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Abstract

We introduce the possibility of direct punishment by specialized enforcers into a model of

community enforcement. Specialized enforcers need to be given incentives to carry out costly

punishments. Our main result shows that, when the specialized enforcement technology is suf-

ficiently effective, cooperation is best sustained by a “single enforcer punishment equilibrium,”

where any deviation by a regular agent is punished only once, and only by enforcers. In con-

trast, enforcers themselves are disciplined (at least in part) by community enforcement. The

reason why there is no community enforcement following deviations by regular agent is that

such actions, by reducing future cooperation, would decrease the amount of punishment that

enforcers are willing to impose on deviators. Conversely, when the specialized enforcement tech-

nology is ineffective, optimal equilibria do punish deviations by regular agents with community

enforcement. The model thus predicts that societies with more advanced enforcement technolo-

gies should rely on specialized enforcement, while less technologically advanced societies should

rely on community enforcement. Our results hold both under perfect monitoring of actions and

under various types of private monitoring.
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1 Introduction

Throughout history, human societies have used a variety of means and practices to foster pro-social

behavior among their members. Prominent among these is decentralized community enforcement,

where deviations from cooperative behavior are discouraged by the threat of withholding future co-

operation, or even the threat of the widespread collapse of cooperation throughout society. A large

literature in the social sciences, especially in game theory, provides conceptual foundations for this

type of enforcement. In small groups, where an individual’s behavior can be accurately observed

by other members of the community, the threat of exclusion or punishment is a powerful means of

supporting cooperation (Axelrod, 1984, Fudenberg and Maskin, 1986, Ostrom, 1990, Greif, 2006).

In large groups, where information about past behavior is more limited, cooperation can be sup-

ported by “contagion” strategies, which trigger the spread of non-cooperative behavior following

a deviation (Kandori, 1992, Ellison, 1994). Furthermore, several prominent examples, such as the

cooperative arrangements among the medieval Maghribi traders and their overseas agents (Greif,

1993) and the norms of behavior and compensation between ranchers and landowners in twen-

tieth century Shasta County, California (Ellickson, 1990) demonstrate the practical feasibility of

decentralized community enforcement.

In modern societies, however, the basis of cooperative behavior is rather different. Major

transgressions are not directly punished by neighbors, nor do they trigger a contagion toward non-

cooperative behavior throughout society. Instead, they are directly punished by specialized law

enforcers, including the police, the courts, and other state and non-state institutions. Indeed,

following Thomas Hobbes and Max Weber, most social scientists view this type of specialized

enforcement as desirable, as well as inevitable both in societies with full-fledged states and in those

with less developed proto-states (Johnson and Earle, 2000, Flannery and Marcus, 2012). Yet,

there exists little formal modeling of the foundations of such specialized enforcement. The goal of

this paper is to develop one model of specialized enforcement, and to compare the performance of

specialized enforcement and community enforcement in supporting cooperation.

We consider a model of cooperation within a group of agents. In our baseline model, regular

citizens (“producers”) randomly match with each other, as well as with “specialized enforcers”

assigned to monitor their relationships. Each producer chooses a level of cooperation (e.g., a

contribution to a local public good or an investment in a joint project), which is costly for her

but generates benefits for her partners (both the other producers with whom she matches and

the enforcers who monitor them). Absent the threat of direct or indirect punishment, a producer

would choose zero cooperation. In this model, cooperation can be supported by contagion strategies

as in Kandori (1992) and Ellison (1994), where a deviation from pro-social behavior triggers the

withdrawal of cooperation throughout the entire community. Cooperation can alternatively be
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supported by specialized enforcement– in which enforcers directly punish producers who deviate–

provided that enforcers can be given the proper incentives to behave in this way.1 And cooperation

can also be supported by any number of other strategies, as is typical in repeated games. Our

question then is not what kinds of strategies can support some cooperation, but rather what

strategies support the maximum possible level of cooperation at a fixed discount factor.

Our simplest and sharpest results apply under perfect monitoring, where each agent observes

the entire past history of behavior. In this case, we establish a simple condition on the effectiveness

of the specialized enforcement (direct punishment) technology under which the maximum level

of cooperation is sustained by a simple form of specialized enforcement– single enforcer punish-

ment strategies– wherein all punishment for producer deviations takes place instantaneously and

is carried out by enforcers, and there is no contagion or withholding of future cooperation. In our

baseline setting, enforcers are incentivized to undertake such costly punishments because, unlike

deviations by the producers themselves, deviations by enforcers trigger contagion among the pro-

ducers.2 Conversely, when direct punishments are ineffective, the maximum level of cooperation

is maintained by community enforcement. The model thus predicts that– for example– societies

with more advanced technology in both production and punishment should rely on specialized

enforcement, while less technologically advanced societies should rely on community enforcement.

The form of our specialized enforcement equilibrium can be viewed as a stylized representation

of modern state-society relations. Enforcers’ incentives come from the fact that they themselves

benefit from societal cooperation (either directly or, in an extension, because the revenues that pay

their salaries are generated by such cooperation), and societal cooperation depends on citizens’trust

in the integrity of the law enforcement apparatus. If this trust is damaged because the enforcers

representing the state deviate from their expected course of behavior, societal cooperation collapses,

and it is the prospect of such a collapse that incentivizes enforcers.

The optimality of single enforcer punishment strategies in our model may appear surprising, as

one might have conjectured that it would be better to combine specialized enforcer punishments

with decentralized community enforcement: if both direct punishment and the withdrawal of coop-

eration are bad for producers, why not use both to provide incentives? The intuition for this result

helps highlight the novel economic mechanism at the heart of our paper. Adding decentralized

punishment– for example, some degree of contagion– to a given level of specialized punishment

would indeed improve producers’incentives for cooperation. And yet, crucially, it would also erode

the incentives of enforcers to undertake direct punishment: enforcers are willing to undertake costly

1 In practice, another important problem is ensuring that enforces do not use their access to violence to expropriate
others. At the level of abstraction of our model, this is similar to the problem of convincing enforcers to choose the
appropriate level of punishment in response to transgressions.

2We also show that when enforcers can be directly punished by other enforcers, their deviations trigger both direct
punishment and the temporary withholding of cooperation by producers.
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punishments today only because of the future reward of continued societal cooperation. Hence, if

a deviation by a producer also triggered partial or full contagion, then this implicit reward for

enforcers would be diminished, undermining the power of enforcer punishments. This reasoning

thus identifies a novel– and in our setting, quite powerful– cost of decentralized punishment: its

negative impact on the extent and effi cacy of specialized punishment.

The role of specialized punishment by enforcers and the tradeoff between community enforce-

ment and specialized enforcement generalize beyond the perfect monitoring case. First, we show

that for a fairly general class of information structures (including the possibility that each individ-

ual only observes play in her own past matches), single enforcer punishment strategies outperform

pure contagion when either the punishment technology is suffi ciently effective or the discount factor

is suffi ciently large. Because pure contagion is optimal in this environment without the enforcers

(Wolitzky, 2013), this result immediately implies that the optimal equilibrium must rely on en-

forcers to some extent (though we do not completely characterize the optimal equilibrium in this

more general environment).

Second, we establish that when individuals observe behavior in their partners’most recent

matches, single enforcer punishment strategies form an optimal equilibrium unless the group can

somehow benefit from the imperfections in the monitoring structure in this setting. While we show

by example that this is in fact possible in general, we also provide two natural settings in which

single enforcer punishment strategies are indeed optimal. First, this is the case if enforcers are

better informed than producers.3 Second, single enforcer punishment strategies are also optimal

under an additional stability requirement, which postulates that a single deviation by any single

individual is not suffi cient to start contagion. We find this requirement attractive because it captures

another potential cost of decentralized community enforcement: the danger of contagion being

triggered accidentally by trembles or mistaken observations. Indeed, many accounts of cooperation

in societies with weak or absent states, such as Lewis’s (1994) study of Somalia, emphasize how

small transgressions can start major feuds, or even all-out tribal wars. Such accidental contagion

would also be triggered in our model under community enforcement if producers trembled with a

small probability. Under enforcer punishments, however, a similarly costly contagion can occur only

if both individual producers tremble and an enforcer trembles in response. This makes accidental

contagion much less likely under enforcer punishments.

We also consider one main extension of our model, where we allow producers to directly

exclude– or ostracize– each other from the benefits of cooperation, while continuing to provide

benefits to enforcers. This extension softens the key tradeoff in our model between withdrawing

future cooperation from deviators and using the promise of future cooperation to give enforcers

3The superior information of enforcers here might result from communication with producers, or from the enforcers’
being organized in some institution, such as a law enforcement agency.
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incentives to punish. Nonetheless, the optimal arrangement in this setting either remains single

enforcer punishment strategies or becomes a combination of these strategies with the short-term

ostracism of deviant producers, thus establishing that the simple structure of optimal equilibria is

largely preserved in the presence of ostracism.

Our paper is related to several different lines of research. First, we build on the literature

on community enforcement in repeated games, pioneered by Kandori (1992) and Ellison (1994),

by introducing costly punishments into this literature. Recent contributions to this literature

include Takahashi (2010), Deb (2012), and Deb and González-Díaz (2014). Most closely related

to our paper are Wolitzky (2013) and Ali and Miller (2014a), which provide conditions under

which contagion strategies support the maximum level of cooperation at a fixed discount factor in

repeated cooperation games without costly punishments. In contrast, we show that introducing

the possibility of costly punishments can radically change the structure of the optimal equilibrium

from contagion strategies to single enforcer punishment strategies.

Several other papers in this literature emphasize various weaknesses of contagious strategies.

Jackson, Rodriguez-Barraquer, and Xu (2012) note that contagion strategies violate a renegotiation-

proofness condition, and focus instead on equilibria in which social breakdowns are contained

following a deviation. Lippert and Spagnolo (2010) and Ali and Miller (2014b) show that conta-

gion strategies discourage communication about past deviations, and argue for equilibria involving

temporary exclusion or ostracism. These papers do not consider specialized enforcers, and more

generally they do not investigate optimal equilibria in settings where contagion strategies are sub-

optimal.4

Second, our paper is also related to the literature on optimal penal codes in general repeated

games (Abreu, 1988, see Mailath and Samuelson, 2006, for a survey), especially the “stick-and-

carrot” equilibria of Abreu (1986). In particular, our single enforcer punishment equilibria offer

the “stick” of specialized punishment for producers and the “carrot” of continued cooperation

for enforcers. However, while in Abreu (1986) stick-and-carrot equilibria are only optimal within

the class of strongly symmetric equilibria (i.e., under the restriction that play is symmetric at all

histories), we show that single enforcer punishment equilibria are globally optimal in our model

under perfect monitoring, and we also extend this result to certain classes of imperfect private

monitoring. Among other works in related environments, Padro-i-Miquel and Yared (2012) consider

stick-and-carrot equilibria in a political economy model, and Goldlücke and Kranz (2012) show that

stick-and-carrot equilibria are generally optimal in repeated games with transfers.

Third, our work connects to the literature on the economic foundations of the enforcement

of laws and norms. Early contributions to this literature, including Ostrom (1990), Greif (1989,

4A paper involving a form of ostracism that does resemble direct punishment is Hirshleifer and Rasmusen (1989).
They show that this behavior may support cooperation in the finitely repeated prisoner’s dilemma.
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1993), Milgrom, North and Weingast (1990), Greif, Milgrom and Weingast (1994), and Fearon and

Laitin (1996), focused on informal enforcement supported by “reputation”and various ostracism-

like arrangements. Dixit (2007) surveys and extends these early frameworks. A particularly relevant

contribution by Greif (1994) distinguishes between the “private order”institutions of the Maghribi

traders and the “public order” institutions of the rival Genoese traders– which resemble, respec-

tively, our community enforcement and specialized enforcement equilibria– and argues that public

order institutions proved more effi cient as the scope for trade expanded in the late medieval period.

Acemoglu and Jackson (2014) analyze the converse problem to the one in this literature: studying

how social norms can constrain the effectiveness of laws that ban certain types of behavior. Ace-

moglu and Verdier (1998) study how law enforcers matched with pairs of producers can be used to

incentivize effort, but must also be discouraged from corruption. Another closely related paper is

due to Levine and Modica (2014), who study the problem of designing a specialized enforcement

technology to sustain group cooperation and emphasize the tradeoff between providing insuffi cient

incentives for cooperation and expending excessive effort in punishment.

Finally, to the extent that enforcer punishment strategies may be viewed as a type of formal

enforcement, our paper relates to the literature on the effi ciency of formal versus informal enforce-

ment of norms and contracts. Theoretical contributions include Kranton (1996) and Kali (1999).

Empirical studies of reputation-based contract enforcement include Fafchamps (1996), Clay (1997),

Woodruff (1998), McMillan and Woodruff (1999), and Johnson, McMillan, and Woodruff (2002).

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 presents

our main result on the optimality of specialized enforcement under perfect monitoring. Section 4

discusses various modeling issues. Section 5 presents our results with private monitoring. Section

6 extends the model to allow for ostracism. Section 7 concludes. Omitted proofs and additional

results are included in the Appendix.

2 Model

We first introduce the basic environment and information structure, and then define the key con-

cepts of contagion strategies and single enforcer punishment strategies.

2.1 Environment

There is a population of (k + l)n players, with k, l, n ≥ 1. Out of the (k + l)n players, kn of them

are producers (or “citizens”) and ln of them are enforcers (or “police”). Denote the set of producers

by C, the set of enforcers by P , and the set of all players by N . In every period t = 0, 1, 2 . . ., the

players break into n matches uniformly at random, where each match consists of k producers and

l enforcers. Denote the match containing player i by Mi.
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The following two-stage game is played simultaneously in each matchM . The game is a version

of the prisoner’s dilemma among the producers, with the possibility of costly punishment by the

enforcers.

1. Cooperation Stage: Each producer i in matchM chooses a level of cooperation xi ∈ R+ before

observing the identities of the other players in M .5 The vector (i, xi)i∈M∩C is then perfectly

observed by all players in M . Choosing cooperation level xi costs xi for player i, and benefits

every other player k 6= i in M by f (xi), where f : R+ → R+ is an increasing, concave,

bounded, and differentiable function satisfying f (0) = 0.

2. Punishment Stage: Each enforcer j ∈M then chooses a level of punishment yji ∈ R+ for each

producer i ∈M ∩ C. The vector (j, i, yji)j∈M∩P,i∈M∩C is perfectly observed by all players in

M . Choosing punishment level yji costs yji for player j, and hurts player i by g (yji), where

g : R+ → R+ is an increasing, concave and differentiable function satisfying g (0) = 0.6 We

refer to g as the specialized enforcement technology.

