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Abstract

We study axioms which define “representative democracy” in an
environment in which agents vote over a finite set of alternatives. We
focus on a property that states that whether votes are aggregated
directly or indirectly makes no difference. We call this property repre-
sentative consistency. Representatlive consistency can also be under-
stood as a “gerrymandering-proofness” requirement for voting rules.
We characterize the class of rules satisfying unanimity, anonymity,
and representative consistency. We call these rules “partial priority
rules.” A partial priority rule can be interpreted as a rule in which each
agent can “veto” certain alternatives. We investigate the implications
of imposing other axioms to the list specified above. We also study
the partial priority rules in the context of specific economic models.

1 Introduction

Our objective here is to discuss an interpretation of “representative democ-
racy” in a voting model. In so doing, we provide an axiomatic definition of
the meaning of representative.
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In the context of binary social choice, the only voting rule which is anony-
mous, neutral, and positively responsive is majority rule (May’s Theorem,
[12]). Majority rule is not compatible with “representative democracy,” in
an important sense. The alternatives selected by this rule are generally not
the same as the alternatives selected when agents are first divided into “dis-
tricts,” where each “district” of agents selects a “representative vote” for its
members according to the rule.! Thus, in a representative democracy with
single-member districts, the way in which districts are drawn can change the
outcome of a vote. In common language, we say that “gerrymandering” is
possible. Thus, majority rule leaves itself open to manipulation by whoever
determines which agents vote in which district.

If one believes in representative democracy with single-member districts,
a natural question is whether or not there exist voting rules which can never
be manipulated in the sense described above. Our aim is to formally study
this question, providing a workable and sufficiently general notion of a “rep-
resentative alternative” for a group of agents by assuming that the “districts”
into which agents may be grouped are not prespecified.

Society’s collective goal is to select one of a finite set of social alterna-
tives. Each agent in society submits a vote for one of the alternatives. An
alternative is selected by aggregating agents’ votes according to some rule.
Our interest is in studying such rules. This model is a reduced form model,
as preferences of agents are not specified.

When we say a voting rule is democratic, we mean that it 7) selects
any alternative which receives unanimous approval and ii) treats all agents
identically. These requirements are captured by the properties unanimity
and anonymity, respectively.

Our objective is to determine which democratic voting rules can be under-
stood as “representative democracies” under a single-member district system.
To make this objective precise, we specify notions of “direct democracy” and
“indirect democracy.” These two notions are discussed with respect to a given
voting rule. In a “direct democracy,” each member of society votes for an al-
ternative, and an alternative is selected by directly aggregating these votes
according to the rule. In an “indirect democracy,” agents are partitioned
into districts, and each agent votes for an alternative. Fach district then
selects an alternative according to the rule based on the votes in the district,
resulting in a “representative vote.” Each agent in society is treated as hav-

IFor a study of these types of rules, see Fishburn [10].



ing voted for his district’s “representative vote.” The rule is then applied to
the “representative votes,” leading to a social alternative. A voting rule is a
“representative democracy” if “direct democracy” and “indirect democracy”
lead to the same chosen alternative, independently of the partitioning of
agents. This equivalence of direct and indirect vote aggregation is logically
independent from the notion of “democracy,” so we give it an independent
name: representative consistency.

Thus, representative consistency can be understood as a condition of
“gerrymandering-proofness.” If a voting rule is representative consistent, the
selected social alternative is independent of how voting districts are drawn.
Intuition suggests that representative consistency is a difficult condition to
satisfy. Take the case of majority rule. Suppose some agent is in charge of
deciding who votes in which district. There are two ways in practice that
he may gerrymander. One is to draw districts so that the agents who will
vote for his least preferred alternative are concentrated in as few districts
as possible. The other way is to “spread” the agents who will vote for his
least preferred alternative in as many districts as possible so they do not
gain a majority in any district. In fact, with almost any voting rule one can
think of, gerrymandering is sometimes possible. In a sense, there will almost
always be situations in which one can draw districts so that some agents’
votes are “diluted.” However, there are exceptions to this rule.

The conditions unanimity, anonymity, and representative consistency are
compatible, and characterize a class of rules that we believe has not been
studied before. These rules are easiest to understand when there are only
two alternatives. In this case, one of the alternatives is “special,” and the
rule chooses the “special” alternative unless all agents vote for the other
alternative. Thus, each agent has a “veto” and can force society to choose the
“special” alternative just by voting for it. Hence, no agents are “powerless”
against gerrymandering.

These rules can be described in a different way. Think of the two alter-
natives as being ordered, where the “special” alternative comes first in the
order. Among the alternatives receiving votes, the rule selects the one that
comes first in the order. Our main contribution is to show that, for any
finite number of alternatives, each “representative democracy” can be de-
scribed by a partial order over the set of alternatives. If two alternatives are
ranked according to this partial order, then we say that the two alternatives
are prioritized. Of these two alternatives, the alternative which comes first
according to the partial order has a higher priority. Such a rule selects the
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lowest priority alternative which has a priority (weakly) higher than all of
the alternatives which receive votes. This alternative may or may not have
been voted for by some of the agents. We call such a rule a “partial priority
rule.”

A typical example of a partial priority rule is found in jury trials. A jury
must decide between the guilt or the innocence of a suspect. A suspect is
considered innocent unless the jurors unanimously agree that she is guilty.
The partial order corresponding to this partial priority rule ranks “guilty”
after “innocent.” Partial priority rules with three or more alternatives can
be described by introducing the concept of a “hung jury.” Here, if all agents
agree on “guilty,” the suspect is guilty. If all agents agree on “innocent,”
the suspect is innocent. If there is not unanimous agreement for either
alternative; however, we say that there is a “hung jury.” This corresponds to
a partial priority rule which ranks both “guilty” and “innocent” after “hung
jury,” but leaves “guilty” and “innocent” incomparable.

The characterization of “representative democracy” confirms the intuition
that representative consistency is very difficult to satisfy, and thus our result
may be viewed in a negative light. Nevertheless, the class of partial priority
rules is nonempty, and there is room to impose other interesting properties
on rules. We investigate the compatibility of additional properties with our
main axioms. For example, the positive vote-share condition requires that
any selected alternative must receive at least one vote. When coupled with
our other axioms, this condition is equivalent to the condition that the partial
order corresponding to a partial priority rule is a linear order.

One advantage of our model is its generality. In fact, we assume no
structure on the set of alternatives except that it is finite. However, in
specific examples, restrictions on the set of alternatives are always warranted.
To establish that our model is interesting in concrete economic environments,
we study the partial priority rules in the context of spatial competition. Thus,
we assume that the alternatives are exogenously ordered according to some
linear order. For example, policies may be ordered from “left” to “right.”

We discuss conditions relating to this exogenous order. Betweenness is
the requirement that the selected alternative lie between the maximal and
minimal votes according to the linear order. If it is implicitly understood
that agents have single-peaked preferences over the alternatives and votes are
taken to be the agents’ peaks, betweenness is equivalent to Pareto-efficiency.
Vote monotonicity states that if the votes of all agents move in a certain
direction, then so should the selected alternative. Vote monotonicity can be
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understood as a simple positive responsiveness condition. Lastly, we study
strategy-proofness, assuming that agents have preferences over the alterna-
tives which are single-peaked. Strategy-proofness states that, in a strategic
situation in which agents are required to announce an alternative, it is a
dominant strategy for each agent to announce her peak. It turns out that
when coupled with our other axioms, these axioms lead to three progres-
sively restrictive classes of rules, which we characterize.

