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Abstract

Vote-trading is common practice in committees and group decision-making. Yet we know
very little about its properties. Inspired by the similarity between the logic of sequential rounds
of pairwise vote-trading and matching algorithms, we explore three central questions that have
parallels in the matching literature: (1) Does a stable allocation of votes always exists? (2) Is
it reachable through a decentralized algorithm? (3) What welfare properties does it possess?
We prove that a stable allocation exists and is always reached in a finite number of trades, for
any number of voters and issues, for any separable preferences, and for any rule on how trades
are prioritized. Its welfare properties however are guaranteed to be desirable only under specific
conditions. A laboratory experiment confirms that stability has predictive power on the vote
allocation achieved via sequential pairwise trades.
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1 Introduction

Trading support for one proposal in exchange for someone else’s support of a different proposal is

a common aspect of voting in committees, legislatures, and other bodies of group decision making.

Whether as exchanges of favors in small informal committees or as more elaborate deals in legisla-

tures, common sense, anecdotes, and systematic evidence, all suggest that the practice is a central
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component of decision-making in groups.1 Yet we know very little about the properties of vote

trading. Efforts at a theory were numerous and enthusiastic in the 1960’s and 70’s but have fizzled

and disappeared in the last 40 years. John Ferejohn’s words in 1974, towards the end of this wave

of research, remain true today: ”[W]e really know very little theoretically about vote trading. We

cannot be sure about when it will occur, or how often, or what sort of bargains will be made. We

don’t know if it has any desirable normative or efficiency properties.” (Ferejohn, 1974, p. 25)

One reason for the lack of progress is that the problem is difficult: not only does vote bartering

occur without the equilibrating properties of a continuous price mechanism, not only does it cause

externalities to allies and opponents of the trading parties, but each exchange triggers new profitable

exchanges. If we think of the trades sequentially, as a subset of voters trade votes on a set of

proposals, the default outcomes of these proposals change, generating incentives for a new round of

vote trades, which will again change outcomes and trigger new trades. What is the most productive

approach to modeling such a complex process?

The perspective taken in this paper is inspired by a similarity between the logic of sequential

rounds of vote trading and the problem of achieving stability in sequential rounds of matching

among different agents, as originally proposed by Gale and Shapley (1962).2 In line with the

matching literature, we explore the properties of a class of algorithms through which a sequence

of decentralized pairwise vote trades are realized, and in particular we use the familiar notion of

stability from that literature. An allocation of votes is stable if no pairwise-improving vote trade

exists.3 We ask whether a stable allocation of votes exists, whether the specific algorithm we

construct converges to a stable allocation, and whether we can say anything about individuals’

preferences over the outcomes induced by stable vote allocations.

We should note at the outset that the parallel to matching problems is imperfect. The closest

analogue is to a one-sided matching problem with externalities: a single group of individuals who

match in pairs but such that everyone has preferences not only over his own partner, but over the

composition of all matches. Here too there is only one group–voters–and in principle everyone can

match with everyone else,4 and preferences are defined over the full set of matches. But in addition

in our voting problem preferences evolve endogenously in response to executed trades. Trades by

others can reverse a voter’s status as winner or loser and affect his desire to trade, as well as his

attractiveness as trading partner.

The committee we study is formed by an odd number of voters and faces several proposals, each

of which may pass or fail and, after trade, is voted upon separately through majority voting. Every

1There is an substantial literature in political science documenting vote trading in legislatures. For example,
Stratmann (1992) provides evidence of vote trading in agricultural bills in the US Congress.

2Roth and Sotomayor (1990) and Gusfield and Irving (1989) survey some of the main results, from the perspective
of economic theory and computer science, respectively. This continues to be a very active area of research.

3This notion of stability has also been used in the analysis of network formation. See Jackson and Wolinsky
(1996) for an early application, and Jackson and Watts (2002) for the analysis of a dynamic algorithm building stable
network configurations through the creation of pairwise improving links.

4In contrast to two-sided matching problems where matches only occur between members of two separate groups–
men and women, students and schools, workers and firms.
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committee member can be in favor or opposed to any proposal and attaches some cardinal value

to his preferred direction prevailing. Members’ preferences are separable across proposals. A vote

trade is a physical exchange of ballots. For most of our analysis and in the experiment, we allow

pair-wise trading only: two voters engage in a trade if one delivers his vote to the other on one

proposal, in exchange for the other’s vote on a different proposal. As in the matching literature, a

trading pair is said to block a given allocation of votes if it can be better-off under an alternative

allocation that is in the pair’s power to achieve, keeping fixed the votes held by the other committee

members. A stable allocation is then an allocation of votes that cannot be blocked, i.e. such that

no pair-wise improving trade exists.

We define a further restrictions of the possible stable vote allocations as those that are achievable

from the initial vote allocation via a sequence of pairwise trades. We consider a family of trading

algorithms, according to which these trades can take place. In such an algorithm, an initial payoff

improving exchange of votes between two voters is selected among all possible pairwise improving

trades, using a specific selection rule, including random rules. This leads to a new allocation

of votes, and the algorithm again selects a pairwise improving trade from the set of all pairwise

improving trades. The algorithm continues until a vote allocation is reached where there are no

more pairwise improving trades. The family of such algorithms is populated by considering all

possible selection rules.

As remarked in Riker and Brams (1973), the requirement that a vote trade be welfare improving

for both traders implies that the votes being trade must be pivotal, and we call the class of such

algorithms the Pivot Algorithms. Our first result is that a Pivot algorithm always generates a stable

vote allocation in a finite number of steps, for any number of voters, any number of proposals, and

any configuration of (separable) preferences.

This is an interesting result, not only for its generality but also because stability–convergence to

a vote allocation such that no further vote trade is profitable–was one of the two central questions

of the early literature on vote trading. The literature addressed the ambitious conjecture that

vote trading may offer the solution to majority cycles in the absence of a Condorcet winner. The

original analysis (Park (1967)), studied non-binding agreements when voters vote on the full package

of proposals (as opposed to voting separately on each proposal). Park considered only majority

coalitions and concluded that the process can converge only if a Condorcet winner exists.5 Riker

and Brams (1973) and Ferejohn (1974) simplified the problem by considering binding agreements

and proposal-by-proposal voting, as in our model. Their conclusions are ambiguous: Riker and

Brams conjecture that even if stability held for pair-wise trading it would be compromised by

allowing trades among larger coalitions of voters; Ferejohn suggests that a stable vote allocation

may not hold even for pair-wise trading if voters are forward-looking, but does not fully specify the

game structure.

The Pivot algorithm through which we model vote trades implies that voters are myopic, and

5The result was later echoed by other studies, for example Berholz (1973), Koehler (1975), Schwartz (1981).
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if pair-wise trades only are allowed, a stable vote allocation always exists. In the second part of

the paper, we allow vote-trading among coalitions of voters of any sizes. Our results confirm Riker

and Brams’ conjecture. With coalition-trading stability cannot be guaranteed: we construct an

example with well-behaved preferences where a cycle develops and trading need never end. In

addition, in our model, with proposal-by-proposal voting and binding trades, there is no logical

connection between coalitional stability in vote-trading and the existence of a Condorcet winner.

A coalition-stable vote allocation may exist in the absence of a Condorcet winner, and may differ

from the Condorcet winner when the Condorcet winner exists.

The second conjecture at the core of the interest in vote trading in the 60’s and 70’s concerned

not the existence of stable vote allocations but their welfare properties. It held that vote trading

leads to Pareto superior outcomes because it allows the expression of the intensity of preferences.

The conjecture stemmed from an early debate between Gordon Tullock and Anthony Downs6 and

was stated explicitly in Buchanan and Tullock (1965).7 As a general result, the claim was rejected

by Riker and Brams’ (1973) influential ”paradox of vote trading”: Riker and Brams showed that if

vote trading is pair-wise and binding, there are non-pathological preferences such that each pair of

voters individually gains from vote trading and yet everyone strictly prefers the no-trade outcome.

Opposite examples where vote trading is Pareto superior to no-trade can easily be constructed too8,

and the literature eventually ran dry with the tentative conclusion that no general statement on

the desirability of vote trading can be made.

Our algorithm leads us to the same conclusion, but we reach some unexpected results in special

cases. In particular, when the committee is faced with only two proposals (and thus, since each

proposal can either pass or fail, four possible outcomes), then for any number of voters and any

(separable) preferences, the outcome associated with all stable vote allocations must be unique,

is always Pareto optimal, is the Condorcet winner, if a Condorcet winner exists, and must be

preferred by the majority to the no-trade outcome if it differs from it. These results hold whether

trade is restricted to pairs of voters or coalitions are allowed. They are surprising because it has

always been understood that vote trades’ ambiguous welfare properties are due to the externalities

inherent in the exchanges. But externalities are clearly present in the two-proposal case, and yet

the algorithm delivers an outcome with desirable welfare properties.

Approaching vote trading through a mechanical algorithm allowed us to make some progress by

avoiding the difficulties of a strategic model. We have chosen this direction, however, for a second

reason too: we conjectured that it may have predictive power. In the second part of the paper,

we test the Pivot algorithm in the laboratory. The barter nature of the task, and thus the lack of

a common unit of exchange, the changing profitability of trades in response to others’ trades, the

role of pivotality, all make the experiment unusually complex.9 For this reason, we limit trades in

6Tullock, 1959 and 1961, Downs, 1957, 1961.
7See also Coleman (1966), Haefele (1970), Tullock (1970), and Wilson (1969).
8For example, Schwartz (1975).
9To our knowledge, barter experiments are rare. Ledyard, Porter and Rangel (1994) is an example that demon-

strates the challenges to both design and data analysis.
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the laboratory to pair-wise trades.

We study three treatments, corresponding to three sets of cardinal values for each voter over each

proposal. All treatments have five voters, but differ in the number of proposals (two in treatment

AB, and three in treatments ABC1 and ABC2), and in the prediction of the Pivot algorithm. The

Condorcet winner exists in all three cases; it coincides with the unique stable outcome reachable

through the Pivot algorithm in treatments AB and ABC2; it differs in treatment ABC1.

Our experiment produces several results. First, we find that stability is a useful predictive tool.

In all treatments, two thirds or more of the vote allocations reached by experimental subjects are

stable.

Second, the dynamic data showing the evolution of the votes allocations during the trading

periods indicate reasonably fast convergence towards allocations that if not fully stable are in close

proximity of stability, as measured by the number of further trades necessary to reach stability.

The dynamics we observe seem consistent with the willful search for a stable vote allocation.

Indeed, and this is our third result, final vote allocations provide some qualified support for the

Pivot algorithm’s ability to predict where vote trading will end up. Across all treatments, across

all voters, across all proposals, in every single case in which the stable allocation reachable via the

Pivot algorithm reflects a net purchase of votes, or a net sale, we observe it in the data. On the

other hand, we observe many trades that do not lead to strict payoff improvements for both voters,

and also we observe outcomes that are not Pivot stable.

Fourth, relatively few trades are associated with myopic losses, and almost no trades lead to

myopic losses to both sides. However, a large fraction are associated with no strict gains–purchases

of votes from weak allies, or purchases of losing votes. In principle, these trades are theoretically

plausible, and the data might be better explained by an algorithm that allows such trades.

The first experimental paper studying vote trading was McKelvey and Ordeshook (1980). That

paper reports results from a large series of experiments, all done face-to-face and under various pro-

tocols designed to allow either pair-wise only or coalitional trades, and either binding or non-binding

agreements. The methodologies are different enough to make a direct comparison of results nearly

impossible, and McKelvey and Ordeshook’s focus on alternative cooperative solution concepts has

no counterpart in our experiment.10 Closer to our computerized experimental protocols are recent

experiments on decentralized matching, in particular Echenique and Yariv (2013).11 In that work,

as in ours, a central finding is the extent to which the experimental subjects succeed in reaching a

far-from-apparent set of stable matches. The set-up however differs substantially from ours, even

within the perspective of matching theory: a two-sided matching problem with no externalities and

10Fischbacher and Schudy (2010) conduct a voting experiment to examine the possible behavioral role of reciprocity
when a sequence of proposals come up for vote. There is no explicit vote trading, but voters can voluntarily vote
against their short term interest on an early proposal in hopes that such favors will be reciprocated by other voters
in later votes.

