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Abstract

This paper studies legislative negotiations between two parties whose political power
changes over time. The model has a unique subgame perfect equilibrium, which becomes
very tractable when parties can make offers frequently. This tractability facilitates
studying how changes in political power affect implemented policies. An extension
of the baseline model analyses how elections influence legislative negotiations when
implemented policies affect future political power. Long periods of legislative gridlock
may arise when the time until the election is short and parties have similar levels of

political power.
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1 Introduction

This paper studies legislative negotiations between two parties whose political power changes
over time. Fluctuations in political power are a common feature in democratic countries. For
instance, Gallup’s polls show that Barack Obama’s approval rate was close to 70 percent when
he was sworn in as President in January 2009. By July 2009, his approval rate had dropped
to around 55 percent, and in January 2010 it was below 50 percent.! These fluctuations in the
political climate often reflect changes in the public opinion and can have a large impact on the
ability of political parties to carry out their legislative agendas. In this paper, I construct a
model of legislative bargaining to analyze how time-varying political power affects legislative
outcomes. I then use this model to study how the proximity of elections influences legislative
policymaking when the policies that parties implement effect their political power.

The model features two political parties that have to bargain over which policy to im-
plement. The parties’ relative political power evolves continuously over time as a diffusion
process. Parties can make offers at times on the grid {0, A, 2A, ...}, where A > 0 measures
the time between bargaining rounds. The parties’ level of political power determines their
relative bargaining position: the higher a party’s political power, the more frequently that
party will be making offers in the future. The assumption that the parties’ bargaining posi-
tion fluctuates together with their political power reflects a situation in which the preferences
of the voters (i.e., the public opinion) in the different electoral districts is changing over time,
and in which individual legislators adjust their choice of which party to support taking into
account these changes in the voters’ mood.

This legislative bargaining game has a unique subgame perfect equilibrium (SPE). Parties
always reach an agreement at the beginning of the negotiations, and the agreement that
parties reach depends on their relative political power. The game is difficult to analyze for
a fixed time period, but I show that the unique SPE becomes very tractable in the limit as
the time period goes to zero. The tractability of the limiting SPE, which is a consequence of
the assumption that political power evolves as a diffusion process, allows me to analyze the
effect that different features of the environment have on bargaining outcomes. For instance,
I identify conditions under which a more volatile political climate benefits the party with less
political power and leads to less extreme policies.

I extend this model to study legislative negotiations in the proximity of elections. As
before, two political parties bargain over which policy to implement in an environment in

which their relative political power is changing over time. The two new features of this

1See www.gallup.com.



extension are: (i) there is an upcoming election and the parties’ level of political power at
the election date determines their chances of winning the vote; and (ii) the policy that parties
implement has an effect on the future evolution of their political power, therefore also affecting
their chances of winning the election. The model is flexible, allowing for implemented policies
to affect the parties’ political power in arbitrary ways. This flexibility allows me to study
the equilibrium dynamics under different assumptions of how policies affect political power.

The proximity of an election has a substantial effect on the outcomes of legislative negoti-
ations. Unlike the baseline model, when there is an election upcoming the unique equilibrium
may involve long periods of gridlock; i.e., delay. These delays occur in spite of the fact that
implementing a policy immediately is always the efficient outcome. I show that these periods
of legislative inaction can only arise when the time left until the election is short enough. On
the contrary, parties are always able to reach a compromise if the election is sufficiently far
away. Intuitively, parties cannot to uncouple the direct effect of implementing a policy from
its indirect effect on the election’s outcome. When the election is close enough, this may
reduce the scope of trade to the point that there is no policy that both parties are willing to
accept.

The dynamics of legislative negotiations when there is an election upcoming depend on
the way in which the policies that parties implement affect their political power. I study
different possible ways in which policies may affect political power. The first setting I consider
is one in which the party with proposal power sacrifices its future political power when it
implements a policy that is close to its ideal point. This trade-off between ideal policies and
future political power arises when voters punish parties that implement extreme policies;
i.e., policies that are far away from the median voter’s ideal point. I show that there will
necessarily be gridlock in this setting if parties derive a high enough value to winning the
election. Moreover, gridlock is more likely to arise when political power is balanced, with
both parties having similar chances of winning the vote.

I also study a setting in which parties bargain over pork-barrel spending, and in which
the party that obtains more resources out of the negotiation is able to increase its political
power. This setting reflects a situation in which parties are able to broaden their level of
support among the electorate by discretionally allocating pork-barrel spending. I show that
parties always reach an immediate agreement in this setting. Moreover, I show that an
upcoming election leads to a more equal distribution of pork-barrel spending relative to the

model without elections.?

?In the paper I also analyze a setting in which it is always costly in terms of political power for the
responder to concede to proposals made by its opponent.



Introducing elections adds a new payoff-relevant state variable to the model: when there is
an election upcoming parties care about both their political power and the time left until the
election. This additional state variable introduces a new layer of complexity to the analysis,
making it harder to obtain a clean characterization of the equilibrium outcome. I sidestep
this difficulty by providing bounds to the parties’ equilibrium payoffs. These bounds become
tight as the election date becomes closer and are easy to compute numerically in the limit as
the time period goes to zero. I use these bounds on the parties’ payoffs to derive necessary
conditions for gridlock to arise, and to analyze how the likelihood of gridlock depends on the

time left until the election date and on the parties’ level of political power.

1.1 Related literature

Starting with the seminal paper by Baron and Ferejohn (1989), there is a large body of lit-
erature that uses non-cooperative game theory to analyze legislative bargaining. Banks and
Duggan (2000, 2006) generalize the model in Baron and Ferejohn by allowing legislators to
bargain over a multidimensional policy space. A series of papers use these workhorse models
to study the effect that different institutional arrangements have on legislative outcomes.?
The current paper adds to this strand of literature by introducing a model of legislative nego-
tiations in which the parties’ political power changes over time, a feature that was previously
ignored. I model time-varying political power as a diffusion process. This assumption leads
to a tractable characterization of the limiting SPE with frequent offers, allowing for many
comparative statics exercises. I use this model to study how the proximity of an election
affects legislative outcomes. This extension highlights the importance of electoral consider-
ations in understanding the dynamics of legislative policymaking, and gives new insights as
to when gridlock is more likely to arise.*

There are other papers that study settings in which policies affect future political power
and electoral outcomes. Besley and Coate (1998) study a two period model in which the
policy implemented today may change the identity of the policymaker in the future. They

show that this link between policies and future power may lead to inefficient policies in the

3Winter (1996) and McCarty (2000) analyze models a la Baron-Ferejohn with the presence of veto play-
ers. Baron (1998) and Diermeier and Feddersen (1998) study legislatures with vote of confidence procedures.
Diermeier and Myerson (1999), Ansolabehere et al. (2003) and Kalandrakis (2004) study legislative bargain-
ing under bicameralism. Snyder et al. (2005) analyze the effects of weighted voting within the Baron-Ferejohn
framework. Cardona and Ponsati (2011) analyze the effects of supermajority rules in legislative bargaining
within the model of Banks and Duggan.

4Diermeier and Vlaicu (2010) construct a legislative bargaining model to study the differences between
parliamentarism and presidentialism in terms of their legislative success rate.



present. Bai and Lagunoff (2011) construct an infinite horizon model which also features a
link between current policies and future political power. They focus on settings in which
the current ruler faces a trade-off between implementing its preferred policy and sacrificing
future political power, and characterize the equilibrium dynamics that such a trade-off gives
rise to.> The current paper adds to this strand of literature by showing that the link between
implemented policies and future political power can have a significant effect on legislative
outcomes when there is an election upcoming.

This paper shares some features with Dixit, Grossman and Gul (2000), who study a model
in which two political parties interact repeatedly and in which the parties’ political power
evolves over time according to a Markov chain. At each period, the party with more political
power can unilaterally decide how to allocate a unit surplus. The authors characterize efficient
divisions of the surplus that are self-enforcing over time. The current paper also analyzes
a setting with time-varying political power. However, in contrast to Dixit, Grossman and
Gul, this paper studies a canonical bargaining model in which parties negotiate over a single
policy.

This paper also relates to Simsek and Yildiz (2009), who study a bilateral bargaining game
in which the bargaining power of the players evolves stochastically over time. Simsek and
Yildiz focus on settings in which players have optimistic beliefs about their future bargaining
power. They show that optimism can give rise to costly delays if players expect bargaining
power to become more “durable” at a future date. In contrast, there are no differences in
beliefs in my model, and bargaining delays can arise when there is an election upcoming
and when the policies that parties implement prior to the election influence their chances of
winning the vote.

More broadly, this paper relates to the literature on delay and inefficiency in bargaining.
Delays in bargaining can arise when players have private information (Kennan and Wilson,
1993), when players bargain over a stochastic surplus (Merlo and Wilson, 1995, 1998), or when
players can build a reputation for being irrational (Abreu and Gul, 2000). Inefficiencies may
also arise when players hold optimistic beliefs about their bargaining power and update their
beliefs as time goes by (Yildiz, 2004), or when outside options are history dependent (Compte
and Jehiel, 2004). The current paper provides a new rationale for bargaining inefficiencies by
showing that delays may arise when parties cannot uncouple the direct effect of an agreement

from its indirect effect on electoral outcomes.

5Other papers in this literature are Milesi-Ferretti and Spolaore (1994), Bourguignon and Verdier (2000)
and Hassler et al (2003).



2 Baseline model

This section introduces the baseline model of legislative bargaining with time-varying political
power. Section 2.2 presents the framework. Section 2.3 proves existence and uniqueness of
a SPE, characterizes the parties’ limiting SPE payoffs as the time period goes to zero, and
uses these limiting SPE payoffs to derive some comparative statics results. Section 3 uses

this baseline model to study legislative negotiations in the proximity of elections.

2.1 Framework

Let [0, 1] be the set of alternatives or policies. Two political parties, ¢ = 1,2, bargain over
which policy in [0, 1] to implement. The set of times is a continuum 7" = [0, c0). However,
parties can only make offers at points on the grid T(A) = {0,A,2A,...}, where A > 0
measures the time between bargaining rounds. Parties are expected utility maximizers and

A across periods, with r > 0. Let z; € [0, 1] denote party

have a common discount factor e~
i’s ideal policy and assume that z; # z5. Party ¢’s utility from implementing policy z € [0, 1]
is u; () = 1 — |z — 2. Throughout the paper I maintain the assumption that the parties’
ideal points lie at the extremes of the policy space, with z; = 1 and 2z = 0.° Note that this
implies that u; (z) = z and uy (2) = 1 —z for all z € [0, 1]. This model is therefore equivalent
to a setting in which parties 1 and 2 are bargaining over how to divide a surplus of size 1.

Unlike models of legislative bargaining a la Baron and Ferejohn (1989) and Banks and
Duggan (2000, 2006), in this paper I assume that bargaining takes place at the party level.
This assumption reflects situations in which the leaders of each party in Congress bargain
over an issue on behalf of their respective parties. In this setting, the ideal policies z; and 2z
should be interpreted as the ideal policies of each of the parties; for instance, the policies on
the parties’ platforms.

The model’s key variable is an exogenous and publicly observable stochastic process z;,
which measures the parties’ relative political power and which determines the bargaining
protocol. Let B = {B;, F; : 0 < t < oo} be a one-dimensional Brownian motion on the
probability space (Q, F,P), where {F; : 0 < t < oo} is the filtration generated by the
Brownian motion. The Brownian motion B drives the process x;. In particular, I assume

that z; evolves as a Brownian motion with constant drift p and constant volatility o > 0,

6The assumption that the parties’ ideal policies are at the extremes of the policy space is without loss of
generality: if the policy space was [a,b] with a < z3 = 0 and b > z; = 1, all the alternatives in [a,0) U (1, ]
would be strictly Pareto dominated by policies in [0, 1]. Adding these Pareto dominated policies would not
change the equilibrium outcome.



with reflecting boundaries at 0 and 1. That is, while z; € (0,1) this variable evolves as
dxy = pdt + odB,. (1)

When z; reaches either 0 or 1, it reflects back. The reflecting boundaries guarantee that
z; € [0,1] at all times ¢.” Note that the process x; evolves in continuous time, but parties
can only make offers at times ¢t € T (A). This implies that the speed at which the process
x; evolves remains constant as [ vary the time between bargaining rounds A. Moreover, this
also implies that the process x; becomes more persistent across bargaining rounds as the
time between A becomes smaller: for smaller values of A the distribution of x;, A conditional
xy = x is more concentrated around x than for larger values of A. The assumption that
parties can make offers on the grid T'(A) makes this a game in discrete time, allowing me to
use subgame perfection as a solution concept.

