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Abstract

In a general bargaining model with a fixed proposer, we show that the agenda
setter’s equilibrium payoff is never lower than her payoff in the static model.
There is a cutoff level of voter patience such that below the cutoff, the static
equilibrium (possibly along with others) obtains; and above the cutoff, all equi-
libria are in mixed proposal strategies, and the agenda setter does strictly better
than the static payoff. When the dimensionality of the set of alternatives is high,
the power of the agenda setter typically becomes extreme as voters become pa-
tient: equilibrium outcomes converge to the ideal point of the agenda setter.
Voters accept outcomes worse than the status quo because they anticipate the
possibility of even worse outcomes in the future; and as voters become patient,
this threat looms large, conferring increasing leverage to the agenda setter. In
the majority rule case, for example, if the set of alternatives has dimension three
or more, then for generic profiles of utilities, agenda setting power becomes ex-
treme as voters become patient.

1 Introduction

This paper studies the power of the agenda setter in dynamic bargaining games. We
provide a general framework that captures the case of a simple take-it-or-leave-it offer,
in which case the agenda setter must offer a winning coalition of voters something
weakly preferable to the status quo, and in equilibrium, the agenda setter simply
maximizes her payoff subject to this acceptance constraint. In this static setting, if
a proposal is rejected, then the game ends with the status quo outcome, but when
follow-up proposals are possible, dynamic incentives enter the equilibrium analysis:
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if a proposal is rejected, then the status quo is maintained in the current period, but
future outcomes will be determined by proposals of the agenda setter in the future.
This means that a voter may accept a proposal that is worse than the status quo, if it
is possible that a follow-up proposal will lead to an even worse outcome in the event
that the initial proposal is rejected. In case the set of alternatives is one-dimensional,
it is known that the equilibrium outcomes of the bargaining game are not affected
by dynamic incentives, but when the set of alternatives is multidimensional, we show
that the threat of “even worse” outcomes in the future confers leverage on the agenda
setter, and the equilibrium analysis changes substantially. Not only do dynamic
incentives affect equilibrium outcomes, but the threat of even worse future outcomes
looms larger as voters place more weight on the future, conferring greater leverage on
the agenda setter.

In the dynamic model, equilibrium outcomes are always weakly better for the
agenda setter than the static equilibrium. There is a cutoff level of voter patience
such that below the cutoff, the static equilibrium (possibly along with others) obtains;
and above the cutoff, all equilibria are in mixed proposal strategies, and the agenda
setter’s equilibrium payoff in the dynamic model is strictly higher than in the static
model. When the set of alternatives is multidimensional, this cutoff is typically strictly
less than one; that is, voter patience decreases the inertia of the status quo, allowing
the agenda setter to impose outcomes that are strictly worse than the status quo
for voters and to attain a payoff above the static equilibrium level. Surprisingly,
as voters become more patient, the power of the agenda setter typically becomes
extreme: equilibrium outcomes converge to the ideal point of the agenda setter as
the voters’ discount factor goes to one. To be more precise, we show that as voters
become patient, the agenda setter’s equilibrium proposals either converge to her ideal
point or to a constrained core point. The latter refers to an alternative x such that
in the hyperplane orthogonal the agenda setter’s gradient at x, there is no other
alternative strictly preferred to x by all members of any decisive coalition. We show
that at such an alternative, voter utilities must satisfy a gradient condition that
becomes restrictive as the number of dimensions increases. In particular, when the
number of agents is odd and the dimensionality of the set of alternatives is three or
more, we show that for generic profiles of utility functions, the constrained core for
majority rule is empty—implying that equilibrium outcomes converge to the agenda
setter’s ideal point. For any voting rule based on a quota less than unanimity, there
is a dimensionality cutoff such that generic emptiness of the constrained core holds,
implying that agenda setting power becomes extreme.

We assume that bargaining takes place in discrete time over an infinite horizon,
and that a fixed agenda setter can propose any alternative, and that this proposal is
then subject to consideration by voters. If a winning coalition of voters accept the pro-
posal, then the game ends with this outcome; otherwise, the proposal is rejected, the
status quo remains in place for the current period, the agenda setter makes a follow-
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up proposal in the next period, which is subject to consideration by voters, and so on.
We impose minimal structure on the set of alternatives and preferences of the agents:
the set of alternatives is a nonempty, compact, and convex subset of Euclidean space,
and stage utilities are continuous, concave, and satisfy a weakening of strict quasi-
concavity. In particular, we admit the multidimensional spatial model of politics,
as well as a large class of economic environments of interest. Thus, our bargaining
protocol is the protocol used by Baron and Ferejohn (1989) in their model of legisla-
tive bargaining, as generalized by Banks and Duggan (2000,2006). We assume, as in
Banks and Duggan (2006), that the status quo is an arbitrary alternative that may
be desirable to voters, rather than setting it equal to the zero allocation, as in Baron
and Ferejohn (1989), or assuming a bad status quo, as in Banks and Duggan (2000).

The topic of agenda setting power has been broached before in the formal political
science literature. Romer and Rosenthal (1978) take up the question assuming an
agenda setter can make a take-it-or-leave-it offer of a one-dimensional policy, which
is then subject to a majority vote. They show that the equilibrium proposal makes a
pivotal voter indifferent between accepting and rejecting the proposal, and that if the
median voter is between the status quo and the agenda setter, then the agenda setter
obtains an outcome strictly preferred to the median ideal point in equilibrium, despite
the fact that the median defeats all other policies (i.e., it is a Condorcet winner) in
pairwise votes. Whereas the Romer-Rosenthal model consists of a single period,
Primo (2002) examines the power of the agenda setter in a one-dimensional model
with a single voter using the same bargaining protocol as we do here: if a proposal
is rejected by the voter, then the game continues to the next period, and the agenda
setter makes a follow-up proposal to the voter, and this process can continue ad
infinitum. He shows that the outcome of all pure strategy subgame perfect equilibria
coincides with that of the Romer-Rosenthal game; that is, dynamic incentives do not
affect the equilibrium outcome of the static game. Banks and Duggan (2006) assume
majority voting and quadratic utilities, and they similarly conclude that the outcome
of every stationary equilibrium is the same as in the static game.

These findings may suggest that for the widely used protocol of Baron and Fere-
john (1989), considerations of the future do not affect the power of the agenda setter.
To our knowledge, the question has not been further explored in other environments
using this standard protocol. In particular, it was not previously known whether
the flexibility afforded by multiple dimensions could allow the agenda setter to play
different winning coalitions off against each other, using proposals to different condi-
tions to threaten voters with “even worse” outcomes in the future to obtain outcomes
better for the agenda setter than in the static game. Nevertheless, it has long been
well known that the properties of majority voting in one dimension are starkly dif-
ferent from the properties in two or more dimensions: assuming an odd number of
voters, the median ideal point is a Condorcet winner in one dimension, but in two or
more dimensions, a Condorcet winner exists only in knife-edge cases. Typically, there
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is no Condorcet winner, because even if it is not possible to make all members of a
majority coalition better off by moving along a given line, it is generally possible, in
two or more dimensions, to move in a different direction that is preferred by all mem-
bers of a majority coalition. We find that the presence of multiple dimensions indeed
leads to a qualitative difference in the equilibrium analysis: when voters are suffi-
ciently patient, the agenda setter obtains outcomes strictly better than in the static
setting, and as voters become arbitrarily patient, equilibrium outcomes converge to
the agenda setter’s ideal point.

In earlier work, McKelvey (1976,1979) takes a social choice approach to agenda
setting, and he shows in a general spatial model that majority preference cycles fill the
set of alternatives, so that from any given status quo, a sophisticated agenda setter
can design a (possibly long) sequence of binary votes that lead from the status quo
to her ideal policy. This analysis is highly suggestive, but it relies on the assumption
that voters are naive—they are unaware of the agenda setter’s motives and cannot
anticipate (or do not care about) the future consequences of a vote.

The topic of agenda setting power has been examined in another branch of the
game-theoretic literature on dynamic bargaining with an endogenous status quo.
Here, (i) an initial status quo is given, and the agenda setter makes a proposal that
is subject to a vote; (ii) if the proposal passes, then it is the outcome in the current
period, and it becomes the status quo in the next; (iii) if the proposal passes, then the
status quo remains in place and carries over to the next period. and (iv) in the next
period (and in all subsequent ones), the protocol is repeated. This class of games is
technically difficult to work with, and most work has focused on relatively specialized
environments. Diermeier and Fong (2011) consider the case of a finite set of alter-
natives with a fixed (or “persistent”) agenda setter, and after verifying existence of a
pure strategy Markovian equilibrium, they examine an example in which an agenda
setter divides a discretized dollar among herself and two voters. They find that when
voters are patient relative to the size of the grid, there exist equilibria in which the
agenda setter’s allocation of the dollar is bounded away from one—so that agenda
setting power does not become extreme as players become patient.1 Moreover, they
find that the equilibrium payoff of the agenda setter can decrease relative to her static
payoff. The restriction of proposals to a finite grid limits the flexibility of the agenda
setter to exploit the multidimensionality of the set of alternatives in their model, and
the concurrent assumption of patient voters means that the “gaps” between alterna-
tives become significant for voters. The spirit of Diermeier and Fong’s result diverges
significantly from ours, but differences between the models make the results of the

1Diermeier and Fong (2012) continue the previous analysis of the fixed agenda setter, and for
the case sufficiently patient players, they characterize the set of absorbing points of pure strat-
egy Markovian equilibria as the unique von Neumann-Morgenstern stable set. Anesi and Duggan
(2016) focus on bargaining with veto players in the finite framework, but they show that the latter
characterization carries over when mixed strategies are allowed.
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papers difficult to compare.

Kalandrakis (2010) considers the model with a continuously divisible dollar, and
he constructs a class of Markovian equilibria for arbitrary recognition probabilities. In
the case of a fixed agenda setter, his equilibrium exhibits a form of extreme agenda
setter power, consonant with the results of the current paper: in his equilibrium,
regardless of the status quo, the agenda setter consumes the entire dollar from the
second period onward. His result differs from ours in that the equilibrium path of
play in his model is a sequence of alternatives, so that the agenda setter’s ideal point
is reached after two periods (rather than immediately), and it holds for any rate of
discount by the voters. In contrast to McKelvey’s (1976,1979) findings, but similar
to ours, voters are strategic and place positive weight on the future, but the agenda
setter is nevertheless able to leverage the threat of “even worse” outcomes for voters
in the future to obtain desirable outcomes for herself in the present.

The remainder of the paper is organized as follows. In Section 2, we describe
the bargaining framework, and in Section 3, we explore four special cases of interest,
highlighting the possibility of extreme agenda setting power in two tractable examples:
the divide the dollar model and a symmetric spatial model in two dimensions. We
establish existence of stationary bargaining equilibria in Section 4, and we show that
under very general conditions, all equilibria are no-delay, i.e., the agenda setter’s
proposal is accepted in the first period. In Section 5, we compare equilibria in the
dynamic and static models, showing that the agenda setter’s equilibrium payoff in
the dynamic model is no lower than the static equilibrium payoff; and we establish
a cutoff level of voter patience such that above that level, all equilibria are in mixed
strategies, and the agenda setter does strictly better than the static equilibrium.
Section 6 is the heart of the analysis of extreme agenda setting power: we show
that if the equilibrium proposals of the agenda setter do not converge to her ideal
point as voters become patient, then a set of restrictive conditions must be met,
and in particular, the constrained core must be nonempty. In Section 7, we derive
strong gradient conditions that must be satisfied at any constrained core point, and in
Section 8, we show that when the dimensionality of the set of alternatives is high, these
gradient conditions become prohibitive, and for generic profiles of utility functions,
the constrained core is empty. Combined with the necessary conditions of Section 6,
we conclude that the equilibrium proposals converge to the ideal point of the agenda
setter: as voters become patient, the power of the agenda setter becomes extreme.

2 Dynamic bargaining model

Assume a set of agents, indexed 0, 1, . . . , n, must choose collectively from a nonempty,
compact, convex set X ⊆ ℜd of alternatives. We consider a bargaining protocol in
which agent 0 is a fixed agenda setter, agents 1, . . . , n are voters, and q ∈ X is a fixed
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status quo alternative. Let N = {1, . . . , n} denote the set of voters, and let D ⊆ 2N

be a voting rule, i.e., a collection of nonempty coalitions, termed decisive, that have
the authority to pass an alternative proposed by the agenda setter. In each period,
the agenda setter proposes any alternative x, and then voters simultaneously decide
to accept or reject the proposal. If the coalition of voters who accept is decisive, then
the game ends with outcome x; otherwise, the status quo q remains in place for the
current period, the game continues to the next period, and the process is repeated.

Assume that the voting rule D is monotonic, in the sense that if a coalition is
decisive, then every coalition containing it is decisive as well, i.e., for all C ∈ D and
all C ′ ⊇ C, we have C ′ ∈ D. We say D is proper if there do not exist disjoint
decisive coalitions, i.e., for all C,C ′ ∈ D, we have C ∩ C ′ 6= ∅. We say the voting
rule is collegial if there is some voter who belongs to every decisive coalition, i.e., if
⋂

D 6= ∅, in which case such a voter is a veto player; and otherwise, if there exists
C ∈ D with i /∈ C, then i is a rank and file voter. We say it is oligarchic if the
coalition of veto players is itself decisive, i.e.,

⋂

D ∈ D. A special case of the general
model is majority rule or any voting rule with quota m, where a coalition C of voters
is decisive if and only if |C| ≥ m. This representation of voting is quite general,
and it captures many special cases of interest. We technically assume that decisive
coalitions consist only of voters, an assumption which suits the equilibrium analysis,
below, and which is without loss of generality: because the agenda setter can always
vote for her own proposals, we can also capture settings in which the agenda setter
has voting power. When n is even, the separate roles of the agenda setter and voters
leads to two versions of majority rule, depending on whether the agenda setter’s vote
counts, in which it is necessary and sufficient that at least n

2
voters accept, or she

cannot vote, in which case m = n
2
+ 1 are needed. We define inclusive majority rule

as the quota rule with m = n
2
; and we define exclusive majority rule as the quota rule

with m = n
2
+ 1. This distinction does not arise when n is odd.

Each agent i evaluates alternatives according to a continuous, concave stage utility
function ui : X → ℜ, and we assume that each ui has a unique maximizer x̂i, the
ideal point of agent i. For some results, we assume that each ui is continuously
differentiable, by which we mean there is an open set V ⊆ ℜd containing X such
that ui can be extended to a continuously differentiable function on V .2 We say ui
is Euclidean if the agent’s preferences are a function of distance to the ideal point:
for all x, y ∈ X, ‖x− x̂i‖ = ‖y − x̂i‖ implies ui(x) = ui(y). To rule out trivial cases,
we at times assume that the agenda setter has at least some scope to change the
status quo. Formally, we say no gridlock holds if there exist an alternative x ∈ X
with u0(x) > u0(q) and a decisive coalition C ∈ D such that for all i ∈ C, we have
ui(x) > ui(q). Let δ ∈ [0, 1) be the common discount factor of the voters, and let
δ0 ∈ [0, 1) be the discount factor of the agenda setter. If the game ends in period
t with outcome x, then each voter i receives a payoff of (1 − δt−1)ui(q) + δt−1ui(x),

2This convention follows Mas-Colell (1985).
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and if no alternative is ever passed, then i receives payoff ui(q); the agenda setter’s
payoffs are defined analogously using discount factor δ0.

In addition to continuity and concavity, we take a weakening of strict quasi-
concavity as a maintained assumption: if an alternative y is weakly preferred to
an alternative x 6= y by all members of a coalition, then x and y can be approximated
by alternatives that all coalition members strictly prefer to x. Formally, define the
weak and strict upper contour sets of agent i ∈ N ∪ {0} at x ∈ X, respectively, by

Ri(x) = {y ∈ X | ui(y) ≥ ui(x)}

Pi(x) = {y ∈ X | ui(y) > ui(x)}.

Define coalitional upper contour sets by

RC(x) =
⋂

i∈C

Ri(x) and PC(x) =
⋂

i∈C

Pi(x)

for each C ⊆ N ∪ {0}. Then limited shared weak preference (LSWP) holds if for all
C ⊆ N ∪ {0} and all x ∈ X,

|RC(x)| > 1 implies RC(x) ⊆ clos(PC(x)).

To see that strict quasi-concavity of utilities implies LSWP, consider any coalition
C, any x ∈ X, and any y ∈ RC(x) \ {x}. Then for all α ∈ (0, 1), we have x(α) ≡
(1 − α)x + αy ∈ PC(x), and limα↓0 x(α) = x, as required. Under our background
conditions, LSWP is equivalent to strict quasi-concavity when d = 1. In fact, an
implication of LSWP is that each ui has a unique maximizer, which is just the ideal
point of the agent.

Our assumptions on preferences capture important classes of environments with
private goods that would be excluded by strict quasi-concavity. Several familiar
examples of environments satisfying LSWP are as follows:

• Classical spatial model/Pure public goods. Alternatives are vectors of ideological
policies or public good levels. Each ui is strictly quasi-concave, e.g., ui(x) =
−‖x− x̂i‖2 or ui(x) = −‖x− x̂i‖.

• Public decisions with transfers. The set X of alternatives is a subset of Z × T ,
where Z is a set of public decisions and T ⊆ Rn+1

+ is a set of allocations of
private good satisfying a weak transferability condition: for all x = (z, t) ∈ X
and all t′ ∈ Rn+1

+ such that
∑n

i=0 ti =
∑n

i=0 t
′
i, we have (z, t′) ∈ X. Each

ui is quasi-linear, i.e., ui(z, t) = φi(z) + ti, with valuation function φi strictly
quasi-concave.

• Exchange economy. Alternatives are allocations of a fixed endowment of pri-
vate goods, and each ui is strictly quasi-concave and strictly increasing in i’s
consumption.
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A special case of the second and third examples above is the simple divide the dollar
environment, in which alternatives are vectors x = (x1, . . . , xn) of allocations of a
dollar, with

∑n

i=0 xi ≤ 1, and ui(x) is constant in x−i and strictly increasing and
concave in xi for each player. The condition of LSWP is purely ordinal, but Lemma
1, in Appendix A.1, shows that the assumption of continuous stage utilities permits
a cardinal reformulation.