It is not necessarily the case that society will desire a single-member dis-
trict system. In fact, often, democracies opt for proportional representation.
We capture this idea by introducing lotteries into the model. We define an
entire class of new rules in this model, which we call the quasi-proportional
rules. The quasi-proportional rules are not partial priority rules, but they
satisfy the principles which we take to define representative democracy.

Section 2 discusses the model and the main axioms. Section 3 proves our
main theorem and several simple corollaries. Section 4 discusses our theorem
in a spatial model. Section 5 is devoted to a discussion of proportional
representation. Section 6 studies a natural concept of “duals” to partial
priority rules. Section 7 concludes.

2 The model

2.1 Preliminaries

Let N be a set of “potential agents.” Let AN be the set of finite subsets of
N. Let X be a finite set. Elements of X are “alternatives,” to be interpreted
as policies, candidates, etc. Each agent submits a “vote,” or an element
of X. A rule is a function f : [Jycny X — X. Thus, a rule specifies
a “representative” alternative for any population of agents and any list of
votes these agents may submit. This “representative” alternative should be
interpreted as the social alternative selected for this particular population of
agents and votes.

2.2 Democracy

The first property we discuss in this section states that a rule should respect
the “will of the people” when this “will” is unambiguous. It is an extremely
weak axiom.



For all N € N, z € X, let 2%V be a vector of 2’s in X"V. For all N € N,
all 7 € X, and all M C N, let x5, be the projection of x onto XM

Unanimity: For all N € N and all z € X, f («V) =z

The next axiom states that a rule should be ignorant of the names of
agents. This is a mild principle of equality, capturing the “one-man, one-
vote” principle.?

Anonymity: For all NN’ € AN 'such that |[N| = |N’|, for all bijections
o:N— N andallz € XV, f(z) = f(cox).

One would expect most democratic voting rules to satisfy these two prop-
erties.

2.3 Representative consistency

We here introduce representative consistency. Informally, the axiom states
that for any population of agents and any collection of votes, we may without
loss of generality partition the set of agents into “districts,” find the choice
for each district, and then treat each district as if each agent in the district
had voted for the outcome selected for the district.?

Representative consistency: Forall N € N, all M C N,and all z € X,

f(x)=f <f (517]\4)]\1737N\]\4)-

Under the unanimity principle, representative consistency is equivalent
to the statement that for all N € N/, all partitions {Ny, ..., Nx} of N, and

all 2 € XN, f(2) = £ (f (o)™ o £ (o)),

2This principle is violated in elections for the United States Senate, for example. In
this case, each state is treated equally, regardless of population. Anonymity is closer to
the principle underlying elections for the United States House of Representatives.

3 Representative consistency bears resemblance to the path-independence condition for
choice functions, first formalized by Plott [15]. See also Asah and Sanver [3].



3 Results

3.1 Preliminaries

Any anonymous rule can be specified without reference to the specific names
of agents. In the proofs of results in which anonymity plays a role, we often
exploit this fact without mention, disregarding the variable V.

The following axiom can be interpreted as meaning that only the propor-
tions of votes received for each alternative are used in determining the social
alternative.

Let m be an integer, let N € A/, and let z € XV. Let N’ € N be such
that |[N'| = m|N|. A vector 2’ € X' is an m-replica of x if there exists a
partition of N’ into m sets of size |N|, say {Ny, ..., N, } such that for all N,
there exists a bijection o; : N — N; for which xﬁv =og;o0ox. Forall N € N,
r € XY, meN, 2™ denotes an m-replica of z.

Replication invariance: Let m be an integer. Let N € N and let 2 € X%,
Let ' be an m-replica of z. Then f (z) = f (z).

The following trivial observation is useful:

Lemma 1: If a rule satisfies unanimity, anonymity, and representative con-
sistency, then it satisfies replication invariance.

Proof: Let N € N andlet x € XV. Let 2’ be an m-replica of . Then

by definition of z/, f(2') = f | x,...,z |. By representative consistency,
——
—— ——
m|N| m|N|

Conclude that f (2') = f ().

Our main result is a characterization of the class of rules satisfying una-
nimity, anonymity, and representative consistency. The following example
illustrates this class in the two-alternative case. The description of the gen-
eral class follows.

4 An m-replica of a given vector is not uniquely defined.



Example 1: Let X = {y,z}. Then there are only two rules satisfying
unanimity, anonymity, and representative consistency. One such rule
selects f (x) = y unless all agents vote for z. The other such rule
always selects z, unless all agents vote for y.

We now generalize the preceding example to the case of an arbitrary
(finite) number of alternatives. A partial order is a binary relation which
is ) reflexive, i) transitive, and i) anti-symmetric. A partial order need
not be complete.” For a partial order <, < denotes the asymmetric part.°
A pair (Y, <) is a partially ordered set if Y is a set and < is a partial order
on Y. For all z,y € Y, where (Y, <) is a partially ordered set, z Ay € Y is
the meet of x and y if it is the unique greatest lower bound for z and y
according to <. Generally, two elements x,y € Y need not possess a meet. A
meet-semilattice is a partially ordered set such that any pair of elements
possesses a meet. For more on these definitions, see Birkhoff [4].

Figure 1 displays a typical meet-semilattice. Each meet-semilattice can
be pictured as a directed graph with a unique root. Here, a is the root of
the tree. An alternative precedes another alternative in terms of the partial
order if one can construct a path emanating from the first alternative down
the graph to the other alternative. Thus, in Figure 1, a < ¢ as there exists a
path going down the graph starting at a and ending at ¢. Moreover, a =< e.
However, the alternatives b and c are unrelated according to <, as there exists
no directed path between them. The meet of two alternatives is easily found
as the lowest common predecessor of the two alternatives. Thus, bAe = a in
the example, whereas c A\ e = c.

A rule f is a partial priority rule if there exists a partial order < over
X so that (X, <) is a meet-semilattice, and for all N € N and all z € X%,

f (@)= Nicy ;.0

SReflexive: For all z € X, = > z.

Transitive: For all z,y,z € X, if x = y and y = 2. then x > z.

Anti-symmetric: For all z,y € X, if ¢ > y and y = z, then z = y.

Complete: For all z,y € X, either x > y or y = x.

0That is, > y if and only if 2 = y is true and y > z is false.

"The notation ;. y z; refers to the meet of the set of elements {;};cy, which exists
for any meet-semilattice.

8There is no significance to the fact that partial priority rules select the meet of the al-
ternatives receiving a positive number of votes. Every partial priority rule can equivalently
be described through the use of a partially ordered set in which every pair of elements
has a join (unique least upper bound), where the rule selects the join of the alternatives
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Figure 1: A meet-semilattice

Thus, with any partial priority rule, the proportion of votes received for
each alternative does not matter. To select an alternative, one only needs to
determine which alternatives receive a positive number of votes.

3.2 Interpreting partial priority rules

Let f be a partial priority rule with partial order <. Let x,y € X be ordered
by =<, so that + < y. We may interpret this statement as reading “zr has a
higher priority than y.” In other words, x is “more important” than y. This
interpretation is possible because y can be selected in place of x only if all
agents vote for y in lieu of x. Thus, each agent can “veto” y by voting for x.

However, not all alternatives need be related by <. Suppose in fact that x
and y are unrelated according to <. Then we may interpret this as meaning
that neither x nor y can be deemed a more important alternative. In this
case, some “compromise” must be struck between the two. The compromise
between x and y is decided using the partial priority. It is the lowest priority
alternative which has priority higher than both x and y.

