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Abstract

We consider bilateral matching problems where each person views
those on the other side of the market as either acceptable or unacceptable:
an acceptable mate is preferred to remaining single, and the latter to an
unacceptable mate; all acceptable mates are welfare-wise identical.

Using randomization, many efficient and fair matching methods de-
fine strategyproof revelation mechanisms. Randomly selecting a priority
ordering of the participants is a simple example. Equalizing as much as
possible the probability of getting an acceptable mate accross all partici-
pants stands out for its normative and incentives properties: the profile of
probabilities is Lorenz dominant, and the revelation mechanism is group-
strategyproof for each side of the market.

Our results apply to the random assignment problem as well.
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Random matching under dichotomous
preferences

1 Introduction

The bilateral matching problem occupies a special place in the mechanism design
literature, combining strong empirical relevance and an interesting mathemat-
ical structure (see Roth and Sotomayor [1990]). The celebrated Gale-Shapley
algorithm selects an eflicient matching with strong incentive properties: it is
stable in the sense of the core, and strategyproof with respect to the side of
the market actively proposing to the other side (though not with respect to the
passive side).

We consider the important special case of the bilateral matching problem
where each man (resp. woman) evaluates each woman (resp. man) as acceptable
or unacceptable: being matched with an acceptable (resp. unacceptable) mate
is better (resp. worse) than remaining single, and acceptable mates yield the
same welfare. Abusing language slightly, we speak of dichotomous preferences,
to capture the idea that the preferences of an individual are entirely described
by the subset of his or her acceptable mates!.

For convenience we use the marriage terminology, but we have in mind other
kinds of matching than sharing a life—for which a single binary criterion is an
utterly insufficient model! Examples relevant to our model include matching
managers to support staff, when a staff person is acceptable to a manager if and
only if he has certain skills, and a manager is acceptable to a staff person if and
only if she is not requesting “hard” tasks; or matching professors to research
assistants, pilots to copilots, nurses to doctors, and so on. Time sharing is the
simplest way to deal fairly with the indivisibilities of matching markets: think
of a set of workers sharing their time among a set of employers (Baiou and
Balinski (2000), Alkan and Gale (2001)). In our model randomization over
matchings is formally equivalent to time-sharing, and to fix ideas we use the
former terminology.

When one side of the market finds all agents on the other side acceptable, we
can think of these agents as passive objects and speak of an assignment problem,
an interesting special case of our general model.

Dichotomous preferences are equally natural in the assignment problems.
Think of housemates distributing single rooms, when a “good” room may be
one with a private bath for some agent, one with a private phone for another
agent, and so on; another example is the assignment of softwares to workers
when a given software can be compatible or not with a worker’s own machine;
or the scheduling of a list: of jobs by a single server among a given set of time-

Yet individual’s preferences have three indifferences classes corresponding to being
matched with an acceptable mate, or an unacceptable one, or remaining single. Note that pref-
erences among unacceptable mates do not matter, as we only consider voluntary (individually
rational) matchings.



slots: each customer requesting one job finds only certain time-slots acceptable
(e.g., the job is useless after next Tuesday, or can only be done on week-ends,
and so on).

The dichotomous domain is much smaller in size than—yet not contained
in—the strict preferences domain. The first simplification is that a (determinis-
tic or random) matching is core stable if and only if it is efficient and voluntary
(no one is matched to an unacceptable partner). Among voluntary matchings,
the efficient ones are the (inclusion) maximal ones, and in all maximal match-
ings the number of matched men (or women) is the same. We call this number
e the efficiency size of the matching problem?.

For a randomized matching we use the probability of an acceptable match
as the canonical utility representation. Then a voluntary random matching is
efficient if and only if its total utility is e, namely with probability one it matches
e women to e men. Tn particular, the notions of ex ante and ex post efficiency
coincide.

The Gallai-Edmonds decomposition of bipartite graphs, a well-known result
in graph theory, gives further details on the structure of core-stable deterministic
matchings. There is a set of M? of disposable men competing for the set W of
overdemanded women: all overdemanded women are matched to a strict subset
of disposable men. There is similarly a set W¢ of disposable women competing
for the set M? of overdemanded men. And the remaining men (in M\ M°UM¢?)
can be perfectly matched to the remaining women (in WN\W®° U W¢?). This
bipartition of M and W is unique for each profile of dichotomous preferences:
see Section 3.

The particularly simple structure of the core in our model makes it easy to
achieve at the same time the three enduring goals of mechanism design, i.e.,
efficiency, incentive-compatibility (interpreted here as strategyproofness) and
fairness.

The simplest example uses the familiar idea of selecting randomly, and with
uniform probability, a priority ordering of the participants. We call it the ran-
dom priority solution. For any fixed ordering of the set of men and women, the
corresponding lexicographic maximization of utilities over voluntary matchings
yields an efficient deterministic matching (unique utility-wise): this matching
method is clearly strategyproof. When we randomize with fixed probabilities
over all orderings of the set of agents, strategyproofness is preserved, and so
is efficiency. The former statement does not depend upon the assumption of
dichotomous preferences, the latter one does.

Recall that in the classical domain of strict preferences, strategyproofness
for both men and women is incompatible with core stability (Roth [1982]). Our
main results (Theorems 1 and 2) show that in the dichotomous domain, we can
achieve much more than strategyproofness on both sides of the market. To this
end, we introduce a natural randomized solution of our matching problem, that
stands out for its normative and incentive properties.

?Interestingly a similar result holds in the strict preference domain: the set of men and
women matched is the same in any core stable matching (Theorem 2.22 in Roth and Sotomayor
[1990]).



The egalitarian solution equalizes as much as possible the individual pro-
bilities of being matched. We show that the corresponding profile of utilities
first-order stochastically dominates any other feasible profile of utilities arranged
increasingly, a property known as Lorenz-dominance. Thus the egalitarian so-
lution uniquely maximizes any additively separable strictly concave collective
utility function, for instance, the Nash collective utility function. It also admits
a competitive interpretation and is easily computed: Theorem 1.

On the incentive front, the egalitarian solution is no less remarkable, as it is
robust against potential manipulations by any all-male or all-fernale coalition:
Theorem 2. We call this property groupstrategyproofness with respect to one
side of the market.

We do not provide an axiomatic characterization of the egalitarian solution.
We state instead two results showing that this solution reaches the possibility
frontier. First, no deterministic core-stable solution is groupstrategyproof with
respect to every all-male coalition, or to every all-female coalition: Lemma 7.
This result stands in contrast to the situation in the classical domain of strict
preferences, where the Gale-Shapley algorithm delivers a deterministic solution
that is groupstrategyproof with respect to one side of the market. In the dichoto-
mous domain, randomization is essential to achieve groupstrategyproofness and
core stability; on the other hand we can guarantee groupstrategyproofness with
respect to both sides of the market.

