
On the Robustness of Majority Rule*

by

Partha Dasguptaa and Eric Maskinb

January 1998
(Revised: June 1998. Second revision: February 2000)

* Research support from the Beijer International Institute of Ecological Economics,
Stockholm, is gratefully acknowledged.

a Faculty of Economics and Politics, University of Cambridge.

b Department of Economics, Harvard University.



Abstract

In this paper we demonstrate that, in a large population, if, for some domain of

individual preference profiles, a voting rule satisfying anonymity, neutrality, and the

Pareto rule is transitive, then so is the (simple) majority rule transitive. We also

demonstrate that, unless a voting rule, F, is itself the majority rule, there exists some

domain of individual preference profiles on which majority rule is transitive, but F is

not. The two results, when combined, capture the sense in which majority rule is robust.

A characterization of the rule, one based on the idea of "maximal" robustness, is then

provided. It complements the result in May (1952). We illustrate the results by

identifying the restricted domains of individual preference profiles on which majority

rule and a number of other well-known voting rules satisfy anonymity, neutrality, the

Pareto rule, and transitivity. We then study the "tightness" of the assumptions

underlying our main robustness result by relaxing, in turn, transitivity, anonymity, and

neutrality. We show that if neutrality is replaced by independence of irrelevant

alternatives (and a certain technical condition), then the unanimity rule with a given

order of precedence is robust.

JEL Classification: D6, D7.
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1. Introduction and Motivation

The rules that transform individual preferences into collective choice differ

widely across institutions. In his pioneering work, Arrow (1951) offered a particular

axiomatization of democratic rules and showed that they are not always coherent:

unless restrictions are placed on the domain of individual preferences, the rules

generate cycles for some configurations of preferences.

Although Arrow's formulation of democratic rules encompassed far more than

majoritarianism, advocates of democracy have frequently adopted the narrower view

that it is majority rule that characterizes an essential part of the democratic process. As

Dahl (1989: 135) observes: "... virtually everyone assumes that democracy requires

majority rule in the weak sense that support by a majority ought to be necessary to

passing a law. But ordinarily supporters of majority rule mean it in a much stronger

sense. In this stronger sense, majority rule means that majority support ought to be not

only necessary but also sufficient for enacting laws." (Emphasis in the original.) While

Dahl (1989, Ch. 10) observes that the term "majority rule" is not unambiguous, that it

refers to a family of decision rules, it is the simple majority rule which receives by far

the greatest attention in his exposition. Since, in the political science literature the

qualifier is often absent when reference is made to the "simple majority rule", we will,

for brevity, do the same and refer to the simple majority rule simply as the majority

rule.

In view of the prominence that continues to be given in theories of democracy to

majority rule, it is ironic that the most famous illustration of Arrow's Impossibility

Theorem continues to be the Condorcet-cycle. To illustrate the Condorcet-cycle,

consider three voters, who rank three alternatives (labelled x, y, z) as, respectively, "x

over y over z", "y over z over x", and "z over x over y". Majority rule is intransitive

under this configuration of preferences. To confirm this, note that, since two of the
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voters prefer x to y, majority rule requires that x be ranked over y; likewise, since two of

the voters prefer y to z, the rule requires that y be ranked over z. By transitivity, x

should be ranked over z. But since two of the voters prefer z to x, the rule requires that z

be ranked over x, which is a contradiction.

Majority rule is, nevertheless, intuitively appealing. This is because it possesses

several compelling properties, especially when applied to choices over political

candidates. First, it satisfies the Pareto rule: if all voters prefer alternative x to

alternative y, the rule ranks x over y. Secondly, it is anonymous: the rule treats all voters

symmetrically, in the sense that the ranking is independent of voters' labels. Anonymity

captures one of Dahl's (five) criteria for democratic decision-making (Dahl, 1989, Ch. 9):

voting equality among citizens. And thirdly, majority rule satisfies neutrality: its

ranking over any pair of alternatives depends only on the pattern of voters' preferences

over that pair, not on the alternatives' labels.

Neutrality is symmetry with respect to alternatives. In the context of

representative democracy, neutrality is a natural requirement of a voting rule because it

prohibits procedural discrimination against candidates. Rules that violate neutrality

have built into them preconceived rankings, for example, favouring the status-quo. If

preconceived social rankings are to be avoided, neutrality is the condition that can

ensure its avoidance.

But majority rule is not the only voting rule to satisfy anonymity, neutrality, and

the Pareto rule. There is a vast array of others; for example, the 2/3-majority rule, under

which two alternatives are considered to be socially indifferent unless at least two-

thirds of the voters prefer one to the other; the Pareto-extension rule, wherein two

alternatives are considered to be socially indifferent unless all voters prefer one to the

other; and, more generally, the δ-majority rule (δ > ½), under which two alternatives are

considered to be socially indifferent unless a proportion of voters at least as large as δ
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prefer one to the other. Note though that if a voting rule is anonymous, it is non-

dictatorial. It can be shown that if a voting rule is neutral, it satisfies Arrow's condition

of the "independence of irrelevant alternatives". From Arrow's Impossibility Theorem

we may thus conclude that no voting rule that satisfies anonymity, neutrality, and the

Pareto rule can be transitive if the domain of individual preference profiles is

unrestricted.

As is well known, Arrow's theorem applies not only to direct democracy, but to

many other species of democracy as well, including representative democracy (Arrow,

1963; Bergson, 1976). So it pays to work within Arrow's original formulation, which we

recount in this section.

Let X denote the set of alternatives. X is assumed to be a finite set, containing at

least three elements. We suppose that there are N voters (i = 1,..., N). It is assumed that

voter i has a complete preference ordering over X. Let R(i) denote this. So R(i) is a

reflexive, transitive, and complete binary relation. In some applications, R(i) should be

thought of as representing i's ethical preferences; in others, i's personal preferences; and

so on. We may write the (N-tuple) profile of individual preference orderings, (R(1), ...,

R(i), ..., R(N)), as R. Let F be a functional relation that maps profiles of individual

preference orderings from a given domain of profiles to a reflexive binary relation R on

X. We write this as R = F(R(1),...,R(N)) ≡ F(R). We will say that F is a voting rule if it is a

complete, reflexive binary relation.

Voting rules need not be transitive. We say that a voting rule is a social welfare

function if it is transitive. In other words, a social welfare function is a voting rule, F, the

range of which belongs to the set of complete orderings over X. Arrow's Impossibility

Theorem addresses the question concerning the existence of a social welfare function

We have gone into some of the wider aspects of Dahl's theory of democracy in Dasgupta and Maskin
(1999).
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satisfying a particular set of democratic criteria. The Condorcet-cycle, which illustrates

that majority rule is not a social welfare function on an unrestricted domain of

individual preferences, is merely the most well-known illustration of Arrow's theorem.

In this paper we will offer a new defense of majority rule: robustness. We will

show that among all voting rules satisfying anonymity, neutrality and the Pareto rule,

majority rule has the greatest reach, in that it is transitive on the widest class of domains

of individual preferences, and is the unique such voting rule. Formally, we will

demonstrate that if, for some domain of individual preference profiles, a voting rule

satisfying anonymity, neutrality, and the Pareto rule is transitive (i.e. it is a social

welfare function on this domain), then so is majority rule transitive on this domain (i.e.

it too is a social welfare function on this domain). We will also demonstrate that, unless

a voting rule, F, is itself the majority rule, there exists some domain of individual

preference profiles on which majority rule is transitive, but F is not. The two results,

when combined, capture the sense in which majority rule is robust.

Maskin (1995) stated and proved this result for the case where N is odd. But the

oddness restriction is discomfitting. It was necessary to invoke it in order to avoid

pathologies that arise when, for example, exactly half the population prefers x to y and

the other half prefers y to x. In this paper we will be interested in large organizations.

To formalize the idea that in such environments knife-edge cases are knife-edge cases,

we will assume that the number of voters is a continuum (the notation will be

introduced in Section 2) and prove a similar result in Section 3 (Theorem 1).

This restriction, that the number of voters is odd, was also invoked by Black (1948a,c) to show that if
the domain of individual preferences are "single-peaked", then majority rule is a transitive voting rule.
To remind ourselves of what can happen if the number of voters is even, suppose N = 2 and that,
among three alternatives, x, y, and z, the first voter ranks x over y over z, while the second voter ranks
y over z over x. These preferences are single-peaked but, as can readily be checked, majority rule is
intransitive.

Kirman and Sondermann (1972) have shown that Arrow's Impossibility Theorem holds if there is a
continuum of voters, in that if a social welfare function satisfies the Arrow axioms, there is an
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In a remarkable early paper, May (1952) proved a characterization theorem for

majority rule (reproduced here as Theorem 2). Theorem 1 suggests an alternative

characterization, which explicitly invokes the idea of what we will call "maximal"

robustness. We formulate it and prove it in Section 4 (Theorem 3).

In proving Theorem 1 we will need to determine which orderings must be

omitted from a domain of individual preference orderings if majority rule is to be

transitive on the domain. Theorem 1 tells us that if any other voting rule is to satisfy

anonymity, neutrality, the Pareto rule, and transitivity, at least as many orderings must

be omitted. Therefore, for comparison, we will examine specifically which orderings

need be omitted from a domain if certain prominent voting rules are to satisfy these

conditions on it. In Section 5 we examine the rank-order rule (or the Borda-count), the

Pareto-extension rule, and the 2/3-majority rule (Theorems 4-6); in Section 6 random

dictatorship and the plurality rule are examined (Theorems 7-8).

Sections 7 and 8 are about the extent to which the assumptions in Theorem 1 can

be weakened. Transitivity and anonymity are relaxed in Section 7; neutrality in Section

8.

