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This paper studies collective choices with information frictions. In a major-

ity election, voters can acquire private information about policy consequences

before voting though this requires costly effort. Information frictions alter the

power relationships between opposed political interests by turning the election

into an informational contest: There is an equilibrium in which the policy pre-

ferred by the interest group with the higher aggregate information acquisition

effort is elected; outcomes therein represent voters with a minority interest if,

they have comparably high utilities. Information advantages and internal con-

flicts of opinion matter: we characterize how information cost and the dispersion

of priors modulate the influence of an interest group.

In many collective choices, there are information frictions. It is costly to pay

attention to, filter, and process all of the relevant information. In particular,

when there is uncertainty about who benefits and who loses from a given choice,

voters often engage in costly activities in order to cast an informed vote, and

thereby advance their interests. For example, in general elections, millions of

citizens watch the presidential debates and make use of information websites

that provide information about the candidates’ positions.1 Members of admin-

istrative committees—such as legislative committees, and hiring committees—

invest substantial time and effort in evaluating policy positions and candidates.
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This paper asks if (and how) such information frictions and informational

efforts affect whose interests find representation through the collective choice.

We employ a model of a simple majority election.

Our baseline model modifies the canonical voting setting by Feddersen and

Pesendorfer (1997) to include information frictions. We follow the standard

approach to modeling information frictions, as in Martinelli (2006). There is a

simple majority election with two policies, A and B. Before the election, voters

choose the precision of a private, binary signal about a pay-off relevant state, α

or β. An uninformative signal is costless and a more precise signal is more costly.

Voter types may differ in their state-dependent preferences in a general way. In

the leading scenario, in expectation, a majority of the voters prefers A only in α,

and a minority prefers A only in β. That is, there are two interest groups that

favor opposite policies in both states.

Such preferences arise naturally in situations in which voters are uncertain

about who benefits and loses from a given collective choice. For instance, con-

sider elections in which two candidates compete that are by and large centrists

and voters are uncertain if candidate A is more left than candidate B (state α)

or more right (state β).2 Leftists prefer A only in α and rightists only in β. Simi-

larly, “younger” parties in parliamentary systems are often not clearly positioned

on the left-right spectrum.3 Further examples that have been discussed in the

literature include referenda on distributive reforms such as free-trade agreements,

and open primaries with “crossover” voters of the opposing party.4

The seminal finding in the setting of Feddersen and Pesendorfer (1997) with-

out information frictions is that the outcome in all equilibria of a large elec-

tion is “as if” the state is known. Feddersen and Pesendorfer (1997) and later

Bhattacharya (2013) have shown this full-information equivalence result for the

broad class of “monotone preferences” and when citizens receive exogenous noisy

information about the state in the form of conditionally i.i.d. signals. Full-

information equivalence means that the majority-preferred outcomes are elected

state-by-state.

1Popular sites from the 2020 US elections include https://www.isidewith.com/

elections/ and https://2020election.procon.org/2020-election-quiz.php. An exam-
ple from Europe (Germany) is https://www.bpb.de/politik/wahlen/wahl-o-mat/.

2Such uncertainty may arise as a strategic choice of the candidates (Kartik et al., 2017).
3This is because they do not originate around issues of the traditional left-right divide but

around other topics. Two anecdotes: the green party of Canada once campaigned with the
slogan ‘’not left, not right, forward together”, and the green party of Germany refused to being
seated either on the left side or the right side of the parliament.

4See, e.g., Fernandez and Rodrik (1991); Meirowitz et al. (2006); Kim and Fey (2007);
Bhattacharya (2013); Ali et al. (2018).
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The main insight of this paper is that information frictions fundamentally

alter the power relationships between political interests, by turning the election

into an informational contest. Precisely, in a large election, there is a “tug-of-

war”-equilibrium in which the policy preferred by the interest group with the

higher aggregate precision of the signals is elected. The equilibrium is robust;

that is, it exists for all prior beliefs. This result may be surprising: One may think

that a group of voters with a majority interest could always exert its dominance

since the one-person-one-vote principle grants them more formal voting power

(and there is no voting cost). For this result, it matters that voters are uncertain

about which policy benefits them. Without such uncertainty, the majority voters

would coordinate perfectly on voting for the policy that benefits them and enforce

this policy as the outcome.

The contest-like structure of the equilibrium yields several insights about

how information frictions shape the power relationships between opposed polit-

ical interests. We develop these insights within the baseline model and within

a generalized version that allows for heterogeneity in the prior beliefs and in-

formation cost (Section 5). First, power shifts into the direction of the voters

with high preference intensities. Specifically, outcomes represent the interests of

a minority of the voters in all states if they have comparably high intensities.

This speaks to the concern that majority elections may not be able to reflect

preference intensities and may always lead to majority-preferred outcomes, even

when this would entail large losses in social welfare.5 Second, the information

frictions shift power into the direction of the voters with comparably low informa-

tion cost. If voters of an interest group face sufficiently low cost, ceteris paribus,

the group’s preferred policy is elected in the tug-of-war equilibrium. In light of

the mentioned applications, this shows that there are “insider advantages” in

collective committee decisions and that information websites in general elections

may play a crucial role in “leveling the playing field”. Third, for a certain class

of type distributions, we illustrate that information frictions shift power into the

direction of the interest group with more homogeneous prior beliefs. If voters

of an interest group have sufficiently dispersed prior beliefs, ceteris paribus, the

group’s preferred policy is not elected in the tug-of-war equilibrium. This re-

5Several other streams of the literature have provided complementary arguments as to how
elections can reflect intensities; see, for example, the literature on turnout and voting cost (see,
for example, Palfrey and Rosenthal, 1985; Ledyard, 1984; Krishna and Morgan, 2011, 2015).
See also the literature on public good provision; for example, Ledyard and Palfrey (2002) show
that public good provision through simple majority voting schemes is approximately utilitarian
efficient when there are many agents.
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sult matches the intuition that political groups with (more) internal conflicts of

opinion are less powerful. All of these insights are implications of a deeper struc-

tural result that characterizes which interest group dominates the informational

contest. Namely, we provide an explicit formula for the ratio of the aggregate

precision of the minority and the majority types as the electorate grows large, in

terms of primitives.

Another insight of this paper is that the information frictions create strategic

complementarities. While it is well-known that the possibility to “free-ride” on

others reduces the incentives of the voters to acquire costly information, the ob-

servation of complementarities is novel. The logic is as follows: How severely the

incentives to acquire information are impacted by the free-riding motive depends

on the voters’ expectations about the closeness of the election. The closer the

voters expect the election to be, the more likely they believe their individual

votes to affect the outcome. Then, information about policy consequences is

more valuable to the voters. Critically, when the other citizens acquire informa-

tion and vote in an informed manner, this may change a voter’s belief about the

closeness of the election. We describe how this may spur the information acqui-

sition of the given voter; that is, information acquisition can be complementary.

The complementarities “modulate” the competitive forces of endogenous in-

formation acquisition. They act in such a way that there are three equilibria

in a large election, ordered by the aggregate precision (or “effort”) of the voter

types.6 In comparison to the tug-of-war-equilibrium—which is effort-maximal—

outcomes are less strongly shaped by the competitive forces in the other equilib-

ria. In the low effort equilibrium, outcomes are given by the prior beliefs and are

“as if” the cost of any information acquisition is infinite. In the medium effort

equilibrium, outcomes depend both on the prior beliefs and on which interest

group’s voters acquire a higher precision, in the aggregate.

The paper contributes to the understanding of the competition between op-

posed political interests. Much of the literature on interest groups has assumed

that groups act as perfectly coordinated entities.7 In our model, individual mem-

bers of an interest group maximize their individual interest, taking as given the

behaviour of others with shared interests. This way, our model reflects the com-

petition between decentralized political interests such as in elections. It provides

a game-theoretic analysis of how the coordination of behaviour within groups

6We use the terms “precision” and “effort” interchangeably.
7See, e.g., page 95ff in the review of Grossman and Helpman (2001).
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of agents with ex-post aligned interest is shaped by differences in prior beliefs

and preference parameters. These insights may be useful beyond political and

election settings in the same way that the analysis of auctions provides insights

useful to more general price setting environments.8

This paper is one of the first to study how the competition between political

interests channels through costly information acquisition efforts. Previous work

has analyzed a large variety of other factors and forms of political competition

(see Grossman and Helpman, 2001). Complementary to our paper is work from

the literature on electoral competition. There the question is, how the electoral

competition between politicians is affected by the voters’ limited attention to

politics (Matějka and Tabellini, 2021; Yuksel, 2021).9 By contrast, we focus on

the competition between interest groups of voters. Our analysis is driven by the

strategic interdependencies of the voters’ behavior and the large heterogeneity of

the voters, including differences in prior beliefs and cost. These features are not

present in the electoral competition models. In Appendix J, we discuss a central

result from Matějka and Tabellini (2021) and explain how predictions differ in

our model.

A central question in the literature is if and how the competition of political

interests affects the welfare properties of policy outcomes. To this end, it has

been shown in settings with participation cost that turnout may adjust endoge-

nously so that outcomes in large elections maximize utilitarian welfare (see, e.g.,

Krishna and Morgan, 2011, 2015). Recently, this question has sparked the inter-

est in novel democratic mechanisms that endogenously distribute political power.

Examples include “quadratic voting”, in which quadratic prices are attached to

voting rights. Such mechanisms garner increasing attention by organisations and

political parties (see, e.g., Hardt and Lopes, 2015; Blum and Zuber, 2016), and

have been shown to exhibit desirable welfare properties (Lalley and Weyl, 2018;

Eguia and Xefteris, 2018).

Potentially surprisingly, our analysis uncovers parallels between costly infor-

mation acquisition on the one hand and costly participation (Palfrey and Rosen-

thal, 1985; Krishna and Morgan, 2011, 2015) and vote-buying (Lalley and Weyl,

2018; Eguia and Xefteris, 2021) on the other hand. our results show that the

effects of costly information acquisition are similar in spirit to the effects of costly

participation or vote-buying. Specifically, when it is costly to acquire informa-

8See the literature on information aggregation in auctions (Wilson, 1977; Milgrom, 1981;
Pesendorfer and Swinkels, 1997).

9See also the work in Grossman and Helpman (2001) on how differential exogenous knowl-
edge of citizens affects the electoral competition.
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tion, there is an equilibrium in which the outcomes reflect preference intensities

in a way so that a minority preference is elected if the minority has compa-

rably high utilities at stake. A priori, the economic forces of information and

participation cost seem not alike. In particular, the mentioned welfare results

are driven by how the distribution of the voting rights or who exercises them

forms endogenously. However, information cost do not alter this distribution.

Concretely, in our setting each citizen has one vote and voting is mandatory.

A further parallel is that the election is like a contest in some equilibrium: the

interest group with the higher aggregate informational effort “wins”. In the set-

tings with costly participation or vote-buying, the competition has a similar but

exogenously given contest structure: There is an exogenous mapping from action

profiles to outcomes, and the group with the higher aggregate costly action wins.

The rest of the paper is structured as follows: Section 1 illustrates central

ideas and the tug-of-war equilibrium with an example. Section 2 presents the

model. Section 3 contains preliminaries; in particular, a detailed analysis of the

best response for the baseline setting with a common cost type and prior belief

about the state. Section 4 presents the main result for the baseline setting,

and Section 5 for the generalized setting. Section 6 discusses the relation to

the literature on information aggregation in elections, including Bhattacharya

(2013), and previous work with costly information (e.g., Martinelli, 2006, 2007;

Triossi, 2013).

1 Example

There are 2n + 1 ≥ 3 voters (or citizens). With probability 1 > λ > 1
2
, a voter

is aligned and prefers a reform A over the status quo B in α and B over A in β.

With probability 1− λ, a voter is contrarian and prefers A in β and B in α.

Aligned and contrarian voters are of three types: an “unbiased” type, a

“reform leaning” type, and a “reform skeptical” type. These types differ in

their willingness-to-pay for being able to change the outcome in a given state.

Consider the aligned. The unbiased types have a willingness-to-pay of 2kg to

change the outcome in any state, for some kg > 0. The reform-leaning aligned

are willing to pay more to change the outcome in the state α in which they prefer

the reform (3kg), and less in β (kg). Conversely, the reform-skeptical aligned are

willing to pay less to change the outcome in the state β in which they prefer
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the reform (kg), and more in α (3kg). Conditional on being an aligned type,

each voter is equally likely to be a reform-leaning or reform-skeptical. For the

contrarian types, the analogous statements hold, where we switch the role of α

and β. The voters hold a common, uniform prior about the state. Each voter

receives a private, binary signal s ∈ {a, b} about the state. Types are denoted

by t and drawn from a commonly known distribution H, independently across

voters and independently of the signals.

The timing is as follows: The voter types realize. Each voter chooses the

precision x ∈ [0, 1
2
] of her signal, that is 1

2
+ x = Pr(a|α) = Pr(b|β). When

choosing precision x, the voter bears a cost c(x) = xd

d
, with d > 1 so that

c′(0) = 0. The state and private signals realize. After observing the private

signals, all citizens vote simultaneously. Finally, the outcome is decided by simple

majority rule.

The example is deliberately symmetric across types and states. Hence, it is

immediate to show that there are strategy profiles in which the vote shares and

outcomes are symmetric across states; that is, the expected vote share of A in

α equals that of B in β. In particular, given such a symmetric strategy profile,

the probability that a given citizen’s vote affects the election outcome has the

same likelihood in both states.10 So, if a type votes A, she expects to tip the

election outcome from B to A with the same probability in both states. Doing

so benefits her in one state and comes with a utility loss in the other. Similarly,

voting B tips the election outcome from A to B with the same probability in

both states. In one state, the type gains from tipping the outcome from B to A,

and in the other she loses from it. What matters for the voter‘s decision is the

utility (willingness-to-pay) that she attaches to these two events.

The following illustrates two points that will also be central in the later

analysis of the general model. First, each interest group faces internal conflicts

of opinion; different types of the same interest group vote for opposed policies in

equilibrium. Second, how “well” the voters of a group coordinate on voting for

their preferred policy is determined by their informational efforts. This renders

the election an “informational contest”.

Conflicts of opinion. Take, for example, the aligned. For the reform-skeptical

types, the utility gain from tipping the outcome from the reform A to the status

quo B in β is higher than the utility loss from doing so in α. Given the uniform

10A single citizen’s vote is decisive for the election outcome only in the event in which the
votes of the other citizens split into n votes for A and n votes for B.
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prior about the state, the reform-skeptical types thus strictly prefer to vote for

the status quo without additional information about the state. Analogously,

the reform-leaning types strictly prefer to vote for the reform without additional

information. Any signal that could turn around the strict preference of these

types would have to have sufficiently high precision x > x̄ for some x̄ > 0. When

the electorate size 2n + 1 is large, the benefit from more information is small

because a single citizen expects that her vote affects the outcome only with a

probability close to zero. So, benefits do not outweigh the cost of a precision

x > x̄. Any informative signal with a smaller precision does not affect the

type’s voting decision and is also not worth the cost. In total, the reform-leaning

and reform-skeptical types choose to receive an uninformative signal; that is,

x = 0. Finally, since the reform-leaning and reform-skeptical types are equally

likely, their votes split 50 − 50 between both policies in expectation, effectively

canceling each other out.