Thus, producer i’s stage game payoff is

∑
i′∈Mi∩C\i

f (xi′)− xi −
∑

j∈Mi∩P
g (yji) ,

and enforcer j’s stage game payoff is

∑
i∈Mj∩C

(f (xi)− yji) .

Note that playing xi = 0 (“shirking”) is myopically optimal for producer i, and playing yji = 0 for

all i ∈ Mj ∩ C (“failing to punish”) is myopically optimal for enforcer j. Thus, only the shadow

of future interactions can give producers incentives to cooperate, or give enforcers incentives to

punish.

For some secondary results, we also consider a variation with “money burning,” in which pro-

ducers (resp., enforcers) are also allowed to publicly destroy some of their own utility at the same

time that they choose their level of cooperation (resp., punishment). The only difference between

this type of money burning and cooperation (resp., punishment) is that cooperation (resp., punish-

ment) also benefits (resp., hurts) other players. We explicitly indicate below which of our results

involve the possibility of money burning.

5We refer to the feature that producers act without knowing their partners’identities as partial anonymity. This
assumption plays an important role in our results, as we discuss further in Section 4.

6The assumption that f is bounded is stronger than necessary and can be replaced by the mild assumptions that

(1) limx→∞ (k − 1) f (x) − x = −∞, and (2) there exists x0 ∈ R+ such that lg
(

δ
1−δkf (x)

)
− x < 0 for all x > x0.

These assumptions hold if, for example, g′ is bounded and f satisfies the Inada condition limx→∞ f
′ (x) = 0.
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We refer to the pair
(

(i, xi)i∈M∩C , (j, i, yji)j∈M∩P,i∈M∩C

)
as the outcome of match M .

Throughout the paper, we maintain the assumption that players perfectly observe the outcomes of

their own matches, while varying players’information about the outcomes of other matches. With

perfect monitoring, players observe the outcomes of all matches at the end of each period. We

also consider two different versions of private monitoring– detailed below– where players have less

information about what goes on outside their own matches. In all versions of the model, we let hti
denote a generic history of player i’s at the beginning of period t, where we omit the subscript in

the perfect monitoring case. The trivial initial history is denoted by h0. We also denote a generic

strategy of player i’s by σi. For example, if player i is a producer, then σi
(
hti
)
∈ ∆ (R+) denotes

player i’s mixed action at history hti.

Players maximize expected discounted payoffs with common discount factor δ. The solution

concept with perfect monitoring is subgame perfect equilibrium (SPE). The solution concept with

private monitoring is weak perfect Bayesian equilibrium (PBE), with the additional requirement

that the equilibrium assessment is derived from a common conditional probability system (Myerson,

1991).7

Note that the assumptions that f and g are concave imply that there is a technological advantage

to spreading out both cooperation and punishments over time. Nevertheless, we will show that,

while optimal equilibria do spread cooperation over time, they do not spread punishments over

time. Instead, optimal equilibria either do not use punishments at all or concentrate them in a

single period.

2.2 Contagion Strategies and Single Enforcer Punishment Strategies

Given a path of play of the repeated game, let xti denote producer i’s level of cooperation in period

t, and let

Xt
i = (1− δ)

∞∑
τ=0

δτxt+τi

denote producer i’s present discounted level of cooperation starting in period t. From the perspec-

tive of a given equilibrium of the game, xti and X
t
i are (possibly degenerate) random variables. We

refer to the quantity E
[
X0
i |h0

]
as player i’s average level of cooperation in a given equilibrium.

We say that an equilibrium is the most cooperative one if it simultaneously achieves the highest

value of E
[
X0
i |h0

]
for every player i among all equilibria (with the solution concept of SPE for

the perfect monitoring version and PBE for the private monitoring version); and we call the corre-

sponding value of E
[
X0
i |h0

]
the maximum level of cooperation. Note that, by concavity of f , the

7Another approach would have been to discretize the action space and use sequential equilibrium. This would
lead to the same results, except that with discrete actions the equilibria we characterize would be only approximately
rather than exactly optimal.
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most cooperation equilibrium is also the optimal equilibrium in terms of utilitarian social welfare if

producers choose constant levels of cooperation on path, punishments are not used on path, and the

maximum level of cooperation is below the first-best level, xFB, given by (k + l − 1) f ′
(
xFB

)
= 1.

This is indeed the main case of economic interest, as the main problem in most settings is provid-

ing suffi cient incentives for cooperation rather than avoiding excessive levels of cooperation. If, on

the other hand, the maximum level of cooperation is above xFB, we will focus on equilibria with

cooperation level xFB.

Our main concern is whether optimal equilibria are based on punishment by enforcers (special-

ized enforcement) or the withdrawal of future cooperation by producers (community enforcement).

An extreme form of community enforcement, where enforcers are completely inactive, is given by

contagion strategies.

Definition 1 A contagion (or grim trigger) strategy profile is characterized by a cooperation level

x ∈ R+ and is represented by the following 2-state automaton:

Producers have two states, normal and infected. Producers play xi = x in the normal state and

play xi = 0 in the infected state. Producers start in the normal state, and permanently transition

to the infected state if they observe the outcome of a match (including their own) in which some

producer i′ ∈ C plays xi′ 6= x.

A contagion strategy profile involves no punishment by enforcers.

On the other hand, an extreme form of specialized enforcement, where there is no withdrawal of

future cooperation at all following a deviation, is given by what we call “single enforcer punishment

strategies.”With these strategies, a producer who deviates is immediately punished by the enforcers

in her match. Following this single punishment, everyone returns to her “normal”behavior next

period. If however an enforcer fails to punish a producer deviation, then this triggers contagion,

and eventually all producers choose xi = 0.

Definition 2 A single enforcer punishment strategy profile is characterized by a cooperation level

x and a punishment level y, and is represented by the following 2-state automaton:

All players have two states, normal and infected. Play in the two states is as follows:

Normal state: Producer i plays xi = x. If all producers i ∈Mj ∩C play xi = x, then enforcer j

plays yji = 0 for all i ∈Mj ∩C. If instead some producer i ∈Mj ∩C plays xi 6= x, then enforcer j

plays yji = y for one of the producers i ∈ Mj ∩ C who played xi 6= x– choosing arbitrarily if more

than one producer i played xi 6= x– and plays yji′ = 0 for all i′ ∈Mj ∩ C\i.
Infected state: Players always take action 0 (producers never cooperate; enforcers never punish).

Players start in the normal state, and permanently transition to the infected state if they observe

the outcome of a match (including their own) in which some producer i plays xi 6= x and some

enforcer j ∈Mi ∩ P then plays yji′ 6= y for all i′ ∈Mj ∩ C.
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With perfect monitoring, everyone transitions to the infected state simultaneously under single

enforcer punishment strategies (or contagion strategies). With private monitoring, transitions to

the infected state follow a more general process of contagion, described below. Note that we have

specified that if two producers deviate simultaneously, the corresponding enforcer is supposed to

punish one of them.8

Note also that under both contagion and single enforcer punishment strategies, punishments

are not used on path and producers choose constant levels of cooperation. This implies that

whenever a contagion equilibrium or a single punishment equilibrium sustains the maximum level

of cooperation, it is also the optimal equilibrium in terms of utilitarian social welfare (provided

that, as noted above, this maximum level of cooperation is below the first-best level).

3 Perfect Monitoring

We now characterize the most cooperative equilibrium under perfect monitoring.

Let (x∗, y∗) be the greatest solution to the following system of equations:

x∗ = lg (y∗) ,

y∗ =
δ

1− δ kf (x∗) .

Intuitively, x∗ and y∗ are the greatest levels of cooperation and punishment that can be sustained

with single enforcer punishment strategies. With these strategies, a producer who deviates gains

at most x∗ (her cost of effort) and loses lg (y∗) (the cost of being punished at level y∗ by l en-

forcers), while an enforcer who deviates gains at most y∗ and loses δ
1−δkf (x∗) (the future benefit

of cooperation at level x∗ from k producers).

Similarly, let x̂ be the greatest solution to the equation

x̂ = δ (k − 1) f (x̂) .

Intuitively, x̂ is the greatest level of cooperation that can be sustained with contagion strategies.

Finally, define the parameter

m ≡ (k − 1)n

(kn− 1) l
∈ [0, 1] .

Note that m depends only on the number of producers and enforcers in the population, and not on

the production and punishment technologies f and g or the discount factor δ.

Our main result for the perfect monitoring version of the model is the following:

8The alternative specification where simultaneous deviations are ignored would work just as well with perfect
monitoring, but it would lead to some complications with private monitoring, where a single deviation at an earlier
history could lead two producers to shirk simultaneously at a later history where some players are still in the normal
state.
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Theorem 1 With perfect monitoring,

1. If g′ (y) ≥ m for all y ∈ R+, then the single enforcer punishment strategy profile with co-

operation level x∗ and punishment level y∗ is the most cooperative equilibrium. In addition,

for every x ≤ x∗, the single enforcer punishment strategy profile with cooperation level x and
punishment level y = δ

1−δkf (x) is a SPE.

2. For all ε > 0, there exists η > 0 such that if g′ (y) < η for all y ∈ R+, then the contagion

strategy profile with cooperation level x̂ attains within ε of the maximum level of cooperation.

The first part of Theorem 1 is the most important: single enforcer punishment strategies attain

the maximum level of cooperation whenever the specialized enforcement technology, g, is suffi -

ciently effective.9 The intuition for this result is instructive. To give a producer the strongest

possible incentive to cooperate, her continuation payoff after a deviation must be made as low as

possible. Ideally, her continuation payoff would be reduced in two ways: enforcers would punish

her, and other producers would refuse to cooperate with her. However, enforcers are only willing

to exert effort in punishing the deviator if they are subsequently rewarded with cooperation from

the producers. Since cooperation benefits both producers and enforcers, there is no way for pro-

ducers to reward enforcers for punishing the deviant producer without also providing benefits for

the deviator herself.10 Society must then choose between incentivizing enforcers to punish devi-

ators by subsequently restoring cooperation (single enforcer punishment strategies), or giving up

on enforcer punishments and instead providing incentives by withdrawing cooperation following a

deviation (contagion strategies).

We can quantify the tradeoff between incentivizing enforcers to undertake punishment and

incentivizing producers directly by withdrawing cooperation as follows. Consider a history following

a producer deviation. The direct effect of reducing another producer’s level of cooperation at such a

history by one unit is to reduce the deviator’s payoffby k−1
kn−1f

′ (x) units (here k−1
kn−1 is the probability

that the deviator matches with a given producer in any period). This effect increases on-path

incentives for cooperation. This direct effect is however countered by the indirect effect of reducing

the maximum level of punishment an enforcer is willing to impose on the deviator. In particular,

reducing the producer’s level of cooperation by one unit reduces the amount of punishment each

enforcer can be induced to provide by 1
nf
′ (x) units (as 1

n is the probability that the enforcer

in question matches with a given producer in any period), and each unit of reduced punishment

increases the deviator’s payoff by lg′ (y) (as the deviator is punished by l enforcers). Thus, the

9The relevance of the observation that any cooperation level below x∗ can also be supported in a single enforcer
punishment equilibrium is simply that such equilibria remain optimal even when x∗ is above xFB .
10 In Section 6, we study how the structure of the optimal equilibrium changes if we allow for ostracism : the practice

of excluding deviators from the benefits of cooperation.
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indirect effect of reducing on-path incentives for cooperation is l
nf
′(x)g′ (y). Consequently, the

overall impact of withdrawing producer cooperation following a deviation on on-path producer

incentives is negative if and only if g′ (y) ≥ (k−1)n
(kn−1)l = m. Therefore, if g′ (y) ≥ m for all y, it is

better not to reduce a producer’s level of cooperation after another producer has deviated, instead

relying on enforcer punishments and returning to full cooperation following these punishments.11

In addition to showing that community enforcement should not be used (if g′ (y) ≥ m for all y),

part 1 of Theorem 1 shows that a deviator should only be punished by enforcers once. This might

come as a surprise, since enforcers observe producers’identities at the point where they decide how

much to punish, and therefore have the ability to punish a deviator over and over again for the

same transgression. Yet, such behavior would be strictly suboptimal: the deviator would not be

willing to return to working during such an extended phase of punishment, and her continuation

payoff from being punished once and then returning to work is just as low as her continuation payoff

from being punished repeatedly while shirking (and in fact it is strictly lower, as the deviator’s own

future cooperation can be used to give enforcers additional incentives to punish her).

The proof of Theorem 1 (in Appendix A) also shows that if g′ (y) is strictly greater than m for

all y, then the single enforcer punishment strategy profile with cooperation level x∗ and punishment

level y∗ is essentially the unique most cooperative equilibrium. Specifically, any equilibrium that

supports cooperation level x∗ for each producer must have the following features:

1. Each producer i plays xi = x∗ at every on-path history.

2. If a single producer i deviates to xi = 0 at an on-path history, she is punished at level y∗,

and the path of play then returns to all producers’playing x∗ forever.

3. If a single producer i deviates to xi = 0 at an on-path history and an enforcer j ∈ Mi ∩ P
deviates to yji = 0, then all producers stop cooperating forever.

4. The path of continuation play where all producers play x∗ forever is always supported by

the threat of punishment at level y∗– which in turn is always supported by the threat of all

producers’withdrawing cooperation– even when this continuation path starts at an off-path

history.12

Theorem 1 holds whether or not money burning is available. In addition, when money burning

is available, the lower bound on g′ in part 1 of the theorem is tight:

11The derivative condition g′ (y) ≥ m for all y ∈ R+ can also be weakened to the slope condition g(f(x̄))−g(y)
f(x̂)−y ≥ m

for all y ≤ f (x̄), where x̄ is defined as the greatest level of cooperation ever played in any SPE.
12There are, however, other equilibria which support cooperation level x∗ and differ from single punishment strate-

gies in various inessential ways. For example, equilibrium play after multiple simultaneous deviations can be specified
arbitrarily, and there is some flexibility in specifying play after deviations to actions that are less tempting than xi = 0
and yji = 0.
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Proposition 1 With perfect monitoring, if g′ (y) < m for all y ∈ R+ and money burning is

available, then single enforcer punishment strategies are not optimal.