3.3 The main theorem

The main theorem states that a voting rule is a “representative democracy”
if and only if it is a partial priority rule. ~The proof of this theorem is
constructive and is divided into five steps. Given is a rule satisfying the

receiving a positive number of votes.



axioms describing “representative democracy.” In the first step, an order on
the alternatives is defined from the rule, and it is verified that this order is
a partial order. This construction is always valid-even if X is not finite.
The most significant obstacle is in showing that this partial order forms a
meet-semilattice when coupled with X. To prove this, it is necessary that
X be finite. We establish this fact in Steps 2, 3, and 4. Step 2 shows that
the rule is “monotonic” in the partial order. Step 3 shows that for two-agent
environments, the selected social alternative lies below the two alternatives
voted for in terms of the partial order. Step 4 uses Steps 2 and 3 to show
that the partial order is actually a meet-semilattice and that for two-agent
environments, the rule selects the meet of the alternatives which are voted
for. Step 5 establishes that the rule always selects the meet of the alternatives
which receive votes.

Theorem 1: A rule satisfies unanimity, anonymity, and representative con-
sistency if and only if it is a partial priority rule.

Proof: If f is a partial priority rule, then it clearly satisfies unanimity,
anonymity, and representative consistency. For the other direction, let f be
a rule which satisfies unanimity, anonymity, and representative consistency.

Step 1: Construction of the order and verification of its prop-
erties

For all z,y € X, define x <y if f (z,y) = x. Let x € X. By unanimity,
f(x,z) = z, so that + < z. Thus, < is reflexive. Let z,y € X. Suppose
r =y and y < z. Then by definition, f (z,y) = = and f (z,y) = y. Thus,
r =y and = is anti-symmetric.

We claim that < is transitive. Let x,y, 2 € X. Suppose x < y and y < z.
By replication invariance,

flz,2)=f(x,2,2, 2).

As x < y, by definition,

f(aj7x7z7z) :f(f(x7y)7f(x7y)7z7z)'

By representative consistency,
fUf (@), f@y),z2)=f(zy22).
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By representative consistency,

foy z2) = f(z, fy.2),f(y2),2).
As y < z, by definition,

[, fy2),f(y,2),2)=f(z,9,y,2).

By representative consistency,

fleyy.2) =[xy fly,2), fy,2).
As y < z, by definition,

fxy fy.2),f(y,2)=f(r,9,99).

By representative consistency,

f@y,yy) =f(f(xy), f(29),99).
As x < y, by definition,

ff (@), fzy),yy) = f(2,2,9,9).

By replication invariance,

[ z,y,y) = f(2,y).

As x <y, by definition,
f(z,y) ==
Thus, f (z,z) = x, so that by definition, # < z. Therefore, < is transitive.

Step 2: The rule is monotonic in the partial order

We claim that for all z,y,z € X, if x < y, then f(x,2) < f(y,2).
Thus, let x,y,2z € X and suppose x =X y. By replication invariance and
representative consistency,

f(f(z,2), fy,2) = f(z,y,2,2).

By representative consistency and replication invariance,

f(r,y,2,2) = f(f(z,y9), f(v,y),2,2) = f(f(z,y),2).

11



As x < y, by definition,

f(f(I,y),Z)Zf(ﬁ,Z).

Therefore,
f(f(I,Z),f(y,Z)) = f(ﬁ,Z),
so that, by definition, f (z,z) < f (v, 2).

Step 3: The rule maps every two elements into an element
which precedes them in the partial order

We claim that for all z,y € X, f(z,y) = z. Let x,y € X. We define
an auxiliary function F derived from f. Let P = QN|[0, 1] (this will be the
domain of F).

For all p € P, p can be written as p = %(5)), where m (p),n(p) € N.?

For all p € P, define F (p) = f (xm(p), y”(p)*m(p)). By replication invariance,
which follows from Lemma 1, F' is well-defined.

We claim that for all p,p’ € P and z € X such that p < p/, if F(p) =
and F (p') = z, then for all p” € (p,p’) NQ, F (p”) = 2.

Thus, let p,p’ € P such that F (p) = F (p') = z. Let p” € (p,p') N Q.
Then there exists a € Q such that p” = ap + (1 —«)p’. Since a € Q,
a = % for m(a),n(a) € N. Thus p" = m(@) mip) | (@)—m(a)) mp)

n(@) n(p) n(@) n(p’)

We can write p/ = " )"(p;)(z)(zg));(%a))m(p Ol Thus, by appropriately

arranging terms, F (p”) is equal to:

f ((ajm(p)’ yn<p>fm<p>)"<p i) (xm@')’ yn@')fm(p')) (1)

n@)("(a)—m(a))>
By assumption, f (:Bm(p),y”(”)_m(p)) = f( m') | ynr)— m(p')) = z, so that by
representative consistency, (1) isequal to f ( p)n(p')m(e) ”(p')”(p)(”(a)_m(a))).
By unanimity, f( npIn(p)m(@) n(p")n(p)(n(e)=m(e)) ) = 2. Therefore, F (p") =
2. Hence, F is “convex.”!’

We next show that F'is constant on (0, 1). Since X is finite and (0,1)N P
is countable, there exists z € X and a sequence {p"} -, C (0,1) N P such
that p” — 1, for which F (p™) = z for all n. Conclude by the previous

9This representation of p is obviously not unique.
10Tn the proof of an important theorem, Young [18] uses a similar technique of defining
an auxiliary function based on proportions, and showing it is “convex.”
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paragraph (using the “convexity” of F'), that there exists p* < 1 such that
forall p € (p*,1)NQ, F (p) = =.
We claim that for all p,¢ € P, a € QN (0,1), if F(p) = F (q), then

F(ap) = F(aq). Thus, let p,q, a satisfy these hypotheses and suppose
F(p) = F(q) = z. Write p = %, q = %, and o = %, where
m(p),n(p),m (), (@), m(a), and n(a) € N. By definition, F(p) =
£ (zm®) yn®)=m@)) and F (q) = f (2™@,yn@-m@)_ By definition,

Flap) = f (($m<p>7 @) —m(r)y ) 7yn(p>(n<a>fm(a>>) 2)
and

Flag) = f ((xmm)’ ya)-m(@) ™) 7yn<q>(n<a>fm(a>>) _ (3)

By replication invariance, we obtain (by replicating the inside of (2) n (q)
times)

F(ap)=f ((a;moo), y®)=m(p)) ) 7yn<p>n<q><n<a>—m<a>>)
and (by replicating the inside of (3) n (p) times)
F(aq) = f ((xm(q)7 yn(q)fm(q))n(p)m(a) 7 yn(p)n(q)(n(a)fm(a))) '
By representative consistency,
_ m n(p)—n n(p)n(q)m(c) n(p)n n(a)—m(a
F(ap)=f f(:v (p)7y (p) (p)) Ly (p)n(g)(n(a)—m(a))
and
_ m(q n(q)—m(q n(p)n(gm(a)  pip)n q)(n(a)—m(a
F(ag)=f f(x(),y() ()) |y Pn@m@)-m(e)))
As f (xm(p), yn(p)fm(p)) = f (xm(q)’ y”(q)*m(@) =2z,
F(ap)=f (zn(p)n(q)m(a), yn(p)n(q)(n(a)—m(a)))

and
Flaq)=f (z”(P)n(q)m(a)7 yn(p)n(q)(n(a)—m(a))) )

Thus F (ap) = F (aq).
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Let ¢* € P satisfy ¢* € (p*,1). Then F(¢*) = z and F (p*) = 2.
Moreover, there exists a* € (0,1) N Q such that p* = a*¢*. For all k =
1,...,00, let qx = (a*)k q*. Asa* <1, g — 0, and for all k, g, > 0.