Coordination through information. In contrast to the reform-leaning and

reform-skeptical types, for any unbiased type t, the symmetry of the willingness-

to-pay will imply that it is optimal to choose a non-zero precision x(t) > 0.11

Any unbiased type t receives the “correct” signal with probability 1
2
+ x(t) and

follows it, voting for the preferred policy with probability 1
2
+ x(t) in each state.

Since the votes of the reform-leaning and reform-skeptical cancel out each

other, the difference in the expected vote shares of A and B is driven entirely by

the informational efforts of the unbiased. Aggregating the behavior of all types,

in each state, the expected vote shares differ by∫
taligned

x(t)dH(t)−
∫
tcontrarian

x(t)dH(t) (1)

where x(t) is the optimal precision chosen by a type t. Thus, the policy that is

preferred by the interest group with the higher aggregate precision receives more

votes in expectation. The election resembles an informational contest.

The endogenous precision choices naturally vary with the preference inten-

sity kC and the information cost, parametrized by d. Figure 1 illustrates how

11The symmetry of the willingness-to-pay and the symmetry of the prior imply that the
unbiased type is indifferent between voting A and B without further information. A simple
calculation shows that the benefit of choosing a precision x is positive and linear in x, given the
indifference. Hence, for sufficiently small precision levels x, the marginal benefit is a positive
constant and outweighs the marginal cost c′(x) ≈ 0.
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varying these parameters translates into equilibrium outcomes.12 For the other

parameters, we make a fixed choice. Going down the rows, the intensity kC of

the contrarians increases, as does the likelihood of their preferred policy being

elected. Comparing the column for d = 2 and for d = 3, we see that the con-

trarians dominate the election with high intensities kC = 4 when d = 2, but not

when d = 3. This illustrates how intensities matter more when information is

less ”cheap”—as measured by the cost elasticity d.

kC d = 2 d = 3

0 0.79 0.94

1 0.65 0.86

2 0.5 0.77

3 0.35 0.75

4 0.21 0.75

Figure 1: This shows the likelihood of outcome A in α and B in β in equilibrium
for different cost elasticities d and intensities kC . We fix 2n + 1 = 31, kL = 1,
λ = 1

3
, and the likelihood of the unbiased type to be 1 for both the aligned and

contrarians.13

2 Model

The model generalizes the example from Section 1 by allowing for general type

distributions. Besides that, the voting game is as per the example.

A voter type t = (v, r, tα, tβ) is given by a prior belief, specifying the subjective

likelihood q ∈ (0, 1) of the state being α is, a cost type r > 0, and a preference

type (tα, tβ), where tω ∈ R is the utility of A in ω. The utility of B is normalized

to zero, so that tω is the difference between the utilities of A and B in ω. The

types are identically distributed across voters and are drawn independently from

a commonly known cumulative distribution functionH : [0, 1]×R>0×R2 → [0, 1].

A voter’s type is her private information.

A strategy σ = (x, µ) of a voter consists of a function x : [0, 1]×R>0 ×R2 →
[0, 1

2
] mapping types to signal precisions and of a function µ : [0, 1] × R>0 ×

R2×{a, b} → [0, 1] mapping types and signals to probabilities to vote A, that is,

µ(t, s) is the probability that a voter of type t with signal s votes for A. We only

12There is a unique (non-trivial) Bayes-Nash equilibrium in this example. The uniqueness
is driven by the symmetry between the reform-leaning and reform-skeptical types. Generically,
there are multiple equilibria given the relevant conditions on the cost function.
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consider non-degenerate strategies.14 We analyze the Bayes-Nash equilibria of

the Bayesian game of voters in symmetric strategies, henceforth called equilibria.

When choosing precision x, a voter with cost type r bears a cost c(x) = r
d
xd for

some d > 0. The cost type captures idiosyncratic differences. The parameter d is

the elasticity of the cost function. We think of the elasticity of the cost function as

varying the regime of how costly information is (up to idiosyncratic differences

captured by r), where a higher d means that information of low precision is

“cheaper”.15

3 Baseline setting

For the main part of the analysis, we consider the setting in which all citizens

share a common prior belief type v = Pr(α) ∈ (0, 1) and a common cost type

r = 1. This makes results particularly comparable to existing work and isolates

the effects of the heterogeneity in preference intensities. In Section 5, we turn to

the general setting.

Preference types. Slightly abusing the notation, we denote by H the distri-

bution of (tα, tβ). We assume in the following that H has a continuous density

on its support. The support is the Cartesian product of Kα ⊆ R and Kβ ⊆ R,
which are connected, compact and contain 0 in their interior. Figure 2 shows

the area of the possible preference types. Voters having types t in the north-

east quadrant prefer A for all beliefs and voters having types t in the south-west

quadrant always prefer B (partisans). Voters having types t in the south-east

quadrant prefer A in state α and B in β (aligned voters), and voters having types

t in the north-west quadrant prefer B in state α and A in β (contrarian voters).

All of the analysis also goes through when all voters share common interests; for

example, when all types in the support are aligned, Kα ×Kβ ⊆ R≥0 × R≤0.

To simplify the exposition, in the rest of the paper, we only consider strate-

gies σ where the partisans use the (weakly) dominant strategy to vote for their

preferred policy.16

14A strategy σ is degenerate if µ(t, s) = 1 for all (t, s) or if µ(t, s) = 0 for all (s, t). When
all voters follow the same degenerate strategy and there are at least three voters, if one voter
deviates to any other strategy, then the outcome is the same. Therefore, the degenerate
strategies with x(t) = 0 for all t are trivial equilibria.

15For illustration, consider cd(x) = xd. Then limx→0
cd(x)
cd′ (x)

= ∞ if d′ > d.
16In fact, for any non-degenerate strategy, the likelihood of the pivotal event is non-zero

(see Section 3.1.1) such that not acquiring any information and voting for the preferred policy
is the unique best response for all partisans.
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𝑡𝑡𝛽𝛽

𝑡𝑡𝛼𝛼

Contrarians

Aligned

Indifference
Condition

𝑡𝑡𝛽𝛽 =
−𝑝𝑝

1 − p
𝑡𝑡𝛼𝛼

Intensity k(t)= 𝑡𝑡𝛼𝛼- 𝑡𝑡𝛽𝛽

0

Figure 2: For any given belief p = Pr(α) ∈ (0, 1), the set of types t that are
indifferent given p is given by tβ = −p

1−p
tα. Voter types north-east of the indif-

ference line (shaded area) prefer A given p. Contrarian and aligned types are
uniquely identified by their (total) intensity k(t) = |tα − tβ| (dashed lines) and

their threshold of doubt y(t) =
−tβ

tα−tβ
(straight lines).

Monotone preferences. A central object of the analysis is the aggregate pref-

erence function

Ψ(p) = PrH({t : p · tα + (1− p) · tβ ≥ 0}), (2)

which maps a belief p ∈ [0, 1] about the state to the probability that a random

type t prefers A given p. Figure 2 illustrates Ψ. The (bold straight) line corre-

sponds to the set of types t = (tα, tβ) that are indifferent between policy A and

policy B when holding the belief p. Voters having types to the north-east prefer

A given p (shaded area); these types have mass Ψ(p). The indifference set has a

slope of −p
1−p

and an increase in p corresponds to a clockwise rotation of it. Given

that H has a continuous density, Ψ is continuously differentiable in p.

We assume that

Ψ(0) <
1

2
, and Ψ(1) >

1

2
(3)

such that the median-voter preferred outcome is A in α and B in β. In particular,

this excludes the (trivial) cases when there is a majority of partisans for one policy

in expectation. We also assume that Ψ is strictly monotone.17 The non-monotone

17The monotone case is the case for which the literature has established that equilibrium
outcomes are full-information equivalent when information of the citizens is exogenous and
conditionally i.i.d. (see Bhattacharya, 2013).

11



case is discussed in Appendix I. Henceforth, I will call distributions H for which

Ψ is strictly increasing and satisfies (3) monotone preference distributions. The

set of the aligned types is L = {t : tα > 0, tβ < 0} and the set of the contrarian

types is C = {t : tα < 0, tβ > 0}. Throughout, I use g ∈ {L,C} as the generic

symbol for a voter group, aligned or contrarians.

Threshold of doubt and total intensity. For the aligned and contrarians,

it is useful to view types as information about, first, the relative preference

intensities across states,

y(t) =
−tβ

tα − tβ
, (4)

and, second, the total intensity,

k(t) = |tα − tβ|. (5)

We call y(t) the threshold of doubt. As Figure 2 illustrates, for any aligned type

t, y(t) and k(t) together uniquely pin down t. Formally, −y(t)k(t) = tβ, and

(1 − y(t))k(t) = tα. Similarly, for any contrarian type t, y(t) and k(t) together

uniquely pin down t.

3.1 Best response

3.1.1 Threshold of doubt pins down vote

Take any strategy σ = (x, µ) of the voters. The probability that a voter of

random type votes for A in state ω ∈ {α, β} is denoted q(ω;σ). A simple

calculation shows that

q (α;σ) =

∫
t∈Kα×Kβ

(
1

2
+ x(t))µ(t, a) + (

1

2
− x(t))µ(t, b)dHt,

and

q (β;σ) =

∫
t∈Kα×Kβ

(
1

2
− x(t))µ(t, a) + (

1

2
+ x(t))µ(t, b)dHt.

We also refer to q (ω;σ) as the (expected) vote share of A in ω.

Pivotal voting. Take a single citizen, and fix a strategy σ′ of the other voters.

The given citizen’s vote determines the outcome only in the event when the votes
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of the other citizens tie, denoted piv. Thus, a strategy is optimal if and only if

it is optimal conditional on the pivotal event piv. The probability that the votes

of the other citizens tie in ω is

Pr (piv|ω;σ′, n) =

(
2n

n

)
(q (ω;σ′))

n
(1− q (ω′;σ))

n
. (6)

since conditional on the state the type and the signal of any voter is independent

of the types and the signals of the other voters. For any type t of the given

citizen, and given the precision choice x(t), let Pr(α|s, piv;σ′, n) be the posterior

probability of α conditional on having received the private signal s and condi-

tional on being pivotal when the other voters use σ′. We conclude that, µ is part

of a best response σ = (x, µ) if and only if for all t = (tα, tβ) and for the signal

precision x(t),

Pr(α|s, piv;σ′, n) · tα + (1− Pr(α|s, piv;σ′, n)) · tβ > 0 ⇒ µ (s, t) = 1, (7)

Pr(α|s, piv;σ′, n) · tα + (1− Pr(α|s, piv;σ′, n)) · tβ < 0 ⇒ µ (s, t) = 0. (8)

That is, a voter supports A if the expected value of A conditional on being pivotal

and s is strictly positive and otherwise supports B. Note that for each aligned

type t ∈ L, (7) and (8) are equivalent to

Pr(α|s, piv;σ′, n) > y(t) ⇒ µ(t, s) = 1, (9)

Pr(α|s, piv;σ′, n) < y(t) ⇒ µ(t, s) = 0. (10)

For all contrarian types t ∈ C, (7) and (8) are equivalent to

Pr(α|s, piv;σ′, n) > y(t) ⇒ µ(t, s) = 0, (11)

Pr(α|s, piv;σ′, n) < y(t) ⇒ µ(t, s) = 1. (12)

We see that y(t) is the unique belief that a makes a voter of type t indifferent,

thereby qualifying the name threshold of doubt.

3.1.2 Total intensity pins down signal precision

What is the marginal value of information to a citizen? Take an aligned voter,

and fix the likelihood x > 0 of her receiving a “correct” signal about the state. At

the end of this section, we establish that she votes A after a and B after b (Lemma

13



1), that is, she votes for her preferred policy in each state whenever receiving a

“correct” signal. When she is not pivotal, the policy elected is independent of

her vote. In the pivotal event, when she chooses precision x, her expected utility

from the elected policy is

Pr(piv|σ′, n) Pr(α|piv;σ)(1
2
+ x)tα (13)

in state α, and

Pr(piv|σ′, n) Pr(β|piv;σ)(1
2
− x)tβ (14)

in state β. Here, we used Lemma 1 and that the utility from B is normalized to

zero.18 Therefore, summing (13) and (14) and taking the derivative, the marginal

benefit of a higher precision x is

MB
[
t;σ′, n

]
(15)

= Pr(piv|σ′, n)(Pr(α|piv;σ)tα − Pr(β|piv;σ)tβ)

= Pr(piv|σ′, n)k(t)e(y(t))

for e(y(t)) = Pr(α|piv;σ)(1 − y(t)) + Pr(β|piv;σ)y(t). Here, we used that tα =

k(t)(1 − y(t)) and tβ = −k(t)y(t) for the last equation. We see that the total

intensity k(t) is decisive. Finally, for any type t for which it is optimal to acquire

some information, the precision is pinned down by equating marginal benefits

and marginal cost,

c′(x) = MB
[
t;σ′, n

]
. (16)

when d > 1 and n is large enough. No type acquires full information (x = 1
2
).

This is because d > 1 implies c′(0) = 0 and when n is sufficiently large, the

pivotal likelihood is small enough so that (16) has an interior solution x < 1
2
for

all types, given the compactness of the type space. In the following, we maintain

the standing assumption that d > 1 and that n is large enough so that (16) has

an interior solution. The unique solution to (16) for t is

x∗(t;σ′, n) = MB
[
t;σ′, n

] 1
d−1

. (17)

18Similarly, in the pivotal event, a contrarian’s expected utility when choosing x is
Pr(piv;σ′, n) Pr(α|piv;σ)( 12 − x)tα in state α, and Pr(piv;σ′, n) Pr(β|piv;σ)( 12 + x)tβ in state
β.
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Here, we used that c(x) = r
d
xd and that r = 1.

Lemma 1 Take any strategy σ′. The function µ is part of a best response σ =

(x, µ) if and only if

∀t ∈ L : x(t) > 0 ⇒ µ(t, a) = 1 and µ(t, b) = 0, (18)

∀t ∈ C : x(t) > 0 ⇒ µ(t, a) = 0 and µ(t, b) = 1. (19)

The proof is in the Appendix A.

3.1.3 Who acquires additional information?

The types t with y(t) = Pr(α|piv;σ′, n) are indifferent between A and B without

further information, given (9) - (12), and called the marginal types. Lemma 2

shows that, for each total intensity k = k(t), only types in a certain interval

around the marginal types acquire information, as illustrated in Figure 6 in

Appendix D.

Lemma 2 Let σ′ be a strategy with limn→∞ Pr(α|piv;σ′, n) ∈ (0, 1). Let d > 1.

When n is large enough, for any k ∈ (0,maxt k(t)] and any g ∈ {L,C}, there
are y−g (k) < Pr(α|piv;σ′, n) < y+g (k) such that for any best response σ = (x, µ)

to σ′ and any type t ∈ g with k(t) = k,

x(t) > 0 ⇒ y(t) ∈ [y−g (k), y
+
g (k)], (20)

y(t) /∈ [y−g (k), y
+
g (k)] ⇒ x(t) = 0. (21)

Note that, for d ≤ 1, the marginal cost are bounded away from zero, c′(0) > 0.

Thus, (16) has no solution when n is large and all types stay uninformed.