To obtain sharp lower bounds on the agenda setter’s equilibrium payoffs, we later
consider environments such that stage utility functions are strictly concave, a con-
dition that is clearly consistent with applications to the classical spatial model or
problems or pure public good provision. But assuming at least two voters, strict
concavity is violated in exchange economies and in models of public decisions with
transfers. In the latter models, linearity of utility in the private good is immedi-
ately inconsistent with strict concavity. A more general issue that affects exchange
economies as well is the fact that even if an agent’s utility is strictly concave in her
own consumption of a private good, she is indifferent between reallocations of private
good between other agents. For example, if x = (x0, x1, . . . , xn) is an allocation with
x1 6= 0, then the agenda setter is indifferent between x and any convex combination
with the alternative x′ = (x0, x1 + x2, x3, . . . , xn) that reallocates voter 1’s bundle to
voter 2. In particular, u0(

1
2
x+ 1

2
x′) = 1

2
u0(x) +

1
2
u0(x

′), violating strict concavity. To
capture environments with private good components, we establish that our charac-
terization results also hold under the assumption of minimal transferability, i.e., for
all x ∈ X and all j ∈ N with uj(x) > minz∈X uj(z), there exists y ∈ X such that
u0(y) > u0(x) and such that for all i ∈ N \ {j}, we have ui(y) > ui(x).

3 Intuitively,
if x does not minimize voter j’s stage utility, then her consumption of private good
must be positive, and we reallocate goods from her to all other agents, making them
better off. This assumption is weak and is satisfied in models of public decisions with
transfers, exchange economies, and other environments with a transferable private
good.

The core of the voting rule D consists of the alternatives that are maximal with
respect to the social preference relation induced by individual preferences. Formally,
we define this social preference relation as follows: given any x, y ∈ X, we have x ≻ y
if and only if there is a decisive coalition C ∈ D such that for all i ∈ C, ui(y) > ui(x).
Then alternative x belongs to the core if and only if there is no alternative socially
preferred to it, i.e., there does not exist y ∈ X satisfying y ≻ x. Assuming d = 1, our
assumptions imply that voter preferences are single-peaked, and if n is odd, then the
median voter theorem implies that the core of exclusive majority rule consists of the
unique median ideal point; and if n is even, then the core of exclusive majority rule
consists of two median ideal points and the alternatives between them. In general,
regardless of the dimensionality of the alternatives, Plott’s theorem (Plott (1967))
implies that if n is odd and an exclusive majority core alternative exists, say x, then

3Banks and Duggan (2006) refer to minimal transferability as “limited transferability.”
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it is unique and is the ideal point of a “core voter.” An if no other voter shares
this ideal point (which is the generic case), then x satisfies radial symmetry in the
sense that for every direction p with norm one, the number of voters with gradients
pointing in the p direction equals the number of voters with gradients pointing in the
−p direction:

|{i ∈ N | ∇ui(x) = ‖∇ui(x)‖p}| = |{i ∈ N | ∇ui(x) = −‖∇ui(x)‖p}|.

This condition is highly restrictive, and Schofield (1983) shows that when n is odd
and d ≥ 2, for generic profiles of utility functions, there is no alternative satisfying
radial symmetry; thus, the exclusive majority core is generically empty. When n ≥ 4
is even, an exclusive majority core x alternative either satisfies radial symmetry, or it
is the ideal point of some voter, and there are three other voters, say i, j, k ∈ N with
linearly dependent gradients. This necessary condition is weaker but still restrictive:
Schofield (1983) shows that when n ≥ 4 is even and d ≥ 3, for generic profiles of
utility functions, the exclusive majority core is empty.

The analysis of the dynamic bargaining model focuses on a class of subgame perfect
equilibria in stationary strategies. Thus, a strategy profile is σ = (π, α), where π is
a Borel probability measure on X representing the agenda setter’s proposal strategy,
and α = (α1, . . . , αn) such that each αi : X → [0, 1] is a Borel measurable mapping
representing voter i’s acceptance strategy. Here, αi(x) denotes the probability that
i accepts the proposal x, and we use the shorthand α(x) to denote the probability
that all members of at least one decisive coalition accept x if proposed. Say the
proposal strategy π is pure if it is degenerate on a single alternative, i.e., π({x}) = 1
for some x ∈ X. We consider subgame perfect profiles σ such that the agenda
setter’s proposal strategy π is optimal given acceptance strategies α, and acceptance
strategies are stage-undominated given π. To formalize these ideas, note that each
strategy profile σ defines in an obvious (if notationally dense) manner a probability
distribution over sequences of outcomes and, with it, an expected payoff vi(σ) for
each agent i ∈ N ∪ {0} as evaluated at the beginning of the game. By stationarity,
this is also agent i’s continuation value throughout the game, i.e., i’s expected payoff
evaluated at the beginning of next period if the current period’s proposal is rejected.

Formally, σ is a stationary bargaining equilibrium if two conditions hold. First,
we require that the voters’ acceptance strategies satisfy stage dominance, i.e., voter i
accepts x if the stage utility from x strictly exceeds the expected payoff from rejection,
and only if it weakly exceeds the expected payoff from rejection: αi(x) = 1 if

ui(x) > (1− δ)ui(q) + δvi(σ)

and αi(x) = 0 if

ui(x) < (1− δ)ui(q) + δvi(σ),
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where we may refer to the rejection payoff (1 − δ)ui(q) + δvi(σ) as the reservation
value of the voter. This condition eliminates implausible equilibria in which, given a
quota rule with m < n, all voters accept every proposal independently of preferences:
the problem in such situations is that no individual’s vote will change the outcome
of the game, and hence everyone’s vote is a best response, despite the fact that some
voters may be accepting undesirable policies. Second, we require that agenda setter’s
proposals are sequentially rational, in the sense that with probability one, proposals
maximize the expected payoff of the agenda setter: every x ∈ supp(π) solves

max
y∈X

α(y)u0(y) + (1− α(y))[(1− δ0)u0(q) + δ0v0(σ)].

Note that the agenda setter is free to propose q, and it follows that in equilibrium,
the agenda setter’s expected payoff from every x ∈ supp(π) is at least equal to

α(q)u0(q) + (1− α(q))[(1− δ0)u0(q) + δ0v0(σ)].

Integrating with respect to π, we obtain the inequality v0(σ) ≥ u0(q), so that the
agenda setter’s equilibrium expected payoff is at least equal to the stage utility from
the status quo.

A stationary bargaining equilibrium σ is no-delay if the agenda setter’s proposals
are accepted with probability one, i.e.,

∫

α(x)π(dx) = 1. In this case, the continuation
value of each agent i takes the especially simple form,

vi(σ) =

∫

ui(z) π(dz),

and as this depends on the proposal strategy alone, we henceforth write vi(π) for
the continuation value of agent i in a no-delay stationary equilibrium. We say σ is
gridlocked if the status quo is maintained with probability one, either because no
proposal is ever passed, or because the status quo is the only proposal passed with
positive probability:

∫

X\{q}
α(z)π(dz) = 0.4 Such equilibria may exhibit delay or may

not, as is the case if q is proposed and accepted with positive probability.

3 Special cases of interest

3.1 Static model

In this application, we consider the simple take-it-or-leave-it offer model of Romer
and Rosenthal (1978), extending their one-dimensional setting to a general set of

4Such equilibria are termed “static” by Banks and Duggan (2006). We use this term differently
in our analysis of the static model in Section 3.
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Figure 1: Static equilibrium in one-dimensional model

alternatives and general preferences. We obtain this as a special case of the general
bargaining framework by setting δ = 0 and focusing on pure proposal strategies (since
mixing is no longer needed for existence). Thus, we say (x, α) is a static equilibrium
if x solves

max
y∈X

α(y)u0(y) + (1− α(y))u0(q),

and acceptance strategies satisfy αi(x) = 1 if ui(x) > ui(q) and αi(x) = 0 if ui(x) <
ui(q) for all voters i. The static equilibrium (x, α) is no delay if and only if α(x) = 1,
and a no-delay equilibrium is gridlocked if and only if x = q. Assuming one dimension
with three voters, and majority rule, Figure 1 depicts a static equilibrium in which the
agenda setter moves the outcome from the status quo, which is on the far side of the
median voter, to an alternative closer to her ideal point. Static equilibria are depicted
for the two-dimensional spatial model in Figure 2 for inclusive and exclusive majority
rule, where each voter accepts the alternatives in the upper contour set through the
status quo, and the shaded regions consist of alternatives that will pass if proposed.

It is useful to define the static acceptance set of voter i as

Asi = {x ∈ X | ui(x) ≥ ui(q)},

and then we define

AsC =
⋂

i∈C

Asi and As =
⋃

C∈D

AsC ,

where the set As is the static social acceptance set, which consists of every alternative
such that a decisive coalition weakly prefers it to the status quo. Note that each Asi
contains q; and by continuity and concavity of ui, the set is compact and convex, and
these properties are inherited by the set AsC . Nonemptiness and compactness (though
not generally convexity) carry over to As. In Figure 1, the static social acceptance set
is the dark interval, and i Figure 2, it is the gray region in the left and right panels.

We will characterize outcomes of no-delay equilibria in the static model as solu-
tions to the following simple maximization problem,

max
x∈As

u0(x).
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Figure 2: Static equilibria in two dimensions

removing voters from the analysis. Since no-delay static equilibrium proposals can be
determined separately from voting strategies, we can then designate such an alterna-
tive xs as a static equilibrium, without reference to acceptance strategies. For future
use, we denote the maximized value of the agenda setter’s objective function by

us0 = max
x∈As

u0(x).

Moreover, we can decompose the above problem into separate coalitional optimization
problems. By concavity of ui, each AsC is convex, so there is a unique solution to

max
x∈As

C

u0(x),

and we denote this by xC . There is a finite number of such candidate static equilibria,
and we show that xs is a static equilibrium if and only if it is a candidate static
equilibrium and maximizes the agenda setter’s stage utility over these candidates.
Finally, we note that in one dimension or when the voting rule is oligarchical, the no-
delay static equilibrium is unique; thus, uniqueness in Figure 1 and in the right-hand
panel of Figure 2, is not a coincidence.

Proposition 1: For every alternative x, there exist acceptance strategies α such
that (x, α) is a no-delay static equilibrium if and only if

x ∈ argmax
y∈As

u0(y),

and thus, there is at least one no-delay static equilibrium. For each coalition C ⊆ N ,
the problem

max
x∈As

C

u0(x)

12



has a unique solution, denoted by xC , and xs is a no-delay static equilibrium if and
only if

xs ∈ argmax{u0(x) | x = xC for some C ∈ D}.

The agenda setter’s static equilibrium payoff is at least equal to the stage utility from
the status quo, i.e., us0 ≥ u0(q), and if there is a no-delay static equilibrium x 6= q,
then us0 > u0(q). Moreover, if d = 1 or if D is oligarchic, then there is a unique
no-delay static equilibrium.

3.2 One-dimensional model

In this application, we assume X = [x, x] ⊆ ℜ is a compact interval. Primo (2002)
considers a special case of this model with a single voter and such that the voter
and agenda setter have Euclidean utilities. He shows that the unique outcome of ev-
ery (possibly non-stationary) pure-strategy subgame perfect equilibrium is the static
equilibrium. A strength of the analysis is that it allows for non-stationary equilibria,
but it is limited by the assumption of a single voter. Banks and Duggan (2006) allow
multiple voters and assume quadratic stage utility and majority rule, and they show
that, again, the unique no-delay stationary bargaining equilibrium outcome is the
static equilibrium. Here, we carry forward the assumption of quadratic stage util-
ity, and we allow for any number of voters and any quota rule with quota m > n

2
.

Let xs be the unique no-delay static equilibrium, and assume without loss of gen-
erality that q ≤ xs ≤ x̂0. To support xs as a stationary bargaining equilibrium
outcome in the dynamic game with δ > 0, specify that π is degenerate on xs and
that each voter accepts a proposal if and only if it offers at least the corresponding
reservation payoff, i.e., αi(x) = 1 if ui(x) ≥ (1 − δ)ui(q) + δui(x

s), and αi(x) = 0 if
ui(x) < (1 − δ)ui(q) + δui(x

s). The strategy profile σ = (π, α) specified thusly is a
stationary bargaining equilibrium, independent of the discount factor of the voters.

To see this, we first claim that xs gains the support of a decisive coalition. Indeed,
note that for all voters i, we have ui(x

s) ≥ (1 − δ)ui(q) + δui(x
s) if and only if

ui(x
s) ≥ ui(q). Define the coalition C = {i ∈ N | ui(x

s) ≥ ui(q)} of voters who
are willing to accept xs in the static model. Then xs ∈ AsC , and thus for all i ∈
C, we have αi(x

s) = 1. Since xs ∈ As, we have C ∈ D, as claimed. To verify
sequential rationality, we must argue that no other proposal yields a greater expected
payoff to the agenda setter. This is clearly true if the static outcome is ideal for
the agenda setter, so assume xs < x̂0. Consider any other alternative y, and since
proposing an alternative that is rejected or is less than xs cannot be better than xs,
assume that α(y) = 1 and y > xs. By the above arguments, we have xs = xC ,
so there must be some voter i /∈ C such that αi(y) = 1, but for such a voter,
we have ui(q) > ui(x

s), so strict concavity of ui implies x̂i < xs < y, and this
implies (1 − δ)ui(q) + δui(x

s) > ui(y), a contradiction. We conclude that (x, α) is a

13
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Figure 3: Static equilibrium maintained in one-dimensional model

static equilibrium. This observation leaves open, however, the possibility that other
equilibrium outcomes are possible in the dynamic model.

It is instructive to delve further into the structure of the equilibrium constructed
above. Assuming that q < x̂0, for each voter i, we let xir denote the alternative
weakly greater than q such that (1− δ)ui(q)+ δui(x

s) = ui(x
i
r), if such an alternative

exists; otherwise, let xir = x. Assume that voters are indexed in the order of their
ideal points, i.e., x̂1 ≤ x̂2 ≤ · · · ≤ x̂n. In addition, assume that q < xn−m+1

r , so that
in the equilibrium constructed, if x ∈ [q, xn−m+1

r ], then x is accepted by all voters
i ≥ n−m+ 1, i.e., the coalition C = {n−m+ 1, . . . , n} ∈ D accepts x if proposed,
and since this coalition has m members, x passes. On the other hand, a proposal
outside the interval fails to be accepted by m voters. Thus, the set of alternatives
that pass if proposed in this equilibrium is just [q, xn−m+1

r ], and if xn−m+1
r < x̂0, then

the equilibrium outcome is just xs = xn−m+1
r , the outcome that makes the “pivotal

voter” n−m+ 1 indifferent between acceptance and rejection.

We have argued that the static equilibrium carries over to the dynamic bargaining
model with δ > 0, and the next proposition establishes that the static equilibrium is
actually the unique stationary bargaining equilibrium outcome, independent of the
voters’ rate of discounting. That is, in the one-dimensional model, with a quota rule
and quadratic utilities, dynamic incentives do not alter the static outcome. We will
establish later, in Theorem 4, that the result does not depend on any assumptions on
the voting rule or stage utilities, so the equilibrium characterization in Proposition 2
holds for the general one-dimensional model; but we will see that the one-dimensional
model is exceptional in this regard, as the agenda setter’s increased latitude in the
multidimensional model quite generally permits her to improve on the static outcome.

Proposition 2: Assume d = 1, D is a quota rule with m > n
2
, and each ui is

quadratic. There is a no-delay stationary bargaining equilibrium, and every no-delay
stationary bargaining equilibrium proposal strategy π is degenerate on the unique
static equilibrium.

14



3.3 Divide the dollar

In this application, we establish that the stability of static equilibria in the one-
dimensional model is overturned in the divide the dollar model, where transfers are
possible. Let X = {x ∈ ℜn+1

+ |
∑n

i=0 xi = 1}, and assume ui(x) is constant in x−i
and strictly increasing and concave in xi. Normalize utility from zero consumption
by setting ui(0, x−i) = 0. Assume a quota rule with quota m. If m = n, then all
voters receive the status quo, regardless of discount factor, so we assume m < n for
the remainder of the subsection.

In a symmetric version of the model, with qi = q for every voter i and common,
strictly increasing stage utility u(z) from consumption, it is straightforward to com-
pute a symmetric equilibrium. In this case, we specify that the agenda setter mixes
uniformly over coalitions of size m, so that the probability that a voter is proposed
to is m

n
, and that she offers an amount z of the dollar to “in voters” and nothing to

“out voters.” Letting v be the common continuation value of the voters, we can solve
two equations in two unknowns to obtain a stationary bargaining equilibrium:

u(z) = (1− δ)u(q) + δv

v =
(m

n

)

u(z) +

(

n−m

n

)

u(0).

We find that the equilibrium continuation value of the voters is

v =
(m
n
)(1− δ)u(q) + (n−m

n
)u(0)

1− m
n
δ

.

In contrast to the one-dimensional application, now dynamic incentives matter: the
equilibrium continuation value varies non-trivially with the discount factor, and the
power of the agenda setter increases (v decreases) with the discount factor. We
depict the equilibrium with two voters and inclusive majority rule in Figure 4, where
proposals in the shaded area are those that will pass if proposed, and the agenda
setter randomizes between allocations (1− z, z, 0) and (1− z, 0, z), which give voters
1 and 2, respectively, the amount z that gives each her reservation value.

Of note is the fact that when δ > 0, the voters’ continuation value is strictly less
than the status quo payoff: v < u(q). As a consequence, each voter is willing to
accept alternatives worse than the status quo, because when they place some weight
on the future, they must account for the possibility of even worse outcomes following
rejection. Moreover, the weight on even worse outcomes increases as voters become
patient, and we see that, in contrast to the one-dimensional model, agenda setting
power becomes extreme in the limit: as δ → 1, we have v → u(0) = 0, so that the
agenda setter’s consumption of the dollar goes to one. Informally, in the dynamic
model, the agenda setter is able to achieve superior outcomes by playing off different
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Figure 4: Symmetric equilibrium in divide the dollar

majority coalitions against each other. By this logic, the inertia of the status quo is
decreased, and the threat of the worse prospect of receiving zero is increased, as the
voters become patient—allowing the agenda setter to consume nearly the entire dollar.

The next proposition establishes that in the divide the dollar model with any
quota rule short of unanimity, the extreme agenda setting power exhibited in the
simple symmetric equilibrium above is a general property of equilibria: the agenda
setter’s consumption of the dollar goes to one as voters become patient. We will see in
the sequel that the spirit of this result does not depend on the distributive structure
of the model, but rather on the ability of the agenda setter to mix between multiple
optimal proposals—something that is impossible in the one-dimensional model—and
the fact that as voters put less weight on the present, the impact of the status quo
goes to zero, and the threat of undesirable outcomes in the future becomes large.

Proposition 3: In the divide the dollar model with quotam < n, if πδ is a stationary
bargaining equilibrium for δ, then as δ → 1, πδ converges weak* to the unit mass on
x∗ with x∗0 = 1 and for all i ∈ N , x∗i = 0.