Proposition 1 shows that, if g′ (y) < m for all y, then optimal equilibria must involve some form

of community enforcement (at least when money burning is available), meaning that deviations will

be punished not only by specialized enforcement but also by the withholding of future cooperation

(see Section 6). In the extreme case where g′ (y) is close to 0 for all y, the second part of Theorem

1 shows that pure contagion strategies are approximately optimal.13

However, there is a sense in which Proposition 1 overstates the case for hybrid forms of com-

munity enforcement. If a social planner has the option to decide whether some agents should

become either specialized enforcers or producers who contribute to societal cooperation, she may

prefer to forgo the limited increase in the level of cooperation that these enforcers afford and also

consequently choose a simpler form of community enforcement. The next theorem establishes that,

when a social planner has such a choice and the specialized enforcement technology is not highly

effective, the optimal arrangement is to forgo the presence of enforcers and rely on pure contagion

strategies.

Theorem 2 Suppose a social planner can choose k and l (along with an equilibrium) subject to

k+ l = s to maximize utilitarian social welfare. Then, assuming the maximum level of cooperation

is below the first best level, if

g′ (y) ≤ min

{
m,

1
1
n + δ

1−δs

}
for all y ∈ R+ (1)

then the social planner would prefer to have all agents become producers (i.e., set k = s) and support

cooperation using contagion strategies.

Thus, except when δ is very large (in which case the right-hand side of (1) goes to 0), in much

of the region covered by Proposition 1, pure contagion is the optimal arrangement that accounts

for the social cost of allocating individuals to enforcement roles.

Finally, we emphasize that Theorem 1 and Proposition 1 show that single enforcer punishment

equilibria are optimal if the specialized enforcement technology g is suffi ciently effective, and that

community enforcement is optimal if this technology is ineffective. These conclusions are inde-

pendent of the production technology f : improvements in the production technology increase the

greatest level of cooperation that can be sustained in both single enforcer punishment equilibria

13 It is clear that contagion/grim trigger strategies would be optimal in the current model without the enforcers,
or equivalently if g (y) = 0 for all y. Given this, the second part of Theorem 1 is not very surprising. However, note
that the assumption that g′ (y) ≤ η for all y does allow g to be unbounded, so this result is not completely trivial
(for example, it would not be true for Nash equilibrium rather than SPE).
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and contagion equilibria in the same manner, so improvements in the production technology can-

cel out when comparing the two kinds of equilibria. An interesting implication is that, provided

the effi ciency of production and punishment technologies are positively related across different

societies, Theorem 1 predicts that societies with more advanced technology should rely on sin-

gle enforcer punishment strategies, while societies with less advanced technology should rely on

contagion strategies.

4 Discussion of Model Assumptions

Before turning to the private monitoring version of the model, we briefly discuss several of our

underlying assumptions, indicating how our results and their interpretation do or do not depend

on the various assumptions.

4.1 Assumptions about the Role of Enforcers

Enforcers can only punish producers: We have assumed that enforcers can punish producers but not

other enforcers. Changing this assumption by also letting enforcers punish each other would change

very little about our results. Specifically, one would redefine single enforcer punishment strategies

to specify that, if an enforcer fails to punish a deviant producer in period t, then in period t + 1

there is no production and the deviant enforcer is punished, while cooperation resumes in period

t + 2. With this modified definition, Theorem 1 applies verbatim, with the sole modification that

the formula for y∗ changes from δ
1−δkf (x∗) to δ

1−δ (kf (x∗) + (l − 1) g (y∗)). (The formula for x∗

as a function of y∗ remains lg (y∗).) See the Appendix for a formal statement and proof.

Thus, our comparison between community and specialized enforcement as means of sustaining

cooperation by producers is robust to letting enforcers punish each other. All that changes is

that now the enforcers themselves are incentivized by a mix of withdrawn cooperation and direct

punishment, rather than by the breakdown of cooperation alone.

An alternative way of extending the model along these lines would be to introduce a hierarchy

of enforcers with K levels, where “level 1”enforcers can punish producers, “level 2”enforcers can

punish level 1 enforcers, and so on. The structure of single enforcer equilibria also extends to

this setting in a natural way, where each enforcer is incentivized by the threat of punishment from

enforcers one level up, and the top-level enforcers are incentivized by the threat of contagion among

producers. This variant gives a more realistic model of modern state-society relations: cooperation

throughout society does not break down the moment a low-level policeman fails to do his job, but

only if this is followed by a breakdown of enforcement at all higher levels.

Partial Anonymity: In our baseline model, producers choose how much to cooperate before

observing their partners’identities, while identities are revealed before enforcers act. Our results
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also apply exactly if, instead, players are completely anonymous and their identities are never

revealed. We prefer our baseline assumptions because they emphasize that, even though enforcers

have the ability to identify and punish a deviator repeatedly, the optimal equilibrium involves only

a single round of punishment.

On the other hand, the assumption that players are anonymous at the cooperation stage plays

an important role in our analysis. Without this assumption, it may be possible to exclude a

deviator from future cooperation without also excluding the enforcers who punished her, which

would let deviators be punished more harshly. In Section 6, we discuss an extension where the use

of ostracism makes this type of selective exclusion possible.

This assumption of partial anonymity could also be replaced by one of several alternatives.

In Section 5, we introduce the notion of non-discriminatory strategies, in which an individual’s

behavior does not depend on her partners’identities, except insofar as this is informative of past

play. The point of our partial anonymity assumption is to guarantee that strategies are non-

discriminatory, and all our perfect monitoring results can be derived by replacing partial anonymity

with the requirement that strategies are non-discriminatory. We also note that the strongly sym-

metric strategies of Abreu (1986) (which impose symmetric play at all histories), are necessarily

non-discriminatory, so without anonymity single enforcer punishment equilibria are also optimal

in the class of strongly symmetric equilibria. Finally, as we discuss in Section 6, single enforcer

punishment equilibria are also optimal even without anonymity when n = 1.

Separate roles for producers and enforcers: We have assumed that only some agents have the

ability to cooperate, and that other, distinct agents have the ability to punish. This implies

that the worst continuation play for enforcers is the withdrawal of cooperation, while the best

continuation play for enforcers is the most cooperative equilibrium path itself. Both of these

features are needed for stick-and-carrot equilibria to be optimal, and to take the simple form of single

enforcer punishment equilibria. If all agents could both cooperate and punish, then the mechanics

of the model would be closer to those of Abreu (1986). As in Abreu, stick-and-carrot equilibria

would remain optimal under the assumption of strong symmetry, while globally optimal equilibria

would be more complex. Thus, our assumption that some agents specialize in cooperation while

others specialize in punishment is a deviation from standard models in a direction that contributes

to both realism and tractability.

4.2 Assumptions about Payoffs

Public goods versus bilateral cooperation: We have assumed that the benefits of cooperation are

“non-excludable” within a match, and thus have the flavor of a public good (but see Section 6

below). An alternative model without this flavor is the following: players match in pairs, and

do not observe whether their partner is a producer or an enforcer until the end of the period.
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Thus, cooperation benefits only one’s (unique) partner, and, at the time she chooses her level of

cooperation, a producer does not know whether she is matched with another producer (whom she

could profitably cheat) or an enforcer (who would punish her if she cheated). All of our results

readily translate to this slightly modified setup.

Enforcer payoffs: In addition to the public good and anonymous bilateral cooperation interpre-

tations of our model, a third way to motivate why enforcers’payoffs depend on producers’levels of

cooperation is to assume that the enforcers can impose a tax on the producers’output
∑

i∈C f (xi)

of up to some maximum rate τ < 1, with the proceeds split equally among themselves. If an

enforcer’s failure to punish a deviant producer leads to contagion, each enforcer’s future benefits

then decline because the tax revenues that determine their payoffs dry up.

Enforcer misbehavior: In our model, enforcer misbehavior takes the form of enforcers’not un-

dertaking costly punishments following a deviation by a producer. Though this is an important

consideration in some settings (e.g., motivating law enforcement to pursue powerful individuals or

to refuse bribes from law-breakers), an equally salient concern is enforcers’misusing their positions

to expropriate citizens. Introducing this type of misbehavior need not materially complicate our

analysis, because our equilibrium construction is already based on giving enforcers the strongest

possible incentives to carry out costly punishments. Therefore, if expropriating citizens is as observ-

able as is failing to carry out punishments, then the same construction that maximizes enforcers’

incentives to punish will minimize their incentives to expropriate.

The specialized enforcement technology: The specialized enforcement technology g measures

how much disutility an enforcer must incur to impose a given level of disutility on a producer. This

is not to be interpreted as, say, the level of sophistication of a society’s instruments of torture, which

after all were remarkably advanced even in primitive societies. Rather, it should be interpreted as

the cost– and the risk– to enforcers of undertaking the entire process of investigating, pursuing,

apprehending, and punishing deviators. This cost was presumably much greater in early societies–

where the weapons, technology, and organization available to law enforcement and to criminals were

much closer to each other– than it is today.

5 Private Monitoring

The perfect monitoring version of our model has the advantage of bringing out our main insights

on the optimal structure of specialized enforcement in a particularly simple way. Yet, perfect mon-

itoring is generally not a satisfactory assumption for studying community enforcement, as one of

the main motivations for analyzing these settings is to understand how groups can sustain coop-

eration when individuals have limited information about each other’s past behavior. We therefore

turn to the question of whether single enforcer punishment equilibria remain optimal under private
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monitoring. Our answer is nuanced but generally positive: single enforcer punishment equilibria

still outperform contagion equilibria in a wide range of private monitoring environments, and in

some environments they remain optimal among all equilibria satisfying some natural conditions.

More specifically, we first provide conditions under which single enforcer punishment equilib-

ria outperform contagion equilibria under general network monitoring, where players observe the

outcomes of their own matches, as well as possibly the outcomes of some other random matches

in the population. We then consider a setting with observable last matches, where a player ob-

serves the outcomes of her own matches and the outcome of each of her current partner’s most

recent matches. This informational assumption is inconsistent with players’remaining completely

anonymous at the point where producers take actions, so it sometimes gives players more informa-

tion than does the perfect monitoring model of Section 3. With this information structure, single

enforcer punishment strategies continue to sustain the same level of cooperation as with perfect

monitoring, which implies that they must remain globally optimal unless it is possible to sustain

more cooperation with observable last matches than with perfect monitoring. While we show that

this is in fact possible, we also establish that single enforcer punishment equilibria continue to be

optimal either if enforcers are perfectly informed (which may be a consequence of their organiza-

tion in an information-sharing institution, such as a police force), or if we impose a requirement of

stability in the face of individual trembles.

5.1 General Network Monitoring

The setting considered here is one of general network monitoring (Wolitzky, 2013). At the end of

each period t, a monitoring network Lt = (li,j,t)i,j∈N×N , li,j,t ∈ {0, 1} is drawn independently
from a fixed probability distribution µ on {0, 1}|N |

2

. We assume that Prµ
(

(li,j,t)i,j∈N×N

)
=

Prµ
((
lφ(i),φ(j),t

)
i,j∈N×N

)
for any permutation φ : N → N , so the distribution over networks is

invariant to relabeling the players. Player i perfectly observes the outcome of match M0 if and

only if li,j,t = 1 for some j ∈M0. Otherwise, player i observes nothing about the outcome of match

M0. Assume that li,i,t = 1 with probability one, so players always observe the outcome of their

own matches. We analyze the performance of contagion strategies and single enforcer punishment

strategies in this setting.

With contagion strategies, let dt be the expected number of producers who become infected

within t periods of a producer deviation. (See the Appendix for a formal definition.) Intuitively,

dt is the expected number of producers who have observed a producer who has observed a pro-

ducer who. . . has observed the deviator within t periods. It follows from standard arguments

(e.g., Wolitzky, 2013) that the greatest level of cooperation that can be sustained with contagion
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strategies, x̂, is given by the greatest solution to

x̂ = (1− δ)
∞∑
t=0

δt
k − 1

kn− 1
(dt − 1) f (x̂) .

With single enforcer punishment strategies, let qt be the expected number of producers who

become infected within t periods of an unpunished producer deviation. (Again, see the Appendix

for details.) Note that a player now becomes infected only if both a producer and an enforcer in a

match she observes are already infected, as only then does she see a producer’s failure to cooperate

go unpunished. Infection therefore spreads more slowly with single enforcer punishment strategies

than with contagion strategies, and in particular qt is always less than dt. We will show that an

upper bound on the greatest level of cooperation and punishment that can be sustained with single

enforcer punishment strategies is given by the greatest solution to

x∗ = lg (y∗) ,

y∗ =
∞∑
t=0

δt
1

n
qtf (x∗) .

We also show that the resulting strategy profile is indeed part of a PBE whenever x∗ is suffi ciently

high (which holds, for example, if δ is suffi ciently high).14

We can now inspect the formulas for x̂ and x∗ and make some basic observations about the

relative performance of contagion and single enforcer punishment strategies. First, when the spe-

cialized enforcement technology is more effective (i.e., g is steeper), single enforcer punishment

equilibria have an advantage over contagion strategies. Second, to the extent to which dt is strictly

greater than qt, contagion strategies have an advantage. Third, as both dt and qt converge to kn

as t → ∞, this advantage of contagion strategies vanishes when δ is close to 1. Indeed, single
enforcer punishment strategies have a clear advantage when δ is close to 1, owing to the (1− δ)
term in the definition of x̂. This term reflects the fact that with contagion strategies, a producer

who chooses x = 0 forever can only lose the future benefit of others’cooperation once, while with

single enforcer punishment strategies, a producer who shirks forever is punished in every period,

and each punishment is calibrated so as to be as costly for the enforcer as losing all future benefits

of cooperation would be. Presumably, optimal equilibria in this setting would take advantage of

enforcers’ability to punish while also providing incentives for spreading information faster than

14To see why such a condition is required, consider the incentives of a producer in the infected state who finds
herself with the belief that all of the other producers in her match are in the normal state, while exactly one of the
enforcers in her match is in the infected state. If this producer works, she avoids being punished at level y∗ by each
the l− 1 enforcers in her match in the normal state, but also avoids triggering contagion (because, if she shirked, the
infected enforcer’s failure to punish her would trigger contagion). When x∗ is suffi ciently high, this new incentive
for cooperation coming from the desire to avoid triggering contagion is necessarily less than the incentive coming
from being punished at level y∗ by the lth enforcer. In this case (but not otherwise), the fact that the producer is
indifferent between working and shirking on path implies that she prefers to shirk when one enforcer is infected.
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single enforcer punishment strategies. As providing incentives for strategic communication of this

kind is beyond the scope of this paper, we content ourselves with comparing the performance of

single enforcer punishment strategies and contagion strategies.