The value of = represents the relative political power of the parties, or their level of support
among the electorate. Party 1’s political power is increasing in x and party 2’s political power
is decreasing in x. The parties’ relative political power determines the bargaining protocol.
In particular, at each bargaining round ¢ € T'(A) the party with more political power has
proposal power: party 1 has proposal power if ; > 1/2 and party 2 has proposal power if
x; < 1/2. The party with proposal power can either make an offer z € [0, 1] to its opponent
or pass. If the other party (i.e., the responder) rejects the offer or if the proposer chooses
to pass, then play moves to round ¢t + A. Otherwise, if at time t € T(A) the responder
accepts its opponent’s proposal to implement policy z € [0, 1], party ¢ = 1,2 obtains at this
date a payoff of u;(2) and the game ends.® The assumption that only the party with more
political power has proposal power is for simplicity. In Section 4.3 I show how the model can
be extended to allow for more general bargaining protocols.

This bargaining protocol implies that a party’s bargaining power is increasing in its polit-
ical power: party 1’s bargaining power increases with x, since a larger x means that party 1
will (on average) be making offers more frequently in the future. Similarly, party 2’s political
power decreases with x. The assumption that the parties’ political power influences their
bargaining position reflects a situation in which the preferences of the voters (or the public
mood) in the different electoral districts is changing over time, and in which individual legis-

lators adjust their choice of which party to support taking into account these changes in the

"See Harrison (1985) for a detailed description of diffusion processes with reflecting boundaries.
8This model is a variation of the bilateral bargaining model with time-varying bargaining power in Ortner
(2011).



09 B

L Party 1 makes
08 offers

Ao A A

0.4 B

03 B

0.2 Party 2 makes a

offers

0.1 3

Figure 1: Sample path of x;.

voters’ mood.? In such an environment, the party with higher relative political power would
have the support of more legislators, and so it would have a stronger bargaining position.
With this interpretation in mind, I will sometimes refer to the party with more political
power as the majority party and to its opponent as the minority party.

To illustrate the sequencing of moves in the game, suppose that xy € [1/2,1]. In this
case, party 1 has proposal power from ¢ = 0 until the first time z; goes below 1/2; i.e., until
7 (A) = inf{t € T(A) : & < 1/2}. At each period t € T(A) until 7 (A) party 1 can either
make an offer z € [0,1] or pass. If party 2 accepts an offer before 71(A), the bargaining
ends and parties collect their payoffs. Otherwise, party 2 becomes proposer between 71 (A)
and time 1 (A) = inf{t € T(A),t > 7 (A) : xy > 1/2}. Bargaining continues this way, with
parties alternating in their right to make proposals according to the realization of the process
xy, until a party accepts an offer. See Figure 1 for a plot of a sample path of x;.

Let I'a denote the legislative bargaining game with time period A. Ilook for the subgame
perfect equilibria (SPE) of this game.

Remark 1 Throughout the paper I assume that the parties’ political power x; evolves in con-

tinuous time, but that parties can only make offers at times in the grid T'(A) = {0, A, 2A, ... }.

9There is empirical evidence showing that legislators respond to the preferences of their constituencies
(i.e., Gerber and Lewis, 2004), and that constituents punish legislators that ignore their preferences (i.e.,
Canes-Wrone et al, 2002).



An alternative formulation of this model is to assume that relative political power moves dis-
cretely over time according to a transition density F'(x;ia|z;), maintaining the assumption
that parties can only make offers at times ¢t € T'(A). For this alternative model to be equiv-
alent to the model above, the transition density F'(x;ya|z;) must be equal to the transition
density function of the process that evolves as (1) with reflecting boundaries at 0 and 1.
Under this alternative specification the transition density F'(z:ya|z:) would depend on the
time period A: for small values of A the distribution over next period’s political power x; ;A

would be more concentrated around z; than for larger values of A.

Remark 2 Merlo and Wilson (1995) study bargaining games in which the realization of
an exogenous stochastic process determines at each period both the size of the surplus over
which players are bargaining and the identity of the proposer. The model in this section
belongs to the family of games that Merlo and Wilson study: in my model the size of the
surplus is constant, and the stochastic process only determines the identity of the proposer

at each bargaining round.

2.2 Equilibrium

Let M; = [1/2,1] be the set of states at which party 1 has proposal power and let My =
[0,1/2) be the set of states at which party 2 has proposal power. The following result shows
that I'a has a unique SPE, and characterizes the parties’ SPE payoffs. The proof of this and

all other results are in the appendix.'®

Theorem 1 For any A > 0, I'a has a unique SPE. Parties reach an immediate agreement
in the unique SPE. Fori = 1,2, let V2(x) denote party i’s SPE payoff when relative political
power is x € [0,1]. These payoffs satisfy:

VA

7

(2) = e TAE [VLA (xt+A)| Ty = x} if v & M;,
1—e™AF [VjA (xt+A)’ Ty = x} if x € M.

The content of Theorem 1 can be described as follows. In a SPE, for all = € [0, 1] the
minority party ¢ only accepts offers giving that party a utility equal to its continuation payoff
of waiting until the next bargaining round; i.e., a utility equal to e ™ F [V;A (:17t+A)‘ Ty = x}
Knowing this, the majority party always makes the lowest offer that its opponent is willing

to accept and the game ends with an immediate agreement.

10The proof of Theorem 1 adapts arguments in Merlo and Wilson (1995) to the current setting.



By Theorem 1, for all x € M;

(2

VA(r)=1—e"E [V (Tera)|zi=a] =1 —e " + e 2E [VA (wa)|lz =], (2)

where the second equality follows since V;2(y) + V2 (y) = 1 for all y € [0,1]. Combining
equation (2) with Theorem 1, it follows that

VAr) = (1—e ™) lgemy +e B [VA(za)|z = 2], (3)

where 174 is the indicator function. Equation (3) shows that party i’s payoff when 7 has
proposal power is equal to 1 —e ™" plus its expected continuation value. On the other hand,
party ¢’s payoff when i is the responder is only equal to its expected continuation value. The

term 1 — e ™2

represents the rent that a party obtains when it makes offers.

Theorem 1 shows existence and uniqueness of a SPE. However, the unique SPE is difficult
to analyze for a fixed time period A > 0. To obtain a better understanding of the model, the
next result characterizes the parties’ limiting SPE payoffs as A — 0. These limiting payoffs
are very easy to compute, and provide a good approximation of the SPE payoffs for settings

in which the time between bargaining rounds is short.

Theorem 2 There exists functions Vi*(+) and V5 (-) such that V2(+) converges uniformly to
V*(-) as A — 0. Moreover, V*(-) solves

)

() = { <v*><>+§ V) (0)  ifag M, @

4 u(Ve) (@) + 307 (Vi) (2) if v € M,

2

with boundary conditions (Vi) (0) = (V*) (1) =0, V;* (1/27) = V;* (1/27) and (V;*)'(1/27) =
(Vi) (1/27).

Theorem 2 shows that a party’s limiting payoffs as A — 0 is the solution to the ordinary
differential equation (4) with appropriate boundary conditions. The left-hand side of (4) is
party i’s limiting payoff measured in flow terms, while the right-hand side of (4) shows the
sources of party ¢’s limiting flow payoff. Party ¢’s flow payoff when it has proposal power is
equal to the rent it extracts from being proposer, which in the limit as A — 0 is equal to r,
plus the expected change in its continuation value coming from changes in x, which is equal
to u(V;*) (z) 4+ 10%(V;*)" (z). On the other hand, party i’s flow payoff when it does not have

proposal power is given only by the expected change in its continuation value.



The parties’ limiting SPE payoffs satisfy four boundary conditions. The boundary condi-
tions (V;*)' (0) = (V;*)' (1) = 0 are a consequence of the nature of the process z;: since x; has
reflecting boundaries at 0 and 1, party i’s payoff becomes “flat” as a function of political power
as x approaches either 0 or 1. The boundary condition V;* (1/27) = V;* (1/2%1) guarantees that
party i’s payoff is continuous on [0, 1]. Finally, the condition that (V;*)'(1/27) = (V;*)'(1/2%)
guarantees that party i’s payoff is differentiable on [0, 1].1*

The solution to the ordinary differential equation in (4) is given by

a;e” " + beP” if x ¢ M;,
{ 1+ cie ™ + d;eP* if x € M;,
where a = (4 \/p2 + 2ra2) /o2, B = (—p + /p2 + 2ro?) /o?, and where (a;, by, ¢;, d;) are
constants determined by the four boundary conditions. Since parties always reach an imme-
diate agreement, the limiting SPE payoffs in Theorem 2 also characterize the policies that
parties implement as a function of relative political power. In particular, party 1’s payoff
is equal to the implemented policy, since u;(z) = z for all z € [0,1]. Equation (A.4) in
Appendix A.2 presents the full expressions for Vi*(:) and V5 (-).

Definition 1 The political climate is advantageous for party 1 (for party 2) if p > 0 (if
w<0).

[ now present comparative statics results about how the limiting SPE payoffs vary with
changes in the volatility and drift of the process z;. The first result considers how the parties’
payoffs (and the implemented policies) depend on the volatility of z;. Recall that, fori = 1,2,
M,; is the set of values of z at which party ¢ is the majority party; i.e., My = [1/2,1] and
My =1[0,1/2).

Proposition 1 Suppose the political climate is advantageous for party j. Then, the payoff
of party i # j 1is increasing in o for all x € M;.

By Proposition 1, a more volatile political power makes the minority party strictly better

off when the political climate is advantageous for the majority party. The intuition for this

"The intuition as to why this last condition must hold is as follows. Since parties always reach an
immediate agreement, Vi*(z) + V5 (z) = 1 for all z. If the limiting payoff function of one party was not
differentiable at @ = 1/2, then the limiting payoff function of one of the two parties would have a convex
kink at © = 1/2. The proof of Theorem 2 shows that this can never be the case: if V;* had a convex kink
at 1/2, then for values of A small enough party ¢ would have a strict incentive to delay an agreement when
2 is in an interval around 1/2, contradicting the fact that parties always reach an immediate agreement for
any A > 0 (Theorem 1).

10
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Figure 2: Party 1’s payoff. Parameters: r = 0.05.

result is as follows. If the political climate is advantageous to party j # 4, an increase in
volatility increases the chances that party ¢ will recover political when x € Mj; i.e., when ¢
is the minority party. This improves party i’s bargaining position, allowing it to obtain a
better deal in the negotiations. When p = 0 the political climate is advantageous for both
parties, so in this case an increase in o benefits party 1 when x € [0,1/2) and benefits party
2 when z € (1/2,1].

When p # 0 an increase in volatility may decrease the minority party’s payoff if the
political climate is advantageous for the minority party. To see the intuition behind this,
suppose i > 0 so that the political climate is advantageous for party 1. If volatility is low,
party 1 will expect to regain political power soon when x is slightly below 1/2. In this case,
an increase in volatility makes it more likely that party 2 will maintain the right to make
offers for longer when x is slightly below 1/2. This improves party 2’s bargaining position,
and lowers party 1’s payoff. Figure 2 illustrates the results in Proposition 1 by plotting party
1’s payoft for different values of o. The left panel considers a case with 1 = 0, while the right
panel considers a case with g > 0.

The next result considers how the parties’ payoffs change with changes in the drift of x;.

Proposition 2 Party 1’s payoff is strictly increasing in p for all x € [0,1], and party 2’s
payoff is strictly decreasing in p for all x € [0, 1].

Proposition 2 shows that party 1’s payoff is increasing in u, and that party 2’s payoffs
is decreasing in p. The intuition behind this result is straightforward: a higher p implies

that party 1 will (on average) be making offers more frequently in the future. Thus, party

11



1’s bargaining position improves when g increases, allowing it to implement a policy that is

closer to its most preferred alternative.