Perhaps the most familiar weakening of transitivity to have been explored in the

social choice literature is quasi-transitivity (Sen 1969). However, Gibbard (1969) showed

that relaxing the notion of collective rationality in this manner does not make much

purchase, because voting rules satisfying Arrow's other axioms on an unrestricted

domain of preference profiles, while not dictatorial, are nevertheless "oligarchic". In

Section 7.1 we extend the idea of non-oligarchic voting rules to a continuum of voters

"invisible" dictator.

δ-majority rules were discussed by Black (1948b). Blair (1979) has explored their axiomatic basis.
Under Blair's axioms, δ is a function of the profile of individual preferences. So he refers to the voting
rules implied by his axioms the "variable majority rule". Neither May (1952) nor Blair (1979),
however, was concerned with the robustness of voting rules.
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and prove (Theorem 9) that majority rule is robust among rules that satisfy anonymity,

neutrality, the Pareto rule, and quasi-transitivity. In Section 7.2 anonymity is replaced

by a weaker condition, individual responsiveness and it is proved (Theorems 10-11)

that, while majority rule is robust, it is not maximally robust: weighted majority rules

are also robust.

In Section 8 neutrality is replaced by the weaker (and much-studied) condition of

"independence of irrelevant alternatives". We add a technical condition on voting rules,

which enables certain kinds of ties to be broken. Analogous to Theorem 1, we prove

(Theorem 12) that among rules satisfying these conditions the unanimity rule (with a

given order of precedence) is robust.

Majority rule and the unanimity rule offer genuinely different ethical viewpoints,

differences that have been much discussed by political scientists and social

philosophers. The arguments that advocates of these two voting rules have advanced

often differ sharply. However, social choice theory has on a number of occasions

revealed that seemingly minor changes in the conditions imposed on voting rules can be

significant changes after all. Theorems 1 and 12 can be read in this light.

Section 9 contains a summary of the results.

2. Voting Rules and Majoritarianism in a Large Population

Let X be a (finite) set of social alternatives containing at least 3 elements. It would

simplify the analysis greatly if we were to assume that individuals have strict preference

orderings on X (that is, if we were to rule out indifference on the part of voters). So let

℘X be the set of all strict orderings of X. There is a large population of voters

represented by the unit interval [0,1]. For any ℘ ⊆ ℘X we say that preferences lie in

domain ℘ if they can be expressed by a profile P:[0,1] → ℘, where, for i ∈ [0,1], P(i) is

Spitz (1984) is a fine advocacy of majority rule. The classic on the unanimity rule is Buchanan and
Tullock (1962)
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voter i's strict preference ordering. We will confine attention to profiles P that are well-

behaved in the sense that their inverse images are Lebesgue-measurable, that is, P-1(P)

is Lebesgue-measurable for each P ∈ ℘X.

Let F be a function which, for each (well-behaved) profile P in ℘X, assigns a

"social preference" ranking, R = F(P), where R is a reflexive binary relation. We will say

that F is a voting rule if it is a complete, reflexive binary relation. In what follows, we

shall denote the asymmetric binary relation induced by R (also called the "asymmetric

factor" of R) by P and the symmetric binary relation induced by R (also called the

"symmetric factor" of R) by I. P and I will be interpreted as "strict social preference" and

"social indifference", respectively.

F satisfies anonymity on ℘ if, for any (well-behaved) permutation π:[0,1] → [0,1],

all profiles P in ℘, all Y ⊆ X, and all x,y ∈ Y, xF(Pπ)y if and only if xF(P)y, where, for all

i, Pπ(i) = P(π(i)). That is, a voting rule satisfies anonymity if its ranking over pairs of

alternatives remains unchanged when the labels of the voters are permuted.

F satisfies neutrality if, for all profiles P and P′ in ℘, all permutations χ:X → X,

and all Y ⊆ X, for all x,y ∈ Y, and all i, [xP(i)y if and only if χ(x)P′(i)χ(y)] implies [xF(P)y

if and only if χ(x)F(P′)χ(y)]. In words, a voting rule satisfies neutrality if its ranking over

any pair of alternatives depends only on the pattern of voters' preferences over that

pair, not on the alternatives' labels. This is the standard definition of neutrality (Sen,

1970). It is stronger than Arrow's "independence of irrelevant alternatives" condition. To

see this, recall that a voting rule F satisfies independence of irrelevant alternatives on ℘

if, for all profiles P and P′ in ℘, all Y ⊆ X, and all x, y ∈ Y, PY = P′Y implies that xF(P)y

⇔ xF(P′)y, where PY and P′Y are, respectively, the restrictions of P and P′ to Y. Notice

that our version of "neutrality" incorporates independence of irrelevant alternatives, in

that, if a voting rule is neutral on ℘, it is independent of irrelevant alternatives on ℘,
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but the reverse implication does not hold.

F satisfies the Pareto rule on ℘ if, for all profiles P in ℘, all Y ⊆ X, and all x,y ∈

Y, xP(i)y for almost all i implies ~{yF(P)x}. In words, if everyone prefers x to y, then x is

socially preferred to y.

F is transitive on ℘ if, for all profiles P in ℘, F(P) is transitive. In that case R =

F(P) can be thought of as representing the "social ordering" and F is referred to as a

social welfare function.

The voting rule, FM, corresponds to majority rule if, for all profiles P, all Y ⊆ X,

and all x, y ∈ Y,

xFM(P)y if and only if µ{ixP(i)y} ≥ µ{iyP(i)x},

where µ is the Lebesgue measure. That is, x is judged to be socially at least as good as y

if the proportion of voters who prefer x to y is at least as large as the proportion who

prefer y to x.

It is easy to confirm that FM is anonymous, neutral, and satisfies the Pareto rule

on the domain ℘ = ℘X. But FM is not transitive on ℘X. For example, if about a third

each of the population has the preferences [x,y,z], [y,z,x], and [z,x,y], respectively

(where [x,y,z] is the ordering in which x is preferred to y and y is preferred to z), then

social preferences are intransitive (this is the Condorcet paradox). Nevertheless, on

certain smaller domains ℘, FM avoids such intransitivities. For example, suppose that

the domain of preferences on {x,y,z} is single-peaked; that is, for any ordering in the

domain, if x is preferred to y then y is preferred to z, and if z is preferred to y then y is

preferred to x, so that if [x,y,z] and [z,y,x] belong to the domain, then at most [y,z,x] and

There is a weaker version of neutrality, which separates it from the independence of irrelevant
alternatives condition. In this version a voting rule F satisfies neutrality if for all profiles P in ℘ and
for all permutations χ:X → X, F(χ(P)) = χ(F(P)), where χ(P) is the permutation of P over X. Our main
result, Theorem 1 below, holds if the version of neutrality in the text were to be replaced by this
weaker version and the independence of irrelevant alternatives condition.
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[y,x,z] can also belong to the domain. It is simple to confirm that, except for profiles that

are non-generic (in the sense that, for some x,y ∈ X, µ{ixP(i)y} = µ{iyP(i)x}), FM is

transitive.

3. Robustness of Majority Rule

We will show that FM is unique among voting rules in satisfying anonymity,

neutrality, the Pareto rule, and transitivity on the biggest possible collection of domains

of preferences. To make this precise, consider a profile P and two alternatives x, y ∈ X.

The measure of (x,y) for P, call it mP(x,y), is the proportion of the population who prefer

x to y; that is, mP(x,y) ≡ µ{ixP(i)y}. We will say that a set S ⊆ (0,1) is exceptional for a

voting rule F and domain of preferences ℘ ⊆ ℘X, if for all profiles P in ℘ such that,

for all x, y ∈ X, mP(x,y) ∉ S (such a profile is called regular for S), F(P) is transitive. In

other words, S is exceptional if it corresponds to population proportions that are

problematic for transitivity. For example, the set S = {½} is exceptional for majority rule

and a single-peaked domain of preferences: it is only when exactly half the population

prefer one alternative to another that majority rule can fail to be transitive on a single-

peaked domain.

We say that a voting rule F is transitive generically on ℘ if there exists a finite

exceptional set, S, for F and ℘. In other words, F is transitive generically on ℘ if it is

transitive for those profiles on ℘ that are regular for S. Call a voting rule reasonable on

℘ if it satisfies anonymity, neutrality, the Pareto rule, and is transitive generically on

℘. We now have:

Theorem 1: If F is reasonable on ℘ ⊆ ℘X, then FM is reasonable on ℘.

Moreover, if S is exceptional for F and ℘ and there exists a profile P on ℘ that is

The definition motivates the assumption that exceptional sets do not contain the point 1 (resp. 0). If 1
(resp. 0) were exceptional, w would be ruling out the profile in which everyone prefers x to y (resp. y
to x). In other words, we would be ruling out the potency of the Pareto rule.
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regular for S, such that F(P) ≠ FM(P), then there exists ℘′ ⊆ ℘X on which FM is

reasonable but F is not.

To prove this, we note the following

Lemma 1: FM is generically transitive on domain ℘ if, and only if, for all triples

of alternatives {x,y,z}, one of the orderings from the Condorcet cycle {[x,y,z], [y,z,x],

[z,x,y]} and one of the orderings from the Condorcet cycle {[x,z,y], [z,y,x], [y,x,z]} are

excluded from ℘.

Proof: The "only if" part is the Condorcet example. If for some triple {x,y,z}, there

are preference orderings in ℘ corresponding to each of [x,y,z], [y,z,x], and [z,x,y], then

for all profiles P in which approximately a third have the ranking [x,y,z], approximately

a third have the ranking [y,z,x], and the remainder the ranking [z,x,y], the social

ranking is intransitive. That is, all points in some interval [1/3 - ε, 1/3 + ε], for some ε >

0, are in the exceptional set (the exceptional set is not finite). Hence FM is not transitive

generically.

