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Abstract

In a unified framework of allocation problems with at least three en-
tities (or agents), we show that “generalized proportional rules” are the
only rules that are robust to coalitional manipulations. We character-
ize proportional rules imposing in addition efficiency, dummy, and non-
negativity. Coalitional manipulations are considered both in the environ-
ment without any restriction on coalition formation and in the restricted
environment where coalitions of only pairs are possible. In the former case,
non-manipulability is formalized by reallocation-proofness, saying that no
coalition can benefit by a reallocation of characteristic vectors (or claims, in
the context of bankruptcy) of its members. In the latter case, we consider
pairwise reallocation-proofness. Several existing and new results in spe-
cialized models are obtained as corollaries. For example, axiomatizations
of the proportional rule in the context of bankruptcy or surplus sharing;
“utilitarian rules” in the context of social choice with transferable utilities;
the Bayesian updating rule in the context of probability updating; “linear
opinion pools” in the context of probability updating.
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1 Introduction

Allocation problems often have the following abstract form. There is a set of

entities N and a set of issues K. Each entity i ∈ N has a characteristic vector

ci ∈ RK
+ . A profile of characteristic vectors c ≡ (ci)N and an amount of resource

E ∈ R+ determines the amount to be allocated among entities in N . Examples

are:

1. “Bankruptcy problem” studied by O’Neill (1982). There is a bankrupt firm

with liquidation value E. This amount has to be allocated to creditors in

N . Each creditor i has a claim ci ∈ R+. The total claim is greater than

the liquidation value,
∑

i∈N ci ≥ E. We refer readers to Thomson (2002a

and 2002b) for an extensive treatment of social choice rules for bankruptcy

problems.

2. “Surplus sharing problem” studied by Moulin (1987). A set N of contribu-

tors is involved in a joint venture. Each contributor i contributes an amount

ci ∈ R+. And they create a total benefit E that is greater than the total

contribution
∑

i∈N ci. The benefit E has to be allocated to contributors.

3. “Social choice with transferable utilities” studied by Moulin (1985a). There

is a set N of agents and a set K of public projects. Each agent i has vector

ci ∈ RK
+ consisting of utilities from projects in K. Suppose that there is also

a numeraire good, or money, and all agents have quasi-linear preferences

with respect to money. A project with the highest sum of individual utilities

is executed. Then the maximum total utility, maxk∈K

∑
i∈N cik, needs to

be allocated among agents through monetary transfer.

4. “Probability updating problem”, similar to the belief updating formulated

by Stalnaker (1968) and Lewis (1973). Let N be an event, a subset of the

set of all states of the world. Suppose that N is realized and the restriction

of a prior probability distribution on N is given by (ci)i∈N ∈ RN
+ . This prior

distribution has to be updated, after the realization of N . Here the amount

to divide is always equal to 1, the probability of the realized event N .

5. “Probability aggregation problem” studied by McConway (1981) and Ru-

binstein and Fishburn (1986). Let N be a set of states. Let K be a set of

experts. Each expert k ∈ K has a belief over N , a subjective probability
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distribution, denoted by (cik)i∈N .1 A probability distribution over N has to

be decided, aggregating their beliefs. Here the amount to divide is always

equal to 1, the probability of the entire state space.

An allocation problem is defined by a list ((ci)i∈N , E) ∈ RN×K
+ × R+ of char-

acteristic vectors and an amount of resource. An allocation rule, or briefly, a rule

associates with each problem a vector, in RN , of individual shares.

We study rules that are robust to coalitional manipulation by reallocations

of characteristic vectors. This condition is formalized as reallocation-proofness

saying that no group of entities can increase its aggregate share by reallocating

members’ characteristic vectors. We introduce and study a weaker axiom, called

pairwise reallocation-proofness, pertaining to only two person coalitions, namely,

pairs. In the framework of variable population, we study merging-splitting-

proofness, similar to reallocation-proofness, and its pairwise version. These ax-

ioms have natural interpretations in various contexts and have been studied by a

number of earlier authors.

In the context of bankruptcy problems, reallocation-proofness prevents a coali-

tion of creditors from gaining through a reallocation of their claims. Thus, it is

also called “no advantageous reallocation” or “strategy-proofness” (see O’Neill 1982,

Moulin 1985a, 1985b, and 1987, Chun 1988, and de Frutos 1999). The same in-

terpretation applies for surplus sharing and quasi-linear bargaining problems.

When there are restrictions on coalition formations, one may well think that

reallocation-proofness is not entirely appropriate. However, pairwise reallocation-

proofness is appealing as long as the formation of minimal coalitions, namely,

pairs, is possible.

In the context of probability updating, reallocation-proofness requires that

the updated probability of each event should not change, when the prior changes

only over this event (and so the prior probability of the event itself does not

change). In the context of probability aggregation, it requires that the aggregated

probability of an event should not change, when individual beliefs change only

over this event (McConway 1981 studies a stronger axiom called “strong setwise

function property”).

Summary of Main Results

When there is only one issue as in the contexts of bankruptcy, surplus sharing,

and probability updating, a best known rule is the “proportional rule” (also

1McConway (1981) deals with a richer environment in which a certain variety of σ-algebras
are admissible. In our model, we only consider the fixed state space N and the fixed σ-algebra
2N . See also Wilson (1975) for an abstract model of algebraic aggregation.
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called the “Bayesian updating rule” in the context of probability updating). It

allocates the total amount in proportion to ci’s. When there are more than

one issue, we can generalize this rule in the following two steps. First, for each

issue k ∈ K, the division according to the k-th issue is made in proportion

to cik’s. Second, we take a weighted average of these issuewise proportional

divisions. Assume that the weight we use in the second step is given by a function

W : RK
+ × R+ → ∆K−1, relying on the sum of characteristic vectors c̄ ≡ ∑

i∈N ci

and the amount of resource E. This rule is called the proportional rule associated

with weight function W .

We identify a greater family of rules, including all proportional rules. These

rules are described by two functions W : RK
+ ×R+ → RK and a : RK

+ ×R+ → RN ,

relying on the sum of characteristic vectors c̄ ≡ ∑
i∈N ci and the amount of

resource E. Function a is composed of component functions a1, · · · , aN , where

for each i ∈ N , ai describes how much is allocated to entity i when i has the zero

characteristic vector. For each problem (c, E), each entity i receives ai (c̄, E) and,

in addition, (Wk (c̄, E))k∈K-linear combination of issuewise proportional divisions.

This rule is called generalized proportional rule associated with (W,a). Note that

for proportional rules, W is a weight function (its range is ∆K−1) and a assigns

constantly the zero vector.

We first show that when there are at least three entities, generalized pro-

portional rules are the only rules satisfying reallocation-proofness. We pin down

smaller families of rules adding some combinations of the following standard ax-

ioms. Non-negativity requires that a non-negative amount should be allocated

to each entity. Efficiency requires that the sum of individual shares should be

equal to the amount to divide. Dummy requires that no entity with the zero

characteristic vector should receive a positive amount. Anonymity requires that

the names, or labels, of entities should not matter. Finally, No transfer para-

dox (Moulin 1985a) requires that no entity can increase its share by transferring

some values of its characteristic vector to others’. In particular, we show that

proportional rules are the only rules satisfying reallocation-proofness, efficiency,

dummy, and non-negativity (or no transfer paradox ).

We next establish alternative characterizations based on pairwise reallocation-

proofness. Reallocation-proofness clearly implies the pairwise version. But the

converse does not hold. The gap between the two axioms is filled with pairwise

non-bossiness, saying that no pair can change others’ shares without changing its

total share. This axiom is similar, in spirit, to “non-bossiness” introduced by Sat-

terthwaite and Sonnenschein (1981). We provide an alternative axiomatization of

generalized proportional rules imposing pairwise reallocation-proofness and pair-

4



wise non-bossiness. However, for the axiomatization of proportional rules, we

do not need pairwise non-bossiness. We show that proportional rules are the

only rules satisfying pairwise reallocation-proofness, efficiency, dummy, and non-

negativity (or no transfer paradox ).

In the variable population framework, we characterize rules satisfying merging-

splitting-proofness. Although this axiom is similar to reallocation-proofness, we

reach somewhat different conclusions. We show that only those generalized pro-

portional rules with a (·) = 0 are merging-splitting-proof. We also show that pro-

portional rules are the only rules satisfying pairwise merging-splitting-proofness,

efficiency, and non-negativity (or no transfer paradox ).

Several existing and new results in specialized contexts are obtained as corol-

laries: in particular, the axiomatizations of the proportional rule by O’Neill (1982),

Chun (1988), de Frutos (1999), and Chambers and Thomson (2002), the ax-

iomatizations of “ESCD rules” and “utilitarian rules” by Moulin (1985a), the

axiomatization of “linear opinion pools” by McConway (1981) etc.

The rest of the paper is organized as follows. We discuss related literature in

Section 2. We introduce the model and basic concepts in Section 3. The main

results and corollaries are in Section 4. In Section 5, we consider the variable

population model. We discuss applications of our results in Section 6.

2 Related Literature

Both reallocation-proofness and merging-splitting-proofness have been studied by

various authors in the context of bankruptcy problem. The first formal study

is O’Neill (1982). While bankruptcy problems are extremely simple to describe,

they are surprisingly rich and provide an ideal framework to discuss the issue of

fairness. A number of interesting numerical examples of problems and allocation

rules have appeared in the ancient literature (e.g., the Talmud) and inspired the

recent formal literature. For a comprehensive review of the large literature, see

Thomson (2002a, 2002b).

In the context of bankruptcy problem, Moulin (1985b) and Chun (1988) in-

dependently characterize the proportional rule imposing reallocation-proofness

(called “no advantageous reallocation” by them) and, in addition, anonymity

and continuity (Theorem 2 in Chun 1988 and Theorem 5 in Moulin 1985b). This

result is obtained as a corollary of our results and, moreover, we show that both

anonymity and continuity can be dropped.

Merging-splitting-proofness has been studied by Chun (1988) and de Fru-
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tos (1999). In the context of claims problem, including both bankruptcy and

surplus sharing problems, Chun (1988) characterizes the proportional rule im-

posing merging-splitting-proofness, anonymity, and continuity. A corollary of our

main result shows that anonymity in his result can be dropped. de Frutos (1999)

shows that the proportional rule is the only rule that satisfies merging-splitting-

proofness and non-negativity. This result is also obtained as a corollary.

In the context of surplus sharing, Moulin (1987) shows that the “equal shar-

ing rule” and the proportional rule are the only rules that satisfy reallocation-

proofness, efficiency, anonymity, and any two of “separability,” “path indepen-

dence,” and “additivity.” He also show that convex combinations of the two rules

are the only rules satisfying reallocation-proofness, efficiency, anonymity, non-

negativity, “claims monotonicity”, and “homogeneity”. This result is obtained as

a corollary to our results.

Moulin (1985a) considers social choice problems with transferable utilities,

also called, “quasi-linear bargaining problems”. In this context, a characteristic

vector is composed of utilities from public projects. Thus, it is natural to require

that any translation of a characteristic vector should not make any essential differ-

ence. This requirement is called translation invariance. Moulin (1985a) character-

izes an interesting subfamily of generalized proportional rules, called, “equal shar-

ing above a convex decision”, imposing reallocation-proofness, efficiency, transla-

tion invariance, no transfer paradox, and anonymity. Adding dummy, he charac-

terize a subfamily of proportional rules, called, “utilitarian rules.” We obtain these

two results as corollaries. Moreover, we show that anonymity can be dropped and

reallocation-proofness in the second result can be replaced with the pairwise ver-

sion.