When we allow for manipulations by coalitions mixing some men and some
women, strong impossibility results obtain. No core-stable solution treating
equals equally is even weakly groupstrategyproof; the same is true of any solu-
tion selecting a utility profile without specifying the probabilistic matching to
implement it: Theorem 3.

The paper is organized as follows. After a review of the small related lit-
erature in Section 2, the model is defined in Section 3. Efficient voluntary
(i.e., core-stable) matchings, deterministic as well as random, are characterized
in Section 4. The egalitarian solution is defined and characterized in Section
5. Strategyproofness and groupstrategyproofness are the subject of Section 6.
Section 7 gathers some concluding comments. All proofs are in the Appendix.

2 Relation to the literature

The economic theory of bilateral matching under strict preferences—surveyed
in the classic book by Roth and Sotomayor [1990]—does not address fairness
by randomization, but examines in great details strategyproofness and core
stability.

The small literature on random assignment under strict preferences is very
relevant to our work. Hylland and Zeckhauser [1979] defined a fair and efficient
solution, adapting to the random assignment problem the familiar competitive
equilibrium with equal incomes. Yet this competitive solution is not incentive
compatible®. Qur results show that, on the contrary, in the dichotomous do-

3Zhou [1990] establishes the general impossibility of achieving ex ante efficiency (when



main the randomization/time-sharing approach succesfully achieves efficiency,
incentive compatibility, and fairness. And the egalitarian solution that we rec-
ommend is precisely equal income competitive (Theorem 1).

A recent flurry of papers on the deterministic assignment of indivisible goods
bears some relation to our work. The central question of that literature is to
characterize the set of efficient and incentive compatible (strategyproof) assign-
ment mechanisms: Papai [2000], Ehlers and Klaus [2000], Ehlers, Klaus and
Papai [2000]. Most papers work in the strict preference domain, but three ex-
ceptions are Svensson [1994], [1999], and Bogomolnaia, Ehlers and Deb [2000].
These authors consider the deterministic assignment in the full domain of com-
plete and transitive preference relations, allowing for strict and for dichotomous
preferences. Fixed priority mechanisms are strategyproof and non bossy. Con-
versely, these two properties force the mechanism to resemble closely a fixed
priority one; the additional property of neutrality captures precisely the fixed
priority mechanisms.

Finally our egalitarian solution is closely related to the solution with the
same name for supermodular cooperative games , due to Dutta and Ray [1989].
We can interpret our solution as the egalitarian solution of a certain cooperative
game derived from the matching problem (Section 5).

3 The model

A matching problem consists of a finite set M of “men”, a finite set W of
“women”, and two M x W zero-one matrices RM and RW, representing di-
chotomous preferences of men over women and of women over men respectively.
An entry RM,,,, = 1 if woman w is acceptable for man m, and RM,,,, = 0 if
she is not acceptable for him (and similarly for RW). Thus, each row RM,,
of RM represents the preferences of a man m, and each column RW*Y of RW
represents the preferences of a woman w.

Each person prefers to be matched to an acceptable person of the opposite
gender to being unmatched, but would rather be alone than matched to an
unacceptable person.

We assume throughout the paper that matching is voluntary, namely two
individuals can be matched only if they like each other. We refer to this im-
portant assumption as the individual rationality restriction. It implies that all
the information about feasible matchings and relevant preferences is conveyed
by a single M x W zero-one matrix R, equal to the entry by entry product of
RM and RW: R,,, = 1if and only if RM,,,, = 1 and RW,,,,, = 1, i.e., if and
only if man m and woman w are mutually acceptable (we then say that they
are “compatible”). We call the triple (M, W, R) the individually rational (ir)
reduced problem of the problem (M, W, RM, RW).

Thus we work most of the time with the ir-reduced model (M, W, R). The
only exception is Section 6 devoted to strategic behavior: there the matching

preferences over lotteries are described by von Neumann-Morgenstern utilities), fairness (in
the minimal sense of equal treatment of equals), and strategyproofness.



mechanism computes the ir-reduced problem from the reported preferences RM
and RW.

As this will cause no confusion, we use the notation R,, (resp. RY) both
for the row (resp. the column) of R and for the subset of women (resp. men)
who are compatible with man m (resp. woman w). For any subset S of men
(resp. subset B of women)—also called a coalition—we write Rs = Ug R, (resp.
RP = UpR™) for the set of people of the opposite gender, compatible with at
least one person in S (resp. B).

When all agents on one side of the market finds all agents on the other side
acceptable, we speak of an assignment problem, and of the passive agents as
objects. For instance RM = 1 implies R = RW and the objects in M are
allocated to agents in W.

A deterministic matching u of the ir-reduced problem (M, W, R) is a subset
of M x W, such that (m,w) € u only if R,,,, = 1, and any person appears there
at most once: for any m € M (resp. w € W) there exist at most one w € W
(resp. m € M) such that (m,@) € u (resp. (M, w) € u). Persons who appear
as a component of a pair from i, and only those, are matched by p. We write
A(M, W, R) for the set of voluntary deterministic matchings.

A random matching is a lottery © on A(M, W, R). For all our results, the
only relevant information about a random matching 7 is the random allocation
matriz 7, giving for all m and w the probability z,,, that man m and woman
w are matched, i.e., the probability that 7 selects a deterministic matching p
such that (m,w) € p. Thus the M x W matrix 7 is substochastic, that is to
say it is non-negative and the sum of each row and each column is at most 1;
IMOTEOVET Zpyq, 1S positive only if man m and woman w are compatible.

The mapping from a random matching 7 to its allocation matrix Z is clearly
not one-to-one. A variant of the Von Neumann-Birkhof theorem on bistochastic
matrices (see Lemma 2.1 in Bogomolnaia and Moulin [2002]), implies that it is
onto the following set of M x W matrices:

Z(M,W,R)={Z| 7 issubstochastic and Ry, =0 = 2z =0} (1)

For agent m with dochotomous preferences RM,,, stochastic dominance is
a complete relation among the feasible m-rows Z,,, therefore the sum of the
entries in this row is the canonical utility representation of his preferences over
random matchings. It is simply the probability that he gets an acceptable
match. Denoting similarly 7% for the w-column of Z, our utility functions are:

um(Zm) = szw = szwa Uw(Zw) = szw = szw (2)
w Ry, M Rw

We denote by UV (M, W, R) the set of feasible utility vectors (of length | M|+
|W1), namely the image of Z(M, W, R) under the utility functions (2).

A solution is a mapping (M, W, R) — Z associating a random allocation
matrix to any problem. A welfarist solution only keeps track of the utility



profile. It does not specify which particular allocation matrix Z implements
the utility profile. Formally it is a mapping (M, W, R) — (u,v) € UV(M, W, R).