To get more intuition for the result, take, for example, the aligned boundary

type t with y(t) = y−L (k). This type is indifferent between voting A without

additional information and choosing the precision x = x∗(t;σ′, n), as in (17). We

show that the type’s indifference condition can be rewritten as

χ(y(t)) +
1

2
=

(d− 1)

d
x∗(t;σ′, n) (22)

where χ(y) = −Pr(β|piv;σ,n)y(t)
Pr(α|piv;σ,n)(1−y(t)−Pr(β|piv;σ,n)y(t) . Details of the algebra are in Ap-

pendix E.

The function on the right hand side converges uniformly to zero as n →
∞. This is because x∗(t;σ, n) is proportional to the pivotal likelihood, given
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(15) and (17). The left hand side captures the bias towards policy A without

additional information. The bias is zero at the indifferent type’s threshold ȳ =

Pr(α|piv;σ, n), as a simple calculation verifies. Intuitively, for an aligned type,

the lower the threshold of doubt y(t), the higher the bias towards policy A.

In fact, the left hand side strictly increases in the distance of y(t) < ȳ to ȳ.19

Altogether, we see that the left hand side crosses the right hand side exactly once

when n is large. Thus, the indifference equation has a unique solution y−L (k) < ȳ.

The following studies the equilibria of the election as the number of citizens

2n + 1 grows without bound. Considering a large number of citizens allows for

a precise analysis.

3.2 Informative equilibrium sequences

3.2.1 Informativeness

For any sequence of strategies (σn)n∈N and any n, let

δn(ω;σn) =
q(ω;σn)− n

2n+1

s(ω;σn)
. (23)

This measures the distance between the expected vote share and the major-

ity threshold in multiples of the standard deviation s(ω;σn) of the vote share

distribution for ω ∈ {α, β}, where s(ω;σn)
−1 =

√
(2n+1)

q(ω;σn)(1−q(ω;σn))
.20 Figure 3

illustrates a normal approximation of the distribution of the number of A-votes.

This approximation shows that, as n → ∞, the probability that A gets elected

in ω converges to21

lim
n→∞

Pr(A|ω;σn) = lim
n→∞

1− Φ(−δn(ω;σn)). (24)

19For the calculation of the derivative, see Appendix E. The condition
limn→∞ Pr(α|piv;σ′, n) ∈ (0, 1) of the lemma ensures that the derivative stays bounded
away from zero as n → ∞.

20Let qn = q(ω;σn). The number vn of A-votes follows a Binomial distribution with variance
(2n+1)qn(1− qn). So, the vote share

vn
2n+1 of A follows a distribution with standard deviation

s(ω;σn).
21Let qn = q(ω;σn). Take the normal approximation B(2n + 1, qn) ≃ N ((2n + 1)qn, (2n +

1)qn(1 − qn)) of the distribution of the number of A-votes. It shows that the probability

that there are more A-votes than B-votes converges to limn→∞ 1 − Φ(
(2n+1)( n

2n+1−qn)

((2n+1)qn(1−qn))
1
2
) =

limn→∞ 1 − Φ(−δn(ω;σn)). Note that we are applying the Lindeberg-Feller version of the
central limit theorem for the normal approximation, which also applies to triangular arrays of
random variables.
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Figure 3: Illustration of the Normal approximation of the Binomial distribution
of the number of A-votes vn. The Binomial has mean (2n+1)qn for qn = q(ω;σn)

and standard deviation (2n + 1)sn = ((2n + 1)(qn(1 − qn))
1
2 for sn = s(ω;σn).

The outcome is A if there are more than n votes for A.

Here, Φ(·) is the cumulative distribution of the standard normal distribution. So,

the asymptotic distribution of the outcome policy only depends on limn→∞ δn(ω;σn) ∈
R ∪ {∞,−∞}.

An equilibrium sequence is informative if limn→∞ δn(α;σn) − δn(β;σn) ̸= 0.

Informativeness captures that the aggregate effect of the voters’ information

acquisition on vote shares is large enough so as to impact outcomes. Given (24),

it is a necessary condition for the outcome distribution to be different in the two

states.

3.2.2 Close elections: An equilibrium outcome

For any informative equilibrium sequence, the outcome is close to being tied in

all states ω,

lim
n→∞

q(ω;σn) =
1

2
(25)

Intuitively, the election must be close in at least some state since otherwise the

incentives to acquire costly information are too small.22

Formally, a voters’ individual incentives to acquire information depend on

the pivotal likelihood; recall, for example, the cost-benefit analysis for the opti-

22This observation may be viewed as a rationalization of the frequent occurrence of close
elections as an informational phenomenon. Historical examples of notoriously close elections
include the 2000 US presidential election: George W Bush won the electoral college with 271
votes to Gore’s 266 and lost the popular vote by some 500,000. Similarly, the 1960 election
between Kennedy and Nixon was an extremely tight race, with the candidates tied at 47 percent
in the Gallup polls. Kennedy won the popular vote by less than 120,000 votes. In Germany,
chancellor Schröder won the 2002 federal election by a mere 6,000 out of more than 48 million
votes.
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mal (interior) precision, (15). A Stirling approximation of the pivotal likelihood

yields23

Pr (piv|ω;n) ≈ 4n(nπ)−
1
2

[
q(ω;σn)(1− q(ω;σn))

]n
. (26)

This implies that the pivotal likelihood is exponentially small unless (25) holds

for at least some state. This is because the function q(1− q) takes the maximum
1
4
at q = 1

2
only. Therefore, if (25) does not hold in any state, voters acquire

exponentially little information under the best response, given (15) and (17).

Consequently, the difference of the vote shares in the two states—measured in

standard deviations—goes to zero; that is, limn→∞ δn(α;σn)− δn(β;σn) = 0. In

other words, the equilibrium sequence is not informative.

The reason why the election is close in all and not just in one state (i.e. (25))

is that the likelihood that a random citizen votes A is asymptotically the same

across states. This is because, given the best response to any strategy sequence,

the signal precision of any voter type is of an order weakly smaller than n− 1
2(d−1) ,

given (15), (17), and (26). Thus Pr(α|s, piv;σn, n) converges to Pr(α|piv;σn, n)

uniformly as n → ∞. So, the definition (2) together with (7) and (8) implies

q(ω;σ∗
n) → Ψ(Pr(α|piv;σn, n)) (27)

for both states ω ∈ {α, β}.

3.2.3 Limit marginal types

The closeness of the election, that is, (25), pins down the marginal types as

n → ∞. This is because the threshold of doubt y(t) = Pr(α|piv;σ∗
n, n) of the

marginal types necessarily satisfies

lim
n→∞

Ψ(Pr(α|piv;σ∗
n, n)) =

1

2
,

given (25) and (27). Since Ψ is continuous, this entails Ψ(limn→∞ Pr(α|piv;σ∗
n, n)) =

1
2
. Since Ψ is strictly increasing, this entails Pr(α|piv;σ∗

n, n) → ȳ ∈ (0, 1) where

ȳ is the unique belief for which Ψ(ȳ) = 1
2
.

23 Stirling’s formula yields (2n)! ≈ (2π)
1
2 22n+

1
2n2n+ 1

2 e−2n and (n!)2 ≈ (2π)n2n+1e−2n.

Consequently,
(
2n
n

)
≈ (2π)−

1
2 22n+

1
2n− 1

2 = 4n(nπ)−
1
2 . Plugging this expression for the binomial

coefficient into (6) yields Pr (piv|ω;n) ≈ 4n(nπ)−
1
2 (q(1− q))n for q = q(ω;σn).
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4 Main result: Baseline setting

The literature on information aggregation in elections has established under fairly

general conditions that large elections lead to full-information equivalent out-

comes; that is, the policy preferred by the majority under full information is

elected state-by-state.24 This result has been established, in particular, for a

setting identical to that of Section 3, but assuming that citizens receive an ex-

ogenous (costless) i.i.d. signal about the state (see Theorem 1 in Bhattacharya,

2013). In other words, with costless information, the competition between the

interest groups (aligned and contrarians) is decided by the size of the interest

groups. The majority group wins.

We show that information frictions alter the power relationships between the

opposed groups fundamentally. Outcomes may not align with the majoritarian

principle, but are driven by the endogenous informational efforts of the compet-

ing interest groups. Theorem 1 characterizes when an informative equilibrium

exist. Further, it characterizes all informative equilibrium sequences, based on a

measure of the type distribution (the index) that we will show to be proportional

to the aggregate precision of the interest groups (Lemma 3).

Recall that d is the elasticity of the cost function, tω is the type’s utility

from policy A in ω, and ȳ is the threshold of doubt of the limit marginal types.

In the following, we denote by E(−|g) and h(−|g) the conditional expectation

and the conditional likelihood when conditioning on the set of types {t : t ∈ g}
of an interest group. Similarly, we use h(g) for the unconditional likelihood and

E(−|y) and h(−|y) when conditioning on the set of types with threshold of doubt

y(t) = y, et cetera. The κ-index of an interest group g in ω is

W (κ, g, ω) = h(g)h(ȳ|g)︸ ︷︷ ︸
likelihood of limit marginal types

E(||tω||κ|g, ȳ, ω)︸ ︷︷ ︸
κ-measured intensity

, (28)

for any κ > 0. Since all limit marginal types have the same relative intensities

across the states, that is, tα
tβ

= −1−ȳ
ȳ
, the index differs only by a scalar across

states, W (κ, g, α) = (1−ȳ
ȳ
)κW (κ, g, β). Hence, the order of the indices of the two

interest groups does not depend on the state.

Theorem 1 Let d = limx→0
c′(x)x
c(x)

> 3 and κ = 2
d−1

. Take any preference distri-

bution H such that Ψ is strictly increasing, the richness condition (3) holds and

W (κ, L, α) ̸= W (κ,C, α).

24See, for example, Feddersen and Pesendorfer (1997) and Austen-Smith and Banks (1996).
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1. There is an equilibrium sequence in which the policy preferred by the in-

terest group (aligned or contrarians) with the higher κ-index is elected with

probability converging to 1 as n → ∞.

2. If Ψ(Pr(α)) ̸= 1
2
, there is an equilibrium sequence in which the policy that

is preferred by the majority of the citizens given the prior beliefs is elected

with probability converging to 1 if the κ-index of the aligned is larger than

that of the contrarians, and with probability converging to 0 if the κ-index

of the aligned is smaller than that of the contrarians

Welfare. The index W has a compelling interpretation in terms of welfare.

A type’s intensity tω is her willingness to pay for having the collective choice

changed to the preferred policy. The index takes the willingness to pay of each

type to the power κ = 2
d−1

and then averages over the marginal types of the

interest group. Hence, it interpolates between two extremes: When κ = 0, the

index is purely ordinal. It is proportional to the likelihood of the marginal types.

If κ = 1, the index is proportional to the utilitarian welfare of the marginal types.

In general, preference intensities matter more when information of low precision

is “cheaper”; that is, when d is lower and κ is higher.25

Full-Information Outcomes. Since Theorem 1 characterizes all informative

equilibrium sequences, it implies that, when the contrarians have a higher index,

there is no equilibrium sequence—informative or non-informative—in which the

full-information outcome (A in α, B in β) is chosen in both states as the electorate

grows large.

Factors of political power. In the equilibrium of the first item of Theorem

1, the election outcomes represent the political interests of the group with the

higher index. Here, the parameter κ captures exactly how intensities substitute

with the mass of the (marginal) types of a group in determining the political

“power” of an interest group.

An informational tug-of-war. The next result, Lemma 3, shows that the

κ-index of an interest group is proportional to the aggregate precision (or the

informational effort) of the interest group, as n → ∞. This result holds for the

best response to any sequence of strategies with interior limit marginal types.

25For cd(x) =
xd

d , we have limx→0
cd(x)
cd′ (x)

= ∞ if d′ > d.
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Lemma 3 Let d > 1. For any strategy sequence (σ′
n)n∈N for which limn→∞ Pr(α|piv;σ′

n, n) =

ȳ ∈ (0, 1) and any interest group g ∈ {L,C}, the best response σn = (xn, µn) sat-

isfies

lim
n→∞

∫
t∈g xn(t)dH(t)

Pr(piv|σ′
n, n)

2
d−1 e(ȳ, d)

= W (g, κ, α). (29)

for a constant e(ȳ, d) > 0 that only depends on the threshold of doubt ȳ of the

limit marginal types and the cost elasticity d > 0.

Lemma 3 implies that the equilibrium of the first item of Theorem 1 resem-

bles an informational tug-of war: The interest group with the higher aggregate

precision wins the election. A sketch of the proof follows momentarily in Section

4.2 and the formal proof is in Appendix F.

4.1 Intuition for Theorem 1: Social inference and mis-

coordination of the uninformed

With regard to the tug-of-war equilibrium, it is surprising that the voters who

exert no informational effort seem to play no role—although they also vote.

To understand the logic of this equilibrium, recall the example in Section 1.

In the example, the types that stay uninformed mis-coordinate in an extreme

way. Their votes cancel out each other completely. All other types t vote for

their preferred policy with probability 1
2
+ x(t); compare to Lemma 1. As a

consequence, the policy that is preferred by the interest group g ∈ {L,C} with

the higher aggregate precision
∫
t∈g x(t)dH(t) receives more votes in expectation.

In the example, the mis-coordination of the uninformed is driven by sym-

metry assumptions: All types hold a symmetric prior, and the reform-leaning

and reform-skeptical types have the same likelihood. so that the votes of the

uninformed split 50 − 50 given their prior beliefs. In general, this is not true.

However, we show that they do split close to 50 − 50 given their equilibrium

beliefs. This will be true in any informative equilibrium sequence.

Such mis-coordination is necessary in any informative equilibrium sequence.

This is because the share of the uninformed goes to 1 and the election has to be

close to 50 − 50 when the electorate grows large, as observed in Section 3.2.2.

Only this closeness creates incentives that are high enough so that sufficiently

many voter types acquire costly information and consequently the equilibrium is

informative.

21



Such mis-coordination is possible since the citizens do not only take into ac-

count their prior information when voting, but make an equilibrium inference

from the behavior of the other voters. Namely, they update their beliefs condi-

tional on the pivotal event. We will show that this “social inference” can be such

that the votes of the uninformed split close to 50− 50 under the best response.

Based on this, we construct the two equilibria of Theorem 1. They differ in how

strongly the uninformed mis-coordinate. In the first equilibrium of Theorem 1,

the mis-coordination is stronger and the outcomes are given by which group’s κ-

index is higher, or equivalently by which group’s aggregate precision is higher, as

in the example. In the second equilibrium, the asymmetry of the the preferences

given the prior beliefs, Ψ(Pr(α)) ̸= 1
2
, creates a bias towards one of the policies

and the same policy is elected in both states.

By way of review, in Section 4.2, we sketch the proof of Lemma 3. In Section

4.3, we explain the relevant condition on the information cost from Theorem 1

(d > 3) that is necessary for the existence of informative equilibria.26 In Section

4.4, we analyze the equilibrium inference of the voters. There, we will also

illustrate how the information acquisition of the voters can be complementary,

which gives an intuition for the equilibrium multiplicity. In Section 4.5, we prove

Theorem 1.

4.2 The endogenous information of the interest groups

Sketch of the proof of Lemma 3. Fix an interest group g ∈ {L,C};
for example, the aligned types. To evaluate the integral

∫
t∈g xn(t)dH(t) =

h(g)E(xn(t)|g), we aggregate over all types that acquire information.27 For this,

recall that there is a one-to-one relation between types t and pairs of thresholds of

doubt y(t) and total intensities k(t).28 Moreover, for any fixed total intensity k,

only the types with threshold of doubt y(t) in the interval [y−g (k), y
+
g (k)] choose

a positive precision, as is illustrated in Figure 6.29 We integrate iteratively, first

along the y-dimension, then along the k-dimension.

