be played with different probabilities, and the particular transition

mapping is picked anew each time a shock leading to environment E happens.

More formally, let Φ be the (finite) set of monotone mappings from S to S, and let ∆ (Φ) be

the set of convex combinations. Let φE ∈ ∆ (Φ), and for each χ ∈ Φ, let αE,χ = αχ (φE) be the

weight of χ in the combination φE . As said earlier, we assume that every time there is a shock

that changes the environment from some E′ to E, with probability αE,φ, transition mapping χ

is used until the next shock. Therefore, the continuation payoffs are recursively given as follows:

V φ
E,χ,i (s) = uE,i (s) + βEπ (E,E)V φ

E,χ,i (χ (s) | s)

+ βE
∑
E′ 6=E

π
(
E,E′

) ∑
χ′∈Φ

αχ′ (φE′)V
φ
E′,χ′,i

(
χ′ (s) | s

)
(42)

where for every χ ∈ Φ,

V φ
E,χ,i (χ (s) | s) = V φ

E,χ,i (χ (s))− cE (s, χ (s)) . (43)

Clearly, continuation payoffs are well-defined for every φ = {φE}E∈E with φE ∈ ∆ (Φ).

The definition of MVE is as follows.

Definition 7 (Mixed MVE) A set φ = {φE}E∈E , where φE ∈ ∆ (Φ) for all E, is a Mixed

MVE if the following two properties hold:
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1. for any environment E ∈ E and any χ ∈ ∆ (Φ), if αχ (φE) > 0, then for any x, y ∈ S,{
i ∈ N : V φ

E,χ,i (y | x) > V φ
E,χ,i (χ (x) | x)

}
/∈WE,x; (44)

2. for any environment E ∈ E and any χ ∈ ∆ (Φ), if αχ (φE) > 0, then for any state x ∈ S,{
i ∈ N : V φ

E,χ,i (χ (x) | x)− cE (x, χ (x)) ≥ V φ
E,i (x)

}
∈WE,x

We can establish the following existence result.

Theorem 12 If the assumptions above, except Assumption 2, are satisfied, then there exists a

Mixed MVE.

The idea of the proof of Theorem 12 is straightforward. We for any candidate equilibrium

φ we compute the continuation payoffs, and then for every environment E we find, as before,

the set of monotone MVE (to do this, we need to verify that the usual assumptions, like single-

crossing conditions, are satisfied). Let µ (φ,E) be the set of convex combinations of MVE, and

let µ (φ) be the collection of µ (φ,E) for all E ∈ E . It then suffi ces to verify that function µ

satisfies the hypotheses of Kakutani theorem.

However, a pure-strategy MVE need not exist, as the next example shows.

Example 9 (No pure-strategy MVE with infinite number of shocks) Below is an ex-

ample of with finite number of states and players and finite number of environments such that

all assumptions, except for the assumption that the number of shocks is finite, are satisfied, but

there is no Markov Voting Equilibrium in pure strategies (but as Theorem 12 suggests, a mixed-

strategy equilibrium exists). One could also construct a “Non-Markovian Voting Equilibrium”.

There are three environments E1, E2, E3, three states A = 1, B = 2, C = 3, and three players

1, 2, 3. The history of environments follows a simple Markov chain; in fact, in each period the

environment is drawn separately. More precisely,

π
(
E1
)

: = π
(
E1, E1

)
= π

(
E2, E1

)
= π

(
E3, E1

)
=

1

2
;

π
(
E2
)

: = π
(
E1, E2

)
= π

(
E2, E2

)
= π

(
E3, E2

)
=

2

5
;

π
(
E3
)

: = π
(
E1, E2

)
= π

(
E2, E3

)
= π

(
E3, E3

)
=

1

10
.
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In each environment, transition costs are either 0 or prohibitively large, so we describe these in

terms of feasible/infeasible transitions. The discount factor is 1
2 .

The following matrices describe instantaneous payoffs, winning coalitions, and feasible tran-

sitions.

Environment E1 State A State B State C

Winning coalition Dictatorship of Player 1

Feasible transitions to A,B to B to C

Player 1 60 150 −800

Player 2 30 130 60

Player 3 −100 60 50

Environment E2 State A State B State C

Winning coalition Dictatorship of Player 2

Feasible transitions to A to A,B to C

Player 1 100 80 −800

Player 2 80 70 60

Player 3 −100 60 50

Environment E3 State A State B State C

Winning coalition Dictatorship of Player 3

Feasible transitions to A to B,C to C

Player 1 100 80 −800

Player 2 80 70 60

Player 3 −100 60 50

It is straightforward to see that SID property holds; moreover, payoffs are single-peaked, and in

each environment and each state, the set of quasi-median voters is a singleton.

The intuition behind the example is the following. The payoff matrices in environment E2

and E3 coincide, so “essentially”, there are two equally likely environments E1 and “E2 ∪E3”.

Both player 1 and 2 prefer state B when the environment is E2 and state A when the environment

is E1; given the payoff matrix and the discount factor, player 1 would prefer to move from A to

B when in E1, and knowing this, player 2 would be willing to move to A when in E2. However,

there is a chance that the environment becomes E3 rather than E2, in which case a “maniac”
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player 3 will become able to move from state B (but not from A!) to state C; the reason for

him to do so is that although he likes state B (in all environments), he strongly dislikes A, and

thus if players 1 and 2 are expected to move between these states, player 3 would rather lock

the society in state C, which is only slighly worse for him than B.

State C, however, is really hated by player 1, who would not risk the slightest chance of

getting there. So, if player 3 is expeced to move to C when given such chance, player 1 would

not move from A to B when the environment is E1, because player 3 is only able to move to C

from B. Now player 2, anticipating that if he decides to move from B to A when the environment

is E2, the society will end up in state A forever; this is something player 2 would like to avoid,

because state A is very bad for him when the environment is E1. In short, if player 3 is expected

to move to C when given this chance, then the logic of the previous paragraph breaks down, and

neither player 1 nor player 2 will be willing to move when they are in power. But in this case,

player 3 is better off staying in state B even when given a chance to move to C, as he trades off

staying in B forever versus staying in C forever. These considerations should prove that there

is no MVE.

More formally, the reasoning goes as follows. Notice that there are only eight candidate

mappings to consider (some transitions are made infeasible precisely to simplify the argument;

alternatively, we could allow any transitions and make player 1 the dictator in state A when the

environment is E3). We consider these eight mappings separately, and point out the deviation.

Obviously, the only values of the transition mappings to be specified are φE1 (A), φE2 (B), and

φE3 (B).

1. φE1 (A) = A, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

2. φE1 (A) = B, φE2 (B) = A, φE3 (B) = B. Then φ′E3 (B) = C is a profitable deviation.

3. φE1 (A) = A, φE2 (B) = B, φE3 (B) = B. Then φ′E1 (A) = B is a profitable deviation.

4. φE1 (A) = B, φE2 (B) = B, φE3 (B) = B. Then φ′E2 (B) = A is a profitable deviation.

5. φE1 (A) = A, φE2 (B) = A, φE3 (B) = C. Then φ′E2 (B) = B is a profitable deviation.

6. φE1 (A) = B, φE2 (B) = A, φE3 (B) = C. Then φ′E1 (A) = A is a profitable deviation.

7. φE1 (A) = A, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.
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8. φE1 (A) = B, φE2 (B) = B, φE3 (B) = C. Then φ′E3 (B) = B is a profitable deviation.

This proves that there is no MVE in pure strategies (i.e., in the sense of Definition 3).

5.3 Other types of shocks

Here, we show that the framework is by and large applicable to situations where shocks that do

not follow the Markov chain rule. We give two simple examples: experimentation and exogenous

transitions.

Suppose that there are two environments E1 and E2. They coincide on S′ = [1,m− 1], have

the same discount factor, and, moreover, for s ∈ S′, WE1,s = WE2,s. Assume, for simplicity,

that all costs are the same as well. The only difference that E1 and E2 have is instantaneous

payoffs of players in state m.