The next theorem formalizes this comparison. The first part shows that, when the specialized

enforcement technology is suffi ciently effective, single enforcer punishment equilibria support more

cooperation than do contagion equilibria. The second part establishes that the same conclusion

holds when the discount factor δ is suffi ciently high.

Theorem 3 With general network monitoring,

1. There exists ḡ such that if g′(y) ≥ ḡ for all y ∈ R+ then single enforcer punishment strategies

form a PBE strategy profile and support greater cooperation than contagion strategies.

2. Assume that limy→∞ g (y) = ∞.15 Then there exists δ̄ such that if δ ≥ δ̄ then single en-

forcer punishment strategies form a PBE strategy profile and support greater cooperation than

contagion strategies.

We also note that comparing single enforcer punishment equilibria and contagion equilibria is

not as ad hoc at it might seem, as there is a sense in which contagion equilibria are optimal among

all equilibria in which enforcers never punish. In particular, Wolitzky (2013) shows that under

general network monitoring without enforcers, contagion strategies attain the maximum level of

cooperation (provided that the realized monitoring network is observable). Thus, whenever single

enforcer punishment equilibria outperform contagion equilibria, they outperform any equilibrium

that does not somehow rely on the enforcers.16

5.2 Observable Last Matches

We now turn to the second of the two private monitoring environments we consider: the observable

last matches setting. This is the setting where players observe only the outcomes of their own

matches and their current partners’most recent matches.

15The resulting asymmetry between the functions f and g is not essential for this result. If the assumption that f
is bounded is relaxed, as discussed in footnote 6, the result still holds as long as limx→∞ f

′ (x) < 1/l (k − 1), which
is consistent with f = g and limy→∞ g (y) =∞.
16However, recall that our notion of optimality is in terms of supporting a higher level of cooperation. As we

have emphasized, this notion corresponds to optimality in terms of utilitarian social welfare if this maximum level
of cooperation is below the first-best level, but not necessarily otherwise. This caveat is especially important for high
discount factor results like part 2 of Theorem 3, as for very high discount factors both the most cooperative single
enforcer punishment equilibrium and the most cooperative contagion equilibrium are sure to involve an ineffi ciently
high level of cooperation, so whichever supports a higher level of cooperation will actually be worse in terms of welfare.
Thus, the main point of Theorem 3 is not that single enforcer punishment strategies outperform contagion strategies
in the δ → 1 limit per se, but rather that they outperform contagion strategies for moderately high discount factors
where the maximum level of cooperation may still be below the first-best level.
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5.2.1 Single Enforcer Punishment Equilibria and Contagion Equilibria

We start with a benchmark result, which establishes that both single enforcer punishment equilibria

and contagion equilibria do exactly as well with observable last matches as they do with perfect

monitoring. In particular, any comparison between single enforcer punishment equilibria and con-

tagion equilibria with observable last matches is exactly the same as in the perfect monitoring

case.

As in the previous section, existence of a single enforcer punishment equilibrium requires an

additional condition. In particular, let x̃ be the greatest solution to x̃ = lδ (k − 1) f (x̃).

Theorem 4 With observable last matches,

1. If x∗ ≥ x̃, then the single enforcer punishment strategy profile with cooperation level x∗ and

punishment level y∗ is a PBE strategy profile. Furthermore, x∗ is an upper bound on the level

of cooperation in any single enforcer punishment equilibrium.

2. The contagion strategy profile with cooperation level x̂ is a PBE strategy profile. Furthermore,

x̂ is an upper bound on the level of cooperation in a contagion equilibrium.

The intuition for this result is simple. Contagion following a producer deviation with contagion

strategies, or following an enforcer deviation with single enforcer punishment strategies, spreads

more slowly under private monitoring than under perfect monitoring. Nevertheless, the implications

for the deviating agent’s payoffs are the same as with perfect monitoring, because, when all agents

observe the behavior in their partners’last match, the deviator herself always starts suffering the

consequences of contagion immediately.

5.2.2 Informed Enforcers

Theorem 4 shows that single enforcer punishment equilibria can sustain as much cooperation with

observable last matches as with perfect monitoring. The question remains whether it is possible to

sustain more cooperation with observable last matches than with perfect monitoring, or alterna-

tively if single enforcer punishment equilibria remain globally optimal with observable last matches

(when g′ (y) ≥ m for all y). In the next subsection, we will see that the former possibility can some-

times arise. However, we now show that, when enforcers have superior information to producers

(i.e., have finer information sets), single enforcer punishment equilibria are indeed globally optimal,

under a simple equilibrium refinement in the spirit of anonymity. In particular, we consider the sit-

uation with informed enforcers, where enforcers perfectly observe all past actions, while producers

have more limited information.

The following condition is in the spirit of the partial anonymity assumption of Section 2:
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Non-Discrimination For every producer i, complete history of play ht, and pair of players j, k

such that M t
j = M t

k, we have

Eht+1
i

[
σi
(
ht+1
i

)
|ht, i ∈M t+1

j

]
= Eht+1

i

[
σi
(
ht+1
i

)
|ht, i ∈M t+1

k

]
.

That is, the distribution over producer i’s period-t + 1 actions is independent of whether i

matches with j or k in period t+ 1. This requirement is only imposed for players j and k who are

themselves matched at period t, so that producer i’s behavior can depend on the outcomes of the

period-tmatches she observes, but not on which members of those matches she finds herself matched

with in period t + 1. Non-discrimination thus says that a producer’s behavior cannot depend on

her partners’identities, except insofar as this is informative about past play. As noted in Section

4, partial anonymity implies non-discrimination. Both single enforcer punishment strategies and

contagion strategies are clearly non-discriminatory.

Theorem 5 Suppose that producers observe their partners’last matches and enforcers are perfectly

informed. If g′ (y) ≥ m for all y, then single enforcer punishment strategies with cooperation level

x∗ and punishment level y∗ sustain the maximum level of cooperation among all non-discriminatory

equilibria.17

To provide intuition for this result, let us first revisit the case of perfect monitoring. An

explanation for why single enforcer punishment equilibria are optimal with perfect monitoring is

that reducing producer j’s level of cooperation at a history ht+1
j , after producer i deviates at history

hti and is punished by enforcer k, has a direct positive effect on producer i’s on-path incentives for

cooperation at history hti of

k − 1

kn− 1
Pr
(
ht+1
j |h

t
i

)
E
[
f ′
(
xt+1
j |h

t+1
j

)]
,

and has a indirect negative effect of

l

n
E
[
Pr
(
ht+1
j |h

t
k

)
|hti
]
E
[
f ′
(
xt+1
j |h

t+1
j

)]
E
[
g′ (ỹ)

]
,

for some random variable ỹ. If monitoring is perfect, or if enforcers always have finer information

than civilians, then we have

Pr
(
ht+1
j |h

t
i

)
= E

[
Pr
(
ht+1
j |h

t
k

)
|hti
]
, (2)

so the indirect effect outweighs the direct effect whenever g′ (y) ≥ m = (k−1)n
(kn−1)l for all y. This

explains why single enforcer punishment equilibria are optimal with perfect monitoring (Theorem 1)

17Wth informed enforcers, single enforcer punishment strategies constitute a PBE strategy profile even if x∗ < x̃.
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or with private monitoring with informed enforcers (Theorem 5). On the other hand, if monitoring

is private and enforcers may not have finer information than civilians, then (2) may fail, and the

differing beliefs of enforcers and civilians may be exploited to provide stronger on-path incentives

than are possible in single enforcer punishment equilibria. We construct an example with these

features in the next subsection.

5.2.3 A Counterexample: Graduated Punishments

In this section, we show by example that when (2) is not satisfied, it may be possible to support

greater cooperation under private monitoring than public monitoring and thus improve on single

enforcer punishment equilibria. Interestingly, such greater cooperation is supported by graduated

punishments, identified by Ostrom (1990) as an important tool for sustaining cooperation under

imperfect information. The intuition here is different from Ostrom’s, however: the advantage of

graduated punishments in the current setting is that it takes time to build up differences in beliefs

among individuals, and these differing beliefs can then be exploited to provide harsher punishments

than are possible with perfect monitoring.

Let n = k = 2 and l = 1. Thus, there are two enforcers and four producers, and every period

they randomly split into two groups, each consisting of one enforcer and two producers. Assume

that players observe the outcome of their own matches, and that producers– but not enforcers– in

addition observe the outcome of each of their partner’s most recent match. This informational edge

for the producers is for simplicity; in the Appendix, we sketch a more complicated example without

this feature. To complete the description of the physical environment of the example, assume that

f (x) = 100
√
x, g (y) = y, and δ = .1. These parameters satisfy our condition for single enforcer

punishment equilibria to be optimal under perfect monitoring (g′ (y) ≥ m for all y).

As we have seen, the highest level of cooperation that can be sustained with single enforcer

punishment strategies, x∗, is given by x∗ = g
(

δ
1−δ2f (x∗)

)
= .1

1−.12
(
100
√
x∗
)
, or x∗ ≈ 493.8272.

In contrast, we now construct an equilibrium that sustains a cooperation level of (exactly)

493.830. We call it the “three strikes and you’re out”(3SYO) equilibrium.

Producers’strategies:

• On path: play x1.

• If you play x < x1: play x2 for one period, then go back to x1.

• If you play x′ < x2 in the period after after playing x < x1, and you are monitored by the

same producer in both of these periods, but you are monitored by different enforcers: play

x3 for one period, then go back to x1. Otherwise, go back to x1 immediately. (We define

x1, x2, x3 below.)
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• If you see the same producer play x < x1, then x′ < x2, and then x′′ < x3, or if you are seen

following such a sequence by the same producer, or if you see a producer play x < x1 and see

the corresponding enforcer fail to punish her: play 0 forever.

Enforcers’strategies:

• If you see a unique producer play x < x1, punish her at level y. Do not punish anyone if you

see two producers deviate.

• If you fail to punish a producer who plays x < x1, or if you see the same producer take actions

below x1 three times in a row, stop punishing forever.

Intuitively, the key difference between the single enforcer punishment equilibrium and the 3SYO

equilibrium is that with the latter, if a producer shirks three times in a row and is monitored by

the same producer but different enforcers, then after the third time she shirks she is “punished”

both by the enforcer (who punishes at level y, as usual), and by the other producer (who shirks

forever, as in a contagion equilibrium). The reason why the enforcer is willing to punish at level

y even though the other producer is about to start shirking is that he does not realize that this is

what is happening: he has seen the deviator shirk at most once before, so when he sees her shirk

again, he thinks this is at most the second straight time she has shirked. He is then certain that

the deviator (and the other producer) will return to cooperation in the next period if he punishes,

while contagion will start if he does not punish, so he has an incentive to punish. Thus, the 3SYO

equilibrium exploits the belief difference between enforcer and producer at such a history to punish

a deviator with both direct punishment and contagion. The reason why this “extra punishment”at

an off-path history allow us to sustain more cooperation on-path is as follows. If a producer can be

punished “extra hard”after she shirks three times, then she can be asked to work extra hard after

she shirks twice. Similarly, if she has to work extra hard after she shirks twice, then she can also

be asked to work harder after she shirks once. Finally, if she has to work harder after she shirks

once, then she can also be induced to work harder on path.

Formally, we establish the following result in the Appendix:

Proposition 2 The 3SYO strategy profile is an equilibrium when x1 = 493.830, x2 = 494.102, x3 =

502.058, and y = 493.828. Consequently, single enforcer punishment equilibria are not optimal.

5.2.4 Stability

We conclude our treatment of the model with private monitoring by providing another reason why

single enforcer punishment equilibria may be optimal under private monitoring, even when (2) is
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not satisfied. In particular, we show that single enforcer punishment equilibria are optimal among

all equilibria satisfying a simple 1-period stability refinement. While the argument is simple, we

believe that it is potentially important in light of empirical accounts of how small transgressions

can lead to large societal breakdowns in the absence of centralized law enforcement (e.g., Lewis,

1994).

To define this notion of stability, we restrict attention to deterministic strategy profiles, defined

as profiles where xti and y
t
ji are degenerate random variables for all i, j, t.18

Definition 3 A deterministic equilibrium satisfies Stability if, whenever a single player i deviates

at an on-path history in period t, play returns to the equilibrium path
(
xτi , y

τ
ji

)τ∈{t+1,...}

i∈C,j∈P
in period

t+ 1.

Note that if all players “trembled” with probability ε when choosing their actions, then an

equilibrium that fails to satisfy Stability is knocked off its equilibrium path in each period with

probability on the order of ε, while an equilibrium that satisfies Stability is knocked off path with

probability of order at most ε2. In this sense, equilibria that satisfy Stability are more robust to

trembles than are equilibria that fail to satisfy this condition.

Theorem 6 With observable last matches, the single enforcer punishment strategy profile with

cooperation level x∗ and punishment level y∗ is the most cooperative deterministic equilibrium sat-

isfying Stability.

Note that, unlike Theorem 1, Theorem 6 does not require the assumption that g′ (y) ≥ m for all

y to establish that single enforcer punishment strategies are optimal. This is because community

enforcement strategies always violate Stability, regardless of g.

6 Ostracism

An important way in which many groups sustain cooperation among their members in practice is

ostracism, or the exclusion of deviators alone from the benefits of societal cooperation (Ostrom,

1990, Ellickson, 1991, Greif, 1993, 2006). The main model analyzed so far does not allow ostracism,

because it is not technologically feasible to exclude some players from the benefits of cooperation

without excluding everyone. When cooperation corresponds to directed actions (such as simple

favors or investments in a bilateral project) rather than providing public goods, such exclusion

becomes a possibility. To study how ostracism interacts with specialized enforcement, we now

consider a variant of our baseline model in which producers can exclude one another other from the

18Equivalently, a determinstic strategy profile is a profile of pure strategies that do not condition on the match
realizations.
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benefits of cooperation. We consider both a version of the model where we retain the assumption

of partial anonymity and a version where we relax it.

The main message of this section is that our results generalize to an environment that incorpo-

rates ostracism. This is despite the fact that producers’ability to ostracize each other while still

cooperating with enforcers works against the tradeoff underlying our main model, as now a deviant

producer can be directly punished by enforcers while simultaneously facing the withdrawal of coop-

eration from other producers. Furthermore, the structure of optimal equilibria in this environment

is quite interesting: producers’ ability to use ostracism makes the conditions for single enforcer

punishment equilibria to be optimal more restrictive in an intuitive way, and when pure single en-

forcer punishments are not optimal, optimal equilibria simply combine single enforcer punishments

with ostracism.