Probability updating problem is formulated by Stalnaker (1968) and Lewis (1973).

In Economics literature, a similar problem is recently studied by Rubinstein and

Zhou (1999).

Probability aggregation problems are studied by McConway (1981) and Ru-

binstein and Fishburn (1986). It is an example of the general model of algebraic

aggregation considered by Wilson (1975). In this context, each proportional rule

is associated with a vector of weights (wk)k∈K and it aggregates beliefs by taking

the weighted sum according to (wk)k∈K . Thus these rules are called “linear opin-

ion pools”: see McConway (1981). In a certain “richer environment,” McConway

characterizes linear opinion pools imposing strong setwise function property, the

requirement that there exists a function associating with any list of probability
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assessments of an event by experts an aggregated probability of the same event.2

This axiom implies reallocation-proofness. Thus his result is also obtained as a

corollary.

3 Definitions

3.1 Allocation Problems

There are N ≥ 2 entities, interpreted often as “agents”, and K dimensions of

the characteristics of each entity. Let us also denote the set of entities by N ≡
{1, · · · , N} and the set of dimensions by K ≡ {1, · · · , K}. Each entity i ∈ N is

identified by its characteristic vector ci ∈ RK
+ . Let c ∈ RN×K

+ be the characteristic

matrix consisting of N rows c1, · · · , cN . An allocation problem is a list (c, E) ∈
RN×K

+ ×R+ of a characteristic matrix c and an amount E of resource. The amount

to divide depends on the sum of characteristic vectors, c̄ ≡ ∑
i∈N ci, and resource

E. Let e : RK
+ × R+ → R+ be a feasibility function associating with each pair

(c̄, E) ∈ RK
+ × R+ the amount e (c̄, E) to divide among N entities. We rule out

uninteresting problems by assuming that for each problem (c, E),
∑

i∈N ci 6= 0 or

e (c̄, E) = 0.3 Throughout the paper, we fix e (·).
Let DN be a non-empty collection of admissible problems. We only require

the following condition of richness : for each (c, E) ∈ DN and each c′ ∈ RN×K
+ ,

if
∑

i∈N c′i =
∑

i∈N ci, then (c′, E) ∈ DN . That is, any reallocation of each com-

ponent in
∑

i∈N ci among N generates another admissible problem. Through-

out the paper, we will assume richness of DN . For each (c, E) ∈ DN , let

DN (c̄, E) ≡ {(c′, E) : c′ ∈ RN×K
+ and c̄′ = c̄}. Then richness says that for

each (c, E) ∈ DN , DN (c̄, E) ⊆ DN .

An “allocation rule”, or briefly, a rule is a function f that associates with

each problem (c, E) ∈ DN a vector f(c, E) ∈ RN and that satisfies the following

“bound condition”: for each (c̄, E) ∈ RN
+ × R+, there exists i ∈ N such that fi

is bounded above or below over DN (c̄, E), where fi(c, E) denotes the amount

allocated to entity i ∈ N . We call DN the domain of f . The bound condition

excludes only those extreme functions of which image of the compact setDN (c̄, E)

is unbounded in every component.4 This condition is implied by some standard

2McConways (1981) assumes that every σ-algebra over a state space is admissible. This
assumption playes an important role in his result.

3If there is a problem (c, E) with c̄ = 0 and E > 0, then the two basic axioms, “efficiency”
and “dummy”, to be defined later, are not compatible.

4Note that since DN (c̄, E) is compact, any continuous function satisfies the bound condition.
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axioms such as “non-negativity” or “no transfer paradox”, to be introduced below.

Thus, it can be dropped in all of our results where these axioms are assumed.

The following requirements for rules, or axioms, are standard. The first axiom

says that each entity should receive non-negative amount.

Non-Negativity. For each (c, E) ∈ DN and each i ∈ N , fi (c, E) ≥ 0.

The next axiom says that the total amount allocated should be equal to the

amount to divide, that is, no surplus or deficit.

Efficiency. For each (c, E) ∈ DN ,
∑

i∈N fi(c, E) = e (c̄, E).

The next axiom says that nothing should be allocated to an entity with the

zero characteristic vector.

Dummy. For each i ∈ N and each (c, E) ∈ DN , if ci = 0, fi(c, E) = 0.

The next axiom says that changing labels of entities should not matter. Let

τ : N → N be a permutation. For each c ∈ RN
+ , let cτ be such that for each

i ∈ N , cτ
i ≡ cτ(i).

Anonymity. For each permutation τ on N , each (c, E) ∈ DN , and each i ∈ N ,

fi (c
τ , E) = fτ(i) (c, E).

The last axiom says that no entity can increase its share by transferring some

values of its characteristic vector to others’.

No Transfer Paradox. (Moulin 1985) For each E ∈ R+, each c, c′ ∈ RN×K
+ ,

and each i ∈ N with (c, E) , (c′, E) ∈ DN ,

if ci ≤ c′i, c̄ = c̄′, and for each j 6= i, cj ≥ c′j, then fi (c, E) ≤ fi (c
′, E) .

Although these axioms are standard, we do not require them in all of our re-

sults. Also standard is feasibility, saying that for each (c, E) ∈ DN ,
∑

i∈N fi (c, E) ≤
e (c̄, E). In our results, we do not need to impose feasibility. However, adding

this extra condition will refine our results in a straightforward manner. Clearly,

efficiency implies feasibility.

If f satisfies no transfer paradox, then for each (c, E) and each i ∈ N , fi

over DN (c̄, E) is bounded above by fi (c
′, E), where c′i = c̄ and c′j = 0 for each

j 6= i (note that c′ is this only profile that has the maximal vector for entity

i over DN (c̄, E)). So, this axiom implies the bound condition on rules. Also

The bound condition is also satisfied in the bankruptcy problems if we assume either “non-
negativity” or “claims boundedness”.
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non-negativity implies the bound condition. Hence the bound condition can be

dropped in all of our results with non-negativity or no transfer paradox.

We give a few examples of interesting classes of allocation problems.

Example 1 (Bankruptcy). The first example is bankruptcy problems (O’Neill 1982).

The problem is to divide the liquidation value E of a bankrupt firm among the

set of creditors N . In this problem, K = 1, and ci ∈ R+ is the amount of claim

that creditor i has against the bankrupt firm. And the amount to divide is the

liquidation value E, so e (c̄, E) = E. It is assumed that the liquidation value is

not sufficient to satisfy everyone’s claim. Thus we set DN ≡ {(c, E) ∈ RN
+ ×R+ :∑

i∈N ci ≥ E}.
In practice, a firm issues a variety of financial assets and bankruptcy laws

distinguish the types of financial assets that the creditors hold. This motivates

the following generalization of the bankruptcy problems:

Example 2 (Multi-Dimensional Bankruptcy). As in Example 1, E is the

liquidation value of a bankrupt firm and N is the set of creditors. Let K de-

note the set of types of financial assets and cik denote the amount of claim that

creditor i holds in the form of asset k. Let e (c, E) ≡ E and DN ≡ {(c, E) ∈
RN×K

+ × R+ :
∑

k∈K

∑
i∈N cik ≥ E}.

Example 3 (Surplus Sharing). The problem is to divide the profits from a

project among the contributors. Here N is the set of contributors, K = 1, E is

the total amount of profits that the project generates if cooperation succeeds, and

ci ∈ R+ is the amount that agent i earns if cooperation fails. Thus E−∑
i∈N ci is

the total gains from cooperation and assumed to be non-negative. Let e (c̄, E) ≡
E and DN ≡ {(c, E) ∈ RN

+ × R+ : 0 <
∑

i∈N ci ≤ E}.
Example 4 (Claims Problems). The class of general claims problems is simply

the union of the classes of (single-dimensional) bankruptcy and surplus-sharing

problems. Thus, the problem is to divide an amount E > 0 among a set of agents

N , taking into account that each agent i ∈ N has a claim ci ∈ R+, and no relation

between
∑

i∈N ci and E is imposed.

Example 5 (Social Choice with Transferable Utilities). In this class of

problems, N is the set of agents and K is the set of alternatives. Assume that E

is fixed. So we skip this notation below. Preferences are quasi-linear and cik is

agent i’s valuation for alternative k. Assume that monetary transfers are feasible.

Then the highest total valuations among K alternatives determines the amount

to divide. Thus, for each c ∈ RN×K
+ , e (c̄) ≡ maxk∈K c̄k. Let DN ≡ RN×K

+ . This
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class of problems differs from the previous ones since the amount to divide e (c̄)

depends on c̄.

Example 6 (Probability Updating). Let N∗ be the set of all states of the

world and an agent initially has a belief, i.e., probability distribution over the

states. Now, the agent is informed that the true state is actually in a subset

N ⊆ N∗ and he has to update his belief. For each state i ∈ N , let ci ∈ R+ be the

probability that the agent initially assigns to state i (thus K = 1). Since N ⊆ N∗,
we have

∑
i∈N ci ≤ 1. We assume

∑
i∈N ci > 0, i.e., the agent initially assigns a

positive probability to the event N that has occurred. Let E be fixed at 1. So

we omit E below. We then have DN = {c ∈ RN
+ : 0 <

∑
i∈N ci ≤ 1} and e (c̄) = 1

for each c ∈ DN . The updating rule used commonly is the “Bayesian updating

rule”. The problem of probability updating is studied by Stalnaker (1968) and

Lewis (1973).

In the context of probability updating, efficiency means that the updated

belief assigns probability 1 to the event N that has occurred. On the other hand,

dummy means that if the agent initially assigns probability 0 to a state i ∈ N ,

then he does so under the updated belief as well: informally speaking, if the agent

initially believed that a state i ∈ N never occurs, then he continues to believe so

after realizing the event N .

Example 7 (Probability Aggregation). In this class of problems, N is the

set of states of the world. Initially, there are K probability distributions over the

states. That is, for each k ∈ K, (cik)i∈N ∈ ∆N−1 is a probability distribution

over N . For example, K may be the set of experts, who have different beliefs

over the states. The problem is to aggregate these probability distributions and

produce a single distribution. Let E be fixed at 1. So we omit E below. We then

have DN = {c ∈ RN×K
+ : for each k ∈ K,

∑
i∈N cik = 1} and e (c̄) = 1 for each

c ∈ DN . This problem of probability aggregation is studied by McConway (1981)

and Rubinstein and Fishburn (1986).

In the context of probability aggregation, efficiency has an obvious meaning.

Dummy means that if state i has the zero probability under all of the individual

probability distributions, then state i should also have the zero probability after

the aggregation.
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3.2 Proportional Rules

For the single-dimensional case, namely, when K = 1, a simplest and best-known

rule is the proportional rule, which simply divides the total amount proportional

to ci’s. Formally:

Definition. Assume K = 1. The proportional rule is the rule f defined by

fi(c, E) ≡ ci

c̄
× e (c̄, E) , (1)

for each i ∈ N and each (c, E) ∈ DN with c̄ 6= 0; if c̄ = 0 (and so e (c̄, E) = 0),

fi (c, E) = 0 for each i ∈ N .