We claim that for all k = 1,...,00, F'(qx) = z. By definition, F (qo)
F (q1) = z. Proceed by induction. Suppose that for all £ < K, F (q) =
We show that F'(qx) = z. Thus, F(qx) = F(a*qx-1) and F (qx—1
F (qi_2) = z, so that by the result in the previous paragraph, F' (a*qx_1)
F (a*qk o). But by definition, F' (a*qx 2) = F (qx_1) = 2, so that F (¢x)
F(a*qx_1) = z. Thus, for all k, F (qx) = z. By the “convexity” of F', we
conclude that F' is constant and equal to z on (0, 1).

Therefore, f (f(z,y),2) = f(z,2,2,y) = F(3/4) = F(1/2) = [ (z,y),
so that by definition, f (z,y) < z.

[

Step 4: For two agents, the rule chooses the meet of the alter-
natives receiving votes

Let x,y € X. We claim that f (z,y) is the unique greatest lower bound
for z and y according to <. By Step 3, f (z,y) is a lower bound for x and
y. Suppose there exists another lower bound for x and y, say, z. Then,
by definition, z < = and z < y. By Step 2, f(z,2) <X f(x,y). Asz <z,
by definition, f (z,z) = z, so that z < f (z,y). Thus, by the anti-symmetry
of <, f(x,y) is the unique greatest lower bound for x and y. Therefore,
f(x,y) = xAy. Thus, (X, <) is a meet-semilattice. Therefore, for all N € N/
and all z € X, A,y 2 is well-defined (as A is associative-see Birkhoff [4],
p. 810).

Step 5: Extending the result to arbitrary finite numbers of
agents

We establish that for all N € N and all z € XV, f(2) = A,y %
The proof proceeds by induction on the cardinality of the set of agents N.
Suppose that |[N| = 1. By unanimity, f (v) = x = \,cy %i- Suppose that
|N| = 2. Then by Step 4, f (z) = N;cn i

Let K be an integer such that K > 2. Suppose that for all N € A such
that |[N| < K, for all x € XV, f(z) = A,cy%i- Let N* € N such that
|IN*| = K. Without loss of generality, write N* = {1,..., K}. Let z € X",
By representative consistency,

f (ZL’l, ,ZL’K) = f (f (ﬂfl, ...,IKfl) s oeeny f (ﬂfl, ...,IKfl) ,IK) .
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By the induction hypothesis,

f(f (ZL’l, ...,IKfl),...,f(ZBl, ...,IKfl) ,IK) = f (/_\ Ly eeny /_\ ﬂfi,ZL’K> .
1=1 =1

By representative consistency (using the fact that K > 3),

— — K-1 K-1 K-1
K- K- /\1:1 I’i;f (/\i:l I’i?‘“?/\izl I’DIK) PREES)
f /\ Ly euny /\ Ti, T | = f K1 K1
i=1 i=1 f(/\¢:1 Iz‘;ma/\izl IiJK)

By the induction hypothesis, the previous expression is equal to

f (K/\ v o f\) |

=1 =1 =1

By representative consistency,

(i) (5 ) )

By the induction hypothesis, the previous expression is equal to

s (f\ /\> |

=1 =1

By unanimity, f </\fi1 Ty onns /\fil xi) = /\fil x;. Therefore, our induction
hypothesis is true. B
The following is a natural example of a partial priority rule.

Example 2: Sets of alternatives Let A be a finite set. We study the
power set of A. Thus, 24 is naturally ordered by set inclusion, and it
is clear that (2A, C) forms a meet-semilattice, where for all B, C' € 24,
BAC =BNC. Define f so that, for all N € Mand all B € (24)",
f((Bi)ien) = Nien Bi- Thus, f selects all “alternatives” which are
voted for by all agents.
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The partial priority rules satisfy the three axioms no matter what the
cardinality of X is. But in order for them to be the only rules satisfying the
three axioms, it is necessary that X be finite. Here is an example of a set
X which is countably infinite, and a rule f on X satisfying the three axioms
which is not a partial priority rule.

Example 3: A countably infinite set of alternatives Let X be count-
ably infinite. Let 7 : X — Q be a bijection (such a bijection exists as
X and Q have the same cardinality). Define f : Jyo XV — X as

ey = (2

It is simple to verify that f satisfies the three axioms listed in the the-
orem. To see that f is not a partial priority rule, let N be a two-agent
set and N’ be a three agent set. Let x,y € X such that  # y. Then
(z,y) € XV and (2,z,y) € XV'. Suppose f is a partial priority rule.
Then f(z,y) =z Ay=(zANx)Ny=axAxAy= f(z,x,y). By defi-
nition, f(z,y) = r (—Tﬁl(w);rfl(y)) and f(z,x,y) =r (—27’71(96);7’71(9)).

As r is a bijection, conclude Tﬁl(x);rfl(y) = 27’71(“”);”71(9). Thus,

r~1(x) = r~1 (y). Asr is a bijection, z = y. But we supposed z # v, a
contradiction. A partial order < can be defined from f as in the proof
of Theorem 1, Step 1. However, it is immediate that if z # y, then
f(z,y) ¢ {z,y}, and thus =< is the trivial partial order in which all
alternatives are only comparable to themselves. Thus, (X, <) does not
form a meet-semilattice.

We do not know what is the most general class of rules satisfying the
three axioms for arbitrary sets X. However, there is much related work in
the functional equations literature [1].

3.4 Positive vote-share and priority orderings

A partial priority rule cannot generally be interpreted as prioritizing all al-
ternatives. However, there are some partial priority rules which prioritize
all alternatives. The following axiom states that an alternative cannot be
selected without receiving any votes. It is natural to impose when X is
interpreted as a set of candidates, for example.

16



Positive vote-share: For all N € A and all z € X%, f (z) € {2}, n-

The following corollary states that partial priority rules which satisfy
positive vote-share are exactly those partial priority rules which prioritize all
alternatives.!!

Corollary 1: A rule f satisfies unanimity, anonymity, representative consis-
tency, and positive vote-share if and only if there exists a linear order <
over X such that for all N € A and all z € X%, f (z) = min< {z;},_-

Proof: It is simple to verify that the axioms are satisfied by any such
rule.

For the other direction, let < be the partial order constructed from fin
Theorem 1. For all z,y € X, positive vote-share implies that f(x,y) €
{z,y}. By definition of <, either x < y or y < x. Hence = is complete, so
that it is a linear order. W

The preceding corollary can be proved directly without referring to Theo-
rem 1. In fact, a crucial step in the proof of Theorem 1 relies on the fact that
X is finite. However, the preceding corollary can be proved even without the
finiteness of X. The reasoning is simple. In the proof of the main theo-
rem, we define the partial order over X by = < y if f(x,y) = z. However,
we had to determine that (X, <) is a meet-semilattice (Step 2, Step 3, and
Step 4). When positive vote-share is satisfied, (X, <) is easily seen to be a
meet-semilattice, as < is complete.

3.5 Representative preference

Let A be a finite set, and let X be the set of linear orders over A, interpreted
as preference relations. A typical preference relation is written as R € X.
The goal of this section is to discuss social welfare functions which sat-
isfy representative consistency. Thus, given a set of agents with preference
relations, we may define a “representative preference.”'?
The added structure of this section leads us naturally to the concept of
Pareto efficiency.

