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Abstract

We study sequential bargaining between a proposer and a veto player. Both have

single-peaked preferences, but the proposer is uncertain about the veto player’s ideal

point. The proposer cannot commit to future proposals. When players are patient,

there can be equilibria with Coasian dynamics: the veto player’s private informa-

tion can largely nullify proposer’s bargaining power. Our main result, however, is

that there are also equilibria in which the proposer obtains the high payoff that he

would with commitment power. The driving force is that the veto player’s single-

peaked preferences give the proposer an option to “leapfrog”, i.e., to secure agreement

from only low-surplus types early on to credibly extract surplus from high types later.

Methodologically, we exploit the connection between sequential bargaining and static

mechanism design.
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1. Introduction

“If the Congress returns the bill having appropriately addressed these concerns, I

will sign it. For now, I must veto the bill.”1

— President Barack Obama

An important feature of U.S. politics is that legislatures (e.g., the Congress or a State

Assembly) send bills to executives (e.g., the President or a Governor) who can veto them,

and conversely, executives must secure confirmation from legislatures for certain appoint-

ments (e.g., to the Supreme Court and the Federal Reserve Board). More broadly, there are

many contexts in which one party or group makes proposals and another decides whether

to approve them. For instance, search committees put forward candidates for approval by

their organizations, Boards of Directors may require sign-off from shareholders on certain

initiatives, and some public school districts require citizens to ratify the budget proposed by

their school boards.

In an influential paper, Romer and Rosenthal (1978) introduced a framework to study

veto bargaining, i.e., bargaining over a one-dimensional policy between two players who have

single-peaked preferences. Only one player, Proposer, has the power to make proposals;

the other player, Vetoer, decides whether to accept a proposal or reject it and preserve

the status quo. Romer and Rosenthal assumed complete information—specifically, Proposer

knows Vetoer’s preferences—and a single take-it-or-leave-it proposal. These are important

benchmarks, but for many applications both assumptions ought to be relaxed: Proposer may

be uncertain about Vetoer’s preferences, and, as illustrated in our epigraph, Proposer can

make sequential proposals.

Sequential veto bargaining with incomplete information presents rich possibilities for

learning and signaling. When a proposal is rejected, Proposer updates about Vetoer’s pref-

erences and might modify his proposal in response. Anticipating that, Vetoer has an incentive

to strategically reject proposals that she prefers over the status quo in order to extract pro-

posals she likes even more. (Consider our epigraph, again.) But then, to what extent does

Proposer actually benefit from making multiple proposals?

Existing work on these issues primarily undertakes only a two-period analysis (e.g.,

Cameron, 2000, pp. 110-116; Cameron and McCarty, 2004, Section 4.).2 But there are

limitations to models with a short bargaining horizon. On the one hand, being able to make

1 Closing of Obama’s Veto Message when he vetoed H.R. 1777.
2 We discuss two exceptions, Romer and Rosenthal (1979) and Cameron and Elmes (1994), in Section 5.
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proposals repeatedly may allow Proposer to reap benefits from screening Vetoer’s type finely.

On the other hand, a short horizon confers artificial commitment power to Proposer.

The implications of a long horizon have been studied in the neighboring arena of bar-

gaining between a seller and a buyer with privately-known valuation. There, following the

classic Coase Conjecture (Coase, 1972), it has been shown that if offers can be made indefi-

nitely and players are patient, then absence of commitment wipes out the seller’s bargaining

power. The outcome is (approximately) that the buyer only pays her lowest possible valua-

tion so long as it is common knowledge that there are gains from trade.3 Applying Coasian

logic to veto bargaining would suggest that because sequential rationality compels Proposer

to repeatedly moderate future proposals, an inability to commit would significantly hurt

Proposer.

Accordingly, the goal of our paper is to study sequential veto bargaining with incomplete

information in an infinite-horizon model with patient players. Our main result is that,

contrary to a Coasian intuition, the lack of commitment need not harm Proposer. More

specifically, we establish that under certain conditions, if players are patient, Proposer can

achieve a payoff that is arbitrarily close to his payoff with commitment power (Theorem 1).

Central to this result is Proposer’s ability to leapfrog : he may initially propose a policy

that is far from his own interests, targeting acceptance by “low” Vetoer types whose ideal

points are further away from his and closer to the status quo. Upon rejection, Proposer

concludes that Vetoer’s ideal point is closer to his own preferred policy. He is then able to

extract surplus from these “high” types because it is then credible to only offer policies that

are even closer to his own ideal point. Put differently, by securing initial acceptance from

(only) low types, leapfrogging limits the implications of sequential rationality for subsequent

policy moderation, so much so that Proposer is not harmed by the lack of commitment.

Leapfrogging is an equilibrium phenomenon that does not arise in existing sequential

bargaining models. It emerges from Vetoer’s single-peaked preferences, which allows for

policies that low types are willing to accept and high types are not, given suitable subsequent

policy proposals. By contrast, in the canonical models of seller-buyer bargaining, all buyer

types prefer low to high prices. Offering low prices early on to subsequently charge high-

value buyers a higher price would be futile; indeed, any equilibrium in seller-buyer bargaining

features decreasing prices with the so-called skimming property: the current price is always

3 This point has been established for the “gap case” and, subject to a “stationary equilibirum” qualifica-
tion, also for the “no gap case” (Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986).
Ausubel and Deneckere (1989b) provide an important counterpoint in the no gap case with non-stationary
equilibria.
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accepted by an interval of the highest-value buyer types.

After presenting our model in Section 2, we use a two-type example in Section 3 to

develop the logic of leapfrogging. We first show how the option to leapfrog implies that, if

an equilibrium exists, there is one that achieves a high Proposer payoff. Our option-based

argument is succinct, but leaves open whether and how leapfrogging can be supported in

an equilibrium. Accordingly, we also explicitly construct a high Proposer payoff equilibrium

that uses leapfrogging (Proposition 1).

We turn in Section 4 to a setting with a continuum of types and Vetoer preferences given

by a quadratic loss function. As is familiar in sequential bargaining, an upper bound on

Proposer’s payoff when he can commit to a strategy in the dynamic game is provided by

an auxiliary static mechanism design problem (Lemma 1). This static problem has been

studied recently by Kartik, Kleiner, and Van Weelden (2021); we assume that what they call

“interval delegation” is an optimal mechanism. Theorem 1 then establishes our main result:

the static mechanism design payoff can be (approximately) achieved in a sequential veto

bargaining equilibrium. Our argument is non-constructive, but crucially exploits Proposer’s

option to leapfrog in the dynamic game and certain properties of the optimal mechanism

(Lemma 3). Combining Lemma 1 and Theorem 1, we conclude that Proposer’s maximum

equilibrium payoff in our environment is the same as what he could obtain with commitment.

In Section 4.4 we show that there can be a genuine multiplicity of equilibrium outcomes.

Specifically, under some conditions, there is also an equilibrium featuring the Coasian analog

mentioned earlier: Proposer starts with demanding proposals but compromises rapidly, so

much so that Vetoer (approximately) gets her ideal point unless it is sufficiently extreme

(Proposition 2). In this equilibrium, Proposer largely delegates choice to Vetoer and is

unable to exploit his bargaining or agenda-setting power. In some cases this outcome is a

lower bound on Proposer’s equilibrium payoff, and an upper bound on Vetoer’s. The range

of payoffs that can be supported across equilibria suggests the role of “norms”—equilibrium

selection—in veto bargaining. In particular, if the norm favors Proposer, then the ability

to make multiple proposals is always valuable to Proposer; however, under an unfavorable

norm, in some environments Proposer could be worse off than if he could only make a single

take-it-or-leave-it offer.

Section 5 concludes by relating our work to the existing literature on veto and Coasian

bargaining.
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2. Model

Two players, Proposer (he) and Vetoer (she) jointly choose a policy or action a ∈ R.

In each period t = 0, 1, 2, . . ., so long as agreement has not already been reached, Proposer

makes a proposal at ∈ R that Vetoer can accept or reject. The game ends when Vetoer

accepts a proposal. Both players share a common discount factor δ ∈ [0, 1). If agreement

is reached in some period T on action aT , with T =∞ if there is no agreement, Proposer’s

payoff is δTu(aT ) and Vetoer’s is δTuV (aT , v). The variable v ∈ R in Vetoer’s payoff is

her private information, or type, drawn ex ante from some cumulative distribution F . We

interpret the players’ payoffs as arising from flow utilities u and uV when a status-quo policy 0

is implemented in every period from 0 to T − 1 and the agreement policy aT is implemented

forever starting from period T , with a normalization that both players’ utilities from the

status quo is 0. That is, a player’s utility from a policy is his/her gain from that policy

relative to the status quo. We assume u(a) and uV (a, v) are respectively strictly decreasing4

in |1 − a| and |v − a|, so that both players have single-peaked preferences with 1 being

Proposer’s ideal point and v being Vetoer’s. Our main result (Theorem 1 in Section 4)

allows Proposer’s utility u to be any concave function but assumes that uV is quadratic loss.

A history in this game is a sequence of proposals. A strategy for Proposer is a function

that assigns to every history a probability distribution over proposals, interpreted as the

(possibly random) proposal Proposer makes given that all proposals in the history have

been rejected. A strategy for Vetoer is a function that specifies for each history and each

type the probability of accepting the last proposal. Our equilibrium concept is a standard

version of Perfect Bayesian Equilibrium: both players play sequentially rationally and beliefs

are updated by Bayes rule whenever possible—upon rejection of a proposal at any history,

Proposer’s belief about Vetoer’s type is updated by Bayes rule if rejection has positive

probability given Proposer’s belief at that history. We also require, as usual, that Proposer’s

proposals do not (directly) affect his beliefs about Vetoer’s type.

Although our model formally has a single veto player, it can also be applied to settings

in which Proposer has to secure approval from committee of voters; so long as Proposer

observes only whether his proposal passes or not, Vetoer can be interpreted as the median

member of the committee.

4 We adopt the convention that “decreasing”, “larger than”, “prefers”, etc., should be understood in the
weak sense unless explicitly qualified by “strict”.
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3. Two-Type Example

This section presents an example to illustrate the logic of leapfrogging and how Proposer

can obtain a high payoff despite lacking commitment. The example has linear loss functions

and a binary type distribution. Accordingly, for this section take

u(a) = 1− |1− a| and uV (a, v) = v − |v − a|,

where the constants are determined by our normalization that both Proposer’s and Vetoer’s

payoffs from the status quo (action 0) are 0. For simplicity, we assume in this section that

Proposer can only propose actions in [0, 1]. Suppose there are two Vetoer types, l and h,

and let µ0 be the prior probability of type h. We focus on the case where

0 < l < 1/2 < h < 2l < 1, (1)

as it best illustrates the strategic issues at the core of our analysis. Proposer’s first best—

i.e., his optimum under complete information subject to Vetoer’s approval—is action 1 from

type h and action 2l from type l. The assumption that h < 2l implies that Vetoer of type

h prefers 2l to 1 and so this first-best allocation cannot be implemented under incomplete

information.

A Static Benchmark: We begin our analysis with a useful benchmark. Consider a static

(one-period) problem in which Proposer selects a menu of actions from which Vetoer can

choose (if she opts to not exercise her veto); equivalently, Proposer offers a deterministic

mechanism or delegation set. In this problem, Proposer’s linear loss utility implies that he

either pools both types with the singleton menu {2l} or separates them using the menu

{a∗, 1}, where a∗ := 2h − 1 makes type h indifferent between action 1 and action a∗.5

Separation is optimal whenever µ0 > µ∗, where µ∗ is defined by

u(2l) = (1− µ∗)u(a∗) + µ∗u(1), (2)

5 To see why optimal separation is via {a∗, 1}, suppose separation is better than pooling and allocation
{al, ah} with al < ah is an optimal separating allocation. It must be that ah > 2l; otherwise, pooling on
2l would be strictly better for Proposer. Hence, al < h; otherwise, both types would strictly prefer al.
Consequently, each type i ∈ {l, h} receives ai. Incentive compatibility (IC) implies al ≤ 2h − ah; if this
inequality is strict, raising al a little preserves IC and is strictly profitable for Proposer. So al = 2h − ah,
and it follows that only ah = 1 (which implies al = a∗) maximizes Proposer’s payoff.
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and pooling is optimal otherwise. We refer to max{u(2l), (1−µ0)u(a∗)+µ0u(1)} as Proposer’s

delegation payoff.

It is straightforward that when players are patient, Proposer can achieve approximately

the delegation payoff in our sequential bargaining game if he could commit to his sequen-

tial bargaining strategy.6 But can Proposer achieve (approximately) the delegation payoff

without commitment power?

The Sequential Rationality Problem: The difficulty when separation is optimal is that

of Coasian dynamics, which suggest the impossibility of screening Vetoer types when players

are patient (e.g., Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986),

given that type h prefers l’s allocation to her own. Specifically, if Proposer secures agreement

initially (even with only high probability) from type h on an action close to 1, sequential

rationality then impels him to offer 2l to reach an agreement immediately with type l.

But anticipating the offer of 2l, a patient type h would not accept the initial high action.

Indeed, it can be shown that in any equilibrium in which the on-path sequence of offers is

decreasing—which guarantees that agreement is first secured with type h—Proposer’s payoff

at the patient limit is no higher than from pooling both types on action 2l. This payoff is

strictly below, and possibly far from, the delegation payoff when separation is optimal.

The Leapfrogging Solution: Our key insight is that Coasian dynamics can be negated

by leapfrogging. The idea is that instead of using a decreasing sequence of offers, Proposer

can first propose an action close to a∗ that is accepted only by type l. Upon rejection,

Proposer credibly offers action 1 ever after. In other words, leapfrogging uses a low action

to first target the low type so that Proposer can subsequently extract a high action from

the high type; crucially, at the latter stage, Proposer is no longer constrained by sequential

rationality to moderate his offer if it is rejected. We highlight that it is Vetoer’s single-peaked

preferences that permit offers that type l is willing to accept but type h is not.