6.1 Anonymous Ostracism

We first consider the perfect monitoring version of our model with the modification that players have

the ability to ostracize each other: when producer i chooses her level of cooperation xti, she can also

choose to exclude one or more of the other producers and enforcers in M t
i from the benefits of this

cooperation. In this subsection, this choice must be made subject to our usual partial anonymity

requirement. That is, a producer cannot discriminate which other producers and enforcers in her

match she wishes to ostracize, as she does not observe their identities (for example, if she decides

to ostracize one producer, then one of the other producers is chosen at random to be the recipient

of this ostracism). If in period t producer i ostracizes some player j but not player k, then player

j receives 0 benefit from player i’s cooperation, while player k receives benefit

(1− γ) f
(
xti
)

for some γ ∈ [0, 1]. Thus, the parameter γ measures the effi ciency cost of employing ostracism: if

γ = 1 then, as in our main model, producer i cannot provide any benefit to player k without also

benefiting player j, while if γ = 0 then player i can completely exclude player j from the benefits of

her actions without reducing the benefit to player k. Note that the γ = 1 case corresponds to our

main model with the possibility of money burning, as when γ = 1 “cooperating”while ostracizing

anyone is equivalent to burning money.

We will show that in this version of our model, single enforcer punishment plus anonymous

ostracism (SEPAO) strategies may be optimal. Formally, a SEPAO strategy profile is character-

ized by a cooperation level x and punishment level y, and is represented by the following 4-state

automaton, with normal, infected, other-ostracism and self-ostracism states. Play in these states

is as follows:
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Normal state: Producer i plays xi = x and does not ostracize anyone. If all producers i ∈Mj∩C
play xi = x– or if multiple producers i ∈Mj ∩C play xi 6= x– then enforcer j plays yji = 0 for all

i ∈ Mj ∩ C. If instead a unique producer i ∈ Mj ∩ C plays xi 6= x, then enforcer j plays yji = y

and plays yji′ = 0 for all i′ ∈Mj ∩ C\i.
Infected state: Players always take action 0.

Self-ostracism state: Producer i plays xi = x and does not ostracize anyone.

Other -ostracism state: Producer i plays xi = x and ostracizes all other producers in her match

(so her cooperation only benefits the enforcers). Enforcers play exactly as in the normal state.

As usual, all players starts in the normal state. In the normal state or the self- or other-ostracism

state, all players transition to the normal state unless a unique producer i plays xi 6= x. If producer

i plays xi 6= x and all enforcers j ∈ Mi ∩ P play yji = y, player i transitions to the self-ostracism

state and all other players transition to the other-ostracism state. If producer i plays xi 6= x and

some enforcer j ∈ Mi ∩ P plays yji 6= y, all players transition to the infected state. The infected

state is absorbing.

Note that under these SEPAO strategies, enforcer behavior and state transitions are conditioned

only on each producer’s level of cooperation and not on her choice of whom to ostracize. This does

not cause incentive problems for producers, since, given her level of cooperation, a producer is

indifferent as to whether or not she ostracizes anyone. For example, when γ = 1 and producer i is

in the self-ostracism state, producer i cooperates at level x while each other producer burns x utils.

Let x̌ and y̌ be the greatest solution to the following system of equations:

x̌ = lg (y̌) + δ (k − 1) f (x̌) ,

y̌ =

(
δ

1− δ −
nk − 1

nk
δγ

)
kf (x̌) .

Intuitively, x̌ and y̌ are the greatest levels of cooperation and punishment that are sustainable in

single enforcer punishment plus anonymous ostracism strategies. In particular, a producer who

deviates gains x̌ and loses lg (y̌) + δ (k − 1) f (x̌) (one period of punishment plus one period of

lost cooperation), while an enforcer who fails to punish a deviating producer gains y̌ and loses(
δ

1−δ −
nk−1
nk δγ

)
kf (x̌) (all future benefits of cooperation, noting that benefits from all but one

producer next period are only (1− γ) f (x̌) instead of the usual f (x̌)).

We show the following result:

Theorem 7 With anonymous perfect monitoring, when ostracism is available,

1. If g′ (y) ≥ m
γ for all y ∈ R+, then the single enforcer punishment strategy profile with cooper-

ation level x∗ and punishment level y∗ is the most cooperative equilibrium.
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2. If g′ (y) ≤ m
γ for all y ∈ R+, then the SEPAO strategy profile with cooperation level x̌ and

punishment level y̌ is the most cooperative equilibrium.

Theorem 7 makes two main points. First, the necessary condition for pure single enforcer

punishment strategies to be optimal becomes more restrictive when ostracism is more effective: in

particular, the lower bound of m from Theorem 1 must simply be scaled up by 1
γ . Second, when the

converse condition is satisfied, a version of single enforcer punishment equilibria remain optimal,

but now these strategies must be combined with ostracism.

In addition to showing how our results change with γ, Theorem 7 is of independent interest in

demonstrating conditions under which strategies involving ostracism are optimal. While numerous

empirical and case studies have argued for the practical importance of ostracism for sustaining

cooperation (e.g., Ostrom, 1990), only a few game theoretic models identify ostracism strategies

as having particularly good properties: to the contrary, in most models of cooperation in groups,

ostracism strategies do no better than contagion strategies. Two notable exceptions are Lippert and

Spagnolo (2011) and Ali and Miller (2014b), who study community enforcement games with private

monitoring and show that ostracism can have advantages over contagion in terms of providing

incentives for communication about others’past behavior. In contrast, Theorem 7 concerns a setting

with perfect information– where there is no need for communication– and shows that ostracism

strategies can be essentially uniquely optimal.

Finally, it is also the case that SEPAO strategies can still support cooperation level x̌ under

private monitoring with observable last matches. Thus, with observable last matches, the compar-

ison between single enforcer punishment strategies and SEPAO strategies is exactly the same as

under perfect monitoring.

6.2 Non-Anonymous Ostracism with n = 1

As we have emphasized at several points throughout the paper, letting producers observe their

partners’identities at the time they take actions could substantially complicate the analysis. When

n = 1, however, this would be completely immaterial, as producers know their partners’identities

anyway. (For example, in the n = 1 case of our baseline model, single enforcer punishment strategies

remain optimal when g′ (y) ≥ m for all y, even without “anonymity.”) In this section, we show that

when we introduce targeted ostracism into the model without anonymity in the n = 1 case, the

structure of optimal equilibria is essentially identical to that under anonymity, except that now it

is possible to avoid ostracizing innocent producers.

We now define a single enforcer punishment plus non-anonymous ostracism (SEPNAO) strategy

profile as a profile characterized by a cooperation level x and punishment level y, and represented

by the following k + 2-state automaton:
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Normal state and infected state: Same as with SEPAO strategies.

i-ostracism state (one for each i ∈ C): Producer i plays xi = x and does not ostracize anyone.

Producer i′ 6= i plays xi′ = x and ostracizes player i only. Enforcers play exactly as in the normal

state.

Play starts in the normal state. In the normal state or one of the ostracism states, all players

transition to the normal state unless a unique producer i plays xi 6= x. If producer i plays xi 6= x

and all enforcers j ∈Mi play yji = y, play transitions to the i-ostracism state. If producer i plays

xi 6= x and some enforcer j ∈ Mi ∩ P plays yji 6= y, play transitions to the infected state. The

infected state is absorbing.

Theorem 8 With non-anonymous perfect monitoring and n = 1, when ostracism is available,

1. If g′ (y) ≥ m
γ for all y ∈ R+, then the single enforcer punishment strategy profile with cooper-

ation level x∗ and punishment level y∗ is the most cooperative equilibrium.

2. If g′ (y) ≤ m
γ for all y ∈ R+, then both the SEPAO and SEPNAO strategy profiles with

cooperation level x̌ and punishment level y̌ sustain the maximum level of cooperation.

Thus, perhaps surprisingly, with non-anonymous perfect monitoring and n = 1, SEPAO strate-

gies (which ostracize innocent producers as well as the deviator) remain optimal, but SEPNAO

strategies (which only ostracize the deviator) perform equally well. In particular, whether innocent

producers are ostracized or not is irrelevant for on-path incentives for cooperation: all that matters

is whether the deviator herself is ostracized, and this is possible whether or not players are anony-

mous. Nonetheless, SEPNAO strategies seem to more closely resemble ostracism as it is used in

practice, so it is interesting to note that these strategies can indeed be optimal. Most importantly,

the same forces that make specialized enforcement optimal remain operational even in the presence

of the ability to ostracize specific individuals.

7 Conclusion

This paper introduces a framework for comparing community (private-order) and specialized

(public-order) enforcement of pro-social behavior. The key feature of our approach is that we

endogenize specialized enforcement by requiring that enforcers have an incentive to carry out the

punishment of deviators. Thus, we require that both community and specialized enforcement are

ultimately based on “reputation.”

Our main results turn on a novel tradeoff: the withdrawal of future cooperation following a

transgression has a positive direct effect on citizens’ incentives to cooperate, but also a negative
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indirect effect coming through the erosion of enforcers’ incentives to punish. Whenever the spe-

cialized enforcement technology is either uniformly effective or uniformly ineffective, this tradeoff

is optimally resolved by going to either the extreme of pure community enforcement (where spe-

cialized enforcers are completely inactive) or pure enforcer punishments (where the future path of

cooperation is completely unaffected by producers’ transgressions). Yet, the threat of contagion

does play a role even under pure enforcer punishments, as it is precisely this threat that gives

enforcers the necessary incentives to carry out punishments. A further implication of our analysis

is that community enforcement is more likely to emerge in less technologically advanced societies,

while societies with more advanced technologies should rely on specialized enforcement.

The framework introduced in this paper could be developed in several promising directions.

First, our analysis takes the number of specialized enforcers in society as given (except briefly

in Theorem 2). As we have characterized optimal equilibria for any number of producers and

enforcers, endogenizing the number of enforcers in our model is conceptually straightforward. Such

an exercise would bear some resemblance to the “guns versus butter” tradeoff present in classic

models of “anarchy”such as Skaperdas (1992), Grossman and Kim (1995), Hirshleifer (1995), and

Bates, Greif, and Singh (2002), and one could further extend the framework in that direction by

allowing “guns”to be used for expropriating others as well as enforcing cooperation. Nevertheless,

because of the role of specialized enforcers in sustaining cooperation, the insights of this analysis

are likely to be different from those of existing models of anarchy.

Second, in a specialized enforcement equilibrium, the enforcers in our model can be interpreted

as either a proto-state institution or a non-state institution, such as a mafia. Several scholars,

including Tilly (1985), have argued that states evolve out of– or are, in fact, a form of– the private

provision of law enforcement. An important question here is when we expect specialized enforcers

to organize in a single institution rather than multiple collectives. While some of our results bear on

this question (for example, the results of Section 5.2.2 on optimal equilibria when all enforcers share

information with each other), many other interesting questions could be addressed in future work.

These include the costs of mafia-like organizations as opposed to states, as well as the dynamics of

the process by which proto-states may be transformed into state institutions.

Third, another reason why specialized enforcement may be preferable to community enforcement

is the presence of noisy observations, whereby cooperative actions may appear as noncooperative.

As briefly discussed in Section 5.2.4, such noise may make contagion-like strategies prohibitively

costly. An analysis of the framework presented here under such richer information structures is an

interesting and important area for future work.

Finally, we have only briefly touched on the role of communication and other private actions

in supporting specialized enforcement. It would be interesting to analyze more systematically how

specialized enforcement (or, more generally, laws) impact the incentives of citizens to cooperate not
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only with each other but also with state institutions themselves.

Appendix: Omitted Proofs

Proof of Theorem 1

Optimality of Single Enforcer Punishment Strategies when g′ (y) ≥ m for all y

It is straightforward to see that a single enforcer punishment strategy profile with cooperation level

x ≤ x∗ and punishment level y = δ
1−δkf (x) is a SPE: In the normal state, a producer who deviates

saves an effort cost of at most x and receives punishment lg (y) = lg
(

δ
1−δkf (x)

)
, which is weakly

greater than x by the definition of x∗ and the concavity of f and g. Similarly, in the normal state

an enforcer who deviates saves a cost of at most y and loses future benefits of cooperation worth
δ

1−δkf (x) ≥ y. Finally, incentives in the infected state are trivial.
The main part of the theorem is thus showing that x∗ is an upper bound on each producer’s

level of cooperation in any SPE when g′ (y) ≥ m for all y. We break the proof into several steps.

Definitions and Preliminary Observations:

Fixing a SPE σ = (σi)i∈N , let u be the infimum continuation payoff of any producer starting

from the punishment stage at any history. In addition, let suppσi
(
ht
)
denote the support of

producer i’s action at history ht, and let

X̄ = sup
i,ht,xti∈suppσi(ht)

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
be the supremum expected present discounted level of cooperation ever taken by any producer at

any history.

A preliminary observation is that u > −∞ and X̄ < ∞. To see this, note that, as f is

bounded and an enforcer’s minmax payoff is 0, there is a finite upper bound ȳ ∈ R+ on the level

of punishment that an enforcer is ever willing to use in equilibrium.19 Since a producer always has

the option of taking action 0 at cost 0, this implies that u ≥ −lg (ȳ) > −∞. Given that there is
a finite lower bound on u, it follows that there is a finite upper bound on the level of cooperation

that a producer is ever willing to choose in equilibrium, so in particular X̄ <∞.
Producer Incentive Compatibility:

A necessary condition for producer i not to deviate to playing xi = 0 at history ht is that, for

19By the same argument leading to (A2) below, one such upper bound is limx→∞
δ

1−δkf (x).
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all xti ∈ suppσi
(
ht
)
,

(1− δ)
∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩C\i

f
(
xt+τj

)
|ht, xti

− (1− δ)xti − δE
[
Xt+1
i |ht, xti

]

≥ (1− δ)E

 ∑
j∈Mt

i∩C\i

f
(
xtj
)
|ht
+ u,

whereM t+τ
i denotes player i’s period-t+ τ match (which is a random variable from the perspective

of period t). This is a necessary condition because the left-hand side is an upper bound on player

i’s equilibrium continuation payoff (as it assumes she is never punished in equilibrium), while the

right-hand side is a lower bound on player i’s continuation payoff if she deviates (as it assumes she

gets her lowest possible continuation payoff).20 Note that the distribution of xtj does not depend on

xti, so E
[∑

j∈Mt
i∩C\i

f
(
xtj

)
|ht, xti

]
= E

[∑
j∈Mt

i∩C\i
f
(
xtj

)
|ht
]
, and we can rewrite this necessary

condition as

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ δ (1− δ)

∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

i ∩C\i

f
(
xt+1+τ
j

)
|ht, xti

− u. (A1)

Using Enforcer Incentive Compatibility to Bound u:

Letting ytki denote enforcer k’s punishment action toward player i in period t (which, like x
t
i, is

a random variable), a necessary condition for enforcer k not to deviate to playing yki = 0 at history

ht is

ytki ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩C

f
(
xt+1+τ
j

)
|ht

 . (A2)

This is a necessary condition because an enforcer’s minmax payoff is 0, while her equilibrium

continuation payoff is at most (1− δ)
(
δ
∑∞

τ=0 δ
τE
[∑

j∈Mt+1+τ
k ∩C f

(
xt+1+τ
j

)
|ht
]
− ytki

)
, as this is

her continuation payoff if she does not punish anyone other than player i in period t and never

punishes anyone after period t.