26This condition is similar to a condition (c′′′(0) = 0) identified by Martinelli (2007). For
the power cost functions c(x) = kxd, the conditions are equivalent.

27Here, we use the earlier short-hand notation E(−|g) for the expectation conditional on
the set of types of the interest group g. Below we will use more of such short-hand notation;
for example, H(|g, k) for the distribution of the types conditional on the set of types of an
interest group g ∈ {L,C} with total intensity k(t) = k.

28For example, for the aligned types, tα = k(t)(1− y(t)) and tβ = −k(t)y(t), given (4) and
(5).

29Note that we suppress the dependence on n in the notation for the interval boundaries.
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Fix k(t) = k. In the proof, we make two key observations. Take any two

sequences of types (tn)n∈N, (t
′
n)n∈N in the information acquisition interval. First,

we show that these types choose signals with asymptotically equivalent precision;

that is, xn(tn) ≈ xn(t
′
n).

30 As a consequence, the integral
∫
t∈g:k(t)=k

xn(t)dH(t|g, k)
is asymptotically equivalent to the mass of the types in the information ac-

quisition interval times the precision of the marginal type t̄n(k) around which

the interval forms. Second, we show that the mass of the types in the in-

formation acquisition interval is asymptotically proportional to the precision

times the likelihood of the marginal type. Formally, Pr({t : x(t) > 0}|g, k) ≈
h(t̄n(k)|g, k)xn(t̄n(k))c(ȳ, d) for some constant c(ȳ, d) > 0. Importantly, this con-

stant only depends on the cost elasticity d and the limit marginal type ȳ from

Section 3.2.3, but not on k.

We aggregate over k and use these two observations to show that the integral∫
t∈g xn(t)dH(t) is proportional to the likelihood of the marginal types of an inter-

est group times the average of the square precision they choose, E(xn(t̄n(k))
2|g).

Finally, what matters is that the intensities tω pin down the precision choices.

Precisely, combining (15), (17), and the indifference condition tα Pr(α|piv;σ′
n, n) =

−tβ Pr(β|piv;σ′
n, n) of a given marginal type yields

xn(t̄n(k))

Pr(piv|σn, n)
1

d−1

= t
1

d−1
α e1(ȳn, d), (30)

for ȳn = Pr(α|piv;σ′
n, n) the threshold of doubt of the marginal types and

e1(ȳn, d) = (2ȳn)
1

d−1 . This explains that the mean E(t
2

d−1
α |g, ȳn) of the expo-

nentiated intensities of the marginal types together with the likelihood of the

marginal types is what pins down the aggregate precision
∫
t∈g xn(t)dH(t). Pre-

cisely, we show that
∫
t∈g xn(t)dH(t) is asymptotically proportional the κ-index

W (g, κ, α) for κ = 2
d−1

, in the way claimed in Lemma 1.

4.3 Existence: Free-riding and information cost

The voters face a free-rider problem. If a voter acquires information, she is

bearing the cost privately, while all voters with the same interest benefit from

her casting a more informed ballot. In the following, we explain why the condition

d > 3 from Theorem 1 is the critical condition for the severity of the free-rider

problem in a large electorate. In particular, we sketch an argument based on two

30Formally, two sequences (an)n∈N and (bn)n∈N are asymptotically equivalent if
limn→∞

an

bn
= 1.
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observations, showing that, if d < 3, no informative equilibrium sequence exists.

Take a candidate informative equilibrium sequence. The election is necessar-

ily close in both states; that is, (25) holds. Given (24), what matters for the

“informativeness” of the aggregate voting behavior is the distance between the

expected vote share in the two states in terms of standard deviations,

lim
n→∞

δn(α;σn)− δn(β;σn) = lim
n→∞

q(α;σn)− q(β;σn)

s(α;σn)

= lim
n→∞

2
∫
t∈L x(t)dH(t)−

∫
t∈C x(t)dH(t)

s(α;σn)
. (31)

Here, we used the definition (23) of s(ω;σn) and that limn→∞
s(α;σn)
s(β;σn)

= 1, given

(25). Hence, the relevant comparison is how fast the aggregate precision
∫
t
xn(t)dH(t)

decreases relative to how fast the standard deviation of the vote share increases.

We make two observations. The first observation is that, depending on

whether d < 3 or d > 3, the aggregate precision acquired by the voters of any

given interest group is of an order smaller or larger than the pivotal likelihood.

This is a direct consequence of Lemma 3; see (29).

The second observation is that the normal approximation (24) also holds

locally,31

lim
n→∞

Pr(piv|ω;σn)(2n+ 1)s(ω;q(σn)) = lim
n→∞

ϕ(δn(ω;σn)), (32)

where ϕ the density of the standard normal distribution. This approximation is

illustrated in Figure 3. Let sn = s(ω;q(σn)) and qn = q(ωn;σn). Given (32), the

pivotal likelihood is a finite multiple of ((2n + 1)sn)
−1. Since ((2n + 1)sn)

−1 =

sn(qn(1−qn))
−1, it is a finite multiple of the standard deviation.32 Combining this

with the first observation, we see that the aggregate precision vanishes relative

to the standard deviation if d < 3. Hence, the candidate sequence cannot be

informative, given (31).

31The local central limit theorem is due to Gnedenko (1948). The version that we apply
is the one for triangular arrays of integer-valued variables as in Davis and McDonald (1995),
Theorem 1.2. Compare also to the equation (11) therein.

32Recall that ((2n + 1)sn)
−1 is the standard deviation of the Binomial distribution of the

number of vote shares. Note that ((2n+1)sn)
−1 =

[
(2n+1)(qn(1−qn))

]− 1
2

= sn(qn(1−qn))
−1

since sn = ( (2n+1)
qn(1−qn)

)−
1
2 ; see (23) and thereafter.
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Figure 4: Fix q(α) < 1
2
. The figure shows the limit vote share for policy A

under the best response as n → ∞, that is, Ψ(Pr(α|piv);σ′
n), as a function of

the expected vote share in β, for qn(β) >
1
2
. The function hn(x) is so that, given

(qn(β)− 1
2
)− (1

2
− q(α)) = hn(x)n

− 1
2 , the limit vote share is x.

4.4 Existence: Social Inference and Information comple-

mentarities

What drives the existence of the two informative equilibrium sequences of Theo-

rem 1—besides information of low precision being sufficiently cheap (d > 3)—is

that the voters’ information acquisition exhibits complementarities. Below, we

sketch how these complementarities act.

Fix a vote share q(α) < 1
2
. We can vary the informativeness of a voter strategy

σn with q(α;σ′
n) = q(α) and q(β;σ′

n) = qn(β) by varying qn(β); see Section

3.2.1. Figure 4 shows the limit vote share (n → ∞) for policy A under the best

response σ′
n, as a function of qn(β) >

1
2
. The limit vote share only depends on

the prior belief and the inference from the pivotal event given the behavior of the

others (the “social inference”). It is given by limn→∞ q(ω;σn) = Ψ(Pr(α|piv;σ′
n));

compare to (27).

As more people vote A in β, the vote share in β is less close to the majority

threshold. Then, voters believe the state α to be more likely conditional on the

election being tied. The support for A increases since preferences are “mono-

tone”; that is, Ψ is strictly increasing. Importantly, as we will show, there are

vote shares in β so that the election becomes close to being tied under the best

response, Ψ(Pr(α|piv;σ′
n)) ≈ 1

2
. Hence, certain levels of informative voting in-

duce a close election and thereby high incentives to acquire information. This

way, information acquisition can be complementary.
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4.5 Proof of Theorem 1

We represent informative equilibrium sequences in a compact way as sequences

of roots of one-dimensional auxiliary maps. First, we show that equilibrium can

be alternatively characterized in terms of the vector of the expected vote shares

of A in state α and β; that is,

q(σ) = (q(α;σ), q(β;σ)).

Note that for any σ and any ω ∈ {α, β}, the vote share q(ω;σ) pins down the

likelihood of the pivotal event conditional on ω, given (6). Given (9)-(12), (17),

(20)- (21), the vector of the pivotal likelihoods is a sufficient statistic for the

best response. Thus, q(σ) is a sufficient statistic as well. Given some vector

of expected vote shares q = (q(α), q(β)) ∈ (0, 1), let σq be the best response,

given q. Then, σ∗ is an equilibrium, if and only if, σ∗ = σq(σ∗). Conversely, an

equilibrium can be described by a vector of vote shares q∗ = (q∗(α), q∗(β)) that

is a fixed point of q(σ−), i.e.,

q∗(α) = q
(
α;σq∗)

, (33)

q∗(β) = q
(
β;σq∗)

, (34)

4.5.1 The one-dimensional auxiliary maps

We use the insights from Section 4.4 to select curves of vote share vectors that

solve (34). Let us sketch the argument. For example, take any 1
2
− ϵ < q(α) <

1
2
with ϵ > 0. Figure 4 shows the limit vote share limn→∞ q(β;σ(q(α),qn(β)) =

Ψ(Pr(α|piv;σ(q(α),qn(β)) as a function of qn(β). It is smaller than 1
2
for qn(β) =

1
2

and it is close to Ψ(1) > 1
2
for qn(β) =

1
2
+ 2ϵ. Thus,

q(β;σ(q(α),qn(β)) < q(β) for qn(β) =
1

2
, and

q(β;σ(q(α),qn(β)) > q(β) for qn(β) =
1

2
+ 2ϵ,

for ϵ > 0 small enough. An application of the intermediate value theorem

yields that for any n large enough, there are vote shares qn(β) so that qn =

(qn(α), qn(β)) solves (34). In Appendix B, we provide a topological argument to

make a continuous selection of such vote share vectors qn. Further, we do not

only construct one continuous curve, but four. They differ in whether the vote

share in a given state is larger or smaller than the majority threshold. Formally,
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we prove the following lemma.

Lemma 4 Let d > 1. For any (x(α), x(β)) ∈ {0, 1}2, there are ϵ > 0,∆ >

0, n̄ ∈ N so that for all n ≥ n̄, there is a continuous map

vn : [0, 1] → [Ψ(0) + ϵ,Ψ(1)− ϵ]2

t 7→ qt
n = (qtn(α), q

t
n(β)),

so that qt
n solves (34), sgn(qt(ω) − 1

2
) = x(ω) for all t ∈ [0, 1] and ω ∈ {α, β},

(q0n(α), q
1
n(α)) = (1

2
− ϵ, 1

2
− ∆n− 1

2 ) if x(α) = 0, and (q0n(α), q
1
n(α)) = (1

2
+

∆n− 1
2 , 1

2
+ ϵ) if x(α) = 1.

The vote shares pairs of the lemma are “similarly” far away from the majority

threshold. Precisely, we claim that the distance only differs by finitely many

standard deviations of the vote share; that is,33

lim
n→∞

|qtn(α)− 1
2
| − |qtn(β)− 1

2
|

s(α;qt
n)

/∈ {−∞,∞}

⇔ lim
n→∞

|δn(α;qt
n)| − |δn(β;qt

n)| /∈ {−∞,∞} (35)

Note that we slightly abuse the previous notation here by treating the vote share

pair qt
n as a strategy. If (35) would not hold, the inference from conditioning on

the election being tied would be unbounded; that is, the posteriors Pr(α|piv;qt
n)

would converge to 0 or 1.34 Thus, the vote shares of the best response to Φ(0)

and Φ(1), given (27). However, the vote share qtn(β) from the lemma solves (34),

that is, it is a fixed point under the best response. Since it is bounded away

from Φ(0) and Φ(1), so is the vote share under the bet response. We arrive at a

contradiction and conclude that (35) holds.

It follows from Lemma 4 that any root of the maps35

v̂n : t 7→ qtn(α)− q(α;σqt
n), (36)

33For the equivalence on the second line, we use the definition (23) and that

limn→∞ |δn(α;qt
n)| − |δn(β;qt

n)| /∈ {−∞,∞} implies that limn→∞
s(α;qt

n)
s(β;qt

n)
= 1.

34Formally, this follows since limn→∞
ϕ(δn(α;q

t
n))

ϕ(δn(β;qt
n))

= limn→∞
Pr(piv|α;qt

n,n)
Pr(piv|β;qt

n,n)
, given (32) (see

also Appendix K for a comprehensive lemma on the voter’s pivotal inference). Thus,
limn→∞ |δn(α;qt

n)| − |δn(β;qt
n)| ∈ {−∞,∞} implies limn→∞ δn(α;q

t
n)

2 − δn(β;q
t
n)

2 ∈
{−∞,∞}, so that limn→∞

Pr(piv|α;qt
n,n)

Pr(piv|β;qt
n,n)

= limn→∞ e−
1
2 (δn(α;q

t
n)

2−δn(β;q
t
n)

2) ∈ {0,∞}, and

limn→∞ Pr(α|piv;qt
n) ∈ {0, 1}.

35Note that we omit the dependence of v̂n on (x(α), x(β)) ∈ {0, 1}2 in the notation.
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with qt
n = (qtn(α), q

t
n(β)) = vn(t), satisfies (33) - (34). So, such a vote share pair

corresponds to an equilibrium of the voting game. In Section 4.5.2, we construct

the informative equilibrium sequences of Theorem 1 as roots of the maps v̂n.

4.5.2 Proof: Minority-preferred outcomes in all states

In the following, we provide the argument for the equilibrium of the first item of

Theorem 1. Here, in the main text, we consider the case in which the contrarians

have a higher index, W (L, κ, α) < W (C, κ, α) for κ = 2
d−1

. In this case, the

equilibrium leads to the outcomes preferred by the contrarians, which are a

minority in expectation. The argument for the other cases and for the equilibrium

of the second item is analogous and provided in Appendix G.

The argument relies on a precise analysis of the voters’ incentives to acquire

costly information. Further, we will use the observation that if W (L, κ, α) <

W (C, κ, α), Lemma 3 and (31) together imply that for any qn and n large enough,

the vote shares of the best response are ordered as

q(α;σqn) < q(β;σqn). (37)

Take the function vn and consider the case (x(α), x(β)) = (0, 1) so that the

function maps to vote shares qtn(α) < 1
2
and qtn(β) > 1

2
. Figures 5a and 5b

illustrate the argument, which establishes that v̂n has a root when n is large

enough.

Figure 5: Fixed point argument

(a)

Effect of information 
acquisition on vote shares 
of the best reponse

(b)

Effect of information 
acquisition on vote shares 
of the best reponse

Panel (b) illustrates v̂n(t) for t = 1. Recall from Lemma 4 that q1n(α) is finitely

many standard deviations away from the majority threshold. Given (35), q1n(β)

is finitely many standard deviations above the majority threshold as n → ∞.
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The expectation of a close election in α and β creates relative large incentives to

acquire information. Lemma 5 at the end of this section shows that, given the

condition on the information cost, d > 3, these incentives are large enough so

that the vote shares of the best response to q1
n differ by arbitrarily many standard

deviations in the two states when n grows large. The effect of the information

acquisition is indicated in the figure as the distance q(α;σq1
n)−q(β;σq1

n) between

the vote shares of the best response. Since q1n(β) = q(β;σq1
n) and given (37),

v̂n(1) = q1n(α)− qn(α;σ
q1
n) > 0 (38)

for n large enough.