4 Efficiency

A person who is not compatible with anybody (R,, = 0 or R” = () has no
bearing on efficiency, and can simply be ignored. We assume R,, # ( and
RY # () for all m,w in this section and the following one. For future reference,
note that such a “null” person could play a strategic role in a group manipulation
of the kind we discuss in Section 6 (by sending a non-null report).

We discuss first the structure of efficient matchings in the ir-reduced prob-
lem (M, W, R). Any such matching u is core-stable because a pair (m,w), has
a blocking objection only if m and w are mutually acceptable and neither is
matched at p: this would contradict the efficiency of u. The converse state-
ment is just as obvious, therefore for deterministic matchings core-stability and
efficiency + individual rationality are identical properties.

In the following statement, {51, S», 53} is called a partition of S if Sy, 52, S3
are disjoint subsets of S, their union is S, and at least one of S1,55,53 is non-
empty. Also, we say that an ir-reduced problem (M, W, R) is a perfect match if
there is u € A(M, W, R) at which all men and all women are matched.

Lemma 1 (Gallai-Edmonds decomposition)

Given a matching problem (M, W, R) with R,, # 0, R* # 0 for all m,w,
there is a unique pair of partitions {M°, M?, M} of M and {W°, W? W} of
W such that:

i) W is only compatible with M°, and M° is overdemanded by W¢:

RY* = M° and

|Rs "W >|S|  forall §C M° (3)

it) the restricted problem (MP, WP R) is a perfect match
i) M? is only compatible with W°, and W° is overdemanded by M¢:
Ryra = W° and

|RPnM?| > |B|  forall BCW? (4)

We call M°, W° the sets of overdemanded persons, MP, WP the sets of
perfect persons, and M, W the sets of disposable persons.

Note in particular, that |M°| < |W9|, |MP?| = [WP| and |[M%| > |W?°|. The
problem is trivial when the only non-empty sets are M? and WP.

The women in W¢ are compatible only with men in M?° and are enough
to make everyone in M° happy: we can assign M° to W4, Tn fact (3) implies
|Rs NWIN\{w}| > [S] for any w in W¢, hence by Hall’s theorem applied to



the assignment of overdemanded men, M® can be assigned to W\ {w}. This
justifies our “disposable” terminology for the women in W<.

Figure 1 depicts the compatibility matrix R of a 10 men - 10 women example.
One checks easily:

M?° = {m1,ma,ms}; MP = {m4,ms5, me}; M* = {mz,ms, mg, m10}
W< = {we, wr, ws, Wy, wio }; WP = {msz, ma,ms }; W° = {m1,ms}

A matching u € A(M, W, R) is efficient if and only if the subset of MUW that
it matches is inclusion maximal: by Lemma 1 all inclusion maximal matchings
in A(M, W, R) match the same number of agents.

Lemma 2 Notations as in Lemma 1. Define the effictency stze of problem
(M,W,R) as

e(M, W, R) = |[M°| + |W°| + |MP| = [M°| + [W°| + [W?| (5)

A deterministic matching p € A(M, W, R) is efficient (Pareto optimal w.r.t.
the utilities (2)) if and only if exactly 2e agents (e men and e women) are
matched by L.

In all efficient matchings, M° is matched to a proper subset of W¢ , W is
matched to a proper subset of M?, and MP and WP are perfectly matched.

From the point of view of welfare, all that matters is which pairs of coalitions
(8, B) of size e, where S C M, B C W, can be matched and which cannot. We
call the former pairs efficient and denote their set by E(M, W, R). A person is
disposable if and only if there is an efficient coalition (S, B) to which he or she
does not belong. Note that, by Lemma 2, there is also an eflicient coalition to
which he or she belongs (recall our assumption Ry, R, # 0).

The only aspect of the efficiency frontier not determined by the partition of
Lemma 1 is this: which coalitions from M¢ can be (simultaneously) matched?
and which coalitions from W can be matched? In the example of Figure 1 the
answer is, respectively, every pair of M = {my, mg, mg, m1o} and seven triples
from We = {wg,wr,ws, wy, w10} (the three triples containing w; and wg are
excluded).

We turn our attention to efficient and individually rational random match-
ings. Let 7 be a lottery over A(M, W, R), the set of deterministic matchings.
A necessary condition for the Pareto optimality (efficiency) of = with respect
to the utilities (2) is that its support contains only efficient matchings (this is
the familiar ex-post efficiency property). This condition is sufficient as well: by
Lemma 2 every efficient deterministic matching p maximizes the joint utility
Doar Um + Do vw = 2¢(M, W, R), and so does every lottery over these match-
ings.

Lemma 3 Notations as in Lemmas 1, 2.
i) A random matching is efficient in the ir-reduced problem if and only if,
with probability one, it matches 2e(M, W, R) persons.



it) A random allocation matriz 7 is efficient if and only if the sum of its
entries is e(M,W, R).

i11) A random allocation matriz 7 for matching problem is efficient if and
only if Zmw > 0 only for (m,w) € (M°, W) U (MP,WP)U (M, W°), and its
restriction to (MP,WP) is bistochastic, to (M°, W%) is row-stochastic, and to
(M®, W°) is column-stochastic.

A consequence of Lemma 3 is that a random matching is core-stable if and
only if its allocation matrix is efficient. Indeed the only agents whose utility may
be smaller than 1 are those in M? and W¢, but there is no mutually acceptable
match between these agents (statement ¢ in Lemma 1).

The efficiency size e(M, W, R) has some sub- and supermodularity properties
that play a crucial role in the sequel. In what follows we consider the efficiency
size e(S, B, R) of the restriction of our original problem (M, W, R) to subsets
S C M and B C W. We abuse notation slightly by writing the restriction of
R to S x B simply as R. The set of disposable men, or women, has a simple
characterization by means of the efficiency size function:

me M°UMP < e(MN\m,W,R)=e(M,W,R) — 1 (6)

m e M?* & e(M\m,W,R) = e(M,W,R) (7)

The efficiency size e(M, W, R) is submodular in M and in W, and super-
modular in M x W. In the following inequalities, we write e(S, B) instead of
e(S,B,R) :

e(S,W)+e(T,W) > e(SUT,W)+e(SNT,W), forall ST C M

e(M,B)+e(M,C) > e(M,BUC)+e(M,BNC), forall B,C CW
e(S,B) +e(S',B") > e(9,B')+e(S,B), forall S CS" and all BC B’
Finally, the efficiency size function allows a compact description of the effi-

cient utility profiles in the ir-reduced problem. These are the utility profiles of
the core-stable random matchings.

Lemma 4 Given an ir-reduced problem (M,W,R), a utility vector (u,v) €
[0, 11M*W s feasible and efficient if and only if it is a solution of the following
system:

Zum = va:e(M,W,R);Zumge(S,W,R)foralngM,
M w [

>

B

e(M,B,R) for all BCW (8)
We denote by UV (M, W, R) the set of efficient feasible utility vectors.