Now, producer i’s continuation payoff at the punishment stage at history ht is at least

− (1− δ)E

 ∑
k∈Mt

i∩P

g
(
ytki
)
|ht
+ δ (1− δ)E

 ∑
j∈Mt+1

i ∩C\i

f
(
xt+1
j

)
|ht
+ δu,

as a producer always has the option of playing xi = 0 in period t + 1. Therefore, there exist a

20Technically, both expectations in this expression should also be conditioned on the event j ∈ M t+τ
i ∩ C\i.

However, because identities are concealed at the point where producers choose their actions, the distribution of xt+τj

conditional on this event equals its unconditional distribution. We therefore omit this conditioning throughout the
proof.
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producer i and a history ht such that

u ≥ − (1− δ)E

 ∑
k∈Mt

i∩P

g
(
ytki
)
|ht
+ δ (1− δ)E

 ∑
j∈Mt+1

i ∩C\i

f
(
xt+1
j

)
|ht
+ δu,

or equivalently u ≥ −E
[∑

k∈Mt
i∩P

g
(
ytki
)
|ht
]

+ δE
[∑

j∈Mt+1
i ∩C\i f

(
xt+1
j

)
|ht
]
. In particular, by

(A2) and the observation that the quantity E
[∑

j∈Mt+1+τ
k ∩C f

(
xt+1+τ
j

)
|ht
]
is the same for all

k ∈ P , we have

u ≥ −lg

δ ∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩C

f
(
xt+1+τ
j

)
|ht


+ δE

 ∑
j∈Mt+1

i ∩C\i

f
(
xt+1
j

)
|ht
 . (A3)

Bounding X̄ when g′ (y) ≥ m:
Suppose that g′ (y) ≥ m for all y ∈ R+. We argue that (A3), together with the definition of X̄,

implies that

u ≥ −lg
(

δ

1− δ kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
. (A4)

To see this, note that, by the definition of X̄, for every producer j, history ht+1, and level of

cooperation xt+1
j ∈ suppσj

(
ht+1

)
, we have

xt+1
j ≤ 1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

]
. (A5)

Next, if in computing the right-hand side of (A3) we replace the random variable σj
(
ht+1

)
with

σj
(
ht+1

)
+ ε for some constant ε > 0 (i.e., shift σj

(
ht+1

)
up by ε realization-by-realization), the

derivative of the resulting expression with respect to ε equals

−δ l
n
E
[
f ′
(
xt+1
j

)
|ht
]
g′

δ ∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩C

f
(
xt+1+τ
j

)
|ht


+ δ

k − 1

kn− 1
E
[
f ′
(
xt+1
j

)
|ht
]
.

(A6)

As g′ (y) ≥ m for all y, this derivative is non-positive for all j and ht+1. Hence, a lower bound on

the right-hand side of (A3) is obtained by setting xt+1
j equal to its upper bound in (A5) for all j.

The resulting lower bound equals

−lg

 δE
[∑

j∈Mt+1
k ∩C f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩C f

(
xt+2+τ
j

)
|ht
] 

+δE

 ∑
j∈Mt+1

i ∩C\i

f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
 . (A7)
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We next derive an upper bound on the argument of g in (A7). Letting

Xj

(
ht+1

)
= (1− δ)

∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1

]
,

by the concavity of f and Jensen’s inequality we have

δE
[∑

j∈Mt+1+τ
k ∩C f

(
1

1−δ X̄ − δ
∑∞

τ=0 δ
τE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht
]

+δ2∑∞
τ=0 δ

τE
[∑

j∈Mt+2+τ
k ∩C f

(
xt+2+τ
j

)
|ht
]

≤ δE
[∑

j∈Mt+1+τ
k ∩C f

(
1

1−δ
(
X̄ − δXj

(
ht+1

)))
|ht
]

+ δ2

1−δE
[∑

j∈Mt+2+τ
k ∩C f

(
Xj

(
ht+1

))
|ht
]
.

Next, again by the concavity of f , the maximum of δf
(

1
1−δ

(
X̄ − δXj

(
ht+1

)))
+ δ2

1−δEf
(
Xj

(
ht+1

))
over Xj

(
ht+1

)
≤ X̄ is attained at Xj

(
ht+1

)
= X̄ for all j and ht+1. This gives an upper bound on

the argument of g in (A7) of δkf
(

1
1−δ

(
X̄ − δX̄

))
+ δ2

1−δkf
(
X̄
)

= δ
1−δkf

(
X̄
)
. On the other hand,

E

 ∑
j∈Mt+1

i ∩C\i

f

(
1

1− δ X̄ − δ
∞∑
τ=0

δτE
[
xt+2+τ
j |ht+1, xt+1

j

])
|ht


≥ E

 ∑
j∈Mt+1

i ∩C\i

f

(
1

1− δ X̄ −
δ

1− δ X̄
) = (k − 1) f

(
X̄
)
.

Combining these observations, we see that (A7) is lower-bounded by −lg
(

δ
1−δkf

(
X̄
))

+

δ (k − 1) f
(
X̄
)
. This yields (A4).

We can now complete the proof of the main part of the theorem. Combining (A1) and (A4),

we have, for every player i, history ht, and level of cooperation xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
δ

1− δ kf
(
X̄
))
− δ (k − 1) f

(
X̄
)

+ δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩C\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

(
δ

1− δ kf
(
X̄
))
− δ (k − 1) f

(
X̄
)

+ δ (k − 1) f
(
X̄
)

= lg

(
δ

1− δ kf
(
X̄
))

.

As X̄ = supi,ht,xti∈suppσi(ht) (1− δ)xti + δE
[
Xt+1
i |ht, xti

]
, we have X̄ ≤ lg

(
δ

1−δkf
(
X̄
))
. By the

definition of x∗, this implies that X̄ ≤ x∗. Finally, as E
[
X0
i |h0

]
≤ X̄, we have E

[
X0
i |h0

]
≤ x∗.

Thus, x∗ is an upper bound on each player’s maximum equilibrium level of cooperation.

Near-Optimality of Contagion Strategies when g′ (y) is Small

It is straightforward to see that the contagion strategy profile with cooperation level x̂ is a SPE. It

remains to show that, for all ε > 0, there exists η > 0 such that x̂ + ε is an upper bound on each
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player’s maximum level of cooperation whenever g′ (y) < η for all y.

By (A3), the definition of X̄, and Jensen’s inequality, we have

u ≥ −lg
(

δ

1− δ kf
(
X̄
))

. (A8)

Combining (A1) and (A8) yields that, for every player i, history ht, and level of cooperation

xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

(
δ

1− δ kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.

Again by the definition of X̄, whenever g′ (y) < η for all y we have

X̄ ≤
(

δ

1− δ klη + δ (k − 1)

)
f
(
X̄
)
.

Recall that x̂ = δ (k − 1) f (x̂). In addition, since δ (k − 1) f (x)− x is concave and crosses 0 from

above at x = x̂, there exists ρ > 0 such that δ (k − 1) f ′ (x̂) < 1− ρ. Hence, as f is concave, for all
ε > 0 we have(

δ

1− δ klη + δ (k − 1)

)
f (x̂+ ε) ≤

(
δ

1− δ klη + δ (k − 1)

)(
f (x̂) + εf ′ (x̂)

)
≤

(
δ

1− δ klη + δ (k − 1)

)(
f (x̂) + ε

1− ρ
δ (k − 1)

)
= x̂+ ε (1− ρ) +

δ

1− δ klη
(
f (x̂) + ε

1− ρ
δ (k − 1)

)
.

For suffi ciently small η > 0, this is less than x̂+ ε. Thus,
(

δ
1−δklη + δ (k − 1)

)
f (x)− x crosses 0

to the left of x̂+ε, so X̄ ≤ x̂+ε. Finally, as E
[
X0
i |h0

]
≤ X̄, we have E

[
X0
i |h0

]
≤ x̂+ε. Therefore,

x̂+ ε is an upper bound on each player’s maximum equilibrium level of cooperation.

Proof of Proposition 1

When money burning is available, the model is almost identical to the model of Section 6 in the

γ = 1 case, and the conclusion of the proposition follows from the conclusion of Theorem 7 when

γ = 1. The sole difference between the models is that is that the model with money burning lets a

producer cooperate and burn money simultaneously. The proof of Theorem 7 is unaffected by this

possibility, so Proposition 1 follows from the proof of Theorem 7.

Proof of Theorem 2

Per-match social welfare with k producers per match and on-path cooperation x is

k ((s− 1) f (x)− x). Thus, assuming that the maximum level of cooperation is below the first
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best level, a suffi cient condition for setting k = s to maximize social welfare is that the maximum

(per producer) level of cooperation is maximized at k = s. The maximum level of cooperation when

k = s is given by the solution to x̂ = δ (s− 1) f (x̂). On the other hand, if k < s and g′ (y) ≤ m for

all y, then by Theorem 7 the maximum level of cooperation (even if money burning is available) is

given by the solution to

x = (s− k) g

(
δ

n
f (x) +

δ2

1− δ kf (x)

)
+ δ (k − 1) f (x) . (A9)

Thus, the planner prefers that all agents become producers if (A9) is maximized at k = s. In turn,

a suffi cient condition for this is that the derivative of the right-hand side of (A9) with respect to k

is non-negative for all x. This derivative equals

(s− k) g′
(
δ

n
f (x) +

δ2

1− δ kf (x)

)
δ2

1− δ f (x)− g
(
δ

n
f (x) +

δ2

1− δ kf (x)

)
+ δf (x) .

As the first term is positive, a suffi cient condition for the whole derivative to be positive is δf (x) ≥
g
(
δ
nf (x) + δ2

1−δkf (x)
)
for all x, or, letting z = δf (x), z ≥ g

((
1
n + δ

1−δk
)
z
)
for all z. Since k ≤ s,

a suffi cient condition for this is z ≥ g
((

1
n + δ

1−δs
)
z
)
for all z. Finally, since g (0) = 0, a suffi cient

condition is g′ (y) ≤ 1
1
n

+ δ
1−δ s

for all y. Hence, if (1) holds then the planner prefers that all agents

become producers.

Theorem 1 when Enforcers Can Punish Each Other

When enforcers can punish each other, consider the following modified definition of single enforcer

punishment strategies: On path, producers cooperate at level x∗∗. If a producer deviates, all

enforcers in her match punish her at level y∗∗, and play returns to the equilibrium path next

period. If instead an enforcer j deviates, then in the next period all producers shirk, all enforcers

matched with j next period punish him at level y∗∗, and j himself randomly punishes one of his

partners at level δ
1−δ (kf (x∗) + (l − 1) g (y∗)) (or alternatively he burns this level of utility, if money

burning is allowed). Finally, let (x∗∗, y∗∗) be greatest solution of the system of the equations

x∗∗ = lg (y∗∗) ,

y∗∗ =
δ

1− δ (kf (x∗∗) + (l − 1) g (y∗∗)) .

Proposition 3 When enforcers can punish other enforcers, Theorem 1 applies verbatim with this

modified definition of single enforcer punishment strategies.

Proof (sketch). Start with the first part of the theorem: optimality of single enforcer punishment

strategies when g′ (y) ≥ m for all y. It is straightforward to check that the above strategy profile is a
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SPE, so it remains to show that x∗∗ is an upper bound on each producer’s level of cooperation in any

SPE. The argument is similar to the proof of Theorem 1. In particular, fixing a SPE σ = (σi)i∈N ,

let ȳ be the greatest action in the support of any enforcer’s equilibrium strategy at any history.

As an enforcer can always take action 0, −δ (l − 1) g (ȳ) is now a lower bound on each enforcer’s

equilibrium continuation payoff at any history. Equation (A2) (“enforcer incentive compatibility”)

then becomes

ȳ ≤ δ
∞∑
τ=0

δtE

 ∑
j∈Mt+1+τ

k ∩C

f
(
xt+1+τ
j

)
|ht

+
δ

1− δ (l − 1) g (ȳ) .

Carrying the new δ
1−δ (l − 1) g (ȳ) term throughout the proof of Theorem 1, we obtain the bounds

X̄ ≤ lg (ȳ) ,

ȳ ≤ δ

1− δ
(
kf
(
X̄
)

+ (l − 1) g (ȳ)
)
.

By definition of (x∗∗, y∗∗), this implies that X̄ ≤ x∗∗. Thus, x∗∗ is an upper bound on each player’s
maximum level of cooperation, as desired.

For the second part of the theorem (near-optimality of contagion strategies when g′ (y) is small),

note that if g′ (y) < η for all y then

ȳ ≤ δ

1− δ
(
kf
(
X̄
)

+ (l − 1) g (ȳ)
)
≤ δ

1− δ
(
kf
(
X̄
)

+ (l − 1) ηȳ
)
,

or equivalently ȳ ≤ δ
1−δ−δ(l−1)ηkf

(
X̄
)
. We then obtain the bound

X̄ ≤
(

δ

1− δ − δ (l − 1) η
klη + δ (k − 1)

)
f
(
X̄
)
.

As limη→0
δklη

1−δ−δ(l−1)η = 0 for all δ < 1, this bound suffi ces for the result, by the same argument as

in the proof of Theorem 1.

Proof of Theorem 3

There are two steps. First, we derive a suffi cient condition for single enforcer punishment strategies

with cooperation level x∗ and punishment level y∗ to form a PBE strategy profile (Lemma 1). We

then show that, under the conditions of the theorem, this suffi cient condition is satisfied, and single

enforcer punishment strategies support greater cooperation than contagion strategies.