We now make precise how Proposer can exploit leapfrogging with a succinct argument

that presumes equilibrium existence. We argue that if separation is optimal, there is an

equilibrium in which Proposer achieves approximately the delegation payoff, at least. (Here

and subsequently, we sometimes leave implicit that statements should be understood as

holding for large δ.) Let aδ := δa∗ = δ(2h − 1) be the action below h that makes type

6 Our analysis in Section 4 shows that under certain conditions, the delegation payoff is in fact an upper
bound on Proposer’s payoff in the dynamic game, even with commitment power. But those conditions ensure
that delegation—a deterministic mechanism—is optimal in the static problem among stochastic mechanisms,
which is not true in this example because of Vetoer’s linear loss utility and discrete types. See also footnote 8.
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h indifferent between obtaining action 1 in the next period and obtaining action aδ in the

current period. Assume we are given an equilibrium. Modify that equilibrium to obtain a

new equilibrium with strategy profile σ and beliefs µ as follows:

1. if Proposer offers aδ in the first period, type l accepts and type h rejects. After a

first-period rejection of aδ, Proposer’s belief assigns probability 1 to type h, and so he

proposes 1 in all future periods; in these periods, type h accepts any proposal in [aδ, 1]

and rejects all others, and type l accepts any proposal in [0, 2l] and rejects all others;

2. if Proposer offers a 6= aδ in the first period, continuation play follows the original

equilibrium;

3. in the first period, Proposer chooses a proposal that maximizes his expected payoff.7

Point 1 above implies that we have an equilibrium in the continuation game after a first-

period proposal of aδ is rejected. It follows from Points 2 and 3 that (σ, µ) is an equilibrium.

In this equilibrium, either Proposer leapfrogs by offering aδ in the first period which is

accepted by type l, followed by action 1 being accepted by type h in the second period, or

Proposer obtains an even higher payoff by proposing something different in the first period.

When δ is close to 1, aδ is close to a∗ and Proposer’s equilibrium payoff is close to the

delegation payoff or even higher.

When separation is optimal, this argument shows that the option to leapfrog yields

Proposer approximately his delegation payoff or higher. But it does not establish that

leapfrogging actually occurs, and it presumes equilibrium existence. We now turn to a full-

fledged equilibrium construction that features leapfrogging; the construction also describes

an equilibrium when pooling is optimal.

Proposition 1. When δ is large, there is an equilibrium in which Proposer’s payoff is approx-

imately his delegation payoff. Specifically, there exist µδ and µ̄δ, with 0 < µ∗ < µδ < µ̄δ < 1,

such that on-path equilibrium behavior is as follows:

(a) (Skimming.) If µ0 < µδ, Proposer offers a finite sequence of actions that decreases to

2l. Each offer strictly higher than 2l is accepted with positive probability by type h and

rejected by l.

(b) (Leapfrogging.) If µ0 ∈
(
µδ, µ̄δ

)
, Proposer offers action aδ in the first period, which

is accepted by type l and rejected by h; in the second period Proposer offers action 1,

which is accepted by type h.

7 We can assume a maximizer exists: if one doesn’t, it must be that in the original equilibrium it is
optimal for Proposer to choose aδ in the first period, with a payoff larger than (1− µ0)u(aδ) + δµ0u(1); so
the original equilibrium itself yields at least approximately the delegation payoff.
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(c) (Delayed Leapfrogging.) If µ0 > µ̄δ, Proposer offers action 1 in the first period, which is

accepted with positive probability by type h and rejected by l; in the second period Pro-

poser randomizes between skimming and leapfrogging (parts (a) and (b), respectively).

(All proofs of formal results are in the Appendices.)

Case (a) of Proposition 1 concerns low priors. Here we construct a skimming equilib-

rium in which Proposer begins with an offer exceeding 2l but compromises to lower actions

following rejections. As δ → 1, Proposer’s payoff converges to the pooling payoff, u(2l),

from the static benchmark; moreover, µδ also converges to µ∗, and so for all priors less than

µ∗, Proposer is obtaining approximately his delegation payoff. The skimming equilibrium

adapts a construction that is standard in seller-buyer bargaining (Hart, 1989; Fudenberg

and Tirole, 1991, pp. 409–10). However, there are novel considerations in deterring Proposer

from offering actions lower than 2l. In our construction, the most attractive deviation is

leapfrogging, wherein Proposer first offers aδ to secure acceptance from type l and then ex-

tracts action 1 from type h. Such deviations are profitable when type h is sufficiently likely,

which explains why our skimming equilibrium requires a low prior (whereas in seller-buyer

bargaining, the analogous equilibrium exists for all priors because no buyer type would wait

for a higher price). The threshold µδ is the (lowest) belief at which Proposer is indifferent

between skimming and leapfrogging.

Proposition 1(b) and (c) are the main cases of interest, because here the prior is such

that separation is optimal in the static benchmark. In Case (b), Proposer leapfrogs at the

outset, securing action aδ from type l in the first period and then action 1 from type h in

the second period. As δ → 1, aδ → a∗ and Proposer obtains his delegation payoff. The

challenge with supporting leapfrogging is ensuring that Proposer does not deviate to a high

offer in the first period. Such a deviation (if accepted with sufficient probability by type

h) would be profitable if the prior is too large. The precise threshold µ̄δ is determined

by Proposer’s indifference between leapfrogging and the most attractive deviation, which is

an offer of 1. In equilibrium this offer is accepted by type h only with some probability,

which brings Proposer’s belief upon rejection down to the threshold µδ described in the

previous paragraph, so that Proposer then randomizes between skimming and leapfrogging

in a manner that justifies h’s randomization. The full construction of the leapfrogging

equilibrium is fairly involved; Figure 1 summarizes, with details provided in the formal

proof.

Finally, Proposition 1(c) concerns the case of high priors, where leapfrogging from the

outset cannot be sustained due to Proposer’s strong incentive to secure agreement in the first

period with the high type on a high action. Instead we have delayed and only probabilistic

8



aδ h 2l āδ0 1

I II III IV

Figure 1: Proposer’s first-period incentives in the equilibrium for Proposition 1(b) and (c). Offers
in Region I (including aδ) are accepted only by type l; action 1 is then offered and accepted by
h. Offers in Region II are accepted by both types. Offers in Region III are accepted with some
probability by h and rejected by l; rejection leads to a belief lower than µδ, whereafter there is a
(suitably randomized) skimming equilibrium. Action āδ makes type h indifferent between accepting
āδ now and waiting one period to play Proposition 1(a)’s skimming equilibrium under belief µδ.
Offers in Region IV are accepted by h with some probability and rejected by l; rejection leads to
belief µδ, whereafter Proposer mixes between skimming and leapfrogging. For any prior µ0 > µδ,
Proposer’s optimal offer is either aδ or 1. Belief µ̄δ is defined by Proposer’s indifference between
these two offers. Hence µ0 ∈ (µδ, µ̄δ) leads to leapfrogging (Proposition 1(b)), whereas µ0 > µ̄δ

leads to a positive probability of delayed leapfrogging (Proposition 1(c)).

leapfrogging. As foreshadowed in the previous paragraph, now Proposer actually offers

action 1 in the first period, which is accepted by type h with positive probability; upon

rejection, Proposer randomizes in the second period between skimming and leapfrogging.

Since Proposer is indifferent in the second period, his payoff is as if he always leapfrogs then,

and his payoff therefore converges to the delegation payoff as δ → 1.

It is worth noting that although Cases (b) and (c) of Proposition 1 yield Proposer

an identical payoff at the patient limit, both cases remain relevant even at that limit:

limδ→1 µ
δ < limδ→1 µ̄

δ < 1. Moreover, since Proposer’s delegation payoff becomes arbi-

trarily close to his complete-information payoff as µ0 → 1, Proposition 1 implies that there

is an equilibrium in which Proposer’s payoff at the patient limit is continuous in the prior

even when the probability of type l vanishes. By contrast, in seller-buyer bargaining, in

any equilibrium (of the “gap case”), the uninformed seller’s payoff in the patient limit drops

discontinuously when he ascribes any positive probability to the low-value buyer.

Limitations: Although this example conveys the logic of leapfrogging and how Proposer

can exploit it, there are two interrelated limitations. First, it is difficult to determine whether

there are equilibria that are even better (or worse) for Proposer than that identified in

Proposition 1. Second, while the delegation payoff provides a high target for Proposer, a

more compelling benchmark is Proposer’s payoff if he can commit to his strategy in the

sequential bargaining game. Indeed, in this example dynamic commitments can achieve

more than the delegation payoff.8 The following section addresses these issues.

8 Let t be the earliest period such that type h prefers agreement on action 1 in the first period to agreement
on 2l in period t. If Proposer offers 1 up until period t−1 and offers 2l from period t on, then it is optimal for

9



4. General Analysis

In this section, we assume Proposer’s utility function u(a) is concave and Vetoer’s is

uV (a, v) = −(v − a)2 + v2,

which is the standard quadratic loss function with our normalization that Vetoer’s payoff

from the status quo is 0. We also assume Vetoer’s type is distributed according to a cumula-

tive distribution F ∈ F , where F is the set of distributions with interval support that admit

a density that is bounded away from both 0 and ∞ on the support. We denote the support

of F by [v, v]. For simplicity, we assume that v ≤ 1, i.e., Vetoer’s ideal point is always lower

than Proposer’s. Note that we allow for v ≤ 1/2, which is tantamount to Proposer having

monotonic preferences.

Vetoer’s quadratic loss function assures single-crossing expectational differences (SCED)

as defined by Kartik, Lee, and Rappoport (2019): for any two lotteries over time-stamped

actions—pairs (a, t) representing agreement on action a at time t, with t = ∞ capturing

no agreement—their expected utility difference is single crossing in Vetoer’s type v.9 This

single-crossing property will play an essential role because it guarantees “interval choice”

(Kartik, Lee, and Rappoport, 2019, Theorem 1): given any Proposer strategy, at every

history the set of types that find it optimal to accept the current offer is an interval.

4.1. A Static Problem

We define an auxiliary static mechanism design problem that will turn out to provide

a tight upper bound on payoffs in the dynamic game. In this auxiliary problem, a (direct,

stochastic) mechanism assigns each type a lottery over actions. Formally, a mechanism

m is a measurable function m : [v, v] → M0(R), where M0(R) is the set of probability

distributions on R with finite expectation and finite variance. For notational convenience

type h to accept 1 in the first period and for type l to accept 2l in period t. For large δ, h is approximately
indifferent: 2h− 1 ≈ δt(2h− 2l), or equivalently, (2h− 1) l

h−l ≈ δ
t2l. It follows that Proposer’s payoff from

dynamic commitment is at least µ0u(1) + (1 − µ0)δtu(2l) ≈ µ0u(1) + (1 − µ0)u(2h − 1) l
h−l . This latter

expression is strictly larger than Proposer’s payoff from the menu {a∗, 1} because a∗ ≡ 2h− 1 and l
h−l > 1

(as 2l > h by assumption). That dynamic commitment strictly improves on the delegation payoff implies
that the optimal static mechanism in this example must be stochastic (see Lemma 1 below).

9 This is because the utility from any lottery over time-stamped actions is −E(a,t)[δ
ta2] + 2vE(a,t)[δ

ta],
which is linear in v. More generally, if uV (a, t) has SCED for non-time-stamped action lotteries (i.e.,
lotteries over actions within single period), then it follows from Kartik, Lee, and Rappoport (2019, Theorem
4) that SCED will also hold over time-stamped action lotteries. We assume quadratic loss because of some
additional tractability, but believe that our results would extend under SCED with weaker assumptions such
as smoothness and concavity around the ideal point.
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we write m(v) = a when m(v) puts probability 1 on action a and also extend the domain of

Proposer’s utility u to include lotteries: u(m(v)) := Em(v)[u(a)]. A mechanism m is incentive

compatible if every Vetoer type v prefers m(v) to m(v′) for all v′. It is individually rational

if every type v prefers m(v) to action 0. Let S denote the set of incentive compatible and

individually rational mechanisms.10 Proposer’s static problem is:

max
m∈S

∫
u(m(v))dF (v).

We denote Proposer’s maximum value by U(F ).

Any incentive compatible and individually rational mechanism that assigns every type

a deterministic action can be implemented as a delegation set : Proposer chooses a subset

A ⊆ R and Vetoer is allowed to pick any action in A∪{0}. We say that an interval delegation

set is optimal if a solution to the static problem can be implemented by delegating an interval

[c∗, 1] for some c∗ ∈ [0, 1]. Our analysis below assumes environments in which such simple

mechanisms are optimal. That is, we maintain hereafter:

Assumption 1. For some c∗ ∈ [0, 1], an interval delegation set [c∗, 1] solves Proposer’s

static problem.

The static problem has been studied by Kartik, Kleiner, and Van Weelden (2021). Among

other things, they motivate interval delegation and investigate when it is optimal. Their

Corollary 3 establishes that sufficient conditions for Assumption 1 are that Proposer’s utility

u is a linear or quadratic loss function (or a combination thereof) and Vetoer’s type density

f is logconcave.11 Many commonly used distributions have logconcave densities (Bagnoli

and Bergstrom, 2005).