In the context of probability updating, the proportional rule is nothing but

the Bayesian updating rule.

For the case when K ≥ 2, (1) is not well-defined. We generalize the pro-

portional rule in the single-dimensional case, by using the following notion. A

weight function is defined as a function W : RK
+ × R+ → ∆K−1 such that for

each (c, E) ∈ D with c 6= 0 and each k ∈ K, if c̄k = 0, Wk (c̄, E) = 0. Thus∑
k∈K : c̄k>0

Wk(c̄, E) = 1.

Definition. A rule f is a proportional rule if there exists a weight function W

such that for each problem (c, E) ∈ DN ,

fi(c, E) =

( ∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)

)
× e (c̄, E) .

We denote by PW the proportional rule associated with weight function W .

This rule PW first applies the proportional rule to each single dimensional

sub-problem (ck, E), where k ∈ K and ck ≡ (cik)i∈N , and then takes the weighted

average of the solutions to the sub-problems using the vector of weights W (c̄, E).

Note that the weights depend on the problem being considered, but depend only

on (c̄, E).

The proportional rules satisfy efficiency because of
∑

k∈K : c̄k>0 Wk(c̄, E) = 1.

These rules also satisfy dummy. It is evident that when K = 1, all proportional

rules coincide.

In the context of probability aggregation (Example 7), all problems have E =

1 and c̄k = 1 for each k ∈ K. This means that only the weight vector w ≡
W ((1, · · · , 1) , 1) of weight function W is crucial for the definition of PW . The

proportional rule PW then simply takes a weighted average of the probability
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distributions using the fixed vector of weights, w. Therefore, proportional rules

are called linear opinion pools (McConway 1981).

3.3 Reallocation-Proofness

Our main objective is to study rules that are robust to coalitional manipulations

through reallocations of characteristic vectors. Such a robustness is formalized

by the requirement that the total amount allocated to each group S ⊆ N should

not be affected by any reallocation of ci’s within S. Formally:

Definition. An allocation rule f is reallocation-proof if for each (c, E) ∈ DN ,

each S ⊆ N , and each c′ ∈ RS×K
+ , if

∑
i∈S c′i =

∑
i∈S ci,

∑
i∈S

fi(c
′, cN\S, E) =

∑
i∈S

fi(c, E). (2)

In the context of claims problems and their variants, the axiom means that

no group of agents can change their aggregate share by reallocating claims within

the group. If the left-hand side of (2) is larger than the right-hand side, then

group S with claim profile (ci)i∈S can gain by reallocating their claims to c′S (and

making appropriate side-payments). If the reverse inequality holds, then group S

with claims (c′i)i∈S can gain.

The generalized proportional rules PW are reallocation-proof, since the total

amount that group S receives is given by

∑
i∈S

PW
i (c, E) =

∑

k∈K : c̄k>0

Wk(c̄, E)

∑
i∈S cik

c̄k

e (c̄, E)

and the right-hand side is invariant with respect to reallocations of ci’s within S.

This axiom has been introduced by Moulin (1985a) and Chun (1988) in the

contexts of social choice with transferable utilities and claims problems, respec-

tively. In these contexts, it is also called “no advantageous reallocation”.

In the context of probability updating (Example 6), reallocation-proofness

deals with two beliefs µ and µ′ that differ only on an event S ⊆ N but assign the

same total probability to S. The axiom then says that the updated versions of µ

and µ′ should also assign the same total probability to S.

In the context of probability aggregation (Example 7), this axiom deals with

two profiles of beliefs (µk)k∈K and (µ′k)k∈K such that for each k ∈ K, µk and µ′k
differ only on an event S ⊆ N but assign the same total probability to S. The

axiom then says that the aggregated (social) beliefs under the two profiles should

assign the same total probability to S.
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3.4 Pairwise Reallocation-Proofness and Non-Bossiness

Reallocation-proofness pertains to all subsets of N , or coalitions. When there are

restrictions on coalition formation, this axiom may not be entirely appropriate.

We next introduce a weaker axiom that is associated only with the minimal

coalitions, namely, pairs. It says that no pair can increase the aggregate share by

reallocating characteristic vectors among its members.

Definition. An allocation rule f is pairwise reallocation-proof if for each (c, E) ∈
DN , each i, j ∈ N with i 6= j, and each c′ ∈ RS×K

+ , if c′i + c′j = ci + cj and

c′N\{i,j} = cN\{i,j},

fi(c
′, E) + fj(c

′, E) = fi(c, E) + fj (c, E) . (3)

The pairwise version is particularly relevant for claims problems since it is

reasonable to believe that strategic reallocations of claims are easier to implement

for smaller groups of agents (“transaction costs”).

Clearly, reallocation-proofness implies pairwise reallocation-proofness. How-

ever, the converse does not hold, as shown by Example 8. We will show that

the gap between the two axioms are filled with the next axiom. It says that any

pair cannot change, through a reallocation of characteristic vectors, the shares

of others, without affecting its own aggregate share. This axiom is similar, in

spirit, to “non-bossiness” in economic environments introduced by Satterthwaite

and Sonnenschein (1981).

Definition. An allocation rule f is pairwise non-bossy if for each (c, E) ∈ DN ,

each i, j ∈ N with i 6= j, and each c′ ∈ RS×K
+ , if c′i+c′j = ci+cj, c′N\{i,j} = cN\{i,j},

and fi (c
′, E) + fj (c′, E) = fi (c, E) + fj (c, E),

fN\{i,j}(c
′, E) = fN\{i,j}(c, E). (4)

Although a pair {i, j}may not affect their share by a reallocation of their char-

acteristic vectors, they may change others’ shares (this is shown by Example 8).

Thus pairwise reallocation-proofness does not imply pairwise non-bossiness.

If (4) does not hold, say, fh(c
′, E) > fh(c, E), for some h ∈ N\{i, j}, then

the coalition S ≡ {h, i, j} gains by a reallocation of characteristic vectors which

changes (c, E) to (c′, E). This is a violation of reallocation-proofness. Thus,

reallocation-proofness implies pairwise non-bossy. We will show later that the

combination of pairwise reallocation-proofness and pairwise non-bossiness is equiv-

alent to reallocation-proofness.
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4 Main Results

Our main results are composed of two parts. First, we characterize reallocation-

proof rules. We pin down smaller families of these rules, adding dummy, effi-

ciency, anonymity, non-negativity, and no transfer paradox. Second, we establish

alternative characterizations considering pairwise reallocation-proofness and pair-

wise non-bossiness.

Reallocation-Proofness

We first characterize reallocation-proof rules. These rules are described by two

functions W : RK
+×R+ → RK and a : RK

+×R+ → RN . Given c̄ ∈ RK
+ and E ∈ R+,

a (c̄) ≡ (ai (c̄))i∈N describes the list of shares allocated to each entity whenever

it has the zero characteristic vector. Let us refer to the difference between entity

i’s share at (c, E) and ai (c̄) as entity i’s surplus. Entity i’s surplus is determined

by the “W (c̄, E)-linear” combination of the proportional allocations according

to (cik)i∈N for each k ∈ K. Proportional rules are special examples where the

value of a is constantly the zero vector and the range of W is the simplex ∆K−1.

Formally,

Definition. A rule f is a generalized proportional rule if there exist two functions

W : RK
+ × R+ → RK and a : RK

+ × R+ → RN such that for each (c, E) ∈ DN and

each i ∈ N ,

fi(c, E) = ai(c̄, E) +
∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)e (c̄, E) . (5)

Note that given (c̄, E), for each i ∈ N , {ci : ci is i’s characteristic vector

for some (c, E) ∈ DN (c̄, E)} is bounded above by c̄ and below by 0. Then

ai(c̄, E)+
∑

k∈K : c̄k>0
cik

c̄k
Wk(c̄, E)e (c̄, E) is bounded both above and below. Hence

generalized proportional rules satisfy the bound condition.

It should be noted that W is not required to be a weight function. Also

note that in the definition, the value of Wk (c̄, E) when c̄k = 0 does not play

any role and so it could be set arbitrarily. Therefore, for simplicity, we will set

Wk (c̄, E) = 0 whenever c̄k = 0.

We show that generalized proportional rules are the only rules that are reallocation-

proof.

Theorem 1. Assume N ≥ 3. Then, a rule over DN is reallocation-proof if and

only if it is a generalized proportional rule.
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Theorem 1 can easily generate characterizations of rules that also satisfy com-

binations of non-negativity, dummy, efficiency, anonymity, and no transfer para-

dox.

We provide necessary and sufficient conditions on (W,a) for each of these

axioms.

Fact 1 (Non-Negativity). The generalized proportional rule associated with

(W,a) satisfies non-negativity if and only if for each (c, E) ∈ DN ,

ai (c̄, E) ≥ 0, for each i ∈ N ; (6)

min
j∈N

aj(c̄, E) +
∑

k∈K : c̄k>0

min{0,Wk(c̄, E)}e (c̄, E) ≥ 0. (7)

Fact 2 (Efficiency). The generalized proportional rule associated with (W,a)

satisfies efficiency if and only if for each (c, E) ∈ DN ,

∑

k∈K : c̄k>0

Wk(c̄, E)e (c̄, E) =

[
e (c̄, E)−

∑
i∈N

ai(c̄, E)

]
. (8)

When K = 1, (8) implies that for each i ∈ N ,

fi(c, E) = ai(c̄, E) +
ci

c̄

[
e (c̄, E)−

∑
i∈N

ai(c̄, E)

]
. (9)

This rule first allocates ai(c̄, E) to each i, and then divides the remaining amount

among i’s proportional to ci’s. It satisfies non-negativity if and only if for each

(c, E) ∈ DN and each j ∈ N ,
∑

i∈N\{j}
ai(c̄, E) ≤ e (c̄, E) . (10)

Fact 3 (Dummy). The generalized proportional rule associated with (W,a) sat-

isfies dummy if and only if for each (c, E) ∈ DN and each i ∈ N ,

ai(c̄, E) = 0. (11)

Interestingly, this implies that all allocation rules that satisfy dummy and

reallocation-proofness also satisfy anonymity. Note that when K = 1, by (10),

efficiency and dummy imply non-negativity. Note also that, under (11), (7) is

equivalent to the condition that for each k ∈ K, Wk (c̄, E) ≥ 0.

Fact 4 (Anonymity). The generalized proportional rule associated with (W,a)

satisfies anonymity if and only if for each (c, E) ∈ DN ,

a1(c̄, E) = · · · = aN (c̄, E) .
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Fact 5 (No Transfer Paradox). The generalized proportional rule associated

with (W,a) satisfies no transfer paradox if and only if W is non-negative valued,

that is, for each (c, E) ∈ DN and each k ∈ K,

Wk (c̄, E) ≥ 0.

Proof. Let f be the generalized proportional rule associated with (W,a). As-

sume that W is non-negative valued. Then it is clear from (5) that when c̄ and

E are fixed, for each i ∈ N , fi is non-decreasing in ci. So f satisfies no transfer

paradox.

To show the converse, suppose to the contrary that for some (c̄, E) ∈ RK
+×R+

and k ∈ K, c̄k > 0 and Wk (c̄, E) < 0. Let c be such that c1k > 0 and c1l = 0

for each l 6= k. Then f1 (c, E) = a1 (c̄, E) + c1k

c̄k
Wk (c̄, E) e (c̄, E). Then if some

amount in the k-th component of c1 is transferred to vectors of other entities (no

change in other components), the share for entity 1 increases. Thus f violates no

transfer paradox.