The initial state is s0 < m and the initial environment is E1. Assume that the environment

is E1 as long as st 6= m. If st = m for the first time, then the environment switches to E2 with

probability ρ and stays to be E1 with probability 1−ρ; after that, there are no further changes.

This setting could be used to model political experimentation. Indeed, suppose that players are

initially aware of payoffs in states s < m, but are ignorant whether the payoffs in state m are{
uE1,i (m)

}
i∈N or

{
uE2,i (m)

}
i∈N (although they are aware of the probability ρ). The only way

to find out, which of the environments they are in, is to make a transition to state m. (It might

be natural to introduce the initial environment E0 and assume the agents do not get any payoff

in state m, but if they transit to state m, then there is an immediate transition to either E1 or

E2. However, this would be redundant, and assuming that the society starts in environment E1

which may switch to E2 immediately after they experiment with state m should be enough.)

We do not formulate a formal existence or uniqueness result here. Clearly, we can apply a

backward induction argument in a way similar to Subsection 3.2. Moreover, we can allow for

the possibility that agents get some signal about whether they end up in E1 or E2 after trying

m. We leave these possibilities for future research.

One other type of shock which we have not studied before is the possibility of exogenous

transitions. Suppose, for example, that there are two identical environments E1 and E2, and

the probabilities of transition satisfy 0 < π
(
E1, E2

)
< 1, and π

(
E2, E1

)
= 0. The difference is

that when there is a shock that switches the environment from E1 to E2, the state automatically

moves to, say, s̃. With some single-crossing assumptions on the nature of the shock, a similar
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backward induction reasoning would allow us to show existence and, under stronger assumptions,

uniqueness of a Markov Voting equilibrium.

6 Conclusion

This paper has provided a general framework for the analysis of dynamics of institutional change

(e.g., democratization, extension of political rights or repression), and how this interacts with

(anticipated and unanticipated) changes in the distribution of political power and changes in

economic structure (e.g., social mobility or other changes affecting individuals’preferences over

different types of economic policies and allocations). We have focused on the Markov voting

equilibria, which require that economic and political changes should take place if there exists

a subset of players with the power to implement such changes and who will obtain higher

expected continuation utility by doing so. Under the assumption that different economic and

social institutions/policies as well as individual types can be ordered, and preferences and the

distribution of political power satisfy “single crossing,”we prove the existence of pure-strategy

equilibria and provide conditions for their uniqueness.

Despite its generality, we have shown that the framework yields a number of comparative

static results. For example, if there is a change from one environment to another (with different

economic payoffs and distribution of political power) but the two environments coincide up to a

certain state s′ and before the change the steady state of equilibrium was that some state x ≤ s′,

then the new steady state that emerges after the change in environment can be no smaller than

x. Another comparative static result is the following: again consider a change leaving preferences

and the distribution of the power the same in states s ≤ s′, but now arriving before the steady

state x ≤ s′ is reached. Then when all agents in society have discount factor suffi ciently small

(smaller than some threshold β̄), the direction of changes states will remain the same as before

(i.e., if there were transitions towards higher states before, this will continue, and vice versa).

Finally, we have also shown that a change in environment makes extreme states “sticky”takes

place away from these extreme states, then the equilibrium trajectory is not affected.

We have also shown how this framework can be applied to the study of the dynamics of

political rights and repression, and derived a range of additional comparative statics for this

more specific application.
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Appendix

Proof of Lemma 1. “If”: Suppose Ms ⊂ P , so for each i ∈ Ms, wi (y) > wi (x). Consider

two cases. If y > x, then WID implies that wj (y) > wj (x) for all j ≥ minMs, and such players

j form a winning coalition by definition of QMV. If y < x, then, similarly, wj (y) > wj (x) for

all j ≤ minMs, and thus for a winning coalition. In either case, P contains a subset (either

[minMs, n] or [1,maxMs]) which is a winning coalition, and thus P ∈Ws.

“Only if”: Suppose P ∈ Ws. First, consider the case y > x. Let i = minP ; then for all

j ≥ i, wj (y) > wj (x). This means that P = [i, n], and is thus a connected coalition. Since P is

winning, we must have j ∈ P for any j ∈ Ms, so Ms ⊂ P . The case where y < x is analogous,

so Ms ⊂ P .

The proofs for relations ≥, <, ≤ are similar and are omitted. �

Proof of Lemma 2. Part 1. We prove this part if for cost ci (·, ·) depends on i (provided

that the extra properties required in Footnote 12 hold), as this comes at no extra cost. Take

y > x and any i ∈ N . We have:

V φ
i (y)− V φ

i (x) = ui (y) +
∑∞

k=1
βk
(
ui

(
φk (y)

)
− ci

(
φk−1 (y) , φk (y)

))
−ui (x)−

∑∞

k=1
βk
(
ui

(
φk (x)

)
− ci

(
φk−1 (x) , φk (x)

))
= (ui (y)− ui (x)) +

∑∞

k=1
βk
(
ui

(
φk (y)

)
− ui

(
φk (x)

))
−
∑∞

k=1
βk
(
ci

(
φk−1 (y) , φk (y)

)
− ci

(
φk−1 (x) , φk (x)

))
.(45)

The first term is weakly (strictly) increasing in i if {ui (s)}s∈Si∈N satisfies WID (SID, respectively),

the second is weakly increasing in i, as φk (y) ≥ φk (x) for k ≥ 1 due to monotonicity, and for

the last term, it follows from

−
(
ci

(
φk−1 (y) , φk (y)

)
− ci

(
φk−1 (x) , φk (x)

))
=

−
(
ci

(
φk−1 (y) , φk (x)

)
− ci

(
φk−1 (x) , φk (x)

))
−
(
ci

(
φk−1 (y) , φk (y)

)
− ci

(
φk−1 (y) , φk (x)

))
,(46)

which is (weakly) increasing in i. (Notice that if ci (·, ·) does not depend on i, then (46) is a

constant.) Consequently, (16) is weakly (strictly) increasing in i. Now,

V φ
i (y | s)− V φ

i (x | s) =
(
V φ
i (y)− ci (s, y)

)
−
(
V φ
i (x)− ci (s, x)

)
=

(
V φ
i (y)− V φ

i (x)
)
− (ci (s, y)− ci (s, x)) . (47)
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We proved that the first term is weakly (strictly) increasing in i, and the last one is weakly

increasing in i by assumption. Hence, both
{
V φ
i (x)

}x∈S
i∈N

and
{
V φ
i (x | s)

}x∈S
i∈N

satisfy WID

(SID) for any s.

Part 2. If φ is monotone, then Part 1 applies. Otherwise, for some x < y we have φ (x) >

φ (y), and this means that y = x+ 1; there may be one or more such pairs. Notice that for such

x and y, we have

V φ
i (y)− V φ

i (x) = (
ui (y) +

∑∞

k=1
β2k−1 (ui (x)− c (y, x)) +

∑∞

k=1
β2k (ui (y)− c (x, y))

)
−
(
ui (x) +

∑∞

k=1
β2k−1 (ui (y)− c (x, y)) +

∑∞

k=1
β2k (ui (x)− c (y, x))

)
=

1

1 + β
(ui (y)− ui (x))− β

1 + β
(c (x, y)− c (y, x)) . (48)

The first term is weakly (strictly) increasing in i and the second does not depend on it.

Let us now modify instantaneous payoffs and define

ũi (x) =

 ui (x) if φ (x) = x or φ2 (x) 6= x;

(1− β)Vi (x) if φ (x) 6= x = φ2 (x) .
(49)

Consider mapping φ̃ given by

φ̃ (s) =

 φ (x) if φ (x) = x or φ2 (x) 6= x;

x if φ (x) 6= x = φ2 (x) .
(50)

Then φ̃ is monotone and {ũi (x)}x∈Si∈N satisfies WID (SID). By Part 1, the continuation values{
Ṽ φ̃
i (x)

}x∈S
i∈N

computed for φ̃ and {ũi (x)}x∈Si∈N using (16) and (17) satisfy WID (SID) as well.