11Other related works are Nalbantian and Schotter (1995), Niederle and Roth (2011) and Pais, Pinter and Vesztegz
(2011). These papers have incomplete information and study the effects of different offer protocols and other frictions.
Kagel and Roth (2000) study forces leading to the unraveling of decentralized matching.
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fixed preferences, in Echenique and Yariv contrasting with the the one-sided matching problem

with externalities and evolving preferences in our case. In addition, the substantive questions we

ask are specific to vote-trading, not matching.

The paper proceeds as follows. The next section presents our model and derives the model’s

theoretical predictions; section 3 discusses the experimental design; section 4 reports the experi-

mental results, and section 5 concludes. Longer proofs are collected in the Appendix 1, and the

instructions from a representative experimental session are in Appendix 2.

2 The Model

Consider a committee of N (odd) voters who must approve or reject each of K independent binary

proposals. The set of proposals is denoted P = {1, ..., k, ...,K}. Committee members have separable

preferences summarized by a set of cardinal values Z, where zki is the value attached by member i

to the approval of proposal k, or the utility i experiences if k passes. Value zki is positive if i is in

favor of k and negative if i is opposed. Proposals are voted upon one-by-one, and each proposal k

is decided through simple majority voting.

Before voting takes place, committee members can trade votes. We treat votes as if they were

physical ballots, specialized by proposal–for example, imagine ballots of different colors for different

proposals. A vote trade is thus modeled as an actual exchange of ballots, with no enforcement or

credibility problem, where by exchange we mean that each trader must give away and receive at

least one vote. After trading, a voter may own zero votes over some proposals and several over

others, but cannot hold negative votes. We call vki the votes held by voter i over proposal k,

Vi = {vki , k = 1, ..,K} the set of votes held by i over all proposals, and V = {Vi, i = 1, .., N} the

profile (or allocation) of vote holdings over all voters and proposals. V denotes the set of feasible

vote allocations: V ∈ V ⇐⇒
∑

i v
k
i = N for all k and vki ≥ 0 for all vki ∈ V .12 The initial allocation

of votes is denoted by V0.

Given a feasible vote allocation V , we assume that at the time of voting, voters who attach

positive value to a proposal cast all votes they own over that proposal in its favor, and voters who

oppose it cast all available votes against it. We indicate by P(V ) ∈ P the set of proposals that

receive at least (N + 1)/2 favorable votes, and therefore pass. We call P(V ) the outcome of the

vote if voting occurs at allocation V . Note that with K independent binary proposals, there are

2K potential outcomes (all possible combinations of passing and failing for each proposal). Finally,

we define ui(V ) as the utility of voter i if voting occurs at V : ui(V ) =
∑

k∈P(V ) z
k
i .

Our focus is on the existence and properties of vote allocations that hold no incentives for

further trading. We can then define:

Definition 1 A pair of voters i, i′ is said to block V if there exists a feasible vote allocation V̂ ∈ V
12Note that

∑
k v

k
i 6= K is feasible because we are allowing a voter to trade votes on multiple issues in exchange

for one or more votes on a single issue. Of course, the aggregate constraint
∑

i

∑
k v

k
i = NK must hold.
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such that V̂j = Vj for all j 6= i, i′, and ui(V̂ ) > ui(V ), ui′(V̂ ) > ui′(V ).

Definition 2 An allocation V ∈ V is pair-wise stable if there exists no pair of voters i, i′ who

can block V .

We can show immediately that a feasible allocation of votes that yields dictator power to a

single voter i is trivially pair-wise stable: no exchange of votes involving voter i can make i strictly

better-off; and no exchange of votes that does not involve voter i can make anyone else strictly

better-off.13 Hence:

Proposition 1 A pair-wise stable vote allocation V exists for all Z, N , and K.

2.1 Dynamic adjustment.

Pair-wise stable allocations exist, but are they reachable through sequential decentralized trades?

To answer the question, we need to specify the dynamic process through which bilateral trades take

place. Our focus is on simple myopic algorithms.

We begin with the following definition:

Definition 3 A trade is minimal if it consists of a minimal package of votes such that both

members of the pair strictly gain from the trade.

Recall that a trade involves the exchange of at least one vote on each side.14 Concentrating on

minimal trades allows to ”unbundle” complex trades into elementary trades. For any individual

voter, multiple welfare-improving trades cannot be bundled, and zero-utility trades cannot be

bundled with strictly welfare-improving trades.

Although the literature does not make explicit reference to an algorithm, the sequential myopic

trades envisioned by Riker and Brams (1973) and Ferejohn (1974) lend themselves naturally to such

a formalization. In line with these earlier analyses, we define the Pivot Algorithms as sequences of

pair-wise trades yielding myopic strict gains to both traders:

Definition 4 A Pivot Algorithm is any mechanism generating a sequence of trades in the fol-

lowing way: Start from any vote allocation V0. If there is no minimal pairwise (strictly) improving

trade, stop. If there is one such trade, execute it. If there are multiple pairwise improving trades,

choose one according to a possibly stochastic choice rule R. Continue in this fashion until no further

improving trade exists.

13Other examples are easy to construct. For example, any allocation such that for all k, vkik ≥
n+1
2

, where ik is the
voter who, among all, attributes highest value to winning on proposal k, is pair-wise stable.

14Thus surrendering votes to an ally with no myopic utility change is not a trade.
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The definition above defines a whole family of algorithms, depending on the choice rule that is

applied when there are multiple improving trades. Rule R specifies how the algorithm selects among

multiple possible trades; for example, R may select each potential trade with equal probability (fully

random); or give priority to trades with higher total gains; or to trades involving specific voters. The

family of Pivot algorithms corresponds to the class of possible R rules, and individual algorithms

differ in the specification of rule R. At this stage, it is not necessary to be more specific about R.

Pivot trades are not restricted to two proposals only: a voter can trade his vote, or votes, on

one issue in exchange for other voters’ vote(s) on more than one issue. The only constraint is the

requirement that trades be minimal: zero-utility trades cannot be bundled with welfare improving

trades. If a trade is welfare improving and minimal, it is a legitimate trade under Pivot.

A crucial property was anticipated by Riker and Brams and gives the name to our algorithm:

Lemma 1 (Riker and Brams) Under the Pivot algorithms, all votes transferred must be pivotal.

Proof. Immediate from the requirement of minimal trades and the definition of Pivot algo-

rithms.

2.2 Existence of stable vote allocations

The question we want to ask is whether a stable vote allocation is reachable through the Pivot

algorithms. From here onward, we maintain V0 = {1,1, ..1}. We define:

Definition 5 An allocation of votes V is Pivot-stable and is denoted by VT (R) if it is stable and

reachable through a Pivot algorithm in a finite number of steps, following rule R.

Does a Pivot-stable allocation always exist? Surprisingly, the answer is clear-cut and positive.

Pivot-stable vote allocations always exist, for the entire class of Pivot algorithms, independently of

the rules R through which competing claims to trade are resolved. We can state:

Theorem 1 Let V0 = {1,1, ..1}. For all K, N , Z, a Pivot-stable allocation of votes exists for all

R.

Proof. Consider trades dictated by the Pivot algorithm. By Lemma 1, if a trade occurs at V0

it can only concern proposals that at V0 are decided by minimal majority. But by minimality of

trade, it then follows that the same proposals must still be decided by minimal majority in any

subsequent votes allocation Vt, with t > 0. But since V0 = {1,1,1, ..}, no more than one vote

is ever traded on any given proposal (although trades could involve bundles of proposals). Now
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consider voter i with values Zi and absolute values |Zi| ≡ Xi. We call i’s score at step t the function

σit(Xi, Vit) defined by:

σit =
K∑
k=1

xki v
k
it

where xki is the (absolute) value i attaches to each proposal k, and vkit is the number of votes i

holds on that proposal at t. If i does not trade at t, then σit+1 = σit. If i does trade, then, by

the argument above, i’s vote allocation must fall by one vote on some proposals {k, k′, ..} that i

was winning and increase by one vote on some other proposals {k̃, k̃′, ..} that i was losing. Call

the first set of proposals Pi,t and the second P−i,t. Note that although the two sets may have

different cardinality, by definition of pair-wise improving trade,
∑

k∈Pi,t
xki <

∑
k∈P−i,t

xki and,

since a single vote is traded on each proposal,
∑

k∈Pi,t
xki v

k
it <

∑
k∈P−i,t

xki v
k
it+1. Hence if i trades

at t, σit+1 > σit: for all i, σit(Xi, Vit) must be non-decreasing in t. At any t, either there is no trade

and the Pivot-stable allocation has been reached, or there is trade, and thus there are two voters

i and i′ for which σit+1 > σit and σi′t+1 > σi′t. But σit(Xi, Vit) is bounded above and the number

of voters is finite. Hence trade must stop in finite steps: a Pivot-stable allocation of votes always

exists.15 Note that we have made no assumptions on R, the rule through which trades are selected

when multiple are possible. A Pivot-stable allocation of votes exists for any R.�

The generality of the result is surprising: a Pivot-stable allocation always exists, regardless of

the number of voters and proposals, for all (separable) preferences, and regardless of the order

in which different possible trades are chosen. As we said, the parallel to the matching literature

is imperfect, and indeed no such result can be found there. In one-sided matching problems, it

is well-known that a stable match may not exist.16 When it does exist, it is not the case that

any sequence of decentralized myopic matchings will converge to a stable matching. Cycles are

possible. If preferences are strict, one converging sequence of matchings always exists, but if

matchings are decentralized, guaranteeing convergence requires some randomness in the selection

of blocking pairs: a random rule assigning a positive probability of selection to any blocking pair.17

The difficulty of achieving stability is increased by the presence of externalities. We are not aware

of comparable results for one-sided matching problems with externalities. In two-sided matching

problems, guaranteeing the existence of a stable match in the presence of externalities requires a

very stringent definition of blocking.18 In our problem, the score function we have defined above is

not subject to cycles. Because it is always non-decreasing in t, convergence to a stable allocation

of votes is guaranteed for any selection rule among blocking pairs.

15It is not difficult to find the upper boundary on the number of trades needed to reach a Pivot-stable allocation. It
equals the maximum number of trades that could shift all individuals’ votes to their respective highest-value proposal,

or
[
K(K−1)

2

] [
(N−1)

2

]
.

16Gale and Shapley (1962).
17Diamantoudi et al. (2004). The result that randomness in the selection of the blocking pair induces convergence

builds on Roth and Vande Vate (1990), who established it in the case of two-sided matching.
18Sasaki and Toda (1996). Two individuals block an existing match if they strictly gain from matching with one

another under any possible rematching by all others.
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2.3 Preferences over stable outcomes

Definition 6 An outcome P(V ) is Pivot-stable if it is achieved from a Pivot-stable allocation of

votes.

We denote by P(VT (R)) the set of all stable outcomes reachable with positive probability

through a Pivot algorithm with rule R. What are the welfare properties of P(VT (R))? We have

modeled vote trading through an algorithm, and our institution-free approach demands a welfare

evaluation that is equally institution-free. We ask whether outcomes in P(VT (R) must belong to

the Pareto set; whether they must include the Condorcet winner, if one exists, and more generally

whether they can be ranked, in terms of majority preferences, relative to the no-trade outcome.