If the generalized proportional rule associated with (W,a) satisfies dummy,

efficiency, and non-negativity (or no transfer paradox ), then by (8) and (11),

we may let W be the weight function. Thus, we obtain an axiomatization of

proportional rules. Formally:

Corollary 1. Assume N ≥ 3. Then, a rule over DN satisfies reallocation-

proofness, dummy, efficiency, and non-negativity (or no transfer paradox) if

and only if it is a proportional rule.

Remark 1. When K ≥ 2, the independence of the four axioms can be established

easily. In particular, without non-negativity (or no transfer paradox ), we axiom-

atize the family of rules f that is represented by a function W : RK
+ × R+ → R

such that for each (c̄, E) ∈ RK
+ ×R+,

∑
k∈K Wk (c̄, E) = 1, in the following form:

for each (c, E) ∈ DN and each i ∈ N ,

fi(c, E) =

( ∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)

)
× e (c̄, E) .

Note that W is not necessarily a weight function, since W may have negative

values. For such W , f violates non-negativity. Note also that since each of non-

negativity and no transfer paradox implies the bound condition in the definition

of rules, this condition can be dropped. This remark also applies to Theorems 3

and 6 and Corollaries 3 and 4.
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Remark 2. When K = 1 as in the contexts of bankruptcy and surplus sharing,

non-negativity (or no transfer paradox ) can be dropped. However in this case,

the bound condition in the definition of rules is crucial. This remark also applies

to Theorems 3 and 6 and Corollaries 3 and 4.

A capacity function is a function W : RK
+ × R+ → RK such that for each

(c̄, E) ∈ RK
+ × R+, W (c̄, E) = 0 and

∑
k∈K Wk (c̄, E) ≤ 1. We next axiomatize

generalized proportional rules represented by capacity functions.

Corollary 2. Assume N ≥ 3. Then, a rule over DN satisfies reallocation-

proofness, anonymity, and efficiency if and only if it is a generalized proportional

rule represented by a function W : RK
+×R+ → R as follows : for each (c, E) ∈ DN

and each i ∈ N ,

fi (c, E) =
1

n

(
1−

∑

k:c̄k>0

Wk (c̄, E)

)
e (c̄, E)+

∑

k∈K:c̄k>0

cik

c̄k

Wk (c̄, E) e (c̄, E) . (12)

Adding non-negativity and no transfer paradox, we axiomatize generalized pro-

portional rules represented by a capacity function.

Proof. Let f be the generalized proportional rule associated with (W,a). As-

sume that f satisfies the four axioms. Then by anonymity and efficiency, for

each (c, E) ∈ DN and each i ∈ N ,

ai (c̄, E) =
1

n

(
1−

∑

k:c̄k>0

Wk (c̄, E)

)
e (c̄, E) .

By no transfer paradox, W is non-negative valued. Adding non-negativity, ai (c̄, E) ≥
0 and so

∑
k:c̄k>0 Wk (c̄, E) =

∑
k∈K Wk (c̄, E) ≤ 1. Then W is a capacity func-

tion.

As in Corollary 1, the bound condition in the definition of rules can be dropped

for this result.

We now prove Theorem 1.

Proof of Theorem 1. Suppose N ≥ 3. Since the “if” part has been already

discussed, we only prove the “only if” part. Let f be a reallocation-proof rule over

DN . We fix E > 0 and d ∈ RK
+ \ {0} throughout the proof and focus (c, E) ∈ DN

such that c̄ = d. Let C ≡ {c ∈ RK×N
+ : (c, E) ∈ DN and c̄ = d}. If C = ∅, there is

nothing to prove. Thus we assume C 6= ∅ in what follows.

Note that by reallocation-proofness applied to N , the total share of all entities

is constant over C. Using this and reallocation-proofness, we can show that for
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each c ∈ C and each S ⊆ N ,
∑

i∈S fi(c, E) depends only on S and
∑

i∈S ci (in

addition to E and
∑

i∈N ci = d, which are fixed). This enables us to define g(S, x),

which denotes the total amount received by group S at f (c, E) for each c ∈ C
with

∑
i∈S ci = x. The domain of the function is the set of all (S, x) ∈ 2N × RK

+

such that ∅ 6= S ( N and 0 ≤ x ≤ d. The value g(S, x) is well-defined for all

these (S, x) because of the richness assumption.

Step 1. Let x ∈ RK satisfy 0 ≤ x ≤ d. Let ∅ 6= S ( N and i ∈ S. By

richness, there exists c ∈ C such that ci = 0 and
∑

j∈S\i cj = x (for simplicity, we

sometimes write i instead of writing {i}). Then, at f(c, E), S receives g(S, x),

S \ i receives g(S \ i, x), and i receives g(i, 0). Hence

g(S, x) = g(S \ i, x) + g(i, 0). (13)

Applying this equation to each pair {i, j} ⊆ N yields

g({i, j}, x) = g(j, x) + g(i, 0)

= g(i, x) + g(j, 0),

which implies

g(i, x)− g(i, 0) = g(j, x)− g(j, 0).

Since this holds for any i, j ∈ N , it follows that g(i, x)− g(i, 0) is independent of

i. Thus we can denote the common value by ξ(x). Then for each i ∈ N ,

g(i, x) = ξ(x) + g(i, 0).

Note that by the bound condition, ξ defined over {x ∈ RK
+ : x ≤ d} is bounded

above or below. Without loss of generality, assume that it is bounded below (the

same argument can be applied for the bounded above case). Let B ∈ R be a lower

bound (when f satisfies the non-negativity constraint, we can use −mini∈N g(i, 0)

as a lower bound). By definition, ξ(0) = 0. A repeated application of (13) yields

that for each non-empty S ( N and each j ∈ S,

g(S, x) = g(j, x) +
∑

i∈S\{j}
g(i, 0) (14)

= ξ(x) +
∑
i∈S

g(i, 0). (15)

Step 2. We show that for each x, y ∈ RK
+ such that x + y ≤ d,

ξ(x) + ξ(y) = ξ(x + y).
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To show this, partition N into three non-empty subsets S1, S2, and S3, which is

possible since N ≥ 3. By richness, there exists c ∈ C such that
∑

i∈S ci is equal

to x for S = S1, y for S = S2, and d − x − y for S = S3. Then by (15), S1

receives ξ(x) +
∑

i∈S1
g(i, 0), S2 receives ξ(y) +

∑
i∈S2

g(i, 0), and S1 ∪S2 receives

ξ(x + y) +
∑

i∈S1∪S2
g(i, 0). Therefore, ξ(x) + ξ(y) = ξ(x + y).

Step 3. We show that for each x ∈ RK
+ such that x ≤ d and for each r ∈ (0, 1),

ξ(rx) = rξ(x). (16)

If r is a rational number, (16) follows from Step 2 (this can be shown by using a

standard argument). To prove (16) for each real numbers r ∈ (0, 1), we exploit

the lower bound B. Let r ∈ (0, 1). Then for any rational number s ∈ (0, 1) with

s ≥ r,

ξ(rx) = ξ(s(rx/s)) = sξ(rx/s) ≥ sB,

where the inequality follows because B is a lower bound of ξ. Since this holds for

any rational number s ∈ (0, 1) with s ≥ r and the last term is continuous in s,

we obtain: for each r ∈ (0, 1),

ξ(rx) ≥ rB. (17)

On the other hand, by Step 2 and (17), for any rational number s ∈ (0, 1)

with s ≥ r,

sξ(x)− ξ(rx) = ξ(sx)− ξ(rx)

= ξ((s− r)x)

≥ (s− r)B.

Since this holds for any rational number s ∈ (0, 1) with s ≥ r and the first and

the last terms are continuous in s, we obtain

rξ(x)− ξ(rx) ≥ 0.

The symmetric argument that uses rational numbers s ≤ r yields the reverse

inequality. Hence we obtain rξ(x) = ξ(rx).

Step 4. Let ek ∈ RK
+ be the unit vector that has 1 in the k-th component and

0 in other components. Then for each x ∈ RK
+ with x ≤ d,

ξ(x) =
∑

k∈K : dk>0

ξ(xke
k)

=
∑

k∈K : dk>0

xk

dk

ξ(dke
k).
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Recall that E and d are fixed at the beginning of the proof. This implies that

functions gi’s and ξ depend on E and d. Thus, we can denote ξ(dke
k)/e (d,E)

by Wk(d,E) (if dk = 0, let Wk (d,E) ≡ 0) and g(i, 0) by ai(d,E). Then, for each

c ∈ C (thus c̄ = d) and each i ∈ N ,

fi(c, E) = g(i, ci)

= g(i, 0) + ξ(ci)

= ai(c̄, E) +
∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)e (c̄, E) ,

which proves (5).

Remark 3. It is known that when an additive real valued function over R is

bounded above or below on a set of positive Lebesgue measure, it is linear (The-

orem 2.1.8 in Aczél and Dhombres 1989). Step 3 can be simplified when this fact

is used.5

Pairwise Reallocation-Proofness

When reallocation-proofness in Theorem 1 is weakened to pairwise reallocation-

proofness, the characterization no longer holds. Example 8 below shows this.

However, adding pairwise non-bossiness, we establish an alternative characteri-

zation. Formally:

Theorem 2. Assume N ≥ 3. Then, a rule over DN is pairwise reallocation-

proof and pairwise non-bossy if and only if it is a generalized proportional rule.

This result follows directly from Theorem 1 and the following lemma.

Lemma 1. The combination of pairwise reallocation-proofness and pairwise

non-bossiness is equivalent to reallocation-proofness.

Proof. We will prove that pairwise reallocation-proofness and pairwise non-

bossiness imply reallocation-proofness. The converse has already been discussed.

We first define some technical terms. For all profiles c, c′ ∈ RN×K
+ admissible

in domain DN , c′ is a pairwise variant of c if there exists S ⊆ N such that |S| = 2,∑
i∈S c′i =

∑
i∈S ci, and c′N\S = cN\S. Profile c′ is an iterative pairwise variant of

c if there exist a finite number of profiles c1, · · · , ck ∈ RN×M
+ admissible in DN

such that c1 = c, ck = c′, and for each l = 1, · · · , k, cl is a pairwise variant of

cl−1.

5This was pointed out by Hervé Moulin.
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Step 1. We show that any two admissible profiles of characteristic vectors in

RN×K
+ with identical sum of components are iterative pairwise variant of each

other.

Case 1. K = 1. Let c, c′ ∈ RN×K
+ be admissible in DN and satisfy c 6= c′,

c̄ = c̄′, and cN\S = c′N\S for some S ⊆ N . The proof is trivial when S has only two

entities. Suppose by induction that the claim holds when S has at most k entities.

Now consider the case when S has k+1 entities. We may assume S ≡ {1, · · · , k+

1}. Then since K = 1, there exists i ∈ S such that c′i < ci. Therefore, since

ci+1+ci−c′i ≥ 0, then by richness, ĉ ≡ (c1, · · · , ci−1, c
′
i, ci+1 + ci − c′i, ci+1, · · · , cN)

is also admissible.6 Clearly, c is a pairwise variant of ĉ. On the other hand, note

that ĉ and c′ differ only on S\i. Thus, applying the induction hypothesis, ĉ is an

iterative pairwise variant of c′. Therefore, c is an iterative pairwise variant of c′.