4.2. An Upper Bound on the Commitment Payoff

In the static problem, Proposer screens different Vetoer types by exploiting their hetero-

geneous preferences over (distributions of) actions within a single period. In our dynamic

environment, delay is an additional screening instrument. Nevertheless, Proposer can do no

better in the dynamic game even if he could commit to his strategy :

10 More precisely, any m ∈ S must also be such that v 7→ Em(v)[u(a)] is integrable.
11 While that paper maintains some assumptions on the type distribution that we don’t assume, those

assumptions are not needed for its sufficient conditions for optimality of interval delegation. We also note
that the logic of Corollary 1 in that paper implies that the interval delegation set [max{0, 2v}, 1] is an optimal
mechanism if f is decreasing on [max{0, v}, v], given only that u is concave.
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Lemma 1. There is no Proposer strategy and Vetoer best response that yield Proposer a

payoff strictly higher than U(F ).

The idea behind this result is straightforward, and familiar in the seller-buyer bargaining

literature (e.g., Ausubel and Deneckere, 1989a): the outcome of any Proposer strategy and

Vetoer best response can be replicated by a mechanism in the static problem. To elaborate,

any Proposer strategy and Vetoer best response induce, for each Vetoer type, a probability

distribution over agreements on time-stamped actions. We can transform any such distri-

bution into a static lottery by mapping an agreement on action a in period t into a static

lottery that gives action a with probability δt and action 0 with remaining probability. This

transformation is payoff equivalent for Proposer and all Vetoer types. Therefore, the static

mechanism induced by transforming each type’s equilibrium distribution is incentive com-

patible and individually rational because Vetoer is playing a best response in the game, and

the mechanism delivers Proposer the same payoff as in the game.

We highlight that while it is crucial that the static problem allow for stochastic mecha-

nisms, the argument for Lemma 1 does not require any assumption on either player’s pref-

erences beyond discounted expected utility with a common discount factor. Furthermore,

the argument only uses the distribution of agreement times and actions for each type and

the requirement that Vetoer is best responding to Proposer, nothing more about the game

form. It follows that the static problem provides an upper bound on Proposer’s commit-

ment payoff in the dynamic game even if Proposer could, in any period, offer a menu of

(possibly stochastic) actions, allow Vetoer to send cheap-talk messages, or engage in other

complex protocols. Indeed, any incentive compatible and individually rational mechanism

that assigns each type a lottery over time-stamped actions yields Proposer a payoff at most

U(F ).

4.3. Obtaining the Commitment Payoff without Commitment

In light of Lemma 1, we say that Proposer can achieve approximately his commitment

payoff if given the prior F , for every ε > 0 there is δ < 1 such that for all δ > δ, there is

an equilibrium in which Proposer’s payoff is at least U(F )− ε. Our main result, Theorem 1

below, presumes:

An equilibrium exists for all δ and all beliefs in F . (EqmExists)

We provide sufficient conditions for equilibrium existence in Section 4.4.
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Theorem 1. Suppose EqmExists. Proposer can achieve approximately his commitment pay-

off.

Together, Lemma 1 and Theorem 1 imply that, when players are patient, there are

equilibria in which Proposer suffers (almost) no loss from the inability to commit in the

dynamic game. In particular, Proposer is not harmed by the ability to make sequential

proposals; in fact, whenever the optimal delegation set has c∗ < 1, Proposer strictly benefits

from that ability. Moreover, Proposer would not benefit (much) from the ability to offer a

menu of actions in each period.

Theorem 1’s conclusion may be best appreciated when c∗ > max{0, 2v}, say 0 < 2v <

c∗. In that case the result contrasts with the negative conclusion from Coasian dynamics:

intuitively, if Proposer were to continually compromise starting from a high offer, sequential

rationality would drive offers all the way down to 2v; it would not be credible for Proposer

to stop at c∗.

The remainder of this subsection sketches the proof of Theorem 1. Our first step is to

derive a “conditional optimality” property of interval delegation: given the assumption that

delegation set [c∗, 1] is an optimal static mechanism for the prior type distribution F , it is

also optimal for certain conditional distributions. To state the result, let F[v1,v2] denote the

conditional distribution of F given v ∈ [v1, v2], for any v1, v2 ∈ [v, v] with v1 ≤ v2.

Lemma 2. The delegation set [c∗, 1] solves Proposer’s static problem for any belief F[c,c′]

with c ≤ c∗/2 ≤ c∗ ≤ c′.

The lemma owes to SCED of Vetoer’s utility and the optimal static mechanism being

interval delegation, rather than just an arbitrary delegation set. The proof uses these prop-

erties to establish that if some mechanism outperforms delegation set [c∗, 1] for any of the

relevant truncated beliefs, then augmenting that mechanism by adding an interval of high

actions yields a mechanism that also outperforms [c∗, 1] for the original belief.

Lemma 2 says, in particular, that delegation set [c∗, 1] is an optimal mechanism for the

belief F[v,c∗] and that it remains optimal for the belief F[c∗/2,c∗] that is induced if Proposer

leapfrogs and obtains agreement from all types below c∗/2. We use these properties to next

establish Theorem 1 for the special case in which Proposer’s belief is F[v,c∗].

Lemma 3. Suppose EqmExists. If Proposer’s belief is F[v,c∗], then Proposer can achieve

approximately his commitment payoff.

The proof deduces an equilibrium in which Proposer has an option to leapfrog that

guarantees him approximately the commitment payoff, analogous in spirit to the logic given
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before Proposition 1. In the equilibrium, Proposer has the option to follow a path in which

he first proposes action 0, which will be accepted by all types below c∗/2, and then proposes

action c∗, which will be accepted by all types above c∗/2. When players are patient this path

yields Proposer approximately the same payoff as in the static problem because the delegation

set [c∗, 1] is outcome-equivalent to {c∗} under the belief F[v,c∗]. On this path, Proposer’s

sequential rationality in the second period with belief F[c∗/2,c∗] is assured by Lemma 1 and

Lemma 2. Sequential rationality for Vetoer after both the initial proposal of 0 and the

subsequent proposal c∗ is because a rejection of c∗ in the second period would lead Proposer

to put probability 1 on type c∗ and make subsequent proposals that are larger than c∗, and

hence worse for Vetoer regardless of her type in [v, c∗].12

Lemma 3 serves as the base step for an inductive proof of Theorem 1. Specifically, we

show that if the commitment payoff can be achieved approximately when Proposer’s belief

is F[v,c′] for some c′ ≥ c∗, then there is a neighborhood of c′ such that for any c′′ in this

neighborhood, the commitment payoff can also be achieved approximately for belief F[v,c′′].
13

Here is the idea for the inductive step. Consider the action a′ > c′ that makes type c′

indifferent between accepting a′ in the current period and playing a putative continuation

equilibrium with belief F[v,c′] that gives Proposer approximately his commitment payoff under

that belief. Presuming this continuation if a′ is rejected, it is optimal for types below c′ to

reject a′ because SCED implies that they obtain a higher payoff from using the strategy

of type c′ in the continuation equilibrium. On the other hand, there is a neighborhood of

types above c′ within which it is optimal to accept a′ because (i) discounting implies that

types in a neighborhood of a′ prefer accepting a′ to receiving even their ideal action in the

next period, and (ii) SCED implies that the set of types willing to accept any proposal is an

interval. Now suppose Proposer’s belief is F[v,c′′] for c′′ strictly larger than but sufficiently

close to c′. It follows that the belief F[v,c′] and the continuation equilibrium we hypothesized

is self-fulfilling: anticipating this continuation leads to a′ being rejected by precisely the set

of types [v, c′]. Moreover, action a′ is an option that assures Proposer approximately his

commitment payoff: conditional on rejection by types less than c′, the continuation results

in approximately the commitment payoff given the conditional distribution, whereas every

12 While it is weakly dominated for Vetoer to accept a proposal of 0, we use action 0 because of the
continuum action space. There are discretizations of the action space in which Proposer’s leapfrogging
option can be constructed using a strictly positive action instead of 0.

13 Our proof ensures that this induction traverses the interval [c∗, v] in a finite number of steps. More
precisely, the proof ensures that given any approximation error ε > 0, for any large enough discount factor
δ < 1 there is a positive integer n such that there are at most n steps of induction and in every step of the
induction, Proposer’s equilibrium utility with belief F[v,c′′] is within ε of that from the optimal mechanism
under that belief.
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type v ∈ (c′, c′′) accepts proposal a′ > c′′ which is larger than the action v that Proposer gets

from type v in the static problem for belief F[v,c′′] (by Lemma 2, given that c′′ > c′ ≥ c∗).

We highlight that our proof of Theorem 1 uses a leapfrogging option to deduce a high-

payoff equilibrium for Proposer without actually identifying his equilibrium strategy or the

equilibrium outcome (i.e., the mapping from Vetoer types to time-stamped action distribu-

tions).14 As explained above, the proof uses induction on beliefs of the form F[v,c], exploiting

the “conditional optimality” of the ex-ante optimal mechanism for such beliefs (Lemma 2).

However, in an equilibrium with leapfrogging on path, Proposer’s beliefs would not take only

that form: at some point along the equilibrium path, the belief must exclude a lower set of

types. But that is compatible with conditionally optimality of the ex-ante optimal mecha-

nism — indeed, Lemma 2 assures that the interval [c∗, 1] remains an optimal mechanism so

long as Proposer’s belief is of the form F[c,c′] with c ≤ c∗/2 ≤ c∗ ≤ c′. We expect that there

are leapfrogging equilibria in which, along the equilibrium path, Proposer’s belief always

takes this form. Since Proposition 1 already constructed an equilibrium with leapfrogging,

we do not pursue that in the current setting.

Moving beyond interval delegation, we do not know in general whether Theorem 1 holds

when the optimal mechanism is an arbitrary delegation set; what would be important for

our approach is that the delegation set be a conditionally optimal mechanism for a suitable

range of beliefs.

4.4. A Skimming Equilibrium

This subsection constructs a skimming equilibrium—on the equilibrium path, Proposer’s

offers are decreasing and the current offer is accepted by an upper set of Vetoer types—under

some conditions on the support of the type distribution. The construction is of interest for

at least three reasons. First, it assures equilibrium existence, which was assumed by our

main result, Theorem 1. Second, it shows that a Coasian intuition does have some merit in

our setting; to us, this makes the commitment payoff of Theorem 1 more striking. Third, we

establish that Proposer’s payoff in our skimming equilibrium converges in the patient limit

to that of full delegation, i.e., of simply allowing Vetoer to choose her preferred action in

[2v+, 1], where v+ := max{0, v}.15 It follows that there can be a substantial multiplicity in

bargaining outcomes.

14 This is reminiscent of the approach used in the reputation literature (e.g., Fudenberg and Levine, 1989,
1992), among other places, although the logic here is distinct. Unlike in those classic papers, we have two
long-lived players, and there can also be equilibria in which Proposer obtains a low payoff (Proposition 2
below).

15 In other words, full delegation is delegation of the interval [c, 1] where c = 0 if v ≤ 0 and c = 2v
if v ∈ (0, 1/2). Note that we ignore here, and in the rest of the subsection, the case of v > 1/2; it is
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To state the result, define

U(F ) :=

∫ v

v

u(max{2v+, v})dF (v)

as the static payoff from delegation set [2v+, 1]. In this mechanism all Vetoer types in [2v+, 1]

obtain their ideal points and all lower types are pooled at 2v+.

Proposition 2. If either v ≤ 0 or v ≤ 1/2, then there is a skimming equilibrium. As δ → 1,

Proposer’s payoff in this equilibrium sequence converges to U(F ).

For any δ, we construct a skimming equilibrium by adapting the approach used in seller-

buyer bargaining (e.g., Gul, Sonnenschein, and Wilson, 1986; Ausubel and Deneckere, 1989b).

Suppose that Proposer’s belief at any history is a right-truncation of his prior, i.e., the set of

remaining Vetoer types is [v, v] for some v. The highest remaining type can be used as a state

variable for dynamic programming to find Proposer’s optimal sequence of decreasing offers,

with a constraint that each subsequent state must be induced by Vetoer’s best response of

accepting an offer if and only if she prefers it to the discounted payoff from accepting the

subsequent offer. Definition 1 in Appendix B.2 makes this program precise. As we discuss

there, single-peaked Vetoer preferences introduce some differences in how we formulate and

tackle the program relative to seller-buyer bargaining.

A novel issue arises in verifying that there is an equilibrium corresponding to a solution to

the aforementioned program: what happens if v > 0 and Proposer deviates at some history

to an offer in [0, 2v)? The issue is salient because we know that, unlike in seller-buyer

bargaining, leapfrogging could be attractive to Proposer. We use Proposition 2’s hypothesis

that v ≤ 1/2 (given v > 0) to deter such deviations by stipulating that any such offer is

accepted by all Vetoer types, which makes it unattractive to Proposer. It is optimal for

Vetoer to accept these low offers because we specify Proposer’s belief after rejection to be

degenerate on v, and accordingly Proposer’s future offers to perpetually be 2v, which yields

no surplus to any Vetoer type.16 Both v ≤ 0 and v ≤ 1/2 are reasonable hypotheses: the

former says that some Vetoer types prefer the status quo to any action Proposer prefers; the

uninteresting because there is trivially a skimming equilibrium in which Proposer obtains his ideal point by
offering 1 at every history. Nonetheless, all our statements hold even if v > 1/2 so long as in that case one
interprets the notation 2v+ to mean 1.

16 Our solution concept of Perfect Bayesian equilibrium allows for arbitrary beliefs after a rejection that
has zero probability at that history. As such, even if v > 1/2 (and v > 0), strictly speaking one could assign
the degenerate belief on 0 after an unexpected rejection and have Proposer offer action 0 ever after, which
would also yield no surplus to all Vetoer types. We do not allow for such beliefs, instead requiring—as is
conventional, and in the spirit of Kreps and Wilson’s (1982) sequential equilibrium—that beliefs must always
be supported in the support of the prior, [v, v].
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latter is tantamount to Proposer having monotonic preferences over the set of actions that

any Vetoer type would find acceptable.