3 Elections and legislative gridlock

This section extends the model of Section 2 to study legislative negotiations in the proximity
of elections. Section 3.1 presents the extended model. Section 3.2 proves existence and
uniqueness of equilibrium. Section 3.3 provides bounds on the parties’ equilibrium payoffs
and shows how these bounds can be used to analyze how the likelihood of gridlock depends
on the parties’ level of political power and the time left until the election. Finally, Section
3.4 studies three different applications of the model and derives additional results for those

settings.

3.1 A model with elections

I now describe the extension of the model with elections. As in the model of Section 2, parties
1 and 2 bargain over a single issue and must decide which policy in [0, 1] to implement. The
set of times is a continuum 7" = [0, 00), and parties can only reach an agreement at times
t € T(A) ={0,A,2A,...}. Both parties are expected utility maximizers and share a common

"A with » > 0. The parties’ utility indices over policies z € [0,1] are

discount factor e~
u1(2) = z and ug(z) =1 — 2.

There are two new features in this extended model. First, there will be an election at a
future date t* > 0, with ¢* € T'(A). The outcome of this election depends on the parties’ level
of political power at the election date. In particular, the party with more political power at
t* wins the election: party 1 wins if x;+ > 1/2, while party 2 wins if 2+ < 1/2. The party
that wins the election earns at time ¢* a payoff equal to K > 0. The value of K measures the
benefit that parties derive from being in office. For simplicity, I focus on the case in which
there is a single election at time t*. In Section 4.2 T discuss how the results generalize to
settings with multiple elections.

The second new feature of this extended model is that the policy that parties implement
affects the future evolution of political power. From time ¢ = 0 until the time at which parties
reach an agreement, relative political power z; evolves as a Brownian motion with drift p
and volatility ¢ > 0 and with reflecting boundaries at 0 and 1. If parties reach an agreement
to implement policy z € [0,1] at time ¢t € T(A), this agreement affects the evolution of

political power from time ¢ onwards. In particular, I assume that there exists a function

12



h:[0,1] x [0,1] = R, with z + h(z, 2) € [0, 1] for all (z,2) € [0,1] x [0, 1], such that relative
political power jumps at time t by h(x, 2) if at this date parties implement policy z. That
is, 4+ = limgy xs = @ + h(xy, 2) if parties implement policy z at time ¢. Then, from time ¢
onwards relative political power continues to evolve as a Brownian motion with drift 4 and
volatility o and with reflecting boundaries at 0 and 1.!2 The function h captures in reduced
form the effect that policies have an political power. The assumption that x + h(x, z) € [0, 1]
for all x, z guarantees that the parties’ relative political power always remains bounded in
0, 1]. For technical reasons I assume that h(z,-) is continuous for all z € [0,1].*

The bargaining protocol is the same as in the model of Section 2: at each time ¢t € T'(A),
party 1 has proposal power if z; > 1/2 and party 2 has proposal power if z; < 1/2. The
party with proposal power can either make an offer to its opponent or pass. If the responder
rejects the offer or if the party with proposal power chooses to pass, then play moves to round
t + A. Otherwise, if at time ¢ the responder accepts its opponent’s proposal to implement
policy z, each party i = 1,2 obtains at this date a payoff of u;(2).

The election is decided at date t*, with its outcome depending on the value of z;+. The
party that wins the election obtains at time t* a payoff of K, and the other party obtains
a payoff of 0. If parties had reached an agreement before time t*, then the games ends
immediately after the election. Otherwise, if parties have not reached an agreement by time
t*, the party with more political power can either make a proposal immediately after the
election (i.e., still at date ¢*) or can pass. Bargaining then continues, with parties alternating
in their right to make offers according to the realization of the process x;, until parties reach
an agreement.

This specification of the model allows for general ways in which policies can affect the
parties’ political power: not only do different policies may have a different effect on the level
of political power (i.e., for a fixed z, h(x, z) may vary with z); also, the same policy may have
a different effect on political power depending on the current level of x (i.e., for a fixed z,
h(z, z) may vary with ). Section 3.2 shows existence and uniqueness of equilibrium for this
general model and Section 3.3 derives bounds on the parties’ equilibrium payoffs. Section 3.4
considers different functional forms of h and derives properties of the equilibrium dynamics
under these different settings.

Let T'a(t*) denote the game with time period A > 0 and election date t* > 0. Ilook for the

12This specification implies that implemented policies only have an instantaneous effect on the parties’
relative political power. In Section 4.2 I discuss how the results in this paper would generalize if implemented
policies affected the parties’ political power in alternative ways.

13Continuity of h(x,-) guarantees the existence of an optimal offer for the proposer.
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SPE of this game. To guarantee uniqueness, I focus on SPE in which the party responding
to offers always accepts proposals that leave that party indifferent between accepting and
rejecting, and in which the party with proposal power always makes an acceptable offer to
its opponent whenever its indifferent between making the acceptable offer that maximizes its
payoff or passing. From now on, I use the word equilibrium to refer to an SPE that satisfies

this property.

3.2 Equilibrium

For any measurable function f : R — R and any s >t > 0, let E[f(zs)|z; = x] denote the
expectation of f(xs) conditional on x; = x assuming that parties don’t reach an agreement
between times ¢ and s; i.e., assuming that between ¢ and s relative political power evolves as
a Brownian motion with drift © and volatility o and with reflecting boundaries at 0 and 1.
For all z € [0,1] and all t < t*, let Q;(x,t) := E[l{z.cm)

which at time ¢ party ¢ is expected to win the election conditional on x; = x if parties don’t

x; = x| be the probability with

reach an agreement between t and t*. Note that these probabilities depend on the value of
x: for all t < t*, Q1(x,1) is increasing in z and Qs(z,t) = 1 — Q1(x,t) is decreasing in x. If
parties reach an agreement to implement policy z at time t < t*, the probability that party
i wins the election is Q% (x,t) := Q;(x + h(zx, 2),1).

For i = 1,2 and for any t < t*, let U;(z,z,t) := u;i(2) + e " "D KQ?(x,t) be the payoff
that party ¢ would obtain if parties reached an agreement to implement policy z € [0, 1]
at time t < t* with x; = z: if parties implement policy z at time ¢t < t*, party ¢ earns a
payoff u;(2) and it wins the election at time ¢* with probability Q7(x,t). The following result

establishes that this game has unique equilibrium payoffs.

Theorem 3 For any A > 0, Ta(t*) has unique equilibrium payoffs. Fori = 1,2, let WA (z, 1)
be party i’s equilibrium payoff at time t € T(A) when x; = x. Fort € T(A) and z € [0,1],
these payoffs satisfy:

(i) if t >, Wi (z,t) = V2 (z),
(ii) if t =t*, WA(2,t) = Klgeny + VA (2),

(iii) if t < t*,

e AE (WA (za, t + A)|zy =] if A(z,t)

@7
Ui(z(x,t), z,t) if A(x,t) # 0

Y

VVZ-A(ZL‘,t) = {
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where A(z,t) = {2z € [0,1] : Ui(z,2,t) > e "AE[WA (244n,t + A)|zy = 2] fori = 1,2} and,
for all (x,t) such that A(z,t) # 0,

Z(QZ t) . arg maXzeA(a:,t) U1 (Z, x, t) fo c Mh
, argmax.ca(z) Ua(2,2,t) if v € M.

Parties always reach an agreement at times t > t*. Moreover, parties reach an agreement at
times t < t* if and only if A(xz,t) # (.

Theorem 3 can be summarized as follows. Part (i) shows that the parties’ payoffs at times
t > t* are equal to their payoffs in the game without elections (i.e., the payoffs of Theorem
1). Part (ii), on the other hand, shows that the parties’ payoffs at time ¢ = ¢* are equal to
their payoffs from the election plus their payoffs in the game without elections. Intuitively,
for all t > t* the game ends immediately after parties reach an agreement. Therefore, the
subgame that starts at any ¢ > t* if parties have failed to reach an agreement before this date
is strategically identical to the game in Section 2. This implies that for all such dates the
outcome of the bargaining will be identical to the outcome of the game in Section 2: parties
will always reach an agreement at time ¢ > ¢* if they have failed to do so before, and party
i = 1,2 will obtain a payoff of V;*(x;) from this agreement.

Finally, part (iii) of Theorem 3 shows that at each time ¢ < t* parties will reach an
agreement only if there is a policy z € [0, 1] that, if implemented, would leave both parties
weakly better-off than waiting until the next period and getting their continuation payoffs
(i.e., only if A(x,t) # 0). In this case, the policy z(x,t) that parties implement is the best
policy for the party with proposal power among those policies that both parties are willing
to accept. Otherwise, if at time ¢ there is no policy that both parties are willing accept, there
is delay at time t.

Theorem 3 establishes uniqueness of equilibrium payoffs and leaves open the possibility of
gridlock (i.e., delay). The next result shows that, if there is gridlock in the unique equilibrium,

then this gridlock will only occur when the time left until the election is short enough.

Proposition 3 There exists s > 0 such that parties always reach an agreement at any time

t € T(A) with t* —t > s. Moreover, the value of s is increasing in K.

Proposition 3 shows that parties will always reach an agreement when the time left until
the election is long enough. Intuitively, the discounted benefit e 7"~ K of winning the
election is small when the election is far away. This limits the effect that implementing a

policy has on the parties’ payoffs, making it easier for them to reach a compromise. The

15



cutoff s > 0 in Proposition 3 is increasing on the benefit K that parties obtain from being
in office, and is independent of the way in which implemented policies affect the evolution
of the parties’ political power (i.e., is independent of the function h(z,z)). That is, gridlock

may arise when the election is further away if parties attach a higher value to being in office.

3.3 Bounds on payoffs

The election at date t* > 0 introduces an additional state variable to the model: in this
setting parties care both about the level of relative political power and about the time left
until the election. With this additional state variable, it is no longer possible to obtain
a tractable characterization of the parties’ payoffs in the limit as A — 0. I sidestep this
difficulty by providing bounds on the parties’ equilibrium payoffs. These bounds become
tight as the election becomes closer, and are easy to compute numerically in the limit as
A — 0. Moreover, I show how these bounds can be used to derive necessary conditions for
gridlock to arise in equilibrium, and to analyze how the likelihood of gridlock depends on the
time left until the election and on the parties’ level of political power.
For all t € T(A),t < t*, for all z € [0, 1] and for i = 1,2, let

WH(z,t)=F [e‘r(t*_t)V;A(:pt*) Ty =1x| + Ke " 0Q,(x, 1),

and let W?(:{:, t) := W2(z,t) +1— e~ Note that W2 (z, 1) is the expected payoff that

party ¢ would obtain if parties delayed an agreement until the election.

Lemma 1 For all t € T(A),t < t*, for all x € [0,1] and for i = 1,2, WA (z,t) €
(W (e 1), W (. 1))

Lemma 1 shows that the parties’ equilibrium payoffs prior to the election are bounded
by W2 (z,t) and Wf(x, t). Note that these bounds on payoffs become tight as the election
gets closer: W?(x,t) — Wz, t) =1 —e"® — 0 as t — t*. Moreover, these bounds
don’t depend on the way in which policies affect the parties’ political power; i.e., they don’t
depend on h(z, 2).

For fixed values of A > 0 it is difficult to calculate the bounds W% (x,t) and W?(:E, t).
The reason for this is that these bounds depend on the parties’ payoffs in the game without
elections, and these payoffs are difficult to compute for fixed values of A > 0. However, since

VA(+) converges uniformly to V;*(-), it follows that

wiA(x,t) — Wi(z,t):=FE [e_r(t*_t)Vi*(xt*)

Ty =] + Ke "W =9Q;(z,t) as A — 0.
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Moreover, this convergence is also uniform.!* Lemma A.5 in Appendix A.5 shows that
Wi (z,t) is the solution to a partial differential equation (PDE). This characterization of
W:(x,t) as a PDE allows for simple numerical evaluations of the bounds on the parties’
payoffs in the limit as A — 0.

The next result uses the bounds on payoffs in Lemma 1 to derive conditions under which
there will be delay or agreement at states (z,t) € [0,1] x T'(A) with ¢ < ¢*. This result can
be used to derive necessary conditions for gridlock to arise in equilibrium, and to analyze
how the likelihood of gridlock depends on the state variables of the game: the time left until

the election and the parties’ level of relative political power.