Panel (a) shows the map v̂n(t) for t = 0. Recall from Lemma 4 that q0n(α) =
1
2
− ϵ. Hence, q0n(α) is bounded away from 1

2
by some constant. Given (35),

the same is true for q0n(β) as n → ∞. As a consequence, the incentives to

acquire information are small. In fact, the pivotal likelihood is exponentially

small for large n, given (26), and so is the precision of any voter type under

the best response; see (17). Given exponentially little information acquisition,

the vote shares of the best response do not differ by a standard deviation, as

n → ∞.36 The effect of the information acquisition is indicated in the figure as

the distance q(α;σq0
n) − q(β;σq0

n) between the vote shares of the best response.

Since q0n(β) = q(β;σq0
n) and q0n(β) >

1
2
by construction,

v̂n(0) = q0n(α)− qn(α;σ
q0
n) < 0 (39)

for n large enough.

Finally, using (38), (39), and that v̂n is continuous, an application of Kaku-

tani’s fixed point theorem shows that there is t ∈ (0, 1) so that qt
n = (qtn(α), q

t
n(β))

solves (33) and (34).

Further, it must be that limn→∞
1
2
−qtn(α)

s(α;qt
n)

= ∞ since otherwise (39) holds

by the same argument as just given when discussing panel (b). Hence, also

limn→∞
qtn(β)− 1

2

s(β;qt
n)

= ∞, given (35). The distance of the vote shares to the majority

threshold becomes arbitrarily large in terms of standard deviations. This implies

that B gets elected in α and A in β with probability converging to 1 as n → ∞,

given (24). The proof of Lemma 5 is in Appendix C.

Lemma 5 Let d > 3. Take a monotone preference distribution H for which

36Here, recall that the standard deviation of the vote share is of the order of 1√
n
, s(ω;qn) =

(2n+ 1)−
1
2 (qn(ω)(1− qn(ω))

1
2 ; see Section 3.2.1.
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W (κ, L, α) ̸= W (κ,C, α) for κ = 2
d−1

. Let t ∈ [0, 1]. Take qt
n as in Lemma 4. If

limn→∞
|qtn(α)− 1

2
|

s(α;qt
n)

∈ R, then,

lim
n→∞

|q(α;σqt
n)− qtn(β)|

s(α;qt
n)

= ∞. (40)

5 Additional results and discussion

General setting: How differences in cost and priors affect outcomes.

We return to the setting of Section 2 in which types are heterogeneous not only in

the state-dependent intensities tω, but also in the cost type and the prior belief.

In the working paper, we show that a generalization of Theorem 1 holds for this

setting (Theorem 4).37

The proof is based on one main insight: We show that for any joint distribu-

tion of types, there is an auxiliary distribution that only admits heterogeneity in

the state-dependent intensities and is outcome-equivalent ; that is, it leads to the

same set of equilibrium outcome distributions. This insight allows to leverage

the previous analysis. Two observations lead to the auxiliary distribution. First,

as in the baseline setting, equilibrium can be characterized as an equilibrium vote

share pair q = (q(α), q(β)) that is a fixed point of the best response mapping

on the level of vote shares, compare to (33)-(34). Second, we show that, for any

type t = (v, r, tα, tβ), the type ζ(t) = (1
2
, 1, 2t′α, 2t

′
β) with

t′α =
vtα
r

, and (41)

t′β =
(1− v)tβ

r
(42)

best responds in the same way to any given vote share pair q. As a consequence,

for any type distribution H, the push-forward distribution ζ∗(H) has the same

equilibrium vote share pairs, but does not exhibit heterogeneity in priors and

cost types.

The formal statement of Theorem 4 is almost identical to Theorem 1, except

that Ψ and W are replaced by their generalizations X (p) = PrH({t : pt′α + (1−
p)t′β ≥ 0}) and I(κ, g, ω) = h(M g)E(|| t′ω ||κ |M g, ω), in which t′ω takes the the

role of tω. Here, M g is the set of the limit marginal types of interest group g ∈
37The working paper is available here: https://www.researchgate.net/publication/

358742924_Elections_with_information_frictions_and_distributive_uncertainty.
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{L,C} and h(M g) their likelihood.38 In particular, Theorem 3 shows that there

is a tug-of-war equilibrium in the general setting. In this equilibrium, the policy

preferred by the interest group with the higher aggregation precision is elected,

and the aggregate precision of an interest group g ∈ {L,C} is proportional to

I(g, κ, ω) for κ = 2
d−1

, analogous to the Lemma 3.

Theorem 4 yields important insights about the effect of differences in cost and

prior beliefs on outcomes. First, consider the situation in which the types of a a

given interest group have comparably high cost r. Intuitively, this will depress

their information acquisition. Formally, the “weights” t′ω become small when r

is large; see (41)-(42). So, the index I(κ, g, ω) of the group will be smaller than

the other interest group’s index if r is sufficiently high, ceteris paribus. Then,

the group’s preferred policy is not elected in any state, given the tug-of-war

equilibrium. Second, if an interest group has more dispersed prior beliefs, this

may depress information acquisition similarly. We illustrate this for a class of

symmetric distributions in the working paper.39 We show that the likelihood of

the marginal types decreases with the dispersion. Based on this, we show that if

an interest group has sufficiently dispersed prior beliefs, there is an equilibrium

in which the group’s preferred policy is not elected in any state in the tug-of-war

equilibrium.

Non-informative equilibrium sequences. Generically, there exist equilib-

rium sequences that are not informative, and in any non-informative limit equi-

librium, all voters vote according to their prior belief. Thus, the policy that is

preferred by a majority given the prior beliefs will be elected: the outcome is A

if Ψ(Pr(α)) > 1
2
and B if Ψ(Pr(α)) < 1

2
. The proof of Theorem 2 is in Appendix

H.

Theorem 2 Let Ψ(Pr(α)) ̸= 1
2
.

1. There exists an equilibrium sequence that is not informative.

2. All equilibrium sequences (σ∗
n)n∈N that are not informative satisfy limn→∞ q(ω;σ∗

n) =

Ψ(Pr(α)) for all states ω ∈ {α, β}. Hence, limn→∞ Pr(A|σ∗
n, n) = 1 if

Ψ(Pr(α)) > 1
2
and limn→∞ Pr(B|σ∗

n, n) = 1 if Ψ(Pr(α)) < 1
2
.

38In the working paper, we derive the set Mg in terms of primitives, in a similar way as in
the baseline setting; compare to Section 3.2.3.

39The working paper is available here: https://www.researchgate.net/publication/

358742924_Elections_with_information_frictions_and_distributive_uncertainty.
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Ordering the equilibrium sequences along their informativeness or the

aggregate precision. Theorem 1 and Theorem 2 show that there exist three

types of equilibrium sequences when d > 3 and Ψ(Pr(α)) ̸= 1
2
. We show that the

three types of equilibrium sequences can be ordered by their (absolute) informa-

tiveness, that is, by limn→∞ |δn(α;σn)− δn(β;σn)|.
In any non-informative equilibrium sequence, by definition,

lim
n→∞

δn(α;σn)− δn(β;σn) = 0.

For the tug-of-war equilibrium sequence in which the policy preferred by the

interest group with the higher index is elected as n → ∞, the distribution of the

limit outcomes is degenerate and varies with the state. Thus, (24) implies that

lim
n→∞

|δn(α;σn)− δn(β;σn)| = ∞.

Take the other informative equilibrium sequence of Theorem 1 in which the limit

outcome is the same in both states. This implies that the sign of δn(α;σn) and

δn(β;σn) is the same for n large enough, given (24). Therefore, (35) implies

lim
n→∞

|δn(α;σn)− δn(β;σn)| ∈ (0,∞).

We conclude that the informativeness lies in between that of the other two types

of equilibrium sequences.

We can also think of these results as an ordering by the aggregate precision∫
t
xn(t)dH(t) of the voters. This is because the informativeness is asymptoti-

cally proportional to the aggregate precision. This can be seen as follows: Given

Lemma 3, the aggregate precision of the types of an interest group g ∈ {L,C}
compares as follows to the aggregate precision of all citizens, limn→∞

∫
t∈g xn(t)dH(t)∫
t xn(t)dH(t)

=
W (g,κ,α)

W (L,κ,α)+W (C,κ,α)
. Combining this with (31),

lim
n→∞

|δn(α;σn)− δn(β;σn)| = lim
n→∞

|2(W (L,κ,α)−W (C,κ,α))|
W (L)+W (C)

∫
t
xn(t)dH(t)

s(α;σn)
.

6 Literature: Information aggregation in elec-

tions

The literature on information aggregation has shown that elections effectively

aggregate exogenous information that is dispersed among many voters, so that
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outcomes in all equilibria are “as if” there is no uncertainty about the state

(Austen-Smith and Banks, 1996; Feddersen and Pesendorfer, 1997).40 Our anal-

ysis provides a succinct comparison by modifying a setting (as in Bhattacharya

(2013)), in which information aggregates, to account for the voters’ information

being endogenous.41 We show that information aggregation fails in the low and

medium effort equilibrium and that it can even fail in all equilibria. The previ-

ous literature has identified other reasons for a failure of information aggregation,

which are not present in our model.42

Our analysis also applies to situations of common interest, that is, when there

is only one interest group. For these situations, the information aggregation re-

sult of the literature means that outcomes are (ex-post) utilitarian efficient. An

open question is to which extent this efficiency result (widely known as the “Con-

dorcet Jury Theorem”) also holds when the voters’ information is endogenous.

Previous work on this question has found in a variety of settings that infor-

mation aggregates, given appropriate conditions on information cost.43 These

findings are important and surprising possibility results, demonstrating that the

intuition from Downs “rational ignorance hypothesis” does not necessarily imply

inefficient election outcomes. 44 The analysis in this paper is considerably more

general relative to previous work. We consider all (continuous) voter type distri-

butions.45 We find that the Condorcet Jury Theorem does not hold. The low and

medium effort equilibrium are inefficient and exist for almost all type distribu-

tions. This equilibrium multiplicity is a novel finding. In contrast, in the settings

of the literature, information aggregates in all equilibria when information cost

are sufficiently low.

40See also Myerson (1998), Wit (1998), and Duggan and Martinelli (2001).
41To be precise, Bhattacharya (2013) shows that a sufficient and necessary condition for

information aggregation is that preferences are “monotone”. See also Acharya (2016) and
Bhattacharya (2018). We maintain the appropriate monotonicity conditions for all results. We
discuss the effect of non-monotonicities in our setting in Appendix I.

42Several failures due to an “invertibility problem” have been observed in settings in which
the effective state is multi-dimensional (Feddersen and Pesendorfer, 1997; Mandler, 2012;
Barelli et al., 2019). Other mechanisms that lead to a failure are signaling motives (Razin,
2003), policy uncertainty (Gul and Pesendorfer, 2009), divided majorities (Bouton and Cas-
tanheira, 2012), and adverse selection problems (Ali et al., 2018). A recent stream of literature
considers “extended” election games in which biased third-parties inflict the failure (Bond and
Eraslan, 2010; Ekmekci and Lauermann, 2020; Heese and Lauermann, 2019).

43See Theorem 2 and 6 in Martinelli (2006), Theorem 3(ii) in Martinelli (2007), Theorem 3
in Triossi (2013), and Proposition 5 in Oliveros (2013).

44See Downs et al. (1957); in particular, p.246.
45The previous work has considered settings in which all types share common preference

intensities t = (tα, tβ) or assumed symmetry conditions for the type distribution so that
Φ(Pr(α)) = 1/2.
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7 Conclusion

We analyzed a model of collective choice with information frictions, that is, in-

formation cost. The model reflects situations in which decentralized, i.e. not

centrally organized, political interests compete for influence. It is one of the first

models to formalize how the competition of political interests channels through

information frictions and informational efforts. Applications include general elec-

tions and referenda on distributive reforms.

In the model, absent information cost, outcomes in all equilibria are full-

information equivalent (Bhattacharya, 2013); thus, the outcomes preferred by

the majority interest group are elected. The main insight is that the information

frictions fundamentally alter the power relationships between opposed interest

groups, by turning the election into an informational contest. There is a “tug-

of-war” equilibrium in which the policy preferred by the interest group with the

higher aggregate informational effort is elected. This equilibrium is cardinal in

the sense that outcomes represent voters with a minority interest if they have

sufficiently high utilities at stake. Information advantages and internal conflicts

of opinion matter for political influence: members of an interest group cast their

votes in a less coordinated way, i.e., their binary voting choices are less correlated

with the state, when they face higher information cost or if the distribution of

prior beliefs about the state is more dispersed.

Another insight is that the information frictions create strategic complemen-

tarities. These complementarities modulate the competitive forces of endogenous

information acquisition. They act in a way so that there are three equilibria, or-

dered by the aggregate informational effort of the electorate. The tug-of-war

equilibrium is effort-maximal and resembles an informational contest. In the

other equilibria, the competitive forces are less strongly shaped by informational

efforts and also prior beliefs matter for outcomes.

We have provided some discussion and initial observations on similarities to

and differences from classical models of decentralized political competition of

the literature, such as Palfrey and Rosenthal (1985), Krishna and Morgan (2011,

2015) and more recent contributions (Lalley and Weyl, 2018; Eguia and Xefteris,

2021). We believe that several features of our model may lead to interesting

observations when integrated into these models. For example, the policy uncer-

tainty plays a crucial role in our setting and implies that changes in the prior

belief distribution may upset the election outcome. Similar results may obtain

in variants of the mentioned models.
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Further, we discussed the implications of our results with respect to informa-

tion aggregation in elections. Importantly, when information is endogenous due

to information cost, information aggregation fails in (non-trivial) equilibria even

when information cost are arbitrarily low. This contrasts findings in previous

settings, in which no equilibrium multiplicity has been found and information

aggregates in all equilibria when information cost are sufficiently low.

Appendix

A Proof of Lemma 1

Since signal a is indicative of α and b of β, voters with a signal a believe state α to be more

likely than voters with a signal b. In fact, given any x > 0, we show below that the posteriors

are ordered as

Pr (α|b,piv;σ′, n) < Pr (α|a,piv;σ′, n) . (43)

We argue that the choice x(t) > 0 implies

Pr(α|b,piv, σ′, n) < y(t) < Pr(α|b,piv, σ′, n). (44)

Otherwise, given (9)-(12), there is a policy z ∈ {A,B} that the voter weakly prefers, indepen-

dent of her private signal s ∈ {a, b}. But then, she would be strictly better off by not paying

for the information x(t) > 0 and simply voting the same after both signals. Finally, (9)-(12),

and (44) together imply (18) and (19)

Proof of (43). Note that the posterior likelihood ratio of the states conditional on a signal

s ∈ {a, b} with precision x(t) and conditional on the event that the voter is pivotal is

Pr (α|s,piv;σ′, n)

Pr (β|s,piv;σ′, n)
=

Pr (α)

Pr (β)

Pr (piv|α;σ′, n)

Pr (piv|β;σ′, n)

Pr(s|α;σ)
Pr(s|β;σ)

, (45)

if Pr (piv|β;σ′, n) > 0, where I used the conditional independence of the types and signals of

the other voters from the signal of the given voter. Then, the order of the likelihood ratios in

(43) follows from Pr(a|α;σ) = Pr(b|β;σ) = 1
2 + x and Pr(a|β;σ) = Pr(b|α;σ) = 1

2 − x.