But by construction, Ṽ φ̃
i (x) = V φ

i (x) for each i and s, and thus
{
V φ
i (x)

}x∈S
i∈N

satisfy WID

(SID). The argument for
{
V φ
i (x | s)

}x∈S
i∈N

is the same as before and is omitted. �

Proof of Lemma 3. Suppose, to obtain a contradiction, that for each x, y ∈ S such that

(18) holds (such pair of x and y exists because property (1) from Definition 3 is violated for φ),

φ′ given by (19) is not monotone.

Take x, y ∈ S such that |y − φ (x)| is minimal among all pairs x, y ∈ S that satisfy (18)

(informally, we consider the shortest deviation). By our assertion, φ′ is not monotone. Since φ

is monotone and φ and φ′ differ by the value at x only, there are two possibilities: either for

53



some z < x, y = φ′ (x) < φ (z) ≤ φ (x) or for some z > x, φ (x) ≤ φ (z) < φ′ (x) = y. Assume

the former (the latter case may be considered similarly). Let s be defined by

s = min (z ∈ S : φ (z) > y) ; (51)

in the case under consideration, the set of such z is nonempty (e.g., x is its member, and z found

earlier is one as well), and hence state s is well-defined. We have s < x; since φ is monotone,

φ (s) ≤ φ (x).

Notice that a deviation in state s from φ (s) to y is monotone: indeed, there is no state z̃

such that z̃ < s and y < φ (z̃) ≤ φ (s) by construction of s, and there is no state z̃ > s such

that φ (s) ≤ φ (z̃) < y as this would contradict φ (s) > y. By assertion, this deviation cannot be

profitable, i.e.,

V φ (y)− c (s, y) ≯s V φ (φ (s))− c (s, φ (s)) . (52)

By Lemma 2, since y < φ (s),

V φ
maxMs

(y)− cmaxMs (s, y) ≤ V φ
maxMs

(φ (s))− cmaxMs (s, φ (s)) . (53)

Since s < x, Assumption 5 implies (for i = maxMx)

V φ
i (y)− ci (s, y) ≤ V φ

i (φ (s))− ci (s, φ (s)) . (54)

On the other hand, (18) implies

V φ
i (y)− ci (x, y) > V φ

i (φ (x))− ci (x, φ (x)) . (55)

We therefore have(
V φ
i (φ (s))− ci (x, φ (s))

)
−
(
V φ
i (φ (x))− ci (x, φ (x))

)
>

(
V φ
i (y)− ci (s, y) + ci (s, φ (s))− ci (x, φ (s))

)
−
(
V φ
i (y)− ci (x, y)

)
(56)

= (ci (s, φ (s))− ci (s, y))− (ci (x, φ (s))− ci (x, y)) ≥ 0,

since s < x and y < φ (s). Consequently,

V φ
i (φ (s))− ci (x, φ (s)) > V φ

i (φ (x))− ci (x, φ (x)) (57)

and thus, by Lemma 2, since φ (s) < φ (x) (we know φ (s) ≤ φ (x), but φ (s) = φ (s) would

contradict (57)),

V φ (φ (s))− c (x, φ (s)) >x V
φ (φ (x))− c (x, φ (x)) . (58)
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Notice, however, that y < φ (s) < φ (x) implies that |φ (s)− φ (x)| < |y − φ (x)|. This

contradicts the choice of y such that |y − φ (x)| is minimal among pairs x, y ∈ S such that (18)

is satisfied. This contradiction proves that our initial assertion that for any x, y ∈ S, (18) implies

that φ′ is nonmonotone, is incorrect. Consequently, there are x, y ∈ S such that (18) holds and

φ′ given by (19) is monotone. �

Proof of Lemma 4. We show first that if (1) is the case, then (2) and (3) are impossible.

We then show that if (1) does not hold, then either (2) or (3) are satisfied. We finish the proof

by showing that (2) and (3) are mutually exclusive.

First, suppose, to obtain a contradiction, that both (1) and (2) hold. Then (2) implies that

for some z ∈ [a+ 1, φ (a+ 1)]

V φ
minMa

(z)− cminMa (a, z) > V φ
minMa

(φ (a))− cminMa (a, φ (a)) . (59)

By Lemma 2,

V φ (z)− c (a, z) >a V
φ (φ (a))− c (a, φ (a)) , (60)

which contradicts that φ is MVE, so (1) cannot hold. This contradiction shows that if (1) holds,

(2) is impossible. We can similarly prove that if (1) holds, (3) cannot be the case.

Second, suppose that (1) does not hold. Notice that for any x ∈ S,

V φ (φ (x))− c (x, φ (x)) ≥x V φ (x) (61)

because this holds for φ1 if x ∈ [1, a] and for φ2 if x ∈ [a+ 1,m]. Consequently, if φ is not MVE,

then it is because property (1) of Definition 3 is violated. Lemma 3 then implies existence of a

monotone deviation, i.e., x, y ∈ S such that

V φ (y)− c (x, y) >x V
φ (φ (x))− c (x, φ (x)) . (62)

Since φ1 and φ2 are MVE on their respective domains, we must have that either x ∈ [1, a]

and y ∈ [a+ 1,m] or x ∈ [a+ 1,m] and y ∈ [1,m]; assume the former. Since the deviation is

monotone, we must have x = a and a+ 1 ≤ y ≤ φ (a+ 1). Hence, (62) may be rewritten as

V φ (y)− c (a, y) >a V
φ (φ (a))− c (a, φ (a)) . (63)

Suppose, to obtain a contradiction, that (2) does not hold. This means that there is some

z ∈ [φ (a) , a] such that

V φ
minMa

(z)− cminMa (a, z) ≥ V φ
minMa

(y)− cminMa (a, y) . (64)
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But (63) and (64) together imply

V φ
minMa

(z)− cminMa (a, z) > V φ
minMa

(φ (a))− cminMa (a, φ (a)) . (65)

Since z > φ (a) (z = φ (a) is impossible since then (65) would not hold), by Lemma 2, we have

V φ (z)− c (a, z) >a V
φ (φ (a))− c (a, φ (a)) .

This contradicts that φ1 is MVE on [1, a], which proves that in the case where x ∈ [1, a] and

y ∈ [a+ 1,m], (2) must hold. Now, if, instead of x ∈ [1, a] and y ∈ [a+ 1,m], we have

x ∈ [a+ 1,m] and y ∈ [1,m], we can similarly prove that (3) holds. Therefore, if (1) does not

hold, then either (2) or (3) does.