Another distinction with seller-buyer bargaining is that, as δ → 1, Proposer’s payoff

in the skimming equilibrium converges to the full-delegation payoff U(F ), rather than the

payoff from all types accepting 2v+. On the one hand, our argument for why Proposer’s

payoff in the limit cannot be larger than U(F ) builds on ideas in that literature; roughly, a

type v > 2v+ would accept an offer strictly higher than v only if there is a significant delay

cost to waiting for a more attractive offer, but such a delay cost would make it attractive for

Proposer to deviate and hasten agreement. On the other hand, a new observation owing to

our setting is that Proposer’s payoff cannot be lower than U(F ) either: intuitively, because

of her single-peaked utility, for any δ < 1 Vetoer will accept any proposal close enough to

her ideal point; hence, as δ → 1, Proposer must do no worse in the skimming equilibrium

than by compromising with an arbitrarily fine sequence of offers that traverses [2v+, 1].

In general, Proposer’s payoff from the skimming equilibrium when players are patient,

U(F ), will be strictly less than his commitment payoff, U(F ); these payoffs coincide only

when full delegation is an optimal mechanism, i.e., the c∗ threshold in Assumption 1 is

precisely 2v+. Kartik, Kleiner, and Van Weelden (2021, Corollary 1) identify that full

delegation is in fact optimal if the type density is decreasing on [2v+, 1]. Observe that when

v ≤ 0, the skimming equilibrium’s payoff is a lower bound on Proposer’s payoff from any

equilibrium when players are patient; for, no equilibrium can yield Proposer a payoff strictly

lower than from delegating the [0, 1] interval. It follows that if full delegation is optimal

and v ≤ 0, then when players are patient all equilibria must yield Proposer the commitment

payoff.

Notwithstanding such cases, the general contrast in Proposer’s payoff between Theorem 1

and Proposition 2 indicates the importance of equilibrium selection, which we interpret as

norms, in veto bargaining. Which norm prevails in a given context may hold significant

implications for whether Proposer suffers from an inability to commit to future offers. More-

over, in some environments—e.g., when Proposer prefers a single take-it-or-leave-it offer to

full delegation—the norm can determine whether Proposer benefits from or is harmed by

the ability to make multiple proposals. But in other environments—e.g., when v ≤ 0 and

Proposer prefers full delegation to a single offer—the ability to make multiple proposals

benefits Proposer regardless of the norm. We highlight that both the sequential structure of

bargaining and incomplete information are necessary for norms to matter in veto bargain-

ing; in particular, Primo (2002) shows that there is a unique equilibrium outcome absent

incomplete information.
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5. Related Literature

In this paper, we have studied what we believe is a canonical infinite-horizon model of

sequential veto bargaining. Our focus has been on comparing Proposer’s payoff with and

without commitment. We close by relating our work to the literature.

Veto Bargaining with Incomplete Information: Existing work on sequential veto

bargaining with incomplete information focuses on short horizons, typically two periods,

and/or myopic Vetoer behavior (e.g., Romer and Rosenthal 1979, Dewatripont and Roland

1992, Chapter 4 of Cameron 2000, Rosenthal and Zame 2019, Chen 2021).17 These analyses

elucidate nicely some of the strategic forces, but either a short horizon or myopic Vetoer

behavior precludes the potency of Coasian dynamics. The only exception to these approaches

that we are aware of is the unpublished work of Cameron and Elmes (1994), who study a

long finite horizon with sophisticated players. All these authors, including Cameron and

Elmes, are interested in skimming equilibria. Our analysis shows that—unlike in seller-

buyer bargaining—it is important to account for the possibility of leapfrogging because

that can both invalidate a putative skimming equilibrium (recall the discussions of both

Proposition 1(a) and Proposition 2) and lead to qualitatively different equilibria with higher

Proposer payoff.

Recently, in a two-period model, Evdokimov (2022) has emphasized what he views to be

“non-Coasian” equilibria in veto bargaining. He studies committees in which voter prefer-

ences are determined by a binary state, analogous to our two-type example. Single-peaked

voter preferences are important to his analysis, as they are to ours; however, our papers focus

on distinct implications of single-peakedness, and the nature and import of our results are

markedly different. To see that, consider his setting when a single vote is enough to overturn

the status quo; it is effectively then as if Proposer faces a single vetoer. Here Evdokimov finds

a unique equilibrium, which has skimming. Leapfrogging does not arise because of the com-

bination of only two periods and his assumption that Proposer’s utility is globally increasing

in the action.18 Instead, what Evdokimov deems non-Coasian are equilibrium outcomes in

17 We highlight work that is most closely related to ours. But there have, of course, been studies on
other aspects of veto bargaining with incomplete information. For example, Matthews (1989) models veto
threats, whereby Vetoer sends a cheap-talk message prior to Proposer making a take-it-or-leave-it offer.
McCarty (1997) considers two-issue bargaining, wherein Vetoer may reject a proposal on one issue to influence
proposals on the second issue. Groseclose and McCarty’s (2001) model of blame-game politics shows that
in a three-player game, Proposer may make an offer that he knows Vetoer will reject in order to convince a
third party (e.g., voters) that Vetoer has extreme preferences.

18 An analog would be a two-period version of our Section 3 with the assumption that h < 1/2. In that
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which, using our two-type notation from Section 3, Proposer obtains utility that exceeds

u(2l) as δ → 1. He notes that such outcomes arise if h > 2l. The reason is simply that type

h prefers some actions strictly above 2l to 2l, and hence Proposer can guarantee a utility

exceeding u(2l) by first offering h and then 2l. By contrast, we focused on arguably the

more interesting case of h < 2l, because that means separation cannot be achieved (when

players are patient) with both types getting actions above 2l. More generally, we do not

take a stance on what the Coase Conjecture ought to mean in veto bargaining. Instead, our

key contribution for two types and beyond is to unsheathe the leapfrogging implications of

single-peaked preferences, which yield equilibria that have non-skimming dynamics and high

Proposer payoffs. Furthermore, our main result (Theorem 1) is substantially stronger than

just comparing with a single take-it-or leave it offer, which is Evdokimov’s (2022) benchmark.

Seller-Buyer Bargaining: In canonical models of seller-buyer bargaining in which the

buyer is privately informed of his value, all equilibria feature skimming. Fudenberg, Levine,

and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986) establish the Coase Conjecture:

at the patient limit, the seller’s payoff is that of pricing at the lowest buyer valuation. More

precisely, this holds in any equilibrium of the “gap” case (the gains from trade are bounded

away from 0) or in any “stationary/weak Markov” equilibrium of the “no gap” case. Indeed,

there is a unique equilibrium payoff for the seller in the gap case. By contrast, even in the

gap case of our model (i.e., v > 0), Proposer can obtain his commitment payoff and there can

be genuine payoff multiplicity. Ausubel and Deneckere (1989b) show that in the seller-buyer

no gap case, there also exists a non-stationary “reputational equilibrium” in which the seller

obtains his commitment payoff. This equilibrium preserves high prices by punishing the

seller with Coasian low-payoff continuation play if he deviates. Our argument for Proposer’s

commitment payoff is distinct; it owes to leapfrogging, which is ruled out by the skimming

property of seller-buyer bargaining.

Board and Pycia (2014) show that when buyers have outside options, there is a unique

equilibrium outcome and it yields a high seller payoff. The seller charges the static monopoly

price—defined for the distribution of values net of the outside option—and all buyer types

with lower net values immediately take their outside option. Since low types exit immedi-

ately, the seller can credibly stick to the monopoly price even upon rejection. In our analysis,

leapfrogging also clears low types to subsequently credibly target high types. But our model

case, if type l agrees first, then agreement in the second period with type h has to be on action 2h, which
provides h no surplus; so the only first-period action that can support leapfrogging is 0, which turns out
to be unsupportable for any prior. On the other hand, when either h > 1/2 or there are more than two
periods with δ < 1, arguments related to those for Proposition 1 can be used to conclude that leapfrogging
is supportable for suitable priors.
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has no outside options and it is Vetoer’s single-peaked preferences that makes leapfrogging

viable. Moreover, unlike in Board and Pycia (2014), low-payoff equilibria can coexist with

the commitment-payoff equilibrium.19 The idea that low agent types’ incentives to exit can

allow a principal to obtain her commitment payoff also features in Tirole (2016). But there,

unlike in our model, a reverse-skimming property holds, i.e., any equilibrium has “positive

selection” at every history.

Also related to our work are models in which the seller sells multiple varieties. Wang

(1998), Hahn (2006), and Mensch (2017) study bargaining when there is a choice of both

quality and price (or effort and wage in a labor context). In these models, the seller or

principal offers a menu in each period but cannot commit to future menus. The key finding

is that the principal obtains his commitment payoff in the unique equilibrium. Nava and

Schiraldi (2019) propose a multidimensional extension of the Coase Conjecture that applies

to these results. In our model, not only are transfers infeasible, but moreover Proposer can

offer only a single action, rather than a menu, in each period. This hews to the standard

approach in studying sequential veto bargaining, and seems appropriate for some non-market

applications in politics and organizations. Nevertheless, we deduce equilibria that deliver

Proposer’s commitment payoff. It would be interesting to study whether allowing for menus

eliminates the payoff multiplicity we find. Conversely, our results raise the possibility that if

a seller could offer only a single variety in each period in the aforementioned papers’ settings,

then there may be payoff multiplicity but the commitment payoff may remain achievable.20

Beyond menus, one could also allow Proposer to choose an arbitrary mechanism in each

period, without commitment to future periods’ mechanisms. It follows from the discussion in

Section 4.1 that our commitment payoff is still an upper bound, and hence the equivalence

between commitment and Proposer’s best no-commitment equilibrium would prevail. By

contrast, in the canonical seller-buyer environment, Skreta (2006) and Doval and Skreta

(2021) show that the Coasian outcome cannot be escaped even using arbitrary within-period

mechanisms.

Renegotiation and Endogenous Status Quo: Our model assumes that once an offer

is accepted, there is commitment to not renegotiate it. An interesting direction for future

19 Hwang and Li (2017) and Fanning (2021) highlight equilibrium multiplicity in seller-buyer models related
to Board and Pycia (2014).

20 Kumar (2006) studies such a setting and finds a unique equilibrium that does not yield the principal a
high payoff. We attribute this to his model/analysis excluding the quality-price pair that would be used for
leapfrogging. A similar point applies to Inderst (2008), who studies a model with menus but finds that in
some cases the principal’s commitment payoff does not obtain.
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research would be to model any agreement as the status quo for future negotiations. The ex-

isting literature on political bargaining with an endogenous status quo, surveyed by Eraslan,

Evdokimov, and Zapal (2020), generally does not study private information. One would

have to deal with the ratchet and/or renegotiation effects that result from Vetoer revealing

information about her preferences through agreement. Such issues have attracted attention

in seller-buyer settings since Hart and Tirole (1988), with recent contributions including

Strulovici (2017), Maestri (2017), and Gerardi and Maestri (2020).
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A. Proofs for Two-Type Example

Recall that for the two-type example, we restrict attention to actions in [0, 1]. The

following proofs can be extended straightforwardly to handle actions outside [0, 1], but we

omit that discussion for brevity.

Lemma 4. Fix any large δ < 1. Inductively define an increasing sequence a0 := 2l < a1 <

. . . < aN := 1, where for each i ≥ 1, ai is defined by either uV (ai, h) = δuV (ai−1, h) if there

is a solution with ai ∈ (ai−1, 1], and otherwise ai := 1.21

(a) If offers are restricted to lie in [2l, 1] then for any prior µ0 there is a skimming equi-

librium in which, on path, Proposer first offers some an with probability one and then

works his way down the (ai)0
i=n sequence to 2l. Any offer ai > 2l is rejected by type l

and accepted by type h with positive probability. Both types accept the final offer of 2l.

(b) Define µδ ∈ (µ∗, 1) as the smallest belief that makes Proposer indifferent between the

payoff from this (restricted) equilibrium and the payoff from leapfrogging, i.e., obtaining

aδ from type l in the first period and action 1 from type h in the second period.22 If

µ0 ≤ µδ, then the skimming equilibrium exists without restriction on the space of offers:

any offer in (aδ, 2l) is accepted by both types, while any offer in [0, aδ] is accepted by l

and rejected by h. As δ → 1, µδ → µ∗.

(c) As δ → 1, Proposer’s payoff in the skimming equilibrium converges to u(2l) regardless

of his prior in the relevant range: for any ε > 0, there exists δ < 1 such that if δ ∈ (δ, 1)

and µ0 ≤ µδ, then Proposer’s payoff in the skimming equilibrium is in [u(2l), u(2l)+ε).