1A linear order is any binary relation which is i) complete, i) transitive, and iii)
anti-symmetric.
12This notion is not related to the notion of representative agent of consumer theory.
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Efficiency: For all N € N, all R € X%, and all a,b € A, if for all i € N,
aR;b, then af (R)b.

Efficiency is standard. Moreover, efficiency obviously implies unanimity.
Thus, any rule satisfying efficiency, anonymity, and representative consis-
tency is a partial priority rule. It is natural to ask how much more structure
is implied on partial priority rules by efficiency.

The following corollary is simple and is basically a reshuffling of the def-
initions. For all a,b € A, let X, = {R € X : aRb}.

Corollary 2: A partial priority rule with partial order < satisfies efficiency
if and only if for all a,b € A, the restriction of < to X,; is a meet-
semilattice.

Proof: Let f be a partial priority rule satisfying efficiency. Let a,b € A
and let R, R’ € X, ;. Thus, aRb and aR'b. By efficiency, a (R A R')b. Thus,
RAR' € X, and (Xa,b, < |Xa,b) is a meet-semilattice.

Next, suppose that f is a partial priority rule such that for all a,b € A,
(Xa,b, < ’Xa,b) is a meet-semilattice. Let a,b € A, N € N and R € X" such
that foralli € N, aR;b. Thenforalli € N, R; € X, ;. By definition, f (R) =
Nicn Ri, and by assumption, A, y Ri € Xap. Therefore, a (/\ieN Ri) b, so

that af (R)b. Thus, fsatisfies efficiency. B

4 The spatial model

As noted, the partial order corresponding to a partial priority rule is inter-
preted as a priority of alternatives and not as a way of relating the similarity
of alternatives. However, there is often a natural, exogenous way of ordering
the set of alternatives. For example, candidates in elections are often viewed
as being ordered from left to right. Tax policies can be ordered by monetary
amounts. In this section, we focus on sets of alternatives possessing such an
exogenous order and conditions of rules relating to such orders.

In the remainder of this section, we suppose X is exogenously endowed
with a linear order <*. We interpret <* as ordering the alternatives by some
attribute in a fashion agreed upon by all potential agents. Thus, for all
x,y,z € X, x <* y <* z is to be read as “y is more similar to x than z is” in
terms of the attribute.

The analysis of this section leads to three progressively restrictive classes
of rules.

18



4.1 Formal notions of compromise

The first condition states that the selected social alternative should be a
“compromise” amongst the agents’ votes, in the weak sense that it lies be-
tween the maximal and minimal votes according to <*. As mentioned in
the Introduction, if agents possess single-peaked preferences over X (to be
defined formally below), betweenness is equivalent to requiring that a rule
select Pareto-efficient alternatives.

Betweenness: For all N € A and all v € XV, min<. {2}, y <* f(z) <*
max<e {2} -

The next condition is a weak monotonicity condition. If all agents’ votes
move in a certain direction, so should the selected social alternative. This
is a simple condition reflecting the fact that the selected social alternative is
“representative” of the agents’ votes.

Vote monotonicity: For all N € N and all z,y € XV, if for all i € N,
x; <y, then f (z) <* f ().

The following lemmas will be useful.
Lemma 2: If a rule satisfies betweenness, then it satisfies unanimity.

Proof: Let f be a rule that satisfies betweenness. Let N € N and let
x € X. Then minc- {a;f-v}ieN = 2 and max<- {a;f-v}ieN = x. By betweenness,
x <* f (a:N) <* x. As <* is anti-symmetric, f (ZBN) = x. Therefore, f
satisfies unanimity. W

Lemma 3: If a rule satisfies unanimity and vote monotonicity, then it sat-
isfies betweenness.

Proof: Let f be a rule that satisfies unanimity and vote monotonic-

ity. Let N € N and let z € XV. Then for all i € N, min<- {z;},.y <*
. : N :

r; < max<- {;},c . By unanimity, f <(mur1§»= {z:}icn) ) = min<- {7},

and f <(max§* {xi}ieN)N) = maxc<« {x;},c . Thus, by vote monotonicity,

minc {2;},.y <* f(2) and f(2) <" max<« {z;},c. Thus f satisfies be-
tweenness. B
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4.2 Results on compromise

We begin this section by defining two subclasses of the partial priority rules,
which depend on the linear order <*.

Say that a rule f is an interval partial priority rule if it is a partial
priority rule and for all z,y,z € X, if y,z >* x, then y A z >* z, and if
Y,z <* x, then y A z <* x. Thus, a partial priority rule is an interval partial
priority rule if the weak lower and upper contour sets of any alternative
according to <* are themselves meet-semilattices under the partial order
induced by <. The term “interval” refers to the fact that restricted to any
interval according to <*, the rule is still a partial priority rule. Say that
a rule f is a separating partial priority rule if it is an interval partial
priority rule such that for all z,y,z € X, if vt <* y <* z and z, 2z = y, then
x/Az = y. Thus, an interval partial priority rule is a separating partial priority
rule if the weak lower and upper contour sets of any alternative according to
<* never “intersect” at any element greater than the alternative itself. The
term “separating” refers to the fact that these contour sets never intersect.

Figure 2 displays the meet-semilattice corresponding to a typical interval
partial priority rule under the presumption that a <* b <* ¢ <* d <* e.
The general structure of such rules can be grasped from this diagram. The
main characteristic of such a rule is that there are at most two branches
emanating from any alternative. If there are two branches, one must branch
into the upper contour set of the alternative, and the other must branch into
the lower contour set (as in the diagram, the two branches emanating from b
branch into the two different contour sets). These two branches are allowed
to rejoin. It is clear that the meet-semilattice in Figure 2 does not correspond
to a separating partial priority rule, as a <* b <* e and a,e > b, yet aNe = a.

Figure 3 is an example of a typical separating partial priority rule. The
general structure of separating partial priority rules can be understood from
this diagram. Note that the alternatives a,b, ¢, d, and e are ordered from
“left” to “right.” Moreover, at most two branches emanate from any given
alternative. The last important characteristic is that for any alternative,
one can draw an imaginary vertical line branching down from the alternative
which never crosses the graph. Thus, the graph corresponding to a separating
partial priority rule is a system of interlocking upside-down “y”-shapes. Such
a graph looks like a game tree in which at any given point, there are only
two possible moves.

Theorem 2: A rule satisfies betweenness, anonymity, and representative
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Figure 2: An interval partial priority rule

Figure 3: A separating partial priority rule
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consistency if and only if it is an interval partial priority rule.

Proof: Suppose f is an interval partial priority rule. We already know
that it satisfies anonymity and representative consistency, so we will show
that it satisfies betweenness. Thus, let¢ N € N and x € XV. As f is
an interval partial priority rule, and since for all i € N, min<- {z;},.y <*
x;, we obtain min<. {z;},.y <* A;cny - A similar expression holds for
maX<- {¥;},cy, s0 that f satisfies betweenness.

Now suppose that f is a rule satisfying the axioms. By Lemma 2, we
know that it is a partial priority rule. We will verify that f is an interval
partial priority rule. Let x,y,2 € X, and suppose that y,z >* x. Without
loss of generality, assume that y >* z >* z. By betweenness, f (y,z) >* z.
By the transitivity of <* f (y,z) >* x. By definition, f (y,z) = y A z. Thus,
y Az >*x. A similar statement holds for the lower contour set of x.H

Theorem 3 demonstrates that a partial priority rule is vote monotonic if
and only if it is a separating partial priority rule.