INA



5 The egalitarian solution

The egalitarian solution picks an efficient matching equalizing as much as possi-
ble the individual utilities, i.e., the probabilities of an acceptable match. When
full equality is not compatible with efficiency, the solution maximizes the famil-
iar leximin ordering.

In the example of Figure 1, women w7 and wg are only compatible with mso,
therefore min{wvy,vs} < 0.5 for any feasible utility profile (u,v). Men m7, mg, mg
and m1g have to share wy and ws, so min{ur, us, ug, u10} < 0.5 as well. If we
reserve mo, w1 and ws for these six disposable persons, they each end up with a
probability % to be matched. The remaining disposable women wg, wg and wig
can share men m; and mg, so as to get utility % each (give % of m3 to wyo, %
of m3 and % of my to wy, and 2 of my to wg). All other persons get utility 1.
This is the egalitarian solution.

We define first the solution by means of a simple algorithm, before deriving
its equalizing properties in Theorem 1 below. We use the notations r(T) = |Rr|
and r(T,B) = |Rr N B| for T C M, B C W. For any real valued function h,
the expression arg ming h(T') stands for the subset T of S minimizing h over all
subsets of S; if several subsets of S reach the minimum, T is the largest one in
the sense of inclusion: this is well-defined in our case, because, for our choice of
the function A, if two subsets minimize A on 2%, so will their union.

The last piece of notation concerns the sequence Ty, k = 1,2, ..., of disjoint
subsets of M constructed in the Definition. We write T, , for the union of
Ty, T, ..., T}.

Given an ir-reduced problem (M, W, R), and an eflicient (core-stable) utility
profile, the only agents whose utility may be less than 1 are the disposable men
M¢? and women W?. Tn view of Lemma 1, we can leave aside the perfectly
matched agents in M? and W¢ and solve two separate matching subproblems
(M2, W° R)and (M°, W% R). Since overdemanded agents always get a match
we can think of W° and M? as objects and of these subproblems as, respectively
the assignment of W° to the agents in M%, and of M? to the agents in W<.
The algorithm defining the egalitarian solution is only given for the subproblem
(M?, W°, R); for the subproblem (M°, W R) we simply exchange the roles of
men and women.

,,,,,

Definition 1  Given the subproblem (M, W°, R) of the ir-reduced problem
(M,W,R), we define recursively an increasing sequence of numbers oy, k =
1,.... K, where o0 < ay, < 1, and a partition of M® by a sequence Ty, k=1, ..., K,
of non-empty coalitions:

My = MYWo=WM,=MNTy, 1, We=W\Rn__,;
. T(Ta Wk—l)
= _— 9
Uk M [T )
. T(Ta Wk—l) .
T, = _— 1
& arg min 7] if o <

10



The sequences ay, Ty stop at K where T 1 = M¢. The egalitarian utility
profile is: uf, = ap ifme Ty, fork=1,..., K

The egalitarian solution is welfarist: we only define its utility profile without
specifying which random allocation matrix should be used to implement it. For
instance, the perfectly matched agents in MP, WP receive utility 1, and there
may be a number of ways to match them.

Yet the matrices 7 € Z(M¢, W°, R) implementing the egalitarian utility
profile u® are largely determined by the algorithm (9). The matrix Z must
assign all the objects in Rz, to coalition T1 in order to achieve the total utility
>or Uy, = r(T1) = |Rq,|. All the objects in Rr, N W1 = Ry, \ R, must be
assigned to coalition 7% to secure the utility Y., ug, = r(T2, W1) = |Rr, N Wy],
given that Ry, is not available. The key fact is that the new maximum utility
a9 is greater than oy, thus the decision to reserve Ry, to T is vindicated on
egalitarian grounds. By repeating this argument we see that 7 must assign
precisely the objects Ry, N Wy 1 = Ry \Rr, _,_, to coalition Ty for k =
1,..., K. Tn short, coalition Ty receives at stage k all the objects it likes among
those not assigned in earlier stages.

Qur next result states two distinct characterizations of the egalitarian solu-
tion, justifying its normative appeal as a fair outcome of our matching problem.
Recall that the Lorenz dominance is the following partial orderings of vectors
in RMYW. (y,v) dominates (t,w) if upon rearranging their p =| M | + | W |
coordinates increasingly as z*and y*, we have X% (z; —y;) > Oforall k = 1,..., p.

Theorem 1 i) Given an ir-reduced problem (M,W, R), the egalitarian utility
profile is Lorenz dominant in the feasible utility set UV (M, W, R).

it) Given positive prices py, for each woman and p™ for each man, we say
that an efficient allocation matriz Z € Z(M, W, R) is competitive at p with equal
income of one if we have for all m,w

Zmw > 0= Py = mingecr,, py, P° = mingcgw p°

and ZyEW Py Zmy = D pem P 2w =1

The allocation matriz 77 is equal income competitive if and only if it imple-
ments the egalitarian profile.

We interpret statement 1 first. If the arbitrary convex set U of utility profiles
contains a Lorenz dominant element u*, this profile has a very strong claim to
fairness within the efficiency frontier. Indeed, it achieves the maximum over
U of any collective utility function averse to inequality (in the sense of the
Pigou-Dalton transfer principle); it is the unique maximum if the collective
utility is strictly averse to inequality. Thus »* maximizes not only the leximin
ordering but also the Nash collective utility Y ,,log un,, and any collective
utility > ,, f(um) for any increasing and concave function f (if f is strictly
concave, u* is the unique maximum), and more.

Turning to statement ¢¢, we note that an allocation Z implementing the
egalitarian profile u¢ is equal income competitive for the following prices:

11



pe=pt=1ifme M*UMPandwe WtUWP
pw=5 fwe Ry, "Wy yfork=1,..,K
pt =g ifmeRs, N My forl=1,...L

where ay, Ty, W}, is the sequence constructed in (9), so that Ry, N Wy 3
covers W° as k varies from 1 to K. The sequence §,;,S5;, M; is the similar
sequence when the algorithm is used to assign the agents W¢ to M°(upon
exchanging the roles of men and women).

Consider the competitive demand at the above prices p, for an agent m in T},
with income of 1. This agent will buy only (a fraction of) the cheapest objects
in R,,. The discussion following Definition 1 shows that these are precisely the
objects in the non-empty set R, N Ry, N Wi_1. They all cost aik therefore
with a budget of one, agent m buys a fraction (probability or time-share) ay
of his good objects. Thus every matrix Z implementing u° is equal income
competitive. Statement 7 says that the converse holds true as well.