3.4 Symmetric spatial model

In this application, we consider a spatial example with two voters and inclusive major-
ity rule, i.e., n = 2 andm = 1, so that the agenda setter requires the acceptance of one
voter in order to pass a proposal. Here, we explicitly construct a stationary bargaining
equilibrium for arbitrary discount factors assuming specific functional forms, but see
Appendix A for a more general construction that does not depend on such assump-
tions. Assume that each player has quadratic stage utility, i.e., ui(x) = −‖x − x̂i‖2,
with ideal point x̂i. To simplify the analysis, we place the ideal points at corners of
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c

Figure 5: Symmetric equilibrium in spatial model

an Isosceles triangle,

x̂0 = (0, 1), x̂1 = (−a, 0), x̂2 = (a, 0),

and we assume q1 = 0 and −1 < q2 < 1. Thus, the position of voter 1 is symmetric to
that of voter 2, relative to the agenda setter and status quo. To illustrate our equilib-
rium concept and to further develop the themes of the paper, we consider stationary
bargaining equilibria in which the agenda setter treats the voters symmetrically: she
proposes x1 = (−b, c) to voter 1 with probability one half, and she proposes x2 = (b, c)
to voter 2 with probability one half, where 0 ≤ b ≤ a and 0 ≤ c ≤ 1. The environment
and structure of equilibrium is depicted in Figure 5.

In contrast to the one-dimensional model, but like the divide the dollar example
of the preceding subsection, equilibrium proposals will depend on the discount factor
of the voters. When δ = 0, the equilibrium proposals are solutions to the static
problem, as alternative xi makes voter i indifferent between acceptance, with payoff
ui(x

i), and rejection, with payoff ui(q). When the voters place positive weight on the
future, however, these static equilibria do not persist: for example, if voter 2 expects
the agenda setter to offer (−b, c) to voter 1 with positive probability, then she will be
willing to accept alternatives slightly worse than (b, c), but then (−b, c) would not be
optimal for the agenda setter. Instead, when δ > 0, equilibrium proposals respond by
moving closer to the ideal point of the agenda setter, and as voters become patient,
the respite offered by the status quo declines: equilibrium proposals converge to the
ideal point of the agenda setter, so that the power of the agenda setter becomes
extreme.

At work is the fact that voter i compares the agenda setter’s proposal xi, which
is worse than the status quo, with the continuation value of rejection; in the next
period, the agenda setter proposes an alternative to the other voter with probability
one half, and that alternative will be even worse than xi for voter i. As voters become
patient and proposals converge to x̂0, the wedge between x1 and x2 decreases, but it is

17



magnified by the increase in patience, forcing each voter i to accept proposals further
from the status quo. The threat of even worse outcomes becomes more salient, and
the equilibrating adjustment is that the voter becomes more accommodating while the
agenda setter’s proposals converge to her ideal point. These intuitions are formalized
in the next proposition.

Proposition 4: There exists a unique no-delay stationary bargaining equilibrium
of the form π({(b, c)}) = π({(−b, c)}) = 1

2
, and in equilibrium, (b, c) = β(0, 1) + (1−

β)(a, 0), where

β =
−δa2 +

√

δ2a4 − (1− δ)(1 + a2)[(1− δ)u2(q)− 2δa2]

(1− δ)(1 + a2)
. (1)

Moreover, β → 1 as δ → 1.

4 Equilibrium existence and the no-delay property

In this section, we establish existence of no-delay stationary bargaining equilibrium,
and we provide general conditions under which all equilibria are no-delay. Equilibria
in pure proposal strategies do not exist generally, but we give conditions under which
they do exist and are, in fact, unique: when the set of alternatives is one-dimensional
or the voting rule is oligarchical, the unique static equilibrium from Proposition 1 is
the unique no-delay stationary bargaining equilibrium; thus, we extend Proposition
2 to a general voting rule and utilities. Existence of no-delay stationary equilibria
follows from Banks and Duggan (2006) when the agenda setter discounts future pay-
offs at the same rate as voters. To cover the case in which the discount rate of the
agenda setter differs from that of voters, perhaps due to institutional features (e.g.,
if the agents are politicians, then the agenda setter’s term of office may differ from
that of other agents’) and to facilitate the subsequent analysis, we show that their
existence result can be applied, despite this difference in the models.5

The existence argument relies on a correspondence of solutions to a certain con-
strained optimization problem, where the constraints reflect incentives of voters in
no-delay equilibria. Given a proposal strategy π, let vi(π) =

∫

ui(z)π(dz) be the
imputed continuation value for voter i. Then the acceptance set of voter i is

Ai(π) = {x ∈ X | ui(x) ≥ (1− δ)ui(q) + δvi(π)},

which consists of alternatives that meet or exceed the voter’s reservation payoff, cal-
culated assuming π is no-delay. We define the coalitional acceptance set for C and

5For an alternative route to existence when δ0 6= δ, Theorem 3.1 of Duggan (2017) yields a
stationary bargaining equilibrium that may exhibit delay, and then we can apply Theorem 3, below,
to conclude that the equilibrium is in fact no-delay.
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the social acceptance set as

AC(π) =
⋂

i∈C

Ai(π) and A(π) =
⋃

C∈D

AC(π),

respectively. Thus, the social acceptance set A(π) consists of the alternatives that
would receive the support of all members of at least one decisive coalition, and would
therefore pass, if proposed by the agenda setter.

For each π ∈ ∆(X), we define B (π) be the set of probability measures with
support on optimal proposals of the agenda setter, i.e.,

B (π) = ∆

(

arg max
x∈A(π)

u0 (x)

)

.

The interest in the correspondence B : ∆(X) ⇒ ∆(X) so-defined derives from the
properties of its fixed points: if π ∈ B(π) for some proposal strategy, then the agenda
setter places probability one on alternatives that maximize her utility, subject to the
constraint that any proposal garners the support of a decisive coalition of voters.
It is not immediate that such a fixed point translates to a stationary bargaining
equilibrium, because the correspondence restricts the agenda setter to proposals that
will pass: it is possible that the status quo does not belong to the social acceptance
set, raising the possibility that the agenda setter can deviate to the status quo (or
another rejected alternative) and thereby increase her expected payoff. Lemmas 2
and 3, in Appendix A.1, show that this possibility is not realized: a mixed proposal
strategy π is a fixed point of B if and only if there exist acceptance strategies α such
that (π, α) is a no-delay stationary bargaining equilibrium.

Thus, existence of no-delay equilibrium reduces to confirming existence of a fixed
point of the correspondence B. For this, we can apply Theorem 1 of Banks and
Duggan (2006), which establishes that B has a fixed point. Since discount factors
enter this correspondence only through the social acceptance set A(π), the set of fixed
points is independent of δ0 in the model with a fixed agenda setter. Thus, the fixed
points of B remain even if δ0 6= δ, as allowed in the current framework.

Theorem 1: A no-delay stationary bargaining equilibrium exists.

By the same argument, we can parameterize stage utilities by the elements λ of a
metric space Λ, i.e., we view the stage utility of agent i as a mapping ui : X×Λ → ℜ.
Assume that for all i ∈ N ∪{0}, ui(x, λ) is jointly continuous in (x, λ), that ui(x, λ) is
concave in x, and that LSWP is satisfied for all λ. When we fix λ at some value, the
implied stage utilities ui(·, λ) satisfy our maintained assumptions, and for parameters
(q, δ0, δ, λ), we can let E(q, δ0, δ, λ) denote the set of proposal strategies π for which
there exists α such that (π, α) is a no-delay stationary bargaining equilibrium given
(q, δ0, δ, λ). Lemma 3, Theorem 3 of Banks and Duggan (2006) implies that the
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correspondence E of no-delay stationary bargaining equilibrium proposal strategies
is upper hemi-continuous.

Theorem 2: The correspondence E of no-delay stationary bargaining equilibrium
proposal strategies is upper hemi-continuous in the parameters of the model.

Next, we establish that all stationary bargaining equilibria are no-delay, a result
that allows us to focus our characterization results on no-delay equilibria without loss
of generality. Banks and Duggan (2006) establish for arbitrary recognition probabil-
ities that if stage utilities are strictly concave or minimal transferability holds, then
every stationary bargaining equilibria is either no-delay or gridlocked. Moreover, the
maintained assumptions of concavity and LSWP are not sufficient for the result in
that paper: Model 6 of Banks and Duggan (2006) contains a one-dimensional example
in which voters are risk neutral, three agents have equal recognition probabilities, and
there is a stationary bargaining equilibrium that is not gridlocked and that exhibits
delay. Our theorem shows that when agenda setting power rests with a single agent,
the additional concavity and transferability assumptions are not needed to obtain the
no-delay result.

Theorem 3: Every stationary bargaining equilibrium is either no-delay or grid-
locked.

The next result establishes existence of pure strategy equilibria when the set of
alternatives is one-dimensional or the voting rule is oligarchical; in fact, under these
conditions, the stationary bargaining equilibrium is unique. It extends Primo’s (2002)
result, which assumes a single voter and symmetric stage utility, and it generalizes
Proposition 2, which is restricted to quota rules and quadratic utility in one dimension.

Theorem 4: Assume d = 1 or D is oligarchical. There is a unique no-delay stationary
bargaining equilibrium proposal strategy, and it is degenerate on the unique static
equilibrium.

We remark that in the oligarchical case, with C =
⋂

D, if utilities are continuously
differentiable and x̂0 6= xC , then it is not possible to move in a direction orthogonal to
the agenda setter’s gradient to an alternative that is strictly preferred by all members
of a decisive coalition. Formally, there is no alternative y such that ∇u0(x

C)·(y−xC) =
0 and such that for all i ∈ C, we have ui(y) > ui(x

C). In other words, letting H
denote the (d−1)-dimensional subspace orthogonal to ∇u0(x

C), the static equilibrium
xC belongs to the core when alternatives are restricted to xC +H . To see this, note
that the agenda setter solves the convex problem

maxx∈X u0(x)

s.t. ui(x) ≥ ui(q), i ∈ C.

Letting C ′ = {i ∈ C | ui(x) = ui(q)} consist of the binding voter constraints, it can be
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seen that xC also solves the reduced problem with constraints ui(x) ≥ ui(q), i ∈ C ′.
By LSWP, there is an alternative x′ such that for all i ∈ C ′, we have ui(x

′) > ui(x),
and by concavity this implies ∇ui(x) ·(x

′−x) > 0 for all i ∈ C ′, so that the constraint
qualification for the reduced problem holds. By the Kuhn-Tucker theorem, there are
non-negative multipliers λi ≥ 0 such that

∇u0(x
C) = −

∑

i∈C′

λi∇ui(x
C).

We then have for all r ∈ H ,

r ·
∑

i∈C

λi∇ui(x
C) = 0.

Thus, we cannot separate zero from the convex hull conv{∇ui(x
C) | i ∈ C ′}, and by

the separating hyperplane theorem, we have 0 ∈ conv{∇ui(x
C) | i ∈ C ′}. Therefore,

xC is Pareto optimal for C when alternatives are restricted to xC + H , as claimed.
We return to this point in Section 6.

5 Static lower bounds on agenda setting power

In this section, we provide lower bounds on the agenda setter’s equilibrium payoff in
the dynamic bargaining game, and we establish a cutoff level of voter patience such
that below the cutoff, the static equilibrium (possibly along with other equilibria)
obtains; and above the cutoff, all equilibria are in mixed proposal strategies, and the
agenda setter does strictly better than the static payoff. Along with these results,
we draw several important implications. In particular, if a stationary bargaining
equilibrium is non-degenerate or there are multiple static equilibria, then the agenda
setter’s equilibrium payoff in the dynamic game strictly exceeds her static payoff; and
a stationary bargaining equilibrium in which the agenda setter uses a pure proposal
strategy is only possible if the equilibrium is essentially static: in this case, the static
equilibrium must be unique, and the agenda setter must propose that alternative with
probability one.

We begin by showing that the agenda setter’s static equilibrium payoff provides a
general lower bound on her payoff from stationary bargaining equilibria. The proof
follows immediately from Lemmas 2 and 3 in Appendix A.1: given any no-delay
stationary bargaining equilibrium π, Lemma 3 implies that it is a fixed point of B,
and then Lemma 2 implies that for all x ∈ supp(π), we have u0(x) ≥ us0

Theorem 5: For every no-delay stationary bargaining equilibrium proposal strategy
π and for all x ∈ supp(π), we have u0(x) ≥ us0.
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Under quite general assumptions on preferences, the weak bound on the agenda
setter’s equilibrium payoff from Theorem 5 in fact holds strictly. For this charac-
terization, it is sufficient to assume that the agenda setter’s stage utility is strictly
concave, or that all voters’ utilities are strictly concave, or that the environment has
a minimal private good component.

Theorem 6: Assume δ > 0. Assume either (i) u0 is strictly concave, or (ii) for all
i ∈ N , ui is strictly concave, or (iii) minimal transferability holds. For every no-delay
stationary bargaining equilibrium proposal strategy π, if there is a static equilibrium
xs such that π is not degenerate on xs, then for all x ∈ supp(π), we have u0(x) > us0.

To gain some insight into the lower bound under condition (iii) of Theorem 6, we
note that result actually holds even if the status quo minimizes the stage utility of
every voter. In this case, the status quo is the worst alternative for every voter, so the
unique static equilibrium is the ideal point of the agenda setter, and thus her payoff
in the dynamic game cannot possibly exceed her static payoff. As a consequence, not
surprisingly, Theorem 6 implies that every stationary bargaining equilibrium will also
be degenerate on the agenda setter’s ideal point in the dynamic bargaining game.

Theorem 6 has several important implications that we record next. First, under
the conditions of the theorem, if a stationary bargaining equilibrium proposal strategy
is non-degenerate, then given any static equilibrium, the proposal strategy is not
degenerate on it —and this implies that the agenda setter’s equilibrium payoff strictly
exceeds her static equilibrium payoff.

Corollary 1: Assume δ > 0. Assume either (i), (ii), or (iii) from Theorem 6. If a
stationary bargaining equilibrium proposal strategy π is non-degenerate, then for all
x ∈ supp(π), we have u0(x) > us0.

Second, we characterize stationary bargaining equilibria in pure proposal strate-
gies and show that the possibilities for such equilibria are substantially limited: if a
stationary bargaining equilibrium proposal strategy is pure, then the static equilib-
rium must be unique, and the agenda setter proposes this alternative with probability
one.6 Thus, it is no coincidence that in Theorem 4, our sufficient conditions for exis-
tence of equilibria in pure proposal strategies also imply that the equilibrium proposal
strategy is degenerate on the unique static equilibrium.

Corollary 2: Assume δ > 0. Assume either (i), (ii), or (iii) from Theorem 6. If a
stationary bargaining equilibrium proposal strategy π is degenerate, then there is a

6To see the result, suppose toward a contradiction that there are a static equilibrium xs and
a no-delay stationary equilibrium π that is degenerate on some y 6= xs. Then Theorem 6 implies
u0(y) > u0(x

s). Since π is no-delay, however, there is some decisive coalition C ∈ D such that for all
i ∈ C, we have ui(y) ≥ (1− δ)ui(q)+ δvi(π). But vi(π) = ui(y) every voter i, and thus ui(y) ≥ ui(q)
for all i ∈ C, implying y ∈ As, contradicting the fact that xs maximizes the agenda setter’s stage
utility over As.
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unique static equilibrium xs, and π is degenerate on xs.

Third, if there are multiple static equilibria, then by Corollary 2, all station-
ary bargaining equilibrium proposal strategies are non-degenerate, implying that the
agenda setter’s payoff in the dynamic game strictly exceeds her static payoff.

Corollary 3: Assume δ > 0. Assume either (i), (ii), or (iii) from Theorem 6.
If there are multiple static equilibria, then every stationary bargaining equilibrium
proposal strategy π is non-degenerate, and so for all x ∈ supp(π), we have u0(x) > us0.

Finally, we establish the existence of a cutoff discount factor such that below the
cutoff, the agenda setter receives the static payoff in some equilibrium; and above
the cutoff, all equilibria are in mixed proposal strategies, and the agenda setter’s
payoff is strictly higher than the static payoff in all equilibria. In the statement of the
following theorem, let vδ0 = min

{

v0(π) | π ∈ Bδ(π)
}

be the lowest equilibrium payoff
to the agenda setter when voters’ discount factor is δ.

Theorem 7: Assume either (i), (ii), or (iii) from Theorem 6. There is a unique
cutoff discount factor δ ∈ [0, 1] such that for every δ ≤ δ, we have vδ0 = us0, and for
every δ > δ, we have vδ0 > us0.

The preceding theorem establishes that the agenda setter’s minimum equilibrium
payoff for discount factors δ ≤ δ is equal to the static payoff, but it leaves open the
possibility that multiple equilibria exist and that the agenda setter’s maximum equi-
librium payoff strictly exceeds the static payoff. Figure 6 shows that this possibility
can be realized in some cases. Here, we depict a case δ > 0 in which the static equilib-
rium xs persists as a stationary bargaining equilibrium outcome. We can specify the
curvature of Euclidean utilities so that the threat of y for voter 1 and the threat of x
for voter 2 can be be arbitrarily great. In particular, we can specify utilities so that
the mixed proposal strategy with equal probability on x and y generates the reserva-
tion values indicated by the level sets through x and y. Given these acceptance sets,
the proposals x and y are optimal for the agenda setter, and we have an additional
equilibrium in mixed proposal strategies, in which the agenda setter’s expected payoff
is strictly higher than the static payoff.

6 Conditions for extreme agenda setting power

In this section, we establish conditions under which the agenda setter has extreme
power as the voters become patient. The source of this power is the agenda setter’s
ability—when the set of alternatives is multidimensional—to obtain desirable out-
comes by playing off decisive coalitions against each other. For such a coalition, there
is the implicit threat that if a proposal is rejected in the current period, then the
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Figure 6: Multiple equilibria

agenda setter will approach a competing coalition in the future. This threat leads
voters to become more accommodating, and it looms larger as voters become more
patient. We show that as voters become patient, the agenda setter’s equilibrium pro-
posals approach a set of limit points in a strong sense. Given such a limit point, say
x∗, there cannot be another alternative that is preferred to x∗ by the agenda setter
and all members of a decisive coalition, for it that were the case, then a profitable
deviation would be available to the agenda setter when voters are sufficiently patient.
Moreover, if the limiting proposal is not the agenda setter’s ideal point and utilities
are continuously differentiable, then it must satisfy a stringent necessary condition: x∗

must belong to the core when alternatives are restricted to the hyperplane through x∗

orthogonal to the agenda setter’s gradient ∇u0(x
∗). This necessary condition becomes

more restrictive when the dimensionality of the set of alternatives is high, as discussed
in the next two sections, for such a “constrained core” point must satisfy a version
of Plott’s radial symmetry condition. As a consequence, in the limit, except in rare
circumstances, the agenda setter has extreme power: equilibrium outcomes converge,
in a strong sense, to the agenda setter’s ideal point. Our results are summarized in
Corollary 5 at the end of this section.