Theorem 3: A rule satisfies unanimity, anonymity, representative consis-
tency, and vote monotonicity if and only if it is a separating partial
priority rule.

Proof: By Lemma 3 and Theorem 2, if f satisfies the axioms, it must
be an interval partial priority rule. Let x,y,z € X satisfy x <* y <* 2
and x,z > y. By wvote monotonicity, x N z = f(x,z) <* f(y,2) = y and
zANz= f(x,z) >* f(z,y) = y. By the anti-symmetry of <* x A z = y.
Thus, f is a separating partial priority rule.

For the other direction, let f be a separating partial priority rule. We
will show that it is vote monotonic.

Let < be the partial order associated with f. Say a partial priority rule f
satisfies condition () if for all ,y, z € X, if & <* y, then f (z, z) <* f (y, 2).
We claim that if a partial priority rule satisfies condition (*), then it is
vote monotonic. To see why, suppose (x)is true. Let N € N, and let
z,y € XV. Suppose that for all i € N, x; <* y;. Suppose, without loss of
generality, that N can be ordered as N = {1,...,n}. For all m = 1,...,n,
let Ymz = (Y1, -, Yms Tmi1, -, Tn). We show by induction that for all m =
L...n, f(z) <* f(ymz). Let m = 1. Then z; <* y;. By condition (x),
1 A (N i) < y1 A (A\j_yxi). Thus, f(z) <* f(yiz). Let M < n be
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some integer. Now, suppose that for all m < M, f(z) <* f(ymz). Then
xpy <* yy. By condition (x),

() (A )
< ((An) (A )

The left-hand side of this expression is f (yy_12), and the right-hand side
is f (yyx). Thus, f(yy—12) <* f(ymx). By transitivity of <*, f(z) <*
f(ypr1x) <* f(ypa) implies f(x) <* f(ypx). Thus, for all m = 1,...,n,
f(x) <* f (yme). In particular, if m = n, then y,x =y and f () <* f (y).

We now show that if a rule is a separating partial priority rule, then it
satisfies condition (x). Let z,y,2z € X, and suppose that z <* y. There are
three possible cases.

a) y <* z: In this case, as f is a separating partial priority rule, it is
an interval partial priority rule. Thus, y <* y Az <" z. Iff e A 2 <" y A 2,
we are done. Otherwise, y A 2 <* x A z. As f is an interval partial priority
rule, yAz <* (yAz)A(xAz) <z Az As (WA2)A(zAhz)=aAyAz,
y<*xAyAz<*2z Moreover, y,z = x ANy A z. As f is a separating partial
priority rule, conclude y A z = = A (y A z). Thus, by definition, y A z < z.
Thus, z,z = y ANz and © <* y A z <* z. As f is a separating partial priority
rule, conclude x A z =y A z. Thus, z Az <" y A 2.

b) x <* z <* y: In this case, as f is an interval partial priority rule,
r<*rANz<'z2<*yANz<*y,sothat xt Az <* y A z.

c) z <* z: In this case, as f is a separating partial priority rule, it is
an interval partial priority rule. Thus, z <* z Az <* z. f x Az <" y A 2,
we are done. Otherwise, y A z <* x A 2. As f is an interval partial priority
rule, yAz <* (yAz)A(xAz) <FazAzo As (WA2)A(zAhz)=aAyAz,
z<*x ANyAz <"z Moreover, x,z = x Ay A z. As f is a separating partial
priority rule, conclude x A z = y A (z A z). Thus, by definition, z A z < y.
Thus, y,z = x Az and z <* x A z <* y. As f is a separating partial priority
rule, conclude y A z=x Az. Thus,z Az <*yA 21

The preceding results are surprising as one would expect that the partial
priority rules satisfying our compromise conditions would be those whose
partial order < is exactly the exogenous linear order <*.
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4.3 Strategic considerations in the spatial model

We now study a domain of preferences over X. Say a binary relation R
on X is single-peakedif there exists x (R) € X such that for all x € X
such that =z # 2 (R), 2 (R) Pz, and for all z,y € X, if z (R) <* x <* y or
if x(R) >* z >* y, zRy.** Let SP(X,<*) be the set of all single-peaked
binary relations for the linearly ordered set (X, <*).14

We ask which partial priority rules satisfy the following condition, which
states that if votes are taken to be agents’ peaks, then no agent can ever
benefit by lying about his peak. This condition was first studied in this
model by Moulin [13].

Strategy-proofness: For all N € N, all R € SP (X, S*)N, all 7 € N, and
all R € SP(X,<*), f (= (Ri));en) Rif ((95 (Bi))ienjy > & (R;))

Say a partial priority rule f is a target rule if there exists * € X such
that for all y,z € X, i) z <* y <* z*implies z = y, @) x* <* y <* z implies
z =y, and i) y <* z* <* z implies y A z = z*. Thus, a target rule is a
partial priority rule with two branches, rooted at z*, each of which agree with
the order <*. Target rules were first discussed by Thomson and Thomson
and Ching [16, 17] using a different set of axioms.!> The terminology belongs
to them. The word “target” refers to the element x* € X discussed in the
definition. A target rule selects the alternative in between the agents votes
which lies closest (in terms of <*) to the target.

In Figure 4, we give a typical example of a target rule. Here, the alter-
native x* corresponds to b. The partial orders corresponding to target rules
all have the upside-down “v”-shape as depicted here.

Theorem 4: A rule satisfies unanimity, anonymity, representative consis-
tency, and strategy-proofness if and only if it is a target rule.'®

13 As usual, for a binary relation R, P denotes the asymmetric part of R. The alternative
x (R) is called the peak of R.

4In this environment, a rule selects only Pareto efficient alternatives if and only if it
satisfies betweenness with respect to the peaks.

15Formally, their definition was stated for rules which map from profiles of single-peaked
preferences into alternatives. Moreover, their definition is stated for a fixed population
of agents. However, in that context, target rules only use information about the agents’
peaks, where the peaks are aggregated in the same way we describe here.

16For a fixed population N € N, it follows that the target rules must be generalized
median voter rules, as defined in Moulin [13].
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Figure 4: A target rule

Proof: Clearly, the target rules are separating partial priority rules, and
thus satisfy unanimity, anonymity, and representative consistency. It is well-
known that they also satisfy strategy-proofness. Thus, we will show that any
rule satisfying the axioms must be a target rule.

First, we show that for all z,y,2 € X, if < y < 2z, then either x <*
y <* zor z <"y <* x. Call this property the chain property. Suppose
that this statement is false. We will only show that one case leads to an
impossibility. The remaining three cases can be similarly proved. Thus,
suppose y <* z <* z. Suppose, without loss of generality, that y <* z (this
is without loss of generality, as otherwise, z <* y <* z holds). Let R €
SP (X, <*) such that 2 (R) = z and zPy. Then f (z (R),y) = y. However,
f(z,y) =xPy = f(z(R),y), in contradiction to strategy-proofness.

Next, we show that f is an interval partial priority rule. Thus, let z,y, 2z €
X such that x,y >* z. If z = y, then clearly xtAx = x. So suppose that z # vy,
and suppose x Ay <* z. Without loss of generality, suppose that y >* x. Let
R e SP(X,<*)satisfy x (R) =y. Then f (z,z) =2P(x ANy) = f (2 (R),x),
a contradiction to strategy-proofness. The case in which z,y <* z is proved
similarly.

Let 2* = A\,cx ©. By definition of z*, for all 2 € X, 2* < x. We prove
that ) in the definition of target rule is true; i) follows from a symmetric
argument.