Our first set of answers is unexpectedly positive. Because we characterize results that hold for

all R, we can use the simpler notation P(VT ) with element P(VT ). We can show:

Proposition 2 Let V0 = {1,1, ..1}. If K = 2, then, for all N , Z, and R: (1) P(VT ) is unique.19

(2) P(VT ) is Pareto optimal. (3) If a Condorcet winner exists, then P(VT ) is the Condorcet winner.

(4) P(VT ) can never be the Condorcet loser. (5) If P(VT ) 6= P(V0), then a majority prefers P(VT )

to P(V0).

Proof: See Appendix.

Proposition 1 is interesting because it highlights that the lack of Pareto optimality in vote

trading examples, in particular Riker and Brams’ paradox of vote trading, is not an immediate result

of voting externalities. Externalities are not eliminated when K = 2, and yet the outcome of the

Pivot algorithm (the same myopic vote-trading rule studied by Riker and Brams) is always Pareto

optimal. Similarly, when K = 2 vote trading performs well in terms of majority preferences.20

In fact, there is another scenario in which, for all values Z, the Pivot-stable outcome is related

to majority preferences:

Proposition 3 Let V0 = {1,1, ..1}. If N = 3, then for all K, Z, and R: (1) If a Condorcet

winner exists, P(VT ) is unique and is the Condorcet winner. (2) P(VT ) can never be the Condorcet

loser.

Proof: See Appendix.

The intuition behind Proposition 3 is straightforward: with three voters, any Pivot trade be-

tween a pair reflects the majority’s preferences. We know from Park (1967) and Kadane’s (1972)

19Note that uniquess of P(VT ) does not imply uniqueness of VT .
20Possibly, but not necessarily also in terms of total utilitarian welfare. In a finite electorate, results on utilitarian

welfare depend on the distributions from which values are drawn.
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that if there is a Condorcet winner, it can only be the no-trade outcome21, and thus with three

voters there cannot be any trade under the Pivot algorithm. If the Condorcet loser exists, it must

be such that all proposals are decided in the direction favored by the minority, but since any trade

reflects the majority’s preferences, such an outcome is impossible to reach.

The results from Pivot trading are less predictable in the general case:

Proposition 4 Let V0 = {1,1, ..1}. If K > 2 and N > 3, then: (1) There exist Z such that for

any R no outcome in the Pareto set is Pivot-stable. (2) There exist Z such that the Condorcet

winner exists, but for any R it is not Pivot-stable.

Proof: We prove the two statements by example, and because the examples are simple and

instructive, we report them here in detail. (1) Consider the following example, with K = 5 and

N = 5:

1 2 3 4 5

A 10 −1 −1 −1 −1

B −1 10 −1 −1 −1

C −1 −1 10 −1 −1

D −1 −1 −1 10 −1

E −1 −1 −1 −1 10

Table 1: Preference profile such that no outcome in the Pareto Set is Pivot Stable.

Each row in Table 1 is a proposal (A,B,C,D, and E) and each column a voter (1, 2, 3, 4, and

5). Each cell {k, i} reports zki , the value attached by voter i to proposal k passing. No voter is

pivotal, and thus V0 cannot be blocked. The unique stable outcome is P(VT ) = P(V0) = {∅},
all proposals fail. Yet, all proposals failing is not Pareto optimal: it is Pareto-dominated by all

proposals passing. The example suggests the importance of allowing for trades among coalitions of

more than two voters, a point to which we return below.

(2) Consider the following example, with K = 3 and N = 5:

1 2 3 4 5
A 4 −7 1 −1 4
B 1 1 −4 4 −1
C −3 4 2 −2 2

Table 2: Preference profile such that the Condorcet Winner is not Pivot Stable.

For the preference profile in Table 2, P(V0) = {ABC} is the Condorcet winner but this exam-

ple has a unique Pivot-stable outcome P(VT ) = {A}. It is not difficult to verify that there are

21Because the majority must prefer the no-trade outcome to any outcome that differs from no-trade in the resolution
of a single issue.
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three possible trade chains but all stop at P(VT ) = {A}. Indicating in order the voters engaged

in the trade, the proposals on which they trade votes (in lower-case letters)22, and, in paren-

thesis, the outcome corresponding to that allocation of votes, we can describe the three chains

as {{13cb(A), 45bc(ABC), 23ab(C), 45ca(A)}, {23ab(C), 45ba(ABC), 13cb(A)}, and {23ab(C),

45ca(A), 45bc(ABC), 13cb(A)}. �

Note that result (2) in Proposition 3 immediately implies:

Corollary 1 Let V0 = {1,1, ..1}. If K > 2 and N > 3, then there exist Z such that for all R,

P(VT ) 6= P(V0), but P(V0) is majority preferred to P(VT ).

The first example is an immediate implication of Lemma 1: under the Pivot algorithm, trade can

occur only between pivotal voters. If the vote allocation does not correspond to minimal majority,

no pivotal voters exist. Thus the status quo is Pivot-stable, and delivers the unique Pivot-stable

outcome; if such an outcome is Pareto-inferior, then the stable outcome does not belong to the

Pareto set.

The second example is more unexpected. Why does the positive result with K = 2 not extend

to a larger number of issues? Intuitively, the problem is that previous trades over some issues k

and k′ can make it impossible for a pair of voters to execute a different, desired trade over k′ and

k′′. Thus, contrary to the K = 2 case, the Pivot algorithm does not allow voters to exploit all

opportunities for mutual agreements.

2.4 Coalitional Trades

A natural aspect of vote trading is the possibility of forming coalitions, indeed the incentive to

do so. The experiment we describe below focuses on pair-wise trades, but our approach can be

extended to the study of coalitions and sheds some light on the debates in the early literature on

vote-trading. In this subsection, we derive two main results. First, the stability highlighted by our

theorem on pair-wise trades does not generalize to vote-trading within larger coalitions of voters.

Second, in our model, there is no logical connection between stability under coalitional trade and

existence of the Condorcet winner.

We begin by redefining stability in the presence of coalitions. A coalition of voters C =

{i, i′, i′′, ..} is said to block V if there exists a feasible vote allocation V̂ ∈ V such that V̂j = Vj for

all j /∈ C, and ui(V̂ ) > ui(V ) for all i ∈ C. The allocation V ∈ V is coalition-stable if there exists

no coalition of voters C who can block V . Up to now, we have restricted C to be of size 2; here we

allow C to have any size between 2 and N .

As in the case of pair-wise trades, the first observation is that a coalition-stable allocation always

exists: a feasible allocation of votes that gives decision power to a single voter over all proposals

22For example, 13cb indicates that voter 1 acquires a C vote from voter 3, in exchange for a B vote.
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remains trivially stable because no coalition that excludes the dictator can change the outcome,

and the dictator cannot strictly gain from participating in any coalition. The interesting question

is not whether a stable allocation exists, but rather whether it can be reached through the relevant

extensions of our algorithm to coalitional trades.

To extend the algorithm, the previous definitions need to be amended. Keeping in mind that a

vote trade must, by definition, include at least two voters and at least two issues, we define:

Definition 7 A coalition-improving trade is minimal if it concerns: (1) the minimal package of

votes such that all members of the coalition strictly gain from the trade; and (2) the minimal number

of members such that the outcome corresponding to V̂ can be achieved.

Definition 8 A C-Pivot Algorithm is any mechanism generating a sequence of trades in the

following way: Start from any vote allocation V0. If there is no minimal coalitional (strictly)

improving trade, stop. If there is one such trade, execute it. If there are multiple coalitional

improving trades, choose one according to a possibly stochastic choice rule RC . Continue in this

fashion until no further coalitional improving trade exists.

The C-Pivot Algorithm is the natural generalization of the Pivot Algorithm to coalitions. Note

again that coalitions can be of any size and we have imposed no rule selecting among them in

the order of trades, when several coalition-improving trades are possible. We call C-Pivot stable

an allocation of votes that cannot be blocked by any coalition and is reachable via the C-Pivot

algorithm in a finite number of steps, and define a C-Pivot stable outcome as an outcome PC(VT )

that corresponds to a C-Pivot stable allocation of votes.

In the presence of coalitions, stability becomes a more elusive goal:

Proposition 5 There exist K, N , Z, and RC such that the C-Pivot algorithm never converges to

a stable vote allocation.

Proof: See Appendix.

In the presence of coalitions, stability may fail because trades can be profitable for the coalition

even when the pair-wise trades that are part of the overall exchange are not: coalition members

benefits from the positive externalities that originate from the trades of other members. As a result,

the score function defined in the proof of the Theorem in section 3 is no longer monotonically

increasing in the number of trades, and the logic of that proof does not extend to coalition trades.

But if a C-Pivot stable allocation exists, does it have desirable welfare properties? A first,

positive result is immediate:
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Proposition 6 If a C-Pivot stable outcome exists, then it cannot be Pareto dominated.

Regardless of the history of previous trades, if an outcome is Pareto dominated, then the

coalition of the whole can always reach the Pareto superior outcome. But then the allocation

corresponding to the Pareto dominated outcomes cannot be C-Pivot stable.23

But further results are more ambiguous:

Proposition 7 Let V0 = {1,1, ..1}. Consider Z such that the Condorcet winner exists. (1) If

either K = 2 or N = 3, then the C-Pivot stable outcome always exists, is unique, and coincides

with the Condorcet winner. (2) If K > 2 and N > 3, if a C-Pivot stable outcome exists, it need

not coincide with the Condorcet winner.

Proof. (1) See Appendix. (2) Consider Example 2, in the proof of Proposition 4. There are

two C-stable outcomes: P(VT ) = {A}, reached through pair-wise trades as described earlier, and

P(VT ) = {A,B}, if we allow |C| > 2. The second stable outcome is reached through the following

trades: after voters 2 and 3 have traded votes on A and B, a coalition of voters 1, 4, and 5 is

formed; 4 gives an A vote to 1; 5 gives a B vote to 4, and a C vote to 1. Note that the trade

is minimal, and the resulting vote allocation cannot be blocked. Hence P(VT ) = {A,B}. Neither

outcome is the Condorcet winner.�

Proposition 7 is interesting because it clarifies that the existence of the Condorcet winner and

the existence and properties of C-stable outcomes are logically independent. In some cases, (K = 2

or N = 3), the two must coincide; in others (K > 2 and N > 3), the existence of the Condorcet

winner gives no information about the existence and welfare properties of C-stable outcomes. The

result is driven by two central assumptions of our model: (1) vote trades are binding, and (2) voting

occurs proposal-by-proposal.

3 The Experiment

The experiment was run at the Columbia Experimental Laboratory for the Social Sciences (CELSS)

in November 2014, with Columbia University students recruited from the whole campus through

the laboratory’s ORSEE site. No subject participated in more than one session. After entering

the computer laboratory, the students were seated randomly in booths separated by partitions; the

experimenter then read aloud the instructions, projected views of the computer screens during the

experiment, and answered all questions publicly.24

23Note that if the coalition trade is not minimal, it can be made so by eliminating redundant trades or traders.
24A copy of the instructions is in Appendix 2.
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Because the design of the trading platform presents some challenges, we describe it here is some

detail.25

At the start of each treatment, a subject saw on his computer screen the matrix of values,

denominated in experimental points, and the vote allocation. To help intuition, the two alternatives

for each issue–Pass or Fail–were identified with two colors–Orange or Blue–, and each individual’s

values were written in the color of the individual’s preferred alternative.26 The screen also showed

the votes totals and the points the subject would win if voting were held immediately. Each subject

started with one vote on each issue.

After having observed the matrix of values and the current vote allocation, a subject could

post a bid for a vote on one of the issues, in exchange for his vote on a different issue. The bid

appeared on all committee members’ monitors, together with the ID of the subject posting the bid.