The first step in our analysis is to establish that as voters become patient, the
equilibrium proposals approach a set limit points in a strong sense. Given a weak*
convergent sequence {πδ} of equilibrium proposal strategies as δ → 1, the proposals
converge to a single alternative, say x∗, in the following sense: for every open set
G ⊆ X containing x∗, there exists δ̄ < 1 such that for all δ > δ̄, the support of πδ
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is contained in G. We then refer to x∗ as a limit proposal. Uniqueness of this limit
proposal does not hold in general: Appendix A.4 shows that when n = 2 and m = 1,
we can support multiple limit proposals if the contract curve of the agenda setter and
voter 1 intersects the contract curve of the agenda setter and voter 2 multiple times.
Our first result also adds an immediate restriction on preferences that holds at any
limit proposal: there cannot be an alternative y 6= x∗ that is weakly preferred to x∗

by the agenda setter and all members of a decisive coalition.

Theorem 8: If πδ is a no-delay stationary bargaining equilibrium proposal strategy
for δ such that πδ is weak* convergent as δ → 1, then πδ converges strongly to a
limit proposal, i.e., there exists x∗ ∈ X such that supp(πδ) → {x∗} in the Hausdorff
metric. Moreover, for all y ∈ X such that y 6= x∗, if u0(y) ≥ u0(x

∗), then for all
C ∈ D, there exists i ∈ C such that ui(y) < ui(x

∗).

The preference restriction deduced in the preceding theorem, while simple, has
immediate application to any environment with a transferable private good: if the
voting rule is non-collegial and minimal transferability is satisfied, then every limit
proposal x∗ must minimize the stage utility of each voter. Indeed, if there were some
voter i such that ui(x

∗) > minz∈X ui(z), then minimal transferability would yield an
alternative y such that u0(y) > u0(x

∗) and for all j ∈ N \ {i}, uj(y) > uj(x
∗); but

since i is not a veto player, the coalition N \ {i} is decisive, contradicting Theorem 8.
It immediately follows that as voters become patient, the equilibrium payoff of each
voter converges to the minimum stage utility. Given this observation, stated next,
the result of Proposition 3 for the divide the dollar environment follows easily as a
special case.

Corollary 4: Assume D is non-collegial and minimal transferability is satisfied.
For all limit proposals x∗ and all voters i ∈ N , ui(x

∗) = minz∈X ui(z), and therefore
vi(π

δ) → minz∈X ui(z).

The main conclusion of this paper is that when the set of alternatives is multi-
dimensional, there is a unique limit proposal x∗, and this is equal to the ideal point
of the agenda setter—except in rare circumstances. The remainder of this section
deduces necessary conditions for x∗ 6= x̂0 to hold; in the following two sections, we
establish the restrictiveness of these necessary conditions when the voting rule is non-
collegial and the set of alternatives is multidimensional, allowing us to conclude that
the cases for which x∗ 6= x̂0 are indeed “rare.” To this end, we say an alternative x is
a constrained core point with respect to a non-zero vector p ∈ ℜd if, letting H be the
hyperplane orthogonal to p, there does not exist y ∈ X ∩ (H + x) such that y ≻ x.7

Assuming stage utilities are continuously differentiable, the constrained core consists

7This concept is indirectly employed by Schofield (1978,1983) in his analysis of the local cycle
set; see, e.g., Lemma 7 of Schofield (1983), where he effectively shows that every alternative outside
the set IC(σ) is a constrained core point with respect to some vector v.
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of every alternative x 6= x̂0 such that x is a constrained core point with respect to the
agenda setter’s gradient ∇u0(x).

Figure 7 illustrates this concept in four cases. In the upper panels, we assume two
voters and inclusive majority rule, i.e., n = 2 and m = 1, with the left-hand panel
depicting Euclidean preferences, and the right-hand panel depicting non-Euclidean
preferences. Since x∗ is a constrained core point with respect to the agenda setter’s
gradient, there cannot be an alternative on H + x∗ that is strictly preferred to x∗ by
either voter, so the projected gradients p1 = projH∇u1(x

∗) and p2 = projH∇u2(x
∗)

must both equal zero. In case preferences are Euclidean, this implies that the ideal
points of the agenda setter and voters are collinear, as in the left-hand panel. For
general preferences, it implies that the contract curves for {0, 1} and for {0, 2} cross
at x∗, as in the right-hand panel. In the lower panels, we assume three voters and
majority rule, i.e., n = 3 and m = 2, with the left panel depicting Euclidean pref-
erences and the right non-Euclidean. In the Euclidean case, if we project the ideal
points of the voters to the hyperplane H+x∗, then the alternative x∗ is the median of
these projections. For general preferences, x∗ must belong to the contract curve for
{0, i} for some voter i, but in two dimensions, further restrictions on voter gradients
are less stark: all that is required is that we cannot have two voters whose gradients
point to the same side of x∗.

Next, we derive the central necessary condition of the analysis: if a limiting pro-
posal is not equal to the agenda setter’s ideal point, then it is a constrained core point
with respect to the agenda setter’s gradient, ∇u0(x

∗), at x∗.8

Theorem 9: Assume each ui is continuously differentiable. For all limit proposals
x∗, if x∗ 6= x̂0, then x∗ is a constrained core point with respect to ∇u0(x

∗).

Although Theorem 9 has strong ramifications for agenda setting power when the
voting rule is non-collegial, this is not the case when some voter is a veto player.
When D is oligarchical, for example, Theorem 4 implies that the unique stationary
bargaining equilibrium is the static equilibrium xs 6= x̂0 for all discount factors,
regardless of the dimensionality of the set of alternatives. Theorem 9 does apply in
this case, and indeed, we argued following the proof of Theorem 4 that the static
equilibrium is a constrained core point with respect to ∇u0(x

s), i.e., x is Pareto
optimal for the voters in H+x∗. This is depicted in Figure 8 for the case n = m = 3,
where there is no move from x∗ on the hyperplane H that is strictly preferred by all
three voters. Thus, the sharp implications drawn in the sequel necessarily concern
non-collegial rules.

8Because we will argue that constrained core points are exceptional, we do not provide a general
analysis of sufficiency, but in the example of Appendix A, we construct a sequence of stationary
bargaining equilibria converging to any alternative x̃ that is a constrained core point with respect
to ∇u0(x̃).
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Next, we establish a final restriction on voter preferences between a limit proposal
and the status quo: q must be weakly socially preferred to x∗, in the sense that there
does not exist a decisive coalition, all the members of which strictly prefer x∗ to q.

Theorem 10: For all limit proposals x∗, if x∗ 6= x̂0, then for every decisive coalition
C ∈ D, there exists i ∈ C such that ui(q) ≥ ui(x

∗).

Of course, Theorem 5 implies that the agenda setter’s equilibrium payoff is at
least equal to her static equilibrium payoff, and this bound holds at a limit proposal
x∗. With Theorems 8–10, we then have an immediate corollary that summarizes
our sufficient conditions for the power of the agenda setter to become extreme in
the limit. The corollary adds an important insight about the necessity of mixing
in equilibrium: 1) equilibrium outcomes converge to the agenda setter’s ideal point,
while 2) Corollary 2 establishes that pure equilibrium proposal strategies must be
degenerate on a unique static equilibrium, so 3) if the agenda setter does not obtain
her ideal point in the static equilibrium, then 4) all stationary bargaining equilibria
rely on non-trivial mixing when voters are sufficiently patient.

Corollary 5: Assume each ui is continuously differentiable. Then the unique limit
proposal is x∗ = x̂0 if there is no alternative x such that all of the following hold:

• for all y ∈ X \ {x} with u0(y) ≥ u0(x) and for all C ∈ D, there exists i ∈ C
such that ui(y) < ui(x),

• x is a constrained core point with respect to ∇u0(x),

• for all C ∈ D, there exists i ∈ C such that ui(q) ≥ ui(x),

• u0(x) ≥ us0,

and in this case, if us0 < u0(x̂
0), then the stationary bargaining equilibrium proposal

strategy πδ is non-degenerate, when δ is close enough to one.

The implications of Corollary 5 for the power of the agenda setter hinge on the
assumption that there is no alternative possessing three properties, the key being
that no x is a constrained core point with respect to ∇u0(x). The scope of these
implications is large if the existence of such an alternative is exceptional. The focus
of the following two sections is to draw restrictive necessary conditions that must be
satisfied at any constrained core point, and to demonstrate that when the voting rule
is non-collegial and the set of alternatives is high dimensional, the constrained core is
almost always empty. Thus, existence of an alternative satisfying the three properties
of Corollary 5 is indeed the exception, and under these general conditions the power
of the agenda setter becomes extreme as voters become patient.
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Before proceeding, we briefly adapt the concept of constrained core to extract
further implications for boundary alternatives x ∈ bd(X). We say the set X of
alternatives is piecewise smooth if it is cut out by a finite number of continuously
differentiable, quasi-concave mappings, f ℓ : ℜd → ℜ, ℓ = 1, . . . , k, so that

X = {x ∈ ℜd | for all ℓ = 1, . . . , k, f ℓ(x) ≥ 0}.

In this case, given boundary alternative x ∈ bd(X), there is a finite set K(x) =
{ℓ | f ℓ(x) = 0} of binding feasibility constraints, and we let L(x) = {y ∈ ℜd |
for all ℓ ∈ K(x), y · ∇f ℓ(x) = 0} be the subspace orthogonal to the gradients of the
binding constraints; in case x ∈ int(X), we let L(x) = ℜd. We say X is regular if
for all x ∈ bd(X), the gradients {∇f ℓ(x) | ℓ ∈ K(x)} of the binding constraints are
linearly independent. Assuming x 6= x̂0, define H(x) = {y ∈ ℜd | y · ∇u0(x) = 0}
be the hyperplane through the origin orthogonal to the agenda setter’s gradient.
Then the tangent core consists of every x ∈ X \ {x̂0} such that there is no direction
r ∈ H(x) ∩ L(x) such that the coalition of voters with positive derivative at x in
direction r, namely

{i ∈ N | r · ∇ui(x) > 0},

is decisive. For interior alternatives, this concept preserves the original definition of
constrained core, but it imposes different restrictions on boundary alternatives.

Theorem 11: Assume X is regular and each ui is continuously differentiable. For
all limit proposals x∗, if x∗ 6= x̂0, then x∗ belongs to the tangent core.

7 Implications of the constrained core condition

In this section, assuming a non-collegial voting rule, we derive restrictions on voter
gradients that must be satisfied at any alternative that is a constrained core point
with respect to the agenda setter’s gradient. We focus initially on the case of majority
rule, where the restrictions are sharpest. First, assuming inclusive majority rule with
n even, we establish a very stringent restriction that generalizes our observations of
Figure 7: if x is a constrained core point with respect to ∇u0(x), then there are at least
two voters whose gradients are collinear with the agenda setter’s at x. The gradient
restriction applies only to interior constrained core points. In many environments of
interest, alternatives on the boundary bd(X) are Pareto inefficient and cannot belong
to the constrained core; and in environments with private goods, where it is Pareto
efficient for the agenda setter to consume the endowment, the only possible boundary
point belonging to the constrained core is the ideal point of the agenda setter. We
provide gradient restrictions for boundary constrained core points at the end of the
section.
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Figure 9: Gradient restriction in two and three dimensions

Theorem 12: Assume n ≥ 2 is even, inclusive majority rule with m = n
2
, and each ui

is continuously differentiable. Let x ∈ int(X) belong to the constrained core. There
exist distinct voters i, j ∈ N and scalars αi, αj ∈ ℜ such that αi∇u0(x) = ∇ui(x)
and αj∇u0(x) = ∇uj(x).

Geometrically, given a constrained core point x and voters i and j from the above
theorem, the contract curves for {0, i} and for {0, j} must intersect at x, as in the top
panels of Figure 7, where i = 1 and j = 2. For generic utilities, these curves will be
one-dimensional manifolds, and when utilities are Euclidean, they are in fact straight
lines. In the latter case, the gradient restriction of Theorem 12 actually implies that
the ideal points of the agenda setter and voters i and j are collinear, a non-generic
situation in two or more dimensions. For non-Euclidean utilities, when the set of
alternatives is two-dimensional, the two contract curves can intersect transversally at
a constrained core point, such as x in the left-hand panel of Figure 9, in which case the
constrained core condition is stable, i.e., small perturbations of utilities will determine
a new constrained core point close to the original. When the set of alternatives is
dimension three or higher, as in the right-hand panel of Figure 9, it is impossible for
the contract curves to intersect transversally; thus, if there is a constrained core point
for one specification of utilities, then small perturbations can (and typically will) lead
the constrained core to be empty. We return to the genericity analysis more formally
in the next section.

Moving to the case of n odd, we can apply Plott’s (1967) theorem, as stated in
Section 2, to the set of alternatives restricted to H+x to conclude that the projected
gradient of some voter equals zero, i.e., their gradient is collinear with the agenda
setter’s, and the projected gradients of the other voters satisfy radial symmetry.

Theorem 13: Assume n ≥ 3 is odd, majority rule with m = n+1
2

, and each ui is
continuously differentiable. Let x ∈ int(X) belong to the constrained core, let H be
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the hyperplane through the origin orthogonal to ∇u0(x), and for each voter i, let
pi = projH∇ui(x) be i’s gradient projected onto H . There exists k ∈ N with pk = 0,
and if there does not exist j ∈ N \ {k} with pj = 0, then for every unit vector r ∈ H ,
we have

∣

∣

∣

∣

{
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∣
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∣
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∣

∣

∣

.

When the number n of voters is odd, there is again at least one voter with pk = 0.
In contrast to Theorem 12, we cannot argue that a second voter also has projected
gradient equal to zero; but if no other voter has a zero projected gradient, then radial
symmetry yields a bijection ψ : N \ {i} → N \ {i} with no fixed points such that for
all i ∈ N \{k}, pi and pψ(i) point in opposite directions. This means that x lies on the
contract curve for {0, k}, and the gradients of 0, i, ψ(i) at x are coplanar. For generic
preferences, the set of alternatives such that the gradients of these three agents are
coplanar will be a manifold, say M , of dimension two, and the contract curve for
{0, k} may intersect the manifold M transversally in three dimensions; see Figure 10.
But in four or more dimensions, the contract curve will typically “miss” the manifold
M , i.e., the intersection is non-transversal. Again, the constrained core is generically
empty when the dimensionality of the set of alternatives is high enough, the critical
dimensionality now being four, rather than three.

Next, we return to n even for the case of exclusive majority rule. In this case, it
is known that if an alternative belongs to the core, then either the gradients of the
voters satisfy radial symmetry, or some voter k has a zero gradient, and for every two
voters, i and j, other than k, there is a fourth such that the gradients of the four voters
are linearly dependent (see, e.g., Lemmas 3–5 of Schofield (1983)).9 The following

9Our statement of the necessary condition is somewhat stronger than Schofield’s, which states

31



theorem applies this observation to the set of alternatives restricted to H+x, stating
the necessary condition in terms of projected gradients.

Theorem 14: Assume n ≥ 4 is even, exclusive majority rule with m = n
2
+ 1, and

each ui is continuously differentiable. Let x ∈ int(X) belong to the constrained core,
let H be the hyperplane through the origin orthogonal to ∇u0(x), and for each voter
i, let pi = projH∇ui(x) be i’s gradient projected onto H . Either (i) there is no j ∈ N
with pj = 0, and for every unit vector r ∈ H , we have

∣

∣

∣

∣

{

i ∈ N |
1

‖pi‖
pi = r

}
∣

∣

∣

∣

=

∣

∣

∣

∣

{

i ∈ N |
1

‖pi‖
pi = −r

}
∣

∣

∣

∣

,

or (ii) there is a voter k such that pk = 0, and for all distinct i, j ∈ N \ {k}, there
exists h ∈ N \ {i, j, k} for which {ph, pi, pj} is linearly dependent.

Finally, for a general voting rule, it is clear that an alternative x belongs to the
core if and only if for every decisive coalition C ∈ D, x is Pareto optimal for C, in
the sense that for all y ∈ X, there exists i ∈ C such that ui(x) ≥ ui(y). Assuming
continuously differentiable utilities, Smale (1973) shows that the zero vector then
belongs to the convex hull of the gradients of the members of C. Applied to the set
of alternatives restricted to H + x, we conclude that zero belongs to the convex hull
of projected gradients of members of every decisive coalition. Define D to consist of
coalition sizes ℓ such that |C| ≥ ℓ implies C is decisive:

D = {ℓ ∈ N | for all C, |C| ≥ ℓ implies C ∈ D},

and then define m = minD. That is, m− 1 is the size of the largest coalition that is
not decisive. In particular, for a quota rule, we have m = m; and if the voting rule
is non-collegial, then we have m ≤ n − 1. Using Smale’s result, Lemma 3 of Banks
(1995) implies that the projected gradients of the voters have rank less than m.

Theorem 15: Let x ∈ int(X) belong to the constrained core, letH be the hyperplane
through the origin orthogonal to ∇u0(x), and for each voter i, let pi = projH∇ui(x)
be i’s gradient projected onto H . For all C ∈ D, we have 0 ∈ conv({pi | i ∈ C}).
Furthermore, the projected gradients {pi | i ∈ N} of the voters have rank strictly less
than m.

The necessary condition stated above is not restrictive if voting is by unanimity
rule, so that D = {N}, for then every alternative that is Pareto optimal in H + x∗

satisfies 0 ∈ conv({pi|i ∈ N}), and the rank of the voters’ projected gradients is
less than n = m. But for quota rules with m < n, it becomes restrictive when the
dimensionality of the set of alternatives is high.

only that there exist some pair i and j of voters for which this holds.
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We can extend the above gradient restrictions to boundary alternatives, now fo-
cusing on tangent core alternatives and assuming the set of alternatives is regular.
The result follows from Theorem 11 and, once again, Lemma 3 of Banks (1995), now
applied to voters’ gradients projected onto the set H ∩ L of directions orthogonal to
the agenda setter’s gradient and to the gradients of binding constraints.

Theorem 16: Assume X is regular. Let x ∈ bd(X) belong to the tangent core, let
H be the hyperplane through the origin orthogonal to ∇u0(x), let L be the linear
subspace orthogonal to the gradients {∇f ℓ(x) | ℓ ∈ K(x)} of binding constraints,
and for each voter i, let pi = projH∩L∇ui(x) be i’s gradient projected onto the linear
subspace H ∩ L. For all C ∈ D, we have 0 ∈ conv({pi | i ∈ C}). Furthermore, the
projected gradients {pi | i ∈ N} of the voters have rank strictly less than m.