B Proof of Lemma 4

Lemma 6 Let d > 1. There are ∆, ϵ > 0, and n̄ ∈ N, so that for any qn(α) ∈ Dn with

Dn = [ 12 − ϵ, 1
2 − ∆√

n
] ∪ [ 12 + ∆√

n
, 1
2 + ϵ, ] and for any n ≥ n̄,

q(β;σ(qn(α),qn(β))− qn(β) > 0 for qn(β) =
1

2
+ 2ϵ, (46)

q(β;σ(qn(α),qn(β))− qn(β) < 0 for qn(β) =
1

2
. (47)
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Proof. First, we analyze the voter’s posteriors about the state when conditioning on the

pivotal event, given a strategy with vote shares qn(β) =
1
2 or qn(β) =

1
2 +2ϵ, and qn(α) ∈ Dn.

We slightly abuse the notation by identifying vote share pairs qn with strategies.

Take qn(β) =
1
2 . Take ∆

′ > 0. When the distance of the vote share in α to 1
2 is at least ∆′

multiples of the standard deviation sn(α;qn) =

√
qn(α)(1−qn(α))√

2n+1
of the (empirical) vote share

distribution, that is, when δn(α;qn) ≥ ∆′, it follows from (32) that limn→∞
Pr(piv|α;qn,n)
Pr(piv|β;qn,n)

≤
ϕ(∆′)
ϕ(0) .

46 Hence, for any prior Pr(α) ∈ (0, 1), there is ∆ > 0 large enough, so that for any

qn(α) ∈ Dn

lim
n→∞

Pr(α|piv;qn, n) < Φ−1(
1

2
). (48)

Take qn(β) =
1
2 + 2ϵ. For any qn(α) ∈ Dn, the election is closer to being tied in α, and, given

(32), voters become convinced that the state is α; that is,

lim
n→∞

Pr(α|piv;qn, n) = 1. (49)

Now, we analyze the vote share in β under the best response, and establish (46) and (47).

Recall (27), which states that

lim
n→∞

q(βn;σn) = lim
n→∞

Φ(Pr(α|piv;qn, n)). (50)

We see that (48) and (50) imply that for qn(β) =
1
2 ,

qn(β) > q(βn;σ
qn) (51)

when n is large enough; that is (46) holds. Recall the richness condition (3). Let ϵ > 0 be

small enough so that Φ(1) > 1
2 + 3ϵ. Then, (49) and (50) imply that for qn(β) =

1
2 + 2ϵ,

qn(β) < q(βn;σ
qn) (52)

when n is large enough; that is (47) holds.

Now, we state an analogue of the implicit function theorem that does not require any

assumptions on partial derivatives.

Lemma 7 Suppose f : [0, 1]× [0, 1] → [−1, 1] is a continuous function with

f(r, 0) < 0 for all r, (53)

f(r, 1) > 0 for all r. (54)

Then, there exist continuous functions r̂, x̂ : [0, 1] → [0, 1] such that r̂(0) = 0, r̂(1) = 1, and

f(x̂(t), r̂(t)) = 0 for all r. (55)

A proof can be found in Ekmekci et al. (2022).

46See also Appendix K for a comprehensive lemma on the voter’s pivotal inference.
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Now, we prove Lemma 4 by an application of Lemma 7. We provide the proof for the case

(x(α), x(β)) = (0, 1). The proofs for the other cases are analogous.

Consider the function gn : D̂n → [0, 1] for D̂n = [ 12 − ϵ, 1
2 −∆n− 1

2 ]× [ 12 ,
1
2 +2ϵ] which maps

pairs of vote shares qn = (qn(α), qn(β)) to qn(β) − q(β;σqn). Take a homeomorphism hn :

[0, 1]2 → D̂n that maps the left edge to the left edge; that is, fn({0}×[0, 1]) = { 1
2−ϵ}×[ 12 ,

1
2+2ϵ].

Further, it maps the lower edge to the lower edge, etc..

Note that gn is continuous, given the characterization of the best response through (6),

(9)- (12), (17), the indifference equations of Lemma 2 (see, e.g., (22)), and since the type

distribution H has a continuous density. Lemma 6 implies that the functions fn = gn ◦ hn

satisfy the conditions of Lemma 7; precisely, the conditions (46) and (47) correspond to (53)

and (54). Hence, applying the lemma yields continuous functions x̂n, r̂n : [0, 1] → [0, 1] so

that hn(x̂n, r̂n) = 0. In other words, vn = hn ◦ (x̂n, r̂n) maps t ∈ [0, 1] to vote share pairs

qt
n ∈ D̂n that solve (34). Note that sgn(qtn(ω) − 1

2 ) = x(ω) for ω ∈ {α, β} and t ∈ [0, 1]

since qt
n ∈ D̂n. Further, vn is continuous as the composition of continuous maps. Finally,

note that q0n(α) = 1
2 − ϵ since r̂(0) = 0 and since hn maps the edge {0} × [0, 1] to the edge

{ 1
2 − ϵ} × [ 12 ,

1
2 + 2ϵ]. Similarly, q1n(α) =

1
2 −∆n− 1

2 . Taken together, these observations finish

the proof of Lemma 4 for the case (x(α), x(β)) = (0, 1).

C Proof of Lemma 5

Fix t ∈ [0, 1]. First, we note that the sequence of vote share pairs qt
n = (qtn(α), q

t
n(β)) satisfies

the condition limn→∞ Pr(α|piv;qt
n, n) ∈ (0, 1) of Lemma 3: This is because, by construction,

the implied vote share under the best response, q(β;σ
qt
n

n ), lies in [Ψ(0)+ϵ,Ψ(1)−ϵ]; see Lemma

4. Given (27), limn→∞ q(β;σ
qt
n

n ) = Ψ(Pr(α|piv;qt
n, n)). The continuity and monotonicity of

Ψ imply limn→∞ Pr(α|piv;qt
n, n) ∈ (0, 1).

The remainder of the proof follows arguments similar to those in Section 4.3. There, we

discussed why the condition d > 3 is the critical condition for the severity of the free-rider

problem in a large electorate. Much of the proof restates the observations from Section 4.3.

The first observation is that, if d > 3, the average precision of a random voter of the

interest group is of an order larger than the pivotal likelihood,

lim
n→∞

E(x(t)|g)
Pr(piv|qt

n, n)
= ∞. (56)

for g ∈ {L,C}. To see why, recall from Lemma 3 that limn→∞
E(x(t)|g)

Pr(piv|qt
n,n)

1
d−1

∈ R. For d > 3,

it holds 2
d−1 < 1, so that this implies (56) since the pivotal likelihood converges to zero as

n → ∞.

The second observation is that the approximation (24) also holds locally,47

lim
n→∞

Pr(piv|ω;qt
n)(2n+ 1)s(α;qn) = lim

n→∞
ϕ(δn(ω;qn)), (57)

where ϕ the density of the standard normal distribution and ω ∈ {α, β}. This local approxi-

47The local central limit theorem is due to Gnedenko (1948). The version that we apply
is the one for triangular arrays of integer-valued variables as in Davis and McDonald (1995),
Theorem 1.2.
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mation is illustrated in Figure 3.

The assumption limn→∞ δn(α;q
t
n) = limn→∞

|qtn(α)− 1
2 |

s(α;qt
n

∈ R of Lemma 5 implies

lim
n→∞

ϕ(δn(ω;q
t
n)) ∈ (0,∞) (58)

Let sn = s(α;qt
n) and qn = qtn(α). Note that ((2n+1)sn)

−1 = sn(qn(1−qn)
−1.48 Consequently,

(57) together with (58) yields limn→∞
Pr(piv|ω;qt

n)
sn

∈ R>0. Combining this with (56),

lim
n→∞

E(xn(t)|g)
s(α;qt

n)
= ∞. (59)

Recall (31),

lim
n→∞

q(α;σqn)− q(β;σqt
n)

s(α;qt
n)

= lim
n→∞

2(Pr(L)E(xn(t)|L)− Pr(C)E(xn(t)|C))

s(α;qt
n)

. (60)

Lemma 3 implies that limn→∞
Pr(L)E(xn(t)|L)
Pr(C)E(xn(t)|C) =

W (L,κ,α)
W (C,κ,α) . The genericity conditionW (L, κ, α) ̸=

W (C, κ, α) together with (59) and (60) shows

lim
n→∞

q(α;σqt
n)− q(β;σqt

n)

s(α;σqt
n)

∈ {∞,−∞}, (61)

which is equivalent to (40). Finally, the claim (40) of Lemma 5 follows from (61) since

q(β;σqt
n) = qtn(β), by construction of qtn(β); see Lemma 4.
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Online appendix

D Figure: Information acquisition region
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Information  
acquisition region

Marginal Types

Contrarians

Figure 6: Types in the area between the dashed lines acquire information. Types
outside that area stay uninformed.

E Proof of Lemma 2

In the following, for the ease of presentation, we drop the dependence on n and σ′ in the

notation. Fix a total intensity k ∈ (0,maxt (k(t)]. The lemma claims that for each interest

group g ∈ {L,C}, there is an information acquisition interval, given by the boundary types

y−g (k) and y+g (k). We start with the argument for the type y−L (k).

First, we characterize when a type t is indifferent between voting A without further infor-

mation on the one hand and choosing the precision x = x∗(t;σ′, n) on the other hand. When

choosing x = x∗(t;σ′, n) the expected utility from the policy elected in the pivotal event is

given by (13) in α and by (14) in β. Hence, the indifference condition is

Pr(piv)
[
Pr(α|piv)(1

2
+ x)tα + Pr(β)(

1

2
− x)tβ

]
− c(x)

= Pr(piv)
[
Pr(α|piv)tα + Pr(β|piv)tβ

]
. (62)

Rearranging,

Pr(piv)
[
(
1

2
+ x)

[
Pr(α|piv)tα − Pr(β|piv)tβ

]
+ Pr(β|piv)tβ

]
− c(x)

= Pr(piv)
[
Pr(α|piv)tα − Pr(β|piv)tβ + 2Pr(β|piv)tβ

]
(63)
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Plugging (15) and (16) into (63),

(
1

2
+ x)c′(x)− c(x) + Pr(piv) Pr(β|piv)tβ

= c′(x) + 2Pr(piv) Pr(β|piv; )tβ . (64)

We divide by c′(x), rearrange, and use (15) and (16) again,

(
1

2
+ x)− c(x)

c′(x)
= 1 +

Pr(β|piv)tβ
Pr(α|piv)tα + Pr(β|piv)(−tβ)

. (65)

Using tα = k(t)(1− y(t)) and tβ = −k(t)y(t),

(
1

2
+ x)− c(x)

c′(x)
= 1 +

−Pr(β|piv)y(t)
Pr(α|piv)(1− y(t)) + Pr(β|piv)y(t)

. (66)

Since c(x) = xd

d , we have c(x)
xc′(x) = 1

d and x(1 − c(x)
xc′(x) ) = xd−1

d . Plugging this into (66) and

rearranging gives (22), that is,

x
d− 1

d
=

1

2
+ χ(y(t)) (67)

for χ(y) = −Pr(β|piv)y
Pr(α|piv)(1−y)+Pr(β|piv)y .

Second, the argument from the main text shows that, when n is sufficiently large, there

is a unique solution to the indifference equation (67), denoted y−L (k) and satisfying y−g (k) <

Pr(α|piv). Here, we just fill in the left out algebra. We show that the derivative χ(yn)
∂yn

at

yn = Pr(α|piv;σ′, n) stays bounded away from zero, as n → ∞:

(
χ(yn)

∂yn
)yn=Pr(α|piv) = − 1− yn

2yn(1− yn)
− 2y2n(1− yn)

(2yn(1− yn))2
(68)

=
−1

2yn(1− yn)
. (69)

The assumption limn∈∞ Pr(α|piv;σ′, n) ∈ (0, 1) of Lemma 2 implies that the derivative (68)

stays indeed bounded away from zero.

Third, the argument analogous to the first two steps shows that there is a unique type

y+L (k) > Pr(α|piv) that is indifferent between voting B without further information on the one

hand and acquiring information on the other hand, when n is large enough. Putting things

together, we see that the types y−L (k) and y+L (k) mark the boundaries of the interval of all the

aligned types with intensity k that acquire information under the best response. The argument

for the contrarian types is analogous.

F Proof of Lemma 3

Take the interest group of the aligned types; that is, fix g = L in the following. The proof

for the interest group of the contrarian types is analogous. We use that, for the aligned types,

there is a one-to-one relation between types t and pairs of thresholds y(t) and total intensities

k(t): tα = k(t)(1 − y(t)) and tβ = −k(t)y(t), given (4) and (5). In the following, we write

t(y, k) for the type with y(t) = y and k(t) = k, H(y, k) for the joint distribution of y and k,
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and H(y) and H(k) for the marginal distributions. We evaluate the mean precision

E(xn(t)|g) = E(E(xn(t)|g, k)|g) (70)

iteratively. We start by analyzing E(xn(t)|g, k) for a fixed intensity k = k(t).

First, we consider the “intensive margin”. Take a type t = t(y′, k) who chooses a non-zero

precision x > 0 under the best response. We show that the type must be arbitrarily close to

the marginal type ȳn = Pr(α|piv;σ′
n, n) as n → ∞.

Step 1 limn→∞ y′ − ȳn = 0.

Proof. Take the interval of types with intensity k that acquire information, [y−g (k), y
+
g (k)].

It is sufficient to show that the boundary types with y(t) ∈ {y−g (k), y+g (k)} converge to ȳn as

n → ∞. Take the indifference condition (65) that pins down the threshold of doubt of the

boundary type, y−g (k). The proof for the other boundary type is analogous. It follows from (15)

and (17) that the right hand side of (65) goes to 0 as n → ∞. This implies that χ(y−g (k)) → 1
2

for the threshold of doubt y(t) of the boundary type and for χ(y) = −(1−ȳn)y
ȳn(1−y)−(1−ȳn)y

However,

this is equivalent to y−g (k) → ȳn.

Next, we show that the precision of t(y′, k) is asymptotically equivalent to that of the

marginal type with the same total intensity k.

Step 2 x(t(y′, k)) ≈ x(t(ȳn, k)).