Let y,z € X such that z <* y <* z*. We show that z = y. As f is
an interval partial priority rule, z <* y A z <* y. Moreover, by definition,
y = y Az = x* so that by the chain property and the fact that x* >* vy,
¥ >*yANz>"y. Thus, y ANz <* y and y A z >* y, so that by the anti-
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symmetry of <*, y A z = y. Thus, by definition, z > y.

To verify iii) in the definition of target rule, let y,z € X satisfy y <*
x* <* z. Asy = y Az = x*, by the chain property, x* >* y A z >* .
As z = y Az = x*, by the chain property, z* <* y A z <* 2. Therefore,
x* >*y A zand x* <* y A z. By the anti-symmetry of <*, y A z=2*. B

5 Proportional representation

5.1 Single-member districts vs. proportional represen-
tation

Theorem 1 relies on the fact that representative consistency models single-
member district representation. This means that each district chooses a
unique representative alternative. Such a system ensures that each district
has its own representative. However, there are other natural systems of
representation; the most common alternative being proportional representa-
tion. Proportional representation is not a winner-take-all system as is single-
member district representation. Instead, a set of representatives are chosen
for each district proportionally to the number of votes cast for each alterna-
tive. Thus, if there are one hundred votes for x and one hundred votes for
y, the outcome of the vote is a fifty-fifty mixture between = and y. Usually
majority rule is applied at a later stage.

We can model this type of system by introducing lotteries. Specifically, if
X is the set of alternatives, let A (X) be the set of lotteries over X. Agents
submit votes for lotteries over X; the interpretation is left open. A lottery
may represent the composition of some governing body—for example, a fifty-
fifty lottery between z and y means that half of Parliament should support
policy z and the other half should support policy y. There are no statements
made here about how such a Parliament will decide which alternative is
chosen for society. Another interpretation is that a lottery represents an
actual randomization—a fifty-fifty lottery between x and y is the statement
that in the future, a fair coin will be tossed; if heads, the alternative selected
is x, if tails, it is y.
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5.2 Quasi-proportional representation

We define a class of voting rules, which we term the quasi-proportional
rules. These rules are called quasi-arithmetic means in the literature on
functional equations [1, 2].!7 Specifically, let 7 : A (X) — A (X) be a home-
omorphism such that for all z € X, r(§,) = 9, (here, 0, refers to the
degenerate lottery with probability one on z). Define a voting rule as fol-

lows. Forall N e N, forallpe AX)Y, f(p)=r (EN‘TTT(“)) Any such

voting rule satisfies the conditions listed in our theorem, as well as continuity.
The function r serves the purpose of “transforming” the space of lotteries so
that the outcome of a vote is simply the average of all of the agents’ votes.
The proportional rule results when r is the identity mapping. The quasi-
proportional rules satisfy the three principles we took to define representative
democracy; in particular, they are “gerrymandering-proof.”

By varying r, we can give more or less “importance” to different al-
ternatives. In systems of proportional representation, to eliminate “fringe”
alternatives, a quota of votes is often required for an alternative to be rep-
resented. For example, in many representative democracies, an alternative
needs to receive five percent of the popular vote to be represented. While this
extreme case violates the principle of strong monotonicity (which is satisfied
by all quasi-proportional rules), by using an appropriate function r, we can
define similar rules, so that fringe alternatives are given less importance than
their popular vote would suggest.

A natural question is whether or not the partial priority rules and the
quasi-proportional rules exhaust the class of rules satisfying unanimity,
anonymity, and representative consistency on the space of lotteries. The
answer is clearly no; we may simply choose an r in the definition of quasi-
proportional rule which is not continuous, yet is still a bijection. Still, there
are even more complex rules satisfying the three properties, as the follow-
ing examples demonstrate. The examples work by composing the partial
priority rules with the quasi-proportional rules.

Example 4: Let X = {z,y}. We can identify any p € A (X) with the
probability that it places on alternative x. Therefore, we identify A (X)

1"The quasi-arithmetic means were first characterized by Kolmogorov [11] and Nagumo
[14]. They were specifically concerned with the case in which |X| = 2. The quasi-
arithmetic means are characterized by the axioms unanimity, anonymity, representative
consistency, together with a continuity and strong monotonicity axioms.
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with [0,1]. Define f as follows. For all N € A and all = € [0,1]",

if forall: € N, z; > %, f(z) = Z“‘ETIV'I, and if there exists z; < 1,

min Ii,l
f(x) = Ziex |N\{ 2}-

Example 5: Let X = {z,y}. We can identify any p € A (X) with the
probability that it places on alternative x. Therefore, we identify A (X)
with [0,1]. Define an equivalence relation ~ on [0, 1] as follows: for
all s € [0,1], r ~ s if and only if r —s € Q. Label the set of
equivalence classes of ~ by P, with generic element P. For all P,
for all {ry,....,r7,} C P, it is easily verified that (3., ,7;) /n € P. By
the Axiom of Choice, for all P, let zp € P. For all P € P, let
rp : P — P be a strictly increasing bijection. Let =< be a linear
order over P. Define the rule f as follows. Let N € N and let z €
(0,1]V. Let P (z) = min< {P : there exists i € N such that z; € P}.
Let N C N be defined by N' = {i € N:x; € P(x)}. Then f(z) =

rol T; . ,7"71 Tp(y
Tp(z) (Ziew b (") e ot (710 ))> Note that f (z) € P (z).

N

6 Duals of partial priority rules

For some partial priority rules, a natural concept of a “dual” rule exists.
Thus, for a partial order < on a set X, define the dual of <, written <’ so
that for all z,y € X, x X" y if and only if y < x. When it exists, the meet
corresponding to =<’ is the join corresponding to <.'® For a partial priority
rule f with corresponding partial order <, if <’ exists, we define the dual
of f , written f’, as the partial priority rule with corresponding partial order
<.

A lattice is a partially ordered set such that any pair of elements has a
meet and a join. Thus, a dual of f exists if and only if (X, <) is a lattice.
When X is finite, a simple necessary and sufficient condition for a meet-
semilattice (X, <) to be a lattice is that it have a unique maximal element
(Birkhoff, [4], p. 23). Thus, for a partial priority rule f with partial order <,
a unique maximal element x exists if and only if for all y € X, f(z,y) = y.
Thus, we have the following proposition.

18To see this, let z,y € X, and let z A’y be the meet of zand yaccording to <’. By
definition, for all 2 <’ z,y, 2 <’ x A'y. By definition of =/, then, for all z = z,y, z = zN\y.
But then z A y is exactly z V y.
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Proposition 1: A partial priority rule f with partial order < has a dual if
and only if there exists © € X such that for all y € X, f(z,y) = y.

Thus, a partial priority rule has a dual if there exists some alternative
which can always be “vetoed” by any other alternative. The following ex-
ample provides the dual of the rule from Example 2.

Example 6: The dual of Example 2 It is simple to verify that the rule f
of Example 2 has a dual. To see why, note that A € 24 and that for all
B €24 f(A,B) = AN B = B. Thus, by Proposition 2, f has a dual.
In fact, for all N € N, for all B € (24)", f ((Bi)icn) = Uien Bs.
Thus, an “alternative” is selected if and only if at least one agent votes
for it. This rule is intuitively “dual” to the rule of Example 2.