8 Generic emptiness of the constrained core

In this section, we formalize the discussion above by showing that when the set of
alternatives is of high dimension, the constrained core is empty for generic specifica-
tions of preferences. Given any set Z ⊆ ℜd, we say a mapping f : Z → ℜn+1 is twice
continuously differentiable if it can be extended to a twice continuously differentiable
mapping on an open set containing Z, and we denote by C2(Z,ℜn+1) the set of all
such mappings. Such a mapping f = (f0, . . . , fn) consists of n + 1 components. Let
d1f : Z → ℜ(n+1)d be the mapping of first derivatives, i.e., if we view the gradient
∇fi(x) as a row vector, then

d1f(x) =







∇f0(x)
...

∇fn(x)







is the n× d matrix of gradients. In the remainder of the section, we assume without
loss of generality that X has non-empty interior.

We begin the analysis by considering the status of constrained core points that
are interior to the set of alternatives, and since we are concerned only with properties
of stage utilities on interior alternatives, we define Uint(X) = C2(int(X),ℜn+1) as the
space of all twice continuously differentiable mappings u : int(X) → ℜn+1, with the
component ui representing the preferences of agent i = 0, 1, . . . , n; thus, we term such
a mapping u a vector utility function. We endow Uint(X) with the Whitney (or strong)
topology (Hirsch, 1976, p.34). To capture the subspace of mappings satisfying the
concavity assumptions of the bargaining model, let “Uint(X) denote the mappings u such
that the Hessian of each component, denoted d2ui, is everywhere negative definite:

“Uint(X) =

{

u ∈ Uint(X) |
for all i = 0, . . . , n and all x ∈ int(X),

d2ui(x) is negative definite

}

.
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The set “Uint(X) is open in Uint(X) with the Whitney topology, and we give it the relative

Whitney topology, making “Uint(X) a Baire space (Hirsch, 1976, Theorem 4.4). In this
setting, our notion of genericity is that of an open, dense set, but because the Whitney
topology is extremely fine, openness is a correspondingly weak property.

For this reason, we also consider vector utility functions defined on the full set
of alternatives. Let UX = C2(X,ℜn+1) be the space of such vector utility functions,
endowed with the topology of C2-uniform convergence.10 Again, we focus on the set
of mappings that are differentiably concave, denoted

“UX =

{

u ∈ UX |
for all i = 0, . . . , n and all x ∈ X,

d2ui(x) is negative definite

}

.

We give “UX the relative topology inherited from UX , making “UX a complete metrizable
space, and thus a Baire space. Because X is compact, the set “UX is an open subset
of UX in the C2-uniform convergence topology.11 We use Bǫ(u) to denote the open
ball of radius ǫ around u for a compatible metric; for the open ball around x in
the Euclidean metric, we write Bǫ(x). A subset of “UX is residual if it contains the
countable intersection of sets that are open and dense; because “U is Baire, it follows
that a residual subset is also dense itself. This formalizes our notion of genericity for
vector utilities defined on the full set of alternatives.

For u belonging to “Uint(X) or “UX , define the relation x ≻u y over alternatives
to hold if and only if there is a coalition C ∈ D such that for all i ∈ C, we have
ui(x) > ui(y). Given u ∈ “Uint(X), let CCint(X)(u) denote the interior constrained core
points determined by stage utilities ui, i = 0, 1, . . . , n. That is, CCint(X)(u) consists
of x ∈ int(X) such that x does not maximize u0 over int(X), and letting H be the
hyperplane through the origin orthogonal to ∇u0(x), there is no y ∈ (int(X))∩(H+x)
such that y ≻u x. Given u ∈ “UX , let CCX(u) denote the constrained core points, i.e.,
CCX(u) consists of x ∈ X such that x does not maximize u0 over X, and there is no
y ∈ X ∩ (H + x) such that y ≻u x.

Our first theorem focuses on the generic impossibility of constrained core points
belonging to the interior of the set of alternatives. We show that for a dimensionality
above a critical level, which depends on the voting rule, the interior constrained core
is generically empty. Of note, the theorem imposes no differentiable structure on the
set of alternatives. The first part of the genericity result holds on an open and dense
(not merely residual) set of vector utility functions in the Whitney topology, while the

10Because X is compact, the Whitney topology and the topology of C2-uniform convergence on
compacta (or weak topology) coincide on C2(X,ℜn). See Mas-Colell (1985), Section K for further
details.

11Indeed, let {uk} be a sequence in U \ “U with limit u. Then for all k, there exist ik and xk such
that d2uik(x

k) is not negative definite, i.e, there is a unit vector tk such that tkd2uik(x
k)tk ≥ 0.

Going to convergence subsequences, with limits say i, x, and t, continuity of the Hessian implies
td2ui(x)t ≥ 0, and thus u ∈ U \ “U .
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second part of the result employs a weaker notion of genericity in terms of a residual
set, but uses the more familiar topology of C2-uniform convergence.

Theorem 17: Assume one of the following holds:

(i) n ≥ 2 is even, inclusive majority rule with m = n
2
, and d ≥ 3,

(ii) n ≥ 3 is odd, majority rule with m = n+1
2

, and d ≥ 4,

(iii) n ≥ 4 is even, exclusive majority rule with m = n
2
+ 1, and d ≥ 5,

(iv) D non-collegial and d > m+ m

n−m
.

The set of vector utility functions defined on the interior of X for which there is no
constrained core point, i.e.,

“U0
int(X) = {u ∈ “Uint(X) | CCint(X)(u) = ∅},

contains an open and dense subset of “Uint(X) with the relative Whitney topology;
and the set of vector utility functions defined on X for which there is no interior
constrained core point, i.e.,

“U0
X = {u ∈ “UX | CCX(u) ∩ (int(X)) = ∅},

is residual in “UX with the relative topology of C2-uniform convergence.

In some environments, the constrained core must belong to the interior of the
set of alternatives; if, for example, the environment is spatial and the voters’ ideal
points belong to the interior of the set of alternatives, then the constrained core
always belongs to int(X). In general, however, we cannot rule out the possibility that
constrained core points exist in the boundary of X. To draw further implications
for agenda setting power, we switch focus to the tangent core and show that we can
rule out tangent core points in parts of the boundary of X that are not too “thin.”
Assuming X is regular, let L ⊆ {1, 2, . . . , k} represent a subset of binding constraints,
and define the L-face of X, denoted F (L), by

F (L) = {x ∈ X | for all ℓ = 1, . . . , k, f ℓ(x) = 0 iff ℓ ∈ L}.

By regularity, the face F (L) is a manifold of dimension d − |L|. Note that we allow
L = ∅, in which case F (∅) is the interior of X. Let d∗ denote the critical level of
dimensionality identified in Theorem 17:

d∗ =















2 if n ≥ 2 even, m = n
2
,

3 if n ≥ 3 odd, m = n+1
2

,
4 if n ≥ 4 even, m = n

2
+ 1,

m+ d
n−m+1

else, D non-collegial.
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For u ∈ “UX , let TCX(u) be the set of tangent core alternatives at u. Our final
result establishes that for generic vector utility functions, tangent core alternatives
are possible only in faces of low dimension relative to the set of alternatives. In many
environments, this conclusion is enough to preclude any tangent core alternatives,
so that equilibrium outcomes of bargaining must converge to the agenda setter’s
ideal point. More generally, our analysis implies that if agenda setting power does
not become extreme, then equilibrium outcomes must converge to lower dimensional
faces.

Theorem 18: Assume X is regular. Let L ⊆ K satisfy |L| < d − d∗. The set of
utility vectors u ∈ “UX for which there is no tangent core point on the face F (L), i.e.,

“UL
X = {u ∈ “UX | TCX(u) ∩ F (L) = ∅},

is residual in “UX with the relative topology of C2-uniform convergence.

To understand the applicability of Theorem 18, assume for simplicity that X is
cut out by a single constraint, so that X = {x ∈ ℜd | f 1(x) ≥ 0}, and the boundary
of X is the level set of the constraint function f 1 at zero. The interior alternatives
are such that the set of binding constraints is empty, i.e., L = ∅, and Theorem 18
implies that generically, there is no interior tangent core alternative when 0 < d− d∗,
consistent with Theorem 17. Furthermore, the boundary alternatives are such that
the constraint is binding, i.e., L = {1}, and Theorem 18 implies that generically,
there is no boundary tangent core alternative when 1 < d − d∗. Thus, the tangent
core is generically empty when the dimensionality of the set of alternatives exceeds
d∗ + 1, incrementing the critical dimensionality from Theorem 17 by one. In general,
we obtain generic emptiness of the tangent core when the dimensionality of the set of
alternatives exceeds d∗ plus the total number of constraint functions describing X.

A Technical material

A.1 Supporting lemmas

We begin by reformulating LSWP in cardinal terms. For each i ∈ N ∪ {0} and each
utility vector ũ ∈ ℜn, let

R̃i(ũ) = {x ∈ X | ui(x) ≥ ũi}

P̃i(ũ) = {x ∈ X | ui(x) > ũi} .

Then for each C ⊆ N ∪ {0}, define the upper contour sets at utility vector ũ by

R̃C(ũ) =
⋂

i∈C

R̃i(ũ) and P̃C(ũ) =
⋂

i∈C

P̃i(ũ).
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We say that LSWP* holds if for all C ⊆ N ∪{0} and all ũ ∈ ℜn, |R̃C(ũ)| > 1 implies
R̃C(ũ) ⊆ clos(P̃C(ũ)). It is easy to see that LSWP* implies LSWP by setting ũ =
(u0(x), u1(x), . . . , un(x)). In fact, the conditions are equivalent under our maintained
assumption that utility functions are continuous.

Lemma 1: LSWP holds if and only if LSWP* holds.

Proof: We prove the necessity direction. Let C ⊆ N ∪{0} and ũ ∈ ℜn be such that
|R̃C(ũ)| > 1. Given any x ∈ R̃C(ũ), choose y ∈ R̃C(ũ)\ {x}. Partition C into two
groups:

I = {i ∈ C | ui(x) = ũi}

J = {j ∈ C | uj(x) > ũj} .

For each i ∈ I, we have ui(y) ≥ ũi = ui(x). Then |RI(x)| ≥ | {x, y} | > 1, and LSWP
implies that x ∈ clos(PI(x)) = clos(P̃I(ũ)). For each j ∈ J , continuity implies that if
an alternative x′ is close enough to x, then uj(x

′) > ũj. Thus, x ∈ clos(P̃C(ũ)), and
since x is an arbitrary element of R̃C(ũ), we conclude that R̃C(ũ) ⊆ clos(P̃C(ũ)). ✷

Next, we show that at a fixed point of the correspondence B, the agenda setter’s
payoff is at least equal to her static equilibrium payoff, and therefore exceeds the
stage utility from the status quo.

Lemma 2: For all π ∈ ∆(X), if π is a fixed point of the correspondence B, then for
all x ∈ supp(π), we have u0(x) ≥ us0 > u0(q).

Proof: Let π be a fixed point of B, let xs be any static equilibrium, and suppose
toward a contradiction that for all x ∈ supp(π), we have u0(x) < u0(x

s). Let x =
∫

zπ(dz) be the mean of π, and define x̃ = (1 − δ)xs + δx. Given any x ∈ supp(π),
concavity of u0 implies

u0(x̃) ≥ (1− δ)u0(x
s) + δu0(x) > u0(x).

Let Cs ∈ D be such that xs = xC
s

, and note that for all i ∈ Cs, concavity of ui and
ui(x

s) ≥ ui(q) implies

ui(x̃) ≥ (1− δ)ui(x
s) + δvi(π)

≥ (1− δ)ui(q) + δvi(π),

which implies x̃ ∈ ACs(π) ⊆ A(π), contradicting sequential rationality of π. Thus,
we have u0(x) ≥ us0, and the inequality us0 > u0(q) follows from Proposition 1. ✷

Finally, we verify the connection between fixed points of the correspondence B
and the no-delay stationary equilibrium proposal strategies.

Lemma 3: For all π ∈ ∆(X), there exist acceptance strategies α such (π, α) is a
no-delay stationary bargaining equilibrium if and only if π is a fixed point of the
correspondence B.
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Proof: First, assume π is a no-delay equilibrium, and suppose toward a contradiction
that it is not a fixed point of B, i.e., there exist y ∈ A(π) and x ∈ supp(π) such that
u0(x) < u0(y). Let x =

∫

zπ(dz) be the mean of π, and define x̃ = (1 − δ)q + δx.
Define the utility vector ũ such that for all i ∈ N ∪ {0},

ũi = (1− δ)ui(q) + δvi(σ).

We consider two cases.

Case 1: y 6= x̃. Let C ∈ D be such that y ∈ AC(π). We then have y ∈ R̃C(ũ)
by construction, and by concavity of stage utilities, we also have x̃ ∈ R̃C(ũ). Then
|R̃C(ũ)| ≥ |{x̃, y}| > 1. Using Lemma 1, LSWP* implies that R̃C(ũ) ⊆ clos(P̃C(ũ)).
Then there exists x′ ∈ X arbitrarily close to y such that for all i ∈ C, we have

ui(x
′) > ũi = (1− δ)ui(q) + vi(π),

and by continuity, we can choose x′ close enough to y such that u0(x
′) > u0(x). By

stage dominance, we have αi(x
′) = 1 for all i ∈ C, contradicting sequential rationality.

Case 2: y = x̃. Since π is a no-delay equilibrium, there exists C ′ ∈ D such that
x ∈ AC′(π). Again, by concavity, we have x, y ∈ R̃C′(ũ), and since u0(y) > u0(x),
this implies |R̃C′(ũ)| > 1. Then LSWP* implies that R̃C′(ũ) ⊆ clos(P̃C′(ũ)). Then
there exists x′ ∈ X arbitrarily close to y such that for all i ∈ C ′, we have

ui(x
′) > ũi = (1− δ)ui(q) + vi(π),

and by continuity, we can choose x′ close enough to y such that u0(x
′) > u0(x). By

stage dominance, we have αi(x
′) = 1 for all i ∈ C, contradicting sequential rationality

of π.

Second, assume π is a fixed point of B. Then we can specify acceptance strategies
αi such that for all x ∈ X,

αi(x) =

{

1 if ui(x) ≥ (1− δ)ui(q) + δvi(π),
0 else,

automatically satisfying stage dominance. Since π ∈ B(π), it follows that π is an
optimal proposal strategy if the agenda setter’s stage utility from x ∈ supp(π) weakly
exceeds the expected payoff from proposing an alternative that is rejected, i.e.,

u0(x) ≥ (1− δ0)u0(q) + δ0v0(π).

Using u0(x) = v0(π), this holds if and only if u0(x) ≥ u0(q), which follows from
Lemma 2. ✷
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A.2 Proofs of propositions

Proof of Proposition 1: Assume (x, α) is a no-delay static equilibrium. Then
α(x) = 1, and by stage dominance, we have x ∈ As. Suppose toward a contradiction
that there exists y ∈ As such that u0(y) > u0(x), so there is some C ∈ D with y ∈ AsC .
Then for all i ∈ C, we have ui(y) ≥ ui(q), so that y ∈ RC(q). By LSWP, there exists
z ∈ PC(q) arbitrarily close to y, and thus α(z) = 1. Choosing z close enough to y
that u0(z) > u0(x), the agenda setter can increase her payoff from x by proposing
z, contradicting sequential rationality. Thus, x maximizes the agenda setter’s stage
utility over As. Now consider any alternative x that maximizes the agenda setter’s
stage utility over As. Defining acceptance strategies as αi(y) = 1 if y ∈ Asi and
αi(y) = 0 otherwise, the profile (x, α) is a no-delay static equilibrium.

Existence of a solution to the coalitional problem follows from compactness of
AsC and continuity of u0. To prove uniqueness, suppose toward a contradiction that
there exist distinct x, y ∈ AsC that maximize the agenda setter’s stage utility. In
particular, u0(x) = u0(y), and thus y ∈ RC∪{0}(x). By LSWP, we can approximate
y by alternatives z ∈ PC∪{0}(x), but then we have z ∈ AsC and u0(z) > u0(x), a
contradiction. If xs is a no-delay static equilibrium, then it belongs to As, so there
is some C ∈ D such that xs ∈ AsC , and by the first part of the proposition, it follows
that xs = xC . The opposite direction also follows directly from the first part of the
proposition.

The inequality us0 ≥ u0(q) holds because q ∈ As. If there is a no-delay static
equilibrium xs 6= q, then there is a coalition C ∈ D such that xs ∈ AsC , and thus
xs ∈ RC∪{0}(q). Then LSWP yields y ∈ PC∪{0}(q), and stage dominance implies
α(y) = 1. It follows that the agenda setter’s equilibrium payoff is at least equal to
the stage utility from y, i.e., us0 ≥ u0(y) > u0(q).

For the last part, when d = 1 or D is oligarchic, we claim that As is convex. In
the first case, Lemma 1 in Cho and Duggan (2003) establishes that regardless of the
discount factor, the social acceptance set A (π) is a nonempty compact interval. When
δ = 0, this result implies that As is convex. In the second case, letting C =

⋂

D, we
have As = AsC , which is convex. This establishes the claim, and it follows that u0 has
a unique maximizer over As, and thus, by the first part of the proposition, this is the
unique no-delay static equilibrium. ✷

Proof of Proposition 2: Existence follows from the above discussion. Now,
consider any no-delay stationary bargaining equilibrium σ = (π, α). Let x̃ = (1 −
δ)q +

∫

zπ(dz), and note that by concavity, we have

ui(x̃) ≥ (1− δ)ui(q) + δvi(π),

and thus αi(x̃) = 1, for every voter. Assume that voters are indexed in order of their
ideal points, and that x̃ < x̂0. For each voter i, let yir denote the alternative weakly
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greater than x̃ such that ui(y
i
r) = (1 − δ)ui(q) + δvi(π), if such an alternative exists;

otherwise, let yir = x. Similarly, let yiℓ denote the alternative weakly less than x̃ such
that ui(y

i
ℓ) is equal to the voter’s reservation payoff. By Proposition 3 of Duggan

(2014), voter preferences over lotteries are order restricted, and it follows that for any
x, we have ui(x) ≥ (1 − δ)ui(q) + δvi(π) if and only if ymℓ ≤ x ≤ yn−m+1

r . Thus, the
set of alternatives that pass if proposed is an interval containing (ymℓ , y

n−m+1
r ) and

contained in [ymℓ , y
n−m+1
r ]. In particular, this is a convex set, and thus the agenda

setter has a unique optimal proposal in equilibrium, so that π is degenerate on some
alternative x.