The main result in Dutta and Ray [1989], is related to—and used in the proof
of —our Theorem 1. By Lemma 1 we can interpret the set U¢(M¢ W°, R) of
efficient utility vectors for M¢ as the core of the submodular cooperative game
S — (S, W, R). Theorem 3 in Dutta and Ray [1989] implies that /¢(M?, W°, R)
contains a Lorenz dominant element (the first statement of our Theorem 1) and
computes it by an algorithm identical to (9), except that (T, B) is replaced
everywhere by e(T, B), the efficiency size of the reduced problem (7, B, R) See
the proof of Theorem 1. Note that r(T, B) is computed by direct inspection of
the matrix R, whereas computing e(T, B) is the harder task of discovering the
Gallai-Edmonds decomposition of the subproblem (7', B, R).

6 Strategyproofness and groupstrategyproofness

We investigate in this section the strategic opportunities in the direct revelation
mechanisms associated with solutions (or welfarist solutions) of the matching
problems. Recall that a solution g maps every problem (M, W, R) into a random
allocation matrix Z, whereas a welfarist solution f maps (M, W, R) into a utility
profile u (or (u,v)). Thus every solution g projects onto the following welfarist
solution f(M,W, R) = u(g(M, W, R)).

Strategyproofness is not a welfarist concept: its definition requires to specify
how the allocation matrix is affected when the reported preferences change.
When we speak below of a welfarist solution (such as the egalitarian and priority
solutions) being strategyproof (or any group variant of this property) we always
refer to the most demanding interpretation, namely “f is strategyproof” means
that “every solution ¢ projecting onto f is strategyproof”.

Given a (non welfarist) solution g (Section 2), the associated direct reve-
lation mechanism works as follows. Men and women report their preferences
RM and RW respectively, and the solution g applied to the ir-reduced problem
RM e RW implements the random allocation matrix 7. Here the notation AeB
stands for the entry-by-entry product of the matrices A, B of the same size.
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Definition 2 The solution g is called male-strategyproof if for all m € M, and
any three matrices RM, RM' and RW with g(RM ¢ RW) = Z and g(RM' e
RWY=27":

{RMy = RM! , for all m' # m} = um(Zm) > un(Z,,)

The solution is called strategyproof if it is both male- and female-strategyproof.
The solution is called male-groupstrategyproof if for all S C M, and any three
matrices RM, RM'and RW, with g(RM ¢ RW) =7 and g(RM' « RW) = 7"

{RM,» = RM)], forallm'¢ S and um(Zy) > um(Z.,) for allm € S}
= {um(Zm) = um(Z),) for allm € S}

The simplest example of a strategyproof and core-stable solution is a priority
solution. Given a priority ordering > of M UW . we define the »priority utility
profile as the »~lexicographic maximum over the utility set /Y. Thus the highest
priority person i; gets utility 1 because he or she is compatible with at least
one person; the next person in the priority line, ¢2, gets utility 1 if there is a
way to match him or her without affecting the utility of person ¢;, otherwise
this person’s utility is 0, and so on.

It is easy to check that a priority solution is core-stable, as well as strate-
gyproof. As both properties are preserved by convex combinations with fixed
weights (Lemma 3), a natural idea is to randomly select a priority solution, with
uniform probability over all orderings of M UW. The resulting random priority
solution is fair, core-stable and strategyproof for both sides of the market.

Thus in the dichotomous domain, core stability and strategyproofness are
satisfied by a large class of solutions (including all convex combinations of prior-
ity solutions, the egalitarian solution, and more). This stands in sharp contrast
with the situation in the classic domain of strict preferences where core stabil-
ity is only compatible with strategyproofness on one side of the market (Roth
[1982]). For instance, a priority solution in the classic domain is strategyproof
on both sides, but it does not always pick a matching in the core.

Back to the dichotomous domain, it is a much taller order to discover a solu-
tion in the core that is also strategyproof with respect to one-gender coalitions.
For instance, a priority solution is not male-groupstrategyproof. Consider the
problem with three men and two women where each woman finds all men ac-
ceptable, m; finds both women acceptable whereas w; is the only acceptable
woman for ms and ws the only acceptable woman for mz. Given the priority
ordering my = ms = ms, the truthful outcome matches mjand mos However my
can help mg3 at no cost to himself by announcing that w; is his only acceptable
mate.

Our next result says that every deterministic and core-stable solution is
similarly vulnerable.

Lemma 5 With three or more agents and two or more objects, no deterministic
core-stable solution is either male- or female-groupstrategyproof.
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On the other hand, if randomization is feasible, this incompatibility disap-
pears.

Theorem 2 The egalitarian solution is both male-groupstrategyproof and female-
groupstrategyproof.

We are not aware of another mechanism design problem where randomization
is necessary to combine efficiency and strong incentive compatibility properties.

We note that the random priority solution is not even weakly-groupstrategyproof
with respect to all male or all female coalitions. That is to say, there are profiles
where a coalition of men, say, can strictly improve upon every member’s utility
by jointly misreporting their preferences. An example is given in Bogomolnaia
and Moulin [2001].

Finally, we turn to joint misreports by coalitions mixing some men and
some women. A simple example shows that no core-stable solution is group-
strategyproof.

Assume M = {m}, W = {w;,ws}, and both women are compatible with
the unique man. Here m can enforce matching (m, w) by reporting that he only
likes w, so if a matching mechanism chooses (m,w;) with positive probability,
the coalition m,w;, j # ¢, can manipulate to the benefit of woman w;.

Thus the strong form of groupstrategyproofness is out of reach in our model,
given our primary concern with core stability. However, there is some hope to
find a reasonable solution meeting the weaker version of this property where
we only rule out joint misreports from which all members of the group strictly
benefit. For instance, a priority solution is thus weakly groupstrategyproof
(Definition 3). Indeed, consider a member of the deviating coalition with the
highest priority. He or she can improve only if somebody with higher priority,
who was matched initially, does not get a match after manipulation. The only
way this can happen is when another member of the deviating coalition pretends
to like such a person, is matched to this person by some implementation of the
priority solution, but refuses this match ex post. But this means that under the
manipulation the utility of this last member of the deviating coalition is zero,
so this person does not improve.

Definition 3 The solution g is called weakly groupsirategyproof if for all S C
M, all B C W, and any four matrices RM, RW, RM’, RW', with Z = g(RM e
RW) and Z' = g(RM’ ¢« RW') ¢ RM ¢ RW :

{RM,, = RM,], foralm'¢S and RW,, = RW,, for allw' ¢ B} =
{um(Zm) > um(Zm) for some m € B or v,(ZY) > v, (Z'™) for some w € B}

Definition 3 uses the full force of the individual rationality assumption. Fol-
lowing the misreport RAM', RW' by coalitions S and B, the solution g imple-
ments the allocation matrix Z = g(RM'e RW'). The pair (m, w) is incompatible
if RM - BWw = 05 if Zp > 0 for such a pair, the match (m,w) will be
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implemented by g with positive probability, given the reported preferences, yet
it will not happen ex post because it is not voluntary for at least one of the
two persons. Thus the allocation matrix actually implemented under individual
rationality is Z ¢ RM e RW, as shown in Definition 3.