Proposition 4 For any time t € T(A),t < t* and any x € [0, 1],

(i) if there exists i = 1,2 such that U;(z,2,t) < Wi (x,t) for all z € [0,1], then parties

delay an agreement at time t if x; = x;

(i) if there existsi = 1,2 and 2', 2" € [0,1] such that U;(2', x,t) < W (,t) andWiA(x, t) <

Ui(z",x,t), then parties reach an agreement at time t if xy = x.

Part (i) in Proposition 4 provides necessary conditions for there to be delay at states (z, t)
with ¢ < ¢*. On the other hand, part (ii) in Proposition 4 provides necessary conditions for
there to be agreement at states (x,t) with ¢ < t*. These results can be used to analyze the
equilibrium dynamics of this model with elections: for each (x,t) € [0,1] x T'(A), I can use
the results in Proposition 4 to check whether parties will be able to reach an agreement or not
when the state of the game is (x,t). In the next subsection I illustrate this by analyzing how
the proximity of elections affects legislative policymaking under three different applications
of this model.

Note that there is a gap between the conditions in the two parts of Proposition 4. That
is, there might exist states (z,t) at which the parties’ payoffs satisfy neither the conditions
in part (i) of Proposition 4 nor those in part (ii). This gap in Proposition 4 arises because
I work with bounds on the parties’ payoffs. Since the bounds on payoffs become tight as
t — t*, the fraction of states (z,t) that are not covered by either condition in Proposition 4
vanishes as the election becomes closer.

For fixed values of A > 0 it is hard to check the conditions in Proposition 4, since it is

hard to compute the bounds on payoffs. Recall that W (x, t) converges uniformly to W7 (z, t)

14To see that this convergence is uniform, note that [W(x,t) — Wi(z,t)] < Ele™" ¢ " D(VA(24-) —
V(x4 )|)|z¢ = 2]. Since VA () converges uniformly to V;*(z), for every n > 0 there exists A > 0 such that,
for all (z,t) € [0,1] x [0,t*], E[le™"® =D (VA (xp) — Vi (z4)]) |2 = 2] < e —Hy < 1) whenever A < A.
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as A — 0. Letting , W, (z,t) == 1 — e "~ 4 W¥(z, 1), it follows that Wf(m,t) converges
uniformly to W: (x,t) as A — 0. This observation, together with Proposition 4, leads to the

following corollary:

Corollary 1 For any time t < t* and any x € [0,1],

(i) if there exists i = 1,2 such that U;(z,x,t) < Wi(z,t) for all z € [0,1], then there exists
A > 0 such that parties delay an agreement at time t if v, = x and A < A.

(i) if there exists i = 1,2 and ', 2" € [0,1] such that U(2',x,t) < Wi(z,t) and W, (z,t) <
Ui(2",x,t), then there exists A > 0 such that parties reach an agreement at time t if
r,=x and A < A.

Corollary 1 provides conditions for there to be delay or agreement at states (z,t) when
the time between bargaining rounds is small. The conditions in Corollary 1 are easy to check

numerically, since W7 (x,t) solves a PDE.

3.4 Three applications

The equilibrium dynamics in this model with elections will in general depend on the way in
which the policies that parties implement affect their political power; i.e., on the function
h(z,z). In this subsection, I explore three different ways in which policies affect political
power. The goal is to study how the proximity of elections affects the dynamics of legislative

policymaking under these three different settings.

3.4.1 Electoral trade-off

I start by considering a setting in which the party with proposal power faces the following
trade-off: implementing policies that are close to its ideal point lowers its level of political
power, while implementing moderate policies allows it to maintain its political advantage.
For instance, this trade-off would arise if voters punish parties that implement policies that
are too extreme, i.e., policies that are far away from the median voter’s ideal point.

To model this trade-off, I assume that for all (z,z) € [0,1] x [0, 1],

Bz, 2) = { e (5)

Az =3  ifz<1/2

where A € (0, 1] measures the effect that implemented policies have on the parties’ relative

political power. The assumption that A € (0,1] guarantees that = + h(z,z) € [0, 1] for all
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(x,z) € [0,1] x [0,1]. This functional form of h(x, z) captures the trade-off mentioned above,
since the majority party sacrifices political power when it implements a policy that its close

to its preferred alternative.

Definition 2 There is no gridlock if parties reach an agreement at all states (x,t) € T(A) x
[0,1]. There is gridlock if there are states (x,t) € T(A) x [0, 1] at which parties fail to reach

an agreement.

The following result shows that, in this setting, there will be gridlock whenever parties

derive a sufficiently high value from being in office.

Proposition 5 Suppose h(z, ) is given by equation (5). Then, there exists K > 0 such that
there is gridlock whenever K > K.

Figure 3 considers a setting with K > K and illustrates the typical patterns of gridlock
when h(z, z) satisfies equation (5). The squared areas in the figure are the values of (z,t)
at which parties will delay an agreement if A is small enough; i.e., states that satisfy the
conditions in part (i) of Corollary 1. On the other hand, the shaded areas in the figure are
values of (x,t) at which parties will reach an agreement if A is small enough, i.e., states that
satisfy the conditions in part (ii) of Corollary 1. The white areas are the values of (z,t) that
are not covered by either parts of Corollary 1.

Figure 3 shows that parties will delay an agreement when one side has a moderate ad-
vantage in terms of political power, and that they will reach an agreement when one party
has a very strong bargaining position. To see the intuition for this, consider first states at
which the majority party has a small advantage in terms of political power. Note that the
majority party has a lot to loose by implementing a policy close to its preferred alternative
at such states, since implementing such a policy would have a large negative impact on its
electoral prospects. If K is large enough, at such states the majority party will prefer to delay
an agreement until the election than to implement a policy close to its preferred alternative
and loose its electoral advantage. Moreover, at such states the majority party doesn’t want
to implement a policy close to 1/2 either: since it has a moderate political advantage, by
delaying an agreement until the election date the majority party would very likely be able to
implement a policy that is closer to its ideal point. This implies that at such states any policy
z € [0, 1] would give the majority party a lower payoff than what it could get by delaying an
agreement until the election. Thus, by Proposition 4 there must be delay at such a state.

Consider next states at which the majority party has a very strong bargaining position.

In this case, the majority party’s chances of winning the election would be large even after
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implementing a policy that lies relatively close its ideal point. Therefore, the majority party
would be willing to implement such a policy at these states. Moreover, the minority party
would also be willing to implement such a policy at these states, since this would increase
(at least marginally) its chances of winning the election. Thus, at these states parties are
able to find a compromise policy that they are both willing to accept.

Finally, for states (z,t) at which parties reach an agreement (i.e., the shaded region in
Figure 3), I can obtain bounds on the policies that parties will agree on using the bounds
on their payoffs from Lemma 1: since party i’s payoff is bounded by W2 (z,t) and W?(:c, t),
the policy z2(x,t) that parties agree on at state (x,¢) must be such that U;(2*(z,t),z,t) €
[wf(x,t),WiA(x,t)]. Note that these bounds on policies are easy to compute numerically
in the limit as A — 0. Moreover, since W2 (z,t) — Wf(a:, t) — 0 as t — t*, these bounds

become tight as the election approaches.

3.4.2 Costly concessions

I now consider an environment in which the majority party always benefits when Congress
implements a policy. This specification of the model is motivated by empirical evidence

showing that voters usually hold the majority party accountable for the job performance of
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Congress. That is, voters reward or punish the majority party depending on the performance
that Congress has had (i.e., Jones and McDermott, 2004 and Jones, 2010). As journalist Ezra

¢

Klein wrote in an article for The New Yorker: “...it is typically not in the minority party’s
interest to compromise with the majority party on big bills — elections are a zero-sum game,
where the majority wins if the public thinks it has been doing a good job.”!?

I model this environment by assuming that the majority party’s level of political power
jumps up discretely if parties reach an agreement to implement any policy. That is, for all
z € [0,1],

Wz, 2) = { min{g,l—x} %fle/Q, (©)
—min{g,z} ifz<1/2,

where ¢ is a strictly positive constant. Note that in this setting it is always costly for the
minority party to concede to a policy put forward by its opponent: conceding to a policy
lowers its political power by g, leading to a decrease in its electoral chances.

The next result shows there will also be gridlock in this setting if the payoff that parties

obtain from winning the election is large enough.

Proposition 6 Suppose h(z, z) is given by equation (6). Then, there is exists K such that
there is gridlock if K > K.

Proposition 6 shows that there will gridlock in this model when parties attach a high value
to being in office. Intuitively, the minority party incurs a cost if it accepts a proposal by
its opponent prior to the election, since accepting an offer will negatively affect its electoral
chances. When parties attach a high value to winning the election, there are states at which
no offer z € [0,1] compensates the minority party for this electoral cost. At such states
parties will never be able to reach a compromise, since the minority party would strictly
prefer to delay an agreement until the election than to implement any policy.

Figure 4 considers a setting with & > K and illustrates the typical patterns of gridlock
in this model. The squared areas in the figure are values of (z,¢) at which parties will delay
an agreement if A is small; i.e., states that satisfy the conditions in part (i) of Corollary 1.
The shaded areas in the figure are values of (z,t) at which parties will reach an agreement if
A is small; i.e., states that satisfy the conditions in part (ii) of Corollary 1. The white areas
are the values of (x,t) that are not covered by either parts of Corollary 1.

Figure 4 shows that parties will delay an agreement when their level of political power

is relative balanced, and will reach an agreement when one party has a strong advantage in

15 «Unpopular Mandate. Why do politicians reverse their positions?,” The New Yorker, June 25, 2012.
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terms of political power. Intuitively, the cost that the minority party incurs when it accepts
a proposal by its opponent is larger when the level of political power is balanced, since in
this case a change in x will have a big impact on the parties’ chances of winning the election.
If K is large, at these states there will be no policy z € [0,1] that would compensate the
minority party for its lower electoral chances, and so gridlock will arise. On the other hand,
the cost that the minority party incurs by accepting an offer is lower when its opponent has a
strong advantage in terms of political power, since in these cases the majority will very likely
win the election even if parties don’t implement a policy. Therefore, at such states parties
are able to reach a compromise.

Finally, for those values of (z,t) at which parties reach an agreement, I can again
obtain bounds on the policy that parties will implement using the bounds on payoffs in
Lemma 1: for such states (z,t), the policy z2(x,t) that parties agree on must be such that
Uy(22(2, 1), 2,) € [W2(x,8), W5 (x,1)].

3.4.3 Pork-barrel spending

I now consider a setting in which parties bargain over how to distribute pork-barrel spending,

and in which a party that obtains more resources out of the negotiation can increase its
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political advantage over its opponent. In this setting, a policy z € [0, 1] represents the
fraction of resources that party 1 obtains from the negotiation, and 1 — z is the fraction of
resources that party 2 obtains.

To model a situation in which more resources translate into more political power, I assume
that for all z € [0, 1] the function h(z, z) is continuous and increasing in z. Moreover, I assume
that h(xz,0) <0 < h(z,1) for all € [0, 1]. That is, if the outcome of the negotiation is such
that a party obtains all the resources, then the political power of that party must be at least
weakly larger after the agreement than before.

The following result shows that parties will always reach an immediate agreement in this

setting.

Proposition 7 Suppose that h(x,z) is continuous and increasing in z for all xz € [0,1].
Suppose further that h(x,0) < 0 < h(x,1) for all x € [0,1]. Then, there is no gridlock.
Moreover, for allt € T(A),t < t*, for all x € [0,1] and fori=1,2,

WA, 1) = VA (@) + e " IEQi(x,). (7)

Proposition 7 shows that parties always reach an immediate agreement when bargaining
over pork-barrel spending. To see the intuition behind this result, recall that policies have
two effects on the parties’ payoffs: a direct effect, since parties derive utility from the policies
they implement, and an indirect effect, since the policies they implement have an effect on
their electoral chances. These two effects run in the same direction when parties bargain over
pork-barrel spending. Therefore, the party with proposal power is always able to calibrate
its offer to leave its opponent indifferent between accepting or rejecting. In equilibrium the
responder always accepts such an offer and the game ends with an immediate agreement.