Proof. Part (a): Owing to the restriction to offers in [2l, 1], this part follows from arguments

analogous to those in the two-type seller-buyer bargaining problem (Hart, 1989; Fudenberg

and Tirole, 1991, pp. 409–10). So we omit a proof, instead only noting two points. First,

if Proposer is indifferent between two first offers (as can also arise in the seller-buyer con-

struction), we specify for concreteness that Proposer chooses the lower of the two. Second,

there is one difference with the usual seller-buyer construction: if Proposer’s first offer is

aN = 1, and aN was defined by the action cap of 1 rather than type h’s indifference, then

21 We suppress the dependence of N and each ai (for 0 < i < N) on δ.
22 The belief µδ is well defined for large enough δ. To confirm that, note first that for any µ0 ≤ µ∗,

Proposer’s payoff from leapfrogging, µ0δu(1) + (1 − µ0)u(aδ) is strictly less than u(2l) by definition of µ∗

and that aδ < 2l; whereas his payoff from the (restricted) skimming equilibrium is at least u(2l). Second,
following the established seller-buyer analysis, for any interior belief µ0 Proposer’s payoff in the (restricted)
skimming equilibrium converges to u(2l) as δ → 1, whereas leapfrogging’s payoff converges to the strictly
larger µ0u(1)+(1−µ0)u(2l). The result follows from continuity of both skimming and leapfrogging’s payoffs
in µ0.
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Proposer will need to randomize on path between proposing aN−1 and aN−2 in the second

round. Proposer’s second-round randomization is chosen to make type h indifferent between

accepting and rejecting aN = 1; a suitable randomization exists because h would strictly

prefer accepting aN = 1 if Proposer were to offer aN−1 next, while h would strictly prefer

rejecting aN = 1 if Proposer were to offer aN−2 next. Such on-path Proposer randomiza-

tion is not necessary in the seller-buyer problem because there is no price cap—or, in effect

equivalently, Proposer ideal point—there.

Part (b): We stipulate that after a deviation in any period t to at < 2l, type l accepts,

whereas h accepts if and only if uV (at, h) > δuV (1, h), which is equivalent to at > aδ. After a

rejection of the deviation, Proposer puts probability 1 on type h and proposes action 1 ever

after. Clearly we have an equilibrium in any continuation game after the initial deviation.

So we need only verify that no deviation to at < 2l is profitable. Plainly, among at ≤ aδ, the

most profitable deviation is to aδ; but by definition of µδ, that deviation is not profitable

when µt ≤ µδ. (A higher µt makes leapfrogging more attractive than the (putative) skimming

equilibrium because Proposer prefers the skimming equilibrium when Vetoer is of type l and

leapfrogging when Vetoer is of type h.) Any deviation to at ∈ (aδ, 2l) yields a lower Proposer

payoff than the (putative) skimming equilibrium because the skimming equilibrium’s payoff

is at least u(2l). Therefore, no deviation to at < 2l is profitable when µt ≤ µδ, and the

skimming equilibrium exists without any restriction on offers.

To see that µδ → µ∗ as δ → 1, observe that for any µ0, as δ → 1 Proposer’s payoff

from leapfrogging goes to µ0u(1) + (1 − µ0)u(a∗) whereas, as discussed in footnote 22, his

payoff from skimming goes to u(2l). Hence, by definition of µ∗, for any µ0 > µ∗, skimming

is strictly worse than leapfrogging when δ is large enough. The result now follows from µδ

being the smallest belief at which the payoffs from skimming and leapfrogging are equal,

noting that for any δ skimming yields a strictly higher payoff than leapfrogging at belief µ∗

(see footnote 22).

Part (c): Given the previous two parts, this result follows from the same arguments as

in the standard seller-buyer model (e.g., Fudenberg and Tirole, 1991, pp. 409–10). Q.E.D.

Proof of Proposition 1. Part (a) follows from Lemma 4.

To prove parts (b) and (c), we first define two critical values: rδ(µ) and the µ̄δ referred

to in the statement of the result. Recall µδ ∈ (0, 1) from Lemma 4(b). (In what follows, we

sometimes suppress the caveat of “for large δ”.) For any belief µ ∈ (µδ, 1), let

rδ(µ) :=
µδ(1− µ)

(1− µδ)µ
(3)

25



be type h’s rejection probability that would lead to posterior µδ after rejection, given that

type l rejects with probability 1. Now let µ̄δ < 1 be the value of µ that solves23

(1− µ)u(aδ) + µδu(1) = (1− µ)δu(aδ) + µ
[
1− rδ(µ) + rδ(µ)δ2

]
u(1). (4)

Given belief µ, the LHS of Equation 4 is Proposer’s utility from leapfrogging, whereas the

RHS corresponds to getting aδ in the next period from l and a lottery from h of either

action 1 in the current period with probability 1− rδ or the same action in two periods with

probability rδ. It can be verified that µ̄δ > µδ and limδ→1 µ̄
δ < 1.24

Part (b): The equilibrium strategies, beliefs, and incentives are as follows.

1. Proposer proposes aδ in the first period and 1 in the second period (and ever after),

with belief µt = 1 after any rejection. Vetoer type l accepts in the first period while

type h rejects in the first period but accepts any proposal of at least aδ starting in

the second period. Clearly Proposer has no incentive to deviate starting in the second

period, and Vetoer is playing optimally in all periods, so what we must show below is

that Proposer has no incentive to deviate in the first period.

2. (Region I in Figure 1.) If Proposer deviates and offers any action a0 ∈ [0, aδ) in the

first period, type l accepts and h rejects. After a rejection, Proposer’s belief is µt = 1

ever after and so he proposes 1 ever after, which is accepted in the second period by

type h. It is clear that Vetoer is playing optimally and that any such deviation is not

profitable for Proposer.

3. (Region II in Figure 1.) If Proposer deviates and offers any a0 ∈ (aδ, 2l] in the first

period, both types accept that; for large δ, this outcome is worse for Proposer than

the on-path outcome, since the latter’s payoff is larger than u(2l). Both types accept

any a0 ∈ (aδ, 2l] because we stipulate if any such offer is rejected (a zero probability

event), Proposer holds belief µt = 1 ever after and offers action 1 ever after.

4. (Region III in Figure 1.) Let u∗h denote type h’s payoff in the skimming equilibrium

discussed in Lemma 4 when Proposer has belief µδ defined there. Since µδ → µ∗, it

follows from the established seller-buyer analysis that for δ large enough, Proposer’s

first offer in the skimming equilibrium is arbitrarily close to 2l and hence u∗h is arbi-

23 One can check that the difference between the LHS and the RHS of Equation 4 is continuous and strictly
decreasing in µ, strictly positive for small µ, and strictly negative for large µ; hence there is a unique solution,
which is interior.

24 As µ → µδ from above, rδ(µ) → 1, and so the RHS of Equation 4 goes to δ times the LHS, which is
strictly smaller than the LHS. The properties noted in footnote 23 then imply µ̄δ > µδ. That limδ→1 µ̄

δ < 1
follows algebraic manipulations of Equations (3) and (4), using limδ→1 µ

δ = µ∗ (Lemma 4(b)).
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trarily close to but strictly less than uV (2l, h). Let āδ > 2l be such that h is indifferent

between accepting āδ in the current period and receiving payoff u∗h in the next period.

Note that āδ ≈ 2l for large δ.

Consider the interval (2l, āδ]. As described in Lemma 4, the skimming equilibrium

(defined assuming actions constrained in [2l, 1]) is constructed using a sequence of

actions

a0 ≡ 2l < a1 < . . . < aN ≡ 1

that is defined by h’s indifference. (We suppress the dependence of the sequence on δ

to reduce notation.) Let M ≤ N − 1 be such that aM < āδ ≤ aM+1.

For any deviation a0 ∈ (2l, a1], l rejects and h accepts; Proposer holds belief µt = 0

and offers at = 2l ever after (accepted by type l in the second period).

Suppose āδ > a1. For any deviation a0 ∈ (a1, āδ], let n ∈ {1, . . . ,M} be such that

a0 ∈ (an, an+1]. Type l rejects, while type h rejects with the probability that makes

the posterior µ1 = µn, where µn is the unique belief that makes Proposer indifferent

between starting the decreasing offer sequence with an and an−1. (Type h’s rejection

probability is well-defined and unique so long as µn ≤ µ0, which will be verified below

by showing that µn ≤ µδ.) Proposer will then randomize in the second period between

the starting offers of an and an−1. If Proposer were to start with an, h would prefer to

accept a0; if Proposer were to start with an−1, h would prefer to reject a0; so there is

a unique randomization that makes h indifferent. We are left to check that µn ≤ µδ:

if so, then Proposer prefers the decreasing offer sequence to leapfrogging, and we can

support the skimming equilibrium by specifying behavior for offers in [0, 2l] as in the

proof of Lemma 4(b). Indeed µn ≤ µδ, since n ≤ M and under belief µδ Proposer

starts the decreasing offer sequence with aM while under belief µn it is optimal to start

with an (and a higher belief corresponds to a higher starting offer in the skimming

equilibrium).25

So a deviation to any a0 ∈ (2l, āδ] yields Proposer a payoff that is no higher than

from a skimming equilibrium with restricted action space [2l, 1] and belief µ0 (see

Lemma 4(a)). As δ → 1, the payoff from a (restricted) skimming equilibrium converges

uniformly to u(2l) on any interval of priors bounded away from 1, whereas the payoff

from leapfrogging converges uniformly to µ0u(1) + (1 − µ0)u(a∗). The latter limit is

25 That Proposer starts the decreasing offer sequence with aM under belief µδ follows from type h’s indif-
ference in the definition of āδ and āδ ∈ (aM , aM+1]. For, if Proposer started with an offer aM−1 or lower,
then h would strictly prefer to wait for that offer in the next period rather than accept āδ in the current
period; if Proposer started with an offer aM+1 or higher, then h would strictly prefer to accept āδ.
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strictly larger than the former limit when µ0 > µ∗, by definition of µ∗. Since µδ > µ∗

and limδ→1 µ̄
δ < 1, it follows that for all δ large enough, the payoff from leapfrogging

is strictly larger than from the (restricted) skimming equilibrium for all µ0 ∈ (µδ, µ̄δ).

Hence, for δ large enough, a deviation to any a0 ∈ (2l, āδ) is not profitable.

5. (Region IV in Figure 1.) It remains to consider any first-period deviation a0 ∈ (āδ, 1].

• Type l rejects since a0 > 2l. Type h rejects with probability rδ(µ0), independent

of a0, which leads to second-period belief µ1 = µδ.

• In the second period: Proposer randomizes between starting the play of a skim-

ming equilibrium (see Lemma 4) with some probability λ(a0) and starting the

leapfrogging path with remaining probability. By definition of µδ, Proposer is

indifferent between starting either of these two paths. The randomization prob-

ability λ(a0) is set to make type h indifferent between accepting a0 in the first

period and getting a lottery over payoff u∗h in the second period with probability

λ(a0) and getting action 1 in the third period with complementary probability.26

For any second-period offer a1 besides the two that Proposer randomizes over,

we stipulate that continuation play would follow that in a skimming equilibrium

with initial offer a1. Plainly, no such offer a1 is a profitable deviation.

• Finally, we argue that among deviations to a0 ∈ (āδ, 1], the most profitable devi-

ation is to action 1, and that is not profitable because µ0 ≤ µ̄δ. Note that after a

rejection of any a0 > āδ, leapfrogging is optimal for Proposer in the second period.

So Proposer’s expected payoff from any a0 > āδ is

(1− µ0)δu(aδ) + µ0

[(
1− rδ(µ0)

)
u(a0) + rδ(µ0)δ2u(1)

]
.

This payoff is maximized when a0 = 1, in which case it becomes the RHS of Equa-

tion 4 (with µ = µ0). Since µ0 ≤ µ̄δ, the definition of µ̄δ implies that leapfrogging

starting in the first period is at least as good for Proposer (see footnote 23).

Part (c): The construction for this part is the same as that for part (b), except that Proposer

now proposes action 1 in the first period, rather than aδ. By the logic used in the last bullet

of point 5 above, proposing a0 = 1 is better for Proposer than proposing any a0 ∈ (āδ, 1),

and also now better than proposal a0 = aδ because µ0 > µ̄δ. By points 2–4 above, a0 = aδ

is in turn better than any other first period proposal less than āδ. Q.E.D.

26 I.e., uV (a0, h) = λ(a0)δu∗h + (1 − λ(a0))δ2uV (1, h). There is a unique λ(a0) that solves this equation
because δu∗h > uV (a0, h) > δ2uV (1, h), where the first inequality is because a0 > āδ > h and δu∗h = uV (āδ, h).
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B. Proofs for General Analysis

B.1. The Commitment Payoff

Proof of Lemma 1. Fix any strategy for Proposer and any best response for Vetoer, and

denote this strategy profile by σ. For any type v, the profile σ induces a probability distri-

bution λv over R × N ∪ {∞}, where (a, t) denotes the outcome that proposal a is accepted

in period t, with t = ∞ denoting no agreement. We construct an incentive compatible

and individually rational mechanism for the static problem that achieves the same expected

payoff for Proposer as under σ. Without loss of generality, we assume Vetoer’s utility in the

static problem is uV (a, v) and Proposer’s is u(a).

For any t ∈ N, let λv(t) be the measure on R defined by λv(t)(A) := λv(A×{t}). Define

a mechanism for the static problem as follows:

m(v) :=
∞∑
t=0

δtλv(t) +
(

1−
∞∑
t=0

δtλv(t)(R)
)
10,

where 10 denotes the Dirac measure on 0. Intuitively, for every agreement (a, t) that has

positive probability under λv, m(v) gives probability δt to action a and probability 1− δt to

action 0. It can be verified that m(v) is a probability measure over R.

Since ∫
uV (a, v)dm(v′) =

∞∑
t=0

δt
∫
uV (a, v)dλv′(t),

the expected utility for type v reporting v′ in the static mechanism is the same as in the

dynamic game were type v to play as v′ does. Hence, as σ prescribes a best response for any

Vetoer type, mechanism m is incentive compatible and individually rational.

Analogous arguments show that Proposer’s expected utility in the static mechanism is

the same as his expected utility in the dynamic game under strategy profile σ. Therefore,

Proposer can replicate his payoff from the dynamic game using a static mechanism, and

hence can do no worse in the static problem. Q.E.D.

Proof of Lemma 2. To obtain a contradiction, suppose there is a (potentially stochastic)

mechanism m that yields a strictly higher payoff than the delegation set [c∗, 1] under prior

F[c,c′] for some c ≤ c∗/2 ≤ c∗ ≤ c′. Let M := m([c, c′]) denote the image of [c, c′] under m.