Case 2. K ≥ 2. In this case, we apply the result in Case 1 componentwise as

follows. Let c, c′ ∈ RN×K
+ be admissible in DN , c 6= c′, c̄ = c̄′, and cN\S = c′N\S, for

some S ⊆ N . For each i ∈ S and each k ∈ K, let ck
i ≡ (c′i1, · · · , c′ik, cik+1, · · · , ciK).

Let ck ≡
((

ck
i

)
i∈S

, cN\S
)
. Let c0

i ≡ ci and c0 = c. For each k = 1, · · · , K,

applying Case 1 for the k-th component, we show that ck is an iterative pairwise

variant of ck−1.

Step 2. To complete the proof, let f be a rule satisfying pairwise reallocation-

proofness and pairwise non-bossiness. Let (c, E) ∈ DN . Consider S ⊆ N .

Let c′ ∈ RN×K
+ be such that

∑
i∈S c′i =

∑
i∈S ci and c′N\S = cN\S. Then by

Step 1, there exist k ≥ 2 and c1, · · · , ck ∈ RN×K
+ such that c1 = c, ck = c′, and

for each l = 2, · · · , k, cl is a pairwise variant of cl−1. Let xl ≡ f
(
cl, E

)
, for

each l = 1, · · · , k. By pairwise reallocation-proofness and pairwise non-bossiness,∑
i∈S xl

i =
∑

i∈S xl−1
i for each l = 1, · · · , k. Through the successive application of

the two axioms, we show
∑

i∈S fi (c, E) =
∑

i∈S fi (c
′, E).

We show, by examples, the independence of the two axioms in Theorem 2.

Example 8. For each (c, E) ∈ DN , if c1 = 0, then for each i 6= 1, fi (c, E) =

E/N ; if c1 6= 0, f1 (c, E) ≡ 2E/N and for each i 6= 1, fi (c, E) = 0. Then

given E ≥ 0, for each i ∈ N\1, the share for the pair {1, i} is constantly 2E/N .

Hence such a pair cannot increase its share through a reallocation of characteristic

vectors. Now consider a pair {i, j}, i 6= j, not containing agent 1. For each

(c, E) ∈ DN , if c1 = 0 (or c1 6= 0, respectively), then fi (c, E) + fj (c, E) =

2E/N (or 0, respectively) and the sum does not changes by any reallocation of

6Note that ĉ ≥ 0, since ci − c′i > 0.
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characteristic vectors of i and j. Thus, f is pairwise reallocation-proof. However,

f is not reallocation-proof. This is because, when c1 6= 0, any triple S ≡ {1, i, j}
containing entity 1 can increase its aggregate share from 2E/N to 3E/N by

decreasing entity 1’s characteristic vector to the zero vector. Note that f violates

pairwise non-bossiness because any pair containing entity 1 can change others’

shares without affecting its share. Also note that f violates both dummy and

efficiency.

Example 9. Fix two agents i and j. Let f ij be the rule defined as follows. For

each (c, E) ∈ DN , if
∑

k∈K cik ≥
∑

k∈K cjk, f ij
i (c, E) ≡ E and f ij

h (c, E) ≡ 0 for

each h 6= i; if
∑

k∈K cik <
∑

k∈K cjk, f ij
j (c, E) ≡ E and f ij

h (c, E) ≡ 0 for each

h 6= j. Then it is easy to show that f ij is pairwise non-bossy but is not pairwise

reallocation-proof.

It follows from Theorem 2 and Corollary 1 that proportional rules are the only

rules satisfying pairwise reallocation-proofness, pairwise non-bossiness, efficiency,

dummy, and non-negativity. In fact, pairwise non-bossiness can be dropped, as

stated in the next result.

Theorem 3. Assume N ≥ 3. Then, a rule over DN satisfies pairwise reallocation-

proofness, efficiency, dummy, and non-negativity (or no transfer paradox) if and

only if it is a proportional rule.

Proof. Suppose N ≥ 3. Let f be a rule over DN , satisfying the four axioms. For

each S ⊆ N , let DN
S ≡ {

(c, E) ∈ DN : cN\S = 0
}
. Then by dummy, we can treat

problems in DN
S as problems with only agents in S.

Note that when |S| = 3, pairwise reallocation-proofness and efficiency imply

reallocation-proofness over DN
S . Thus, by Corollary 1, f coincides with a pro-

portional rule over DN
S . Denote the weight function by W S. Note that for each

S, T ⊆ N with |S| = |T | = 3, if |S ∩ T | ≥ 2, DN
S ∩ DN

S 6= ∅. Then we can show

that W S = W T . Hence weight functions for all triples are identical and we may

write them simply by W . And we conclude that f coincides with the proportional

rule (associated with W ) over ∪|S|≤3DN
S .

Let k ≥ 3. Suppose by induction that f coincides with the proportional

rule (associated with W ) over ∪|S|≤kDN
S . Let S ⊆ N contain k + 1 agents. Let

(c, E) ∈ DN
S and x ≡ f (c, E). Consider a pair {i, j} ⊆ S. Let c′ ∈ RS×M be

such that c′i ≡ ci + cj, c′j ≡ 0, and for each h 6= i, j, c′h ≡ ch. Then by pairwise

reallocation-proofness, xi + xj = fi (c
′, E) + fj (c′, E). Since (c′, E) ∈ DN

S\j, then

by the induction hypothesis, xi + xj is the sum of allocations for i and j made

by the proportional rule associated with W . Since this holds for each i, j ∈ S, f
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coincides with the proportional rule also over DN
S , for each S with k +1 agents.

As mentioned in Remark 1, when K ≥ 2, the axioms in this characterization

are independent. Since each of non-negativity and no transfer paradox implies

the bound condition in the definition of rules, this condition can be dropped. As

mentioned in Remark 2, when K = 1 as in the contexts of bankruptcy and surplus

sharing, non-negativity (or no transfer paradox ) can be dropped. However in this

case, the bound condition is crucial for the result.

5 Variable Population

This section discusses an axiom, called merging-splitting-proofness, which is closely

related to reallocation-proofness. In the context of claims problems, merging-

splitting-proofness says that no group S ⊆ N can increase its share by merging

its members’ claims, and no agent i ∈ N can increase his share by splitting his

claim among dummy agents and himself.

To state the axiom formally, we have to consider a model where the set of

entities N is variable. Let N = {1, 2, . . . } and let N be the set of all non-empty

finite subsets of N.

For each N ∈ N , let AN denote the class of all allocation problems associated

with N . For each N ∈ N , let DN ⊆ AN and D = ∪N∈NDN . In what follows, we

assume that D satisfies the following condition of richness∗: for each N ∈ N , each

(c, E) ∈ DN , each non-empty N ′ ⊆ N , and each c′ ∈ RN ′
+ , if

∑
i∈N ′ c′i =

∑
i∈N ci,

then (c′, E) ∈ DN ′
. Clearly, if D satisfies richness∗, then for each N ∈ N , the

fixed-population domain DN satisfies richness. A rule is now a function that

associates with each N ∈ N and each allocation problem (c, E) ∈ DN a vector

f(c, E) ∈ RN and that satisfies the bound condition, that is, for each N ∈ N
and each (c̄, E) ∈ RK

+ × R+, there exists i ∈ N such that fi is bounded above or

below over DN (c̄, E).

Definition. A rule f is merging-splitting-proof (O’Neill 1982) if for each N ∈ N ,

each non-empty S ⊆ N , each i ∈ S, each (c, E) ∈ DN , and each c′i ∈ RK
+ , if

c′i =
∑

j∈S cj, then

fi(c
′
i, cN\S, E) =

∑
j∈S

fj(c, E). (18)

This axiom is introduced by O’Neill (1982) in the context of bankruptcy prob-

lems.7 In this context, if the left-hand side of (18) is larger than the right-hand

7O’Neill calls this axiom “strategy-proofness”.
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side, then in problem (c, E), group S gains by merging the members’ claims and

having member i represent the total claim of the group. On the other hand, if the

right-hand side is larger, then in problem (c′i, cN\S, E), agent i gains by creating

dummy agents S \ k and splitting his claim among S.

Note that the left-hand side of (18) is well-defined since D satisfies richness∗.
The following pairwise version of merging-splitting-proofness deals only with

mergers of two entities’ characteristic vectors and splits of a single entity’s vector

into two.

Definition. A rule f is pairwise merging-splitting-proof if for each N ∈ N , each

i, j ∈ N , each (c, E) ∈ DN , and each c′j ∈ R+, if c′j = ci + cj, then

fj(c
′
j, cN\{i,j}, E) = fi(c, E) + fj(c, E). (19)

The axioms in the previous sections can be extended to the variable-population

domain in an obvious way. We begin our analysis by proving some logical relations

among the axioms.

Lemma 2. Merging-splitting-proofness implies reallocation-proofness. Also pair-

wise merging-splitting-proofness implies pairwise reallocation-proofness.

Proof. Let f be a rule that is merging-splitting-proof. Let N ∈ N , S ( N ,

i ∈ S, (c, E) ∈ DN , and c′i ∈ R+ be such that c′i =
∑

j∈S cj. Then by merging-

splitting-proofness,

fi(c
′
i, cN\S, E) =

∑
j∈S

fj(c, E).

This obviously implies that
∑

j∈S fj(c, E) is not affected by any reallocation of

claims among agents in S. Thus, f is reallocation-proof. The proof for the pairwise

part is obtained when S is a pair.

Note that the converse of this lemma does not hold because reallocation-

proofness does not relate problems with different populations, while merging-

splitting-proofness does. To explain this by example, let N ∈ N and N ′ $ N . Let

W and W ′ be two distinct weight functions. Let f coincide with the proportional

rule associated with W over DN and with the proportional rule associated with

W ′ over DN ′
. Then f is not merging-splitting-proof but is reallocation-proof.

We now introduce an axiom that is closely related to dummy but meaningful

only in the variable population framework.

Definition. A rule f is null-consistent if for each N ∈ N , each (c, E) ∈ DN ,

and each i ∈ N , if ci = 0, then fj(cN\i, E) = fj(c, E) for each j ∈ N \ i.
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When ci = 0, it is reasonable to view (c, E) and (cN\i, E) as the same allo-

cation problem. Null-consistency simply says that each j 6= i receives the same

amount at these two problems. Dummy implies only that fi(c, E) = 0, and allows

that j 6= i receives different amounts at (c, E) and (cN\i, E). Null-consistency is

introduced by Chun (1988) in the context of claims problem.

The first result on the variable population domain D is an extension of The-

orem 1.

Theorem 4. A rule over D is reallocation-proof and null-consistent if and only

if it is a generalized proportional rule f , that is, there exist two functions W : RK
+×

R+ → RK and a : RK
+ × R+ → RN such that for each N ∈ N , each (c, E) ∈ DN ,

and each i ∈ N ,

fi(c, E) = ai(c̄, E) +
∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)e (c̄, E) .