Proposition 7 also characterizes the parties’ payoffs in this environment: a party’s payoff
is equal to its payoff in the game without an election plus its expected payoff from the
election. Note that the expected payoff from the election is measured without taking into
account the effect that the agreement has on the parties’ electoral chances. The parties’
payoffs in Proposition 7 are easy to compute in limit as the time period goes to zero: since
lima_0 V;2(2) = Vi*(z), it follows that lima_,o WA (z,t) = Vi*(2) + e "D KQ,(x,1).

The expression of the parties’ payoffs in equation (7) can be used to back out the agree-
ments that parties reach in this setting. Let 22(z,t) € [0,1] be the agreement that par-
ties reach at time t € T(A),t < t* when x; = z. Party 1’s payoff from this agreement
is Uy (22(z,t),2,t) = 22(z,t) + e "TDKQ, (v + h(x, 22(x,t)),t). On the other hand, by
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Proposition 7 party 1's payoff at (z,t) is W (x,t) = V2 (2) + e " "D KQ,(z,t). Therefore,
z?(x,t) must be such that

Ax,t) = VA (z) = e " TYK [Q1(z,t) — Qi(x + h(x, 2% (x,1)),¢)] . (8)

From equation (8) I can analyze the effect that the election has on the agreement that
parties reach. For instance, suppose that z is such that V/2(x) > 1/2; that is, in the
game without elections party 1 gets a larger fraction of the available resources than party
2 when x; = z. Suppose further that the function h is such that h(z,1/2) = 0 for all z;
that is, the parties’ relative political power remains unchanged if they share the available
resources evenly. In this case, the agreement z2(x,t) that parties reach at time ¢ when
7, = x must be such that z2(x,t) € (1/2,V2(x)). To see this, note that the left-hand side
of (8) would be positive if z2(z,t) > V{(x), while the right-hand side would be negative
(since h(z,-) is increasing in z and since h(x,1/2) = 0). On the contrary, if 22 (z,t) < 1/2
then the left-hand side of (8) would be negative and the right-hand side would be positive.
By a symmetric argument it must also be that z2(z,t) € [V2(z),1/2) for all z such that
VA(x) < 1/2. Thus, when parties bargain over pork-barrel spending, an upcoming election
leads to a more equal distribution of resources compared to the model without elections.
Finally, since V*(z) — V/*(z) as A — 0, it follows from (8) that z*(z,t) := lima_,0 2% (2, 1)
solves 2*(z,t) = Vi (z) + e "W VK[Q (z,t) — Q1(z + h(x, 2*(x,1)),1)].

4 Discussion

This first part of this section discusses positive implications of the results in this paper. The
second part discusses some modeling choices and shows how some of the model’s assumptions

can be generalized.

4.1 TImplications on gridlock and elections

This paper illustrates how electoral considerations can affect the dynamics of legislative pol-
icymaking, leading to long periods of gridlock. By Proposition 3, these periods of legislative
inaction can only occur when the election is close enough; that is, when the time left until
the election is smaller than some value s. The value of s is increasing in the value K that
parties attach to winning the election. These results can be used to obtain an estimate on the

value that parties derive from winning an election based on observable outcomes of legislative
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negotiations: if we observe that Congress becomes gridlocked ¢ days before an election, we
can use the results in Proposition 3 to obtain a lower bound on the value of K.

In the models of Sections 3.4.1 and 3.4.2, gridlock is less likely to arise in settings in which
one party has a very strong bargaining position in Congress; see Figures 3 and 4 above. These
results are consistent with the work of Jones (2001), who studies the patterns of gridlock in
U.S. Congress. Jones (2001) finds that the level of party polarization in U.S. Congress
increases the likelihood of gridlock, but that the magnitude of this increase diminishes as the
number of seats under the control of the majority party increases. Put differently, the results
in Jones (2001) show that, for any given level of party polarization, the likelihood of gridlock
decreases as the number of seats under the control of the majority party increases; i.e., as
the bargaining position of the majority party increases.

Finally, the model also predicts that parties will always reach an agreement after the
election if they have failed to do so before. Importantly, this result does not depend on there
being only one election; see Section 4.2 below. This result suggests that one way to measure
whether elections are creating legislative inaction in the U.S. Congress is to count the number
of laws that legislators approve during lame duck sessions after elections. If the number of
laws approved during lame duck sessions is larger than normal, then the results in this paper

suggest that this would be a good indication of a gridlocked Congress prior to the election.

4.2 Modeling assumptions and extensions

Time-varying political power. In this paper I assume that the parties’ political power
evolves as a diffusion process. In the model of Section 2, this assumption leads to closed form
expressions for the parties’ payoffs in the limit as A — 0, allowing me to perform comparative
statics exercises. In the model with elections, the assumption that political power evolves
as a diffusion process allows me to obtain bounds on the parties’ payoffs that are easy to
compute numerically in the limit as A — 0. I use these bounds on payoffs to derive necessary
conditions for gridlock to arise, and to study how the likelihood of gridlock depends on the
time left until the election and on the parties’ relative political power.

There are other ways to model time-varying political power. For instance, I could instead
assume that the parties’ political power evolves over time as a Markov chain. However, under
this class of processes it would in general not be possible to obtain closed form expressions
for the parties’ limiting payoffs in the baseline model without elections. Moreover, such
processes would also make the analysis of the model with elections less amenable to numerical

computations.
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Multiple elections. The model in Section 3 assumes that there is only one election at time
t*. This assumption, together with the results in Section 2, implies that parties will always
reach an agreement immediately after the election. The analysis in Section 3 generalizes to
settings with multiple elections, provided the elections are sufficiently apart in time. For
instance, suppose that there is a second election scheduled for time t** > t*. If the time
between elections t**—t* is large enough, then by the results in Proposition 3 parties will reach
an agreement immediately after the first election if they haven’t done so before. Therefore, a
model with multiple elections would deliver a similar equilibrium dynamics than the model

with a single election, with gridlock only arising when the next election is close enough.!®

Implemented policies and political power. This paper assumes that implemented poli-
cies have an “instantaneous” effect on the parties’ political power: if parties implement policy
z at time t, then the parties’ relative political power reacts instantaneously after the agree-
ment; i.e., ; jumps by h(z;, z) immediately after parties reach an agreement. An alternative
(and more general) specification would be to assume that implemented policies affect the law
of motion of the process x;. For instance, implementing policy z at time ¢ could affect the
drift and/or volatility of the process that drives the parties’ political power going forward.
The methods I use in this paper can also be applied to study the equilibrium dynamics in
these settings. Indeed, by the same arguments as in Lemma 1, in these settings the parties’
equilibrium payoffs would still be bounded by W% (z,t) and W?(m,t). Therefore, in this
environment I could also use these bounds on payoffs to study how the likelihood of gridlock

depends on the time left until the election and on the parties’ level of political power.

General bargaining protocols. The models Sections 2 and 3 assume that the party with
more political power has proposal power. I now show how this assumption can be relaxed to
allow for a broader class of bargaining protocols. For simplicity, I consider only the model
without elections.

Consider the model without elections and suppose that at each time ¢ € T(A) party
1 makes offers with probability p;(z;) € [0,1] and party 2 makes offers with probability
pa(z:) = 1 — pi(zy). Assume further that p;(x) is continuous and increasing in z. Note that
p1(z) increasing in x captures the idea that party 1’s bargaining power is increasing in z,

while party 2’s bargaining power is decreasing in x.'7

6Moreover, it can be shown that if the elections are sufficiently apart in time, the parties’ payoffs after the
first election will be close to their payoffs in the game without elections. The proof of this result is available
upon request.

17With this specification, the bargaining protocol of Sections 2 and 3 can be approximated arbitrarily well
by sequence of continuous functions p}(x) converging to the step function p;(z) with p;(x) =0 for z < 1/2
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By arguments similar to those in the proof of Theorem 1, for any time period A > 0 this
game also has a unique SPE. This unique SPE is again difficult to analyze for any fixed time
period A > 0. However, this game also becomes very tractable in the limit as A — 0: in
Appendix A.7 I show that there exists functions ‘71* and 172* such that party i’s SPE payoffs
of this game converge uniformly to VZ* in the limit as A — 0. Moreover, for i = 1,2, f/z*

solves the following ordinary differential equation,

rVi(z) = rpie) + p(V7) (@) + %02(‘2*)” (z) for z € [0,1], (9)

with boundary conditions (V;*)' (0) = (V;*)' (1) = 0. The left-hand side of equation (9)
represents party ¢’s limiting payoff measured in flow terms, while the right-hand side shows
the sources of this flow payoff. Party i’s flow payoff when x; = x is equal to the expected
rent rp;(z) party ¢ extracts when making offers plus the expected change in its continuation

payoff due to changes in political power pu(V;*) (z) + Lo(V;)" (x).1

5 Conclusion

The first part of this paper constructs a model of legislative bargaining to study how changes
in political power affect the outcomes of legislative negotiations. At an abstract level, this
model generalizes standard bilateral bargaining games a la Rubinstein (1982) to settings in
which the player’s bargaining power varies over time. The model has a unique SPE, in which
parties always reach an immediate agreement. The unique SPE becomes very tractable in
the limit as A — 0. This tractability allows me to obtain predictions about how different
features of the environment affect the agreements that parties reach.

The second part of the paper uses this bargaining model to study the effect that elec-
tions have on legislative outcomes. I show that elections might give rise to long periods of
legislative inaction. These delays occur in spite of the fact that implementing a policy imme-
diately is always the efficient outcome. I provide bounds on the parties’ equilibrium payoffs.
These bounds on payoffs become tight as the election approaches, and are easy to compute
numerically in the limit as A — 0. I use these bounds on payoffs to analyze the equilibrium

dynamics of this model with elections.

and pi(z) =1 for all z > 1/2.

8Note that in this setting party i’s payoffs satisfy the same ordinary differential equation for all x € [0, 1].
Therefore, in this case there is no need to impose the boundary conditions V;*(1/27) = V;*(1/2) and
(V#)'(1/27) = (V;*)'(1/2F), since any solution to equation (9) will be continuous and differentiable on [0, 1].
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A Appendix

A.1 Proof of Theorem 1

Let F? be the set of bounded and measurable functions on [0, 1] taking values on R?. Let
|||, denote the sup norm on R*. For any f € F?, let ||f|| = sup,cioq If (2)[l5- Fix A >0,
r > 0 and let § = e™™®. Recall that, for i = 1,2, M, is the set of states at which party i is
proposer. Define v : 2 — F? as follows: for any f € F? and for i = 1,2, i # j,

OE [fi (xi3n) |2 = 2] if x € M;,

¢i(f)($):{ 1 —0E[f; (wpn) |z = 2] if x € M,

Note that v is a contraction of modulus d: for any f,g € F?, ||[o(f) —¥(g)|| < |f — gl

Proof of Theorem 1. To prove Theorem 1 I first assume that the set of SPE is non-empty.
I then prove that the game has a SPE. Fix a SPE and let f;(x) be party i’s payoff from this
SPE when 2 = 2. Let M = (M;, M) € F? and m = (M, M>) € F? be the supremum and
infimum SPE payoffs. Thus, for all x € [0,1] and for i = 1,2, f;(z) € [mi(x), M;(z)].

Note that for all z € M;, party i’s SPE payoff is bounded below by 1 —§E[M (2 a)|z: =
x], since in any SPE party j must accept an offer that gives that party a payoff equal to
SE[M (zisa)|z: = z]. On the other hand, for all z € M; party i’s payoffs is bounded below
by 0 E[m;(za)|z: = x], since party i can always guarantee this payoff by rejecting party j’s
offer. Thus, for all z € [0, 1] it must be that f;(z) > ¢; (m;, M;). Define G : F? x F* — F*
as G(M,m) := (1 (m1, M), a(ma, M), so fi(x) > Gi(M,m)()

At states x ¢ M;, party i’s payoff is bounded above by § E[M;(z)|r, = z], since party j
will never make an offer that gives party ¢ a payoff larger than this. Consider next x € M;,
and note that f;(z) + f;j(x) < 1. Moreover, by the arguments in the previous paragraph,
fi(x) > dE[m;(xza)|x, = ] for all x € M;. Combining these inequalities, it follows that
fi(x) <1—=6E[m;(za)|z: = ] for all z € M;. Thus, for all z € [0,1], fi(z) < ¢; (M;,m;).
Define H : F? x F? — F? as H(M,m) := (1 (My, my), a( My, my)), so fi(x) < H;(M,m)(x)

Note next that for any M’, M" and m/, m” (all functions in F?) such that M/ (z) > M/ (z)
for all x € [0,1],7 = 1,2 and m} (x) < m} (z) for all x € [0,1],7 = 1,2, it must be that
H; (M',m/) (x) > H; (M",m") (z) for all z,i = 1,2 and G; (M',m') (z) < G; (M",m") (x) for
all z,i = 1,2. It what follows, for any pair f,g € F? I will write f > g if f; (z) > g¢; (x) for
all z € [0,1],i=1,2.