To state the suffi cient condition for existence, we require some notation. Define the set D (τ , t, i)
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recursively by

D (τ , t, i) = ∅ if τ ≤ t,

D (t+ 1, t, i) = C ∩ {j : ∃k ∈ N such that lj,k,t = 1 and k ∈Mi} ,

D (τ + 1, t, i) = C ∩
{

j : ∃k, k′ ∈ C such that

lj,k,τ = 1 and k′ ∈Mk ∩D (τ , t, i)

}
if τ ≥ t+ 1.

Under contagion strategies, if producer i deviates in period t, then D (τ , t, i) is the set of producers

in the infected phase in period τ . Note that the probability distribution of D (τ , t, i) is the same as

the probability distribution of D (τ − t) ≡ D (τ − t, 0, 1) for all i ∈ C and τ ≥ t. Let dt ≡ E [|D (t)|].
Similarly, define the set Q (τ , t, i) recursively by

Q (τ , t, i) = ∅ if τ ≤ t,

Q (t+ 1, t, i) = {j : ∃k ∈ N such that lj,k,t = 1 and k ∈Mi} ,

Q (τ + 1, t, i) =

{
j : ∃k, k′, k′′ ∈ N such that

lj,k,τ = 1, k′ ∈Mk ∩ C ∩Q (τ , t, i) , k′′ ∈Mk ∩ P ∩Q (τ , t, i)

}
if τ ≥ t+ 1.

Under single enforcer punishment strategies, if producer i deviates in period t and the corresponding

enforcer j ∈Mi fails to punish her, then Q (τ , t, i) is the set of players in the infected phase in period

τ . Note that the probability distribution of Q (τ , t, i) is the same as the probability distribution of

Q (τ − t) ≡ Q (τ − t, 0, 1) for all i and τ ≥ t. Let qt ≡ E [|Q (t) ∩ C|].
Finally, define the set Z (τ , t, i) by

Z (τ , t, i) = ∅ if τ ≤ t,

Z (t+ 1, t, i) = {j : ∃k ∈ N such that lj,k,t = 1 and k ∈Mi} ,

Z (τ + 1, t, i) =

{
j : ∃k, k′ ∈ N such that

lj,k,τ = 1 and k′ ∈Mk ∩D (τ , t, i)

}
if τ ≥ t+ 1.

The set Z (τ , t, i) is the set of “infected”players in period τ if an infection process starts in period t

in matchMi and spreads through both producers and enforcers (rather than only through producers,

as is the case with contagion strategies). Let Z (t) ≡ Z (t, 0, i) and zt ≡ E [Z (t) ∩ C].

Note that the distribution of |D (t)| first-order stochastically dominates the distribution of
|Q (t) ∩ C|, as for every realization of the monitoring technology there are more infected producers
with contagion strategies than with single enforcer punishment strategies. Similarly, the distribution

of |Z (t) ∩ C| first-order stochastically dominates the distribution of |D (t)|. In particular, zt ≥ dt ≥
qt for all t.
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The formulas for x̂ and x∗ as functions of dt and qt are given in the text. In addition, let

x̃ = l (1− δ)
∞∑
t=0

δt
k − 1

kn− 1
(zt − 1) f (x̃) .

Thus, if l = 1, then x̃ is the greatest level of cooperation that could be sustained with contagion

strategies if contagion spread through the process Z (t) rather than D (t). Otherwise, x̃ is the level

of cooperation that could be sustained when the benefits of cooperation lost through contagion are

scaled up by a factor of l.

Our suffi cient condition for existence is as follows:

Lemma 1 If x∗ ≥ x̃, then the single enforcer punishment strategy profile with cooperation level x∗

and punishment level y∗ is a PBE strategy profile.

Proof. Let the off-path beliefs be that any zero-probability action is viewed as a deviation, rather

than a response to an earlier deviation. We check sequential rationality first in the normal state

and then in the infected state.

Given our specification of off-path beliefs, whenever a player is in the normal state, she believes

that all of her opponents are also in the normal state. Hence, playing xi = x∗ is optimal for

producers, as deviating can save a cost of at most x∗ but incurs a punishment of lg (y∗) = x∗. In

addition, if an enforcer deviates when he is supposed to play yji = 0, this incurs an instantaneous

cost but yields no future benefit. Finally, if an enforcer deviates when he is supposed to play

yji = y∗, this saves a cost of at most y∗ and leads to lost future benefits of
∑∞

t=0 δ
t 1
nqtf (x∗) ≥ y∗.

It remains to consider players’incentives in the infected state. For enforcers, note that whenever

an enforcer is in the infected state, he believes that at least k producers are also in the infected state

(namely, the producers with whom he was matched in the period when he became infected). As

these producers will never cooperate, deviating from yji = 0 to yji = y∗ (which is the only tempting

deviation) incurs a cost of y∗ and yields future benefits worth strictly less than
∑∞

t=0 δ
t 1
nqtf (x∗) <

x∗. So enforcers’off-path play is optimal.

Finally, for a producer i in period t, the only tempting deviation is to xi,t = x∗. If every enforcer

in M t
i is in the normal state, then every player enters period t + 1 in the same state regardless of

producer i’s choice of xi,t. Hence, in this case, producer i is indifferent between playing xi,t = 0

(and incurring a punishment of lg (y∗) = x∗) and playing xi,t = x∗. On the other hand, suppose

at least one enforcer in M t
i is in the infected state. If there is also at least one other producer

j ∈ M t
i \ {i} in the infected state, then again every player enters period t + 1 in the same state

regardless of xi,t, and in this case producer i strictly prefers playing xi,t = 0 to playing xi,t = x∗

(as now playing xi,t = 0 incurs a punishment of at most (l − 1) g (y∗)). The remaining case is when

at least one enforcer in M t
i is in the infected state, but all other producers j ∈ M t

i \ {i} are in the
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normal state. In this case, producer i can slow the spread of contagion by playing xi,t = x∗, and

we must verify that she does not have an incentive to do so.

To see this, let rτ denote the number of producers who do enter the infected state by period τ

when producer i plays xi,τ = 0 for all τ ∈ {t, . . . , τ}, but do not enter the infected state by period
τ when producer i plays xi,t = x∗ and xi,τ = 0 for all τ ∈ {t+ 1, . . . , τ}. The difference between
producer i’s continuation payoff from playing xi,t = x∗ as opposed to xi,t = 0 (and subsequently

playing xi,τ = 0) is then equal to (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1E [rτ ] f (x∗). As producer i may be punished

for playing xi,t = 0 by at most l− 1 enforcers (as we are assuming that at least one of her enforcers

is infected), to show that playing xi,t = 0 is optimal, it suffi ces to show that

x∗ ≥ (l − 1) g (y∗) + (1− δ)
∞∑
τ=0

δτ
k − 1

kn− 1
E [rτ ] f (x∗) . (A10)

We will show below that E [rτ ] ≤ zτ for all τ . This will imply (A10) because, recalling

that x̃ = l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1zτf (x̃) by definition, the fact that x∗ ≥ x̃ implies that x∗ ≥

l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1zτf (x∗), and then E [rτ ] ≤ zτ for all τ implies that this lower bound ex-

ceeds l (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1E [rτ ] f (x∗). Finally, the fact that x∗ = lg (y∗) ≥ x̃ also implies that

g (y∗) ≥ (1− δ)
∑∞

τ=0 δ
τ k−1
kn−1zτf (x∗), so we have (A10).

We now show that E [rτ ] ≤ zτ for all τ . For any subset of players S ⊆ N , define Q (τ , t, S) by

Q (τ , t, S) = ∅ if τ < t

Q (t, t, S) = S

Q (τ + 1, t, S) =

{
j : ∃k, k′, k′′ ∈ N such that

lj,k,τ = 1, k′ ∈Mk ∩ C ∩Q (τ , t, S) , k′′ ∈Mk ∩ P ∩Q (τ , t, S)

}
if τ ≥ t.

Note that if Q̃ 3 i is the set of infected players at the beginning of period t, then when i plays

xi,t′ = 0 for all t′ ∈ {t, . . . , τ} the set of infected players at the beginning of period τ is Q
(
τ , t, Q̃

)
,

while when i plays xi,t = x∗ and xi,t′ = 0 for all t′ ∈ {t+ 1, . . . , τ} the set of infected players at the
beginning of period τ is Q

(
τ , t+ 1, Q

(
t+ 1, t, Q̃\ {i}

)
∪ {i}

)
. Hence,

rτ =
∣∣∣(Q(τ , t, Q̃) \Q(τ , t+ 1, Q

(
t+ 1, t, Q̃\ {i}

)
∪ {i}

))
∩ C

∣∣∣ .
We show that, for all τ > t and for every subset of players S 3 i,

Q (τ , t, S) \Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ⊆ Z (τ , t, {i}) . (A11)

This implies that E [rτ ] ≤ E [|Z (τ , t, i)| ∩ C] = zτ , completing the proof.
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The proof of (A11) is by induction on τ . For the τ = t+ 1 case, we have

Q (t+ 1, t, S) \Q (t+ 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) = Q (t+ 1, t, S) \ (Q (t+ 1, t, S\ {i}) ∪ {i}) ,

which is clearly contained in Z (t+ 1, t, {i}). Suppose now that (A11) holds for some τ > t. We

then have

Q (τ , t, S) ⊆ Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, {i}) ,

so

Q (τ + 1, t, S) = Q (τ + 1, τ ,Q (τ , t, S))

⊆ Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, i)) .

On the other hand,

Q (τ + 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) = Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i})) .

Hence,

Q (τ + 1, t, S) \Qτ + 1, t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}

⊆ Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i}) ∪ Z (τ , t, i))

\Q (τ + 1, τ ,Q (τ , t+ 1, Q (t+ 1, t, S\ {i}) ∪ {i})) ,

and this set is clearly contained in Z (τ + 1, τ , Z (τ , t, {i})) = Z (τ + 1, t, {i}). Thus, (A11) holds
for τ + 1, so by induction it holds for all τ > t.

We now complete the proof of Theorem 3. Recall that x̃ ≥ x̂. Thus, by Lemma 1, to show that
single enforcer punishment strategies form a PBE strategy profile and support greater cooperation

than contagion strategies, it suffi ces to show that x∗ ≥ x̃.
For the first part of the theorem, note that lg

(∑∞
t=0 δ

t 1
nqtf (x)

)
− x is concave and crosses 0

from above at x = x∗. Therefore,

lg′

( ∞∑
t=0

δt
1

n
qtf (x∗)

) ∞∑
t=0

δt
1

n
qtf
′ (x∗) < 1.

Thus, if g′ (y) ≥ ḡ for all y then f ′ (x∗) < n
lḡ
∑∞
t=0 δ

tqt
. As f is increasing, concave, and bounded,

f ′ (x∗) is positive, non-increasing, and goes to 0 as x∗ → ∞. Hence, x∗ → ∞ as ḡ → ∞. On the
other hand, x̃ is finite and independent of ḡ, so if ḡ is suffi ciently high then x∗ > x̃.

For the second part, as zt can never exceed kn, x̃ is bounded from above by the greatest solution

to x = l (k − 1) f (x), which is finite as f is bounded. On the other hand, limt→∞ qt = kn, so if
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limy→∞ g (y) =∞ then limδ→1 lg
(∑∞

t=0 δ
t 1
nqtf (x)

)
− x =∞ for all x > 0. Hence, x∗, the greatest

root of lg
(∑∞

t=0 δ
t 1
nqtf (x)

)
− x, goes to infinity as δ → 1.

Proof of Theorem 4

For single enforcer punishment strategies, the proof is similar to the proof of Lemma 1, with the

following differences:

First, the reason why punishments of up to δ
1−δkf (x∗) = y∗ are incentive compatible for

enforcers is that, if an enforcer in the normal state deviates when he is supposed to play yji = y∗,

he then loses all future benefits of cooperation (recall that a player in the normal state believes

that all of her opponents are also in the normal state). To see this, note that his partners in the

next period will observe his deviation and will therefore play xi = 0, and– since the enforcer will

then be in the infected state– he will play yji = 0. Hence, his partners in the period after next will

also play xi = 0, and so on.

Second, for a producer in the infected state, the only tempting deviation is to xi = x∗. This is

clearly unprofitable if all of her enforcers are in the normal state, as it incurs a cost of lg (y∗) = x∗

and does not affect her continuation payoff. If instead at least one of her enforcers is in the infected

state, then it is unprofitable because the fact that x∗ ≥ x̃ implies that x∗ ≥ lδ (k − 1) f (x∗), and

therefore x∗ ≥ (l − 1) g (y∗) + δ (k − 1) f (x∗).

The proof for the contagion strategies is simpler and is omitted.

Proof of Theorem 5

For existence, the only difference from the proof of Theorem 4 is that, with informed enforcers,

whenever a producer is in the infected state she believes that every enforcer in her match is also in

the infected state. The condition that x∗ ≥ x̃ is thus no longer required.
The proof that x∗ is an upper bound on each producer’s level of cooperation with informed

enforcers follows the proof of Theorem 1, with one key additional step. In particular, if we follow

the proof of Theorem 1 while conditioning on private rather than public histories where appropriate,

as well as conditioning on the realizations of the matching technology, we arrive at the following

analogue of inequality (A3):

u ≥ −lE

g
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩C

E
[
f
(
xt+1+τ
j

)
|htk, j ∈M t+1+τ

k

] |hti


+δE

 ∑
j∈Mt+1

i ∩C\i

f
(
xt+1
j

)
|hti, j ∈M t+1

i

 .
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(Here, htk is the private history of the enforcer k in match M
t
i , which equals h

t as enforcers are per-

fectly informed.) As enforcers are perfectly informed, and thus in particular have finer information

than producers, we have

Eht+1
j

[
σt+1
j

(
ht+1
j

)
|hti, j ∈M t+1

i

]
= Eht

[
Eht+1

j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

i

]
|hti
]
.

By non-discrimination,

Eht+1
j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

i

]
= Eht+1

j

[
σt+1
j

(
ht+1
j

)
|ht, j ∈M t+1

k

]
.