To prove the "if" part, consider a domain ℘ on which FM is not transitive

generically. Then, in particular, the set S = {½} is not exceptional for FM and ℘. Thi

means that there exists a profile P, regular for {½}, for which the corresponding majority

ranking, RM, is intransitive; say, xRMy, yRMz, but zPMx for some triple {x,y,z}, where PM is

the strict relation corresponding to RM. Because P is regular for {½}, xRMy implies that

over half the population must prefer x to y. Similarly over half the population must

prefer y to z. Therefore, the ordering [x,y,z] must belong to ℘. Analogously, so must

[y,z,x] and [z,x,y]. _

Proof of Theorem 1:

See Sen and Pattanaik (1969) for a proof for the case where the number of voters is finite and odd.
They called preference domains obtained from such deletions value restricted. In the Lemma we have
stated the condition in a form somewhat different from the way value restriction was originally defined.
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Begin with the first part of the theorem. Consider a domain ℘ on which the

voting rule F is reasonable. Let S be the corresponding exceptional set. Suppose,

contrary to the theorem, that FM is not reasonable on ℘. Because FM satisfies anonymity,

neutrality, and the Pareto rule, it is not generically transitive on ℘. From Lemma 1 we

know there exists a triple {x,y,z}, such that the Condorcet cycle {[x,y,z], [y,z,x], [z,x,y]}

belongs to ℘. Because F is generically transitive, the exceptional set S is finite. Hence

there exists an integer q (> 2) such that, if we divide [0, 1] into q equal subsets and so

construct P that, for each subset [(k-1)/q, k/q), where k = 1,..., q, P assigns everyone in

the subset the same ordering in ℘, then P is regular automatically. So F satisfies

anonymity, neutrality, the Pareto rule, and transitivity on the domain of profiles P in ℘

where, foe each k = 1,...,q, everyone with index in the interval [(k-1)/q, k/q) has the

same preference ordering.

Consider a profile P1 in ℘ in which voters in [0, 1/q] prefer x to y and everyone

else prefers y to x. Let R1 ≡ F(P1). Then either xR1y or yR1x. Suppose for the moment that

yR1x.

Consider a profile P′ in which the voters in [0, 1/q] have ordering [x,y,z], the

voters in [1/q, 2/q] have ordering [y,z,x], and everybody else has the ordering [z,x,y].

Let R′ ≡ F(P′). Notice that everyone except the voters [0, 1/q] prefers z to x. Hence,

because F satisfies neutrality, yR1x implies zR′x. Observe also that everybody except the

voters [1/q, 2/q] prefers x to y. Hence from neutrality and anonymity, yR1x implies

xR′y. Transitivity implies that zR′y. Notice also that, under P′, the voters in [0, 2/q]

prefer y to z, and everyobody else prefers z to y. Consider now a profile P2 in ℘ which

has the property that voters in [0, 2/q] prefer x to y and everyone else prefers y to x.

Since F is neutral, we may conclude that yR2x, where R2 ≡ F(P2). Continuing iteratively,

we can show for each k = 1,...,(q-1) that, for a profile Pk, in which voters in [0, k/q]

prefer x to y and everyone else prefers y to x, yRkx, where Rk ≡ F(Pk). But consider Pq-1, in
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which everyone in [0, (q-1)/q] prefers x to y. By the argument just completed, yRq-1x,

where Rq-1 ≡ F(Pq-1). From anonymity and neutrality and the fact that yR1x, however, we

conclude that xRq-1y. Hence yIq-1x. Consider finally a profile P″ in ℘ such that all voters

in [0, (q-1)/q] have the ordering [x,y,z], whereas the remaining voters have the ordering

[y,z,x]. Because yIq-1x, anonymity and neutrality imply that xI″y and xI″z, where R″ ≡

F(P″). But from the Pareto rule, we have yP″z. Hence R″ is intransitive, a contradiction.

We conclude that FM is, generically, transitive after all.

We next prove the second assertion in the theorem. For ease of exposition, we

will first offer a sketch of the proof. Details will then be filled in.

Assume there exists P in ℘ such that F(P) ≠ FM(P), where P is non-pathologic.

This means there exist x and y such that

(1) xF(P)y and ~[xFM(P)y].

Choose P*′, P*″ ∈ ℘ such that xP*′y and yP*″x. To illustrate the argument we will deploy,

suppose there is an alternative, z, such that zP*′xP*′y and zP*″yP*″x, where z, x, and y are

contiguous in P*′, and z, y, and x are contiguous in P*″.

Let P* be a profile such that

(2) P*(i) ∈ {P*′, P*″} for all i, and

(3) mP*(x,y) = mP(x,y).

Note that mP(x,y) < ½. Notice also that, because P is non-pathologic, (2) and (3)

imply P* is non-pathologic as well. Since {P*′, P*″} ⊆ ℘ and F is, generically, anonymous

on ℘, we may infer from (1) that

(4) xF(P*)y.

Since {P*′, P*″} consists of just two orderings, FM is transitive on this domain.

In saying that z, x, and y are contiguous in P*′ we mean that there are no alternatives lying between z
and x and between x and y in the preference ordering P*′. As we are at this point merely sketching the
proof of the theorem, we assume that z exists. When we come to the complete proof, it will be shown
that z does exist.
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Let us now choose P̃ ∈ ℘X such that

(5) yP̃zP̃x, and

(6) P̃X-{z} = P*″X-{z}.

It can be shown (see below) that there do not exist three alternatives for which {P*′, P*″, P̃

} constitutes a Condorcet triple. This means that FM is reasonable on {P*′, P*″, P̃}.

We now demonstrate that F is not reasonable on {P*′, P*″, P̃}. Assume then that it

is reasonable.

Consider a profile P̃″ such that

(7) µ{iP̃″(i)=P*″} = mP(y,x) - mP(x,y) > 0,

(8) µ{iP̃″(i)=P̃} = mP(x,y),

(9) µ{iP̃″(i)=P*′} = mP(x,y).

From (7)-(9), we have mP̃″(x,y) = mP(x,y). But F is anonymous and xF(P)y. Therefore,

(10) xF(P̃″)y.

Moreover, from (7)-(9) we conclude that mP̃″(y,z) = mP(x,y). But F is anonymous and

neutral, and xF(P)y. Therefore,

(11) yF(P̃″)z.

On combining (10) and (11) and using the fact that F is transitive, we have

(12) xF(P̃″)z.

But (12) violates the Pareto rule and the fact that zP̃″(i)x for all i. Hence, we can take ℘′

= {P*′, P*″, P̃} to confirm the theorem.

It remains to fill in the details.

Choose P′, P″ ∈ ℘, such that xP′y and yP″x. Let P′ be a profile with the property

that

(13) P′(i) ∈ {P′, P″} for all i, and

By PX-{w} = P´X-{w} we mean that P and P´ are identical on the set of alternatives X-{w}.
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(14) mP′(x,y) = mP(x,y).

Because P is non-pathologic, (13) and (14) imply P′ is also non-pathologic. Since {P′, P″}

⊆ ℘ and F is, generically, anonymous on ℘, we may infer from (14) that

(15) xF(P′)y.

Since {P′, P″} consists of only two orderings, FM is transitive on this domain.

Suppose, for the moment, that there exists w ∈ X such that

(16) yP″wP″x.

If there exists more than one w satisfying (16), let w* be the one such that,

(17) wP″w*P″x for all w ≠ w* satisfying (16).

Choose Po″ ∈ ℘ such that

(18) Po″X-{w*} = P″X-{w*}, and

(19) xPo″w*Po″v for all v ≠ w* such that xP″v.

We claim that FM is transitive on {P′, P″, Po″}. To see this, note that, for an intransitivity,

there would have to exist three alternatives with respect to which {P′, P″, Po″} constitutes

a Condorcet triple. But from (17)-(19) the only way in which P″ and Po″ differ is in how

they rank x and wo. Hence, a Condorcet triple is impossible. If F is not reasonable on {P′,

P″, Po″}, we are done. Assume, therefore, that F is reasonable on this domain. (In

particular, this implies that if P* is a profile on this domain such that mP*(x,y) = mP(x,y),

then xF(P*)y.) It follows a fortiori that F is reasonable on {P′, Po″}. Notice that one can

think of Po″ as being a converted version of P″ in which (16) does not hold when w = wo.

Continuing iteratively, we can "convert" P″ into an ordering P*″ such that, for all w ∈ X,

(16) does not hold, i.e.,

(20) ∀w ∉ {x,y}, either wP*″y or xP*″w,

so that F is reasonable on {P′, P*″}. Moreover, if P* is a profile on this domain with

mP*(x,y) = mP(x,y), then xF(P*)y.

Similarly, we can convert P′ into an ordering P*′ for which
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(21) ∀w ∉ {x,y}, either wP*′x or yP*′w,

so that F is reasonable on {P*′, P*″}. Moreover, if P* is a profile on this domain such that

mP*(x,y) = mP(x,y), then xF(P*)y.

Suppose there exists z ∈ X such that

(22) zP*′x and zP*″y.

If there are multiple such z, choose the one that is lowest in the ordering P*″. Now

choose P̃ ∈ ℘X such that

(23) yP̃zP̃x, and

(24) P̃X-{z} = P*″X-{z}.

We claim that there do not exist three alternatives for which {P*′, P*″, P̃} constitutes a

Condorcet triple. If, contrary to the claim, there were such alternatives, (24) would

imply that one would have to be z. Denote the other two by u and v, and assume,

without loss of generality, that uP̃v. From (24), we have

(25) P*″{u,v} = P̃{u,v}.

If say, zP̃v, then from (23) and (24) we have

(26) P*″{z,v} = P̃{z,v}.

But (25) and (26) contradict the Condorcet-triple hypothesis. Hence, we may

assume that

(27) uP̃vP̃z.

Since uP*″v, (27) implies that for a Condorcet triple we must have

(28) zP*″uP*″v, and

(29) vP*′zP*′u.

Now (22) and (29) imply

(30) vP*′x.