For each voter i, we then have vi(π) = ui(x), so that ui(x) weakly exceeds voter
i’s reservation value if and only if ui(x) ≥ ui(q). Since the equilibrium is no-delay, x
passes with probability one, and thus the coalition of voters i such that ui(x) ≥ ui(q)
is decisive, i.e., x ∈ As. If x = x̂0, then it is the static equilibrium. Otherwise, if
x 6= x̂0, then we can assume without loss of generality that yn−m+1 < x̂0, so that
x = yn−m+1

r < x̂0. Since x ∈ As, we conclude that u0(x) ≤ u0(x
s), where xs is the

unique no-delay static equilibrium from Proposition 1, and thus x ≤ xs < x̂0. Now,
suppose toward a contradiction that x < xs, define x′ = (1− δ)xs+ δx, and note that
u0(x

′) > u0(x). Let C ∈ D be a decisive coalition such that xs ∈ AsC , and note that
for all i ∈ C, strict concavity of ui implies

ui(x
′) > (1− δ)ui(x

s) + δui(x).

Then for all i ∈ C, from ui(x
s) ≥ ui(q), we conclude that

ui(x
′) > (1− δ)ui(q) + δui(x),

but then every member of C accepts x′ if proposed, so that α(x′) = 1, contradicting
sequential rationality of π. Therefore, x = xs, as required. ✷

Proof of Proposition 3: In equilibrium, a voter i accepts a proposal x if and
only if it meets or exceeds the reservation value ri(π) = (1 − δ)ui(q) + δvi(π). Let
ξi(π) = u−1

i (ri(π)) be the present value of rejection for voter i, i.e., the amount of the
dollar needed to buy i’s vote. Going to a subsequence if needed, assume that ξi(π) →
xi for each voter i, and assume without loss of generality that ξ1(π) ≤ · · · ≤ ξn(π).
This implies x1 ≤ · · · ≤ xn. Suppose toward a contradiction that

max
i=1,...,n

xi = xn > 0.

For each voter i with xi = xn, let ρi(π) denote the probability that the agenda setter
makes a proposal that voter i accepts. Then vi(π) = ρi(π)ri(π). As δ → 1, we have

lim vi(π) = lim ri(π) = lim ui(ξi(π)) = ui(xi) > 0.

Therefore, we have lim vi(π) = (lim ρi(π))(lim vi(π)) > 0, and this implies ρi(π) → 1.
Thus, for δ close to one, there is positive probability that the agenda setter proposes
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to all of the most expensive voters, and these voters have positive present value of
rejection. Let x ∈ supp(π) be such that for each voter i with xi = xn, we have
xi ≥ ξi(π) > 0. If every voter accepts x, i.e., xj ≥ ξj(π) for all j, then the agenda
setter can deviate to x̃ by retaining the amount xn > 0 of the dollar offered to voter
n; since m < n, the deviation is still accepted. Otherwise, we have xj < ξj(π) for
some voter j with xj < xn. For δ close to one, the agenda setter can deviate to x̃ by
transferring ξj(π) − xj units of the dollar from voter n to voter j and retaining the
residual, xn− ξj(π), which is positive by xn− ξj(π) ≥ ξn(π)− ξj(π) > 0. We conclude
that xn = 0, which implies that vi(π) → 0 for every voter i, and thus π → x̂0. ✷

Proof of Proposition 4: In an equilibrium of the form described in the proposi-
tion, the continuation value of voter 2 is

v2(b, c) = −
1

2
[(a+ b)2 + c2]−

1

2
[(a− b)2 + c2]

= a2 + b2 + c2,

and voter 1’s is the same. In equilibrium, the proposal (b, c) gives voter 2 exactly her
reservation value, i.e.,

u2(b, c) = (1− δ)u2(q) + δv2(b, c). (2)

Moreover, sequential rationality of the proposal (b, c) implies that it lies on the con-
tract curve for the agenda setter and voter 2, so there exists β ∈ [0, 1] such that

(b, c) = β(0, 1) + (1− β)(a, 0). (3)

Then (2) and (3) give us three equations in three unknowns, b, c, and β. Clearly, the
optimality equations immediately imply that b = (1 − β)a and c = β, and thus the
problem reduces to solving

−(βa)2 − β2 = (1− δ)u2(q) + δ(a2 + [(1− β)a]2 + β2).

After manipulating, the quadratic formula yields the solution for β in (1), which lies
strictly between zero and one. Thus, the unique proposal to voter 2 in a symmetric
stationary bargaining equilibrium is x2 = β(0, 1) + (1 − β)(a, 0), and the unique
proposal to voter 1 is the symmetric alternative x1 = β(0, 1)+ (1− β)(−a, 0), with β
given above. Finally, L’Hopital’s rule implies that β → 1 as δ → 1, as required. ✷

A.3 Proofs of theorems

Proof of Theorem 3: Let σ = (π, α) be a stationary bargaining equilibrium that
is not gridlocked, and suppose toward a contradiction that π is not no-delay, so there
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exists y ∈ supp(π) such that α(y) < 1. The explicit formula for voter i’s continuation
value, given profile σ, is straightforward to derive: it is

vi(σ) =

∫

[α(z)ui(z) + (1− α(z))(1− δ)ui(q)]π(dz)

1− δ
∫

(1− α(z))π(dz)
, (4)

and similarly for the agenda setter. Since the discount factor δ is common across
voters, we may write each vi(σ) as the expectation of ui with respect to a single prob-
ability measure, say ν, that is independent of i. Specifically, for any Borel measurable
Y , we specify that

ν(Y ) =

∫

Y
[α(z) + IY (q)(1− δ)(1− α(z))]π(dz)

1− δ
∫

(1− α(z))π(dz)
,

where IY (·) is the indicator function for Y . Letting µ denote the unit mass on q, now
define the probability measure γ = (1−δ)µ+δν, so that the expectation

∫

ui(z)γ(dz)
is just (1 − δ)ui(q) + δvi(σ). Following Banks and Duggan (2006), we refer to γ as
the continuation distribution corresponding to σ. Letting

x(γ) =

∫

zγ(dz)

denote the mean of the continuation distribution, concavity of ui implies that

ui(x(γ)) ≥

∫

ui(z)γ(dz) = (1− δ)ui(q) + δvi(σ)

for every voter i.

Since σ is not gridlocked, it follows that π is not degenerate on q, and thus there
exists x ∈ supp(π) that attains the agenda setter’s equilibrium payoff and such that
α(x) < 1. The agenda setter’s expected payoff from proposing x is equal to her
continuation value, i.e.,

v0(σ) = α(x)u0(x) + (1− α(x))[(1− δ0)u0(q) + δ0v0(σ)], (5)

and thus we observe that v0(σ) is a convex combination of u0(x) and u0(q). We
claim that the equilibrium payoff of the agenda setter equals the stage utility from
the status quo: v0(σ) = u0(q). This follows directly from (5) if x is rejected with
probability one, i.e., α(x) = 0. To prove the claim, we consider the case α(x) > 0.
By (5), then v0(σ) is actually a strict convex combination of u0(x) and u0(q). We
have already argued that v0(σ) ≥ u0(q), and we conclude that u0(q) ≤ v0(σ) ≤ u0(x).
We claim that, in fact, the opposite inequalities also hold. The argument proceeds in
two cases. In the remainder of the proof, we define the utility vector ũ so that for all
i ∈ N ∪ {0},

ũi = (1− δ)ui(q) + δvi(σ).
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By the above remarks, concavity implies x(γ) ∈ R̃N (ũ).

Case 1: x 6= x(γ). Note that since α(x) > 0, there is a decisive coalition Cx ∈ D
that accepts x with positive probability. Thus, we have x ∈ R̃Cx(ũ), which implies
|R̃Cx(ũ)| ≥ |{x, x(γ)}| > 1. Using Lemma 1, LSWP* yields an alternative x′ ∈ P̃Cx(ũ)
arbitrarily close to x, and stage dominance implies that for all i ∈ Cx, we have
αi(x

′) = 1. Thus, the agenda setter’s expected payoff from proposing x′ is u0(x
′).

Since x′ may be chosen arbitrarily close to x, sequential rationality of π implies that
the agenda setter’s continuation value is at least equal to the stage utility from x,
i.e., v0(σ) ≥ u0(x). Since v0(σ) is a strict convex combination of u0(q) and u0(x), we
conclude that u0(q) = v0(σ) = u0(x).

Case 2: x = x(γ). Since σ is not gridlocked, and in particular γ is not degenerate,
there is an alternative y 6= x(γ) such that α(y) > 0. Then there is a decisive coalition
Cy ∈ D that accepts y with positive probability. Using concavity, we then have
x, y ∈ R̃Cy(ũ), so that |R̃Cy(ũ)| > 1. By Lemma 1, LSWP* yields an alternative
y′ ∈ P̃Cy(ũ) arbitrarily close to x, and stage dominance implies that for all i ∈ Cy, we
have αi(y

′) = 1. Since y′ may be chosen arbitrarily close to x, sequential rationality
implies v0(σ) ≥ u0(x). Once again, we conclude that u0(q) = v0(σ) = u0(x).

The above arguments establish the claim that v0(σ) = u0(q). Finally, since σ is not
gridlocked, there exists z ∈ supp(π) that attains the agenda setter’s equilibrium payoff
such that z 6= x(γ) and α(z) > 0. Since z attains the agenda setter’s equilibrium
payoff, we have u0(z) = u0(q) = ũ0. In addition, the above claim and concavity of u0
imply that

u0(x(γ)) ≥ (1− δ0)u0(q) + δ0v0(σ)

= (1− δ)u0(q) + δv0(σ)

= ũ0.

Since α(z) > 0, there is a decisive coalition Cz ∈ D that accepts z with positive
probability. We then have z, x(γ) ∈ R̃Cz∪{0}(ũ), so that |R̃Cz∪{0}(ũ)| > 1. Then

LSWP* yields an alternative z′ ∈ P̃Cz∪{0}(ũ). In particular, stage dominance implies
that for all i ∈ Cz, we have αi(z

′) = 1, and u0(z
′) > ũ0 = u0(z), contradicting

sequential rationality. ✷

Proof of Theorem 4: Assume d = 1 or D is oligarchical, and let π be a no-delay
stationary bargaining equilibrium. Existence follows from Theorem 1. If X ⊆ ℜ,
then by Lemma 1 in Cho and Duggan (2003), the social acceptance set A(π) is an
interval. If D is oligarchic, letting C =

⋂

D, then the social acceptance set is just
AC(π), which is again convex. Then concavity and LSWP imply that the agenda
setter has a unique maximizer over AC(π), so in both cases π is degenerate on some
alternative y ∈ X. We claim that y is a candidate static equilibrium. Indeed, let
C ∈ D be the coalition of voters who accept y in equilibrium, so that for all i ∈ C,

ui (y) ≥ (1− δ)ui(q) + δvi(π) = (1− δ)ui(q) + δui(y),
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which implies ui (y) ≥ ui (q). Thus, y ∈ AsC ⊆ As, which implies u0(y) ≤ us0. By
Lemma 2, we have u0(y) = us0, and we conclude that y is a static equilibrium. ✷

Proof of Theorem 6: Assume δ > 0, let π be a no-delay stationary bargaining
equilibrium, and let xs be a static equilibrium such that π is not degenerate on xs.
Suppose toward a contradiction that the agenda setter’s payoff from π is no greater
than her static equilibrium payoff, i.e., for all x ∈ supp(π), we have u0(x) ≤ us0. Let
Cs ∈ D be such that for all i ∈ Cs, we have ui(x

s) ≥ ui(q). Let x =
∫

zπ(z) be the
mean of π, and define x̃ = (1− δ) xs + δx. Note that for all i ∈ Cs, concavity of ui
and ui(x

s) ≥ ui(q) imply

ui(x̃) ≥ (1− δ)ui(x
s) + δui(x) (6)

≥ (1− δ)ui(x
s) + δvi(π) (7)

≥ (1− δ)ui(q) + δvi(π), (8)

and therefore x̃ ∈ ACs(π) ⊆ A(π). Moreover, for all x ∈ supp(π), we have

u0(x) ≥ u0(x̃) (9)

≥ (1− δ)u0(x
s) + δu0(x) (10)

≥ (1− δ)u0(x
s) + δu0(x) (11)

≥ u0(x), (12)

where the first inequality follows from the fact that x maximizes the agenda setter’s
stage utility over the social acceptance set; the second follows from concavity; the
third follows from the fact that the agenda setter is indifferent across alternatives in
the support of π; and the fourth follows from us0 ≥ u0(x).

We deduce a contradiction in three cases. First, assume (i) holds. We consider
two subcases. First, assume π is non-degenerate. By inequalities (9)–(12), we have
u0(x) = u0(x) for all x ∈ supp(π), contradicting strict concavity of u0. Second, assume
π is degenerate. Then π is degenerate on x, and we have x 6= xs by assumption. But
(9)–(12) imply u0(x̃) = (1− δ)u0(x

s) + δu0(x), and with δ > 0, this again contradicts
strict concavity of u0.

Next, assume (ii) holds. Note that x̃ 6= x̂0, for otherwise, we would have x̂0 = x̃ ∈
A(π), and sequential rationality of π would imply that π is degenerate on x̂0. Then
us0 ≥ u0(x̂

0) would imply that xs = x̂0, contradicting the assumption that π is not
degenerate on xs. Now, using (6)–(8), we can partition Cs into two groups:

I = {i ∈ Cs | ui(x̃) = (1− δ)ui(q) + δvi(π)}

J = {i ∈ Cs | ui(x̃) > (1− δ)ui(q) + δvi(π)}.
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For all i ∈ I, with (6)–(8), we in fact have

ui(x̃) = (1− δ)ui(x
s) + δui(x)

= (1− δ)ui(x
s) + δvi(π)

= (1− δ)ui(q) + δvi(π).

In particular, since δ > 0, we have ui(x) = vi(π). Since ui is strictly concave, this
implies that π is degenerate, in which case it is degenerate on x 6= xs. But with
δ > 0, the equality ui(x̃) = (1 − δ)ui(x

s) + δui(x) again contradicts strict concavity.
We conclude that I = ∅, and Cs = J . Defining z = (1 − α)x̃ + αx̂0, we can choose
α > 0 small enough that for all i ∈ Cs, we have ui(z) > (1− δ)ui(q) + δvi(π). Thus,
z ∈ A(π). But then for all x ∈ supp(π), concavity of u0, x̃ 6= x̂0, and (9)–(12) imply

u0(z) > u0(x̃) = u0(x),

contradicting sequential rationality of π.

Last, assume (iii) holds. For every voter i ∈ N , let ui = minz∈X ui(z) be the
lowest possible payoff for voter i. Note that π is not degenerate on x̃, for otherwise,
we would have x̃ = x = xs, a contradiction. Thus, we can choose x ∈ supp(π)\{x̃},
and since π is no-delay, the coalition Cx = {i ∈ N | ui(x) ≥ (1 − δ)ui(q) + δvi(π)}
is decisive. Next, we claim that for every i ∈ Cx\Cs, we have ui(x̃) = ui(x) = ui.
Indeed, suppose toward a contradiction that for some i ∈ Cx \Cs, we have ui(x̃) > ui.
Then minimal transferability yields x′ ∈ X such that u0(x

′) > u0(x̃) and for all
j ∈ N \ {i}, we have uj(x

′) > uj(x̃). By (6)–(8), we have x̃ ∈ ACs(π), and by (9)–
(12), we have u0(x̃) = u0(x). We conclude that u0(x

′) > u0(x) and for all j ∈ Cs,
uj(x

′) > (1 − δ)uj(q) + δvj(π). By stage dominance, it follows that αj(x
′) = 1

for all j ∈ Cs, but then the agenda setter can increase her payoff by proposing x′,
contradicting sequential rationality of π. Thus, ui(x̃) = ui. Now, since δ > 0 and

ui = ui(x̃) ≥ (1− δ)ui(x
s) + δvi(π),

it follows that vi(π) = ui, and in particular ui(x) = ui. This establishes the claim.
Next, we claim that x̃ ∈ ACx(π). To show this, consider any i ∈ Cx. If i /∈ Cs, then

ui(x̃) = ui = ui(x) ≥ (1− δ)ui(q) + δvi(π).

If i ∈ Cs, then (6)–(8) imply x̃ ∈ Ai(π), as claimed. Define the utility vector ũ such
that ũ0 = u0(x̃) = u0(x) and for all i ∈ N , we have

ũi = (1− δ)ui(q) + δvi(π).

We have shown that |R̃Cx∪{0}(ũ)| ≥ |{x, x̃}| > 1, and using Lemma 1, LSWP* yields

x′′ ∈ P̃Cx∪{0}(ũ). Thus, u0(x
′′) > u0(x) and x ∈ ACx(π), contradicting sequential

rationality of π. ✷
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Proof of Theorem 7: By Corollaries 1 and 2, it suffices to show that there exists
δ ∈ [0, 1] such that for every δ ≤ δ, there is a pure strategy equilibrium, and for every
δ > δ, there is no pure strategy equilibrium. By Corollary 3, if there are multiple
static equilibria, then δ = 0 serves as the cutoff. Then it remains to consider the case
in which there is a unique static equilibrium xs. Let πs ∈ ∆(X) be the unit mass
on xs. We write πs ∈ Bδ(πs) if πs is a stationary bargaining equilibrium proposal
strategy for δ, and πs /∈ Bδ(πs) if not. Let Cs ∈ D be such that for all i ∈ Cs, we
have ui(x

s) ≥ ui(q). Then for all i ∈ Cs and all δ > 0, we have

ui(x
s) ≥ (1− δ)ui(q) + δui(x

s),

and thus xs ∈ Aδ(πs). Therefore, πs /∈ Bδ(πs) if and only if there exists y ∈ Aδ(πs)
such that u0(y) > us0.

We claim that if πs /∈ Bδ(πs), then for every δ′ > δ, we have πs /∈ Bδ′(πs). Indeed,
let y ∈ X and Cy ∈ D be such that for all i ∈ Cy,

ui(y) ≥ (1− δ)ui(q) + δvi(π
s),

and

u0(y) > us0.

For every δ′ > δ, let

x̃δ
′

=

(

1− δ′

1− δ

)

y +

(

1−
1− δ′

1− δ

)

xs.

Note that δ′ ∈ (δ, 1) implies that 1−δ′

1−δ
∈ (0, 1). By concavity, for all i ∈ Cy,

ui(x̃
δ′) ≥

(

1− δ′

1− δ

)

ui(y) +

(

1−
1− δ′

1− δ

)

ui(x
s)

≥

(

1− δ′

1− δ

)

[(1− δ)ui(q) + δvi(π
s)] +

(

1−
1− δ′

1− δ

)

ui(x
s)

= (1− δ′)ui(q) + δ′vi(π
s),

and

u0(x̃
δ′) ≥

(

1− δ′

1− δ

)

u0(y) +

(

1−
1− δ′

1− δ

)

u0(x
s) > us0.