Third, suppose that both (2) and (3) hold. Let

x ∈ arg max
z∈[φ(a),φ(a+1)]

(
V φ

minMa
(z)− cminMa (a, z)

)
, (66)

y ∈ arg max
z∈[φ(a),φ(a+1)]

(
V φ

maxMa+1
(z)− cmaxMa+1 (a+ 1, z)

)
; (67)

then x ≥ a+ 1 > a ≥ y. Moreover,

V φ
minMa

(x)− cminMa (a, x) > V φ
minMa

(y)− cminMa (a, y) , (68)

V φ
maxMa+1

(y)− cmaxMa+1 (a+ 1, y) > V φ
maxMa+1

(x)− cmaxMa+1 (a+ 1, x) . (69)

However, x > y, and Assumption 5 implies minMa ≤ maxMa+1, so (68) implies

V φ
maxMa+1

(x)− cmaxMa+1 (a, x) > V φ
maxMa+1

(y)− cmaxMa+1 (a, y) , (70)

and this contradicts (69). This contradiction proves that (2) and (3) are mutually exclusive,

which completes the proof. �

Proof of Lemma 5. We prove the first part of Lemma only (the second part is completely

analogous). Let us first prove that φ′ satisfies property (1) of Definition 3. Suppose, to obtain

a contradiction, that this is not the case. By Lemma 3, there is a monotone deviation at state

x ∈ [1,m] to state y, i.e.,

V φ′ (y)− c (x, y) >x V
φ′
(
φ′ (x)

)
− c

(
x, φ′ (x)

)
. (71)

If x < m then, since deviation is monotone, y ≤ φ (m) = a ≤ m − 1. For any z ≤ m − 1,(
φ′
)k

(z) = φk (z) for any k ≥ 0, and thus V φ′ (z) = V φ (z); therefore,

V φ (y)− c (x, y) >x V
φ (φ (x))− c (x, φ (x)) . (72)
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However, this would contradict that φ is a MVE on S. Consequently, x = m. If y < m, then

(71) implies, given a = φ′ (m),

V φ (y)− c (m, y) >m V φ (a)− c (m, a) . (73)

Since the deviation is monotone, y ∈ [φ (m− 1) ,m− 1], but then (73) contradicts the choice of

a in (21). This implies that x = y = m, so (71) may be rewritten as

V φ′ (m) >m V φ (a)− c (m, a) . (74)

But since

V φ′ (m) = u (m)− βc (m, a) + βV φ (a) , (75)

(74) implies

u (m) >m (1− β)
(
V φ (a)− c (m, a)

)
. (76)

This, however, contradicts (22), which proves that φ′ satisfies property (1) of Definition 3.

To prove that φ′ is MVE, we need to establish that

V φ′
(
φ′ (x)

)
− c

(
x, φ′ (x)

)
≥x V φ′ (x) (77)

for each x ∈ S′. If x ∈ S (i.e., x < m), then
(
φ′
)k

(x) = φk (x) for any k ≥ 0, so (77) is equivalent

to

V φ (φ (x))− c (x, φ (x)) ≥x V φ (x) . (78)

Since φ is MVE on S, (78) holds for x < m. It remains to prove that (77) is satisfied for x = m.

In this case, (77) may be rewritten as

V φ (a)− c (x, a) ≥m V φ′ (m) . (79)

Taking (75) into account, (79) is equivalent to

(1− β)
(
V φ (a)− c (x, a)

)
≥m u (m) , (80)

which is true, provided that (22) is satisfied. We have thus proved that φ′ is MVE on S′, which

completes the proof. �

Proof of Theorem 1. We prove this result by induction by the number of states. For any

set X, let ΦX be the set of monotone MVE, so we have to prove that ΦX 6= ∅.
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Base: If m = 1, then φ : S → S given by φ (1) = 1 is MVE for trivial reasons.

Step: Suppose that if |S| < m, then MVE exists. Let us prove this if |S| = m. Consider

the set A = [1,m− 1], and for any a ∈ A, consider two monotone MVE φa1 : [1, a] → [1, a] and

φa2 : [a+ 1,m]→ [a+ 1,m]. Without loss of generality, we may assume that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]

(
V φ

maxMa+1
(z)− cmaxMa+1 (a+ 1, z)

)
, (81)

φa2 ∈ arg max
φ∈Φ[a+1,m],z∈[a+1,φ(a+1)]

(
V φ

minMa
(z)− cminMa (a, z)

)
. (82)

Define φa : S → S by

φa (s) =

 φa1 (s) if s ≤ a

φa2 (s) if s > a
. (83)

Let us define function f : A → {1, 2, 3} as follows. By Lemma 4, for every split S =

[1, a] ∪ [a+ 1,m] given by a ∈ A and for MVE φa1 and φ
a
2, exactly one of three properties hold;

let f (a) be the number of the property. Then, clearly, if for some a ∈ A, f (a) = 1, then φa is a

monotone MVE by construction of function f .

Now let us consider the case where for every a ∈ A, f (a) ∈ {2, 3}. We have the following

possibilities.

First, suppose that f (1) = 2. This means that (since φa1 (1) = 1 for a = 1)

arg max
z∈[1,φ(2)]

(
V φ1

minM1
(z)− cminM1 (1, z)

)
⊂
[
2, φ1 (2)

]
. (84)

Let

b ∈ arg max
z∈[2,φ(2)]

(
V φ1

minM1
(z)− cminM1 (1, z)

)
(85)

and define φ′ : S → S by

φ′ (s) =

 b if s = 1

φ1 (s) if s > 1
; (86)

let us prove that φ′ is a MVE. Notice that (84) and (85) imply

V φ1

minM1
(b)− cminM1 (1, b) > V φ1

minM1
(1)− cminM1 (1, 1) = V φ1

minM1
(1) . (87)

By Lemma 2, since b > 1,

V φ1 (b)− c (1, b) >1 V
φ1 (1) . (88)

Notice, however, that

V φ1 (1) = u (1) / (1− β) , (89)
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and also V φ1 (b) = V φ12 (b); therefore, (88) may be rewritten as

V φ12 (b)− c (1, b) >1 u (1) / (1− β) . (90)

By Lemma 5, φ′ : S → S defined by (86), is a MVE.

Second, suppose that f (m− 1) = 3. In this case, using the first part of Lemma 5, we can

prove that there is a MVE similarly to the previous case.

Finally, suppose that f (1) = 3 and f (m− 1) = 2 (this already implies m ≥ 3), then there

is a ∈ [2,m− 1] such that f (a− 1) = 3 and f (a) = 2. Define, for s ∈ S \ {a} and i ∈ N ,

V ∗i (s) =

 V
φa−11
i (s) if s < a

V
φa2
i (s) if s > a

. (91)

Let us first prove that there exists b ∈
[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)] such that

V ∗ (b)− c (a, b) >a u (a) / (1− β) , (92)

and let B be the set of such b (so B ⊂
[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)]). Indeed, since

f (a− 1) = 3,

arg max
z∈[φa−1(a−1),φa−1(a)]

(
V φa−1

maxMa
(z)− cmaxMa (a, z)

)
⊂
[
φa−1 (a− 1) , a− 1

]
. (93)

Let

b ∈ arg max
z∈[φa−1(a−1),a−1]

(
V φa−1

maxMa
(z)− cmaxMa (a, z)

)
, (94)

then (93) and (94) imply

V φa−1

maxMa
(b)− cmaxMa (a, b) > V φa−1

maxMa
(a)− cmaxMa (a, a) = V φa−1

maxMa
(a) . (95)

By Lemma 2, since b < a,

V φa−1 (b)− c (a, b) >a V
φa−1 (a) . (96)

We have, however,

V φa−1 (a) = V φa−12 (a) = u (a)−βc
(
a, φa−1

2 (a)
)
+βV φa−12

(
φa−1

2 (a)
)
≥a u (a)+βV φa−12 (a) = u (a)+βV φa−1 (a)

(97)

(V φa−1 (a) = V φa−12 (a) by definition of φa−1, and the inequality holds because φa−1
2 is MVE on

[a,m]). Consequently, (95) and (96) imply (92). (Notice that using f (a) = 2, we could similarly

prove that there is b ∈ [a+ 1, φa (a+ 1)] such that (92) holds.)
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Let us now take state some quasi-median voter in state a, j ∈ Ma, and state d ∈[
φa−1

1 (a− 1) , a− 1
]
∪ [a+ 1, φa2 (a+ 1)] such that

d = arg max
b∈B

(
V ∗j (b)− cj (a, b)

)
, (98)

and define monotone mapping φ : S → S as

φ (s) =


φa−1

1 (s) if s < a

d if s = a

φa2 (s) if s > a

(99)

(note that V φ (s) = V ∗ (s) for x 6= a). Let us prove that φ (s) is MVE.