Therefore, v ≠ y. Furthermore, (24), (27), and (28) imply

(31) zP*″vP*″y.
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But (30) and (31) together contradict the assumption that z is the alternative satisfying

(22) that is lowest in ordering P*″. Hence there exist no Condorcet triples in {P*′, P*″, P̃}.

This proves that FM is reasonable on {P*′, P*″, P̃}. We have already shown that F is not

reasonable on {P*′, P*″, P̃}.

We have been assuming that there exists z ∈ X such that (22) holds. A similar

argument applies if there exists z ∈ X such that

(32) yP*′z and xP*″z.

It remains to consider the case where, for all z′ ∈ X,

(33) z′P*′x ⇔ xP*″z′.

Let z be the alternative immediately below x in P*″, i.e.,

(34) xP*″zP*″w

for all w ≠ z such that xP*″w. From (33) we have

(35) zP*′x.

Choose Pz″ such that

(36) Pz″X-{z} = P*″X-{z}

and, for all w such that wP*″y,

(37) wPz″zPz″y.

Now, if there is a Condorcet triple in {P*′, P*″, Pz″} for some triple of alternatives, (36)

implies that z must be one of the alternatives. Let {u,v} be the other two alternatives.

From (36) we have

(38) Pz″{u,v} = P*″{u,v}.

Hence, for a Condorcet triple, (34), (37), and (38) imply that {u,v} = {x,y}. But because

yP*″xP*″z and zPz″yPz″x, we must have xP*′zP*′y, which contradicts (35).

We conclude that FM is transitive on {P*′, P*″, Pz″} and hence on {P*′, Pz″}.

Moreover F ≠ FM on the latter domain. The rest of the argument is thus the same as that

for the case in which (22) holds. _
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Remark: Caplin and Nalebuff (1988) have studied δ-majority rules when the set

of alternatives is compact and convex in the n-dimensional Euclidean space (n ≥ 1). In

contrast to our undertaking here, they were not seeking to locate conditions on the

domain of individual preference orderings for which voting rules are transitive. They

instead sought conditions, both on individual preference orderings and on the domain

of profiles, for which a given δ-majority rules generates a "social choice function" (SCF).

It will be recalled that an SCF, generated by a voting rule, is a mapping that, for each

profile of individual preference orderings and each subset, Y, of the set of social

alternatives, selects a non-empty subset of Y, each of whose elements is at least as good

as any other element of Y. It will also be recalled that a voting rule can generate an SCF

and yet violate transitivity (see Section 6, below). Caplin and Nalebuff uncovered a set

of conditions on individual preference orderings and their profiles, such that δ = 0.64

(more precisely, δ = (1 - e-1)) is the minimum value of δ for which the δ-majority rule

generates an SCF, regardless of the size of n. But as they did not insist that the δ-

majority rule be transitive, their finding is consistent with Theorem 1, even though the

two results may appear contradictory.

4. Characterization of Majority Rule in Terms of Maximal Robustness

We shall say that a voting rule F is positively responsive on ℘ if, for all {x,y}, all

profiles P, P′ belonging to ℘, and all V ⊆ [0,1], such that, PX-{x,y} = P′X-{x,y}, P(i) = P′(i) for

all i ∉ V, and µ(V) > 0, if for all i ∈ V, {yP(i)x and xP′(i)y} implies {xF(P)y implies

xP(F(P′)y}, where P(F(P′)) is the asymmetric factor of F(P′).

May (1952) established the following characterization of majority rule:

Theorem 2: A voting rule F is anonymous, neutral, and positively responsive on

℘X if and only if F = FM.

Notice that positive responsiveness and neutrality together imply the Pareto rule.
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Theorem 1 enables us to obtain an alternative characterization of majority rule.

Suppose that F is reasonable on the collection of domains ℘ = { ℘1,..., ℘k}. We shall say

that F maximally robust if there is no voting rule F′ that is reasonable on a bigger

collection ℘′ ⊃ ℘. We then have

Theorem 3: A voting rule F is anonymous, neutral, satisfies the Pareto rule on

℘X, and is maximally robust if and only if F = FM.

Proof: If F = FM, then we know that F is anonymous, neutral and satisfies the

Pareto rule. Moreover, the first part of Theorem 1 establishes that FM is reasonable.

Hence FM is maximally robust. Suppose then that F ≠ FM. It follows from the second

part of Theorem 1 that there exists a domain ℘′ on which FM is reasonable but F is not.

We conclude that no other voting rule satisfying anonymity, neutrality and the Pareto

rule on ℘X is maximally robust. _

Remark: If we do not impose the requirement that F satisfies anonymity,

neutrality, and the Pareto rule on ℘X, there exist maximally robust voting rules other

than FM. For example, consider the voting rule F that coincides with FM for any profile

P in a domain on which FM is reasonable, but for all other P, and all Y ⊆ X and all x, y ∈

Y, xI(P)y, where I(P) is the symmetric factor of F(P). It will be observed that such an F is

reasonable on the same class of domains on which FM is reasonable. It differs from FM

only on other domains.

From Lemma 1, we know that, for any triple {x,y,z} (at least) two of the six

possible strict orderings {[x,y,z], [y,z,x], [z,x,y], [x,z,y], [z,y,x], [y,x,z]} must be omitted

from the domain ℘ (one from the first group of three, and one from the second group

of three) if FM is to be reasonable on ℘. Theorem 1 tells us that at least as many strict

orderings must be omitted if any other voting rule is to be reasonable. For comparison,

it will prove useful to examine specifically which orderings need be omitted if certain

prominent voting rules are to be reasonable. In the next two sections we will investigate
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this.

5. Examples of Other Voting Rules, 1: Quasi-agreement

We say that domain ℘ reflects quasi-agreement if for all triples {x,y,z} there

exists a member, say, x, such that (a) for all P ∈ ℘, xPy and xPz; or (b) for all P ∈ ℘,

yPx, and zPx; or (c) for all P ∈ ℘, either yPxPz or zPxPy.

Remark: Under quasi-agreement, for any triple {x,y,z}, (at least) four of the six

possible strict orderings {[x,y,z], [y,z,x], [z,x,y], [x,z,y], [z,y,x], [y,x,z]} must be omitted

from the domain ℘ (two from the first group of three, and two from the second group

of three).

5.1 Rank-order Voting (Borda-count)

Let Q be the cardinality of X. In rank-order voting, each voter assigns weight Q

to his favorite alternative, Q-1 to his next favorite, and so on. For any profile P in ℘ and

any alternative x let w(x,P(i)) be the weight (from 1 to Q) that voter i assigns to x when

his preference ordering is P(i). Then, for all P in ℘, all Y ⊆ X and all x,y ∈ Y, the rank-

order voting rule (or the Borda-count), FB, satisfies

xFB(P)y if and only if {∫w(x,P(i))dµ(i) ≥ ∫w(y,P(i))dµ(i)}.

Clearly, FB is a voting rule. Moreover, it is easy to confirm that FB satisfies

anonymity, the Pareto rule, and transitivity on the unrestricted domain ℘X. Only

neutrality presents a problem. However, FB satisfies even this property on certain

restricted domains.

Theorem 4: FB is reasonable on ℘ if and only if ℘ reflects quasi-agreement.

Proof: Suppose first that ℘ reflects quasi-agreement. It suffices to show that FB

satisfies neutrality on ℘.

Consider two profiles P and P′ in ℘, a pair {x,y}, and a permutation χ:X → X

As we will see in Section 8, only the "independence" part of neutrality presents a problem.
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such that P ranks x and y the same way that P′ ranks χ(x) and χ(y). If, for all i, xP(i)y,

then because FB satisfies the Pareto rule, xP(FB(P))y and χ(x)P(FB(P′))χ(y), where P(FB(P))

and P(FB(P′)) are the asymmetric factors of FB(P) and FB(P′), respectively. Assume

therefore, that there exist two non-empty subsets of voters V1 and V2 such that, if i ∈ V1

, then xP(i)y, and if i ∈ V2, then yP(i)x. We claim that for all i ∈ V1 and all j ∈ V2

(39) w(x,P(i)) - w(y,P(i)) = w(y,P(j)) - w(x,P(j)).

To see that (39) holds, note that if for i ∈ V1 and z ∈ X,

(40) xP(i)zP(i)y

then quasi-agreement implies that

(41) yP(j)zP(j)x

for all j ∈ V2. Similarly, if (41) holds for some j ∈ V2 and z ∈ X, then (40) holds for all i ∈

V1.

Analogous to (39), we can show that, for all i∈V1 and j∈V2,

(42) w(χ(x),P′(i)) - w(χ(y),P′(i)) = w(χ(y),P′(j)) - w(χ(x),P′(j)).

But from (39) and (42) we conclude that {xP(i)y if and only if χ(x)P′(i)χ(y)} implies

{xFB(P)y if and only if χ(x)FB(P′)χ(y)}. But this is neutrality.

Next suppose ℘ is a domain that does not reflect quasi-agreement. Then, for

some triple {x,y,z}, there exist P,P′ ∈ ℘ such that

(43) xPyPz, and

(44) yP′zP′x.

From (43) and (44), we have

(45) w(x,P) - w(y,P) < w(y,P′) - w(x,P′), and

(46) w(x,P) - w(z,P) > w(z,P′) - w(x,P′).

Now, from (45) and (46), we can find a generic profile P in which voters have

either P or P′ for a preference ordering, such that

(47) yP(FB(P))x and xP(FB(P))z.
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But (47) contradicts neutrality. _

5.2 Pareto-Extension Rule

The Pareto-extension rule, FP, is defined as follows: for all P in ℘, all Y ⊆ X, and

all x, y ∈ Y, (i) FP satisfies the Pareto rule, and (ii) xIP(P)y if ~{yP(i)x for almost all i} and

~{xP(i)y for almost all i}, where IP is the symmetric factor of FP.

Observe first that FP is a voting rule. By definition, FP satisfies the Pareto rule. It is

a simple matter also to verify that FP satisfies anonymity and neutrality.