Unfortunately, weak groupstrategyproofness is not compatible with even the
elementary test of horizontal equity known as equal treatment of equals.

Consider the following example with four men and four women. Let m; and
wy like persons of the opposite gender numbered 2, 3 and 4, mo and wo like
persons 1, 3 and 4, while m3, m4 and ws, w4 only like person 1. We have:

wn wWa w3 wWa wn wWa w3 wWa
m 0 1 1 1 m 0 1 1 1
RM = ms 1 0 1 1 ,RBW= ms 1 0 0 0 |,
mz 1 0 0 0 mz 1 1 0 0
mg 1 0 0 0 my 1 1 0 0
wr W2 Wz W4
m; O 1 1 1
so R = mo 1 0 0 0
mg 1 0 0 0
mg 1 0 0 0

Suppose now all men in S = {m3, m4,ws,ws}, pretend to also like person 2.
We get:

RM' , RW' , so R =

I
[ e =)
== O
OO = =
OO = =

I
[ e =)
== O
[ R R N
OO = =
[ e =)
== O
OO = =
OO = =

Note that the preference matrix R’ allows a perfect match.
Consider an efficient solution ¢ that also treats equals equally, namely for all
problem (M, W, R) with g(M, W, R) = Z and all m,m/,w,w" :

Ry =Ry = Zyp = Zp; R =RY = 2% = 2%

The above property plus efficiency determine g at B and R’ :

g(R) = , 9(R') =

|| Feel— O
OO Owim
OO Owim
OO Owim
iR O O
kR O O
O O nol-w|—
O Ok

Because persons 3, 4 reject, ex post, a match with person 2, the allocation
matrix actually implemented is:
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7' =

R O O
OO Owm

oo OO
OO O

thus the misreport strictly benefits everyone in S. We conclude that g violates
weak groupstrategyproofness.

A welfarist solution is WGSP if all solutions projecting onto it are WGSP.
Tn the Appendix, we use the same 4 x4 example to prove the second statement
in our next result.

Theorem 3 Assume at least 4 men and 4 women. No core-stable solution treat-
ing equals equally is weakly groupstrategyproof. No core-stable welfarist solution
is weakly groupstrategyproof.

7 Two concluding comments

1. Beyond horizontal equity (Equal Treatment of Equals), we can evaluate the
normative appeal of a solution by several tests familiar to the fair division liter-
ature. The No Envy test requires wy,(Zn) > wm(Zy) for all m,m’, and a simi-
lar statement among women. Another popular test is Population Monotonicity
stating that when a new woman is added to W, the utility of no man should
decrease and that of no woman should increase, and a symmetrical statement by
exchanging the roles of men and women. By its competitive interpretation, the
egalitarian solution meets No Envy, and it is easy to deduce from the properties
of the efficiency function in Section 4 that Population Monotonicity is true as
well. Tn fact these two tests prove relatively easy to meet in our model. Fx-
amples include the random priority solution (Section 6) and a number of other
solutions. See Bogomolnaia and Moulin [2001] for a detailed discussion.

2. The roommate problem is the natural generalization of bilateral match-
ing where the (gender neutral) agents must form pairs (to share a hypothetical
room). Under the assumption of dichotomous preferences and the restriction to
voluntary (individually rational) matching, an ir-reduced problem is described
by a general matching problem, namely a pair (N,G) where N is the set of
agents, GG is an undirected graph on N, and an edge between two agents means
that they are mutually compatible. The Gallai-Edmonds decomposition general-
izes to the matching problem (N, G): see Theorem 3.2.1 in Lovasz and Plummer
[1986]. Tn particular all inclusion maximal matchings compatible with G have
the same cardinality, so we can still speak of the efficiency size e of an arbitrary
problem. Hence for random matchings, it is still true that ex post and ex ante
efficiency coincide: a random matching is efficient if and only if, with probability
one, it matches exactly 2e agents.

It is straightforward to extend the definition of fixed priority and random
priority solutions to the roommate problem. One checks just as easily that these
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solutions are strategyproof. Therefore, the latter two solutions are efficient,
strategyproof and treat equals equally. The egalitarian solution is well defined
as the unique maximand in the utility set of the leximin ordering. However it
is no longer Lorenz dominant in that set because the efficiency function is not
submodular anymore. It is not groupstrategyproof either, because bilateral
matching is a special case of the roommate problem.

As in bilateral matching, weak groupstrategyproofness is out of reach in
the roommate problem, if we also insist on efficiency and fairness. Unlike in
bilateral matching, this fact does not depend upon the ex post rejection of
matches. Consider the three person problem where each one of agents 1, 2 and
3 like the other two, so that G is the complete graph. An efficient solution
treating equals equally must match each pair {7, j} with probability %, resulting
in the utility % for each. Now if 1 and 2 both report that they only like each
other, they are matched with probability 1 (by efficiency).
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Appendix: Proofs

1. Proofs for Section 4

A bipartite graph between a set of men and a set of women connects some
men to some women by edges. A matching is a subset of edges of the graph
such that each point (man or woman) is in at most one edge. Matching theory
explores the properties of inclusion maximal matchings, simply called mazimal
matchings. If we interpret the presence (resp. absence) of an edge in the graph
joining m to w as “man m and woman w are mutually acceptable”, then a
maximal matching is precisely an eflicient and voluntary matching. The de-
composition of efficient matchings in two disjoint efficient assignments is then
a simple reinterpretation of the well known Gallai-Edmonds decomposition of
bipartite matching graphs.

Lemmas 1-3 can thus be easily retrieved from matching theory upon trans-
lating our economic terminology into the graph-theoretical terminology of match-
ing. An excellent survey of matching theory is Lovasz and Plummer [1986], in
particular, Chapter 3. More direct proofs can be found in Ore [1962] (Theorem
7.6.1).

Sub- and supermodularity properties stated in the section are the submod-
ularity of the rank function of a matroid (see, for example, Korte and Vygen
[1991], Theorem 13.10)

Lemma 4:

It is enough to check the statement for the assignment of W° to M¢. For
any coalition S and any deterministic assignment p, u € A(M°, W9, R), with
associated utility profile u, the sum " ¢ ., is the number of agents in S assigned
by u. Therefore if 4 is efficient its utility profile meets system (8). By linearity,
so does the utility profile of any efficient random assignment.

To prove the converse statement, let u € [0, 1]¥ “ be a solution of system (8).
By a classical result about submodular (concave) cooperative games (Shapley
[1971]), u is a convex combination of marginal contribution profiles u”. For a
strict ordering = of M, this vector is defined by:

ur =e(TU{m},W° R) — e(T,W° R) for all m

where T is the set of agents preceding m in > .