Proof. Let f be a rule satisfying reallocation-proofness and null-consistency. Let

N ∈ N contain at least three agents. Let N ′ ⊆ N . By Theorem 1, f coincides

with a generalized proportional rule over DN . By null-consistency, any problem

where agents in N\N ′ are nulls should be solved as problems in DN ′
. Thus, f

coincides with this generalized proportional rule also over DN ′
.

Remark 4. Note that the range of function a is now RN, an infinite dimensional

space. It is easy to show that the two axioms are independent. In particular,

without null-consistency, any rule that coincides with a generalized proportional

rule on each fixed population domain DN is reallocation-proof. Note that such a

rule does not necessarily have “consistency” across different populations and so

is not necessarily a generalized proportional rule over D. Moreover, reallocation-

proofness does not impose any restriction on the fixed population domains DN

with |N | ≤ 2.

We now study rules satisfying merging-splitting-proofness. Although merging-

splitting-proofness is, in spirit, similar to reallocation-proofness, our results to be

explained below are somewhat different from the previous results. This is mainly

because merging-splitting-proofness implies both dummy and null-consistency, as

shown in the following lemma.

Lemma 3. Merging-splitting-proofness implies dummy and null-consistency.

Proof. Let f be a rule over D satisfying merging-splitting-proofness. Let N ∈ N
and (c, E) ∈ DN be such that |N | ≥ 3 and ch = 0 for some h ∈ N . Let

x ≡ f (c, E) and y ≡ f
(
cN\h, E

)
. Let j ∈ N\h and α be the amount j receives
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in the single entity problem in which j has the characteristic vector c̄ and the

resource amount is E. Then applying merging-splitting-proofness to both (c, E)

and
(
cN\h, E

)
, we have

∑
i∈N xi = α =

∑
i∈N\h yi. On the other hand, for each

i ∈ N\h, by merging-splitting-proofness for pair {i, h}, xi + xh = yi. Hence∑
i∈N xi + (|N | − 2) xh =

∑
i∈N\h yi. Since

∑
i∈N xi =

∑
i∈N\h yi and |N | ≥ 3,

xh = 0 and for each i ∈ N\h, xi = yi.

Now consider N containing only two entities, say, 1 and 2. Let (c, E) ∈ DN

be such that c2 = 0. Let x ≡ f (c, E). If x2 > 0, any pair of null entities including

entity 2 in a three agents problem ((c1, c2, 0) , E) will be able to increase its share

by merging the two zero vectors into the zero vector of entity 2 in (c, E), violating

merging-splitting-proofness. If x2 < 0, then entity 2 can increase the share by

splitting c2 = 0 into two zero vectors of himself and any other entity except 1

and 2. Thus, x2 = 0. By merging-splitting-proofness, x1 + x2 = x1 = f1 (c1, E).

It follows directly from Theorem 4 and Lemmas 2 and 3 that only the gener-

alized proportional rules with ai (·) ≡ 0 for each i ∈ N are merging-splitting-proof.

Theorem 5. A rule over D is merging-splitting-proof if and only if it is a gen-

eralized proportional rule f associated with a function W : RK
+ × R+ → RK such

that for each N ∈ N and each i ∈ N ,

fi(c, E) =
∑

k∈K : c̄k>0

cik

c̄k

Wk(c̄, E)e (c, E) .

Thus merging-splitting-proofness also implies anonymity. Adding efficiency

and non-negativity (or no transfer paradox ), we axiomatize proportional rules.

Formally:

Corollary 3. A rule over D satisfies merging-splitting-proofness, efficiency, and

non-negativity (or no transfer paradox) if and only if it is a proportional rule.

When K ≥ 2, the independence of the three axioms can be established easily.

Moreover, in this case, by non-negativity (or no transfer paradox ), the bound

condition in the definition of rules can be dropped. When K = 1, non-negativity

(or no transfer paradox ) can be dropped. However, in this case, the bound

condition is crucial.

We will show next that merging-splitting-proofness can be weakened to pair-

wise merging-splitting-proofness. We first establish two useful lemmas.

Lemma 4. The combination of pairwise merging-splitting-proofness and effi-

ciency imply dummy and null-consistency.
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Proof. Let f be an allocation rule that is defined over a rich∗ domain and that

is pairwise merging-splitting-proof. Let N ∈ N and (c, E) ∈ DN be such that

ck = 0 for some k ∈ N .

First assume |N | ≥ 3. By pairwise merging-splitting-proofness,

fi(cN\{k}, E) = fi(c, E) + fk(c, E). (∗)

for each i ∈ N \ {k}. Adding up the equation for each i ∈ N \ {k} yields

E =
∑

i∈N\{k}
fi(cN\{k}, E) =

∑
i∈N

fi(c, E) + (|N | − 2)fk(c, E)

= E + (|N | − 2)fk(c, E),

where the first and the last equalities hold by efficiency. Then, since |N | ≥ 3,

fk(c, E) = 0. By (∗), fi(cN\{k}, E) = fi(c, E).

To deal with the case |N | = 2, we can argue as in Proof of Lemma 3.

Lemma 5. The combination of pairwise reallocation-proofness, efficiency, and

null-consistency implies dummy and pairwise merging-splitting-proofness.

Proof. Let f be an allocation rule that is efficient, null-consistent, and pairwise

reallocation-proof. Let N ∈ N , (c, E) ∈ DN , and {i, j} ⊆ N . Let c′ ∈ RN
+ be

defined by c′i ≡ 0, c′j ≡ ci + cj, and for each h ∈ N \ {i, j}, c′h ≡ ch. By pairwise

reallocation-proofness and null-consistency,

fi(c, E) + fj(c, E) = fi(c
′, E) + fj(c

′, E)

= fi(c
′, E) + fj(c

′
N\i, E). (?)

Null-consistency also implies that for each h ∈ N \ i, fh(c
′, E) = fh(c

′
N\i, E).

Then by efficiency,

E =
∑

h∈N

fh(c, E) =
∑

h∈N

fh (c′, E) = fi(c
′, E) +

∑

h∈N\i
fh(c

′
N\i, E)

= fi(c
′, E) + E.

Thus, fi(c
′, E) = 0, which shows that f satisfies dummy. This and (?) show that

f is also pairwise merging-splitting-proof.

Now we are ready to show that proportional rules are the only rules satisfying

pairwise merging-splitting-proofness, efficiency, and non-negativity (or no transfer

paradox ). Formally:
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Theorem 6. A rule over D satisfies pairwise merging-splitting-proofness, effi-

ciency, and non-negativity (or no transfer paradox) if and only if it is a propor-

tional rule.

Proof. Let f be a rule that satisfies the three axioms. By Lemmas 2 and 4, f

satisfies dummy, null-consistency, and pairwise reallocation-proofness. By The-

orem 3, f is a proportional rule over each fixed-population domain DN , where

N ∈ N has three or more entities. Then there is a weight function W such

that f is the proportional rule associated with W over DN . For each N ′ ∈ N ,

since f is also a proportional rule over DN∪N ′
. By null-consistency, problems in

DN∪N ′
with the zero characteristic vectors for entities in N ′ can be considered

as problems in DN . Therefore, the associated weight function of f over DN∪N ′

coincides with W . Again by null-consistency, all problems in DN∪N ′
with zero

characteristic vectors for entities in N can be considered as problems in DN ′
.

Therefore, f is also the proportional rule associated with W over DN ′
.

Replacing pairwise merging-splitting-proofness with pairwise reallocation-proofness

and null-consistency, we obtain:

Corollary 4. A rule over D satisfies pairwise reallocation-proofness, efficiency,

null-consistency, and non-negativity (or no transfer paradox) if and only if it is

a proportional rule.

Proof. By Lemma 5, if a rule satisfies the four axioms, it satisfies pairwise

merging-splitting-proofness. Therefore, the result follows from Theorem 6.

When K ≥ 2, axioms considered in Theorem 6 and Corollary 4 are indepen-

dent. When K = 1, non-negativity (or no transfer paradox ) can be dropped.

6 Applications

The special models in Examples 1–7 satisfy the richness condition. Also, these

examples can be extended to variable population models in a straightforward

manner so that the extended models satisfy the richness∗ condition. Therefore

our results can be applied to these examples.

6.1 Fixed Population Models

We discuss implications of our results in various fixed population models. We

obtain several earlier results in the literature as corollaries.
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Social Choice with Transferable Utilities

We first consider social choice problems with transferable utilities (Example 5)

studied by Moulin (1985a). In this context, there are K alternatives and ci is a

vector of i’s valuations for these alternatives. Therefore, it is reasonable to require

that how these valuations are normalized should not matter. Indeed, the following

invariance axiom is considered in Moulin (1985a). Let 1 ∈ RK denote the vector

consisting of 1 only. An allocation rule f is translation invariant if for each

(c, E) ∈ D, each i ∈ N, and each λ ∈ R+, fi((ci + λ1, c−i) , E + λ) = fi(c, E) + λ

and fj((ci + λ1, c−i) , E + λ) = fj(c, E) for each j 6= i. For each c ∈ RN×K
+ , let

c̄max ≡ maxk∈K c̄k.

Definition. A rule is an “equal sharing above a convex decision”, briefly, an

ESCD rule if there exists a weight function ρ : RK
+ → ∆K−1 such that

ρ (c̄ + λ1) = ρ (c̄) for each c̄ ∈ RK
+ and each λ ≥ 0;

(20)

fi (c) ≡ ci · ρ (c̄) +
1

n
(c̄max − c̄ · ρ (c̄)) , for each c ∈ RN×K

+ and each i ∈ N . (21)

We denote the ESCD rule associated with ρ by ESρ.

Clearly, ESρ is efficient. Note that (20) is needed for translation invariance.

If for all c̄ ∈ RK
+ and all k ∈ K with c̄k = 0, ρk (c̄) = ρ′k (c̄), then ESρ = ESρ′ ;

that is, when c̄k = 0, the value of ρk (c̄) is irrelevant in the definition of ESρ (c).

Note that

ESρ
i (c) =

∑

k∈K

cikρk (c̄) +
1

n

(
c̄max −

∑

k∈K

c̄kρk (c̄)

)

=
1

n
c̄max +

∑

k∈K

(
cik − 1

n
c̄k

)
ρk (c̄) .

For each k ∈ K, if c̄k 6= 0, let W ρ
k (c̄) ≡ c̄kρk(c̄)

c̄max
; if c̄k = 0, let W ρ

k (c̄) ≡ 0. Then∑
k∈K cikρk (c̄) =

∑
k∈K:c̄k>0 cikρk (c̄) =

∑
k∈K:c̄k>0

cik

c̄k
W ρ

k (c̄) c̄max (when c̄k = 0,

0 ≤ cik ≤ c̄k and so cik = 0). Thus, for each c ∈ RN×K
+ and each i ∈ N ,

ESρ
i (c) =

1

n

(
c̄max −

∑

k∈K:c̄k>0

W ρ
k (c̄) c̄max

)
+

∑

k∈K:c̄k>0

cik

c̄k

W ρ
k (c̄) c̄max.

Therefore, if we let

aρ
i (c̄) ≡ 1

n

(
c̄max −

∑

k∈K

c̄kρk (c̄)

)
=

1

n

(
c̄max −

∑

k∈K:c̄k>0

W ρ
k (c̄) c̄max

)
,
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for each i ∈ N and each c ∈ RN×K
+ , then ESρ is a generalized proportional rule

associated with (W ρ, aρ). Note that for each k ∈ K with c̄k > 0, W ρ
k (c̄) c̄max

c̄k
∈

[0, 1] and
∑

k:c̄k>0 W ρ
k (c̄) c̄max

c̄k
≤ 1.