Theorem 5: FP is reasonable on ℘ if and only if ℘ reflects quasi-agreement.

Proof: Suppose first that ℘ reflects quasi-agreement. It suffices to show that FP is

transitive. Consider a profile P in ℘ such that, for some {x,y,z}, xRPy and yRPz, where RP

≡ FP(P). We must show that there exists a set V ⊆ [0,1] with positive Lebesgue measure,

such that, for all i ∈ V, xP(i)z.

Because xRPy and yRPz, the sets V1 = {ixP(i)y} and V2 = {iyP(i)z} have a

positive Lebesgue measure. Now, we might as well assume that, for almost all i∈V1,

(48) zP(i)xP(i)y,

otherwise, we are done. But because ℘ reflects quasi-agreement, (48) implies that

yP(i)xP(i)z for all i ∈ V2. Hence take V = V2.

Next suppose that ℘ is a domain that does not reflect quasi-agreement. Then,

for some triple {x,y,z}, there exist P, P′ ∈ ℘ such that (43) and (44) hold. Let P be a

generic profile in which all voters have either P and P′ as a preference ordering (and

there is a positive measure of each). Since RP ≡ FP(P), we have xIP(P)y, yPP(P)z, and

zIP(P)x, where IP and PP are, respectively, the symmetric and asymmetric factors of RP.

Hence, RP is intransitive. _

5.3 2/3-Majority Rule

2/3-majority rule, F2/3 is defined as follows: for all P in ℘, all Y ⊆ X, and all x, y

∈ Y, xF2/3(P)y if and only if µ{iyP(i)x} < 2/3.
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Note first that F2/3 is a voting rule. It is an easy matter to confirm that F2/3 is

anonymous, neutral and satisfies the Pareto rule.

Theorem 6: F2/3 is reasonable on ℘ if and only if ℘ reflects quasi-agreement.

Proof: Suppose that ℘ satisfies quasi-agreement. It suffices to show that F2/3 is

generically transitive on ℘. Consider a generic profile P in ℘ such that, for some

{x,y,z},

(49) xR2/3y, and

(50) yR2/3z,

where R2/3 ≡ F2/3(P).

From (49), we have

(51) µ{ixP(i)y} > 1/3

and, from (50)

(52) µ{iyP(i)z} > 1/3.

We wish to show that xR2/3z. Suppose it is not. Then we have

(53) µ{izP(i)x} > 2/3.

Now, (51)-(53) imply that

(54) µ{izP(i)xP(i)y} > 0, and

(55) µ{iyP(i)zP(i)x} > 0.

But (54)-(55) together contradict quasi-agreement.

Next suppose that ℘ is a domain that does not reflect quasi-agreement. Then,

for some triple, {x,y,z} there exist P, P′ ∈ ℘ such that (43) and (44) hold. Let P be a

generic profile in which about half the voters have preference ordering P and the

remainder have P′. Writing by I2/3 and P2/3, respectively, for the symmetric and

asymmetric factors of R2/3, we have xI2/3y, yP2/3z, and zI2/3x. But this means that R2/3 is

intransitive. _

6. Examples of Other Voting Rules, 2: Strong Quasi-agreement
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We say that ℘ reflects strong quasi-agreement if for all triples {x,y,z} there exists

a member, say x, such that either (a) for all P ∈ ℘, xPy and xPz; or (b) for all P ∈ ℘, yPx

and zPx.

Remark: Under strong quasi-agreement, for any triple {x,y,z}, (at least) four of

the six possible strict orderings {[x,y,z], [y,z,x], [z,x,y], [x,z,y], [z,y,x], [y,x,z]} must be

omitted from the domain ℘ (two from the first group of three, and two from the

second group of three). But note that strong quasi-agreement is a more demanding

condition than quasi-agreement.

In order to discuss the next two examples of voting rules that we wish to contrast

with majoritarianism, it will be necessary to introduce further definitions:

We will say that a voting rule, F, satisfies contraction consistency (also called

"Nash's independence of irrelevant alternatives" and "property α") on ℘ if, for all P in

℘, all Z ⊆ Y ⊆ X, and all x ∈ Z, {xF(P)y for all y ∈ Y} implies {xF(P)y for all y ∈ Z}. We

will say that a voting rule, F, satisfies expansion consistency (also called "property ß")

on ℘ if, for all P in ℘, all Z ⊆ Y ⊆ X, and all x, y ∈ Z, {xF(P)z for all z ∈ Z, yF(P)z for all

z ∈ Z, and xF(P)z for all z ∈ Y} implies {yF(P)z for all z ∈ Y}. It is a simple matter to

prove that, if F is a voting rule, contraction consistency and expansion consistency are

together equivalent to transitivity.

6.1 Random Dictatorship

Random dictatorship, FRD, is defined as follows. For all P in ℘, all Y ⊆ X, and all

x, y ∈ Y, xFRD(P)y if and only if, either (a) µ{ixP(i)z for all z ∈ Y, z ≠ x} > 0, or (b)

µ{ixP(i)z for all z ∈ Y, z ≠ x} = µ{iyP(i)z for all z ∈ Y, z ≠ y} = 0 and µ{ixP(i)y} > 0.

Theorem 7: FRD is reasonable on ℘ if and only if ℘ reflects strong quasi-

agreement.

Proof: We note first that FRD is a voting rule, satisfying anonymity, neutrality, and

the Pareto rule on ℘X. Suppose then that ℘ reflects strong quasi-agreement. We need
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to show that FRD is transitive on Y.

It is a simple matter to show that FRD satisfies contraction consistency. We need,

therefore, to prove that FRD satisfies expansion consistency as well. Consider Z ⊆ Y ⊆ X,

P in ℘, and x, y ∈ Z, such that xFRD(P)z and yFRD(P)z for all z ∈ Z and xFRD(P)z for all z ∈

Y. We must show that yFRD(P)z for all z ∈ Y. Suppose the contrary. Then there exists z ∈

Y such that zP(FRD(P))y, where P(FRD(P)) is the asymmetric factor of FRD(P). This can be if

either

(56) For almost all i, zP(i)y; or

(57) For almost all i, there exists z′ ∈ Y such that z′P(i)y and µ{izP(i)z′ for all z′ ∈ Y, z

≠ z′} > 0.

Suppose (56) holds. Let V1 = {iyP(i)x}. Because yFRD(P)z for all z ∈ Z, µ(V1) > 0.

Furthermore,

(58) zP(i)yP(i)x for almost all i ∈ V1.

Let V2 = {ixP(i)y}. Because xFRD(P)z for all z ∈ Z, µ(V2) > 0. Furthermore, in view

of (58) and strong quasi-agreement, we have

(59) zP(i)xP(i)y for almost all i ∈ V2. But V1 ∪ V2 = [0,1]; and so, (58), (59), and the

Pareto rule imply that there exists z ∈ Y such that zFRD(P)x and ~{xFRD(P)z}, which is a

contradiction. We conclude that yFRD(P)z for all z ∈ Y after all.

Assume next that (57) holds. Once again, let V1 = {iyP(i)x} and V2 = {ixP(i)y}.

As before, we may conclude that µ(V1), µ(V2) > 0. Consider z ∈ Y such that for a positive

measure of voters in V1, zP(i)y. (As X is finite, z exists.) For these voters, zP(i)yP(i)x. In

view of strong quasi-agreement, however, zP(i)xP(i)y for all i ∈ V2. From this we may

also conclude that zP(i)yP(i)x for all i ∈ V1. But V1 ∪ V2 = [0,1]. This implies that

zFRD(P)x and ~{xFRD(P)z}, which is a contradiction. So yFRD(P)z for all z ∈ Y after all.

To prove the converse, assume that ℘ does not reflect strong quasi-agreement.

Consider a non-pathologic P belonging to ℘, such that xFRD(P)z′ and yFRD(P)z′ for all z′
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∈ Z, xFRD(P)z′ for all z′ ∈ Y, and there exists z ∈ Y-Z, with the property that zP(i)yP(i)x

for i ∈ V1 and either (a) xP(i)zP(i)y for i ∈ V2, where, as before, V1 = {iyP(i)x} and V2 =

{ixP(i)y}, or (b) xP(i)yP(i)z. We know that µ(V1), µ(V2) > 0 and V1 ∪ V2 = [0,1]. By

construction, P violates strong quasi-agreement. Now note that zP(FRD(P))y in either case

(a) or case (b). This is inconsistent with expansion consistency. _

6.2 Plurality Rule

Plurality rule, FPL, is defined as follows. For all P in ℘, all Y ⊆ X, and all x, y ∈ Y,

xFPL(P)y if and only if either (a) µ{ixP(i)z for all z ∈ Y} ≥ µ{iyP(i)z for all z ∈ Y}, where

µ{ixP(i)z for all z ∈ Y} > 0, or (b) µ{ixP(i)z for all z ∈ Y} = µ{iyP(i)z for all z ∈ Y} = 0

and µ{ixP(i)y} > 0.

Theorem 7: FPL is reasonable on ℘ if and only if ℘ satisfies strong quasi-

agreement.

Proof: Similiar to that of Theorem 6. _

7. Relaxing Transitivity and Anonymity

Are the conditions on voting rules postulated in Theorem 1 tight? In this section

we shall relax transitivity and anonymity. (In Section 8 we will explore one particular

route to weakening neutrality.)

As is well known (see Remark following the proof of Theorem 1), a voting rule

does not need to be transitive if it is to yield a collective decision over elements of Y (⊆

X). In this context, a condition that has been much studied is quasi-transitivity (Sen,

1969). In Section 7.1 we shall study the robustness of majority rule if quasi-transitivity

replaces transitivity as a requirement on voting rules. In Section 7.2 we will demonstrate

that anonymity can also be relaxed considerably even while retaining a part of Theorem

1.