Define the sequences {M"} and {m"} as follows. Let (M',m') = (M, m), and for all
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n > 2let (M™ m") = (H(M" ', m"1), G(M"', m"')). Note that M? = H (M*',m') > M!
and m? = G (M',m') < m!. Tt follows then by induction and using the observation in the
previous paragraph that {M"} is an increasing sequence and {m"} is a decreasing sequence.
Moreover, it must be that m”™ > 0 for all n and M™ < 1 for all n. Thus, both {M"} and {m"}
are bounded and monotonic sequences, so there exists M* and m* such that {M"} — M* and
{m"} — m*. Since the operators H and G are continuous, it must be that H (M*, m*) = M*
and G (M*,m*) = m*. Therefore, m* <m!=m < M = M' < M*.

Since G(M*,m*) = m*, it follows from the definition of G that v;(m}, My) = m} and
o( M7, m3) = mb. Moreover, H(M* m*) = M* and the definition of H together imply
that ¢ (M, m3) = M; and o(my, M3) = Mj. Therefore, both (M;,m}) and (mf, My)
are fixed points of ¢. Since v is a contraction with a unique fixed point, it follows that
(M;,m3) = (m*, M3). Finally, since m* <m < M < M*, it must be that m = M.

So far, I showed that if the set of SPE is non-empty, then all SPE are payoff equivalent.
I now show that the set of SPE is non-empty. Let V2(z) = (V/2(x), V (x)) be such that
VA() = (VA(+)). Note that V2(-) and satisfies the conditions in Theorem 1. To see that
the payoffs V2 (z) can be supported by a SPE, consider the following strategy profile. At
every x € M;, party i makes an offer that gives parties a payoff of V2(z) = (V/2(x), VL ().
At such a state, party j # i accepts any offer which gives that party a payoff of at least
VjA(x), and rejects any offer giving a payoff lower than this. The parties’ payoffs from this
strategy profile are V2. Moreover, it is easy to see that no party can gain by unilaterally

deviating from its strategy at any x € [0, 1]. Hence, this strategy profile is a SPE of [A. =

A.2 Proof of Theorem 2

For all = € [0, 1], party i’s SPE payoffs V;2(x) solves equation (3) in the main text. Setting

t = 0 and solving this equation forward yields

l—e ™ S

VA(x)=F — Z Ae ™ A em
k=0

(2

Ty = :13] : (A.1)

Equation (A.1) implies that V;*(z) := lima_,0 V2 (x) = E[r [~ e " 1(y,enm,dt|xo = x]. These
arguments show that V;*(-) — V;*(-) pointwise as A — 0. However, since V;*(x) and V()
are monotone in x for all A, it follows that this convergence is uniform on [0, 1].1?

For any s > 0, let p(x,y,s) = Prob(zs = ylxg = z). It is well known that p(z,y,s)

9Monotonicity of Vi follows since, for all t > 0, the probability that z; > 1/2 conditional on zq =  is
increasing . Hence, by (A.1), Vi is increasing in x. Since Vi (z) = 1 — V{2 () for all x, V2 is decreasing.
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solves Kolmogorov’s backward equation (see, for instance, Bhattacharya and Waymire, 2009,

chapter V.6),

0 0 1, 0°
%Z)(l}y, 8) :M%p(xagﬁ )+ 20 Wp(x Y,S )7 (A2)

with lim,_o p(z,y,s) = 1=} and a%p(;v,y,sﬂx:g = %p(m,y,s)]ml =0 for all s > 0. For

any s > 0 and for i = 1,2 let Py(s,z) = E[ly,, | = [y, plz,y,8)dy. Since

p(z,y,s) solves (A.2) with Zp(z,y,s)|sm0 = 2p(2,9,5)]s=1 = 0 and limsﬁop(:c y,8) =
1¢y—s, it follows that Pi(s,x) also solves (A.2) with P(O r) = lggenry and 2 Pi(s,2)]pm0 =
—P(s )|z=1 = 0 for all s > 0.2° Finally, note that V;*(z) =r [;~ e " Pi(t :L‘)dt

Lemma A1l Vi (z) and V5 (x) are continuous in x.

Proof. For i = 1,2 and for every € > 0, let V() := r [7" e " Pi(t,x)dt. Since Pi(t,-) is
continuous for all ¢ > 0,2! V#(z) is continuous for all € > 0. To show that V;*(z) is continuous,
it suffices to show that V(z) — V;*(x) uniformly as ¢ — 0. To see this, note that for any
e > 0and any © € [0,1], [Vi*(z) = Vi(x)| = r [{ e Pyt x)dt < r [Jedt = 1 — e,
Therefore, for every n > 0 there exists £(n) such that |V*(z) — VF(x)| < n for all z € [0, 1]
and all € < e(n). Hence, V(z) — V*(z) uniformly as e — 0. =

Lemma A2 V() and V5 (-) solve (4) in the main text, with boundary conditions (V;*)'(0) =
(Vi)'(1) = 0 and Vi (1/27) = Vi*(1/27) fori=1,2.

Proof. The rule of integration by parts implies that for all = # 1/2,

o0 o0 P
Vi(x) = r/ e P (s,x)ds = —e P, ( ‘0 / e_”—a (s :E)ds.
0 0 Os

Since —e " P (s, 2)|g” = lgzen,}, then Vi () = Lipenry + [, € _TSBP IB=1) s for all o # 1/2.
Since P; satisfies (A.2), for all z # 1/2
, 7

o 0 1
V(@) = luemy +/o e (M&B‘ (s,z) + 50 wpi (&@) ds

= liemy +% [M(Vi*)’ (x) + %02(‘/;*)” (x)] :

where the second equality follows since (V;*) (z) = r [;~e *’"3%&9 and (V*)"(z) =

7

r fooo e_“%ds for all x # 1/2. Mult1ply1ng both sides of this equation by r, it fol-

20That is, for all z € [0,1] and all s > 0, aagP(s x) = M%P(s z)+ 102 aaﬂ P(s,x).

2¥or all t > 0, P;(t,) is twice differentiable (and hence also contmuous) since P;(t, x) solves (A.2).
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lows that V;* solves (4) for all z € [0,1]. To pin down the boundary conditions, note that
(V) =rf e ,map (s2)| _,ds. Since aPi?(;,x)u:O = mhf = 0 for all s, it follows
that (Vz )'(0) = (\/;*)’(1) = (. Finally, since by Lemma A1 V;* is continuous, it must be that
Vir(1/27) = Vir(1/27). =

Lemma A3 Fizy € (0,1) and define 7, = inf{t : 2, = y}. Let g be a bounded function and
let v (z) = E[e™"™g (2,)| o = z]. Then, for all z € [0,y), v solves

ro(z) = ' (x) + ;0‘21/, (x), (A.3)

with v (0) = 0 and v (y) = g (y). Similarly, for all x € (y,1], v solves (A.3) with v' (1) =0
and v (y) = g (y)-

Proof. 1 prove the first statement of the Lemma; the proof of the second statement is
symmetric and omitted. Let v solve (A.3) for all z € [0,y), with v (y) = g (y) and ¥’ (0) = 0.
Let f(z,t) = e "0 (x), so that f (y,t) = e g (y). By Ito’s formula, for all z € [0,y),

1
df (x,,t) =e™ " (—r'ﬁ(mt) + p0’ (zy) + 2021)"( t)) dt +e "ot (z;) dB, = e "ot (z,) dBy,

where the second equality follows since v (z) solves (A.3) for all z € [0,y). Then, for all
z € [0,y),
o = l’:|

By (o) a=2] = B[S (o) 00=2] =50+ B| [ a7 (o)

= v(x)+ FE {/ e "ot (2;) dBy
0

xozx] =7 (2),

where the last equality follows since fOT’“‘ e "oV’ (24) dBy is a martingale with zero expectation.
Thus, v (z) = v (x) for all x € [0,y), so v (z) solves (A.3) for all x € [0,y) with v(y) = g(y)
and v'(0) =0. =

Remark A1l Let 7(1/2) := inf{t : z; = 1/2}. Lemmas A2 and A3 and the fact that
Vi5(1/2)+Vy(1/2) = 1 imply that, fori = 1,2 and allz ¢ M;, V;*(x) = Ele”""V2V*(1/2) |z =
#] = Ele 03 (1 = V2 (1/2) o = o]

Proof of Theorem 2. By Lemma A2, V2(z) — V*(z) uniformly as A — 0, with V;*
satisfying (4) with boundary conditions (V;*)'(0) = (V;*)'(1) = 0 and V*(1/27) = V;*(1/27).
To complete the proof of Theorem 2, T now show that V;* satisfies (V;*)'(1/27) = (V;*)'(1/2%)
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for i = 1,2. Suppose by contradiction that this is not true for some i = 1,2. Since V}* (z) +
V5 () = 1 for all z, then either V}* or V,f must have a convex kink at 1/2. Assume that V}*
has a convex kink. I will show that, in this case, for small values of A party 1 has a profitable
deviation from the SPE strategies derived in Theorem 1.

Forallk € (0,1/2)let 7% :=inf {t : 2y > 1/2+ k}. Let UF(x) := Ele™™ (1=Vy (z,x))|1o =
z], so Uf(z) = V*(x) for all x > 1/2 4+ k. Since V}* has a convex kink at 1/2, there exists
k € (0,1/2) such that Uf (z) > Vi* (z) = Ele "™ V/2(1 — V5 (1/2))|xg = x| for all z < 1/2.
Consider the following deviation for party 1. For all # > 1/2 + &, offer V2 (x) to party 2
(an offer that party 2 accepts). For all x < 1/2 + k, reject all offers when responding, and
offer 0 < V2 () to party 2 when proposing (so that these offers are rejected by party 2). For
any A > 0, define the stopping time 75 := inf {t € T (A) : x; > 1/2 + Kk} and note that the
payoff that party 1 gets from following this deviation (when party 2 follows its equilibrium
strategy) is U (z) = Ele”A(1 — Vi (2.4))|xo = z].

Fix a sequence {A,} — 0. Let 7 := lim,,_,o, 74 and note that 7* = 7 almost surely.?
Let & be such that U (x) > V;* (z) + € for all = € [0,1/2]. Since V2" (2) — V;* () uniformly,
there exists N such that for all n > N, [V, () — V" (z)| < &/2 for all z € [0,1] and for
it =1,2. For all n > N, party 1’s payoff from this deviation is

0= [ (1 (o= o] 2 £ [ (105 ()=o)

Since 7% — 7% almost surely, it follows that U2 (x) — Uf(x) as n — oco. Finally, since
Uy (z) — g > Vi (x) + g for all z € [0,1/2], and since VA" (z) < Vi (z) + % for all n > N, it
follows that for n large enough, UR" () > V2" (z) for all z € [0,1/2]. Therefore, if V;* has a
convex kink at 0, then party 1 has a profitable deviation whenever A is small enough. But
this contradicts the fact that V2 (x) is party 1’s SPE payoff, so V;* cannot have a convex

kink at 1/2. A symmetric proof shows that V,* cannot have a convex kink at 1/2 either, so
(V) (1/2) = =(1y)'(1/2). =

The unique solution to the system of ODE’s in Theorem 2 is

ea/2 (ﬁefam_;'_aeﬁz)

(1+e@+)/2) (a+p)
e_ﬂ/Q(ozeﬂ“”JrBe(a-‘rﬁ)e—am)
1-—- (1+e@t9)/2) (a+B) x € [1/2,1],

z € [0,1/2],

W (2) = (A4)

22To see this, let D := {w € Q: 7% (w) > 7%(w)} be the set of sample paths of x; such that 7* is strictly
larger than 7. These sample paths are such that z; hits 1/2 + x, and then immediately stays below 1/2 + &
for a positive amount of time. By Blumenthal’s Zero-One Law (i.e., Karatzas and Shreve, 1998, page 94),
the set of all these paths has measure zero. Hence, 7% = 7" almost surely.
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and V' () =1 — V)" (z) for all x € [0, 1].