Therefore, πs /∈ Bδ′(πs), as claimed.

Let D =
{

δ ∈ (0, 1) | πs /∈ Bδ(πs)
}

. If D 6= ∅, let δ = infD; otherwise, let δ = 1.
By definition of δ and the previous claim, for every δ > δ, we have πs /∈ Bδ(πs), and
for every δ < δ, we have πs ∈ Bδ(πs). By Theorem 2, the correspondence of no-delay
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stationary bargaining equilibrium proposal strategies is upper hemi-continuous in the
voters’ discount factor, and thus πs ∈ Bδ(πs), as required. ✷

Proof of Theorem 8: For the first part of the theorem, let πδ be a weak* con-
vergent sequence of equilibrium proposal strategies as δ → 1, and let π∗ denote the
limit of this subsequence. Let x =

∫

zπ∗ (dz) be the mean of π∗, and suppose toward
a contradiction that there is a subsequence yδ ∈ supp

(

πδ
)

such that yδ → ỹ 6= x.
Furthermore, we can choose yδ so that for each δ, there is a decisive coalition Cδ ∈ D
such that for each i ∈ Cδ, we have

ui(y
δ) ≥ (1− δ)ui(q) + δ

∫

ui(z)π
δ(dz),

and since N is finite, we can go to a subsequence along which this coalition is fixed,
i.e., Cδ = C. Taking limits, for each i ∈ C, we have

ui(ỹ) ≥

∫

ui(z)π
∗(dz).

Moreover, u0(y
δ) =

∫

u0(z)π
δ(dz) and thus

u0(ỹ) =

∫

u0(z)π
∗ (dz) .

Define the utility vector ũ so that for all i ∈ N ∪{0}, we have ũi =
∫

ui(z)π
∗(dz). We

then have ỹ ∈ R̃C∪{0}(ũ) by the above continuity argument, and concavity implies

x ∈ R̃C∪{0}(ũ). Using Lemma 1, LSWP* yields an alternative x′ arbitrarily close to
ỹ such that u0(x

′) > u0(ỹ) and for all i ∈ C, we have ui(x
′) > ui(ỹ). Thus, when δ is

close to one, we have for all i ∈ C,

ui(x
′) > (1− δ)ui(q) + δ

∫

ui(z)π
δ(dz),

which implies x′ ∈ AC(π
δ) ⊆ A(πδ), and we have

u0(x
′) >

∫

u0(z)π
δ(dz),

contradicting sequential rationality of π. We conclude that πδ converges strongly to
a degenerate proposal.

For the second part of the theorem, suppose toward a contradiction that there
exist y ∈ X and C ∈ D such that y 6= x∗, we have u0(y) ≥ u0(x

∗), and for all i ∈ C,
we have ui(y) ≥ ui(x

∗). By LSWP, there exists x′ ∈ X such that u0(x
′) > u0(x

∗) and
for all i ∈ C, ui(x

′) > ui(x
∗). Since πδ converges to x∗, we have vi(π

δ) → ui(x
∗) for

all i ∈ C, and then for δ close enough to one, we have

ui(x
′) > (1− δ)ui(q) + δvi(π

δ)
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for all i ∈ C, which implies x′ ∈ A(πδ). Moreover, for δ close enough to one, we
have u0(x

′) > u0(x) for all x ∈ supp(πδ), contradicting sequential rationality of πδ,
as required. ✷

Proof of Theorem 9: Consider a limit proposal x∗ 6= x̂0, and suppose toward a
contradiction that there is some alternative y ∈ H + x such that y ≻ x∗. Let C ∈ D
be a decisive coalition such that for all i ∈ C, we have ui(y) > ui(x

∗). For ǫ ∈ (0, 1),
define x̃ = y+ǫ(x̂0−y) ∈ X, and using continuity of ui, choose ǫ > 0 small enough that
for all i ∈ C, we have ui(x̃) > ui(x). For α ∈ (0, 1), define x′ = (1− α)x∗ + αx̃ ∈ X,
and note that for all i ∈ C, concavity implies ui(x

′) > ui(x
∗). Moreover, define

p = x′ − x∗ = (1 − α)x∗ + αx̃ − x∗ = α(x̃ − x∗). Then the derivative of u0 at x∗ in
direction p is

∇u0(x
∗) · p = α∇u0(x

∗) · (x̃− x∗)

= α∇u0(x
∗) · (y + ǫ(x̂0 − y)− x∗)

= α(∇u0(x
∗) · (y − x∗)) + αǫ∇u0(x

∗) · (x̂0 − y)

= αǫ∇u0(x
∗) · (x̂0 − x∗ + x∗ − y)

= αǫ∇u0(x
∗) · (x̂0 − x∗)

> 0.

where the last two equalities use ∇u0(x
∗)(y−x∗) = 0, and the strict inequality follows

from concavity of u0. Thus, for small enough α, we have u0(x
′) > u0(x

∗) and for all
i ∈ C, ui(x

′) > ui(x
∗), contradicting Theorem 8, as required. ✷

Proof of Theorem 10: Consider a limit proposal x∗ 6= x̂0, and suppose toward a
contradiction that there is some C ∈ D such that for all i ∈ C, we have ui(x

∗) > ui (q).
By Theorem 8, it follows that for δ close to one: for all y ∈ supp(πδ) and all i ∈ C,
ui(y) > ui(q). Let xδ =

∫

zπδ(dz) be the mean of πδ, and note that xδ → x∗. For all
i ∈ C, concavity of ui implies

ui(x
δ) ≥

∫

ui(z)π
δ (dz) > ui(q),

which implies

ui(x
δ) > (1− δ)ui(q) + δ

∫

ui(z)π
δ (dz) ,

for δ close to one. Furthermore, x∗ 6= x̂0 implies that for δ close to one, we have
xδ 6= x̂0. Given such δ, define x̃ = (1− ǫ) xδ + ǫx̂0 for ǫ ∈ (0, 1). By concavity of u0,
we have u0(x̃) > u0(x

δ), and we can choose ǫ > 0 small enough such that x̃ ∈ AC(π
δ),

contradicting Theorem 8, as required. ✷

Proof of Theorem 11: Consider a limit proposal x∗ 6= x̂0, and suppose toward a
contradiction that there exists r ∈ H(x∗)∩L(x∗) such that C = {i ∈ N | r ·∇ui(x) >
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0} ∈ D. We claim that 0 /∈ conv({∇u0(x
∗)} ∪ {∇f ℓ(x∗) | ℓ ∈ K(x∗)}), for suppose

otherwise; then there exist coefficients β0 and βℓ, ℓ ∈ K(x∗), such that

0 = β0∇u0(x
∗) +

∑

ℓ∈K(x∗)

βℓ∇f
ℓ(x∗).

Since X is regular, it follows that β0 6= 0, but then defining λℓ = −βℓ/β0, we can
write

∇u0(x
∗) =

∑

ℓ∈K(x∗)

λℓ∇f
ℓ(x∗).

Because u0 is concave and satisfies the first order condition, it solves the maximization
problem

maxy∈ℜd u0(y)

s.t. f ℓ(y) ≥ 0, ℓ = 1, . . . , m,

but this would imply x∗ = x̂0. Thus, zero is not in the convex hull of {∇u0(x
∗)} ∪

{∇f ℓ(x∗) | ℓ ∈ K(x∗)}. By the separating hyperplane theorem, there is a vector
s ∈ ℜd such that s · ∇u0(x

∗) > 0 and for all ℓ ∈ K(x∗), s · ∇f ℓ(x∗) > 0. Defining
t = r + ǫs, from r ∈ H(x∗) ∩ L(x∗), we have

t · ∇u0(x
∗) = s · ∇u0(x

∗) > 0

and for all ℓ ∈ K(x∗),

t · ∇f ℓ(x∗) = s · ∇f ℓ(x∗) > 0.

In addition, for ǫ > 0 small enough, we have for all i ∈ C,

t · ∇ui(x) = r · ∇ui(x) + ǫ(s · ui(x)) > 0.

Now define x′ = x∗ + ηt for η > 0 small. Then we have u0(x
′) > u0(x

∗) and for
all ℓ ∈ K(x∗), f ℓ(x′) > 0. By continuity, we have for all ℓ /∈ K(x∗), f ℓ(x′) > 0 as
well, implying x′ ∈ X. Finally, we have ui(x

′) > ui(x
∗) for all i ∈ C, contradicting

Theorem 8. ✷

Proof of Theorem 12: Suppose toward a contradiction that there is at most one
voter whose gradient is collinear with the agenda setter’s. Let H be the hyperplane
through the origin orthogonal to ∇u0(x). For each voter h, let ph = projH∇uh(x) be
the projection of the voter’s gradient onto H . By assumption, we have ph = 0 for at
most one voter. Let Ñ = {h ∈ N | ph 6= 0}, so that ñ ≡ |Ñ | ≥ n − 1. Let r ∈ H
be any vector such that for all h ∈ Ñ , we have ∇uh(x) · r 6= 0, and without loss of
generality, assume

Ñr ≡ {h ∈ Ñ | ∇uh(x) · r > 0} ≥ {h ∈ Ñ | ∇uh(x) · r < 0}.
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Since

|{h ∈ N | ∇uh(x) · r > 0}|+ |{h ∈ N | ∇uh(x) · r < 0}| = ñ ≥ n− 1,

this implies
2|Ñr| ≥ n− 1,

which implies |Ñr| ≥
n−1
2

. Since n is assumed even, this in fact implies |Ñr| ≥
n
2
, so

that Ñr ∈ D. Since the derivative of ui at x in direction r is positive for all i ∈ Ñr,
we can choose ǫ > 0 small enough that y = x + ǫr ∈ X and for all i ∈ Ñr, we have
ui(y) > ui(x). But then ∇u0(x) · (y − x) = ǫr, so that y ∈ X ∩ (H + x), and y ≻ x,
a contradiction. ✷

Proof of Theorem 17: Let M be the set of all (n + 1) × d matrices, denoted
M , with rows indexed 0, 1, . . . , n. We employ the following notational convention for
subsets of M throughout the proof: given any groups G1, . . . , Gk ⊆ N ∪ {0} and any
natural numbers r1, . . . , rk, let Mr1,r2,...,rk [G1;G2; . . . , ;Gk] denote the set of matrices
such that for all ℓ = 1, . . . , k, the rows of M corresponding to members of Gℓ have
rank rℓ in ℜd. To ease notation, we may omit braces around the elements of Gℓ in
the sequel.

First, assume (i). Given distinct voters i, j ∈ N , let M1,1,1[0; 0i; 0j] be the set of
(n+1)×dmatricesM such that: row zero has at least one non-zero entry; row zero and
row i have rank one; and row zero and row j have rank one. Because row zero is non-
zero, this means that row i is a scalar multiple of row zero, as is row j. Thus, the set
M1,1,1[0; 0i; 0j] is a manifold of dimension d+1+1+(n+1−3)d = (n+1)d+2−2d, and
it has codimension (n+1)d−(n+1)d−2+2d = 2d−2. Moreover, it is straightforward
to verify that M1,1,1[0; 0i; 0j] is semialgebraic. Indeed, let A = {(z, α, β) ∈ ℜd+2 | z 6=
0}, and define the polynomial function φ : ℜ2 → ℜ(n+1)d by φ(z, α, β) = (z, αz, βz).
Since M1,1,1[0; 0i; 0j] is the image of the semialgebraic set A under φ, result (2.1)
of Gibson et al. (1976) implies that M1,1,1[0; 0i; 0j] is semialgebraic, as claimed.
Furthermore, result (2.3) of Gibson et al. (1976) implies that the closure Mi,j =
clos(M1,1,1[0; 0i; 0j]) is also semialgebraic. By result (2.7) of Gibson et al. (1976), it
follows that Mi,j is in fact a Whitney stratified subset of ℜd (cf. p.11 of the latter
reference), and by their result (1.2), the product int(X)×ℜn+1 ×Mi,j is a Whitney
stratified subset of ℜd+n+1+(n+1)d.

This structure allows us to apply a generalized version of the jet transversality
theorem. Given any f ∈ C2(int(X),ℜn+1), the 1-jet of f is the mapping j1f : ℜd →
ℜd+(n+1)+(n+1)d defined by

j1f(x) = (x, f(x), d1f(x)).

By Theorem 7.5.11 of Jongen, Jonkers, and Twilt (2000), the set of twice continuously
differentiable mappings f : int(X) → ℜn+1 such that j1f intersects int(X)× ℜn+1 ×
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Mi,j transversally, i.e.,

F i,j =

{

f ∈ Uint(X) | j
1f −

⋔ int(X)×ℜn+1 ×Mi,j

}

is open and dense in the Whitney topology on Uint(X).
12 By transversality, for all

f ∈ F i,j, it follows that the set

{x ∈ int(X) | j1f(x) ∈ int(X)× ℜn+1 ×M1,1,1[0; 0i; 0j]}

is a manifold with codimension 2d− 2, and thus it has dimension d− 2d+ 2 = 2− d.
More succinctly, we can write F i,j as the set of mappings f ∈ Uint(X) such that d1f
is transversal to Mi,j, and we conclude that for all f ∈ F i,j, the set

{x ∈ int(X) | d1f(x) ∈ M1,1,1[0; 0i; 0j]}

is a manifold with codimension 2d− 2, and thus it has dimension d− 2d+ 2 = 2− d;
in the sequel, we will move to the first derivative directly to save space. Since d ≥ 3
by assumption (i), we conclude that for all f ∈ F i,j, this set is empty; in particular,
there does not exist x ∈ int(X) such that d1f(x) ∈ M1,1,1[0; 0i; 0j].

Since Uint(X) is a Baire space with the Whitney topology, it follows that the in-

tersection F(i) =
⋂

i,j∈N :i 6=j F
i,j is also open and dense in Uint(X). And since “Uint(X) is

open in Uint(X), it follows that the set

“F(i) = F(i) ∩ “Uint(X)

is open and dense in “Uint(X) with the relative Whitney topology. For all u ∈ “Uint(X),
Theorem 12 implies that if x ∈ CCint(X)(u), then there exist voters i, j ∈ N such

that d1u(x) ∈ M1,1,1[0; 0i; 0j], which implies u /∈ F i,j. Contrapositively, if u ∈ “F(i),
then there does not exist x ∈ CCint(X)(u), i.e., CCint(X)(u) = ∅. This means that
“F(i) ⊆ “U0

int(X), establishing the first genericity result.

For the second genericity result, we apply the standard jet transversality theorem
(Hirsch, 1976, Theorems 2.8 and 2.9) to the space of twice continuously differentiable
mappings f : ℜd → ℜn+1 to conclude that

Gi,j = {f ∈ C2(ℜd,ℜn+1) | d1f −
⋔ M1,1,1[0; 0i; 0j]}

is a residual subset of C2(ℜd,ℜn+1) with the Whitney topology, i.e., it contains the
countable intersection of sets that are open and dense. Since C2(ℜd,ℜn) is a Baire
space with the Whitney topology, it follows that the intersection G(i) =

⋂

i,j∈N :i 6=j G
i,j

12Theorem 7.5.11 of Jongen, Jonkers, and Twilt (2000) is written in terms of mappings defined on
the entire Euclidean space ℜd; the result can be directly extended to mappings with convex, open
domain.
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is also residual in this space. Define “G to consist of the restriction to X of each
function f ∈ G(i) such that f is differentiably concave on X, i.e.,

“G(i) = {f |X | f ∈ G(i)} ∩ “UX .

We claim that “G(i) is dense in “UX with the relative topology of C2-uniform convergence.

Indeed, consider any g ∈ “UX and any ǫ > 0. The set H = {f ∈ C2(ℜd,ℜn) | f |X ∈
“UX ∩ Bǫ(g)} is open in the Whitney topology. Since G(i) is dense, there is a mapping

f ∈ G(i) ∩ H. Then the restriction f |X belongs to “G(i) and to the ball Bǫ(g), and we

conclude that “G(i) is dense in “UX , as claimed.

Next, we construct a countably infinite collection of open sets {Vm} the intersec-
tion of which consists of the differentiably concave vector utility functions that admit
no interior constrained core alternatives. Choose an interior alternative x ∈ int(X),
and for each natural number m, define Km by shrinking X down to x as follows:

Km =

(

1−
1

m

)

X +
1

m
x.

As m increases, the convex and compact sets Km increase to fill the interior of X,
and we have int(X) =

⋃∞
m=1Km. For each m, define

Vm = {u ∈ “UX | CCX(u) ∩Km = ∅},

and note that “U0
X =

⋂∞
m=1 Vm. It is straightforward to show that each Vm is open

in the relative topology of C2-uniform convergence, and thus it remains to show that
each set is dense.

We claim that for each m, “G(i) ⊆ Vm. To see this, consider any u ∈ “G(i), so
that there exists f ∈ G(i) with u = f |X . Note that f ∈ G(i) implies that for all
distinct voters i, j ∈ N , the set {x ∈ ℜd | d1f(x) ∩M1,1,1[0; 0i; 0j]} is a manifold of
dimension 2−d, and thus assumption (i) implies that the set is empty. If there were an
alternative x ∈ CCX(u)∩Km, then Theorem 12 would yield voters i, j ∈ N such that
d1f(x) = d1u(x) ∈ M1,1,1[0; 0i; 0j], which is impossible. Therefore, CCX(u)∩Km = ∅,

i.e., u ∈ Vm. This implies “G(i) ⊆ Vm, as claimed. Since “G(i) is dense, it follows that Vm
is dense, as well as open. We conclude that “U0

X is the intersection of sets that are open
and dense in “UX with the relative topology of C2-uniform convergence. Therefore,
“U0
X is residual, establishing the second genericity result, as required.

Second, assume (ii). The structure of the argument parallels that above, but with
different accounting details, which we explicate here. For distinct voters i, j, k ∈ N ,
define the following class of matrices:

• M1,1,2,2[0; 0k; 0i; 0ij] is the set of matrices such that: row zero has at least one
non-zero entry; row zero and row k have rank one; row zero and row i are
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linearly independent; and rows zero, i, and j have rank two. Since row zero is
non-zero, row k is a scalar multiple of row zero, and since rows zero and i are
linearly independent, row j is a linear combination of row zero and row i. The
set is a manifold with dimension d + 1 + d + 2 + (n + 1 − 4)d = (n − 1)d + 3
and codimension 2d− 3.

By results of Gibson et al. (1976), clos(M1,1,2,2[0; 0k; 0i; 0ij]) are semialgebraic, and
thus the union

Mi,j,k = Mi,j ∪ clos(M1,1,2,2[0; 0k; 0i; 0ij])

is semialgebraic and, in fact, int(X)× ℜn+1 ×Mi,j,k is a Whitney stratified set.