7.1 Quasi-transitivity

We shall say that a voting rule F satisfies quasi-transitivity (also called P-
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transitivity) on ℘ if, for all profiles P in ℘, xPy and yPz imply xPz, where P is the

asymmetric factor of R ≡ F(P). There are voting rules (e.g. the Pareto extension rule) that

satisfy anonymity, neutrality, the Pareto rule, and quasi-transitivity generically on ℘X.

However, Gibbard (1969) showed that, in the case of a finite number of voters, all such

voting rules represent "oligarchic" forms of collective choice: for any such voting rule

there is an identifiable and unique group of voters such that, for all Y ⊆ X and all x, y ∈

Y, if any member of this group strictly prefers x to y, then xRy, and if all members of

this group strictly prefer x to y, then xPy. In short, members of the oligarchy have veto

power.

The idea of an oligarchy can be extended to the case of a continuum of voters. We

shall say that an ε-veto set for a voting rule F on ℘ is a subset C ⊆ [0,1] with µ(C) = ε

such that, for all profiles P in ℘ and for all x,y, if xP(i)y for all i ∈ C, then xF(P)y. We

shall say that F satisfies no veto-power if there exists ε* > 0 such that, for all ε < ε*, F

does not have an ε-veto set.

Theorem 9: Suppose that F satisfies anonymity, neutrality, the Pareto rule, quasi-

transitivity, and no veto-power generically on ℘. Then FM does too.

Proof: The argument follows that of Theorem 1. As before, let q (> 2) be an

integer. We consider profiles in which all voters with index in [k/q, (k+1)/q] have the

same preference ordering. The aim is to show that if F satisfies the conditions of the

theorem generically on ℘, then ℘ cannot contain a Condorcet triple. The result will

then follow from Lemma 1.

Consider a profile P in which, ∀i ∈ [0, 1/q], xP (i)y and ∀i ∉ [0, 1/q], yP(i)x.

Write by P the asymmetric factor of F(P). Then we can rule out xPy and yPx the same

way as in the proof of Theorem 1. Suppose, therefore, that xIy, where I is the symmetric

See also Guha (1972), Mas-Colell and Sonnenschein (1972), and Blau and Brown (1989) for related
results.
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factor of F(P). We can choose q big enough so that (1/q) < ε*, in which case xIy violates

the condition that there is no veto-power. _

7.2 Individual Responsiveness

We can relax anonymity quite a bit even while retaining part of Theorem 1. We

shall call a voting rule F individually responsive on ℘ if, for any integer q, any pair

{x,y}, and any subset of voters V ⊆ [0,1] such that µ(V) = 1/q, there exist preference

orderings, P, P′ ∈ ℘ with xPy and yP′x and a profile P-V for voters not in V, such that

~{yF(P)x} and yF(P′)x, where P(i) = P and P′(i) = P′ for all i ∈ V, and in either case P-V is

the profile for all i ∉ V.

We may now prove

Lemma 2: Any voting rule that satisfies anonymity and the Pareto rule on ℘ is

also individually responsive, provided that, for all {x,y}, there exist orderings Px, Py ∈

℘ for which xPxy and yPyx.

Proof: Consider a profile Po in which everyone has ordering Px. By the Pareto

rule, we have ~{yF(Po)x}. Choose integer q > 2 and consider successively P1, P2,..., Pq

where, for each k = 1, 2,..., q, Pk is the profile in which voters [0,k/q] have ordering Py

and voters [k/q, 1] have ordering Px. By the Pareto rule, we have yF(Pq)x. But this means

that there exists k* ∈ {1,..., q} such that ~{yF(Pk*-1)x} and {yF(Pk*)x}.

Consider the subset V(k*,q) ≡ [(k*-1)/q, k*/q]. Let P = Px, P′ = Py. Define the

profile P-V(k*,q) as: P-V(k*,q)(i) = Py for i ∈ [0, k*/q] and P-V(k*,q)(i) = Px for i ∈ [k*/q, 1]. Notice

that the conditions for individual responsiveness are satisfied. Finally observe that,

since the voting rule is anonymous, the argument is not restricted to V(k*,q): we can

construct the same argument for any other subset of measure 1/q. _

Theorem 10: Suppose that a voting rule F is transitive, neutral, individually

responsive, and satisfies the Pareto rule generically on ℘. Then FM does so too.

Proof: In view of Lemma 1, it suffices to show that, for all {x,y,z}, at least one of
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[x,y,z], [y,z,x], and [z,x,y] does not belong to ℘.

Suppose, to the contrary, that all three do. Choose integer q > 2 with the property

that, on the domain of profiles in ℘ in which, for each k = 1,..., q, everyone with index

in V(k,q) = [(k-1)/q, k/q] has the same preference ordering, F satisfies all four

properties. We claim that, for all k, if Pk is a profile such that all voters in V(k,q) prefer x

to y and all remaining voters prefer y to x, then xF(Pk)y. If this claim holds, then we can

readily establish a contradiction to the hypothesis that [x,y,z], [y,z,x], and [z,x,y] belong

to ℘. Specifically using the method of the proof of Theorem 1, we can show (if all three

orderings belong to ℘) that the existence of a profile P, for which all voters in [0, 1/q]

prefer x to y, those in [1/q, 1] prefer y to x, and xF(P)y implies that, for all k, there exists

a profile P′ for which all voters in [0, 1/q] prefer x to y, those in [1/q, 1] prefer y to x,

and xF(P′)y. But, for k = q, this conflicts with neutrality and the definition of Pq, unless

we also have yF(P)x. Furthermore, in the latter case, if we consider the profile in which

everyone in [0, 1/q] has the ordering [x,y,z], and everybody in [1/q, 1] has the ordering

[y,z,x], we conclude that xÎyP̂zÎx, where R̂ is the social preference ranking

corresponding to this profile; and Î and P̂ are its symmetric and asymmetric factors,

respectively. But this violates transitivity.

So then suppose, contrary to the initial claim, that there exists Pk* such that

xPk*(i)y for all i ∈ V(k,q), yPk*(i)x for all i ∉ V(k,q), and yet

(60) ~{xF(Pk*)y}.

From the fact that F is individually responsive, there exists a profile P-V(k,q) for the voters

not in V(k,q) and orderings Px and Py, such that

(61) ~{yF(Px)x}, and

(62) yF(Py)x,

where Px and Py are the profiles in which voters in V(k,q) have orderings Px and Py,

respectively, and voters not in V(k,m) have the profile P-V(k,q).
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Let Vx = {ii ∉ V(k,q) and xP-V(k,q)(i)y} and Vy = {ii ∈ V(k,q) and yP-V(k,q)(i)x}. Now,

if Vx is empty, then (61) and the hypothesis that F is neutral contradict (60); whereas, if

Vy is empty, then (61) and the hypothesis that F is neutral contradict (60). Hence, we

may assume that Vx and Vy are non-empty.

Consider the profile P′ in which: for all i ∈ V(k,q), xP′(i)yP′(i)z; for all i ∈ Vy,

yP′(i)zP′(i)x; and, for all i ∈ Vx, zP′(i)xP′(i)y. Let R′ be the social preference ranking

corresponding to P′. From (61) and (62), xR′yR′z. Hence, from transitivity:

(63) xR′z.

But because, for all i ∈ V(k,q), xP′(i)z, and for all i ∉ V(k,q), zP′(i)x, (63)

contradicts (60). We conclude that [x,y,z], [y,z,x] and [z,x,y] cannot all belong to ℘. _

Remark: Note that the counterpart of the second assertion of Theorem 1 is not

contained in Theorem 10. FM is not uniquely maximally robust among those voting rules

that satisfy neutrality, the Pareto rule, and individual responsiveness.

To see this, consider a measurable function w:[0,1] → R+. We shall call FWM a

weighted majority rule with weight w if, for all P, all Y ⊆ X, and all x,y ∈ Y, xFWM(P)y if

and only if:

∫i∈V(P,x,y)w(i)dµ(i) ≥ ∫i∈V(P,y,x)w(i)dµ(i),

where V(P,x,y) ≡ {ixP(i)y}.

We now note:

Theorem 11: For any measurable function w(.), FWM is transitive generically on ℘

if and only if FM is transitive generically on ℘.

Proof: Obvious. _

Theorem 11 enables us to conclude that Theorem 10 holds when FM is replaced by

FWM. In other words, weighted majority voting rules are also maximally robust.

8. Non-Neutrality and the Unanimity Rule

A voting rule F satisfies independence of irrelevant alternatives on ℘ if, for all



30

profiles P and P′ in ℘, all Y ⊆ X, and all x, y ∈ Y, PY = P′Y implies that xF(P)y ⇔

xF(P′)y, where PY and P′Y are, respectively, the restrictions of P and P′ to Y.

It is well known that neutrality is sharper than independence of irrelevant

alternatives, in that, if a voting rule is neutral on ℘, it is independent of irrelevant

alternatives on ℘; but the reverse implication does not hold.

In what follows, we will relax neutrality in the following way:

Consider a profile P such that, for all x and y,

(64) µ{ixP(i)y} = µ{iyP(i)x} = ½.

If F were to satisfy anonymity and neutrality, we would have xI(F(P))y for all x and y,

where I is the symmetric factor of F. We wish to weaken neutrality so that ties like this

might be broken. However, we will require them to be broken in a consistent way.

Specifically, we will say that F satisfies tie-breaking consistency on ℘ if there exists an

ordering RF* such that, for all x and y, and some profile P on ℘ for which (64) holds,

(65) xRF*y ⇔ xF(P)y.

Note that if F satisfies anonymity and neutrality, the "tie-breaker" RF* is the

ordering in which all alternatives are deemed indifferent. Observe too that tie-breaking

consistency is much weaker than neutrality: not only does it allow ties to be broken, but

it applies at most to one profile satisfying (64). Indeed, tie-breaking consistency is

restrictive only in that it requires RF* to be transitive.