We can assume without loss of generality that u(m(c′)) ≥ u(m(v)) for all v ∈ [c, c′] and that
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u(m(c)) ≥ u(0).27 Define a menu of stochastic actions by

M̃ := M ∪ {v ∈ [c∗, 1] : u(v) ≥ u(m(c′))} ∪ {0}.

Let m̃ be the induced mechanism where each type v chooses her favorite action in M̃ and

indifference is broken in Proposer’s favor. Plainly, m̃ is incentive compatible and individually

rational. We will show that given prior F , Proposer’s payoff from m̃ is strictly higher than

from delegation set [c∗, 1].

Conditional on the event {v : v ∈ [c, c′]}, Proposer’s payoff from menu M is strictly

higher than from menu [c∗, 1] by assumption. Compared to menu M , the additional actions

in M̃ chosen by types v ∈ [c, c′] are ones that Proposer prefers to m(c′), which he prefers to

m(v) for any v ∈ [c, c′]. Hence, conditional on {v : v ∈ [c, c′]}, Proposer’s payoff from menu

M̃ is strictly higher than from menu [c∗, 1].

We next show that for every v > c′, u(m̃(v)) ≥ u(v). Since Vetoer’s utility satisfies SCED

and she breaks indifference in favor of Proposer, either m̃(v) = m(c′) or m̃(v) ∈ M̃\(M∪{0}).
In either case, u(m̃(v)) ≥ u(m(c′)). If u(m(c′)) > u(v) then it follows that u(m̃(v)) ≥ u(v).

If, instead, u(v) ≥ u(m(c′)) then m̃(v) = v and we conclude u(m̃(v)) = u(v).

Moreover, SCED implies that for all v < c, either m̃(v) = m̃(c) or m̃(v) = 0. Since

u(m̃(c)) ≥ u(0) and u(0) is Proposer’s payoff under delegation set [c∗, 1] whenever v < c, it

follows that Proposer’s payoff from mechanism m̃ is higher than his payoff from delegation

set [c∗, 1] under belief F , a contradiction. Q.E.D.

Proof of Lemma 3. Fix any ε > 0. Let δ < 1 be such that δU(F[v,c∗]) ≥ U(F[v,c∗])−ε, and

fix any δ ≥ δ. Let (σ̃, µ̃) be an equilibrium when Proposer’s prior belief is F[v,c∗], where σ̃

denotes the strategy profile and µ̃ the system of beliefs. If Proposer’s payoff in equilibrium

(σ̃, µ̃) is higher than δU(F[v,c∗]) then the claim holds; so suppose Proposer’s payoff is strictly

27 If u(m(c′)) < u(m(v)) for some v ∈ [c, c′], add the action min{1,Em(c′)[a]} to M and consider the corre-
sponding mechanism m̂ in which each type chooses her favorite lottery, breaking indifference in Proposer’s
favor. Since Em(v)[a] is increasing in v by mechanism m’s incentive compatibility, the new mechanism m̂
yields Proposer a higher payoff than m and satisfies u(m̂(c′)) ≥ u(m̂(v)) for all v ≤ c′.

Now suppose u(m(c)) < u(0). If c ≤ 0, the alternative mechanism m̂ that is identical to m except for
assigning action 0 with probability one to all types below 0 is individually rational and incentive compatible;
this mechanism yields Proposer a higher payoff than m and satisfies u(m̂(c)) = u(0). If c > 0, consider the
mechanism m̂ that is identical to m except for m̂(c) assigning probability one to an action in [0,E[m(c)]
that makes type c indifferent with m(c). Such an action exists because uV (m(c), c) ≥ uV (0, c), by individual
rationality of m, and uV (·, c) is continuous. Since m is incentive compatible and individually rational, and
any type v > c prefers m(v) to m̂(c) (by SCED, type c’s indifference between m(c) and m̂(c), and that
type m̂(c) strictly prefers m̂(c) to m(c)), it follows that m̂ is incentive compatible and individually rational.
Moreover, u(m̂(c)) ≥ u(0) and the mechanism m̂ yields Proposer a higher payoff than m.
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lower. Define a candidate equilibrium profile (σ, µ) as follows:

• On path, Proposer offers 0 in the first period, c∗ in the second period, followed by

min{2c∗, 1} ever after. Vetoer of type v accepts the first proposal 0 if and only if she

strictly prefers it to c∗ in the next period; in the second period she accepts c∗ if and

only if she (weakly) prefers it to both min{2c∗, 1} and 0 in the third period; and for

any subsequent history starting with proposal sequence (0, c∗), she accepts the current

proposal if and only if she (weakly) prefers it to both min{2c∗, 1} and 0 in the next

period. For any on-path history h, let µ(h) be derived from Bayes’ rule whenever

possible, and for any history h starting with (0, c∗), let µ(h) put probability 1 on type

c∗.

• For any off-path history h that starts with (0, a) for a 6= c∗, let (σ, µ) specify some

continuation equilibrium with the starting belief F[c∗/2,c∗]; a continuation equilibrium

exists by hypothesis (EqmExists). For any off-path history h in which the first proposal

is different from 0, let (σ, µ)(h) = (σ̃, µ̃)(h).

Proposer’s payoff from the strategy profile σ is δU(F[v,c∗]) because on path types below

c∗/2 accept proposal 0 and types in [c∗/2, c∗] accept proposal c∗ in period 1; while in the

static problem, Lemma 2 implies that for belief F[v,c∗] the delegation set [c∗, 1] is optimal,

which results in all types in [v, c∗/2) obtaining action 0 and all types in (c∗/2, c∗] obtaining

action c∗. We will argue that the profile (σ, µ) is an equilibrium, which proves the claim.

First, Proposer is playing a best response in the profile (σ, µ) at the start of the game

since any deviation induces the same payoff as in equilibrium (σ̃, µ̃), which is strictly lower

than δU(F[v,c∗]) by hypothesis. Moreover, by construction, Vetoer is playing a best response

at the history h = (0), i.e., after the initial proposal of 0.

Second, we claim that Proposer is playing a best response at history h = (0). Note that

the second-period belief after this history is µ(0) = F[c∗/2,c∗] and that in the continuation

game starting at h = (0) the strategy profile σ yields payoff U(F[c∗/2,c∗]): all types in [c∗/2, c∗]

accept proposal c∗ immediately and the delegation set [c∗, 1] solves the static problem by

Lemma 2. Any deviation by Proposer to an offer a 6= c∗ gives Proposer a payoff of at most

U(F[c∗/2,c∗]) by Lemma 1. Therefore, Proposer is playing a best response at history h = (0).

Finally, we claim that both players are playing best responses at any other history.

Indeed, for any history starting with proposals (0, c∗), best responses are assured by con-

struction. For any history starting with (0, a) with a 6= c∗, our construction specifies some

continuation equilibrium. For any history starting with a proposal different from 0 players

are playing an equilibrium because (σ̃, µ̃) is an equilibrium for prior belief F[v,c∗].
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As it is straightforward that the system of beliefs µ satisfies Bayes Rule whenever possible,

we conclude that (σ, µ) is an equilibrium. Q.E.D.

Proof of Theorem 1. Without loss of generality, we assume U(F ) ≤ 1, as Proposer’s

utility can be rescaled accordingly. Furthermore, we prove the result only for c∗ > 0; the

c∗ = 0 case is implied by Proposition 2.

As a roadmap: Steps 1–4 below use induction to show that there are equilibria in which

Proposer can obtain arbitrarily close to his commitment payoff on some interval of types

below a threshold. Step 5 establishes this threshold can be made arbitrarily close to the

upper bound v. Step 6 then argues that there is an equilibrium in which Proposer obtains

arbitrarily close to his commitment payoff from the full interval of types [v, v].

We begin with some preliminaries for the inductive argument. Let c0(ε, δ) := c∗ > 0 and

define for all integers n > 0,

cn(ε, δ) := min

{
cn−1(ε, δ) +

ε

4u′(0)
, cn−1(ε, δ)

√
1 +
√

1− δ
}
.28

It follows that there is some n ∈ N such that cn(ε, δ) ≥ v. Let f > 0 denote a lower bound

for f on [v, v]. For ε > 0, define

δ∗(ε, δ) := 1− ε

2
f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
,

and let δ(ε) ∈ (
√

1− ε, 1) be such that for all δ ∈ (δ(ε), 1), δ ≥ δ∗(ε, δ). Such a δ(ε) exists

because δ∗(ε, 1) = 1, δ∗(ε, ·) is continuous, and limδ↑1
∂δ∗(ε,δ)
∂δ

= +∞.

The induction hypothesis for n ≥ 0 is:

For all ε > 0, δ > δ(ε), and c satisfying c∗ ≤ c ≤ cn(ε, δ), if Proposer’s belief is F[v,c] then

there is an equilibrium in which Proposer’s payoff is at least U(F[v,c])− ε.

The induction hypothesis holds for n = 0 by Lemma 3.

Let (σ̂, µ̂) be an equilibrium for the game with belief F[v,cn−1(ε,δ)] that yields Proposer

payoff at least U(F[v,cn−1(ε,δ)]) − ε (such an equilibrium exists under the induction hypoth-

esis) and let an−1(ε, δ) be the largest action that makes type cn−1(ε, δ) indifferent between

accepting an−1(ε, δ) and playing (σ̂, µ̂) from the next period on. Steps 1–4 below establish

that if the induction hypothesis holds for n and an−1(ε, δ) ≤ 1 then it holds for n+ 1, given

(EqmExists).

28 If u is not differentiable at 0, let u′(0) denote the right-derivative at 0, which exists because u is concave.
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Step 1: Fix arbitrary ε > 0, δ ≥ δ(ε), and c satisfying cn(ε, δ) < c ≤ cn+1(ε, δ), and an

equilibrium (σ̃, µ̃) for the game with belief F[v,c]. If Proposer’s payoff is at least U(F[v,c])− ε
we are done; so suppose Proposer’s payoff is strictly less. Below, we suppress the dependence

of cn and an−1 on ε and δ, and we set c−1(ε, δ) := c∗.

We construct a new equilibrium (σ, µ) for the game with belief F[v,c] as follows: Proposer’s

first offer is an−1. On path, types above cn−1 accept an−1 and types below cn−1 reject an−1.

After a rejection of an−1, Proposer updates to F[v,cn−1] and continuation play proceeds as

specified by (σ̂, µ̂). Moreover, if Proposer deviates in the first period, continuation play is as

specified by (σ̃, µ̃).

Step 2: We show that Vetoer is playing a best response when an−1 is proposed in the

first period.

It is optimal for types below cn−1 to reject an−1 since type cn−1’s equilibrium strategy in

the continuation game yields a higher payoff (using that an−1 > cn−1 and Vetoer’s preferences

satisfy SCED).29 We now explain why it is optimal for types in [cn−1, c] to accept an−1; there

is no need to consider types above c because Proposer’s belief is supported on [v, c]. Accepting

an−1 is a best response for types cn−1 and an−1, and SCED implies that the set of types for

which it is a best response to accept is an interval. Therefore, if an−1 ≥ c, then accepting

an−1 is a best response for all types in [cn−1, c]. So suppose an−1 ∈ [cn−1, c). It would be a

best response for type c to accept cn−1 since that is even better than obtaining c next period

(as 2ccn−1 − c2
n−1 ≥ δc2 because of our assumption that c ≤ cn−1 + cn−1

√
1− δ). Therefore,

since type c prefers an−1 ∈ [cn−1, c) to cn−1, accepting an−1 is a best response for type c and

hence for all types in [cn−1, c].

Step 3: We show that Proposer’s payoff from the strategy profile σ is at least U(F[v,c])−ε.

Proposer’s payoff if the first proposal an−1 is accepted times the probability of acceptance

is at least

[F[v,c](c)− F[v,c](cn−1)]u(cn−1) ≥
∫ c

cn−1

[u(v)− u′(0)(v − cn−1)]dF[v,c]

≥
∫ c

cn−1

[u(v)− ε/2]dF[v,c],

where the first expression is because an−1 ∈ [cn−1, 1], the first inequality holds because

29 To elaborate, note that when comparing action an−1 and the lottery induced by type cn−1’s equilibrium
strategy, cn−1 is indifferent whereas (a possibly hypothetical) type an−1 strictly prefers action an−1. SCED
implies that given any two lotteries and any three types v1 < v2 < v3, if v2 is indifferent and v3 strictly
prefers one lottery, then v1 (weakly) prefers the other lottery.
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u(v)− u(cn−1) ≤ u′(0)(v − cn−1), and the second inequality holds because c− cn−1 ≤ ε
2u′(0)

.

For the case n = 0, Proposer’s payoff conditional on proposal a0 being rejected times the

probability of rejection is at least δ2U(F[v,cn−1])F[v,c](cn−1) by Lemma 3. Since δ ≥
√

1− ε
and U(F[v,cn−1]) ≤ 1, these two bounds imply that Proposer’s payoff is at least

[U(F[v,cn−1])− ε]F[v,c](cn−1) +

∫ c

cn−1

[u(v)− ε/2]dF[v,c].

Since the delegation set [c∗, 1] is optimal for belief F[v,c] by Lemma 2, this implies that

Proposer’s payoff is at least U(F[v,c])− ε.