A different subject could then accept the bid by clicking the offer and highlighting it. Figure 1

reproduces two of the screenshots showed during instructions: the screen of the subject making a

bid (ID 1), and the screen of a subject accepting the bid (ID 3).

Figure 1: Screenshots for a subject posting a bid (on the left), and for a subject accepting a posted
bid (on the right).

A central feature of vote trading is that the preferences and vote holdings of the specific indi-

viduals making a trade determine the effect of the trade. In the example shown in the figure, both

1 and 3 would be trading pivotal votes, and thus the vote balance would change on both A and

B: if voting took place just after the trade, A would be won by Orange and B by Blue, with the

result that 1’s payoff would fall by 100 points, while 3’s would increase by 200. Note that if 1’s

bid had been accepted by 4, no change in outcomes would result from the trade (because 1 and 4

25The computerized trading platform was implemented the Multistage program, an open source software devel-
oped at Caltech’s Social Science Experimental Laboratory (SSEL). The software is available for public download at
http://multistage.ssel.caltech.edu:8000/multistage/.

26Thus all experimental values were positive and indicated earnings from one’s preferred alternative winning (rel-
ative to zero earning if it lost).

15



have identical preferences), and, if voting occurred, neither trader would experience any change in

payoff. If instead the bid had been accepted by 5, then the majority would prefer Orange in both

issues, and thus, if voting took place just after the trade, 1 would gain 500 points, and 5 lose 100.

Contrary to standard market experiments, then, subjects must not only post potentially prof-

itable bids, but also consider the specific identity of their trading partner. In adapting the bidding

platform used in market experiments, we added a confirmation step. After a bid is accepted, a

window appears on the bidder’s screen detailing the effects of that specific trade–what the outcome

would be upon immediate voting–and asking the bidder to confirm or reject the trade (Figure 2).

If the trade is rejected, a message appears on the screen of the rejected trade partner, informing

him of the rejection.

Figure 2: Confirmation request for the bidder.

After a trade was concluded, the vote tally on each issue was updated and conveyed to all

subjects via a specific message on all screens. The message also reported the post-trade voting

outcome if voting were to occur immediately. Note that the value matrix and the updated vote

holdings were always present on the screen.

The market was open for three minutes.27 However, in a market where each concluded trade can

trigger a new chain of desired trades, it is particularly important to ensure that all desired trades

27Two minutes in treatment AB, with two issues only.
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have the time to be executed. Thus the time limit was automatically extended by 10 seconds

whenever a new trade occurred within 10 seconds of the expected closure.

Only trades of a single vote on one issue against a single vote on a different issue were allowed,

again to limit the complexity of the task. No bid could be posted if a subject did not have enough

votes to execute it if accepted; thus a voter could post multiple bids only as long as he had enough

votes to execute them all, had all been accepted. Posted bids could be canceled at any time, an

important feature in a market where somebody else’s executed trade can make an existing posted

bid suddenly unprofitable.

Once the market closed, voting took place automatically, with all votes on each issue cast by

the computer in the direction preferred by each subject. Then a new round started.

The experiment consisted of three treatments, AB, ABC1, and ABC2, each corresponding to

a different matrix of values. In all three treatments, the size of the voting committee was five

(N = 5), while the number of issues depended on the treatment: K = 2 in treatment AB, and

K = 3 in treatments ABC1, and ABC2. In each committee, subjects were identified by ID’s

randomly assigned by the computer, and issues were denoted by A and B (in treatment AB), and

A, B and C (in treatments ABC1 and ABC2). Each session started with two practice rounds;

then three rounds of treatment AB, and then five rounds each of ABC1 and ABC2, alternating

the order.28 We did not alternate the order of treatment AB because its smaller size (K = 2)

made it substantially easier for the subjects, and thus we used it as further practice before the

more complex treatments. This is also the reason for the smaller number of rounds (three for AB,

versus five for ABC1 and ABC2).

Committees were randomly formed, and ID’s randomly assigned at the start of each new treat-

ment, but the composition of each group and subjects’ ID’s were kept unchanged for all rounds of

the same treatment, to help subjects learn. All but one sessions consisted of 15 subjects, divided

into three committees of five subjects.29 At the end of each session, subjects were paid their cu-

mulative earnings from all rounds, converting experimental points into dollars via a preannounced

exchange rate, plus a fixed show-up fee. Each session lasted about 90 minutes, and average earnings

were $34.

We designed the three treatments according to the following criteria. First, we wanted a K = 2

treatment, both as further training for the subjects and because of the sharp theoretical predictions

of the Pivot algorithm in this case. Second, we chose value matrices for which the stable outcome

reachable via Pivot trades is unique but requires multiple trades. In AB, the path to stability

is unique, while in both ABC1 and ABC2 the Pivot stable outcome can be reached via multiple

paths, with no path being clearly focal. Third, we chose matrices such that not only is the Pivot

stable outcome unique, but the stable vote allocation reached via Pivot trades is unique, even with

multiple possible trading paths. Fourth, we designed matrices for which the Condorcet winner

exists, but need not correspond to the Pivot stable outcome: it does in AB (by necessity–see

28Two of the sessions had only two treatments: AB and ABC1 in one case, and A and ABC2 in the other.
29One session had only ten subjects, divided into two groups.
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AB

1 2 3 4 5

A 49 −29 −29 12 −12

B 12 −12 −49 29 49

ABC1

1 2 3 4 5

A 23 −23 10 −10 23

B −10 −10 23 −23 10

C 18 −18 −18 18 −18

ABC2

1 2 3 4 5

A −21 15 −9 21 9

B 15 9 15 −15 −15

C −9 −21 21 9 21

Table 3: Preference profiles used in experiment.

Proposition 2), and in ABC2 (by construction), but not in ABC1. Finally, we wanted ABC1

and ABC2 to be superficially very similar and to have Pivot trading paths of similar multiplicity

and length, allowing us to test whether the different force of attraction of the Condorcet winner

predicted by the theory is reflected in the data. Note that we do not specify R, the selection rule

when multiple trades are possible, but let the experimental subjects select which trades to conclude.

Our theoretical results hold for all R.

The three preference profiles used in the experiment are given in Table 3.

In all three cases, the initial vote allocation V0 is unstable. In the case of matrix AB, P = {B}
is the Condorcet winner and the unique Pivot-stable outcome. The Pivot algorithm follows a

unique path, of length two (i.e. consists of a sequence of two trades). Matrix ABC1 has identical

properties to the matrix of values discussed in the proof of Proposition 4. The Condorcet winner

exists and corresponds to P = {A}, but the unique Pivot-stable outcome is P = {A,B,C}. In

matrix ABC2, the Condorcet winner is P = {A,B,C}, and corresponds to the unique Pivot stable

outcome. With both matrices ABC1 and ABC2, the Pivot algorithm can follow three different

paths, and for both matrices two of these paths have length four, and one has length three.30

Table 4 reports the experimental design.

4 Experimental Results.

4.1 Trading

How much trading did we see? Table 5 reports basic statistics on observed trades. ”Pivot” refers

to the predicted number of trades under the Pivot algorithm. The unit of analysis is the group per

round.

A histogram of the number of trades per treatment (Figure 3) shows clearly the higher frequency

30The possible paths are detailed in the Appendix.
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Session Treatments # Subjects # Groups # Rounds

s1 AB,ABC1, ABC2 10 2 3,5,5

s2 AB,ABC2, ABC1 15 3 3,5,5

s3 AB,ABC1, ABC2 15 3 3,5,5

s4 AB,ABC2, ABC1 15 3 3,5,5

s5 AB,ABC2 15 3 3,5

s6 AB,ABC1 15 3 3,5

Table 4: Experimental Design. Note: A programming error in sessions s5 and s6 made the last five
rounds of data unusable.

Treatment Tot trades groups × rounds Mean trades Median s.d Max Pivot

AB 115 51 2.25 2 1.92 13 2

ABC1 211 70 3.0 3 1.67 9 3,3,4

ABC2 175 70 2.5 2 1.36 7 3,3,4

Table 5: Number of trades.

of few trades in the AB treatment, with K = 2. Between the two K = 3 treatments, ABC2 has

consistently higher fractions of low trades, but the differences are not striking–56 percent of rounds

end with two or fewer trades in ABC2, as opposed to 41 percent in ABC1, and 80 percent end

with three or fewer trades in ABC2, as opposed to 76 percent in ABC1. In all treatments, few

rounds include five or more trades.

As expected, the bidder’s option of rejecting trades, and thus discriminating over who accepted

the original bid, was important. In columns 2-4 of Table 3, we report the total number of bids,

how many of these found a taker in the market, and how many of these acceptances were then

rejected by the bidder. A large fraction of all posted bids found a counterpart–from a minimum

of 77 percent in ABC2 to more than 95 percent in AB–but about a third of these accepted trades

were rejected by the bidder– 32 percent in A, 29 percent in ABC1, and 34 percent in ABC2. As

the last column of the table shows, more than 80 percent of these rejections, in all treatments,

concerned trades that would have caused the bidder a weak decline in myopic payoff.

Whether in terms of number of trades or of any other variable studied below, the data show

no evidence of learning or of order effects–behavior appears very consistent across rounds, and

regardless of whether ABC1 or ABC2 was played first. Thus we present the experimental results

Treatment Tot bids Tot accepted bids Tot trades rejected by bidder Rejected trades with weak payoff decline

AB 177 169 54 48

ABC1 368 296 85 70

ABC2 345 267 92 81

Table 6: Bids, accepted bids, and rejected trades. Tot bids excludes canceled bids.
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Figure 3: Number of trades. Frequencies

aggregating over rounds and order.

4.2 Stability

Our point of departure is the definition of stable vote allocations. Is the stability requirement

satisfied in the vote allocation to which our subjects converge at the end of each round? Figure 4

shows the CDF of steps to stability for the three treatments, in blue, as well as in 1,000 simulations

with random trading, in red. The horizontal axis measures the minimal number of Pivot trades

necessary to reach stability, and the vertical axis the proportion of final vote allocations not further

from stability than the corresponding number of trades.

Figure 4: Steps to stability. Cumulative distribution functions.

The fraction of stable vote allocations in the experimental data was 76 percent in AB, and
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64 percent in both treatments ABC1 and ABC2. In all treatments, more than 80 percent of all

vote allocations were within one step (one trade) of stability, although the figure also shows the

predictably easier convergence to stability in the AB treatment, with only two proposals. In all

three treatments, the distribution corresponding to random trading FOSD’s the distribution for

the experimental data.

The simulation of random trades provides the yardstick of comparison for our data. We will

use it repeatedly in what follows, and it is worth describing the methodology in some detail. In

each treatment, we constructed the random trades by randomly selecting an individual, one or two

issues (in the two- and three-issue treatments, respectively), a partner, and a direction of trade,

all with equal probability, and enacting the trade as long as both traders’ budget constraints are

satisfied. If budget constraints are violated, we cancel the proposed trade and restart. In each

group, a trade occurs with specified probability over a short time interval, with both parameters

calculated to match the observed average length of rounds and the average number of trades in the

treatment.31 For each treatment, we repeated the procedure 1,000 times, each time focusing on a

group.

Figure 4 reports information on the stability of the vote allocations reached at the end of trading.

But our data also give us information on dynamic convergence. Do successive trades move the vote

allocation towards stability?

Figures 5 and 6 show, for each treatment, the dynamic path of the vote allocation, as captured

by the succession of trades. The horizontal axis measures time, in seconds. A dot corresponds to

a trade. Thus, for any given dot, the horizontal axis indicates when the trade took place, within

the maximal round length observed in the data for each treatment.32 The vertical axis measures

distance from stability, defined, as in Figure 4, by the minimal number of Pivot trades necessary

to reach a stable allocation. Such number is calculated first for the vote allocation characterizing

each group in the treatment at that moment in that round, and then averaging over the groups.