Proof. Recall that all types that choose a non-zero precision xn(t(y
′, k)) > 0, choose the

precision xn(t(y
′, k)) = x∗(t(y′, k);σ′

n, n) that solves their first-order condition (17). Using a

Taylor approximation of x∗(t(y′, k);σ′
n, n) ,

xn(t(y
′, k))− xn(t(ȳn, k)) = (ȳn − y′)

d

dy |y=ŷn(y′)

x∗(t(y, k);σ′
n, n) (71)

for some ŷn(y
′) ∈ [y′, ȳn]. Given (15) and (17),

d

dy |y=ŷn(y′)

x∗(t(y, k);σ′
n, n) = xn(t(ȳn, k))Mn(y

′) (72)

for Mn(y
′) =

d
dy |y=ŷn(y′)

[
e(y)

] 1
d−1

e(ŷn(y′))
1

d−1
and e(y) = ȳn(1 − y) + (1 − ȳn)y. By the chain rule of

differentiation, d
dy |y=ŷn(y′)

[
e(y)

] 1
d−1

= (1− 2ȳn)e(ŷn(y
′))

1
d−1−1. Hence,

Mn(y
′) =

(1− 2ȳn)

e(ŷn(y′))
. (73)

It follows from Step 1 that ŷn(y
′) → ȳn as n → ∞ for all y′. Thus,

lim
n→∞

max
y′:x(t(y′,k)>0

|Mn(y
′)| = lim

n→∞
| (1− 2ȳn)

e(ȳn)
| = lim

n→∞
| (1− 2ȳn)

2ȳn(1− ȳn)
|. (74)
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Since limn→∞ ȳn = ȳ ∈ (0, 1) by assumption, we have limn→∞ Mn(y
′) ∈ R for all y′. Combin-

ing (71) and (72),

x(t(y′, k)) = x(t(ȳn, k)) + x(t(ȳn, k))Mn(y
′)(ȳn − y′),

⇔ x(t(y′, k))

x(t(ȳn, k))
= 1 +Mn(y

′)(ȳn − y′). (75)

Finally, (75), the observation that limn→∞ Mn(y
′) ∈ R together with Step 1 implies Step 2.

Second, we consider the “extensive margin”. We show that the likelihood that a random

type with intensity k acquires some information x > 0 is asymptotically proportional to the

product of precision and likelihood of the marginal type. Denote by h(t|g, k) the density of a

type t conditional on t ∈ g and k(t) = k.

Step 3

Pr({t : xn(t) > 0}|g, k) ≈ h(t(ȳn, k)|g, k)xn(t(ȳn, k))e2(ȳn, d)

for e2(y, d) =
4(d−1)

d (1− y)y.

Proof. Using Taylor approximations of the conditional distribution of the threshold of doubt

at the threshold ȳn of the marginal type,

Pr({t : xn(t) > 0}|g, k) ≈ h(t(ȳn, k)|g.k)(y+g (k)− y−g (k)), (76)

where the types with threshold of doubt y(t) ∈ {y−g (k), y+g (k)} are the boundary types that

are indifferent between no information and choosing the precision x∗(t;σ′
n, n) that solves the

first-order condition (17). Recall the indifference conditions

1

2
+ χ(y−g (k)) = x∗(t(y−g (k), k);σ

′
n, n)

d− 1

d
, (77)

1

2
+ χ(y+g (k)) = −x∗(t(y+g (k), k);σ

′
n, n)

d− 1

d
; (78)

see, for example, (22). Taylor approximations of the function χ yield χ(y) ≈ χ(ȳn)+χ′(ȳn)(y−
ȳ) for y ∈ {y−g (k), y+g (k)}. Since χ(ȳn) = − 1

2 , these approximations together with the indiffer-

ence conditions yield

χ′(ȳn)
[
y−g (k)− ȳn

]
≈ (d− 1)

d
x∗(t(y−g (k), k);σ

′
n, n), (79)

χ′(ȳn)
[
ȳn − y+g (k)

]
≈ (d− 1)

d
x∗(t(y+g (k), k);σ

′
n, n). (80)

Recall (68), that is, χ′(ȳn) = − 1
2ȳn(1−ȳn)

. Hence, (76)-(80) and Step 2 together imply Step 3.

We combine Step 2 and Step 3 to prove the next step.

Step 4 E(xn(t(y, k))|g, k) ≈ h(t(ȳn, k)|g, k)xn(t(ȳn, k))
2e2(ȳ, d).

Proof. We rewrite the conditional expectation in integral form,

E(xn(t(y, k))|g, k) =
∫
t:xn(t)>0

xn(t)dH(t|g, k). (81)
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Given Step 2, for any t with xn(t) > 0, we have xn(t) = (1 + ϵn(t))xn(t(ȳn, k)) for some

sequence ϵn(t) that converges to zero as n → ∞. Hence,

E(xn(t(y, k))|g, k)

= xn(t(ȳn, k)) Pr({t : xn(t) > 0}|g, k) + xn(t(ȳn, k))

∫
t:xn(t)>0

ϵn(t)dH(t|g, k). (82)

Further,

|
∫
t:xn(t)>0

ϵn(t)dH(t|g, k)|

≤
∫
t:xn(t)>0

|ϵn(t)|dH(t|g, k)

≤ Pr({t : x(t) > 0}|g, k)Mn(y
+
g (k)− y−g (k)), (83)

for Mn = maxy′∈[y−
g (k),y+

g (k)] |Mn(y
′)|. The first inequality follows from an application of the

triangle inequality. For the second inequality, we use that ϵn(t) = Mn(y
′)(ȳn − y′) given

(75). Further, we use that y′ and ȳn lie in the interval [y−g (k), y
+
g (k)] of types that choose

to acquire information. Step 1 implies y+g (k) − y−g (k) → 0, as n → ∞. Since limn→∞ Mn ∈
R (recall (74) and the observation thereafter), Mn(y

+
g (k) − y−g (k)) → 0 as n → ∞. So,

|
∫
t:xn(t)>0

ϵn(t)dH(t|g, k)| → 0, given (83). Combining this with (82),

E(xn(t(y, k))|g, k) ≈ xn(t(ȳn, k)) Pr({t : x(t) > 0}|g, k). (84)

Using Step 3,

E(xn(t(y, k))|g, k) ≈ x2
n(t(ȳn, k))h(t(ȳn, k)|g, k)e2(ȳn, d). (85)

Recall (30) for t = t(ȳn, k), which states that the marginal type’s precision is proportional

to a power of the pivotal likelihood and the power k
1

d−1 of the total intensity. Combining (30)

and Step 4,

E(xn(t(y, k))|g, k)
Pr(piv|σn, n)

2
d−1

≈
[
h(t(ȳn, k)|g, k)k

2
d−1

]
e3(ȳn, d). (86)

for e3(ȳn, d) = e2(ȳ, d)(2ȳn)
2

d−1 . In other words, fixing k, the mean precision of a type in the

interest group is proportional to the likelihood of the marginal type and the intensity to the

power κ = 2
d−1 . We integrate over k:
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lim
n→∞

E(xn(t(y, k))|g)
Pr(piv|σn, n)

2
d−1

= lim
n→∞

E(E(xn(t(y, k))|g, k)|g)
Pr(piv|σn, n)

2
d−1

= lim
n→∞

∫
k

h(k|g)E(xn(t(y, k))|g, k)
Pr(piv|σn, n)

2
d−1

dk

=

∫
k

lim
n→∞

h(k|g)E(xn(t(y, k))|g, k)
Pr(piv|σn, n)

2
d−1

dk

=

∫
k

lim
n→∞

h(k|g)h(t(ȳn, k)|g, k)k
2

d−1 e3(ȳn, d)dk

= e3(ȳ, d)

∫
k

h(k|g)h(t(ȳ, k)|g, k)k
2

d−1 dk

= e3(ȳ, d)

∫
k

h(ȳ|g)h(t(ȳ, k)|g, ȳ)k
2

d−1 dk

= e3(ȳ, d)h(ȳ|g)E(k
2

d−1 |g, ȳ). (87)

The first equality follows from the iterated law of expectations. The second equality restates

the conditional expectation as an integral. The third equality follows from an application of

the dominated convergence theorem. For the fourth equality, we use (86). The fifth equality

follows from ȳn → ȳ as n → ∞ and since h(−|g, k) is continuous. The sixth equality follows

since Bayes law implies h(k|g)h(t(ȳ, k)|g, k) = h(t(ȳ, k)|g, ȳ)h(ȳ|g). The last inequality rewrites

the integral as a conditional expectation.

Finally, the state-dependent intensity of the limit marginal types t(ȳ, k) is linear in the

total intensity, tα = k(1−ȳ); compare to (4) and (5). So, E(k
2

d−1 |g, ȳ) = E(t
2

d−1
α |g, ȳ)(1−ȳ)

2
d−1 .

Together with (87) and E(xn(t(y, k))|g) = 1
h(g)

∫
t∈g

xn(t)dH(t), this shows (29).

G Proof of Theorem 1: Remaining cases

In the main text, we have provided the proof of the first item of Theorem 1 for the case when

W (κ, L, α) < W (κ,C, α).

Here, we finish the proof of Theorem 1. First, an auxiliary result. This auxiliary result

generalizes the observation illustrated in Figure 5b.

Lemma 8 Let d > 1 and t ∈ [0, 1]. Take (qt
n)n∈N as in Lemma 4. If |qtn(α)− 1

2 | ≥ ϵ for all n

and some ϵ > 0, then,

lim
n→∞

|q(α;σqt
n)− qtn(β)|

s(α;qt
n)

= 0. (88)

Proof. Suppose that the vote share of A in α, qtn(α), is bounded away from 1
2 by some

positive constant. Given (35), the same is true for qtn(β). As a consequence, the incentives

to acquire information are small. In fact, the pivotal likelihood becomes exponentially small,

given (26), and so the precision of any voter type under the best response; see (17). Given so

little information acquisition, the vote shares of the best response do not differ by a standard

deviation, as n → ∞; that is, (88) holds.49

49Here, recall that the standard deviation of the vote share is of the order of 1√
n
, s(ω;qn) =
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In the following, let d > 3.

First item of Theorem 1. The following case is left:

Case 2 W (κ, L, α) > W (κ,C, α).

Take ϵ,∆ > 0 as in Lemma 4 and let the electorate be sufficiently large so that the map

vn and the vote share pairs qt
n are defined for the case (x(α), x(β)) = (1, 0).

Recall from Lemma 4 that q0n(α) =
1
2 +∆nn

− 1
2 . Thus, (35) implies limn→∞

1
2−qtn(β)

s(α;σqt
n )

∈ R.

Since q0
n solves (34), it holds q0n(β) = q(β;σq0

n). Hence,

lim
n→∞

q0n(α)− q(β;σq0
n)

s(α;σqt
n)

∈ R. (89)

The condition of Lemma 5 is satisfied, so that Lemma 5 yields

lim
n→∞

|q(α;σq0
n)− q0n(β)|

s(α;q0
n)

= ∞. (90)

Note that if W (L, κ, α) > W (C, κ, α), Lemma 3 and (31) together imply that for any qn and

n large enough,

q(α;σqn) > q(β;σqn). (91)

Together, (89) - (91) imply that

v̂n(0) = q0n(α)− q(α;σq0
n) < 0 (92)

for n large enough. Recall from Lemma 4 that q1n(α) =
1
2 + ϵ. Given (35), q1n(β) → 1

2 − ϵ and,

given Lemma 8, qn(α;σ
q1
n) → 1

2 − ϵ, as n → ∞. Together,

v̂n(1) = q1n(α)− q(α;σq1
n) > 0 (93)

for n large enough.

Finally, using (92)- (93), an application of the intermediate value theorem shows that there

is t ∈ (0, 1) so that qt
n solves (33). Recall that qt

n also solves (34), by construction. Thus σqt
n

is an equilibrium. Further, it must be that limn→∞
qtn(α)− 1

2

s(α;qt
n)

= ∞ since otherwise (92) holds

as we just argued. Hence, also limn→∞
1
2−qtn(β)

s(β;qt
n)

= ∞, given (35). So, the distance of the vote

shares to the majority threshold becomes arbitrarily large in terms of standard deviations,

which implies that B gets elected in β and A in α as n → ∞, given (24). Thus, the outcome

preferred by the aligned is elected in all states, as claimed in the first item of Theorem 1.

Second item of Theorem 1. We present the proof for one case only. In the case

presented, the outcome that is preferred by the minority given the prior beliefs is elected in all

states. For the other cases, the proof is completely analogous.

(2n+ 1)−
1
2 (qn(ω)(1− qn(ω)))

1
2 .
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Case 1 W (κ, L, α) < W (κ,C, α) and Ψ(Pr(α)) < 1
2 .

Take ϵ,∆ > 0 as in Lemma 4 and let the electorate be sufficiently large so that the map η̂n

and the vote share pairs qt
n are defined for the case (x(α), x(β)) = (1, 1).

Recall from Lemma 4 that q0n(α) =
1
2 +∆nn

− 1
2 . Thus, (35) implies limn→∞

1
2−qtn(β)

s(α;σqt
n )

∈ R.

Since q0
n solves (34), it holds q0n(β) = q(β;σq0

n). Hence,

lim
n→∞

q0n(α)− q(β;σq0
n)

s(α;σq0
n)

∈ R. (94)

The condition of Lemma 5 is satisfied, so that Lemma 5 yields

lim
n→∞

|q(α;σqt
n)− qtn(β)|

s(α;qt
n)

= ∞. (95)

Note that if W (L, κ, α) < W (C, κ, α), Lemma 3 and (31) together imply that for any qn and

n large enough,

q(α;σqn) < q(β;σqn). (96)

Together, (94) - (96) imply that

v̂n(0) = q0n(α)− q(α;σq0
n) > 0 (97)

for n large enough.

Recall from Lemma 4 that q1n(α) = 1
2 + ϵ. We claim that q1n(β) is multiple standard

deviations larger than q1n(α) when n is large, that is,

lim
n→∞

q1n(β)− q1n(α)

s(α;q1
n)

> 0. (98)

For the case x(β) = 1, by construction, q1n(β) >
1
2 . Then, (35) implies limn→∞ q1n(β) =

1
2 + ϵ.

Given (27), it must therefore hold that

lim
n→∞

Pr(α|piv;q1
n) = Ψ−1(

1

2
+ ϵ). (99)

Given (32), limn→∞
Pr(α|piv;q1

n,n)
Pr(β|piv;q1

n,n)
= Pr(α)

Pr(β)
ϕ(δn(α;q

1
n))

ϕ(δn(β;q1
n))

.50 Thus, (99), the assumption Ψ(Pr(α)) <
1
2 and that Ψ is strictly increasing together imply that

lim
n→∞

ϕ(δn(α;q
1
n))

ϕ(δn(β;q1
n))

> 1. (100)

This is equivalent to

lim
n→∞

e−
1
2 (δn(α;q

1
n)

2−δn(β;q
1
n)

2) > 1,

⇔ lim
n→∞

δn(β;q
1
n)

2 − δn(α;q
1
n) > 0, (101)

50See also Appendix K for a comprehensive lemma on the voter’s pivotal inference.
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Now, note that the earlier observation limn→∞ q1n(β) = limn→∞ q1n(α) =
1
2+ϵ implies limn→∞

s(α;qt
n)

s(β;qt
n)

=

1, recalling that s(ω;q1
n) = (2n+ 1)−

1
2 (qn(ω)(1− q1n(ω)))

1
2 . Thus, (101) is equivalent to (98),

given the definition of δn(ω;σn) in (23).

Since the conditions of Lemma 8 are satisfied for t = 1, the lemma implies

lim
n→∞

q(α;σq1
n)− q(β;σq1

n)

s(α;q1
n)

= 0. (102)

Then, (98), (102), and the property q1n(β) = q(β;σq1
n) of q1n(β) together imply

v̂n(1) = q1n(α)− q(α;σq1
n) < 0 (103)

for n large enough.