A.3 Proof of Propositions 1 and 2

Lemma A4 Let U be a solution to (A.3) with volatility o, and let W be a solution to (A.3)
with volatility o > o. (i) If U(y) > W(y) and U'(y) > W'(y) for somey, then U'(z) > W'(x)
for allx >y, and hence U(x) > W (z) for allx > y. (i) If U(y) > W(y) and U'(y) < W'(y),
then U'(x) < W'(x) for all x <y, and hence U(x) > W (z) for all z < y.

Proof. I prove part (i) of the Lemma. The proof of part (ii) is symmetric and omitted.
To prove part (i), I first show that there exists n > 0 such that U'(x) > W'(z) for all
r € (y,y+mn). Since U,W € C? this is true when U'(y) > W/(y). Suppose that U'(y) =
W'(y). Since U and W solve (A.3) with U(y) > W (y) and U'(y) = W'(y), it follows that
W"(y) = 2(rW (y) — uW'(y)) /5% < 2(rU(y) — uU'(y))/o? = U"(y). Hence, there exists n > 0
such that U'(z) > W/(x) for all z € (y,y + 7).

Suppose next that part (i) in the Lemma is not true, and let y; > y be the smallest
point with U’(y;) = W'(y;). By the paragraph above, U'(z) > W’(x) for all z € (y,y1), so
U(yy) > W(y1). Since U and W solve (A.3), then W"(yy) = 2(rW (yy) — uW'(11))/02 <
2(rU(y1) — pU'(y1))/o* = U (y1). But this and U’(y;) = W'(y;) together imply that U’(y; —
g) < W'(y; — ¢) for € > 0 small, a contradiction. Thus, it must be that U'(x) > W’(zx) for
allz >y. =

Proof of Proposition 1. I show that, for x4 <0, V}* is increasing in o for all z € [0,1/2].
The proof that V5" is increasing in o for all € [1/2,1] when p > 0 is symmetric and omitted.
Suppose then that g < 0. From equation (A.4), it follows that

OV (1/2) 1202(o + 5)€(a+ﬁ)/2 + ro? ((_1 + €(a+ﬁ)/2) 0%+ o?(a + B)G(Qw)/z)

80- Iu (1 -+ e(a+ﬁ)/2) 0'3(”2 + 27«0-2)3/2 - Y

where the inequality follows since ¢ < 0. Fix 0 < o, and let V}* and ‘71* denote party 1’s
limiting payoff under ¢ and o, respectively. The derivative above implies that ‘71*(1 /2) >
Vi*(1/2). By Theorem 2, V;* and V;* solve (A.3) on [0,1/2] (but with different values of
volatility), with (V;*)'(0) = (V;*)'(0) = 0. Note first that it must be that V;*(0) > V;*(0).
Indeed, if V;(0) > Vi(0), then Lemma A4 and the fact that (V7)(0) = (V) (0) = 0
together imply that V;*(1/2) > V;*(1/2). But this cannot be, since I have just shown that
Vi (1/2) < V7(1/2). Therefore, it must be that V;*(0) > V;*(0). Let z > 0 be the smallest
point such that V;*(z) = V;*(2), and note that z must be such that (V;*(2)) > (V;)(2). Using
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Lemma A4 again, it follows that Vy*(z) > Vi (z) for all > z. Since V;(1/2) > Vi (1/2), it
must be that z > 1/2, and hence V;*(z) > Vy(z) for all z < 1/2. =

Proof of Proposition 2. Since Vi*(x) + V5 (z) = 1 for all z, to prove the Proposition 2 it
suffices to show that V" is increasing in p for all x € [0,1/2] and that V5* is decreasing in u
for all = € [1/2,1]. From equation (A.4), it follows that

OV (1/2) ro? (_1 + e(a+5)/2) + 12 (e + ﬁ)/2)€(a+ﬂ)/2

= > 0.
O (14 e@th)/2) (u? 4 2ro?)3/2

Fix ;1 < i and let E[] and E[] denote the expectation operator when the drift is y and
ft, respectively. Let V;* and ‘72* denote party i’s payoff under p and g, respectively. Let
7 =inf{t : 2, > 1/2}. Then, by Remark A1, for all x € [0,1/2],

V@) = B/ =] =V (1/2)E [e|a = a]
> Vi(1/2)E [e7xo = 2] > Vi (1/2)E [e7 |z = z] = V' (x),

where the first inequality follows since V;*(1/2) > V;*(1/2) and the second follows since the
expected time until z; reaches 1/2 is shorter under p than under p < p. Hence, 171*(x) >
Vi(z) ¥V x € [0,1/2]. A symmetric argument shows that V' (z) < Vi (z) V z € [1/2,1]. =

A.4 Proofs of Section 3.2

Proof of Theorem 3. Let WA (x,t) denote party i’s SPE payoffs at time t € T(A)
with ; = x. Note that the subgame that starts at any time ¢t > t* at which parties
haven’t yet reached an agreement is identical to the game in Section 2.2 Therefore, in
any SPE parties will reach an agreement at time ¢ > ¢* if they haven’t done so already.
Moreover, party i’s payoff from this agreement will be equal to V;*(x;). It then follows that
WA (z,t*) = VA(2) + K X Lizen,y and WA (2, t) = VA () for all ¢ > t*.

For i = 1,2 and t € T(A),t < t*, let Us(z,2,t) = ui(z) + e " DKQ?(x,t) be the
payoff that party ¢ gets by implementing policy z € [0,1] at time ¢ when x; = x. Since
u;(+) and h(x,-) are continuous and since Q;(+,t) is also continuous, it follows that U,(-, z,t)
is continuous. Suppose that parties have not reached an agreement by time t* — A, and

that x4 aA = x. For i = 1,2, party i’s payoff if there is no agreement at time t* — A

is e "TAE[WA (e, t)|wpa = 1] Let Az, t* — A) == {z € [0,1] : Ui(z,z,t* — A) >

2If t = t*, the subgame that starts immediately after the election is identical to the game in Section 2.
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e TAE[WA (x4, %) |2 A = 2]} be the set of policies that give party i a payoff weakly higher
than the payoff from delaying an agreement, and let A(z,t* —A) := Ay (z, t* —A)NAy(x, t* —
A). If A(xz,t* — A) = (), there is no policy that both parties would agree to implement.
In this case, there will be delay at time t* — A, so party i’s payoff is Wi(z,t* — A) =
e TAE[WA (x4, t*) |24 _a = ] for i = 1,2. Otherwise, if A(z,t* — A) # () the majority party
j offers z(z,t* — A) € argmax.c oz +—a) U;(2, 2, t* — A), and the minority party accepts this
offer.?* In this case, for i = 1,2, party i’s payoff is U;(z(z,t* — A), z,t* — A).

The first paragraph above establishes parts (i) and (ii) of Theorem 3, while the second
paragraph establishes part (iii) for ¢ = ¢* — A. Consider next time t* — 2A. Party i’s
payoff in case of delay is e "AE[WA(xp_a,t* — A)|xp_on = x]. Let Aj(z,t* — 2A) =
{2 €[0,1] : Us(z,2,t" — 2A) > e "2E[WA (24 _p, t*) |2 —on = 2]} and let A(z,t" — 2A) =
Ay (x, t*=2A)N Ag(z, t* —2A). If A(x,t*—2A) = (), there is no policy that both parties would
agree to implement. In this case, there will be delay at t* —2A, so for i = 1, 2 party ¢’s payoff
is Wi(z,t* — 2A) = e "AE[WA(zp_a, t*)| 20+ _oa = x]. Otherwise, if A(x,t* — 2A) # ) the
majority party j offers z(z,t* — 2A) € argmax.c sz +—24) Uj(2,2,t* — A) and the minority
party accepts this offer. In this case, for i = 1,2 party i’s payoft is U;(z(z, t* —2A), z, t* —2A).
Repeating these arguments for all ¢ € T'(A) completes the proof of Theorem 3. m

Proof of Proposition 3. Note that W2 (z,t) + W(z,t) < 1+ Ke ™™= for all t < t*
and all z € [0,1]. Therefore, there exists s > 0 such that E[e ™ (W (ziin,t + A) +
WA (xpn,t + A))|z, = 2] < 1 for all ¢ with t* —¢ > s and all € [0, 1]; that is, s is such
that Ke ™ <1 —e . Note that the value of s is increasing in K. For all such ¢ and for all
x € [0,1], there exists a policy z € (0,1) such that u;(2) > Ele ™ *WA (zi1a,t + A)|z; = 7]
for + = 1,2. Since party ¢’s utility from implementing policy z at time t is weakly larger than
u;(2) regardless of the level of political power z, it follows that z € A;(z,t) for ¢ = 1,2 and
for all € [0, 1]. Therefore, A(x,t) = Ay(x,t) N Ag(z,t) # 0 for all x € [0,1], and so parties

always reach an agreement at t. m

A.5 Proofs of Section 3.3

Proof of Lemma 1. I first show that WA (z,t) > W2 (a,t) for all t < t* and all z € [0, 1].
To see this, note that party ¢+ can always unilaterally generate delay at each time ¢ < t*,

either by rejecting offers when x; ¢ M; and by choosing to pass on its right to make offers

24There are two things to note. First, the set of policies that maximize party j’s payoff is non-empty since
A(z,t* — A) is compact and Uj(z, z,t* — A) is continuous. Second, by our restriction on SPE, the majority
party will always make such an offer even if its indifferent between making this offer or delaying.
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when z; € M;. At times t < t*, the payoff that party ¢ gets by unilaterally delaying an
agreement until time t* is equal to E[e" " "OVA (zp)|zy] + e " EDKQy(wy, t) = W (4, ).
It thus follows that WA(x,t) > W2 (x,t) for all (2,t) with t < ¢*.

Next, I show that WA (z,t) < W?(z,t) for all t < t* and all z € [0, 1]. To see this, note
WA (2, t) + W (z,t) <1+ Ke "% for all t < ¢* and all x € [0, 1]; that is, the sum of the
parties’ payoffs is bounded above by the total payoff they would get if they implemented a

policy today, which is equal to u;(z) + uz(z) = 1, plus the sum of the parties’ discounted
payoff coming from the fact that one party will win the election, which is equal to Ke "¢ 1.
From this inequality it follows that for all ¢ < ¢t* and all x € [0, 1]

Wh(z,t) < 14 Ke Y WA(w t)
< 1+ Ke 0 — Bl 0VA(g,0)

— 1—¢ —r(t*—t) —l—E[ —r(t* ft)v (It*)

x =] — e "TIKQ;(x,t)
= g] + e " IDKQi(x, 1),

where the second inequality follows since W2 (z,t) > wf(x, t) and the equality follows since
VA(z) + V() = 1 for all x and since Qy(z,t) + Qo(x,t) = 1 for all z and all ¢ < ¢*. Hence,
WA (x,t) < W?(m,t) for all ¢ < ¢* and for all x € [0,1]. =

Lemma A5 Fori=1,2 and for all t < t*, the function W} (x,t) solves

0 0 1, 0?
TWi(z,t) = EWI(%@ + M%w?(%ﬂ + 50 mWf(x t),

with Wi(z, t*) = V¥ (2) + Klgeny and ZWi(x,t)]omo = ZWi(2,1)]em1 = 0.