The figure is drawn pooling over all groups and all sessions, for given treatment, and each colored

curve reports data from the same round (1-3 for AB and 1-5 for ABC1 and ABC2). The jumps

between dots are relatively small because a trade concerns a single group, while the others’ vote

allocations remain unchanged.

All curves decline, almost perfectly monotonically, showing the dynamic convergence towards

stability. To help us evaluate such convergence, the black curve in each panel reports the steps

from stability calculated from the 1,000 simulations with random trading.

After the first minute, in all three treatments, the curve corresponding to random trades remains

higher than the curve corresponding to any round of experimental data.33 Notice also the lack of

31Given the average length of a round in the treatment, time is divided into a grid of 100 cells, and in each cell a
group can trade with probability p, such that 100p equals the mean number of trades per round in the treatment.

32The trading period lasts 180 seconds, but there is a 10 second delay with each trade, to give time to subjects to
study the new vote allocations. In addition, 10 more seconds are added at the end of the period if any trade takes
place in the last 10 seconds. Trading never lasted more than 250 seconds.

33With the exception of two trades in round 5 in ABC2.
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learning in the data–there is no systematic difference between earlier and later rounds.

Figure 5: Dynamic convergence to pivot stable outcomes. Data vs. Random. AB Matrix.

Figure 6: Dynamic convergence to pivot stable outcomes. Data vs. Random. ABC1, ABC2.

4.3 Vote Allocations

For all three value matrices used in our experiment, the Pivot algorithms predict a unique stable

vote allocation. Is such an allocation reached by the experimental subjects? Figure 7 reports the

number of votes held by each voter at the end of a round, averaged over all rounds of the same
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treatment. Each panel corresponds to a treatment and reports the number of votes by voter ID,

i.e. by the vector of values corresponding to each column of the value matrix. The blue columns

represent the experimental data, the grey columns the Pivot prediction, and the red line the no-

trade status quo (or equivalently, the average vote holding after random trading). The figure reports

data from all rounds, but remains effectively identical if we select stable vote allocations only.

It is clear from the figure that the vote distribution in the data is less sharply variable across

issues than theory predicts, as we would expect in the presence of noise. Yet, the qualitative

predictions are strongly supported. There are five voters in each treatment, holding votes over

two (in AB) or three issues (in ABC1 and ABC2)–a total of forty points. Of these forty, the

theory predicts that 14 should be above 1–the voter should be a net buyer over that issue– and 15

below 1–the voter should be a net seller. The prediction is satisfied in every single case, across all

treatments. When the theory predicts holding a single vote–11 cases for which the voter should exit

trade with the same number of votes held at the start–, the data show three cases where the average

vote holding is below 1, five where it is above, and three where it is effectively indistinguishable

from 1. On average, our subjects hold 0.56 votes when the theory predicts 0; 1.05 when the theory

predicts 1, and 1.43 when the theory predicts 2.07.34

4.4 Trades

According to our results so far, final vote allocations tend to be stable; dynamic trading moves

towards stability, and final individual vote holdings mirror qualitatively the properties of Pivot-

stable allocations. But can we say more about the specific trades we see in the lab? In particular,

are these trades compatible with the Pivot algorithm?

4.4.1 Pivot trades.

The class of Pivot algorithms is a class of mechanical selection rules among feasible pair-wise

trades. It is not a model of individual behavior. Accordingly, it should be tested not on individual

trades, but on binary trades–i.e. by considering the fraction of all trades associated with myopic

strict increases in payoff for both traders. We plot such a fraction in Figure 8. The blue columns

correspond to the experimental data, the light grey columns to the simulations with random trading,

and the error bars indicate 95 percent confidence intervals (under the null of random trading).35

The figure shows clearly the subjects’ search for gains. With random trading, the frequency of

payoff gains for both traders is 3 percent in AB and 1 percent in ABC1 and ABC2, or less than

one fifth of what we observe in AB, and less than one tenth in ABC1 and ABC2. In all cases, the

probability that the data are generated by random trades is negligible.

34The theory predicts that voter 3 in treatment ABC1 should hold three votes.
35Note that under the null all observations are independent. Thus no correction for correlation is required.
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Figure 7: Average vote allocations at the end of each round, by voter type. Top Panel AB. Middle
Panel ABC1. Bottom Panel ABC2.

But if the trading behavior of the experimental subjects is not random, it is also true that the

fraction of trades consistent with the Pivot algorithm is small: 17 percent in AB, 26 percent in
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Figure 8: Fraction of Pivot Trades

ABC1 and 18 percent in ABC2. Which other trades are subjects concluding?

4.4.2 Other trades.

We find that a much larger share of the data can be explained by extending the Pivot algorithm

in one of two directions. First, while the Pivot algorithm selects trades with strict gains in payoffs,

in every treatment more than 40 percent of all trades result in no change in payoff for either

trader. Zero-gain trades are trades involving non-pivotal votes, and thus preserving the status quo

outcome; they could be the result of buying votes from allies with weak preferences, for example, or

of buying losing votes, to strengthen one’s favorite side’s margin of victory. No (myopic) rationality

requirement is violated by trades that are only weakly-improving, either for one or both traders,

and our algorithm could be extended to accommodate such trades.

Second, as we note in the proof of the Theorem, every Pivot trade corresponds to an increase

in the score function σit(Xi, Vit) for the two traders involved.36 But not all increases in score

correspond to Pivot trades: trades that shift votes from low to high-value proposals do not cause

strict myopic payoff gains if they do not change the resolution of the high-value proposals, either

because they continue to be lost or because they were already won. Such trades could reflect

difficulties understanding pivotality, but could also mirror behavior that is more forward-looking

than Pivot algorithms. Myopic gains are evaluated assuming voting occurred immediately. In fact,

in the uncertain and complex enviroment of our experiment, subjects may want to accumulate

votes on high value proposals, regardless of their resolution under immediate voting, because they

conjecture that further trades are likely to take place before voting actually occurs.

Figure 9 shows, for each treatment, the fraction of binary trades consistent with Pivot trades

(in dark blue), weak payoff increases for both traders (light blue), and score increases, again for

both traders (in orange).37

36Recall that σit(Xi, Vit) is defined by:

σit =

K∑
k=1

xki v
k
it

where xki is the absolute valuation attached by i to proposal k passing, and vkit is the number of votes on k held by i
at t.

37The experimental matrices do not allow for weak score increases.
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Figure 9: Binary Trades

By construction, Pivot trades are a subset of both of the other two categories, and thus must

explain a lower fraction of observed trades. What is surprising is how much smaller. The figure

shows that Pivot trades are of the order of one third of all weakly-payoff-improving trades in

treatments A and ABC2, and about two fifths in treatment ABC1. Similar numbers apply to

score-improving trades.

The frequency of different types of trades is informative, but what we need to understand is the

intentionality of such trades. As we remarked about Figure 8, Pivot trades are not very frequent,

but they appear intentional: they cannot be explained by random trading. Is that true of other

types of trades?

Figure 10 plots, for the representative case of the AB treatment, the observed fractions of

Pivot trades, zero-payoff change trades, and score-increasing-not-Pivot trades, together with the

corresponding fractions under random trading and the 95 percent confidence interval under the

null hypothesis of random trading.

Figure 10: Binary trades by type v/s random.

The figure makes clear that although the fraction of zero-payoff changing trades is large, we

cannot rule out that it is the result of noisy trading: because all non-pivotal trades have zero effect

on payoffs, for any given vote distribution a large share of feasible trades belongs to this class and

thus is chosen under random trading. The figure does show, however, that this is not true for

non-Pivot-score-increasing trades: the fraction observed in the data in significantly higher than

under random trading (p < 0.0001).

We can make these observations more precise through a simple statistical model.
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AB ABC1 ABC2
probP 0.06 [0, 0.15] 0.19 [0.13, 0.25] 0.11 [0.05, 0.2]

prob0 0.11 [0, 0.22] 0.07 [0, 0.17] 0 [0, 0.11]

probS 0.41 [0.31, 0.56] 0.34 [0.26, 0.43] 0.39 [0.31, 0.49]

probR 0.42 [0.26, 0.56] 0.40 [0.29, 0.53] 0.50 [0.34, 0.58]

Table 7: Model parameter estimates with 95% confidence intervals.

4.4.3 A simple statistical model

The model does not aim at explaining behavior but at classifying the types of trades, lending some

rigor to the comments suggested by the figures. In line with the data just reported, we suppose

that executed trades are selected according to four myopic criteria, synthetic summaries of the

rules followed by the pairs of traders: (1) Pivot trades; (2) zero-payoff changing trades; (3) score-

improving trades; (4) some other criterion we ignore, and such that the trade appears to us fully

random. When executing a trade, each pair of traders follows one of these rules. Each trade can then

be written in terms of the probability of following the four criteria: probP for Pivot trading; prob0

for zero-payoff changing trades, probS for score improving trades, and probR for random trades.

Call Tt the set of all trades feasible at t, where a trade is defined by a pair of traders, a pair of

proposals, and the direction of trade. Similarly, call TP
t the set of all feasible Pivot trades, T 0

t the set

of all feasible zero-payoff trades, and TS
t the set of all feasible score-improving trades. Suppose that

we observe a Pivot trade. The probability of such a trade equals probP/TP
t +probS/TS

t +probR/Tt.

Similarly, the probability of a score-improving but not Pivot trade is given by probS/TS
t +probR/Tt.

Assuming that different trades are independent, the likelihood of observing the data set is simply

the product of the probabilities of each trade.The probabilities probP , prob0, probS, and probR can

then be estimated immediately through maximum likelihood. The only challenge is that the sets

of feasible trades, Tt, T
P
t , T 0

t , and TS
t , all evolve over time, as budget constraints become binding,

and the changes in vote allocations alter the payoff effects of different vote exchanges.

We report our estimates in Table 7, together with the 95 percent confidence intervals.38

According to our statistical model, trade is very noisy and, as Figure 10 lead us to expect, there

is no evidence of intentional zero-profit trades in any of the three treatments (in all treatments the 95

percent confidence interval for prob0 includes 0). There is however a significant probability of Pivot

trades in treatments ABC1 and ABC2, and of score-improving trades in all three treatments.

Again as implied by the figures, probP and probS are not fully collinear and can be estimated

separately. Score-improvement is a less powerful hypothesis than Pivot trading but explains a

larger fraction of the data.

38We constructed the confidence interval by bootstrapping the data and estimating the model’s parameters 100
times.
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4.4.4 Score-improving trades

The subjects’ focus on score-improving trades can be seen clearly in a different set of figures,

analogous to the plots of dynamic trade paths showing subjects’ tendency towards Pivot-stable

vote allocations. Figures 11 and 12 report, for each treatment, the evolution of the score, averaged

over all subjects and all groups, in response to trade. The vertical axis is the average score, expressed

as percentage of the maximal score reachable through pairwise trades; the horizontal axis is time,

and each dot represents a realized trade. In each treatment, the different colored curves correspond

to different rounds, while the black flat curve corresponds to random trading.

Figure 11: Dynamic convergence to score-stable allocations. Data vs.random. AB

Figure 12: Dynamic convergence to score-stable allocations. Data vs.random. ABC1 and ABC2.

The figure shows clearly both the path towards higher score as trading proceeds, in all treatments

and in all rounds, and the intentionality of the path: no such increase in score accompanies random

trading. The black curve is effectively horizontal.