7 Discussion and conclusion

7.1 Previous literature related to representative con-
sistency

It is important to note that representative consistency is not a new condition;
however, we believe that the interpretation here is. Blackorby and Donaldson
[5] study a condition called the “population substitution principle,” which is
the same as representative consistency. Their interest in the condition is
in comparing the welfares of varying groups of agents. The literature on
functional equations has long studied this (dating back to 1930-see [11, 14],
as well as [6]) and related notions. These works use the notion to characterize
the quasi-arithmetic means [1, 2]. For a good introduction, see Diewert [7].
By establishing that representative consistency is an “averaging” condition,
these works add further normative justification to representative consistency.
The main theoretical distinction between our work and these works is that
the cited works require the domain of a rule to be a continuum, usually the
unit interval. To our knowledge, no other work has allowed the domain to
be a finite set.

7.2 Other principles of democracy

An upsetting aspect of the partial priority rules is that they violate the prin-
ciple of neutrality. Informally speaking, neutrality requires that the “names”
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of alternatives should not matter for a voting rule. It is often taken as a basic
principle of democracy. Unfortunately, in a pure voting model, the properties
anonymity and neutrality are incompatible when rules must be single-valued
and environments with even populations of agents are permissible. Thus,
a natural extension of our model would include rules which are allowed to
be multi-valued. Such an extension would require redefining representative
consistency for this case. Interestingly, neutrality can be recaptured when
lotteries are permitted. Simply let f be a quasi-proportional rule such that
the corresponding function r as described above is permutation-invariant.

7.3 General comments

Another negative aspect of the partial priority rules is the amount of power
they give to each individual. Any individual can “veto” an alternative with
low priority simply by voting for an alternative with a higher priority. Similar
voting rules have been studied in strategic models where information about
the social alternatives is incomplete [8, 9]. It is generally found that these
voting rules fare worse than other standard anonymous rules in terms of their
ability to correctly aggregate information.

In representative democracies with single-member districts, the usual
practice is to select an actual agent to represent a district of voters. This
is the case in the United States House of Representative, for example. Our
paper implicitly identifies this representative agent with the alternative she
supports. In a scenario in which representative agents actually represent dis-
tricts, it is the case that these representatives are treated anonymously in
some “second stage.” In order to preserve anonymity of a voting rule, then,
it is the case that generally, districts of agents must be equipopulous. A nat-
ural question to ask is what happens to Theorem 1 when such a requirement
is made. It turns out that weakening representative consistency to accom-
modate this the equal population requirement does not admit any new rules.
This issue is discussed further in Appendix B.

Another possible objection to the model is that the same voting rule is
applied at all levels of government. A natural extension of the model would
study three different voting rules, say f, g, and h. The rule f would be applied
at the district level. The rule g would be used for aggregating representative
votes at the national level (i.e. after applying f; as a Congress might do).
The rule A would be a rule which could be used to directly aggregate votes
at the national level. In this scenario, representative consistency would say
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that the function h should always be equal to the composition of g with f,
independently of the partitioning of agents into districts. It turns out that
if unanimity and anonymity are required for all three voting rules, then the
three voting rules are equal and Theorem 1 still applies.

A natural question is whether Theorem 1 holds when the set of potential
agents is finite. While we have no formal proof, we conjecture that if the
cardinality of the set of potential agents is at least three, then a result akin to
Theorem 1 holds. A potential approach to solving this problem is presented
in Aczel [1] in his characterization of the quasi-arithmetic means based on
the bisymmetry equation.

8 Appendix A-Independence of the axioms

The following are examples establishing the independence of our axioms.
Each axiom is followed by a rule which violates it and satisfies the other two
axioms of Theorem 1.

Unanimity: Let f be a constant rule—i.e. there exists z € X such that for
all N e Nand all z € XV f (z) = 2.

Anonymity: Let R be a linear order on the set of agents N. For all N € N
and all z € X%, f (%) = Turgmaxg N-

Representative consistency: Let <* be a linear order on X. For all N €
N and all z € X7V,

N
f(z) = Héi*n {:U e{zitey it > 2] > %}

9 Appendix B-Equipopulous districts
This appendix discusses a restricted version of representative consistency.

Weak representative consistency: For all N € N, all partitions
{N1, ..., Ny} of N such that for all 4,7, |[N;| = |N;|, and all z € X,

Fla)= £ (f @)™ f lan,)™™).
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As the name suggests, weak representative consistency is a weaker condi-
tion than representative consistency under the unanimity principle. Gener-
ally, however, it need not be weaker.

Weak representative consistency is a condition which stipulates that the
populations of the “districts” that agents are partitioned into must have equal
cardinalities. For example, in the United States House of Representatives,
congressional districts are required to be of approximately equal size. If each
Congressman is treated anonymously, the anonymity principle will generally
require that districts be equipopulous.

Under the unanimity principle, weak representative consistency has no
bite if the set of agents cannot be partitioned into nontrivial districts of
equal cardinalities (for example, if |[N| = 5). This is the case if the set of
agents has a cardinality which is a prime number.

We establish that no new rules become available when requiring that
districts be equipopulous. Thus, even if all districts are required to contain
the same number of agents, any rule which is not a partial priority rule
presents some opportunities for gerrymandering.

Theorem 5 generalizes Theorem 1 using the weak representative consis-
tency condition.

Theorem 5: A rule satisfies unanimity, anonymity, and weak representative
consistency if and only if it is a partial priority rule.

The theorem relies on the following lemma, whose proof is identical to
Lemma 1. Thus, we state it without proof.

Lemma 2: If a rule satisfies unanimity, anonymity, and weak representative
consistency, then it satisfies replication invariance.

The next lemma establishes that if a rule satisfies unanimity, weak rep-
resentative consistency, and replication invariance, then it satisfies repre-
sentative consistency. Taken together, Lemmas 2 and 3 will directly imply
Theorem 5.

Lemma 3: If a rule satisfies unanimity, weak representative consistency, and
replication invariance, then it satisfies representative consistency.

Proof: Let f be a rule that satisfies unanimity, weak representa-
tive consistency, and replication invariance. Let N € N and let z €
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XN, Let {Ny,..., Ny} be a partition of N. We claim that f(z) =
F(F n)™ s f o)™

By replication invariance,

H|Ni|

f@)=f |

Rewrite

m m
m
H|N¢| H|Ni|
1=1

Flass =1 @™

k=1
Again, rewrite
- " INel\ ™
[T [T
i=1 ik
k=1 k=1

[

Forallk=1,...m,x ;\Z " has cardinality H |N;|. By weak representative

i=1
consistency,
m m
N\ ™ vl T e
H|Ni| H\Ni\ i1
itk . itk
f T, =f f TN,
k=1
k=1

By replication invariance, for all k =1, ..., m,

[T~
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Thus,

[T ol [ i
ik :
FL ] 2w, =f|flx) =
k=1 k=1

By replication invariance,

™™ - ((Fm)™)" )

k=1
k=1

By anonymity, which is implied by replication invariance,
PO @™ ) =7 (f )™ o f o, )¥)

Thus, f(z) = f <f (:le)Nl,...,f(:erm)Nm). As stated in the main body

of the text, this condition is equivalent to representative consistency when
unanimity is satisfied.ll

The proof of Theorem 5 is now simple.

Proof: Let f be a partial priority rule. Then it clearly satisfies unanim-
ity, anonymity, and weak representative consistency.

Let f be a rule that satisfies unanimity, anonymity, and weak repre-
sentative consistency. By Lemma 2, f satisfies replication invariance. By
Lemma 3, f satisfies representative consistency. Thus, f satisfies unanimity,
anonymity, and representative consistency. By Theorem 1, f is a partial
priority rule. l

m

k=1
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