By construction of d (98) that for any b ∈
[
φa−1

1 (a− 1) , φa2 (a+ 1)
]
,

V φ (b)− c (a, b) ≯a V φ (d)− c (a, d) . (100)

This is automatically true for b ∈ B, whereas if b /∈ B and b 6= a, the opposite would imply

V φ (b)− c (a, b) >a u (a) / (1− β) , (101)

which would contradict b /∈ a; finally, if b = a,

V φ (a) >a V
φ (d)− c (a, d) (102)

is impossible, as this would imply

u (a) >a (1− β)
(
V φ (d)− c (a, d)

)
(103)

contradicting (92), given the definition of d (98). Now, Lemma 5 implies that φ′ = φ|[1,a] is a

MVE on [1, a].

Suppose, to obtain a contradiction, that φ is not MVE. Since φ is made from MVE φ′ on

[1, a] and MVE φa2 on [a+ 1,m], there are only two possible monotone deviations that may

prevent φ from being MVE. First, suppose that for some y ∈ [a+ 1, φa2 (a+ 1)],

V φ (y)− c (a, y) >a V
φ (d)− c (a, d) . (104)

However, this would contradict (98) (and if y /∈ B, then (104) is impossible as d ∈ B). The

second possibility is that for some y ∈ [d, a],

V φ (y)− c (a+ 1, y) >a+1 V
φ (φa2 (a+ 1))− c (a+ 1, φa2 (a+ 1)) . (105)
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This means that

V φ
maxMa+1

(y)− cmaxMa+1 (a+ 1, y) > V φ
maxMa+1

(φa2 (a+ 1))− cmaxMa+1 (a+ 1, φa2 (a+ 1)) .

(106)

At the same time, for any x ∈ [a+ 1, φa2 (a+ 1)], we have

V φ
maxMa+1

(x)−cmaxMa+1 (a+ 1, x) ≤ V φ
maxMa+1

(φa2 (a+ 1))−cmaxMa+1 (a+ 1, φa2 (a+ 1)) (107)

(otherwise Lemma 2 would imply a profitable deviation to x). This implies that for any such x,

V φ
maxMa+1

(y)− cmaxMa+1 (a+ 1, y) > V φ
maxMa+1

(x)− cmaxMa+1 (a+ 1, x) . (108)

Now, recall that

φa1 ∈ arg max
φ∈Φ[1,a],z∈[φ(a),a]

(
V φ

maxMa+1
(z)− cmaxMa+1 (a+ 1, z)

)
. (109)

This means that there is z ∈ [φa1 (a) , a] such that

V
φa1

maxMa+1
(z)− cmaxMa+1 (a+ 1, z) ≥ V φ

maxMa+1
(y)− cmaxMa+1 (a+ 1, y) , (110)

and thus for any x ∈ [a+ 1, φa2 (a+ 1)],

V
φa1

maxMa+1
(z)− cmaxMa+1 (a+ 1, z) > V φ

maxMa+1
(x)− cmaxMa+1 (a+ 1, x) . (111)

But φa1 = φa on the left-hand side, and φ = φa on the right-hand side. We therefore have that

the following maximum is achieved on [φa (a) , a]:

arg max
z∈[φa(a),φa(a+1)]

(
V φa

maxMa+1
(z)− cmaxMa+1 (a+ 1, z)

)
⊂ [φa (a) , a] , (112)

i.e., that (3) in Lemma 4 holds. But this contradicts that f (a) = 2. This contradiction completes

the induction step, which proves existence of MVE.

The last statement follows from that any MVE has monotone paths, and any monotone

sequence converges. �

Proof of Theorem 2. Part 1. Suppose that there are two MVEs φ1 and φ2. Without

loss of generality, assume that m is the minimal number of states for which this is possible, i.e.,

if |S| < m, then transition mapping is unique. Obviously, m ≥ 2.

Let us first prove that if φ1 (x) = x, then x = 1 or x = m. Indeed, suppose the opposite,

and consider φ2 (x). If φ2 (x) < x, then φ1|[1,x] and φ2|[1,x] are two different mappings, both of
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which are MVEs in the same static environment restricted on the set of states S′ = [1, x]. This

would contradict the assertion that m is the minimal number of states for which this is possible.

If φ2 (x) > x, we get a similar contradiction by considering the subset of states [x,m], and if

φ2 (x) = x, we get a contradiction by considering [1, x] or [x,m] depending on where φ1 and φ2

differ. We similarly prove that if φ2 (x) = x, then either x = 1 or x = m.

Next, let us prove that |x ∈ S : φ1 (x) 6= φ2 (x)| ≥ 2. Indeed, if there was a single point x

where φ1 (x) 6= φ2 (x), then consider the following cases. If 1 < x < m, then we must have

φ1 (x) 6= x and φ2 (x) 6= x. Now, if φ1 (x) < x and φ2 (x) < x, then we get two different MVEs

on [1, x], and if φ1 (x) > x and φ2 (x) > x, then there are two different MVEs on [x, n]. This

is impossible, and thus without loss of generality φ1 (x) < x and φ2 (x) > x. By monotonicity,

φ1 (y) < x for y < x, and φ2 (y) > x for y > x. Therefore, φk1 (y) = φk2 (y) for any y 6= x

and k ≥ 0 and any y 6= x, and thus V φ1
i (y) = V

φ1
i (y) for all i ∈ N and y 6= x. Since

the Mx is a singleton, it is (generically) impossible that φ1 (x) 6= φ2 (x), as property (1) of

Definition 3 would be violated for at least one of the two mappings. We get a contradiction,

and the only remaining case to consider is x = 1 or x = m. Suppose x = 1 (the case x = m is

analogous). Either φ1 (1) > 1 or φ2 (1) > 1 (or both); in either case, we have, by monotonicity,

that φ1 (y) ≥ 2 for y ≥ 2 and therefore V φ1
i (y) = V

φ1
i (y) for all i ∈ N and y > 1. If both

φ1 (1) > 1 and φ2 (1) > 1, then, again, property (1) of Definition 3 would be violated for

either φ1 or φ2. Otherwise, without loss of generality, φ1 (1) = 1 and φ2 (1) = z > 1. Let

M1 = {j}; then φ1 (1) = 1 implies V φ1
j (z | 1) ≤ V

φ1
j (1) = 1

1−βuj (1), and φ2 (1) = z implies

V
φ2
j (z | 1) ≥ V φ2

j (1) = uj (1) + βV
φ2
j (z | 1), which is equivalent to V φ2

j (z | 1) ≥ 1
1−βuj (1). But

V
φ1
j (z | 1) = V

φ2
j (z | 1), and thus V φ1

j (z | 1) = 1
1−βuj (1) which cannot hold generically. We

thus proved that |x ∈ S : φ1 (x) 6= φ2 (x)| ≥ 2.

We can now prove the following. Let Imφ1 and Imφ2 be the images of φ1 and φ2, respectively.

Then Imφ1 ∪ Imφ2 = S. Indeed, if there was some s /∈ Imφ1 ∪ Imφ2, we could drop this state

without changing continuation payoffs
{
V
φ1
i (x)

}x∈S
i∈N

and
{
V
φ2
i (x)

}x∈S
i∈N

for x 6= s. Then φ1|S\{s}
and φ2|S\{s} would be MVE, and they would be different, as φ1 (x) and φ2 (x) differ for at least

two states.

In what follows, let b (x) be the state that maximizes uMx (y) on S (generically, it is unique).

By Assumptions 5 and 3, the sequence {b (x)}mx=1 is nondecreasing. Therefore, it has a fixed

point.
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Suppose, to obtain a contradiction, that b (2) = 1. By monotonicity, b (1) = 1, and

then by property (2) of Definition 3, φ1 (1) = φ2 (1) = 1. For j ∈ {1, 2}, denote aj =

max
{
s ∈ S : ∀x ≤ s, φj (x) ≤ x

}
. Then a1 and a2 are well-defined and different: indeed, if

a1 = a2 = a, then φ1 and φ2 would map [1, a] to [1, a] and, unless a = n, would map

[a+ 1, n] to [a+ 1, n]. This would lead to an immediate contradiction unless a = n, as we

would again get different MVEs on either [1, a] or [a+ 1, n]. If a = n and φ1 and φ2 differ on

[1, n− 1], we get the same contradiction. If a = n and φ1|[1,n−1] = φ2|[1,n−1], then we have

|x ∈ S : φ1 (x) 6= φ2 (x)| = 1, which we proved to be impossible. This proves that a1 6= a2, and

without loss of generality, assume a1 < a2.