Observing that a rising score can explain a substantial fraction of the experimental trades does

not imply that the increase in score is the final objective pursued by our subjects. A first reason to

be skeptical is the frequency of rejected trades reported in Section 4.1. Recall that about a third
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of all accepted bids are rejected by the bidder. Contrary to payoff changes, score increases do not

depend on the identity of the trading partner: if score increases were the goal of the trades, they

could be secured by the bidder and there would be no reason to reject any partner.39 A second

cause for doubt comes from Figures 11 and 12 themselves. Although clearly positive, the change in

average score from the beginning to the end of trading is not large: in treatment AB, average score

goes from 56 percent of the maximal reachable score at the start of trading to 70 percent: less than

a third of the gap is filled. In treatments ABC1 and ABC2 the numbers are smaller still: from 51

to 59 percent in the former, and from 45 to 52 percent in the latter. Why is trade stopping?

We have defined stability as the absence of any feasible pairwise strictly payoff-improving trade.

We can construct the similar concept of score stability, defined as the absence of any feasible pairwise

score-improving trade, and enquire whether score stability is a useful characterization of final vote

allocations.40 Figure 13 plots the CDF’s of minimal steps from score stability in the three treatments

(in orange), together with the CDF of minimal steps to payoff stability (in blue).

Figure 13: CDF’s score and payoff stability

Score stability is a much weaker explanation of final vote allocations than payoff stability: the

fraction of score-stable final vote allocations is 34 percent in AB, 14 percent in ABC1, and 6

percent in ABC2; the corresponding numbers for payoff-stability are 76 percent, 64 percent, and

again 64 percent. Not only does the orange CDF FOSD’s the blue CDF (in AB and ABC1), but

the gaps are large.

Our conclusion then is that subjects do engage in score-improving trades, even when such score

improvements are not accompanied by myopic increases in payoffs. But they recognize payoff-stable

vote allocations and tend to stop trading at that point. Subjects do not pursue score improvements

for their own sake, and stop trading long before achieving maximal score improvements. Thus non-

Pivot score-improving trades are unlikely to reflect primarily confusion about pivotality or payoffs,

and more likely to result from some cautionary behavior in front of uncertainty about future trades.

4.5 Outcomes

Which outcomes did the experimental subjects reach? Figure 14 plots the frequency of different

outcomes observed over the full data (light blue), or restricting attention to stable outcomes only

(dark blue).

39In fact, in all treatments more than two thirds of the trades rejected by the bidder would have caused the bidder
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Figure 14: Frequency of outcomes. All data and stable allocations only.

Outcomes are ordered from lowest to highest aggregate payoff (thus the order is different in

ABC1 and ABC2). A star indicates the Condorcet winner, and a dot the Pivot stable outcome.

The figure shows two immediate regularities. First, in all treatments, the Condorcet winner is

the most frequent outcome, whether we consider all outcomes, or stable outcomes only. Second,

in all treatments, the frequency of outcomes correlates positively and significantly with aggregate

payoffs. However, because both the Condorcet winner and aggregate payoffs also correlate perfectly

with persistence of pre-trade outcomes41, both results may reflect the inertia built into the market

by the frequent zero-gain trades.

In terms of Pivot predictions, we see a higher frequency of the Condorcet winner, relative to

the second most frequent outcome, in treatments AB and ABC2, where the Condorcet winner

is Pivot-stable. And among stable outcomes we see a small spike in the frequency of outcome

{A,B,C} in treatment ABC1 where it is Pivot-stable, relatively to the outcome’s low payoff-rank.

On the whole, however, the clean predictions on outcomes derived from the Pivot algorithm are not

evident in the data. Contrary to a goods market, the outcomes of vote-trading are very sensitive

to deviations–one subject’s missed trading opportunity affects the final result of voting for all. As

shown by Figure 15, the outcomes we observe are qualitatively in line with the trades’ characteristics

highlighted by the statistical model.

Figure 15: Simulated Outcomes

The figure reports the frequency of different outcomes in the data (considering here all final

an increase in score.
40Note that a score-stable allocation always exists in pair-wise trading (by the proof of the Theorem).
41In our matrices, the fewer the changes in the resolution of the different issues, the higher the aggregate payoff.
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vote allocations, whether stable or unstable) and, in columns denoted by diagonal stripes, in 5,000

trading simulations in which, given the vote allocation, a trade is selected randomly, following the

estimated probabilities in Table 7. As in all simulations in the paper, at each time interval the

probability of a trade occuring is calculated so as to replicate, on average, the observed number of

trades in the treatment. The model simulations match the ordinal ranks of the different outcomes’

frequencies, although they consistently overestimate the frequency of the Condorcet winner. Such

overestimation, however, is mostly mechanical: the result of the relatively high probability of

random trades, and the likelihood that such random trades leave outcomes unchanged. Because

zero-gain trades result in non-Pivotal vote allocations, they make Pivot-trades impossible, and thus

bias the simulations towards pre-trade outcomes and the Condorcet winner.

5 Conclusions

The aim of this paper is to develop a theoretical framework for studying vote trading in committees

and to use the framework to help understand data from a vote trading laboratory experiment. The

theoretical framework has two essential features: (1) a notion of equilibrium vote allocations; and

(2) a class of rational vote trading algorithms that lead to stable vote allocations. With respect to

(1), we define equilibrium outcomes as those for which there are no pairwise-improving vote trades

between two voters, and we extend this definition to allow for coalitional trades. With respect to

(2), we define a family of algorithms called Pivot Algorithms, which define sequences of rational

trades between pairs of voters, and we establish some welfare properties of the stable outcomes to

which these algorithms converge. We also show that coalitional vote trading may fail to converge

to a stable vote allocation.

The experiment delivered three main findings. First, our notion of stability helps in explaining

the experimental data. Overall, two-thirds of the final vote allocations in the experiment were

stable, and more than eighty percent were at most one trade away from stability. Averaging over

all rounds and sessions for a given treatment, all final vote allocations at the ID level (i.e. for

given preferences) were qualitatively in line with the predictions from stable allocations, with net

vote purchases on those issues on which the player was predicted to be a net buyer, and net sales

where the player was predicted to be a seller. Second, although final vote allocations are in line

with the theory, final outcomes show a clear bias towards the pre-trade outcome. In vote-trading

environments, each individual trade influences the set of trades available to the other voters, and

thus a single trade may make it impossible to reach a specific outcome. In particular, trades that

cumulate votes on the side that is already winning make pivotal trades impossible and consolidate

the pre-trade outcome. Finally, an analysis of trade-by-trade data leads to rather weak support

of the pivot algorithm itself. A simple statistical model is used to classify trades and we find that

score-improving trades are more prevalent in the data than pairwise strict payoff trades. Score-

improving trades are vote exchanges in which a voter trades a vote on a less important issue in

exchange for a vote on a more important issue, without necessarily affecting the final outcome.
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Such trades might be an indication of forward-looking behavior by voters. We leave the discussion

of forward-looking behavior in our environment to future research.
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T1,2 T∅ T1 T2
1, 2 ∅ 1 2

2 2 ∅ ∅
1 1 1, 2 1, 2

∅ 1, 2 2 1

Table 8: K = 2, possible preference types.

Appendix 1

Proposition 1. If K = 2, then, for all N , Z, and R: (1) P(VT ) is unique. (2) P(VT ) is Pareto

optimal. (3) If a Condorcet winner exists, then P(VT ) is the Condorcet winner. (4) P(VT ) can

never be the Condorcet loser. (5) If P(VT ) 6= P(V0), then a majority prefers P(VT ) to P(V0).

Proof. (1). At any step t, if there is a unique blocking pair, then Vt+1 is determined uniquely

and to any unique vote allocation corresponds a unique outcome. Multiplicity can arise only if at

any step there are multiple blocking pairs (possibly with some voters belonging to more than one

pair). But if K = 2 any trade by any of the blocking pairs must induce the identical change in

outcome. Thus at any step the outcome of the vote is unique. And since a Pivot-stable outcome

exists, it must be unique. Note that the Pivot-stable vote allocation need not be unique.

(2) With K = 2, there are four possible outcomes: {{∅}, {1}, {2}, {1, 2}}. Suppose, with no

loss of generality, that P(V0) = {1, 2}. With K = 2, P(VT ) ∈ {{1, 2}, {∅}}. Majority voting

at V0 implies that at least one trader must rank P(V0) strictly above all other outcomes. But

if trade occurs and V0 is blocked, there must be at least two voters who strictly prefer {∅} to

P(V0). One of those voters must have preferences: {2} � {∅} � {1, 2} � {1}, and the other

{1} � {∅} � {1, 2} � {2}. Thus, if V0 is blocked, no outcome is Pareto-dominated and all are

Pareto-optimal. If V0 is not blocked, P(V0) = P(VT ) by definition, and again it is Pareto-optimal.

(3) Again suppose, with no loss, that P(V0) = {1, 2}. There are four possible preference types,

which we call T1,2, T∅, T1, and T2, with rankings as in Table 8. Preferences are transitive and the

outcome in any cell is preferred to the outcome(s) below it; two outcomes are in the same cell when

either could be ranked above the other.

Call n1,2 the number of voters of type T1,2, and similarly for the other types. With P(V0) =

{1, 2}, both proposals are supported by a majority of voters. Call M1 (M2) the number of voters

who prefer 1 (2) to pass rather than fail. Then M1 = n1,2 +n1 ≥ (N + 1)/2, and M2 = n1,2 +n2 ≥
(N + 1)/2. We begin by asking whether any of the four possible outcomes could be the Condorcet

winner. With P(V0) = {1, 2}, it follows immediately that {1, 2} is preferred by the majority to

{P 1} and to {2}–more generally the no-trade outcome must be majority preferred to any outcome

that differs in the direction in which a single proposal is decided. This is Park (1967) and Kadane’s

(1972) result: if there is a Condorcet winner, it can only be the no-trade outcome. Here that is

P(V0) = {1, 2}. Suppose then that P(V0) is the Condorcet winner.

33



If either M1 > (N + 1)/2 or M2 > (N + 1)/2, no voter is pivotal, V0 cannot be blocked,

and P(VT ) trivially equals P(V0), the Condorcet winner. Hence the proposition holds. The more

interesting case is when M1 = M2 = (N + 1)/2, V0 is blocked, and trade takes place. Notice that

in such a case (N + 1)/2 = n1,2 + n1 = n1,2 + n2. Hence n1 = n2. Call such a number m. {1, 2}
(P(V0)) is the Condorcet winner if it beats {∅} but the ranking of the two outcomes by types

T1 and T2 is ambiguous. Call mPP
1 (m∅

1 ) the number of voters of type T1 who rank {1, 2} above

(below) {∅}, and similarly for voters of type T2. P(V0) = {1, 2} beats {∅} if and only if (n+1)/2+

mPP
1 +mPP

2 > (n− 1)/2+ m∅
1 +m∅

2 , or:

1 >
(
m∅

1 +m∅
2

)
−
(
mPP

1 +mPP
2

)
(1)

Note that
(
m∅

1 +m∅
2

)
+
(
mPP

1 +mPP
2

)
= 2m, an even number. But if the sum of two numbers is

even, the difference of those two numbers is also even. Hence {1, 2} is the Condorcet winner if and

only if
(
m∅

1 +m∅
2

)
=
(
mPP

1 +mPP
2

)
− 2R, where R is an integer strictly larger than 0.