Proof. For i = 1,2 and t < t* let wi(z,t) = E[V*(z4)|z; = z|. Hence, Wi(x,t) =
e WD (wy(z,t) + KQi(w,t)). Note that Q;(w,t) = Pi(t* — t,z) (recall from the proof of
Theorem 2 that Pi(s,z) = Pr[z, € M;|lzg = z] = fMip(x,y, s)dy). Since Pi(s,z) solves
(A.2) with P;(0,2) = Lyzenr;y and 2 Pi(s,2)|om0 = 2 Pi(s,2)]s=1 = 0, it follows that, for all
(x,t) € 10,1] x [0,t"), Q;i(x, s) solves

2

an(x s)—i—ua Qi(z, s)+1 —Qi(x, ),

2 Ox?
with boundary conditions Q;(x,t") = Lyzenm, and %Qi(x,s)h«:o = 6696 i(z, s)|x 1 =0. On
the other hand, since p(z, y, ) solves (A.2) with lim, o p(z,y, s) = 1{y—s} and 2Zp(z, y, 8)|s—0 =

2p(x,y,5)|e1 = 0 for all s < ¢*, it follows that, for all (z,t) € [0,1] x [0,¢"), wi(z,s) =
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BV ()|, = o] = fol Vi(y)p(z,y,t* — t)dy solves
) ) 1,8
0= $w1<x, S) + u%wz(x, S) + 50’ @UJZ(I, 8),

with lim, . w;(z, 8) = Vi(z) and Lw;(z, 8)|sm0 = Zwi(z, 8)]e=1 = 0.

The analysis above implies that W7 (x,t) = e =) (w;(x,t) + KQ;(x,t)) € C?! for all
(x,t) € [0,1] x [0,¢*). Note that by the law of iterated expectations Y; = e "™W7(x,t) is a
martingale for all ¢ < t*. By Ito’s lemma, for all (z,t) € [0, 1] x [0, t*),

2

, . 0 0 1,0 0
dY; =e " | —rWi(z,t) + %Ez(x, s)+ M%Ei(% s) + 502@Mi(:p, s) dt+0£wi(:t, s)dB;.
Since Y; is a martingale, the term inside the square brackets must be zero. This shows that
W (x,t) solves the equation in the statement of the lemma. Finally, the boundary conditions

follow from the boundary conditions of w;(x,t) and @Q;(x,t). m

Lemma A6 Fiz a timet € T(A),t <t* and an x € [0, 1]. If there exists an offer 2’ € [0, 1]
and a party j € {0,1} such that U;(?,x,t) = Ele "W (x44a,t + A)|2z, = ], then parties
reach an agreement at time t if v, = x.

Proof. Suppose such an offer 2’ exists, and note that this implies that 2’ € A;(z,t) (i.e.,
party j would accept an offer to implement 2’ at time ¢ with x; = z). Since W{ (24,1 +
A) + W (zga, t +A) <1+ Ke " 2) for all oy, a, it follows that WA (zi4a,t + A) <
1+ Ke =78 — W& (2, n,t + A) for all 2 a. Therefore,

E [e’TAVViA(xHA,t + Az, = x} < e KeW) B [e’TAVVjA(wHA,t + Az, = :1:} .
(A.5)

Party i’s payoff from implementing policy z’ at time ¢ with z; = x is

Ui(?,z,t) = 1+ Ke ") U2 x,t)
= 1+ Ke """ —Ele W (waa, t + Az = 2],

where the first equality follows since Ui (z,z,t) + Us(z,z,t) = 1 + Ke " =% for all z €
[0,1]. Combining the equation above with equation (A.5) it follows that U;(Z,x,t) >
Ele ™ AWA (xiyn, t+A) |z, = 2], so that 2’ € Ay(x,t). Hence, A(x,t) = Ai(z,t)NAs(z,t) # 0,

so parties reach an agreement at time ¢t if x; = x. m

Proof of Proposition 4. Let (z,t) be a state satisfying the conditions in part (i) of the
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Proposition, and suppose by contradiction that parties reach an agreement at time ¢ when
x; = x. Since U;(z,z,t) < W, (z,t) for all z € [0, 1], this implies that party i’s SPE payoff at
state (z,t) is strictly lower than W (z,t), a contradiction to the fact that that W, (z,t) is a
lower bound to party i’s payoff. Thus, there must be delay at state (z,t).

Next, let (z,t) be a state satisfying the conditions in part (ii) of the Proposition. By

Lemma 1

Ele " W (@it + A)la] < Ele ™ WA (xa,t + A)lxg] < Ele™™ W, (wiyat + A)|a).
(A.6)
Note further that Ele "2W 2 (24 a, t4+A) |z, = 2] = Ele ™ Ele @~ WA (24, 1) |2y a2 =
7] = Ele " OWA(zp, )|z, = 2] = W2(x,t) and that Ele>W: (ziea,t + A)|z, =
g] = e — e L Wh(x,,t) < W?(xt,t). Since U;(-,x,t) is continuous and since
Ui(,x,t) < W (z,t) and Uy(2", 2,t) > W?(x,t) for 2/, 2" € [0,1], there exists z € [0,1]
such that U(z,z,t) = Ele "W (2 a,t + A)|z; = 2]. Hence, by Lemma A.6 parties reach

an agreement at state (z,t). m

A.6 Proofs of Section 3.4

Proof of Proposition 5. To prove the Proposition, note first that it must be that either
VA(1) > 1/2 and/or V,2(0) > 1/2.%5. Therefore, since E[e™" " DV A(z) |2, = 2] — VA (2)
as t — t*, there must exist ¢ = 1,2 and (z,t) € [0,1] x T(A),t < t* with x € M, such that
E[e_r(t*_t)‘/;A(xt*)
policy z at time t when z; = =z is Uy(z,2,t) = 2z + Ke"®DQ(z + h(z,2),t). Since
Ele®=DVA(zp) |2, = 2] > 1/2 and since h(x, 2) satisfies (5), it follows that U,(z,z,t) =
24 Ke"W=0Q (x,t) < W(x,t) for all z < 1/2. On the other hand, for all z > 1/2 we
have that Qi(z + h(z,2),t) = Qi(z — Az — 3),t) < Qi(x,t). Let 2’ be such that 2/ =
Ele"®=OVA (2|2, = x] > 1/2, and note that Uy (z,2,t) < W2 (x,t) for all z € [1/2,2].
Finally, for all z € [/, 1],

x; = x] > 1/2. Suppose that i = 1. Party i’s payoff from implementing

W, t) = Ui(z,2,1) = Ble " VR (wp) |2 = 2] — 2+ Ke "0 [Q1 (2, 8) — QF (. 1)].

Since the term in squared brackets is negative for all z € [2/,1/2], for all such z there exists
K(z) > 0 such that W% (2,t) > Uy(z,z,t) if K > K(z). Moreover, it is clear that K(z) is
bounded for all z € [, 1]. Letting K = SUD,e[»r . K (2), it follows that W(x,t) > Uy(z,,1)

25This follows since Vi () is strictly increasing in  and V£ (x) = 1 — V{2 (z) is strictly decreasing in =
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for all z € [0,1] whenever K > K, so by Proposition 4 parties delay an agreement at time ¢ if
x; = x. Finally, note that a symmetric argument would establish the result in the Proposition

ifi=2. m

Proof of Proposition 6. Fix z € M; N (0,1) and t < t*. If h(x, z) is given by (6), policy
z; is the policy that maximizes Uj(-, x,t) (where z; is party j’s ideal policy). Moreover, note
that for all such (z,t),

W, t) — Uj(z,x,t) = E[e_r(t*_t)V}A(xt*)

; zy=1x]— 1+ Ke "0 [Qj(x,t) — Q;j(:p,t)] )

Since the term in squared brackets is negative, there exists K such that EJ-A(JJ, t) > Uj(zj, x,t)
whenever K > K. Since z; maximizes U;(-,z,t), it follows from Proposition 4 that parties

will delay an agreement at time ¢t if z; = 2. =

Proof of Proposition 7. I first show that parties reach an agreement at all states (z, 1)
with ¢t € T(A),t < t*. To see this, note that for all (z,t), U;(0,2,t) = Ele "D KQ,(z +
h(0,2))|zy = x] < W (z,t) and Uy(1,2,t) = 1 + Ele ™ VKQ (z + h(1,z))|z, = 2] >
Wf(x,t). Similarly, Us(1,2,t) < W5(z,t) and Uy(0,z,t) > W?(a:,t). Proposition 4 (ii)
then implies that parties reach an agreement at state (z,1).

Next, I show that the parties’ SPE payoffs satisfy equation (7). As a first step to establish
this result, I show that for all x € M; and all t € T(A),t < t*, there exists an offer
z € [0,1] such that Uj(z,z,t) = Ele" W (z44a,t + A)|z, = x]. To see this, note that by
the paragraph above there exists 2/, 2" such that U;(#,z,t) < Ef(x,t) and U;(2",z,t) >
W?(x,t). Moreover, note also that Ef(m,t) = E[e_rijA(l‘H_A,t + A)|z; = x| and that
W]-A(x,t) > E[e_TAWjA(xHA,t + A)|zy = z]. Then, by (A.6) and continuity of U;(-, z,t),
there must exist an offer z € [0, 1] such that U;(z,2,t) = Ele ™" DWA(zya, t+ A)|z, = a].
Note that this is the best offer for party ¢ among the offers that party j finds acceptable at
state (z,t) with = € M;, and hence is the offer that party ¢ will make in equilibrium.

I use this observation to show that the parties’ SPE payoffs satisfy equation (7). The
proof is by induction. Consider time t = t* — A. By the previous paragraph, for all
x € M; party i makes an offer z such that Uj(z,z,t) = Ele” "W (x4, t*)|xp_n = 2] =
E[e—rA‘/;A(xt*)
Ele "2V (x4)
state (z,t* — A) with z € M; is equal to V*(x) + e "2 KQ;(x,t* — A). Since parties reach
an agreement at t* — A, the sum of their payoffs is 1 + Ke ™. Hence, party i’s payoff at
any state (t* — A, z) with = € M; is equal to 1+ Ke™™ — VA(2) — e "2 KQ;(z,t* — A) =

Ty p = 2] + e "AKQ;(x, t* — A), and party j accepts such an offer. Since

Ty A = T] = V}A(x) for all x € M;, it follows that party j’s payoff at any
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Vi(z) + e "2 KQ;(x,t* — A), where the equality follows since V/2(z) + VA (z) = 1 for all x
and since Q;(z,t) + Q;(z,t) =1 for all (z,t) with ¢t < t*. Therefore, the parties’ SPE payoffs
satisfy equation (7) at t =t* — A.

Suppose next that the parties’ SPE payoffs satisfy (7) for t = t*—A,t*—2A, ..., t*—nA, and
let s = t*—nA. At states (z, s—A) with x € M;, party i makes an offer z such that U;(z, z, s—
A) = Ele "W (z,, ) |vs—n = 7] = EleT™ VA (2y)|ws-n = 2] + e YKQ; (2,5 — A)
(where the last equality follows from the induction hypothesis), and party j accepts such an
offer. Since E[e’mV}A(xsﬂxs_A =z = VjA(x) for all x € M;, it follows that party j’s payoff
at any state (r,s — A) with z € M; is equal to V2 () + e "2 KQ;(x,s — A). Since
parties reach an agreement at t* — A, the sum of their payoffs is 1+ Ke "# ~(s=2)  Therefore,
party i’s payoff at any state (z,s — A) with € M; is equal to 1 + Ke " ~(=4) VjA(a:) —
e =M KQ (2, s — A) = VA(2) + e =R KQ,(x, s — A), so the parties’ payoffs also
satisfy equation (7) att=s—A. m

A.7 General bargaining protocols

Consider game without elections as in Section 2, but with the following bargaining protocol:
for all x € [0, 1] party 1 makes offers with probability p;(z) and party 2 makes offers with
probability ps(x) = 1 — py(z). Assume further that p;(-) is continuous and increasing. By
arguments similar to those in Theorem 1, this game has a unique SPE. In the unique SPE

parties always reach an immediate agreement. Moreover, party i’s SPE payoffs satisfy

ViA () = pi(z) (1 — ¢ AE [V (Tten) |xt = x}) + (1 —pi(x))e AR [V (Tirn) }xt = ;U]
= pi(z)(1—e")+e E [V (Tera)| 20 = 2], (A.7)

where the equality follows since V2 (y) + V2 (y) = 1 for all y € [0,1]. Setting t = 0 and
solving (A.7) forward yields

) AN
VA(z) = E %ZAe_TkApi(mkA) xo = :L‘] .
k=0
Moreover, lima o V;* fo e "pi(zy)dt|xg = x| = V*( ) Finally, by Corollary 2.4 in
chapter 5 of Harrison (1985) for all z € [0,1] the function V;*(z) = Elr [[° e () dt|zo =

z] solves rV; () = rpi(x) + p(V7) () + 30° (Vi) (x), with (‘/z‘*> (0) = (V7)(1) =0.
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