Tt is easy to see that u” is the utility profile of the (efficient) »priority
assignment, as defined in Section 6. Thus u is the utility profile of an efficient
random assignment.

2. Proofs for Section 5: Theorem 1

Tt is enough to check Statement i for the assignment subproblem (M?, W°, R).
In what follows we write M and W instead of M% and W°.

The straightforward proof of Statement ii is omitted for brevity.

Step 1 Preliminary result.
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Let f be a non negative submodular function defined over the non-empty
subsets of M. Fix a coalition S, S C M, and consider the program of minimizing

% over all non-empty subsets of S. It is easy to check that the set of its
solutions is stable by union, therefore the largest solution is well-defined; this
set is denoted arg ming %

For any subset B of W, the function ' — (T, B) = |Rr N B| is obviously
submodular, therefore the sequence Ty, k = 1,2... is well-defined by (9).

Step 2. Another algorithm

We apply the above result to the submodular function T' — (T, W, R) de-
noted simply e(T"). We construct inductively two sequences §,, S, k = 1,2... by
an algorithm similar to (9), introduced by Dutta and Ray [1989]:

Ng = M, ey =ce; next for k=1,2...
. ex—1(7T) . ep—1(T)
Br = ]IVTS_I: W Sk = arg}\ﬁlﬂ ﬁ
N, = M\Slymyk; ek(T) = e(T U 51’,,,’];) — 6(51,“,’;6) (10)

By construction, the sets S are disjoint and there is a step I such that
S1,...57 partition M, at which point the sequence stops.

Dutta and Ray’s egalitarian solution for the submodular (concave) cooper-
ative game T' — e(T) is the utility profile ¢, z,,, = 8 if m € Sg, k= 1,..., L.
They show that z is in the core of the game (M, e), and Lorenz dominates
every other utility profile in the core. Translated with our terminology, the
core property is system (8), thus the result says that z is an efficient profile,
x € U(M, W, R), and it Lorenz dominates every other feasible utility profile
(even inefficient ones).

For the sake of completeness, we prove below that x is in U4¢(M, W, R), and
that is maximizes the leximin ordering over this set. We also show that the
sequence 3, is strictly increasing. Then we proceed to check that (5, S;) and
(ag,Ty) are two sequences of the same length, K = L, and that they coincide
with the possible exception of the last term.

The equality >, ., = e(M) is clear from (10). Feasibility of = requires
Ygxm < e(S) for all S. Suppose S C Sy, then > gz = |S|- 8y < e(S) by
definition of 3;. Suppose S C S 2, and set S* = SN S;,7 = 1,2. By definition
of 8, and submodularity of e:

e(S2US)) —e(S1) _ e(S) —e(SY)
< <
RETTer ST
Combining this with 8, <
And so on inductively.

Next we check that 3, is strictly increasing. Note first that e(T) < |T| for
€L (T)
1T

el(;ll) gives B, - |5 |+ B, - || < e(S), as desired.

all T, implying 8, < 1 for all k. The inequality 8; < f;; means 3, <
for all T'C Nj. Assume the latter fails for some 7', namely:
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By =

6k_1(Sk) > ek(T)
ISk | T

Both ratios above are at most 1 therefore:

er—1(Sk) +ex(T) N ex—1(T U S)
ISel +IT1 = |TU Sk

Br =

But Sy is the largest solution of min e"’",}fT), contradiction.

It is now easy to check that z maximizes the leximin ordering over U°.
Suppose y, another profile in U€, is leximin preferred to . Then for all m €
S1,Ym = T} = &, and moreover:

6(51) Z Zym Z me = 6(51)
S1 S

therefore y and z coincide on S;. Next:

for all m € S Ym = y|*51|+1 z wrsl|+1 =Tm

and moreover:

6(51 USQ) Z Z Ym Z Z Tm — 6(51 USQ)
S1USs S1USs

so that ¢ and z coincide on .57 U S5. And so on.

For the sake of brevity, we refer the reader to Theorem 3 in Dutta and Ray
[1989] for a proof of the fact that z is Lorenz dominant in /°.

Step 3. Equality of the two sequences

We check by induction that, as long as 3, remains strictly below 1, the two
algorithms (9) and (10) coincide. More precisely we prove the following property
P(k) by induction on k:

Br<l={fort=1,. . kia:=0,T:=5}; e(Th, k) =r{T1, 1)

Step 3.a. Proof of P(1)
Assume we know e(S;) = r(S1). This implies 3, = |T((Ss;1)) > aj. On the other
hand e(T) < r(T) for all T implies 8, < a1, so that 8, = a; and S; C Ti.

Next we have 3, = a1 = % > f(gl))l’ implying Ty C S1. Thus the equality

e(S1) = r(S1) is enough to conclude oy = 8, S1 = T1.
We assume e(S1) < 7(S1) and show a contradiction of the assumption 8, <
1. In the Gallai-Edmonds decomposition of (S1, W, R), S¢ = S1\S¢ is non-empty
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(otherwise e(S1) = 7(S1), see Lemmas 1, 2). If S¢ is empty, e(S;) = |S1| =
B, = 1. Thus both S¢ and S¢ are non-empty and we have, with the notations
of Lemmas 1, 2:

e(8Y) _ Wl _ [W|+]SE _ e(S1)

BiIREGEEREE

where the inequality follows from [W°| < |S¢|, namely the overdemanded char-
acter of W°. We have reached a contradiction of the definition of 3,.

Step 3.b. Induction step

Assume P(k — 1) and 8, < 1. Consider an arbitrary coalition T' C Mj_;.
By P(k—1), e(Th,... 1—1) = r(T1,.. k1), which means that all objects in

Ry, ,_, can be assigned to 11, . ;1. Clearly this implies:
e(TUTy . p—1) = el . p—1)+eT,WNRg,  ._.)
ie., er—1(T) = e(T,Wi_1) (11)

We see now that the k-th step in our two algorithms are to minimize, re-

spectively, e(T’m"’l) and T(T’m“’l). Upon changing W to Wj_1, the same ar-

gument as in Step 3.a shows now: ay = Sy, T = Sk, as well as e(Ty, Wi_1) =
(T}, Wi—1). Combining this with (12) and P(k — 1), we get:

.....

Step 4. Proof of Theorem 1 (Statement i)

The sequence 5, increases, and 3, < 1.

We show first that Sx < 1. Indeed, if S5y < 1 = fg, then (11) is valid
and By = 1 reads e(T,Wg_1) = |T| for all T C Ng_1. Thus Sk = Mg_1 and
the algorithm (10) stops there. Moreover Nx_1 = Mg _1 can be assigned to
Wik _1, and on the other hand only the agents in My _1 like Wi _q:

K-1— W\\WK—l

.....

But this means that Mg _; cannot contain disposable agents. Thus, Mg_; =
0=Wko1, Th,... k-1 = M, Sk = 0, thus the algorithm stopped before the
K-th step.