We now show that if {1, 2} is the Condorcet winner, than it must also be the Pivot-stable

outcome. Any pair of traders blocking V0 must be such that one of them is counted in m∅
1 and

one is counted in m∅
2 . With K = 2, voters can only trade votes once. Hence V0 is blocked

once if min(m∅
1 ,m

∅
2 ) = 1 and any Vt such that Pt = {1, 2} can potentially be blocked s times if

min(m∅
1 ,m

∅
2 ) = s. Similarly, if V0 is blocked and V1 is such that P1 = {∅}, V1 will be blocked if

min(mPP
1 ,mPP

2 ) = 1. As above, any Vt such that Pt = {∅} can potentially be blocked s′ times

if min(mPP
1 ,mPP

2 ) = s′. Thus {1, 2} is the Pivot-stable outcome if and only if min(mPP
1 ,mPP

2 ) ≥
min(m∅

1 ,m
∅
2 ). Now recall that (m∅

1 +mPP
1 ) = (m∅

2 +mPP
2 ) since both sums must equal m. Thus

if {1, 2} is the Condorcet winner and
(
m∅

1 +m∅
2

)
=
(
mPP

1 +mPP
2

)
− 2R, it must be that m∅

1 =

mPP
2 −R and m∅

2 = mPP
1 −R. Hence min(mPP

1 ,mPP
2 ) = min(m∅

1 ,m
∅
2 ) +R, or min(mPP

1 ,mPP
2 ) ≥

min(m∅
1 ,m

∅
2 ), and {1, 2} is the Pivot-stable outcome. Note that identifying P(V0) with {1, 2} is

with no loss of generality. The proof can be restated as follows: the only candidate for Condorcet

winner is P(V0), and when P(V0) is the Condorcet winner, then it must also be the Pivot-stable

outcome.

(4) By Kadane’s ”improvement algorithm”, if P(V0) = {1, 2}, then not only is {1, 2} majority

preferred to {1} and to {2}, but {1} and {2} are majority preferred to {∅}. Hence if there is

a Condorcet loser, it can only be {∅}. But if {∅} is the Condorcet loser, it means that {1, 2}
is majority preferred to {∅}. Hence P(V0) = {1, 2} is the Condorcet winner, and by (2) above

P(VT ) = P(V0).

(5). From (2) above, if P(V0) is the Condorcet winner,then P(VT ) = P(V0). Thus if P(VT ) 6=
P(V0), P(V0)is not the Condorcet winner. If, with no loss of generality, P(V0) = {1, 2}, then if

P(VT ) 6= P(V0), P(VT ) = {∅}. By Kadane’s argument, P(V0) = {1, 2} is majority preferred to

{1} and to {2}. Hence if P(V0)is not the Condorcet winner,{∅} must be majority preferred to

{1, 2} = P(V0). But {∅} = P(VT ). Hence if P(VT ) 6= P(V0), P(VT ) must be majority preferred to

P(V0).�

34



Proposition 2. If N = 3, then for all K, Z, and R: (1) if a Condorcet winner exists, P(VT )

is unique and is the Condorcet winner.(2) P(VT ) can never be the Condorcet loser.42

Proof. (1). Select any k proposals, with k = 2, ..,K−1. Call P(V0, k
−) the outcome that would

follow if the k proposals were decided against the majority preference at V0, and the remaining

K − k according to the majority preference at V0, i.e. as if one vote trade was executed on the k

proposals and none on the remainder. If the Condorcet winner exists, by Park and Kadane, it can

only be P(V0). Thus for any P(V0, k
−) at least two of the three voters prefer P(V0) to P(V0, k

−).

But then no trade can take place. If the Condorcet winner exists, V0 cannot be blocked. Thus

P(VT ) equals P(V0) and is the Condorcet winner.

(2) We begin by reiterating, and generalizing, an argument we used above in the proof of

Proposition 1.

Lemma 2. Call P−(V0) the outcome obtained by choosing the minority’s preferred direction

for each proposal at V0. If a Condorcet loser exists, it can only be P−(V0).

Proof of Lemma 2. The Lemma follows from Kadane’s improvement algorithm. Select k

from the K proposals (k = 1, ..,K − 1). Consider the outcome P(V0, k
−) obtained by deciding

those k proposals in the direction favored by the minority at V0, and the remainder K − k in the

direction favored by the majority. Now consider the outcome obtained by switching one additional

proposal from the majority to the minority’s preferred direction at V0: P(V0, k
−, (k + 1)−), where

the argument k− is maintained to make clear that the selection of the original k proposals has

not changed. Then, by construction, P(V0, k
−) is majority preferred to P(V0, k

−, (k + 1)−). It

follows that for any P 6= P−(V0) there always exists an outcome P′ that differs only by switching

the direction of one proposal from the majority’s to the minority’s at V0 such that P is majority

preferred to P′. Hence if a Condorcet loser exists, it can only be P−(V0). �

We can now prove (2). By Lemma 2, if a Condorcet loser exists it can only be P−(V0). The

result follows if we can show that if P−(V0) is Pivot-stable, it cannot be the Condorcet loser.

Suppose P−(V0) is Pivot-stable, and call V −0 any allocation of votes such that P(V −0 ) = P−(V0).

Given preferences Z, consider any allocation of votes V (Z) such that V −0 can be reached from V (Z)

through a strictly pair-wise improving trade. Since P−(V0) 6= P(V0) and P−(V0) is Pivot-stable,

V (Z) must exist. With N = 3, the existence of a strictly pair-wise improving trade implies that

P(V −0 ) = P−(V0) is majority preferred to P(V (Z)). Hence if P−(V0) is Pivot-stable, it cannot be

the Condorcet loser, and the result is proven. �

Proposition 4. There exist K, N , Z, and RC such the C-Pivot algorithm never reaches a

stable vote allocation.

Proof. Consider the following example, where as usual rows represent proposals, columns

represent voters and the entry in each cell is zki , the value attached by voter i to proposal k

passing.

42Result (1) replicates the result in Koehler (1975), under slightly different assumptions. We find however that the
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1 2 3 4 5 6 7

A 3 −2 −2 −2 1 1 1

B −2 3 −2 −2 1 1 1

C −2 −2 3 −2 1 1 1

D −2 −2 −2 3 1 1 1

Table 9: Profile where C-Pivot never converges.

At V0, all proposals pass, and ui(V0) = −3 for i = {1, 2, 3, 4}. Consider a coalition composed

of such voters, and the following coalition trade: voter 1 gives his A vote to voter 2, in exchange

for his B vote; voter 3 gives his C vote to voter 4, in exchange for his D vote. At V1, all proposals

fail and ui(V1) = 0 for all i ∈ C. The trade is strictly improving for all members of the coalition.

In addition, it is a minimal trade, since V1 cannot be reached by the coalition by trading fewer

votes, nor can it be reached by a smaller coalition (each of the two pair-wise trades alone is welfare

decreasing for the pair involved). But note that V1 is not C-Pivot stable: voters 1 and 2 can block

V1 by trading back their respective votes on A and B, reaching outcome P(V2) = {A,B}, and

enjoying a strictly positive increase in payoffs: uj(V2) = 1 for j = {1, 2}. The same argument

applies to voters 3 and 4. At V2, us(V2) = −4 for s = {3, 4}, but 3 and 4 can block V2, trade back

their votes on C and D, and obtain a strict improvement in their payoff: P(V3) = {A,B,C,D}, and

us(V3) = −3 for s = {3, 4}. Note that the sequence of trades has generated a cycle: V3 = V0, an

allocation that is blocked by coalition C = {1, 2, 3, 4}, etc.. Hence for RC that selects the blocking

coalitions in the order described, no C-Pivot stable allocation of votes can be reached.�

The logic we exploited in the proof of the Theorem in section 3 does not extend to coalition

trades. Because of the externalities present in coalitional trades, the score function we defined

earlier is no longer monotonically increasing in the number of trades. In the example, voters 1, 2, 3,

and 4 have a score of 9 before the coalition trade and a score of 8 after the trade.43 Cycles become

possible, and stability cannot be guaranteed.

Proposition 5. Consider Z such that the Condorcet winner exists. (1) If either K = 2 or

N = 3, then the C-Pivot stable outcome always exists, is unique, and coincides with the Condorcet

winner. (2) If K > 2 and N > 3, if a C-Pivot stable outcome exists, it need not coincide with the

Condorcet winner.

Proof. (1) (i) Consider first the case K = 2. The following Lemma establishes that the

existence of a C-Pivot stable outcome:

Lemma 3. If K = 2, then for all N , Z, and R a Pivot stable allocation V always exists.

Proof of Lemma 3. We need two further Lemmas:

result is limited to N = 3.
43In the example, the coalition trade can be divided into two separate pair-wise trades, but this feaure plays no

important role. It is easy to generate examples where coalition trades are linked in a chain. What matters is that
scores can fall after a welfare-improving coalition trade.
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Lemma 4. If at V0 both proposals pass by minimal majority, then if K = 2 all C -Pivot trades

must be pair-wise trades.

Proof of Lemma 4. By minimality of the coalition trades, if at V0 both proposals pass by

minimal majority then at each step of the algorithm both proposals must be decided by minimal

majority. At each step t any coalition must include a voter with preferences {1} � P(Vt) and a

voter with preferences {2} � P(Vt), and each must have at least one vote to trade away, or they

would not be part of the minimal coalition. But if the proposals are decided by minimal majority,

the two voters could just trade among themselves. Hence the minimal coalition must be a pair.�

Lemma 5. If K = 2, there can be at most one trade that is not pair-wise, and it can only be

the first.

Proof of Lemma 5. By Lemma 4, if non pair-wise coalition trades occur, it must be that at

V0 at least one proposal is not decided by minimal majority. Any blocking coalition at V0 must

then involve more than two voters. But by minimality, after the coalition trade both proposals

must be decided by minimal majority. But then from t = 1 onward, all trades can only be pair-wise

trades.�

We can now prove Lemma 3. If V0 cannot be blocked, then it is trivially stable. If it can be

blocked,then Lemma 4 and 5 imply that any voter can at most trade once. Hence the trades must

converge to a stable votes allocation. We can say more: a stable votes allocation must be reached

in at most (N − 1)/2 steps, the maximal number of possible pair-wise trades.�

We can now prove that the C-Pivot stable outcome must coincide with the Condorcet winner,

when the Condorcet winner exists, and thus be unique.44 If at V0 both proposals pass by minimal

majority then by Lemma 4 Proposition 1 applies and the result follows. Suppose then that at

V0 at least one proposal is not decided by minimal majority. If there is no blocking coalition, V0

is trivially stable, and since the Condorcet winner can only be P(V0), then the stable outcome

coincides with the Condorcet winner, if it exists. Suppose then that at least one blocking coalition

exists (and note that it must include more than two voters). If several exist, select one by rule RC .

After the first coalitional trade, P(V1) = {∅}. With K = 2, all members of a minimal coalition

can only trade once, regardless of the coalition’s size. We can construct a fictional vote allocation

Ṽ0 and preferences Z̃ such that ṽk0i = vk1i and z̃ki = zki for all i /∈ C, and ṽk0i = 1 and z̃ki = −1 for all

i ∈ C, k = 1, 2. Note that P(Ṽ0) = P(V1) = ∅, and Z̃ respects all individuals’ ranking between the

only possible outcomes, {1, 2} and {∅}, but Ṽ0 and Z̃ guarantee that, as required, all i ∈ C will not

trade any further. At Ṽ0, both proposals are decided by minimal majority, and starting from Ṽ0

all minimal coalitions will be pair-wise. As a result, starting from Ṽ0, Proposition 2 applies. Note

that, if P(V0) = {1, 2} is the Condorcet winner, then a majority prefers P(V0) to P(Ṽ0). Hence,

by Proposition 2, P (Ṽ0) cannot be Pivot stable. The C-Pivot stable outcome is then P(V0). But

P(V0) is the Condorcet winner and the result is proven.

44In fact, with K = 2 it is possible to show that the C-Pivot stable outcome is always unique, whether or not the
Condorcet winner exsts, and it is always Pareto optimal and always majority preferred to P(V0).
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(ii). Consider now the case N = 3. Recall that the Condorcet winner can only be P(V0). If

N = 3, and the Condorcet winner exists, then no welfare improving trade exists at V0. Hence

P(V0) is trivially C-Pivot stable, and is the Condorcet winner.�

Trade paths for the experimental matrices.