Let Po be a strict ordering on X. We define unanimity rule with order of

precedence Po to be the voting rule Fu
Po

such that, for all P, all all Y ⊆ X, and all x,y ∈ Y,

yxP_P)y(xF o
u
Po

unless yP(i)x for almost all i, in which case .xP)(yFu

Po
.

Remark: The ordering Po can be interpreted as prescribing an order of

precedence. That is, if xPoy, then x is considered better than y unless almost everyone

prefers y to x. Thus, the top-ranked alternative according to Po can be thought of as the

status quo.
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We now state a result analogous to Theorem 1.

Theorem 12: Let F be a voting rule that satisfies anonymity, the Pareto rule, tie-

breaking consistency, independence of irrelevant alternatives, and transitivity on ℘.

Then there exists a strict ordering Po such that Fu
Po

satisfies these conditions too.

Moreover, if there exists a profile P in ℘ such that ,P)(FP)F( u
Po

≠ then there exists a

domain ℘′ on which Fu
Po

satisfies these conditions but F does not.

We will prove this via two Lemmas. We note first though that, starting from the

voting rule F, we can create a two-person voting rule, F1/2, such that, for all P1, P2 ∈ ℘X

and all x,y ∈ X,

xF1/2({P1,P2})y ⇔ xF(P12)y,

where P12 is the profile such that

(66)

If F satisfies tie-breaking consistency and independence of irrelevant alternatives

on ℘, then, for all x,y and all P1, P2 ∈ ℘ such that xP1y and yP2x,

(67) xRF*y ⇔ xF1/2({P1,P2})y.

We now have:

Lemma 3: Suppose that F satisfies anonymity, the Pareto rule, tie-breaking

consistency and independence of irrelevant alternatives on ℘. F1/2 is transitive on ℘, if

and only if, for all x,y,z:

(i) (xRF*y, yRF*z, xPF*z) ⇒ either [y,z,x] or [z,x,y] ∉ ℘,

(ii) (xIF*y, yIF*z) ⇒ 2 strict orderings from each Condorcet-cycle are absent from ℘.

Proof: Suppose that F satisfies the hypotheses. Assume first that F1/2 is transitive

on ℘. Assume too that xRF*y, yRF*z, and xPF*z, but {[y,z,x], [z,x,y]} ⊆ ℘. Let P1 =

[y,z,x], and P2 = [z,x,y]. Then it must be that xF1/2({P1,P2})y, yF1/2 ({P1,P2})z, and
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zP(F1/2({P1,P2}))x, where P(F1/2(.)) is the asymmetric factor of F1/2(.). But this is

inconsistent with transitivity of F1/2. Hence, either [y,z,x] ∉ ℘ or [z,x,y] ∉ ℘. This

confirms (i).

Suppose instead that xIF*yIF*z. If there exist two orderings in ℘ from the same

Condorcet triple, say, [x,y,z] and [y,z,x], then if we take P1 = [x,y,z] and P2 = [y,z,x], we

obtain xF1/2({P1,P2})yP(F1/2({P1,P2}))zF1/2({P1,P2})x, which again contradicts transitivity.

This confirms (ii).

To establish the reverse implication in the Lemma, assume that F1/2 is intransitive

on ℘. Then, there exist P1,P2 ∈ ℘, such that, either

(68) xF1/2({P1,P2})yF1/2({P1,P2})zF1/2({P1,P2})x with at least one strict preference, or

(69) xF1/2({P1,P2})zF1/2({P1,P2})yF1/2({P1,P2})x, with at least one strict preference.

Let us first assume that

(70) xRF*yRF*z (with at least one strict preference) and xPF*z.

If (68) holds, then from (70), we may infer:

(71) zP1x and zP2x.

Since yF1/2({P1,P2})z, one of the two voters must prefer y to z. Assume then that

(72) yP1zP1x.

Now (71), (72) and xF1/2({P1,P2})y imply that

(73) zP2xP2y.

Note now that (70), (72) and (73) together constitute a violation of the implication of (i),

namely, "if (64) holds, then either [y,z,x] ∉ ℘, or [z,x,y] ∉ ℘."

Now suppose that (69) holds. Then, if

(74) yPF*z, we must have

(75) zP1y and zP2y.

However, yF1/2({P1,P2})x implies that at least one voter prefers y to x. Hence, we

may assume
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(76) yP1x.

But (75) and (76) imply,

(77) zP1yP1x.

Therefore, because xF1/2({P1,P2})z, we must have

(78) xP2zP2y.

From (70), (78) and yF1/2(P1,P2)x, we have

(79) yIF*x.

Moreover, (70), (74) and (79) imply

(80) yRF*xRF*z and yPF*z.

However, (70), (77) and (78) constitute a violation of the implication of (i), namely, "if

(80), then either [z,y,x] ∉ ℘ or [x,z,y] ∉ ℘."

Consider next the case where, instead of (74), we have

(81) yIF*z.

Then it follows that

(82) xPF*y.

Hence, because yF1/2({P1,P2})x, we may infer that

(83) yP1x and yP2x.

Furthermore, xF1/2({P1,P2})z implies that at least one voter must prefer x to z. So we may

assume

(84) yP1xP1z.

Since zF1/2({P1,P2})y, we have

(85) zP2yP2x.

But (70), (81) and (82) imply

(86) xRF*zRF*y and xPF*y.

Thus, as required, (84) and (85) constitute a violation of the implication of (i), namely, "if

(86), then either [y,x,z] ∉ ℘ or [z,y,x] ∉ ℘."
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Finally, let us assume the antecedent of (ii):

(87) xIF*yIF*zIF*x.

We must show that, for one of the two Condorcet triples, fewer than two

orderings are omitted from ℘. Suppose, to the contrary, that two orderings are omitted

from each Condorcet cycle. Without loss of generality assume that P1 = [x,y,z] ∈ ℘.

If P2 = [x,z,y] ∈ ℘, then

xP(F1/2({P1,P2}))yI(F1/2({P1,P2}))z and xP(F1/2({P1,P2}))z.

If P2 = [z,y,x] ∈ ℘, then

xI(F1/2({P1,P2}))yI(F1/2({P1,P2})zI(F1/2({P1,P2}))x.

If P2 = [y,x,z] ∈ ℘, then

xI(F1/2({P1,P2}))yP(F1/2({P1,P2}))z and xP(F1/2({P1,P2}))z.

Hence, in all cases, the social ranking is transitive. We conclude that, for an

intransitivity, at most one ordering may be omitted from some Condorcet triple. _

Let Fo
2/1 be the two-person voting rule such that, for all P1,P2 ∈ ℘ and all x,y ∈ X,

)y,P(xF_y})P,P({xF 12
u
P21

0
2/1 o

where P12 is the profile satisfying (66).

Note that if xP1y and yP2x then xP0y ⇔ .y})P,P({xF 21
o

2/1 We then have

Lemma 4: Fo
2/1 is transitive on ℘ if and only if Fu

Po
is transitive on ℘.

Proof: If Fu
Po

is transitive on ℘, then it is immediate that Fo
2/1 is too. Assume,

therefore, that Fo
2/1 is transitive on ℘. We must show that Fu

Po
is transitive. Consider

profile P on ℘ and three alternatives x,y, and z. Assume that

(88) xPoyPoz.

If P)(Fu
Po

is intransitive, then either

(89) xP)(zFP)(yFP)(xF u
P

u

P
u
P ooo

, or

(90) xP)(yFP)(zFP)(xF
u

P
u
P

u
P ooo

.

Hence, from (88), we must have either
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(91) zP(i)x for almost all i, (from (89)), or

(92) zP(i)y for almost all i, (from (90)).

If (89) holds, then, there must exist i such that xP(i)y and j such that yP(j)z, which

in view of (91) imply that

(93) P(i) = [z,x,y] and P(j) = [y,z,x,].

But because Fo
2/1 is transitive on ℘, (88) and Lemma 3 (with Po replacing RF*) imply that

(93) is impossible.

If, on the other hand, (90) holds, then there must exist i such that xP(i)z, which in

view of (92) implies that

(94) P(i) = [x,z,y].

But because xP(i)y, the relation P)x(yFu

Po
contradicts xPoy, and so (94) cannot hold. We

conclude that P)(Fu
Po

is transitive. _

Proof of Theorem 12: Suppose that F satisfies anonymity, tie-breaking

consistency, independence of irrelevant alternatives, the Pareto rule, and transitivity on

℘. Because F satisfies tie-breaking consistency, there exists an ordering RF* satisfying

(64) and (65). Moreover, because F satisfies anonymity and independence of irrelevant

alternatives, RF* satisfies (65) for all profiles satisfying (64). Choose a strict ordering Po

which is consistent with RF*; that is, for all x,y ∈ X, xPF*y ⇒ xPoy, where PF* is the

asymmetric factor of RF*. Let IF* denote the symmetric factor of RF*. If there do not exist

x,y ∈ X such that xIF*y, then we may conclude Po = RF*.

Suppose that, for some triple x,y,z ∈ X,

(95) xPoyPoz.

Since F is transitive on ℘, so is F1/2. Hence from (95), the fact that Po is consistent with

RF*, and Lemma 3, together imply that

(96) either [y,z,x] ∉ ℘ or [z,x,y] ∉ ℘.
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But Lemma 3, (95), and (96) then imply that Fo
2/1 is transitive on ℘. From Lemma 4, we

may conclude that Fu
Po

does too.

Next suppose that for some P on ℘, { } { }._P)(F_P)F( yx,
u
Pyx, o

≠ Then there exist x,y

∈ X such that

(97) { } { }_P)(F_P)F( yx,
u
Pyx, o

≠ .

Since Po is strict, we can assume

(98) xPoy.

Hence, from (97) and (98), we have

(99) x Fu
Po

(P)y, and

(100) yF(P)x.