It is easy to show that φ1|[1,a1] = φ2|[1,a1] and φ1|[a2+1,n] = φ2|[a2+1,n]. The first is true as

otherwise we would have two different MVEs on [1, a1] and a1 < n as a1 < a2 ≤ n. For the

second, observe that if s > a1 then φ1 (s) > s for s < n and φ1 (s) = s for s = n. If this were not

the case, then, since φ1 (a1 + 1) > a1 + 1, we would have a state x ∈ [a1 + 1, s] with φ1 (x) = x,

which we already ruled out. Similarly, if s > a2, then φ2 (s) > s for s < n and φ2 (s) = s for

s = n. This implies that if a2 < n, then φ1|[a2+1,n] = φ2|[a2+1,n]: otherwise we would get two

different MVEs on [a2 + 1, n].

We have proved that we must have a2 − a1 ≥ 2: otherwise φ1 and φ2 would differ for only

one value of a. Without loss of generality, suppose that a2− a1 is minimal (for given m) among

all possible environments and pairs of different MVE φ1 and φ2.

We have that a1 + 2 ≤ a2, so φ2 (a1 + 2) ≤ a1 + 2 (with equality possible only if a1 + 2 = n).

Consider the following cases.

Case 1: φ2 (a1 + 2) = a1 +1. Then we must have φ2 (a1 + 1) = a1 (indeed, if φ2 (a1 + 1) < a1

then a1 /∈ Imφ1 as φ (a1) = a1 is impossible since then a1 > 1, and clearly a1 /∈ Imφ2, but we

proved that this is impossble). Likewise, we have φ2 (a1) = a1 − 1 (provided that a1 ≥ 2) etc;

in other words, in this case φ2 (x) = x − 1 for all x ∈ [2, a1 + 2] (and a1 + 2 ≥ 3). We must

also have φ1 (x) ≥ 2 for x > 2: if x ≤ a1 then φ1 (x) = φ2 (x) = x − 1 ≥ 2, and if x > a1, then

φ1 (x) ≥ x > 2. Consider state space S̃ = [2,m] and define utilities by

ũi (s) =

 (1− β)ui (2)− (1− β)βc (2, 1) + βui (1) if s = 2;

ui (s) if s ≥ 3.
(113)

Consider two mappings φ̃1 and φ̃2 given by φ̃1 (x) = φ1 (x) for s ≥ 3, φ̃1 (2) = max (φ1 (1) , 2),

and φ̃2 (x) = φ2 (x) for s ≥ 3, φ̃2 (2) = 2. Notice that Ṽ φ̃2
i (s) = V

φ2
i (s) for all s ∈ S̃. This means
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that property (2) of Definition 3 holds. If property (1) is violated then, by Lemma 3 there must

be a monotone deviation. Any deviation from at x > 2 from φ̃2 (x) to some y would imply that

there was a deviation for φ2, so φ2 was not a MVE. At the same time, deviation at x = 2 from 2

to some y > 2 is not monotone, since φ̃2 (3) = φ2 (3) = 2 in the case under consideration. Hence,

φ̃2 is a MVE. Now, consider φ̃1. We have Ṽ
φ̃1
i (s) = V

φ1
i (s), except for s = 2 if φ1 (2) = 2. Since

we picked φ̃1 (2) = 2, we anyway conclude that property (2) of Definition 3 holds. If property

(1) is violated then there is a monotone deviation. As before, any deviation at x > 2 from φ̃2 (x)

to some y would lead to an immediate contradiction. However, a deviation at x = 2 from 2 to

some y > 2 may be monotone if φ̃1 (3) > 2. In this case, we notice that φ̃1|[3.n] is a MVE on

[3, n], and by Lemma 5 we can have a MVE φ̃
′
1 on [2, n] which coincides with φ̃1 on [3, n]. We

must have φ̃
′
1 = φ̃2, but then φ1 and φ2 coincide on {1}∪ [3, n], and thus may differ at most one

point. This is a contradiction.

Case 2: φ2 (a1 + 2) ≤ a1. Then let us modify the costs in the following way:

c̃ (x, y) =

 c (x, y) if x > a1 + 1 or y < a1 + 2;

c (x, y) +X if x ≤ a1 + 1 and y ≥ a1 + 2,
(114)

where X is a suffi ciently large number; in doing so, we make transitions from states x ≤ a1 + 1

to states y ≥ a1 + 2 prohibitively costly. Notice that for the new environment, mapping φ2 is

still MVE. Consider mapping φ̃ given by

φ̃1 (s) =

 φ2 (s) if s ≤ a1 + 1;

φ1 (s) if s ≥ a1 + 2.
(115)

Property (2) of Definition 3 then holds because it held for φ1 and φ2, and the extra cost X is

not involved on equilibrium path. If property (1) is violated, there is a monotone deviation. It

is clear, however, that the only candidate monotone deviation is one at a1 +2 from φ̃1 (a1 + 2) =

φ1 (a1 + 2) to some y ≤ a1 + 1. If y ≤ a1, then existence of such deviation would imply that

φ2 is not MVE, as φ1|[1,a1] = φ2|[1,a1]. The only deviation to consider is thus to y = a1 + 1;

it would be a profitable deviation if Vj (a1 + 1 | a1 + 2) > Vj

(
φ̃1 (a1 + 2) | a1 + 2

)
. However,

since φ2 (a1 + 2) ≤ a1, we have (for z = φ2 (a1 + 2) and j = Ma1+2) that Vj (z | a1 + 2) ≥

Vj (a1 + 1 | a1 + 2), and thus Vj (z | a1 + 2) > Vj

(
φ̃1 (a1 + 2) | a1 + 2

)
; this would again imply

that φ2 is not MVE, thus giving us a contradiciton. Consequently, both φ̃1 and φ2 are MVE in

the modified environment. However, if we compute ã1, we would get ã1 = a1+1 (as φ̃1 (a1 + 1) =
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φ2 (a1 + 1) ≤ a1 + 1), and thus a2− ã1 < a2− a1. This contradicts our choice of mappings so as

to minimize a2 − a1. This contradiction proves that b (2) ≥ 2.

Now, if b (m− 1) = m, we can obtain a similar contradiction. Therefore, b (2) ≥ 2,

b (m− 1) ≤ m − 1. By monotonicity, this implies m − 1 ≥ 2, i.e., m ≥ 3. But then there

is x ∈ [2,m− 1] such that b (x) = x. Then φ1 (x) = x, for otherwise property (2) of Definition

3 would be violated. But, as we proved above, this is impossible. This contradiction completes

the proof.