Consider now the case n ≥ 1. Proposer’s payoff conditional on proposal an−1 being

rejected times the probability of rejection is at least δ
[
U(F[v,cn−1])− ε

]
F[v,c](cn−1). Therefore,

Proposer’s payoff is at least

δ
[
U(F[v,cn−1])− ε

]
F[v,c](cn−1) +

∫ c

cn−1

[u(v)− ε/2]dF[v,c]

≥U(F[v,c])− ε+
ε

2
[F[v,c](c)− F[v,c](cn−1)]− (1− δ)

≥U(F[v,c])− ε,

where the first inequality is because the delegation set [c∗, 1] is optimal for belief F[v,c] (by

Lemma 2) and U(F[v,cn−1]) ≤ 1, and the second inequality is because

F[v,c](c)− F[v,c](cn−1) ≥ f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
and

δ ≥ δ∗(ε, δ) = 1− ε

2
f min

{
ε

4u′(0)
, c∗
(√

1 +
√

1− δ − 1

)}
.

This establishes Step 3.

Step 4: To verify that (σ, µ) is an equilibrium, observe that Proposer plays a best response

in the first period since any deviation gives a payoff less than U(F[v,c]) − ε by supposition.

Vetoer plays a best response to proposal an−1 as argued above. Finally, both players play

best responses after any other history because we began in Step 1 with equilibria (σ̃, µ̃) and

(σ̂, µ̂). This establishes the induction step if an−1 ≤ 1.

Step 5: We show that, when ε is small and δ is large, the inductive argument in Steps

1–4 covers a large fraction of types.

Let c̄(ε, δ) := cn(ε, δ), where n is the smallest index such that the action an(ε, δ) defined
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in our induction argument is strictly above 1. We claim∫ v

c̄(ε,δ)

[u(1)− u(v)] dF (v) ≤ 1− δ + ε, (5)

which implies that c̄(ε, δ)→ v as δ → 1 and ε→ 0.

To derive inequality (5), note that because an(ε, δ) > 1 there is a static incentive com-

patible and individually rational mechanism in which all types above c̄(ε, δ) receive action 1

and Proposer’s payoff from types below c̄(ε, δ) is at least as in equilibrium (σ̂, µ̂) discounted

by δ. This mechanism gives Proposer payoff at least

δ[U(F[v,c̄(ε,δ)])− ε]F (c̄(ε, δ)) +

∫ v

c̄(ε,δ)

u(1)dF (v).

By Lemma 2, this is less than the payoff from delegation set [c∗, 1], which can be written as

U(F[v,c̄(ε,δ)])F (c̄(ε, δ)) +

∫ v

c̄(ε,δ)

u(v)dF (v).

Some algebra using U(F[v,c̄(ε,δ)]) ≤ 1 now yields inequality (5).

Step 6: Given the belief F and an arbitrary ε > 0, we show that for all δ large enough

there is an equilibrium in which Proposer’s payoff is at least U(F )− ε, which completes the

proof.

For any ε′ > 0 and δ > δ(ε′), we have established in Steps 1–5 that for belief F[v,c̄(ε′,δ)] there

is an equilibrium, denoted by (σ, µ), in which Proposer’s payoff is at least U(F[v,c̄(ε′,δ)])− ε′.
Let a(ε′, δ) be the largest action that makes type c̄(ε′, δ) indifferent between accepting a(ε′, δ)

and playing (σ, µ) from next period on. Note that a(ε′, δ) ∈ (1, 2] by definition (that it is

less than 2 is because actions above 2 are worse than the status quo for all types).

Consider a strategy profile in which Proposer initially offers a(ε′, δ), followed by contin-

uation play as described by (σ, µ). It is a best response for all types in [c̄(ε′, δ), v] to accept

a(ε′, δ) because of SCED and that accepting is a best response for type c̄(ε′, δ) and a (hy-

pothetical) type a(ε′, δ) that is larger than v; it is also a best response for all types below

c̄(ε′, δ) to reject a(ε′, δ). Since a(ε′, δ) ∈ (1, 2] and Proposer’s ideal point is 1, it follows that

Proposer’s payoff given this strategy profile is at least

δ[U(F[v,c̄(ε′,δ)])− ε′]F (c̄(ε′, δ)) +

∫ v

c̄(ε′,δ)

u(2)dF (v).
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For ε′ > 0 small enough and δ < 1 large enough, this payoff is at least U(F ) − ε. Given

(EqmExists) it follows that there is an equilibrium in which Proposer’s payoff is at least as

large: analogous to the logic used in Step 1, if a given equilibrium does not yield payoff at

least U(F ) − ε, we can modify it by having Proposer offer a(ε′, δ) in the first period with

continuation play given by (σ, µ). Q.E.D.

B.2. Existence of a Skimming Equilibrium

We construct a skimming equilibrium building on ideas from the seller-buyer literature,

which are summarized instructively by Ausubel, Cramton, and Deneckere (2002, pp. 1912–

15). Our first step is to define a pair of functional equations whose joint solution describes

a skimming equilibrium.

Definition 1. Let R : [v, v∗] → R be continuous and P : [v, v∗] → R be right-continuous,

where v∗ ∈ (v, v]. We say that (R,P ) supports a skimming equilibrium on [v, v∗] if, for all

v ∈ [v, v∗],

R(v) = max
y∈[v,v]

{
u(P (y))[F (v)− F (y)] + δR(y)

}
, (6)

uV (P (v), v) = δuV (P (t(v)), v), (7)

where T (v) denotes the argmax correspondence in (6), t(v) := maxT (v), P (v) is the largest

proposal that satisfies (7), and P is the increasing envelope of P , i.e., P (v) := supy≤v P (y).30

The idea behind this definition is that R(y) describes Proposer’s value function and P (v)

describes Vetoer’s acceptance behavior. We will construct an equilibrium in which at any

history, type v accepts a positive offer if and only if the offer is below P (v). Alternatively,

given that P is increasing, any offer P (v) is accepted precisely by all types above v.31 Conse-

quently, at any history, Proposer’s belief is a right-truncation of the prior to [v, v] for some v.

The upper endpoint v thus acts like a state variable that Proposer optimizes. Equation (6)

is the dynamic programming equation that captures Proposer’s tradeoff between extracting

surplus via screening and the cost of delay: given the current state v, if Proposer brings

the state down to y with an offer P (y), then with probability F (v)− F (y) (ignoring a nor-

malization factor) he obtains current payoff u(P (y)); in addition, after a one-period delay

30 The maximizers in this definition exist because P being right-continuous implies P is right-continuous,
and since it is also increasing, P is upper semicontinuous.

31 This statement is imprecise when there are multiple ṽ such that P (ṽ) = P (v); we gloss over this issue
for this heuristic explanation.
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he obtains payoff R(y). Concomitantly, Equation (7) is the indifference condition for type

v between accepting offer P (v) and waiting one period for the next offer, which would be

P (t(v)). Note that P (v) = 2v+ because t(v) = v, and hence P (v) ≥ max{v, 2v+} for all v.

Consequently, R(v) > 0 for all v > v+.

The following result establishes that there is in fact an equilibrium corresponding to

the pair of functions (R,P ). If P is continuous, then on the equilibrium path Proposer

first targets the threshold type t(v) with offer P (t(v)), and then successively follows with

offers P (t2(v)), P (t3(v)), . . .. This is a decreasing sequence because P and t are increasing

functions; the latter point owes to a monotone comparative statics argument. Vetoer accepts

the initial offer if her type is in [t(v), v], the second offer if her type is in [t2(v), t(v)), the

third offer if her type is in [t3(v), t2(v)), and so on.

Lemma 5. Suppose v ≤ 0 or v ≤ 1/2. If (R,P ) supports a skimming equilibrium on [v, v]

then there is an equilibrium in which proposals will be decreasing along the equilibrium path.

The proof of Lemma 5 builds on arguments from the seller-buyer bargaining literature

(e.g., Gul, Sonnenschein, and Wilson, 1986, Theorem 1), and is relegated to the supplemen-

tary appendix. As discussed in the main text after Proposition 2, novel considerations arise

in deterring Proposer from deviating to offers below 2v+; for that we use Lemma 5’s hypothe-

sis that either v ≤ 0 or v ≤ 1/2. For readers familiar with the seller-buyer arguments, we also

flag that another notable aspect of our argument is the use of the increasing envelope P . We

use this because, owing to single-peaked Vetoer preferences, we cannot guarantee that there

is a solution to equations (6) and (7) in which the P function is (even weakly) increasing.

The lack of monotonicity precludes specifying P (y) as type y’s acceptance threshold—we

would not be assured that Proposer’s beliefs are right-truncations. Using the increasing

envelope P to specify strategies allows us to surmount nonmonotonicities in P .

For Lemma 5 to be useful, we must assure existence:

Lemma 6. There is (R,P ) that supports a skimming equilibrium on [v, v].

The proof of this result adapts arguments from the seller-buyer bargaining literature, and

is relegated to the supplementary appendix. In a nutshell, we first suppose v > 0 and follow

the reasoning of Fudenberg, Levine, and Tirole (1985, pp. 78–79) to show that there is an

(R,P ) that supports a skimming equilibrium on [v, v+ε] if ε > 0 is small enough; the intuition

is that when Proposer’s belief is concentrated near v, the cost of delay outweighs the benefit

from screening types and it is optimal to just offer P (t(v)) = 2v for all remaining types. An

argument following Ausubel and Deneckere (1989b, Lemma A.3) allows us to then extend
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(R,P ) to support a skimming equilibrium on [v, v], proving Lemma 6 so long as v > 0.

Lastly, an approximation argument analogous to that in Ausubel and Deneckere (1989b,

Theorem 4.2) allows us to cover the case of v = 0, which in turn can be straightforwardly

extended to v < 0.

Proof of Proposition 2. Together, Lemma 5 and Lemma 6 establish a skimming equilib-

rium if either v ≤ 0 or v ≤ 1/2.

Let us show that Proposer’s payoff in this equilibrium converges to U(F ). Since Proposer

never makes a strictly negative offer in this equilibrium and no type v < 0 accepts a strictly

positive offer, we assume without loss of generality that v ∈ [0, 1/2). Let A∗(v) denote type

v’s choice from the menu [2v, 1]. As noted after Definition 1, it holds that P (v) ≥ max{v, 2v}.
Hence, P (v) ≥ A∗(v).

To show that Proposer’s payoff is at least U(F ) in the patient limit, observe that for any

v and any strictly positive integer m there is δ(m) such that for all δ > δ(m),

R(v) ≥ (1− 1/m)

∫ v

v

[
u(min{P (v′), 1})− 1/m

]
dF (v′). (8)

The intuition for this inequality is that if Proposer makes offers with small step size, he

can ensure that each type v accepts a proposal close to min{P (v), 1}, because each type v

accepts a proposal if and only if it is less than P (v); moreover, as δ → 1 the cost of delay

vanishes. Together with P (v) ≥ P (v) ≥ A∗(v), inequality (8) implies that if (R,P ) supports

a skimming equilibrium then Proposer’s payoff in this equilibrium is at least U(F ) in the

patient limit.

It remains to show that Proposer’s payoff in any such equilibrium is at most U(F ) in the

patient limit. Suppose not. Then there is ε′ > 0 and a sequence δn → 1 such that for each n

there is (Rn, Pn) supporting a skimming equilibrium that yields payoff at least U(F )+ε′. Let

An(v) be the proposal that is accepted in this equilibrium by type v and let τn(v) be the time

at which type v accepts.32 Since An is monotonic and uniformly bounded (as 0 ≤ An(v) ≤ 1

for all v and n), Helly’s selection theorem implies that there is a subsequence, which we also

index by n for convenience, along which An → A pointwise.

We claim A(v) ≥ v for all v. Suppose not. Then there is v and ε > 0 such that for

all n large enough, An(v) ≤ v − ε. Let xn denote the state (in the sense described after

Definition 1) in which Proposer makes offer An(v). Since P n(v) ≥ v, Proposer could offer

An(v)+ε/2 in state xn and get it accepted by all types in [v−ε/2, v], which have probability

32 If type v never accepts any proposal, we set An(v) := 0 and τn(v) :=∞.
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at least min{ε/2, v − v}f . For δ high enough such an offer is profitable, contradicting that

(Rn, Pn) supports a skimming equilibrium.

Since Proposer’s payoff is at least U(F ) + ε′, there must exist v ≥ 2v and ε > 0 such

that A(v) = v + ε (by Lebesgue’s dominated convergence theorem). Choose v1 such that

A(v1) = v + ε and such that there is v2 ≥ v1 − ε/5 with A(v2) < A(v1). We can then choose

ω ∈ (0, ε) such that A(v2) ≤ v1 + ε − ω. Since v1 − ε/5 ≤ v2 ≤ A(v2), we can find N such

that for all n > N , An(v1) > v1 + ε− ω/2 and

v1 − ε/4 ≤ An(v2) ≤ v1 + ε− 3ω/4. (9)

Let sn be the state in which Proposer makes offer An(v1) in equilibrium (Rn, Pn). By

definition, type v1 accepts the offer An(v1) at time τn(v1) < ∞ (since An(v1) > 0) and

therefore prefers An(v1) at time τn(v1) over An(v2) at time τn(v2). Moreover, the inequalities

in (9) imply that type v1 prefers An(v2) over v1 + ε− 3ω/4. Hence,

uV (v1 + ε− ω/2, v1) ≥ δτn(v2)−τn(v1)
n uV (v1 + ε− 3ω/4, v1),

which rearranges to yield

δτn(v2)−τn(v1) ≤ uV (v1 + ε− ω/2, v1)

uV (v1 + ε− 3ω/4, v1)
< 1.