Let Poo be the "reverse" of Po; that is, aPoob ⇔ bPoa, for all a,b ∈ X. We claim that

Fu
Po

is transitive on ℘ ∪{Po,Poo}. To see this, note that, from Lemma 3, Fo
2/1 is transitive

on a domain _̂, provided that, for all a,b,c with aPobPoc,

(101) either [b,c,a] ∉ _̂ or [c,a,b] ∉ _̂.

Condition (101) holds for _̂ = ℘ because Fu
Po

is transitive on ℘. But clearly (101)

continues to hold if we add Po and Poo to ℘ (since neither [b,c,a] nor [c,a,b] is consistent

with Po or Poo). Hence, from Lemma 4, Fu
P0

is transitive on ℘o ≡ ℘ ∪{Po,Poo}. If F fails to

satisfy anonymity, the Pareto rule, tie-breaking consistency, independence of irrelevant

alternatives, and transitivity on ℘o, then we can take ℘′ = ℘o, and we are done.

Therefore assume that F does satisfy these properties on ℘o. In particular, this implies

that the same tie-breaker RF* applies to {Po,Poo} as to ℘.

Suppose, for the moment, that y is not the lowest alternative in the ranking Po.

Let z be the alternative just below y. Let P̂o be the same as Po except that y and z are

If instead y Fu
Po

(P)x, then from (98), we would have yP(i)x for almost all i. But then (97) would imply

that F violates the Pareto rule.
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interchanged. Let Po* be the same as Po except that z has moved to just above x. Finally,

let Po** be the same as Po except that x and y are interchanged. Let ℘* = {Po, P̂o, Poo, Po*,

Po**}. Notice that, for all a,b,c ∈ X such that aPobPoc, [b,c,a] ∉ ℘*. Hence Fu
Po

is

transitive on ℘*. If F does not satisfy anonymity, the Pareto rule, independence of

irrelevant alternatives, tie-breaking consistency, and transitivity on ℘*, we are done.

Therefore, assume that F does satisfy these properties. This means, in particular, that the

same tie-breaker RF* applies to ℘* as to {Po, Poo} in ℘. Suppose

(102) xIF*y.

Then, because xPoyPoz and RF* is consistent with Po, we have

(103) yIF*xRF*z.

But from (103) and Lemma 3, F1/2 is intransitive on ℘* if

(104) [x,z,y], [z,y,x] ∈ _̂,

which holds because xP̂ozP̂oy and zPooyPoox. We conclude that

(105) xPF*y.

Now suppose that mP(x,y) = mP(y,x) = ½. Since Po is consistent with RF*, (97) and

(98) imply that xIF*y, a contradiction of (105). It follows that either

(106) mP(x,y) > mP(y,x), or

(107) mP(x,y) < mP(y,x).

If (106) holds, consider the following profile P* on ℘*:

P*(i)

Now mP*(x,y) = mP(x,y). Hence from (100), we have

(108) yF(P*)x.
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Also, mP*(x,z) = ½. Therefore, since xPoz, we have

(109) xF(P*)z.

Finally, from the Pareto rule, we conclude that

(110) zP(F(P*))y.

But (108)-(110) imply that F is intransitive on ℘*. Hence we can take ℘′ = ℘*.

If (107) holds, there are two cases to consider:

Case 1 There exists a profile P′ on ℘* such that

(111) mP′(y,z) < ½ and zF(P′)y.

Consider the profile P** such that
P̂o, i ∈ [0, mP(x,y)]

P**(i) = Po**, i ∈ [mP(x,y), mP(x,y) + mP′(y,z)]

{ Po*, i ∈ [mP(x,y) + mP′(y,z), 1]

Since mP**(x,y) = mP(x,y), we conclude from (100) that

(112) yF(P**)x.

Moreover, because mP**(y,z) = mP′(y,z), (111) implies that

(113) zF(P**)y.

Now mP**(x,z) > mP**(z,x). Therefore, if zF(P**)x, we can apply the same argument as in

the case where (106) holds to conclude that F is intransitive on ℘*. Hence assume that

(114) xP(F(P**))z.

But (112)-(114) also contradict the transitivity of F on ℘**.

Case 2 Suppose P′ is a profile on ℘* such that

(115) mP′(y,z) < ½ implies

(116) yF(P′)z.

Suppose first that, for some P″ such that

(117) mP″(x,z) < mP″(z,x),

we have

(118) zP(F(P″))x.
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Choose P̄ such that
P̄(i) = P̂o*, i ∈ [0, mP″(x,z)]

{ Po**, i ∈ [mP″(x,z), 1]

Notice that mP̄(x,y) = mP″(z,x) > ½. Therefore, if yF(P̄)x, we can apply the same argument

as in the case where (106) holds to conclude that F is intransitive on ℘*. Hence assume

that

(119) xP(F(P̄))y.

Since mP̄(y,z) < ½, (115) and (116) imply that

(120) yF(P′)z.

Next, observe that, because mP̄(x,z) < ½, (117) and (118) imply that

(121) zP(F(P̄))x.

But (119)-(121) imply that F is intransitive on ℘.

Therefore, assume that, for all P″ satisfying (117), we have

(122) xF(P″)z.

Choose P̃ such that
P̃(i) = P̂o, i ∈ [0, mP(x,y)]

{ Poo, i ∈ [mP(x,y), 1]

Since mP̃(x,z) = mP″(x,z), (122) implies that

(123) xF(P̃)z.

But mP̄(x,y) = mP(x,y). Therefore, (100) implies that

(124) yF(P̃)x.

Finally, we know that zP̃(i)y for all i ∈ [0, 1]. Hence

(125) zP(F(P̃))y.

But (123)-(125) imply that F is intransitive on ℘*, which completes the proof. _

9. Summary and Commentary

In the nearly-fifty years since Arrow's famous Impossibility Theorem was

published, the theory of social choice has been subjected to scrutiny from a wide variety
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of directions. Relatively little analytical attention has been paid, however, to the

robustness of various voting rules. This paper has been about robustness in a world

with a continuum of voters. We have been especially interested in identifying domains

of individual preference profiles for which various well known voting rules satisfy the

Pareto rule and are (generically) anonymous, neutral, and transitive. Voting rules

satisfying these four conditions were termed reasonable. It was shown (Theorem 1) that,

if for some domain of individual preference profiles a voting rule is reasonable, then so

is majority rule reasonable. It was also shown that, unless a voting rule, F, is itself the

majority rule, there exists some domain of individual preference profiles on which

majority rule is reasonable, but F is not. The two results, when combined, capture the

sense in which majority rule is the most robust among voting rules that are required to

satisfy the Pareto rule and to be (generically) anonymous, neutral, and transitive. From

these observations we were able to offer a new characterization of majority rule, one

based on the idea of "maximal" robustness (Theorem 3). This characterization

complements the one offered by May (1952) and reproduced here as Theorem 2.

Majority rule satisfies anonymity, neutrality, and the Pareto rule on an

unrestricted domain of individual preference profiles. Lemma 1 identified a necessary

and sufficient condition on the domain of individual preference profiles for the rule to

be generically transitive. (A different form of this condition has been called value

restriction in the literature.) Theorem 1 tells us that a domain must satisfy at least as

strong a condition as value restriction if any other voting rule is to be reasonable. In

Section 5 three well-known voting rules, namely, the Borda-count, the Pareto-extension

rule, and the 2/3-majority rule were studied. It was shown that they share the same

necessary and sufficient condition for reasonableness (Theorems 4-6). A characterization

of this condition, which we called quasi-agreement, was provided. As expected, it was

found to be stronger than value restriction. The moral is that, if we were to judge voting
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rules solely in terms of their reach in being reasonable, these three widely differing

aggregation procedures are the same.

In Section 6 two further voting rules - random dictatorship and the plurality rule

- were studied. It was shown that they share the same necessary and sufficient condition

for reasonableness (Theorems 7-8). A characterization of this condition was provided.

As the condition is even stronger than quasi-agreement, we named it strong quasi-

agreement. The moral is that, if we were to judge voting rules solely in terms of their

reach in being reasonable, random dictatorship and the plurality rule are the same.

These results allow us to group the foregoing six voting rules in a hierarchy. In

order of decreasing robustness, the hierarchy consists of three groups: {majority rule},

{Borda-count, the Pareto extension rule, 2/3 majority rule}, and {random dictatorship,

plurality rule}.

In Sections 7 and 8 the "tightness" of the assumptions (in turn, transitivity,

anonymity, and neutrality) underlying Theorem 1 were studied. While majority rule

was found to retain something of its robustness when transitivity was weakened to

"quasi-transitivity" (Theorem 9) and anonymity was replaced by "individual

responsiveness" (Theorems 10-11), dropping neutrality as an ethical criterion was found

to have a marked effect. It was shown that if neutrality is replaced by "independence of

irrelevant alternatives" and a certain technical condition designed to break ties (which

we called "tie-breaking consistency"), then it is the unanimity rule, with a given order of

precedence, that is robust (Theorem 12). Put informally, if a voting rule, F, satisfies

anonymity, tie-breaking consistency, independence of irrelevant alternatives, the Pareto

rule, and transitivity on a domain of individual preference profiles, then so does the

unanimity rule with a given order of precedence satisfy them. Moreover, unless a

voting rule, F, is itself the unanimity rule with a given order of precedence, there exists

some domain of individual preference profiles on which the unanimity rule satisfies
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these conditions, but F does not. Theorems 1 and 12, therefore, tell us that replacing

neutrality by independence of irrelevant alternatives in the notion of reasonableness of

voting rules has a marked effect on its robustness. Perhaps we should not have expected

it to be otherwise.

A question we have not addressed relates to what is known in the literature as

"strategy-proofness" of voting rules. As the number of voters has been assumed to be a

continuum, sincere voting is, trivially, compatible with individual incentives. What we

have not investigated here are the domains of individual preference orderings on which

the various voting rules are coalition-proof against manipulation. That remains a subject

for future work.
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