Part 2. As in Part 1, we can assume that m is the minimal number of states for which this

is possible. We can then establish that if φ1 (x) = x, then x = 1 or x = m. If φ1 (x) < x < φ2 (x)

or vice versa, then for all i ∈Mx, there must be both a state x1 < x and a state x2 > x such that

ui (x1) > ui (x) and ui (x2) > ui (x), which contradicts the assumption in this case. Since for

1 < x < m, φ (x) 6= x, we get that φ1 (x) = φ2 (x) for such x. Let us prove that φ1 (1) = φ2 (1). If

this is not the case, then φ1 (1) = 1 and φ2 (1) = 2 (or vice versa). If m = 2, then monotonicity

implies φ2 (2) = 2, and if m > 2, then, as proved earlier, we must have φ2 (x) = x + 1 for

1 < x < m and φ2 (m) = m. In both cases, we have φ1 (x) = φ2 (x) > 1 for 1 < x ≤ m. Hence,

V
φ1
i (2) = V

φ2
i (2) for all i ∈ N . Since φ1 is MVE, we must have ui (1) / (1− β) ≥ V 1

i (2)−c (1, 2)

for i ∈M1, and since φ2 is MVE, we must have V
2
i (2) ≥ ui (1) / (1− β)−c (1, 2). Generically, this

cannot hold, and this proves that φ1 (1) = φ2 (1). We can likewise prove that φ1 (m) = φ2 (m),

which implies that φ1 = φ2. This contradicts the hypothesis of non-uniqueness. �

Proof of Lemma 6. For a monotone MVE, Lemma 2 implies that {Vi (s)}s∈Si∈N and

{Vi (φ (s) | s)}s∈Si∈N satisfy WID condition. Now, consider the difference∑
j∈N

λE,E′ (i, j)V
φ
j

(
φ
(
s′
)
| s′
)
−
∑
j∈N

λE,E′ (i, j)V
φ
j (φ (s) | s)

=
∑
j∈N

λE,E′ (i, j)
(
V φ
j

(
φ
(
s′
)
| s′
)
− V φ

j (φ (s) | s)
)

(116)

for s′ > s. The right-hand-side of (116) is a mathematical expectation, with the distribution

λE,E′ (i, j) over j ∈ N , of a function V φ
j (φ (s′) | s′) − V φ

j (φ (s) | s) which is increasing by j as

already established. By Assumption 1, (116) is (weakly) increasing, thus proving the statement.

�

Proof of Theorem 3. The existence is proved in the text. Since, on equilibrium path,

there is only a finite number of shocks, then from some period t on, the environment will be
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the same, some Ex. Since φEx is monotone, the sequence {st} has a limit by Theorem 1. The

fact that this limit may depend on the sequence of shocks realization may be shown by a simple

example. �

Proof of Theorem 4. Part 1. Without loss of generality, suppose that h is the minimal

number for which two monotone MVE φ = {φE}E∈E and φ′ =
{
φ′E
}
E∈E exist. If we take

Ẽ =
{
E2, . . . , Eh

}
with the same environments E2, . . . , E and the same transition probabilities,

we will have a unique monotone MVE φ̃ = {φE}E∈E ′ =
{
φ′E
}
E∈E ′ by assumption. Now, with

the help of transformation used in the proof of 3 we get that φE1 and φ
′
E1 must be MVE in a

certain stationary environment E′. However, by Theorem 2 such MVE is unique, which leads to

a contradiction.

Part 2. The proof is similar to that of Part 1. The only step is that we need to verify that

we can apply Part 2 of Theorem 2 to the stationary environment E′. In general, this will not

be the case. However, it is easy to notice (by examining the proof of Part 2 of Theorem 2) that

instead of single-peakedness, we could require a weaker condition: that for each s ∈ S there is

i ∈Ms such that there do not exist x < s and y > s such that ui (x) ≥ ui (s) and ui (y) ≥ ui (s).

We can then prove that if {ui (s)}s∈Si∈N satisfy this property and φ is MVE, then
{
V φ
i (s)

}s∈S
i∈N

also does. The rest of the proof follows. �

Proof of Theorem 5. Part 1. It suffi ces to prove this result for stationary case. For each

s ∈ S take any protocol such that if φ (s) 6= s, then θs (m− 1) = φ (s) (i.e., the desired transition

is considered last). We claim that there is a strategy profile σ such that if for state s, φ (s) = s,

then no proposal is accepted in periods where st = s, and if φ (s) 6= s, then no proposal but

the last one, φ (s), is accepted, and the last one is accepted. Indeed, under such profile, the

continuation strategies are given by (16) and (17). Hence, if the state is s such that φ (s) = s,

there is no winning coalition that wants to have any other alternative x 6= s accepted. If the

state is s such that φ (s) 6= s, then, anticipating that φ (s) will be accepted over s in the last

voting round, no winning coalition has an incentive to deviate and potentially support another

state x 6= φ (s); at the last round, however, φ (s) would be supported because of property (2) of

Definition 3.

To prove that protocol (35) will suffi ce if the equilibrium is unique, we make the following

observation. Close inspection of the proof of Theorem 1 reveals that we could actually prove
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existence of monotone MVE which satisfies an additional requirement: If x < y < φ (x) or

x > y > φ (x), then{
i ∈ N : V φ

i (φ (x))− c (x, φ (x)) ≥ V φ
i (y)− c (x, y)

}
∈WE,x. (117)

If the equilibrium is unique, it satisfy this additional constraint. It is then straightforward to

prove that protocol (35) would suffi ce.

Part 2. If the transition mapping is monotone, then continuation utilities
{
V φ
E,i (s)

}s∈S
i∈N

={
V σ
E,i (s)

}s∈S
i∈N

satisfy WID for any E ∈ E . Again, the proof that φ is MVE reduces to the

stationary case. For each state s, let us define a resolute irreflexive binary relation �s on S as

follows: x �s y if either V φ (x | s) >s V φ (y | s) or (V φ (y | s) ≯s V φ (x | s) and for some a < b,

θs (a) = x and θs (b) = y), with the convention that θs (0) = s. In other words, �s resolves >s
for continuation values by giving precedence to states which are voted earlier in the protocol

θs. The theory of amendment agendas (see Shepsle and Weingast, 1984, and Austen-Smith and

Banks, 1999) implies that φ (s) must be the state that satisfies both properties of Definition 3.

The details are omitted to save space.

Part 3. The proof uses theory of amendment agendas, but otherwise similar to the proof of

Theorem 9 and is omitted. �

Proof of Theorem 6. Suppose, to obtain a contradiction, that φ2 (x) < x. Then φ1|S′

and φ2|S′ are mappings from S′ to S′ such that both are MVE. Moreover, they are different,

as φ1 (x) = x > φ2 (x). However, this would violate the assumed uniqueness (either assumption

needed for Theorem 2 continues to hold if the domain is restricted), which completes the proof.

�

Proof of Corollary 1. Consider an alternative set of environments E ′ =
{
E0, E2

}
, where

E0 coincides with E2 on S, but the transition probabilities are the same as in E . Clearly, φ′

such that φ′E0 = φ′E2 = φE2 is a MVE in E ′. Let us now consider stationary environments Ẽ0

and Ẽ1 obtained from E ′ and E , respectively, using the procedure from the proof of Theorem

3. Suppose, to obtain a contradiction, that φE2 (x) < x, then environments Ẽ0 and Ẽ1 coincide

on [1.s] by construction. Theorem 6 then implies that, since φE1 (x) = x, then φ′E0 (x) ≥ x

(since φ′E0 and φE1 are the unique MVE in Ẽ
0 and Ẽ1, respectively). But by definition of φ′,

x < φ′E0 (x) = φE2 (x) ≤ x, a contradiction. This contradiction completes the proof. �
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Proof of Theorem 7. Let us first prove this result for the case where each QMV is a

singleton. Both before and after the shock, the mapping that would map any state x to a state

which maximizes the instantaneous payoff uMx (y) − c (x, y) would be a monotone MVE for

β < β0. By uniqueness, φE1 and φE2 would be these mappings under E
1 and E2, respectively.

Now it is clear that if the shock arrives at period t, and the state at the time of shock is x = st−1,

then φE2 (x) must be either the same as φE1 (x) or must satisfy φE2 (x) > s. In either case, we

get a monotone sequence after the shock. Moreover, the sequence is the same if sτ ≤ s, and if

sτ > s, then we have sτ > s ≥ s̃τ automatically.