But this implies the following upper bound on Rn in state tn(sn) (after proposal An(v1) in

state sn has been rejected; if the state is limd′↑sn tn(d′) the argument is analogous):

Rn(tn(sn)) ≤
∫ tn(sn)

v2

u(min{P n(v), 1})dF (v)

+ δτn(v2)−τn(v1)
n

∫ v2

v

u(min{P n(v), 1})dF (v). (10)

To understand the above inequality, note that for types above v2 an upper bound on Pro-

poser’s utility is getting min{P n(v), 1} accepted immediately. Since type v2, and therefore

all lower types, cannot accept before waiting τn(v2) − τn(v1) periods, an upper bound on

Proposer’s utility is getting min{P n(v), 1} accepted after τn(v2)− τn(v1) periods.

For any strictly positive integer m, inequality (8) implies that for all integers n large

enough,

Rn(tn(sn)) ≥ (1− 1/m)

∫ tn(sn)

v

u(min{P n(v), 1})dF (v)− 1/m.
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It follows that there exist m and n such that inequality (10) contradicts (8). Q.E.D.
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C. Supplementary Appendix (For Online Publication)

This supplementary appendix provides proofs for the lemmas stated in Appendix B.2.

To reduce notation, we denote S(v) := P (t(v)).

Lemma 7. For any v and z < y ∈ T (v), we have P (z) < P (y).

Proof. Suppose that there are v and z < y such that P (z) ≥ P (y). We prove that y /∈ T (v).

Since P is increasing, it is constant on [z, y]; call that value p̄. It follows that

u(p̄)[F (v)− F (y)] + δR(y)

≤u(p̄)[F (v)− F (y)] + δ {u(p̄)[F (y)− F (z)] +R(z)}

<u(p̄)[F (v)− F (z)] + δR(z),

where the first inequality is because the payoff from any type in [z, y] is at most u(p̄) (and

hence R(y)−R(z) ≤ u(p̄)[F (y)− F (z)]). Thus, y /∈ T (v). Q.E.D.

Below, we will use the fact that T is upper hemicontinuous. This follows from the gener-

alized theorem of the maximum in Ausubel and Deneckere (1989b, p. 527). The theorem is

applicable because: (i) the maximand function u(P (y))[F (v)−F (y)] + δR(y) is upper semi-

continuous as a function of y for every v, which in turn is because P is upper semicontinuous,

and u and F are continuous and increasing on the relevant range {y : y ≤ v and P (y) ≤ 1};33

and (ii) for any sequence vn → v, the maximand function converges uniformly.

Proof of Lemma 5. Step 1: We begin by specifying beliefs and strategies:

• µ is derived from Bayes’ rule whenever possible; if at history h = (h′, a) a probability

0 rejection occurs, µ(h) puts probability 1 on v if v ≤ 1/2 and probability 1 on 0 if

v > 1/2 (in the latter case, v ≤ 0 by assumption);

• At any history h = (h′, a), any Vetoer type not in the support of Proposer’s current

belief plays an arbitrary best response; type v ≥ 0 in the support accepts a if and only

if a ∈ [0, P (v)]; type v < 0 in the support accepts if and only if uV (a, v) ≥ uV (0, v);

• Proposer’s first offer is S(v). To describe the rest of Proposer’s strategy, consider any

history h = (h′, a). Given Vetoer’s strategy and the belief updating specified above,

if Proposer holds a non-degenerate belief upon rejection of a then this belief equals

33 There is no loss in restricting attention to this range by a similar argument to that in the proof of
Lemma 7.
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F[v,d] for some d. We stipulate that if a = P (d) = P (d), then Proposer offers S(d);

if a = P (d) > P (d), then Proposer offers limd′↑d S(d′); if a ∈ [limd′↑d P (d′), P (d)),

then Proposer randomizes between limd′↑d S(d′) and S(d) so that type d is indifferent

between a in the current period and the lottery in the next period; and for any a 6∈
[P (v), P (v)], Proposer offers S(d). Finally, whenever Proposer’s belief is degenerate on

x ≥ 0 (x ∈ {0, v}), Proposer offers min{2x, 1} in all future periods.

Observe that at any history, Proposer’s subsequent on path offers are decreasing, either

trivially if the current belief is degenerate, or for any nondegenerate belief because the belief

cutoffs are decreasing by definition and P and t are increasing.

Step 2: We verify that Proposer is playing a best response to Vetoer’s strategy given

beliefs µ. As this is obvious whenever he has a degenerate belief, assume he has a non-

degenerate belief. As noted above, any such belief is of the form F[v,d] for some d. Proposer’s

strategy prescribes some randomization (possibly degenerate) between S(d) and limd′↑d S(d′).

We first claim that S(d) is an optimal proposal. Given Vetoer’s strategy, R(d) is an upper

bound on Proposer’s payoff. Furthermore, it follows from Lemma 7 that Vetoer’s strategy

has all types above t(d) accepting S(d) and all types strictly below rejecting. The claim

follows.

We next claim that limd′↑d S(d′) is also an optimal proposal. Since T is upper hemicon-

tinuous, limd′↑d t(d
′) ∈ T (d). Hence, given Vetoer’s strategy, P (limd′↑d t(d

′)) is an optimal

proposal. It therefore suffices to show that limd′↑d S(d′) = P (limd′↑d t(d
′)), or equivalently,

limd′↑d P (t(d′)) = P (limd′↑d t(d
′)). Note that limd′↑d P (t(d′)) ≤ P (limd′↑d t(d

′)) because t and

P are increasing. But if limd′↑d P (t(d′)) < P (limd′↑d t(d
′)) then continuity of R and u and

strict monotonicity of u in the relevant range imply the contradiction

R(d) = u(lim
d′↑d

P (t(d′)))[F (d)− F (lim
d′↑d

t(d′))] + δR(lim
d′↑d

t(d′))

< u(P (lim
d′↑d

t(d′)))[F (d)− F (lim
d′↑d

t(d′))] + δR(lim
d′↑d

t(d′)) = R(d).

All that remains is to verify that at a history h = (h′, a) with a ∈ [limd′↑d P (d′), P (d)),

there is a randomization between S(d) and limd′↑d S(d′) that makes type d indifferent between

a in the current period and the lottery in the next period. To confirm this, note that since

P is right-continuous and P (v) ≥ v for any v, we have

uV (lim
d′↑d

P (d′), d) ≥ uV (a, d) ≥ uV (P (d), d).
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The existence of a suitable randomization now follows from continuity of uV (·, d) and Equa-

tion (7).

Step 3: We verify that Vetoer is playing a best response at each history. Consider any

history (h, a) with µ(h) = F[v,q]. Since types outside of the support of Proposer’s belief play

a best response by assumption, we only consider types in [v, q].

• If a > P (q), Vetoer’s strategy prescribes that no type below q accepts, and Proposer

will propose S(q) next period. Since type q is indifferent between P (q) in the current

period and S(q) next period, and S(q) ≤ P (q) ≤ P (q) < a, type q prefers S(q) next

period to a in the current period. The same holds for all lower types, and hence Vetoer

is playing a best response.

• If a < 0, then: (i) it is clearly a best response for all types v ≥ 0 to reject; and (ii)

types v < 0 accept if and only if they prefer a to 0, which is a best response because

Proposer will never make a strictly negative offer in the continuation equilibrium.

• If a is positive but below the range of P , all types v ≥ 0 accept. After a rejection,

Proposer will either perpetually offer 0 or 2v, yielding a continuation payoff of 0 to all

types, and so it is a best response for any type v ≥ 0 to accept a.

• Otherwise, a is between P (v) and P (q).

If a = P (d) = P (d) for some d ≤ q, Vetoer’s strategy prescribes that all and only those

types above d accept.34 On path, Proposer will propose S(d) next period followed by

lower offers; since type d is indifferent between a in the current period and S(d) next

period, and all future offers are below a, SCED implies that it is a best response for

all higher types to accept and for all lower types to reject. Hence, Vetoer is playing a

best response.

If there is d ≤ q such that a = P (d) > P (d), Vetoer’s strategy prescribes that all

and only those types above d accept. Proposer will propose limd′↑d S(d′) next period,

followed by lower offers. Since type d′ is indifferent between P (d′) in the current

period and S(d′) next period, continuity of u implies that type d is indifferent between

limd′↑d P (d′) = P (d) = a in the current period and limd′↑d S(d′) next period. Hence,

Vetoer is playing a best response.

If there is d ≤ q such that a ∈ [limd′↑d P (d′), P (d)), Vetoer’s strategy again prescribes

that all and only those types above d accept. Proposer will randomize next period

between limd′↑d S(d′) and S(d) to make type d indifferent between accepting a or getting

34 If there are multiple values of d satisfying a = P (d), all types above the lowest one accept.
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the lottery next period. Therefore, Vetoer is playing a best response. Q.E.D.

Proof of Lemma 6. Step 1: Suppose v > 0. We claim that there is ε > 0 such that (R,P )

given by

R(v) := u(2v)F (v)

P (v) := v +
√
v2 − 4δv(v − v)

supports a skimming equilibrium on [v, v + ε]. Plainly, R and P are continuous, given that

F is continuous. Also, P is increasing and hence P = P . Some algebra confirms that R(v)

is the value from securing acceptance from all types below v on action 2v, while P (v) is the

action that makes type v indifferent between accepting that action now and getting action

2v in the next period. Therefore, it is sufficient for us to show that there is ε > 0 such that

for all v ∈ [v, v + ε] the unique maximizer of the RHS of Equation (6) is v, which implies

t(v) = v.

To that end, observe that the derivative of the objective function in Equation (6) with

respect to y is

u′(P (y))P
′
(y)[F (v)− F (y)]− u(P (y))f(y) + δu(2v)f(y). (11)

Since 0 < u(2v) ≤ u(P (y)) and f is bounded away from 0, the sum of the last two terms

in expression (11) is strictly negative and bounded away from 0. Since u′(P (y)) is bounded

(by concavity), P
′
(y) is bounded (as v2 − 4δv(v − v) > 0 for all v), F is continuous, and

v, y ∈ [v, v + ε], the first term in expression (11) goes to 0 as ε → 0. It follows that there

is ε > 0 such that expression (11) is strictly negative for all y ∈ [v, v + ε], and hence the

maximum of the RHS of Equation (6) is attained uniquely at t(v) = v whenever v ≤ v + ε.

Step 2: Suppose (Rv∗ , Pv∗) supports a skimming equilibrium on [v, v∗], where 0 < v <

v∗ < v. We will show that there is (R,P ) that supports a skimming equilibrium on [v, v]

with the property that P (v) = Pv∗(v) and R(v) = Rv∗(v) for all v ∈ [v, v∗].

Pick v′ ∈ (v∗, v] as large as possible such that

u(1)[F (v′)− F (v∗)] ≤ (1/2)(1− δ)Rv∗(v
∗). (12)

Note that v′ is well-defined because F is continuous and Rv∗(v
∗) > 0 (this inequality holds

because of v∗ > v and the property noted at the end of the paragraph following Definition 1).
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Moreover, letting f denote an upper bound for f , it holds that

v′ − v∗ ≥ (1/2)(1− δ)Rv∗(v
∗)

u(1)f
> 0. (13)

We extend Rv∗ to Rv′ defined on [v, v′] by setting Rv′(v) := Rv∗(v) for v ∈ [v, v∗], and for

v ∈ (v∗, v′],

Rv′(v) := max
y∈[v,v∗]

{
u(P v∗(y))[F (v)− F (y)] + δRv∗(y)

}
and define tv′(v) to be the largest value in the argmax correspondence. Observe that P v∗ is

upper semicontinuous (since Pv∗ is right-continuous by assumption, and hence P v∗ is right-

continuous) and Rv∗ is continuous; hence, Rv′(v) and tv′(v) are well-defined. We extend Pv∗

to Pv′ defined on [v, v′] by setting Pv′(v) := Pv∗(v) for v ∈ [v, v∗], and for v ∈ (v∗, v′] by

letting Pv′(v) be the largest value satisfying

uV (Pv′(v), v) = δuV (P v∗(tv′(v)), v).

So (Rv′ , Pv′) satisfies Equation (7). We can apply the generalized theorem of the maximum

in Ausubel and Deneckere (1989b, p. 527) analogously to the discussion after Lemma 7 and

conclude that Rv′ is continuous and Tv′ is non-empty and upper hemicontinuous. Therefore,

tv′ is upper semicontinuous and, since it is increasing, right-continuous. These properties

of tv′ and the hypothesis that Pv∗ is right-continuous imply that Pv′ is right-continuous.

(Rv′ , Pv′) also satisfies Equation (6), i.e.,

Rv′(v) = max
y∈[v,v]

{
u(P v′(y))[F (v)− F (y)] + δRv′(y)

}
for all v ∈ [v, v′], because for all y ∈ [v∗, v],

u(P v′(y))[F (v)− F (y)] + δRv′(y)

≤(1/2)(1− δ)Rv∗(v
∗) + δRv′(y)

≤(1/2)(1− δ)Rv′(y) + δRv′(y)

<Rv′(v).

Here the first inequality is because the choice of v′ satisfies inequality (12) and the second

inequality is because Rv∗(v
∗) = Rv′(v

∗) and Rv′ is increasing. Therefore, the maximum is

attained for y ∈ [v, v∗) and the claim follows since Rv′(y) = Rv∗(y) for any such y.
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We have established that (Rv′ , Pv′) supports a skimming equilibrium on [v, v′]. Since

Rv′ is increasing, it follows from inequality (13) that a finite number of repetitions of this

argument extends (Rv∗ , Pv∗) to the entire [v, v] interval.

Step 3: An approximation argument analogous to that in Ausubel and Deneckere (1989b,

Theorem 4.2) implies that there also exists (R,P ) that supports a skimming equilibrium on

[v, v] if v = 0; we omit the details. The case of v < 0 is handled by setting R(v) = 0 and

P (v) = 0 for all v < 0, and pasting that to a solution when we take v = 0 and set the type

distribution on [0, v] to be the conditional distribution of F on [0, v]. Q.E.D.
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