Hence, we have

u ≥ −lE

g
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩C

E
[
f
(
xt+1+τ
j

)
|ht, j ∈M t+1+τ

k

] |hti


+δE

E
 ∑
j∈Mt+1

k ∩C\i

f
(
xt+1
j

)
|ht, j ∈M t+1

k

 |hti
 . (A12)

For any producer j∗ 6= i and any history ht+1
j∗ , replacing σj∗

(
ht+1
j∗

)
with σj∗

(
ht+1
j∗

)
+ ε in the

right-hand side of (A12) and differentiating with respect to ε yields

−δ l
n
E
[
f ′
(
xt+1
j∗ |h

t+1
j∗

)]
Pr
(
ht+1
j∗ |h

t
i

)
E

g′
δ ∞∑

τ=0

δτ
∑

j∈Mt+1+τ
k ∩C

E
[
f
(
xt+1+τ
j

)
|ht, j ∈M t+1+τ

k

] |hti


+δ
k − 1

kn− 1
E
[
f ′
(
xt+1
j∗ |h

t+1
j∗

)]
Pr
(
ht+1
j∗ |h

t
i

)
.

The assumption that g′ (y) ≥ m for all y implies that the derivative is non-positive for all ht+1
j∗ .

Thus, a lower bound on (A12) is obtained by setting xt+1
j equal to its upper bound in (A5) for all j,

as in the proof of Theorem 1. The remainder of the argument is identical to the proof of Theorem

1.

Proof of Proposition 2

Start with incentive compatibility for the enforcers. Whenever an enforcer is asked to punish, he

believes that cooperation will return to x1 forever if he punishes, while contagion will start if he

fails to punish. Thus, his incentive compatibility condition is

y ≤ δ

1− δ2f (x1) =
.1

1− .12
(

100
√

493.830
)
≈ 493.8286.

So he is willing to punish at level y = 493.828 whenever he sees a producer deviation.
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Now turn to incentive compatibility for the producers. We start with incentives to exert effort

x1, x2, and x3, rather than deviating and choosing effort 0.

If a producer shirks when she is supposed to play x3, she is punished at level y and starts

contagion with probability 1
3 (while returning to her equilibrium payoffof f (x1)−x1 with probability

2
3). Her contagion payoff is at most

2
3f (x1), as this would be her payoff if the contagion never

reached the other two producers and she was never punished in the future. Thus, a suffi cient

condition for incentive compatibility here is

x3 ≤ y +
δ

3

(
f (x1)− x1 −

2

3
f (x1)

)
= 493.828 +

.1

3

(
100
√

493.830

3
− 493.830

)
≈ 502.0584.

So x3 = 502.058 is incentive compatible.

If a producer shirks when she is supposed to play x2, she is punished at level y and faces the

additional “punishment”of having to play x3 rather than x1 when matched with the same producer

partner tomorrow. Thus, her incentive compatibility condition is

x2 ≤ y +
δ

3
(x3 − x1) = 493.828 +

.1

3
(502.058− 493.830) ≈ 494.1023.

So x2 = 494.102 is incentive compatible.

Finally, if a producer shirks when she is supposed to play x1, she is punished at level y and

also has to play x2 rather than x1 tomorrow with probability 1
3 . Thus, her incentive compatibility

condition is

x1 ≤ y +
δ

3
(x2 − x1) = 493.828 +

.1

3
(494.102− 493.830) ≈ 493.8371.

So x1 = 493.830 is incentive compatible.

We also have to check a couple more incentive compatibility conditions. In particular, we have

to show that a producer does not want to deviate to playing x1 rather than x2 or x3 (which avoids

direct punishment but still risks starting contagion); and we have to show that a producer is willing

to go through with contagion (x = 0) when she is supposed to.

A suffi cient condition for playing x3 rather than x1 when x3 is called for is:

x3 − x1 ≤
δ

3

(
f (x1)

3
− x1

)
≈ 8.2304.

As x3 − x1 = 8.228, this is satisfied.

A suffi cient condition for playing x2 rather than x1 when x2 is called for is:

x2 − x1 ≤
δ

3
(x3 − x1) ≈ 0.2743
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As x2 − x1 = 0.272, this is also satisfied.

As for the incentives to carry out contagion, note that the only reasons to work today are to

avoid punishment and to encourage others to work in the future. Working today makes enforcers

less likely to enter the contagion phase (i.e., stop punishing), which is bad for producers. So an

upper bound on the present value of reduced punishments from working is the value of reducing

punishments in the current period only. As at least one other producer is also in the contagion

phase, this value of reduced punishments is at most 2
3y (as enforcers do not punish when both

producers shirk). Finally, working can prevent another producer from entering the contagion phase

only if this is the third straight time that the same matches have realized, and the two infected

producers are in difference matches. In this case, the other producer in the other match will get

infected no matter what in the current period, so working keeps at most one other producer out of

the contagion phase. An upper bound on the value of this is 1
3δf (x1). Hence, a suffi cient condition

for carrying out contagion is

x1 ≥ δ
f (x1)

3
+

2

3
y ≈ 403.2930.

Since x1 = 493.830, carrying out contagion is incentive compatible.

We now describe how the example would have to be modified if enforcers also observed the

outcomes of their partners’most recent matches. The reason why some modification is needed is

that the counterexample rests on there being some history where, if a producer shirks, the other

producer in her match knows that this is the third straight time she has shirked, while the enforcer

does not. If enforcers observe the outcomes of their partners’last histories, then a “three strikes

and you’re out”strategy profile is not enough to generate such a history. For example, if we label

the two enforcers A and B, if a producer’s match history is ABA then enforcer A will see that she

shirked three times in a row.

To restore the counterexample, consider a “five strikes and you’re out”strategy profile, where

contagion starts only if a producers shirks five times in a row and her match history for the first

four matches is either AABB or BBAA. With such a match history, the fifth enforcer the producer

meets surely will not know that she shirked five times in row.

Proof of Theorem 6

Single enforcer punishment strategies are clearly deterministic and satisfy Stability. It remains

only to show that x∗ is an upper bound on each player’s maximum level of cooperation in any

deterministic equilibrium satisfying Stability.

Under Stability, a necessary condition for producer i not to have a profitable one-shot deviation
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in period t in a deterministic equilibrium with equilibrium path
(
xτi , y

τ
ji

)τ∈{0,1,...}
i∈C,j∈P

is

∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩C\i

f
(
xt+τj

)− ∞∑
τ=0

δτxt+τi

≥ −E

 ∑
k∈Mt

i∩P

g
(
ytki
)
|xti = 0

+
∞∑
τ=0

δτE

 ∑
j∈Mt+τ

i ∩C\i

f
(
xt+τj

)− δ ∞∑
τ=0

δτxt+1+τ
i ,

or equivalently

xti ≤ E

 ∑
k∈Mt

i∩P

g
(
ytki
)
|xti = 0

 . (A13)

Next, under Stability, (A2) becomes

ytki ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩C

f
(
xt+1+τ
j

) . (A14)

Let x̄ = supi,t x
t
i, and note that x̄ <∞ as in the proof of Theorem 1. Combining (A13) and (A14)

then yields x̄ ≤ lg
(

δ
1−δkf (x̄)

)
. By definition of x∗, this implies that x̄ ≤ x∗. Hence, x∗ is an upper

bound on each player’s maximum equilibrium level of cooperation.

Proof of Theorem 7

It is straightforward to see that the SEPAO strategy profile with cooperation level x̌ and punishment

level y̌ is a SPE: a producer who deviates gains at most x̌ and loses g (y̌) + δ (k − 1) f (x̌), while

an enforcer who deviates gains at most y̌ and loses
(

δ
1−δ −

nk−1
nk δγ

)
kf (x̌). (More precisely, a

producer’s incentive compatibility constraint in the normal or ostracism phase is (k − 1) f (x̌)− x̌ ≥
(1− δ) ((k − 1) f (x̌)− lg (y̌))− δx̌+ δ2 (k − 1) f (x̌), or x̌ ≤ lg (y̌) + δ (k − 1) f (x̌), which holds by

definition of x̌.) Similarly, the single enforcer punishment strategy profile with cooperation level x∗

and punishment level y∗ remains a SPE when ostracism is possible. The main part of the theorem

is showing that x∗ (resp., x̌) is an upper bound on each producer’s level of cooperation in any SPE

when g′ (y) ≥ m
γ (resp., ≤

m
γ ) for all y. The argument is parallel to the proof of Theorem 1.

Fix a SPE σ = (σi)i∈N , and let u and X̄ be defined as in the proof of Theorem 1. As in the

proof of Theorem 1, a necessary condition for producer i not to deviate to playing xi = 0 at history

ht is that, for all xti ∈ suppσi
(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ δ (1− δ)

∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

i ∩C\i

f
(
xt+1+τ
j

)
|ht, xti

− u.
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For each producer i and player j, let

x̃tij =


xti if i does not ostracize anyone in period t

(1− γ)xti if i ostracizes someone other than j in period t

0 if i ostracizes j in period t

 .

Then, arguing as in the proof of Theorem 1, a necessary condition for enforcer i not to deviate to

playing yik = 0 in period t is

ytik ≤ δ
∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

i ∩C

f
(
x̃t+1+τ
ji

)
|ht
 .

Furthermore, again as in the proof of Theorem 1,

u ≥ −lg

δ ∞∑
τ=0

δτE

 ∑
j∈Mt+1+τ

k ∩C

f
(
x̃t+1+τ
jk

)
|ht


+ δE

 ∑
j∈Mt+1

i ∩C\i

f
(
x̃t+1
ji

)
|ht
 . (A15)

Bounding X̄ when g′ (y) ≥ m
γ :

Suppose that g′ (y) ≥ m
γ for all y. We claim that, for any distribution over xτj , the right-hand

side of (A15) is minimized when producer j never ostracizes anyone. If τ > t + 1, then this is

immediate, as if producer j ostracizes anyone the only effect of this on the right-hand side of (A15)

is to decrease x̃τjk. If instead τ = t + 1, then ostracizing player i increases the right-hand side of

(A15) by

l (g (a)− g (b))− δ k − 1

kn− 1
f
(
xt+1
j

)
, (A16)

for some numbers a and b that differ by δ 1
nγf

(
xt+1
j

)
. In particular, (A16) is no less than

inf
y∈R+

l

n
δγf

(
xt+1
j

)
g′ (y)− δ k − 1

kn− 1
f
(
xt+1
j

)
.

Hence, if g′ (y) ≥ m
γ for all y, then ostracizing player i increases the right-hand side of (A15) by

a positive number, so the right-hand side of (A15) is minimized when producer j never ostracizes

another producer. A similar argument shows that the right-hand side of (A15) is minimized when

producer j never ostracizes an enforcer, so the right-hand side of (A15) is minimized when producer

j never ostracizes anyone. Given this observation, the fact that g′ (y) ≥ m
γ ≥ m for all y implies that

a lower bound on the right-hand side of (A15) is obtained by setting xt+1
j equal to its upper bound

in (A5) for all j, as in the proof of Theorem 1. As in the proof of Theorem 1, this implies (A4),

and combining (A1) and (A4) then implies that x∗ is an upper bound on each player’s maximum

equilibrium level of cooperation.

Bounding X̄ when g′ (y) ≤ m
γ :
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Suppose now that g′ (y) ≤ m
γ for all y. The converse of the argument for the g

′ (y) ≥ m
γ case

then implies that the right-hand side of (A15) is minimized when each producer j 6= i ostracizes

all of the producers (but none of the enforcers) in period t + 1 and never ostracizes anyone in

periods τ > t + 1, while producer i herself never ostracizes anyone. This gives a lower bound on

the right-hand side of (A15) of

u ≥ −lg

 δE
[∑

j∈Mt+1
k ∩C

(
1− γ1{j 6=i}

)
f
(
xt+1
j

)
|ht
]

+δ
∑∞

τ=1 δ
τE
[∑

j∈Mt+1+τ
k ∩C f

(
xt+1+τ
j

)
|ht
]  , (A17)

where 1{·} denotes the indicator function. By definition of X̄, concavity of f , and Jensen’s inequality,

this implies the following:21

u ≥ −lg
((

δ

1− δ −
nk − 1

nk
δγ

)
kf
(
X̄
))

. (A18)

Combining (A1) and (A18), we have, for every player i, history ht and level of cooperation xti ∈
suppσi

(
ht
)
,

(1− δ)xti + δE
[
Xt+1
i |ht, xti

]
≤ lg

((
δ

1− δ −
nk − 1

nk
δγ

)
kf
(
X̄
))

+ δ (1− δ)
∞∑
τ=0

δτ

 ∑
j∈Mt+1+τ

i ∩C\i

f
(
xt+1+τ
j

)
|ht, xti


≤ lg

((
δ

1− δ −
nk − 1

nk
δγ

)
kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.

As X̄ = supi,ht,xti∈suppσi(ht) (1− δ)xti + δE
[
Xt+1
i |ht, xti

]
, it follows that

X̄ ≤ lg
((

δ

1− δ −
nk − 1

nk
δγ

)
kf
(
X̄
))

+ δ (k − 1) f
(
X̄
)
.

By definition of x̌, this implies that X̄ ≤ x̌. Finally, as E
[
X0
i |h0

]
≤ X̄, we have E

[
X0
i |h0

]
≤ x̌.

Thus, x̌ is an upper bound on each player’s maximum equilibrium level of cooperation.

Proof of Theorem 8

It is straightforward to see that the SEPAO strategy profile with cooperation level x̌ and punishment

level y̌ remains a SPE with non-anonymous perfect monitoring. In addition, the argument that

SEPNAO strategy profile with cooperation level x̌ and punishment level y̌ is also a SPE is identical,

because each player faces the same incentives at every history (whether or not an innocent producer

21More specifically, by the concavity of f and Jensen’s inequality, if the right-hand side of (A17) is less than

−lg
((

δ
1−δ −

nk−1
nk

δγ
)
kf
(
X̄
))

and Xt+1
j ≤ X̄, then it must be that Xt+2

j > X̄. As Xτ
j ≤ X̄ for all τ by the

definition of X̄, it follows that the right-hand side of (A17) is not less than −lg
((

δ
1−δ −

nk−1
nk

δγ
)
kf
(
X̄
))
.
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i′ is ostracized in the i-ostracism state affects her payoffs in that state, but not her incentives).

Finally, the argument that x∗ (resp., x̌) is an upper bound on each producer’s level of cooperation

in any SPE when g′ (y) ≥ m
γ (resp., ≤

m
γ ) for all y is essentially the same as in the anonymous case.

In particular, the key way in which anonymity is used in the proof of Theorem 7 (or Theorem 1)

is that expectations of producers’levels of cooperation need not be conditioned on their realized

matches. When there is only one match, this is always the case.
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