By Theorem 7.5.11 of Jongen, Jonkers, and Twilt (2000), the set F i,j,k of mappings
f ∈ C2(int(X),ℜn+1) such that j1f intersects int(X) × ℜn+1 × Mi,j,k transversally
is open and dense in the Whitney topology on Uint(X). By transversality, for all
f ∈ F i,j,k, the set

{x ∈ int(X) | d1f(x) ∈ M1,1,2,2[0; 0k; 0i; 0ij]}

is a manifold with codimension 2d − 3, and thus it has dimension 3 − d. Since
d ≥ 4 by assumption (ii), we conclude that for all f ∈ F i,j,k, this set is empty; in
particular, using Mi,j ⊆ Mi,j,k, there does not exist x ∈ int(X) such that d1f(x) ∈
M1,1,1[0; 0k; 0j] ∪M1,1,2,2[0; 0k; 0i; 0ij].

Again, the intersection F(ii) =
⋂

I⊆N :|I|=3F
I is open and dense, and it follows that

“F(ii) = F(ii) ∩ “Uint(X) is open and dense in “Uint(X) with the relative Whitney topology.

For all u ∈ “Uint(X), Theorem 13 implies that if x ∈ CCint(X)(u), then either there exist
voters j, k ∈ N such that d1u(x) ∈ M1,1,1[0; 0j; 0k], or there exist i, j, k ∈ N such

that d1u(x) ∈ M1,1,2,2[0; 0k; 0i; 0ij], both cases implying u /∈ “F(ii). Contrapositively,

if u ∈ “F(ii), then there does not exist x ∈ CCint(X)(u), i.e., CCint(X)(u) = ∅. This

means that “F(ii) ⊆ “U0
int(X), establishing the first genericity result.

The second result follows the lines above, defining subsets Gi,j,k ⊆ C2(ℜd,ℜn+1)
and defining G(ii) as the intersection over them, so that G(ii) is residual. We then let
“G(ii) be the differentiably concave restrictions of functions in G(ii). This set is dense

in “UX , and thus each Vm is open and dense, and we obtain that “U0
X is residual in “UX ,

as required.

Third, assume (iii). Again, the only difference is a matter of accounting. For
distinct voters h, i, j, k ∈ N , define the following two classes of matrices, in addition
to those defined above:

• M2,2,2,2[0h; 0j; 0hi; 0jk] is the set of matrices such that: row zero and row h
are linearly independent; row zero and row j are linearly independent; row
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zero, row h, and row i have rank two; and row zero, row j, and row k have
rank two. Since row zero and row h are linearly independent, this implies that
row i is a linear combination of rows zero and row h, and similarly, row k
is a linear combination of row zero and row j. Thus, the set is a manifold
with dimension d + d + 2 + d + 2 + (n − 4)d = (n − 1)d + 4 and codimension
(n+ 1)d− (n− 1)d− 4 = 2d− 4.

• M1,1,3,3[0; 0k; 0hi; 0hij] is the set of matrices such that: row zero has at least
one non-zero entry; row zero and row k have rank one; row zero, row h, and
row i have rank three; and row zero, row h, row i, and row j have rank three.
Since row zero is non-zero, row k is a scalar multiple of row zero, and row j is a
linear combination of rows zero, h, and i. The set is a manifold with dimension
d+1+d+d+3+(n−4)d = (n−1)d+4 and codimension (n+1)d−(n−1)d−4 =
2d− 4.

Again, results of Gibson et al. (1976), imply that the closures of the above man-
ifolds, clos(M2,2,2,2[0h; 0j; 0hi; 0jk]) and clos(M1,1,3,3[0; 0k; 0hi; 0hij]), are semialge-
braic, and thus the union

Mh,i,j,k = Mi,j,k ∪ clos(M2,2,2,2[0h; 0j; 0hi; 0jk]) ∪ clos(M1,1,3,3[0; 0k; 0hi; 0hij])

is semialgebraic and, in fact, int(X)× ℜn+1 ×Mh,i,j,k is a Whitney stratified set.

By Theorem 7.5.11 of Jongen, Jonkers, and Twilt (2000), the set Fh,i,j,k of map-
pings f ∈ Uint(X) such that j1f intersects int(X)×ℜn+1×Mh,i,j,k transversally is open
and dense in the Whitney topology on Uint(X). By transversality, for all f ∈ Fh,i,j,k,
the sets

{

x ∈ int(X) | d1f(x) ∈ M2,2,2,2[0h; 0j; 0hi; 0jk]

}

and
{

x ∈ int(X) | d1f(x) ∈ M1,1,3,3[0; 0k; 0hi; 0hij]

}

are manifolds with codimension 2d − 4, and thus they have dimension 4 − d. Since
d ≥ 5 by assumption (iii), we conclude that for all f ∈ Fh,i,j,k, these sets are empty;
in particular, using Mi,j,k ⊆ Mh,i,j,k, there does not exist x ∈ int(X) such that

d1f(x) ∈
M1,1,1[0; 0k; 0j] ∪M1,1,2,2[0; 0k; 0i; 0ij]∪

M2,2,2,2[0h; 0j; 0hi; 0jk] ∪M1,1,3,3[0; 0k; 0hi; 0hij].

It follows that the intersection

F(iii) =
⋂

I⊆N :|I|=4

F I .
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is open and dense, and thus “F(iii) = F(iii) ∩ “Uint(X) is open and dense in “Uint(X) with
the relative Whitney topology.

For all u ∈ “Uint(X), Theorem 14 implies that if x ∈ CCint(X)(u), then either (i)
there exist voters h, i, j, k ∈ N such that d1u(x) ∈ M2,2,2,2[0h; 0j; 0hi; 0jk], or (ii)
there exist h, i, j, k ∈ N such that d1u(x) ∈ M1,1,1[0; 0k; 0j] ∪M1,1,2,2[0; 0k; 0i; 0ij] ∪

M1,1,3,3[0; 0k; 0hi; 0hij], both cases implying u /∈ “F(iii). Contrapositively, if u ∈ “F(iii),
then there does not exist x ∈ CCint(X)(u), i.e., CCint(X)(u) = ∅. This means that
“F(iii) ⊆ “U0

int(X), establishing the first genericity result. The second result follows along
the lines above.

Fourth, assume (iv). Given a group G ⊆ N ∪ {0} with |G| = r, let M(G) denote
the matrices with row rank r such that rows i ∈ G are linearly independent. This
implies that each row j /∈ G is a linear combination of rows i ∈ G. Thus, the set
M(G) is a manifold of dimension rd+(n+1−r)r and codimension (n+1)d−rd−(n+
1−r)r = (n+1−r)(d−r). It is straightforward to show that M(G) is semialgebraic,
and it follows that the class M[r] =

⋃

G:|G|=rM(G) of matrices with row rank r is
semialgebraic. Then result (2.3) of Gibson et al. (1976) implies that the closure
Mr = clos(M[r]) is also semialgebraic, and in fact, int(X)×ℜn+1×Mr is a Whitney
stratified set. By Theorem 7.5.11 of Jongen, Jonkers, and Twilt (2000), the set F r of
mappings f ∈ Uint(X) such that j1f intersects int(X)×ℜn+1×Mr transversally is open
and dense in the Whitney topology on Uint(X). By transversality, for all r = 1, . . . , m
and all f ∈ F r, the set

{

x ∈ int(X) | d1f(x) ∈ M[r]

}

is contained in a union of manifolds, each with codimension greater than or equal
to (n + 1 − m)(d − m). Note that (n + 1 − m)(d − m) > d holds if and only if
d > m + m

n−m
, which holds by assumption (iv). Thus, we conclude that for all

r = 1, . . . , m and all f ∈ F r, the above set is empty; in particular, there do not exist
x ∈ int(X) and r = 1, . . . , m such that d1f(x) ∈ M[r]. It follows that the intersection
F(iv) =

⋂m

r=1F
r is open and dense, and thus “F(iv) = F(iv) ∩ “Uint(X) is open and dense

in “Uint(X) with the relative Whitney topology. For all u ∈ “Uint(X), Theorem 15 implies
that if x ∈ CCint(X)(u), then d1u(x) ∈ M[r] for some r = 1, 2, . . . , m. Contraposi-

tively, if u ∈ “F(iv), then there does not exist x ∈ CCint(X)(u), i.e., CCint(X)(u) = ∅.

This means that “F(iv) ⊆ “Uint(X), establishing the first genericity result. The second
result follows along the lines above. ✷

Proof of Theorem 18: The proof builds off the proof of Theorem 17. We extend
notation for matrices as follows: given groups G1, . . . , Gk ⊆ N ∪{0}, natural numbers
r1, . . . , rk, vector x ∈ ℜd, and a set L ⊆ K, let ML

r1,...,rk
[x|G1; . . . , ;Gk] denote the set

of matrices such that: for all j = 1, . . . , k, the rows corresponding to members of Gj

together with the gradients ∇f ℓ(x), ℓ ∈ L, have rank rj + |L|.
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We consider the case of n even, inclusive majority rule in some detail and give
further remarks to indicate the lines of argument for other voting rules. Given L with
|L| < d − d∗ = d− 2 and x ∈ F (L), we define the class ML

1,1,1[x|0; 0i; 0j] of matrices
such that: row zero together with the gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|;
rows zero and i together with the gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; and
rows zero and j together with the gradients ∇f ℓ(x), ℓ ∈ L, have rank 1+ |L|. Define
the set

WL
i,j = {(x, y,M) | x ∈ F (L), y ∈ ℜn+1,M ∈ ML

1,1,1[x|0; 0i; 0j]},

a manifold of dimension

dim(WL
i,j) = (d− |L|) + (n + 1) + (d+ 1 + |L|) + (1 + |L|) + (n+ 1− 3)d

= d+ n+ 1 + (n + 1)d− 2d+ |L|+ 2

and codimension

codim(WL
i,j) = d+ n + 1 + (n+ 1)d− dim(WL) = 2d− |L| − 2.

Given any f ∈ C2(ℜd,ℜn+1), recall that the 1-jet of f is the mapping j1f : ℜd →
ℜd+(n+1)+(n+1)d defined by

j1f(x) = (x, f(x), d1f(x)).

By the jet transversality theorem, the set FL
i,j of mappings such that j1f −

⋔ WL
i,j is a

residual subset of C2(ℜd,ℜn) with the Whitney topology, as is the intersection FL

of these sets over pairs of voters. Let “GL = {f |X | f ∈ FL} ∩ “UX be the set of
differentiably concave restrictions to X of functions in FL, a set that is dense in “UX
with the relative topology of C2-uniform convergence.

Let Y =
⋃

L′:L$L′ F (L′) be the union of lower-dimensional faces adjacent to F (L).

For each natural number m, let Km = X \ B 1

m
(Y ) be the alternatives that are at

least a distance 1
m

from Y , so that Km is compact. Define the set

Vm = {u ∈ “UX | TCX(u) ∩ F (L) ∩Km = ∅}

of vector utility functions such that if there is a tangent core point belonging to F (L),
then such alternatives are within a distance of 1

m
of the “corners” of F (L). Note that

“UL
X =

⋂∞
m=1 Vm. Furthermore, each Vm is open in the relative topology of C2-uniform

convergence. For denseness, we show that “GL ⊆ “UL
X . Indeed, consider any u ∈ “G,

so there exists f ∈ FL with u = f |X. From f ∈ FL, it follows that for all distinct
voters i, j ∈ N , the set

{x ∈ ℜd | j1f(x) ∈ WL
i,j}

is a manifold with codimension 2d−|L|−2. Since |L| < d−2, we have 2d−|L|−2 >
d, so the above set is empty. If there were an alternative x ∈ TCX(u) ∩ F (L) ∩
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Km, then Theorem 16 would yield voters i, j ∈ N such that d1f(x) = d1u(x) ∈
ML

1,1,1[x|0; 0i; 0j], which is impossible. Therefore, TCX(u) ∩ F (L) ∩ Km = ∅, i.e.,

u ∈ Vm. We conclude that “UL
X , as the intersection of sets that are open and dense, is

residual in “UX with the relative topology of C2-uniform convergence.

For n odd, majority rule, we focus here on the set ML
1,1,2[x|0; 0k; 0ij] of matrices

such that: row zero together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; rows
zero and k together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; and rows zero,
i, and j together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 2 + |L|. The manifold

WL
i,j,k = {(x, y,M) | x ∈ F (L), y ∈ ℜn+1,M ∈ ML

1,1,2[x|0; 0k; 0ij]}

has dimension

dim(WL
i,j,k) = (d− |L|) + (n + 1) + (d+ 1 + |L|) + (2 + |L|) + (n+ 1− 3)d

= d+ n+ 1 + (n + 1)d− 2d+ |L|+ 3

and codimension codim(WL
i,j) = d + n + 1 + (n + 1)d − dim(WL) = 2d − |L| − 3.

This exceeds d by assumption |L| < d− d∗, and the above arguments can be applied.

For n even, exclusive majority rule, let ML
1,2,2[x|0; 0hi; 0jk] be the matrices such

that: row zero together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; rows zero,
h, and i together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 2 + |L|; and rows zero, j,
and k together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 2 + |L|. The manifold

WL
h,i,j,k = {(x, y,M) | x ∈ F (L), y ∈ ℜn+1,M ∈ ML

1,2,2[x|0; 0hi; 0jk]}

has dimension dim(WL,a
i,j,k) = d + n + 1 + (n + 1)d − 2d + |L| + 3 and codimension

codim(WL
i,j) = 2d− |L| − 4. Also, let ML

1,1,3[x|0; 0k; 0hij] be the matrices such that:
row zero together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; rows zero and
k together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 1 + |L|; rows zero, h, i, and j
together with gradients ∇f ℓ(x), ℓ ∈ L, have rank 3 + |L|. The manifold

WL,b
h,i,j,k = {(x, y,M) | x ∈ F (L), y ∈ ℜn+1,M ∈ ML

1,1,3[x|0; 0k; 0hij]}

also has dimension dim(WL
i,j,k) = d+n+1+ (n+1)d− 2d+ |L|+3 and codimension

codim(WL
i,j) = 2d−|L|−4. This exceeds d by assumption |L| < d−d∗, and the above

arguments can be applied.

Finally, for a general non-collegial voting rule, let ML[x|r] be the matrices M
such that the rows of M together with the gradients ∇f ℓ(x), ℓ ∈ L, have rank r+ |L|.
When r = m, the main case of interest here, the manifold

WL
m = {(x, y,M) | x ∈ F (L), y ∈ ℜn+1,M ∈ ML[x|m]}
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has dimension

dim(WL
m) = (d− |L|) + (n+ 1) +md+ (n + 1−m)(m+ |L|)

and codimension

codim(WL
i,j) = d+ n + 1 + (n+ 1)d− dim(WL)

= (n+ 1−m)(d−m− |L|).

This exceeds d if and only if

d > m+ |L|+
m+ |L|

n−m
,

consistent with the case L = ∅ in Theorem 17, or equivalently, if and only if |L| <
d− d∗, which holds by assumption. ✷

A.4 Detailed example of convergence

Assume n = 2 and m = 1, so that the support of either voter 1 or voter 2 is sufficient
to for a proposal to pass. Assume that the contract curves for {0, 1} and {0, 2} inter-
sect at x̃; assume that in an open set G containing x̃, this intersection is unique; and
assume that both voters strictly prefer the status quo to x̃, consistent with Theorem
10, and that the agenda setter has the opposite preference. We will show that there is
a sequence of stationary bargaining equilibria in non-degenerate proposal strategies
that converges to x̃ as the voters become patient, and this will be demonstrated in
a somewhat constructive way. Let y denote an alternative on the contract curve for
{0, 1}, and given y, let z denote the alternative on the contract curve for {0, 2} that
makes the agenda setter indifferent, i.e., u0(y) = u0(z). Assume without loss of gener-
ality that the agenda setter weakly prefers voter 1’s ideal point, i.e., u0(x̂

1) ≥ u0(x̂
2),

so when y = x̂1, the agenda setter is indifferent between y and some alternative ẑ on
the contract curve for {0, 2}. For simplicity, assume that voter 2 weakly prefers ẑ to q,
which can be interpreted as saying the status quo is not too bad for the agenda setter.

We know that in an equilibrium with non-trivial mixing, the agenda setter mixes
with some probability, say η > 0, on an alternative y and remaining probability,
1 − η > 0, on z such that: y is on the contract curve for {0, 1}, z is on the contract
curve for {0, 2}, and u0(y) = u0(z). In addition, these proposals must make the
corresponding voters indifferent between acceptance and rejection. For voter 1, this
means

u1(y) = (1− δ)u1(q) + δ[ηu1(y) + (1− η)u1(z)],

and solving for η, we obtain

η = 1−
(1− δ)(u1(q)− u1(y))

δ(u1(y)− u1(z))
.
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For voter 2, this means

u2(z) = (1− δ)u2(q) + δ[ηu2(y) + (1− η)u2(z)],

so that η also satisfies

η =
(1− δ)(u2(q)− u2(z))

δ(u2(z)− u1(y))
.

This analysis implies that the indifference condition holds for both voters when y
(and thus z 6= y) is chosen so that

(1− δ)(u1(q)− u1(y))

δ(u1(y)− u1(z))
+

(1− δ)(u2(q)− u2(z))

δ(u2(z)− u1(y))
= 1,

or equivalently,

u1(q)− u1(y)

u1(y)− u1(z)
+
u2(q)− u2(z)

u2(z)− u1(y)
=

δ

1− δ
. (13)

Given δ ∈ (0, 1), there is a choice of y (and thus z 6= y) that solves the above equation.
Indeed, as y → x̃, our assumption that the contract curves intersect uniquely at x̃
implies that z → x̃, and thus, the left-hand side of the equation diverges to infinity;
and as y → x̂1, we have z → ẑ, and thus the left-hand side converges to a negative
quantity. We conclude that there is a mixed strategy equilibrium in which the agenda
setter mixes between appropriately chosen y and z.

Now, let δ → 1, so that for given y and z, the right-hand side of (13) becomes
arbitrarily large. In equilibrium, the left-hand side becomes commensurately large,
and thus we have |y − z| → 0, which implies y → x̃ and z → x̃, demonstrating the
power of the agenda setter as voters become patient. In case x̃ 6= x̂0, this finding
is consistent with the result of Theorem 9. Furthermore, it shows that in a simple
environment, the property of being a constrained core point with respect to the
agenda setter’s gradient is sufficient for an alternative to be the limit of equilibrium
proposal strategies as the voters become patient. Thus, general necessary conditions
in addition to those of Theorem 9 are not immediately forthcoming.
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