Applying Corollary 2, we obtain the following axiomatization of ESCD rules,

established by Moulin (1985a).

Corollary 5 (Moulin 1985a, Theorem 1). Assume N ≥ 3. In the context of

social choice with transferable utilities, DN ≡ RN×K
+ , a rule satisfies reallocation-

proofness, efficiency, no transfer paradox, translation invariance, and anonymity

if and only if it is an ESCD rule.

Proof. Let f be a rule satisfying the five axioms. Then by Corollary 2, f is

a generalized proportional rule represented by a non-negative valued function

W : RK
+ → RK

+ . Without loss of generality, we assume that for each c̄ ∈ RK
+ and

each k, if c̄k = 0, Wk (c̄) = 0.

Let c ∈ RN×K
+ be such that c̄ >> 0. For each k ∈ K, let ρk (c̄) ≡ Wk (c̄) c̄max

c̄k
.

Let ξ (ci, c̄) ≡
∑

k∈K:c̄k>0
cik

c̄k
Wk (c̄) c̄max =

∑
k∈K cikρk (c̄).

Note that 1
n

(
1−∑

k∈K Wk (c̄)
)
c̄max = 1

n
c̄max− 1

n
ξ (c̄, c̄) and so for each i ∈ N ,

fi (c) = 1
n
c̄max − 1

n
ξ (c̄, c̄) + ξ (ci, c̄). Hence for each c ∈ RK

+ and each i with

ci − 1
n
c̄ ∈ RK

+ and c̄ >> 0,

fi (c) = ξ

(
ci − 1

n
c̄, c̄

)
+

1

n
c̄max. (∗)

Let λ ≥ 0. Let c′ ≡ c + λ (1, · · · ,1). Then by (∗) and translation invariance,

for each i ∈ N , ξ
(
c′i − 1

n
c̄′, c̄ + nλ1

)
+ 1

n
c̄′max = ξ

(
ci − 1

n
c̄, c̄

)
+ 1

n
c̄max + λ. Since

c′i − 1
n
c̄′ = ci − 1

n
c̄ and c̄′max = c̄max + nλ, ξ

(
ci − 1

n
c̄, c̄ + nλ1

)
= ξ

(
ci − 1

n
c̄, c̄

)
.

Hence for each i ∈ N , each c ∈ RK
+ with c̄ >> 0 and ci ≥ 1

n
c̄, and each

λ ≥ 0,
∑

k∈K

(
cik − 1

n
c̄k

)
ρk (c̄ + nλ1) =

∑
k∈K

(
cik − 1

n
c̄k

)
ρk (c̄). Therefore,

ρ (c̄ + nλ1) = ρ (c̄), for each c̄ >> 0 and each λ ≥ 0 (for example, let k ∈
K, cik ≡ c̄k, and cil ≡ 1

n
c̄l for each l 6= k; then the equality is reduced to

n−1
n

c̄kρk (c̄ + nλ1) = n−1
n

c̄kρk (c̄); so we obtain ρk (c̄ + nλ1) = ρk (c̄)). Thus for

each c̄ ∈ RK
++ and each α ≥ 0, ρ (c̄ + α1) = ρ (c̄). Hence for each y >> 0, each

0 ≤ x ≤ y, and each α ≥ 0,

ξ (x, y + α1) = ξ (x, y) . (∗∗)

Let c ∈ DN , λ > 0, and i ∈ N be such that c̄ >> 0, ci − 1
n
c̄ ≥ 0, and

ci− 1
n
c̄ + n−1

n
λ1 ≤ c̄. Let c′ ∈ RN×K

+ be such that c′i = ci + λ1 and for each j 6= i,

c′j = cj. Then by translation invariance, fi (c
′) = fi (c) + λ.
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Hence by (∗), ξ
(
ci + λ1− 1

n
(c̄ + λ1) , c̄ + λ1

)
+ 1

n
(c̄max + λ) = ξ

(
ci − 1

n
c̄, c̄

)
+

1
n
c̄max + λ. Since ci − 1

n
c̄ + n−1

n
λ1 ≤ c̄, then by (∗∗), ξ

(
ci − 1

n
c̄ + n−1

n
λ1, c̄

)
=

ξ
(
ci − 1

n
c̄, c̄

)
+n−1

n
λ, that is,

∑
k∈K

(
cik − 1

n
c̄k + n−1

n
λ
)
ρk (c̄) =

∑
k∈K

(
cik − 1

n
c̄k

)
ρk (c̄)+

n−1
n

λ. Then
∑

k∈K ρk (c̄) = 1. Since this holds for each c̄ >> 0 and W is non-

negative valued, ρ is a weight function over RK
++. Relying on translation invari-

ance, we can extend the domain of this weight function ρ to RK
+ and show that

for each c ∈ DN and each i ∈ N , ξ (ci, c̄) =
∑

k∈K cikρk (c̄).

Moulin (1985a) also establishes an axiomatization of the following interesting

subfamily of ESCD rules.

Definition. An ESCD rule is utilitarian if it is represented by a weight function

W : RK
+ → ∆K−1 such that for each c ∈ RN×K

+ ,

Wk (c̄) = 0, for each k ∈ K with c̄k < c̄max, (22)

W (c̄ + λ1) = W (c̄) for each λ ∈ R+. (23)

We denote the utilitarian rule associated with weight function W by UW .

Note that by (22), for each c ∈ RN×K ,

UW (c) ≡ (ci ·W (c̄))i∈N

=

( ∑

k : c̄k=c̄max

cik

c̄k

Wk (c̄) c̄max

)
.

Clearly, utilitarian rules are proportional. They assign the zero weight on each

inefficient alternative. Thus, the share of each agent is a weighted average of

his valuations of efficient alternatives. When there is unique efficient alternative,

each agent receives his valuation of this alternative. When agents have expected

utility preferences, utilitarian rules can be considered as probabilistic selections

from efficient alternatives without side payment.

Note that among ESCD rules, only utilitarian rules satisfy dummy. Thus,

adding dummy, we obtain an axiomatization of utilitarian rules, established orig-

inally by Moulin (1985a, Theorem 3). Moreover, since reallocation-proofness and

dummy imply anonymity (see Facts 3-4), anonymity can be dropped. Also, we

can weaken reallocation-proofness to pairwise reallocation-proofness. And non-

negativity can be replaced with no transfer paradox.

Corollary 6 (Moulin 1985a). Assume N ≥ 3. In the context of social choice

with transferable utilities, DN ≡ RN×K
+ , an allocation rule satisfies pairwise

reallocation-proofness, efficiency, dummy, non-negativity (or no transfer para-

dox), and translation invariance if and only if it is utilitarian.
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Proof. Let f be an allocation rule satisfying the five axioms. By Theorem 3, f

is a proportional rule associated with a weight function W . Note that (23) holds

because of translation invariance. We would like to show that W satisfies (22).

Let d ∈ RK
+ . We distinguish two cases.

Case 1: d À 0. Let c ∈ RN×K
+ be such that c̄ = d and c1 = (λ, . . . , λ)

for some λ ∈ R such that 0 < λ < c̄max. By dummy, f1(0, c−1) = 0. By

translation invariance, f1(c) = λ. On the other hand, since f is the proportional

rule associated with W , we have

λ = f1(c) =
∑

k∈K

Wk(c̄)
λ

c̄k

c̄max

= λ
∑

k∈K

Wk(c̄)
c̄max

c̄k

.

This implies that if c̄max > c̄k, then Wk(c̄) = 0.

Case 2 : d 6À 0. Let K∗ = {k ∈ K : dk > 0}. Note that K∗ is non-empty by

assumption. Let c ∈ RN×K
+ be such that c̄ = d and

c1k =

{
λ if k ∈ K∗,

0 otherwise

for some λ ∈ R++. To use the result of Case 1, let ε ∈ R++ and c′1 = c1+(ε, . . . , ε).

Then by Case 1, f1(c
′
1, c−1) = λ + ε. By translation invariance, f1(c) = λ. Since

we know that f is a generalized proportional rule,

λ = f1(c) =
∑

k∈K:c̄k>0

Wk(c̄)
λ

c̄k

c̄max

= λ
∑

k∈K:c̄k>0

Wk(c̄)
c̄max

c̄k

.

This implies that if c̄max > c̄k, then Wk(c̄) = 0.

Remark 5. By translation invariance, Corollaries 5-6 on RN×K
+ can be easily

extended to RN×K , which is exactly the domain considered by Moulin (1985a).

Remark 6. In both Corollaries 5 and 6, since non-negativity (or no transfer

paradox ) implies the bound condition in the definition of rules, this condition can

be dropped. In Corollary 6, when K = 1, non-negativity (or no transfer paradox )

can be dropped.

Bankruptcy and Surplus Sharing
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In the context of claims problems, Moulin (1987) studies rules satisfying

reallocation-proofness, efficiency, anonymity, non-negativity, and the following

two additional properties.

A rule f satisfies claims monotonicity, if fi is non-decreasing in ci for each i ∈
N . It satisfies homogeneity if for each (c, E) ∈ DN and each λ ≥ 0, f (λc, λE) =

λf (c, E).

Moulin (1987) establishes several characterizations based on the following re-

sult, which is obtained as a corollary of our results.

Corollary 7 (Moulin 1987, Lemma 2). Assume N ≥ 3. In the context of

claims problems, if a rule satisfies reallocation-proofness, efficiency, anonymity,

non-negativity, claims monotonicity, and homogeneity, then there exists a real

valued function h such that

0 ≤ h (x) ≤ x for each x ≥ 0;

(24)

fi (c, E) =
1

N
E +

(
ci − 1

N
c̄

)
h

(
E

c̄

)
for each c ∈ RN

++ and each E ∈ R+.

(25)

Proof. Let f be a rule satisfying the six axioms. By Theorem 1, f is a generalized

proportional rule. By efficiency, (9) holds. Then by anonymity, there exists a

function a0 : R+ ×R+ → R such that for each (c, E) ∈ R+ ×R+ and each i ∈ N ,

fi (c, E) = a0 (c̄, E) +
ci

c̄
(E −Na0 (c̄, E)) .

By homogeneity, a0 (λc̄, λE) = λa0 (c̄, E) for each (c̄, E) ∈ R+ × R+ and each

λ ≥ 0. Then for each (c, E) ∈ RN
+ × R+ and each i ∈ N ,

fi (c, E) =
E

N
+

(
ci − c̄

N

) (
E

c̄
−Na0

(
1,

E

c̄

))
.

Therefore if we let h
(

E
c̄

) ≡ E
c̄
−Na0

(
1, E

c̄

)
, (25) holds. By non-negativity, a0 is

non-negative valued. Thus h
(

E
c̄

) ≤ E
c̄
.

To show (24), we use the same argument that is in the last step of Moulin’s (1987)

proof. Fix x > 0 and consider two profiles (c, E) and (c′, E) such that E =
2N

2N−1
x; c1 = 1

2N−1
c′1 = 1

N−1
; ci = c′i = 1 for each i 6= 1. Then by (25),

f1 (c, E) = 1
N

E − 1
2N−1

h (x) and f1 (c′, E) = 1
N

E. Therefore by claims mono-

tonicity, h (x) ≥ 0.