(1) Matrix AB. There is a unique Pivot path. At V0, with P(V0) = {B}, 1 trades his B vote to

3 in exchange for 3’s A vote, leading to P(V1) = {A}; then 2 trades his B vote to 4 in exchange for

4’s A vote. The resulting vote allocation is stable, and P(V2) = P(VT ) = {B}. (2) Matrix ABC1.

P(V0) = {A} is the Condorcet winner, but V0 is not stable. The unique Pivot-stable outcome

is P(VT ) = {A,B,C}. Three alternative paths, of length {4, 4, 3} lead to it. Indicating first the

ID’s of the trading partners, and then the issue on which an extra vote is acquired by the voter

listed first, the three paths are: {13CB, 45BC, 23AB, 45CA}, {23AB, 45CA, 45BC, 13CB}, and

{23AB, 45BA, 13CB}. (3) Matrix ABC2. P(V0) = {A,B,C} is the Condorcet winner and the

unique Pivot-stable outcome. However V0 is not stable. Three alternative paths, of length {4, 4, 3}
lead to P(VT ) = {A,B,C}. They are: {15AB, 34BA, 24CB, 15BC}, {24CB, 15BC, 15AB, 34BA},
and {24CB, 15AC, 34BA}.
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Appendix 2

VOTE TRADING INSTRUCTIONS

Make yourself comfortable, and then please turn off phones and don’t talk or use the computer.

Thank you for agreeing to participate in this decision making experiment. You will be paid for

your participation in cash, at the end of the experiment. Different participants may earn different

amounts. What you earn depends partly on your decisions and partly on the decisions of others. If

you have any questions during the instructions, raise your hand and your question will be answered.

If you have any questions after the experiment has begun, raise your hand and an experimenter

will come and assist you.

The experiment today is a committee voting experiment, where you will have an opportunity

to trade votes before voting on an outcome. The experiment will be in three parts. At the end

of the experiment you will be paid the sum of what you have earned in all three parts of the

experiment, plus your promised show-up fee of 10 dollars. Everyone will be paid in private and you

are under no obligation to tell others how much you earned. Your earnings during the experiment

are denominated in POINTS. For this experiment every 100 POINTS earns you 6 DOLLARS.

Here are the instructions for Part 1.

You will be randomly assigned to one of 3 committees, each composed of 5 members. Each

committee is completely independent of the others, and the decision taken in one committee has no

effect on the others. The committee will vote using majority rule to decide on 2 different motions,

denoted A and B. Each motion can either pass or fail depending on how the committee votes.

There will be a separate vote on each motion. The computer will assign you a committee member

number (1, 2, 3, 4, or 5). Part 1 consists of 3 rounds.

You will be told, for each motion, whether you prefer it to pass or to fail. The computer will

assign you (and each other member) a value for each motion which will be a number between 1

and 100. You will earn your value for a motion if you prefer that motion to pass and it passes, or if

you prefer it to fail and it fails. This is your only source of earnings. Your earnings for the round

are equal to the sum of your earnings over the two motions.

Each committee member starts a round with 1 vote to cast on each motion. Then there will be

a 2 minute trading period, during which you and the other members of your committee will have

an opportunity to trade votes with each other. For example, you may wish to trade your A vote

in exchange for some other member’s B vote. We will describe exactly how to do this shortly.

After the trading period ends, you will proceed to the voting stage. Once everyone has voted,

you will be told what the final votes were in your committee and how much you earned in that

round. This will complete the first round. The remaining 2 rounds in Part 1 follow the same rules.

Each committee member starts the round with a single vote on each motion. Your committee

member number, preferences for each motion (pass or fail), your value for each motion, and the

preferences and values of the other four members of your committee all stay the same for all 3
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rounds of part 1 of the experiment.

Your earnings for part 1 are the sum of your earnings in all 3 rounds. After round 3 ends, I will

read you instructions for part 2 of the experiment.

We now describe in detail how you and the other members of your committee can trade votes.

When we begin a round, you will see a screen like this, although the exact numbers may be

different. [Display Screen 1] On the right of the screen is an Information Table that contains a

lot of information, so please listen carefully. It displays each member’s preference for each motion

(pass or fail), value, and number of votes. If the member prefers the motion to fail, then the value

is written in a blue color. If the member prefers the motion to pass, then the value is written in

an orange color. You can simply think of there being two sides - the orange side and the blue side

- on each motion. The number of votes held by each member on each motion is in parentheses.

Because no trading has occurred yet, each member holds exactly one vote on each motion.

Your own row is specifically labeled and the label is highlighted in gray. The last row in the

table is labeled ”outcome”. This row tells you, for each motion, what the total vote would be if

voting took place now, by showing the column sum of votes on each motion. The number of votes

for is given first, in orange, and the number of votes against is given second, in blue. If the votes

in favor of a motion exceed the votes against, then all voters who prefer the motion to pass will

earn their value for that motion, and all voters who prefer the motion to fail will earn zero for that

motion. Similarly, if the votes in favor of a motion failing exceed the votes in favor of it passing,

then all voters who prefer the motion to fail will earn their value for that motion, and all voters

who prefer the motion to pass will earn zero for that motion. There is a check mark next to your

value if the outcome of that motion is the outcome you prefer. This means that you earn your

value for that motion. In this example, if there were no votes traded at all, then on motion A, there

are 2 votes held by members who prefer A to pass and 3 held by members who prefer A to fail, so

motion A fails. On motion B, there are 3 votes held by members who prefer B to pass and 2 held

by members who prefer B to fail, so motion B passes. Since ID 1 (You) prefers both motions to

pass, he earns his value for motion B but earns 0 for motion A.

To the left of the table, in grey, is the trading window. At any time during the trading period,

any committee member may post a trade offer by requesting 1 vote on one motion in exchange for

1 vote on some other motion. Suppose the participant on the slide in front of the room wanted to

post a trade requesting one A vote in exchange for one B vote. This is done by entering a 1 in the

A box under ”Requests” and a 1 in the B box under ”Offers”. [Screen 2]. You can only trade 1

vote for 1 vote; you can neither request nor offer multiple votes.

After you have entered this trade request and clicked the ”submit trade offer” button, the trade

is posted in the trading panel for everyone in your committee to see. [SCREEN 3] If another

committee member wants to accept your trade request, they may click on it to highlight it, and

then click on the ”accept selected offer” button.[SCREEN 4] You now have 10 seconds to either

confirm or reject the accepted trade. A message will pop-up on your screen. [SCREEN 5]. The
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message tells you what the outcome of the vote would be if you either accept or reject the trade and

voting took place without any further trade. If you reject the trade or do nothing for 10 seconds,

the trade does not occur. The committee member who had accepted your offer is informed that

you declined to confirm the trade.[SCREEN 6]. Your offer is reposted in the trading window, and

some other voter can accept it. If you confirm the trade, then the voter who accepted the offer now

holds 0 A votes and 2 B votes, you now hold 2 A votes and 0 B votes, and the Information Table

is updated accordingly. The new Information Table is displayed for 10 seconds on a popup screen

for everyone in your group to see. [SCREEN 7]

If you have a standing offer listed in the trading window, you may cancel it by first clicking on

it and then clicking the ”cancel selected offer” button.[SCREEN 8]

The trading period continues for 2 minutes. The timer at the top tells you how much time

remains in the trading period. The clock is frozen when the Information Table is shown after a

trade, with the new vote holdings. If a trade occurs within 10 seconds of the end of the trading

period, the trading period is automatically lengthened by 10 more seconds.

You are free to post trade requests at any time, but you are not allowed to offer to trade away

a vote on a motion if you currently hold 0 votes for that motion or already have an offer posted on

the trading window that would result in holding 0 votes if accepted. In that case you would first

have to cancel your existing posted offer. Also remember that you can only trade one vote for one

motion in exchange for one vote for another motion. If you try to do a trade that is not allowed,

you will either receive an error message, or the action buttons will become gray and be deactivated,

preventing you from proceeding with that trade.

When the trading period for the round is over, we proceed to the voting stage. Your screen will

now look something like this: [SCREEN 9]. In this stage you do not really have any choice. You are

simply asked to click a button to cast all the votes you hold at the end of trading. The computer

will automatically cast your votes on each motion according to the preferences you were assigned.

For example, if you prefer motion B to fail and you hold two B votes after the trading period, those

two votes will be cast automatically against motion B. Please cast all your votes without delay by

clicking on the vote button.

After you and the other members of the committee have voted, the results are displayed and

summarized. [SCREEN 10]

As the experiment proceeds, at the bottom of each screen you will see a history table, summa-

rizing the results of the previous rounds [SCREEN 11. Go over the different columns] If you switch

to tab view, each round will be shown separately].

We then proceed to the next round, where you again start out with one vote on each motion

and the rules are the same as in the first round. Remember that your assigned committee number,

preferences for motions, values for motions, and those of the other members of your committee all

stay the same for all 3 rounds of part 1 of the experiment. After the first 3 rounds are completed,

we will read instructions for the second part of the experiment.
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To give you some experience with the trading screen, we will conduct two practice rounds. The

rules will be the same as they will be in the paid rounds, but the values and preference assignments,

for or against a motion, are not the same as they will be in the paid rounds. You are not paid for

the practice rounds, so they have no effect on your final earnings. The only purpose of the practice

rounds is to help you become familiar with the computer interface and the trading rules.

This summary slide [SCREEN 12: Summary slide] will remain up during the experiment to

remind you of the rules on trading and on time.

Are there any questions before we proceed to the first practice round? [START SERVER]

Please click on the icon marked Multistage Client on your desktop. Then enter the number of

your carrel (on the right side of the carrel), click enter, and then wait. Remember that you are not

allowed to use the computer for any other purposes while waiting during the experiment (email,

browsing, etc.).

[CONNECT EVERYONE AND START]

Please complete the practice rounds on your own. Feel free to raise your hand if you have a

question.

[WAIT FOR SUBJECTS TO COMPLETE PRACTICE ROUNDS]

The practice rounds are now over. Remember, you will not be paid the earnings from the

practice rounds.

If you have any questions from now on, raise your hand, and an experimenter will come and

assist you. We will now begin the paid rounds.

(Play 3 real rounds for Part 1) [After last ROUND, read:]

We will now proceed to Part 2. The rules for part 2 are the same as for part 1, but there are

now 3 motions for your group to vote on. You can only trade one vote on one motion for one vote

on another motion. The trading period will last 3 minutes. As before, 10 seconds will be added to

the clock if a trade takes place within 10 seconds of the time limit.

The values and pass/fail preferences will be different from part 1, and your committee number

as well as the composition of your committee may change. However, both the preferences and the

composition of the committee will remain the same for all of Part 2. Part 2 will last for 5 rounds.

At the end of the 5 rounds, we will stop and read the instructions for Part III.

Are there any questions before we begin?

(Play 5 real rounds for part 2) [After last ROUND, read:]

We will now proceed to Part 3. Part 3 is identical to Part 2, but the values and pass/fail

preferences may be different. Your committee number as well as the composition of your committee

may also change. Part 3 will again last for 5 rounds and again the trading period is 3 minutes (plus

10 seconds if a trade is concluded within 10 seconds of the time limit).

This is the end of the experiment. You should now see a popup window, which displays your

total earnings in the experiment. Please record this and your Computer ID on your payment receipt
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sheet, rounding up to the nearest dollar. After you are done, please, click ok to close the popup

window. Do not close any other windows on your computer and do not use your computer for

anything else. Also enter 10 dollars on the show-up fee row. Add the two numbers and enter the

sum as the total.

[Write output]

We will pay each of you in private in the next room in the order of your computer numbers.

Remember you are under no obligation to reveal your earnings to the other players. Please do not

use the computer; be patient, and remain seated until we call you to be paid. Do not converse with

the other participants or use your cell phone. Thank you for your cooperation.
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