Now, if Th, . .k = M and 8y < 1, P(K) establishes the full equality of the
two algorithms, and we are done.

4. Proofs for section 6
Lemma 5:
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It is enough to consider |M| = 3,|W| = 2 and restrict our attention to
profiles where each woman likes all three men Let a deterministic mechanism
among M =1,2,3 and W = q, b be male-groupstrategyproof and efficient. We
derive a contradiction by considering the following eight different preference
matrices RM = R:

a|b 170 110 110
R |11
[1] T[1| [2 T]o| [3 1[0 [
B |11 11 1 11
Ry |11
111 01 01 111
1/0 [5]; 1]0 [6]; 1 [7]; 1 (8]
11 11 01 01

The efficiency size of all eight problems is 2. We write an assignment (4, j) to
indicate that object a goes to agent ¢ and b to 7. We write a two-person coalition
simply as 7.

Suppose, without loss of generality, that our mechanism chooses (1,2) at
[1]. Then it must choose (1,2) at [2] : if u3 = 0 or ug = 0 at [2], coalition
12 can manipulate at [2] by R' = [1]. Consider [3] next: the only two efficient
assignments are (1,3) and (2, 3); if (2,3) is selected, 23 manipulates at [2] by
R’ = [3], hence (1,3) is chosen at [3]. Then (1,3) is chosen at [4] as well: the
other efficient choice (2,3) allows 13 to manipulate at [4] by reporting [3] (and
23 to manipulate at [3] by [4]!). Now at [5] the efficient coalition 13 must be
chosen (by way of (1,3) or (3,1)) or 13 could manipulate at [5] by R’ = [4].

Consider [6]: if (2,1) is selected, 12 manipulates at [5] by [6]; if (2,3) is
selected, 13 manipulates at [6] by R' = [4]. Thus (3,1) is selected. Now if (2, 3)
is selected at [7], 23 manipulates at [6] by [7]; therefore, by efliciency, (2,1) is
chosen at [7]. Consider [8]: if (1,3) or (2,3) is selected, 12 manipulates at [8]
by [7], thus (2,1) is chosen at [8] as well. Recall that (1,3) is chosen at [3]:
therefore 13 manipulates at [8] by [3], and we have reached a contradiction.

Theorem 2:

We assume that RW,,,,, = 1 for all m,w, and thus R = RM. Clearly, under
profiles where some women dislike some men, men’ possibilities to manipulate
can only diminish.

We fix two profiles R, R', respectively the true and the false profile, and two
allocation matrices 7 € o(M,W,R), Z' € (M, W, R'). We define the sets of
losers, winners and indifferent agents in the manipulation at B by R’ :

m € W iff u,(Z))= Zz;nw > U (Zm);
Rum

m € T iff un(Z)))=1umn(Zn);
m € L iff un(Z)) <um(Znm)
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We assume R, = R/, for all m € £ (the losers cannot be part of the
deviating coalition) and prove by induction W = ). This establishes groupstrat-
egyproofness because R, R’ are arbitrary.

We write ay, T, Wy, and «;, T/, W/, for the sequences corresponding to R
and R’ respectively. We prove by induction the property P(k) :

Th..rCIUL; 2,,=0forwe Ry, ,andme WUI)NTri1,.. K

,,,,,

We assume P(k — 1) and prove P(k). Tn the case k = 1, P(0) is void. We
assume k < K — 1, so that u,,(Zn) = a; for all m € Ty We set T, =T N L,
T = Ty N (W UT), either of which can be empty. For any m' € T, , m € T,
we have:

b (Z00) = U (Z00) < tumy (Zy) = ar, = um(Zm) < um(Z)

where the first equality comes from R,y = R, , and the last inequality holds
because the support of Z, is contained in R/ . Therefore m' belongs to an
“earlier” member of the partition 7/ —a set with a smaller index {(—than m,
implying that no object that m' likes (at R,y = R!,) is assigned to m at
R':z ., =0forw e R, . By the assumption P(k — 1), Z' does not give to m

any share of an object from Ry, ,_, either. Therefore:

{w € R, and 2., >0} = {w € Ry, N Wk_l\RT;} forallme Ty (13)

Now we define an allocation matrix 7* restricted to Ty, Ry, N Wy—_1, where
7 — p(Z) simply deletes the coordinates outside Ry, N Wy_1:

Zrs = p(Zm) form' €T,
z: = pZl,) forme Ty

By the definitions of T and Wji_1, up(Z),) = a3 for all m’ € T, and by
(17) um(Z2,) = um(ZL,) > oy, for all m € T;F. Next the support of any Z7, and
that of any Z*, are disjoint: see (17). Therefore 7* is feasible. By definition of
Ty, all inequalities u,,(Z%) > ay must be equalities, which proves T,:r CZ, and
the first statement in P (k).

Moreover Z* must exhaust all objects of Ry, N Wi_1. Among these, those
in Ry, N Wk_l\RT; are assigned in full by Z' to the agents of T,j : no fraction
of those objects goes to anyone in Ty ;1 . k. To complete the proof of P(k) we
must check that the objects in RT{ are not assigned at all to any agent n in

(WUZ)NTyt1,.. .k by Z'. For such an agent n we have:
u;z(Z;z) > un(Z;z) > un(Zn) > Qg1
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therefore (16) implies u} (%)) > u. ,(Z,,) for all m' € T .

Thus m' appears in the sequence 7 earlier than n, implying that all objects
he likes (at R, = R.,) are allocated before n is served, i.e., n gets none of
Ry
The proof of P(K — 1) is now complete. If ax < 1, then u,,(Z,,) = ak for
m € Tk and the above argument shows P(K). Tf ax > 1, then u,,(Z,) =1

implies T N W = @. Thus W is empty in both cases.

Theorem 3:

The first statement is proven by means of the 4 x 4 example just before the
theorem. To prove the second statement, fix an efficient welfarist solution f,
and consider the same 4 x 4 example. We write u = f(R) for the utility profile
chosen by f. Without loss of generality we can assume wy,, > tUmy > Um, and
Uy > Uy > Uy,; as my and w; are overdemanded, u,,, = vy, = 1. This implies
Umg, Vg < % and Umy, Uy, < %

Consider the same manipulation RM', RW' by the coalition S = {ms, m4, w3, w, }.
By efficiency, f(R') = (1,1,1,1). Let ¢ be a solution projecting on f and such
that g(R’) is the allocation matrix:

7 5
0 0 15 7
: 0 0 = &
g o
5 13 0 0
Then Z' = g(R') e R is:
0 0 & =
0 0 0 O
Z = % 0 0 0
5 0 0 0
and the (true) utility profile of S after the misreport is u},, = v, = & > 1,
Up,, = Uy, = % > % Therefore g is not weakly groupstrategyproof, and neither
is f.
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