Finally, using (97) and (103), an application of the intermediate value theorem shows that

there is t ∈ (0, 1) so that qt
n solves (33). Recall that qt

n also solves (34), by construction. Thus

σqt
n is an equilibrium. Further, it must be that limn→∞

qtn(α)− 1
2

s(α;qt
n)

= ∞ since otherwise (97)

holds as we just argued. Hence, also limn→∞
qtn(β)− 1

2

s(β;qt
n)

= ∞, given (35). So, the distance of the

vote shares to the majority threshold becomes arbitrarily large in terms of standard deviations,

which implies that A gets elected in both states as n → ∞, given (24). Since Ψ(Pr(α)) < 1
2 ,

this is the outcome that is preferred by a minority given the prior beliefs. Hence, outcomes

are as claimed in the second item of Theorem 1.

H Proof of Theorem 2

Existence of non-informative equilibrium sequences. Recall that equilib-

rium can be alternatively characterized in terms of the vector of the expected vote shares

of outcome A in state α and β; see (33) and (34). Let Qϵ,n be the set of vote share pairs

qn = (qn(α), qn(β)) satisfying

|qn(α)− qn(β)| ≤
1

n2
, (104)

and

|qn(ω)−
1

2
| > ϵ (105)

for ω ∈ {α, β}. We claim that when ϵ > 0 is small enough and n ∈ N large enough, the best

response is a self-map on Qϵ,n,

qn ∈ Qϵ,n ⇒ q(σqn) ∈ Qϵ,n. (106)

Take a sequence of candidate equilibrium vote shares qn ∈ Qϵ,n. The first condition (104)

implies that the voters do not learn anything about the state from conditioning on being

pivotal,

lim
n→∞

Pr(piv|α;qn, n)

Pr(piv|β;qn, n)
= 1. (107)

49



To see why, note that limn→∞
Pr(piv|α;qn,n)
Pr(piv|β;qn,n)

= limn→∞
ϕ(δn(α;qn))
ϕ(δn(β;qn))

, given (32). Further, limn→∞ δn(α;qn)−
δn(β;qn) = 0, given that qn ∈ satisfies (104).51 Thus, limn→∞

ϕ(δn(α;qn))
ϕ(δn(β;qn))

= 1 since the density

ϕ of the standard normal is continuous.

The second condition (105) implies that the pivotal likelihood becomes exponentially small

as n → ∞, as can be seen from (26). Hence, also the precision of any voter type under the

best response becomes exponentially small, given (17), and, further, the distance of the best

response’s vote share in α to the vote share in β, given (31). We see that the vote shares of

the best response again satisfy (104) when n is large. Further, they converge to

lim
n→∞

qn(ω) = lim
n→∞

Ψ(Pr(piv|qn, n)), (108)

given (27). Since Ψ is continuous, (107) and (108) imply limn→∞ qn(ω) = Ψ(Pr(α)) for ω ∈
{α, β}. Given the assumption Ψ(Pr(α)) ̸= 1

2 of Theorem 2, there is ϵ > 0 small enough so

that (105) holds when n is large enough. We conclude that the best reponse is a self-map on

the set Qϵ,n of vote shares satisfying (104) and (105), when n is sufficiently large and ϵ > 0

sufficiently small.

An application of Kakutani’s fixed point theorem yields a sequence of equilibrium vote

shares in Qϵ,n, and any such equilibrium sequence must satisfy (108): As we have just shown,

this is a property of the best response to vote shares in Qϵ,n. Since any informative equilibrium

sequence must, however, satisfy (25), we conclude, that the sequence of equilibrium vote shares

corresponds to a non-informative equilibrium sequence.

Properties of non-informative equilibrium sequences. Suppose that an equi-

librium sequence is not informative, which means that limn→∞ δn(α;σn)−δn(β;σn) = 0, given

the definition of informativeness in Section 3.2.1. The non-informativeness implies that the

voters do not learn anything about the state from conditioning on being pivotal,

lim
n→∞

Pr(α|piv;σn, n) = Pr(α). (109)

This is because limn→∞
Pr(α|piv,σn,n)
Pr(α|piv,σn,n)

= ϕ(δn(α;σn))
ϕ(δn(β;σn))

, given (32), and since limn→∞ δn(α;σn) −
δn(β;σn) = 0 implies limn→∞

ϕ(δn(α;σn))
ϕ(δn(β;σn))

= 1 since the density of the standard normal is

continuous. Then, it follows from (27) that

lim
n→∞

qn(ω) = Ψ(Pr(α)) (110)

for ω ∈ {α, β}. The weak law of large numbers implies that limn→∞ Pr(A|σn, n) = 1 if

Ψ(Pr(α)) > 1
2 and limn→∞ Pr(B|σn, n) = 1 if Ψ(Pr(α)) < 1

2 .

I Non-monotone type distributions

In the main text, we have provided the analysis for the setting in which preferences are “mono-

tone”. When Ψ is non-monotone, there may be multiple p̄ ∈ (0, 1) for which Ψ(p̄) = 1
2 . This

51Here, recall that δn(ω;σn) is the distance of the vote share to n
2n+1 in terms of standard

deviations s(ω;σn) =

√
q(ω;σn)(1−q(ω;σn))√

2n+1
; see (23).
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motivates the definition of a local κ-index, defined in the same way as W (κ, g, ω) in (28), but

which depends on the selection of p̄ satisfying Ψ(p̄) = 1
2 . For any p̄ ∈ (0, 1) satisfying Ψ(p̄) = 1

2 ,

and any κ > 0, the local κ-index of an interest group g ∈ {L,C} at p̄ in ω ∈ {α, β} is

W (κ, g, ω, p̄) = h(g)h(p̄|g) E(||tω||κ|g, p̄, ω)︸ ︷︷ ︸
κ-measured intensity

, (111)

where h(p̄|g) is the conditional density of the threshold of doubt y(t) = p̄ and E(−|g, p̄) the

conditional expectation operator that conditions on the types of an interest group g with

threshold of doubt y(t) = p̄.

For any p̄ with Ψ(p̄) = 1
2 and Ψ′(p̄) ̸= 0, statements similar to those of Theorem 1 hold,

where the local index W (κ, g, ω, p̄) takes the role of the κ-index W (κ, g, ω). The formal results

are stated in Theorem 3. We omit the proof since it is completely analogous to the proof of

Theorem 1.

Theorem 3 Let d = limx→0
c′(x)x
c(x) > 3 and κ = 2

d−1 . Take any preference distribution H

such that Ψ satisfies the richness condition (3). Take any p̄ ∈ (0, 1) for which Ψ(p̄) = 1
2 and

Ψ′(p̄) ̸= 0.

1. There is an equilibrium sequence in which the policy preferred by the interest group

(aligned or contrarians) with the higher local κ-index at p̄ is elected with probability

converging to 1 as n → ∞.

2. If Ψ(Pr(α)) ̸= 1
2 , there is an equilibrium sequence in which the policy A is elected with

probability converging to 1 as n → ∞ if Pr(α) > p̄ and W (C, g, α, p̄) < W (L, g, α, p̄) or if

Pr(α) < p̄ and W (C, g, α, p̄) > W (L, g, α, p̄). There is an equilibrium sequence in which

the policy B is elected with probability converging to 1 if Pr(α) > p̄ and W (C, g, α, p̄) >

W (L, g, α, p̄) or if Pr(α) < p̄ and W (C, g, α, p̄) < W (L, g, α, p̄).

One important implication of this generalization is that it may happen that the order of

the local index of the interest groups varies with p̄. Then, there are informative equilibrium

sequences for which one interest group wins the election with probability converging to 1 as

n → ∞, but also other informative equilibrium sequences in which the other group wins.52

J Literature: Attention in electoral competi-

tion models

Several papers have analyzed how the electoral competition between politicians is affected

by the voters’ limited attention to politics (see, for example, Matějka and Tabellini, 2021;

Yuksel, 2021). A central finding in Matějka and Tabellini (2021) is that politicians cater more

52These results are reminiscent of known results about equilibrium multiplicity for the model
with exogenous information: Take the baseline setting from Section 3. If citizens were to
receive costless, binary, conditionally i.i.d. signals about the state with an exogenous precision
of 0 < x < 1

2 and if Ψ is non-monotone and not constant on any open interval, it is known that
there is a multiplicity of equilibrium sequences, some of which do not aggregate information
(Bhattacharya, 2013).
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to the voters with more extreme ideal policies. The intuition is that these voters will pay

more attention and be more responsive to marginal changes in the equilibrium policy since

these changes will affect them more strongly (for example, because of utilities with quadratic

loss). The politicians anticipate the voter response and consequently put more weight on

voters with extreme ideal policies in their decisions. The analysis of the model in this paper

brings forward a rival intuition: Voters with extreme prior beliefs, or with preferences that

are extremely biased towards one policy, have low incentives to acquire costly information

since the information is unlikely to change their opinion about which policy or candidate to

vote for. However, election outcomes in the informative equilibria are driven by the costly

informational efforts of the citizens (compare to Theorem 1). In this sense, extreme voter

types matter little for outcomes in our model. The difference in these observations is due to

policies being endogenous, continuous choices of politicians on the one hand, and coarse and

exogenous primitives on the other hand. The latter modeling choice follows the tradition of

the literature on social choice and on information aggregation in elections.

K Voter inference

Lemma 9 Consider any sequence of strategies (σn)n∈N.

1. If limn→∞
∣∣q(α;σn)− 1

2

∣∣ < limn→∞
∣∣q(β;σn)− 1

2

∣∣, then, limn→∞
Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= ∞.

2. If limn→∞
∣∣q(α;σn)− 1

2

∣∣ > limn→∞
∣∣q(β;σn)− 1

2

∣∣, then, limn→∞
Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= 0.

3. If limn→∞
∣∣q(α;σn)− 1

2

∣∣ = limn→∞
∣∣q(β;σn)− 1

2

∣∣ and δn(α;σn)−δn(β;σn) converges in

the extended reals R̄ = R∪{∞,−∞}, then, limn→∞
Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= limn→∞
ϕ(δn(α;σn))
ϕ(δn(β;σn))

∈
R̄, where ϕ is the density of the standard normal distribution.

Proof. Let

kn =
q(α;σn)(1− q(α;σn))

q(β;σn)(1− q(β;σn))
.

From (6), Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= (kn)
n
. The function q(1− q) has an inverse u-shape on [0, 1] and is

symmetric around its peak at q = 1
2 . Therefore, limn→∞

∣∣q(α;σn)− 1
2

∣∣ < limn→∞
∣∣q(β;σn)− 1

2

∣∣
implies that limn→∞ kn > 1. So, limn→∞ (kn)

n
= ∞. Similarly, limn→∞

∣∣q(α;σn)− 1
2

∣∣ >

limn→∞
∣∣q(β;σn)− 1

2

∣∣ implies that limn→∞ kn < 1. So, limn→∞ (kn)
n
= 0.

It remains to prove the third item. For this, recall the definitions of s(ω;q(σn)) and define

δ̂n(ω;σn) =
(q(ω;σn)− 1

2 )

s(ω;q(σn))

= (2n+ 1)
1
2

q(ω;σn)− 1
2

(q(ω;σn)(1− q(ω;σn)))
1
2

. (112)
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The ratio of the likelihoods of the pivotal event in the two states is

Pr(piv|α;σn, n)

Pr(piv|β;σn, n)

=
[q(α;σn)(1− q(α;σn))

q(β;σn)(1− q(β;σn))

]n
=

[
1− q(α;σn)(1− q(α;σn))− q(β;σn)(1− q(β;σn))

q(β;σn)(1− q(β;σn))

]n
=

[
1−

( 12 + (q(β;σn)− 1
2 ))(

1
2 − (q(β;σn)− 1

2 ))− ( 12 + (q(α;σn)− 1
2 ))(

1
2 − (q(α;σn)− 1

2 ))

q(β;σn)(1− q(β;σn))

]n
=

[
1−

(q(α;σn)− 1
2 )

2 − (q(β;σn)− 1
2 )

2

q(β;σn)(1− q(β;σn))

]n
=

[
1− 1

2n+ 1
(
q(α;σn)(1− q(α;σn))

q(β;σn)(1− q(β;σn))
ˆδ;σnn(α)

2 − δ̂n(β;σn)
2
]n

. (113)

For the first equality, we used (6). For the fourth equality, we used the third Binomial formula.

For the last equality, we used (112).

Case 2 limn→∞ δn(α;σn)− δn(β;σn) ∈ R.

Let

xn =
q(α;σn)(1− q(α;σn))

q(β;σn)(1− q(β;σn))
δ̂n(α;σn)

2 − δ̂(β;σn)
2. (114)

Then,

Pr(piv|α;σn, n)

Pr(piv|β;σn, n)
=

[
(1− 1

2n+ 1
xn)

n − e−
1
2xn

]
+ e−

1
2xn . (115)

Using the Lemmas 4.3 and 4.4 of Durrett (1991), for all n ∈ N,

|(1− xn

(2n+ 1)
)n − e−

1
2xn | ≤

( 12xn)
2

n3
. (116)

Note that the limit behaviour of δn(α) − δn(β) is the same as that of δ̂n(α) − δ̂n(β), that is,

limn→∞ δn(α) − δn(β) ∈ R is equivalent to limn→∞ δ̂n(α) − δ̂n(β) ∈ R. Since we assumed

limn→∞ δn(α) − δn(β) ∈ R, we see that limn→∞ xn ∈ R, so that
x2
n

(2n+1)3 → 0 as n → ∞.

Consequently,

lim
n→∞

Pr(piv|α;σn, n)

Pr(piv|β;σn, n)
= lim

n→∞
e−

1
2xn

= elim− 1
2xn

= lim
n→∞

ϕ(δn(α;σn))

ϕ(δn(β;σn))
. (117)

For the equality on the last line we used the definitions of δn(ω;σn) and δ̂n(ω;σn) and that

the assumption limn→∞ limn→∞
∣∣q(α;σn)− 1

2

∣∣ = limn→∞
∣∣q(β;σn)− 1

2

∣∣ of the third item of

Lemma 9 is equivalent to limn→∞
q(α;σn)(1−q(α;σn))
q(β;σn)(1−q(β;σn))

= 1 for the equality on the last line; this

is true because the function h(q) = q(1− q) is symmetric around 1
2 .
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Case 3 limn→∞ δn(α)− δn(β) = ∞.

Then, for any x > 0, there is n̄(x) ∈ N so that for all n ≥ n̄(x), it holds that xn

2n+1 ≥ x
n with

xn given by (114). Thus, given (113),

lim
n→∞

Pr(piv|α;σn, n)

Pr(piv|β;σn, n)
≤ lim

n→∞
(1− x

n
)n

= e−x (118)

for all x > 0. We conclude that limn→∞
Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= 0. The claim follows since limn→∞
ϕ(δn(α))
ϕ(δn(β))

=

limn→∞ e−
1
2 (δn(α)

2−δn(β)
2) = 0, given limn→∞ δn(α)− δn(β) = ∞.

Case 4 limn→∞ δn(α)− δn(β) = −∞.

Then, for any x < 0, there is n̄(x) ∈ N so that for all n ≥ n̄(x), it holds that xn

2n+1 ≤ x
n . Thus,

given (113),

lim
n→∞

Pr(piv|α;σn, n)

Pr(piv|β;σn, n)
≥ lim

n→∞
(1− x

n
)n

= e−x (119)

for all x < 0. We conclude that limn→∞
Pr(piv|α;σn,n)
Pr(piv|β;σn,n)

= ∞. The claim follows since limn→∞
ϕ(δn(α))
ϕ(δn(β))

=

e−
1
2 (δn(α)

2−δn(β)
2) = ∞, given limn→∞ δn(α)− δn(β) = −∞.
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