The general case may be proved by observing that a mapping that maps each state x to an

alternative which maximizes by uminMx (y)−c (x, y) among the states such that ui (y)−c (x, y) ≥

ui (x) for all i ∈ Mx is a monotone MVE. Such mapping is generically unique, and by the

assumption of uniqueness it coincides with the mapping φE1 if the environment is E
1 and it

coincides with φE2 if the environment is E
2. The remainder of the proof is analogous. �

Proof of Theorem 8. It is suffi cient, by transitivity, to prove this Theorem for the case

where maxME1,x 6= maxME1,x for only one state x ∈ [s+ 1,m]. Moreover, without loss of

generality, we can assume that maxME1,x < maxME1,x. Notice that if φ1 (x) ≥ x, then φ1 is

MVE in environment E2, and by uniqueness must coincide with φ2.

Consider the remaining case φ1 (x) < x; it implies φ1 (x− 1) ≤ x−1. Consequently, φ1|[1,x−1]

is MVE under either environment restricted on [1, x− 1] (they coincide on this interval). Sup-

pose, to obtain a contradiction, that φ1|[1,s] 6= φ2|[1,s]; since x > s, we have φ1|[1,x−1] 6= φ2|[1,x−1].

We must then have φ2 (x− 1) > x − 1 (otherwise there would be two MVEs φ1|[1,x−1] and

φ2|[1,x−1] on [1, x− 1], and therefore φ2 (x) ≥ x. Consequently, φ2|[x,m] is MVE on [x,m] under

environment E2 restricted on [x,m]. Let us prove that φ2|[x,m] is MVE on [x,m] under envi-

ronment E1 restricted on [x,m] as well. Indeed, if it were not the case, then there must be a

monotone deviation, as fewer QMV (in state x) imply that only property (1) of Definition 3

may be violated. Since under E1, state x has fewer quasi-median voters than under E2, it is

only possible if φ2 (x) > x, in which case φ2 (x+ 1) ≥ x+ 1. Then φ2|[x+1,m] would be MVE on

[x+ 1,m], and by Lemma 5 we could get MVE φ̃2 on [x,m] under environment E1. This MVE

φ̃2 would be MVE on [x,m] under environment E2. But then under environment E2 we have

two MVE, φ̃2 and φ2|[x,m] on [x,m], which is impossible.

We have thus shown that φ1|[1,x−1] is MVE on [1, x− 1] under both E1 and E2, and the

68



same is true for φ2|[x,m] on [x,m]. Take mapping φ given by

φ (y) =

 φ1 (y) if y < x

φ2 (y) if y > x
. (118)

Since φ1|[1,x−1] 6= φ2|[1,x−1] and φ1|[x,m] 6= φ2|[x,m] (φ1 (x− 1) ≤ x − 1, φ2 (x− 1) > x − 1,

φ1 (x) < x, φ2 (x) ≥ x), φ is not MVE in E1 nor it is in E2. By Lemma 4, in both E1 and

E2 only one type of monotone deviation (at x − 1 to some z ∈ [x, φ2 (x)] or at x to some

z ∈ [φ1 (x− 1) , x]) is possible. But the payoffs under the first deviation is the same under both

E1 and E2; hence, in both environments it is the same type of deviation.

Suppose that it is the former deviation, at x−1 to some z ∈ [x, φ2 (x)]. Consider an increase

in the cost

c̃ (a, b) =

 c (a, b) if a ≥ x or b < x;

c (a, b) +X if a < x and b ≥ x,
(119)

where X is suffi ciently large; denote the resulting environments by Ẽ1 and Ẽ2. This makes the

deviation impossible, and thus φ is MVE in Ẽ1 (in Ẽ2 as well). However, φ1 is also MVE in Ẽ
1,

as it is not affected by the increase in cost, and this contradicts uniqueness. Finally, suppose

that the deviation is at x to some z ∈ [φ1 (x− 1) , x]. Then consider the costs

c̄ (a, b) =

 c (a, b) if a < x or b ≥ x;

c (a, b) +X if a ≥ x and b < x,
(120)

where X is again suffi ciently large; denote the resulting environments by Ē1 and Ē2. This makes

the deviation impossible, and thus φ is MVE in Ẽ2. However, φ2 is also MVE in Ẽ
1, as it is not

affected by the increase in cost. Again, this contradicts uniqueness, which completes the proof.

�

Proof of Corollary 2. The proof is similar to the proof of Corollary 1 and is omitted. �

Proof of Theorem 9. Part 1. It suffi ces to prove this result in stationary environments.

Suppose MVE φ is nonmonotone, which means there are states x, y ∈ S such that x < y and

φ (x) > φ (y). By property (1) of Definition 3 applied to state x, we get

VmaxMx (φ (x))− c (x, φ (x)) ≥ VmaxMx (φ (y))− c (x, φ (y)) , (121)

and if we apply it to state y,

VminMy (φ (y))− c (y, φ (y)) ≥ VminMy (φ (x))− c (y, φ (x)) . (122)
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Since maxMx ≤ minMy by assumption, (121) implies

VminMy (φ (x))− c (x, φ (x)) ≥ VminMx (φ (y))− c (x, φ (y)) . (123)

Since in the generic case inequalities are strict, adding (122) and (123) yields

−c (x, φ (x))− c (y, φ (y)) > −c (x, φ (y))− c (y, φ (x)) . (124)

This, however, is equivalent to

− (c (x, φ (x))− c (x, φ (y))) > − (c (y, φ (x))− c (y, φ (y))) , (125)

thus contradicting Assumption 6 (as φ (x) > φ (y) and y < x).

Part 2. Again, consider stationary environments only. If φ is monotone, then for some

x, y ∈ S we have x < y and φ (x) > φ (y), which in this case implies φ (x) = y = x + 1 and

φ (y) = x. Property 2 of Definition 3, when applied to state x, implies that for all i ∈Mx,

Vi (y)− c (x, y) ≥ Vi (x) . (126)

This means that generically, for all i ∈My,

Vi (y)− c (x, y) > Vi (x) . (127)

The same property 2, when applied to state y, implies that for all i ∈My,

Vi (x)− c (y, x) ≥ Vi (y) . (128)

But (128) contradicts (127) as costs are nonnegative. This contradiction completes the proof.

�

Proof of Theorem 10. Take any MVE φ. Suppose, to obtain a contradiction, that for

some x, φ (x) > x, but φ2 (x) < φ (x) (the other case is considered similarly). Denote y = φ (x)

and z = φ (y). By property (2) of Definition 3 applied to state y, for all i ∈My,

Vi (z)− c (y, z) ≥ Vi (y) . (129)

The means that (129) holds for all i ∈ Mx. However, property (1) of Definition 3, applied to

state x, implies that, generically, at least for one i ∈Mx,

Vi (y)− c (x, y) > Vi (z)− c (x, z) . (130)
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Together, (129) and (130)

−c (y, z)− c (x, y) > −c (x, z) . (131)

However, Assumption 6 implies (as y > z and x < y) that

c (x, y)− c (x, z) ≥ c (y, y)− c (y, z) , (132)

which contradicts (131). This contradiction completes the proof. �

Proof of Theorem 11. Take an increasing sequence of sets of points, S1 ⊂ S2 ⊂ S3 ⊂ · · · ,

so that
∞⋃
i=1

Si is dense. For each Si, take MVE φi. We know that φi is a monotone function on Si;

let us complement it to a monotone (not necessarily continuous) function on S which we denote

by φ̃i for each i. Since φ̃i are monotone functions from a bounded set to a bounded set, there is

a subsequence φ̃ik which converges to some φ̃ pointwisely. (Indeed, we can pick a subsequence

which converges on S1, then a subsequence converging on S2 etc; then use a diagonal process.

After it ends, the set of points where convergence was not achieved is at most countable, so we

can repeat the diagonal procedure.) To show that φ̃ is a MVE, suppose not, then there are two

points x and y such that y is preferred to φ̃ (x) by all members of Mx. Here, we need to apply

a continuity argument and say that it means that the same is true for some points in some Si.

But this would yield a contradiction. �

Proof of Theorem 12. The proof follows from Kakutani’s theorem and is omitted. �
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