Moulin (1987) characterizes rules satisfying the above six axioms and “re-

source additivity” defined as follows. A rule f satisfies resource additivity if for
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each c ∈ RN
+ and each E, E ′ ∈ R+,

f (c, E + E ′) = f (c, E) + f (c, E ′) . (26)

Corollary 8 (Moulin 1987, Theorem 3). Assume N ≥ 3. In the context of

claims problems, a rule f satisfies reallocation-proofness, efficiency, anonymity,

non-negativity, claims monotonicity, homogeneity, and resource additivity if and

only if it is a convex combination of the proportional rule and the equal division

rule, that is, there exists λ ∈ [0, 1] such that for each (c, E) ∈ RN
+ ×R+ and each

i ∈ N ,

fi (c, E) = λ
ci

c̄
E + (1− λ)

E

n
.

Proof. By Corollary 7, there is a real valued function h such that fi (c, E) =
1
N

E +
(
ci − 1

N
c̄
)
h

(
E
c̄

)
for each c ∈ RN

+ and each E ∈ R+. By resource additivity,

h is additive. Since, by (24), h is also bounded, we can show that for some λ,

h (x) = λx for each x ∈ R+ (See Theorem 2.1.8 in Aczél and Dhombres 1989).

By (24), λ ∈ [0, 1].

Note that by Corollary 1, when we add dummy and drop all of the ax-

ioms other than reallocation-proofness, efficiency, and non-negativity, then we

are left with only the proportional rule. Moreover, by Theorem 3, we can weaken

reallocation-proofness to pairwise reallocation-proofness. This characterization of

the proportional rule in the fixed population model is new in the literature.

In the context of claims problems, Chun (1988, Theorem 1) characterizes

rules satisfying reallocation-proofness, efficiency, anonymity, and continuity. This

result is obtained as a corollary of Theorem 1. Since continuity implies the bound

condition (note that continuous image of each compact set is compact and so

bounded), this condition can be dropped for this result.

Here, since we impose the bound condition, we can drop continuity and obtain:

Corollary 9 (Chun 1988). Assume N ≥ 3. In the context of claims problems,

a rule satisfies reallocation-proofness, efficiency, and anonymity if and only if it

is a generalized proportional rule represented by a function W : R+×R+ → R as

follows : for each (c, E) ∈ DN and each i ∈ N ,

fi (c, E) =
1

n
(1−W (c̄, E)) E +

ci

c̄
W (c̄, E) E. (27)

Proof. Let f satisfy the three axioms. By Theorem 1, f is a generalized pro-

portional rule associated with (W,a). By anonymity, there is a0 : R+ × R+ → R
such that for all i ∈ N , ai = a0. By efficiency, (8) holds and so a0 (c̄, E) =
1
n

(1−W (c̄, E)) E for all (c̄, E) ∈ R+ × R+. Therefore, (27) follows from (9).
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Probability Updating and Probability Aggregation

In the context of probability updating, non-negativity and efficiency are nat-

ural. Let us call rules satisfying the two axioms updating rules. The most com-

monly used updating rule is the Bayesian updating rule. Theorem 3 and Corol-

lary 1 provide axiomatizations of this rule.

Corollary 10. Assume that there are at least three states, that is, N ≥ 3. In the

context of probability updating, the Bayesian updating rule is the only updating

rule over DN that satisfies (pairwise) reallocation-proofness and dummy.

In the context of probability aggregation, let us call rules satisfying non-

negativity and efficiency (probability) aggregation rules. McConway (1981) con-

siders the following axiom. An allocation rule f satisfies strong setwise function

property if there is a function h : [0, 1]K → [0, 1] such that for each (c, E) ∈ D
and each S ⊆ N , ∑

i∈S

fi(c, E) = h(
∑
i∈S

ci).

It is easily seen that this axiom implies reallocation-proofness. Note that h does

not depend on
∑

i∈N ci nor E, since
∑

i∈N ci = (1, . . . , 1) and E = 1 in any prob-

lem of probability aggregation. McConway’s axiom is stronger than reallocation-

proofness since he requires that h should be defined independently of S. Hence

we obtain the following result of McConway as a corollary:

Corollary 11 (McConway 1981, Theorem 3.3). Assume that there are at

least three states, that is, N ≥ 3. In the context of probability aggregation, the

linear opinion pools are the only aggregation rules that satisfy strong setwise

function property and dummy.

6.2 Variable Population Models

We now discuss implications of our results with (pairwise) merging-splitting-

proofness in variable population models.

Social Choice with Transferable Utilities

In the context of social choice with transferable utilities, we have shown

that proportional rules are the only rules satisfying pairwise merging-splitting-

proofness, efficiency, and non-negativity (or no transfer paradox ). Adding trans-

lation invariance only, we characterize utilitarian rules.
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Corollary 12. In the context of social choice with transferable utilities, util-

itarian rules are the only rules satisfying pairwise merging-splitting-proofness,

efficiency, non-negativity (or no transfer paradox), and translation invariance.

The proof of this corollary is similar to the proof of Corollary 6. Note that

unlike Corollary 6, we do not need anonymity. This is because anonymity is

implied by pairwise merging-splitting-proofness and efficiency.

Bankruptcy and Surplus Sharing

For the class of claims problems, Moulin (1985b, Theorem 5) and Chun (1988,

Theorem 2) independently axiomatize the proportional rule based on reallocation-

proofness, anonymity, and continuity. They do not impose the bound condition in

the definition of rules. However, continuity implies the bound condition. There-

fore, their results are obtained as corollaries of our results, in particular, Corol-

lary 4 and Remark 2. Moreover, we show that anonymity in their results can be

dropped8.

Corollary 13 (Moulin 1985b; Chun 1988). In the context of claims problems

(or bankruptcy or surplus sharing), the proportional rule is the only rule satisfying

pairwise reallocation-proofness, efficiency, null-consistency, and continuity.

Chun (1988) also axiomatizes the proportion rule by using merging-splitting-

proofness, efficiency, anonymity, and continuity (Theorem 3 in Chun 1988). This

result is obtained as a corollary. Moreover, anonymity can be dropped and

merging-splitting-proofness can be weakened to the pairwise version.

In the context of bankruptcy problems (Example 1), de Frutos (1999, The-

orem 1) shows that the proportional rule is the only rule satisfying merging-

splitting-proofness, efficiency, and non-negativity. This result is a corollary of

Theorem 6. Moreover, our result shows that merging-splitting-proofness can be

weakened to the pairwise version.

Corollary 14 (de Frutos 1999). In the context of claims problems (or bankruptcy

or surplus sharing), the proportional rule is the only rule satisfying pairwise

merging-splitting-proofness, efficiency, and non-negativity.

Chambers and Thomson (2002) establish an axiomatization of the propor-

tional rule on the basis of the following axioms. A rule f satisfies consistency

if for each N ∈ N , each (c, E) ∈ DN , and each N ′ ⊆ N , if x ≡ f (c, E), then

8Moulin (1985b) and Chun (1988) also use efficiency and null-consistency. Chun (1988)
calls null-consistency “dummy”.
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xN ′ = f
(
cN ′ ,

∑
i∈N ′ xi

)
. It satisfies equal treatment of equal groups if for each

N ∈ N , each subsets N ′, N ′′ ⊆ N , and each (c, E) ∈ DN , if
∑

i∈N ′ ci =
∑

i∈N ′′ ci,

then
∑

i∈N ′ fi (c, E) =
∑

i∈N ′′ fi (c, E).

As pointed out by Chambers and Thomson (2002), consistency, equal treat-

ment of equal groups, and efficiency imply reallocation-proofness. Thus, we ob-

tain:

Corollary 15 (Chambers and Thomson 2002). In the context of bankruptcy,

the proportional rule is the only rule satisfying equal treatment of equal groups,

consistency, efficiency, and non-negativity (or no transfer paradox).

Proof. The following proof is due to Chambers and Thomson (2002). Let D be

the variable population domain of bankruptcy problems defined in Example 1.

Let f be a rule satisfying the four axioms.

We first show that f satisfies anonymity. Consider any two populations

N,N ′ ∈ N of the same size n. Let π : N ′ → N be a bijection. Let (c, E) ∈ DN .

Let N̄ be disjoint from both N and N ′ and have the same size n as N and

N ′. Let π̄ : N̄ → N be a bijection. Let (c̄, 2E) ∈ DN∪N̄ be such that c̄N = c

and c̄N̄ = cπ̄, where for each i ∈ N̄ , cπ̄
i ≡ cπ̄(i). Let x̄ ≡ f (c̄, 2E). Then ap-

plying equal treatment of equal groups to each pair of singleton groups {i} and

{π̄ (i)} for each i ∈ N̄ , x̄N̄ = x̄π̄
N , where for each i ∈ N̄ , x̄π̄

N,i ≡ x̄π̄(i). By ef-

ficiency,
∑

i∈N x̄i =
∑

i∈N̄ x̄i = E. By consistency, x̄N = f (c̄N , E) = f (c, E)

and x̄N̄ = f (c̄N̄ , E). Hence for each i ∈ N̄ , fπ̄(i) (c, E) = fi (c
π̄, E). Let c′ ≡ cπ.

Let (c̄′, 2E) ∈ DN ′∪N̄ be such that c̄′N ′ ≡ c′ and c̄′
N̄
≡ cπ̄. Let x̄′ ≡ f (c̄′, 2E).

By equal treatment of equal groups, x̄′
N̄

= x̄
′(π−1◦π̄)
N ′ . By consistency, for each

i ∈ N̄ , x̄′i = fi (c
π̄, E) = fπ−1◦π̄(i) (c′, E) = x̄′π−1◦π̄(i). Therefore, for each i ∈ N̄ ,

fπ̄(i) (c, E) = fπ−1◦π̄(i) (c′, E), that is, for each i ∈ N ′, fπ(i) (c, E) = fi (c
π, E).

By Corollary 4, we only have to show that f satisfies reallocation-proofness

(note that consistency implies null-consistency). Let N ∈ N and (c, E) ∈ DN ,

S ( N , and c′ ∈ RN
+ be such that c′N\S = cN\S and

∑
i∈S c′i =

∑
i∈S ci. Without

loss of generality, we assume N = {1, · · · , n} and S = {1, · · · , s} where s < n.

Let N ′ ≡ {n + 1, · · · , n + n} and S ′ ≡ {n + 1, · · · , n + s}. Let (c̄, 2E; N ∪N ′) ∈
DN∪N ′

be such that c̄N = c, c̄N ′ = c′, c̄S′ = c′S, and c̄N ′\S′ = c′N\S. Let x ≡
f (c̄, 2E; N ∪N ′). Then by equal treatment of equal groups,

∑
i∈N xi =

∑
i∈N ′ xi

and
∑

i∈S xi =
∑

i∈S′ xi. By consistency, f (c, E) = xN and f (c′, E) = xN ′ . By

anonymity, for each i ∈ N , fi (c
′, E) = xn+i. Hence

∑s
i=1 f (c′, E) =

∑n+s
i=n+1 xi =∑

i∈S xi =
∑s

i=1 f (c, E).
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In both Corollaries 14-15, non-negativity can be dropped, as long as we impose

the bound condition in the definition of rules: see Remark 2.
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